└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # Elicit Machine Learning Reading List
2 |
3 | ## Purpose
4 |
5 | The purpose of this curriculum is to help new [Elicit](https://elicit.com/) employees learn background in machine learning, with a focus on language models. I’ve tried to strike a balance between papers that are relevant for deploying ML in production and techniques that matter for longer-term scalability.
6 |
7 | If you don’t work at Elicit yet - we’re [hiring ML and software engineers](https://elicit.com/careers).
8 |
9 | ## How to read
10 |
11 | Recommended reading order:
12 |
13 | 1. Read “Tier 1” for all topics
14 | 2. Read “Tier 2” for all topics
15 | 3. Etc
16 |
17 | ✨ = Added after 2025/11/26
18 |
19 | ## Table of contents
20 |
21 | - [Fundamentals](#fundamentals)
22 | - [Introduction to machine learning](#introduction-to-machine-learning)
23 | - [Transformers](#transformers)
24 | - [Key foundation model architectures](#key-foundation-model-architectures)
25 | - [Training and finetuning](#training-and-finetuning)
26 | - [Reasoning and runtime strategies](#reasoning-and-runtime-strategies)
27 | - [In-context reasoning](#in-context-reasoning)
28 | - [Task decomposition](#task-decomposition)
29 | - [Debate](#debate)
30 | - [Tool use and scaffolding](#tool-use-and-scaffolding)
31 | - [Honesty, factuality, and epistemics](#honesty-factuality-and-epistemics)
32 | - [Applications](#applications)
33 | - [Science](#science)
34 | - [Forecasting](#forecasting)
35 | - [Search and ranking](#search-and-ranking)
36 | - [ML in practice](#ml-in-practice)
37 | - [Production deployment](#production-deployment)
38 | - [Benchmarks](#benchmarks)
39 | - [Datasets](#datasets)
40 | - [Advanced topics](#advanced-topics)
41 | - [World models and causality](#world-models-and-causality)
42 | - [Planning](#planning)
43 | - [Uncertainty, calibration, and active learning](#uncertainty-calibration-and-active-learning)
44 | - [Interpretability and model editing](#interpretability-and-model-editing)
45 | - [Reinforcement learning](#reinforcement-learning)
46 | - [The big picture](#the-big-picture)
47 | - [AI scaling](#ai-scaling)
48 | - [AI safety](#ai-safety)
49 | - [Economic and social impacts](#economic-and-social-impacts)
50 | - [Philosophy](#philosophy)
51 | - [Maintainer](#maintainer)
52 |
53 | ## Fundamentals
54 |
55 | ### Introduction to machine learning
56 |
57 | **Tier 1**
58 |
59 | - [A short introduction to machine learning](https://www.alignmentforum.org/posts/qE73pqxAZmeACsAdF/a-short-introduction-to-machine-learning)
60 | - [But what is a neural network?](https://www.youtube.com/watch?v=aircAruvnKk&t=0s)
61 | - [Gradient descent, how neural networks learn](https://www.youtube.com/watch?v=IHZwWFHWa-w)
62 |
63 | **Tier 2**
64 |
65 | - [An intuitive understanding of backpropagation](https://cs231n.github.io/optimization-2/)
66 | - [What is backpropagation really doing?](https://www.youtube.com/watch?v=Ilg3gGewQ5U&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=4)
67 | - [An introduction to deep reinforcement learning](https://thomassimonini.medium.com/an-introduction-to-deep-reinforcement-learning-17a565999c0c)
68 |
69 | **Tier 3**
70 |
71 | - [The spelled-out intro to neural networks and backpropagation: building micrograd](https://www.youtube.com/watch?v=VMj-3S1tku0) (Karpathy)
72 | - [Backpropagation calculus](https://www.youtube.com/watch?v=tIeHLnjs5U8&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=5)
73 |
74 | ### Transformers
75 |
76 | **Tier 1**
77 |
78 | - ✨ [Intro to Large Language Models](https://www.youtube.com/watch?v=zjkBMFhNj_g) (Karpathy)
79 | - [But what is a GPT? Visual intro to transformers](https://www.youtube.com/watch?v=wjZofJX0v4M)
80 | - [Attention in transformers, visually explained](https://www.youtube.com/watch?v=eMlx5fFNoYc)
81 | - [Attention? Attention!](https://lilianweng.github.io/posts/2018-06-24-attention/)
82 | - [The Illustrated Transformer](http://jalammar.github.io/illustrated-transformer/)
83 |
84 | **Tier 2**
85 |
86 | - ✨ [Deep Dive into LLMs like ChatGPT](https://www.youtube.com/watch?v=7xTGNNLPyMI) (Karpathy)
87 | - [Let's build the GPT Tokenizer](https://www.youtube.com/watch?v=zduSFxRajkE) (Karpathy)
88 | - [The Illustrated GPT-2 (Visualizing Transformer Language Models)](https://jalammar.github.io/illustrated-gpt2/)
89 | - [Neural Machine Translation by Jointly Learning to Align and Translate](https://arxiv.org/pdf/1409.0473)
90 | - [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
91 |
92 | **Tier 3**
93 |
94 | - ✨ [The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"](https://arxiv.org/abs/2309.12288)
95 | - [The Annotated Transformer](https://nlp.seas.harvard.edu/2018/04/03/attention.html)
96 | - [TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second](https://arxiv.org/abs/2207.01848)
97 | - [Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets](https://arxiv.org/abs/2201.02177)
98 | - [A Mathematical Framework for Transformer Circuits](https://transformer-circuits.pub/2021/framework/index.html)
99 |
100 | Tier 4+
101 |
102 | - [A Practical Survey on Faster and Lighter Transformers](https://arxiv.org/abs/2103.14636)
103 | - [Compositional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks](https://arxiv.org/abs/2311.12997)
104 | - [Memorizing Transformers](https://arxiv.org/abs/2203.08913)
105 | - [Transformer Feed-Forward Layers Are Key-Value Memories](https://arxiv.org/abs/2012.14913)
106 |
107 |
108 |
109 | ### Key foundation model architectures
110 |
111 | **Tier 1**
112 |
113 | - [Language Models are Unsupervised Multitask Learners](https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe) (GPT-2)
114 | - [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165) (GPT-3)
115 |
116 | **Tier 2**
117 |
118 | - ✨ [DeepSeek-R1](https://arxiv.org/abs/2501.12948) (DeepSeek-R1)
119 | - ✨ [DeepSeek-V3 Technical Report](https://arxiv.org/abs/2412.19437) (DeepSeek-V3)
120 | - ✨ [The Llama 3 Herd of Models](https://arxiv.org/abs/2407.21783) (Llama 3)
121 | - [LLaMA: Open and Efficient Foundation Language Models](http://arxiv.org/abs/2302.13971) (LLaMA)
122 | - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155) (OpenAI Instruct)
123 |
124 | **Tier 3**
125 |
126 | - ✨ [LLaMA 2: Open Foundation and Fine-Tuned Chat Models](https://arxiv.org/abs/2307.09288) (LLaMA 2)
127 | - ✨ [Qwen2.5 Technical Report](https://arxiv.org/abs/2412.15115) (Qwen2.5)
128 | - ✨ [Titans: Learning to Memorize at Test Time](https://arxiv.org/abs/2501.00663)
129 | - ✨ [Byte Latent Transformer](https://arxiv.org/abs/2412.09871)
130 | - ✨ [Phi-4 Technical Report](https://arxiv.org/abs/2412.08905) (phi-4)
131 |
132 | Tier 4+
133 |
134 | - [Evaluating Large Language Models Trained on Code](https://arxiv.org/abs/2107.03374) (OpenAI Codex)
135 | - [Mistral 7B](http://arxiv.org/abs/2310.06825) (Mistral)
136 | - [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) (T5)
137 | - [Gemini: A Family of Highly Capable Multimodal Models](https://storage.googleapis.com/deepmind-media/gemini/gemini_1_report.pdf) (Gemini)
138 | - [Mamba: Linear-Time Sequence Modeling with Selective State Spaces](https://arxiv.org/abs/2312.00752v1) (Mamba)
139 | - [Scaling Instruction-Finetuned Language Models](https://arxiv.org/abs/2210.11416) (Flan)
140 | - [Efficiently Modeling Long Sequences with Structured State Spaces](https://arxiv.org/abs/2111.00396) ([video](https://www.youtube.com/watch?v=EvQ3ncuriCM)) (S4)
141 | - [Consistency Models](http://arxiv.org/abs/2303.01469)
142 | - [Model Card and Evaluations for Claude Models](https://www-cdn.anthropic.com/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226/Model-Card-Claude-2.pdf) (Claude 2)
143 | - [OLMo: Accelerating the Science of Language Models](http://arxiv.org/abs/2402.00838)
144 | - [PaLM 2 Technical Report](https://arxiv.org/abs/2305.10403) (Palm 2)
145 | - [Textbooks Are All You Need II: phi-1.5 technical report](http://arxiv.org/abs/2309.05463) (phi 1.5)
146 | - [Visual Instruction Tuning](http://arxiv.org/abs/2304.08485) (LLaVA)
147 | - [A General Language Assistant as a Laboratory for Alignment](https://arxiv.org/abs/2112.00861)
148 | - [Finetuned Language Models Are Zero-Shot Learners](https://arxiv.org/abs/2109.01652) (Google Instruct)
149 | - [Galactica: A Large Language Model for Science](https://arxiv.org/abs/2211.09085)
150 | - [LaMDA: Language Models for Dialog Applications](https://arxiv.org/abs/2201.08239) (Google Dialog)
151 | - [OPT: Open Pre-trained Transformer Language Models](https://arxiv.org/abs/2112.11446) (Meta GPT-3)
152 | - [PaLM: Scaling Language Modeling with Pathways](https://arxiv.org/abs/2204.02311) (PaLM)
153 | - [Program Synthesis with Large Language Models](https://arxiv.org/abs/2108.07732) (Google Codex)
154 | - [Scaling Language Models: Methods, Analysis & Insights from Training Gopher](https://arxiv.org/abs/2112.11446) (Gopher)
155 | - [Solving Quantitative Reasoning Problems with Language Models](https://arxiv.org/abs/2206.14858) (Minerva)
156 | - [UL2: Unifying Language Learning Paradigms](http://aima.cs.berkeley.edu/) (UL2)
157 |
158 |
159 |
160 | ### Training and finetuning
161 |
162 | **Tier 2**
163 |
164 | - ✨ [Deep Learning Tuning Playbook](https://github.com/google-research/tuning_playbook)
165 | - [Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer](https://arxiv.org/abs/2203.03466)
166 | - [Learning to summarise with human feedback](https://arxiv.org/abs/2009.01325)
167 | - [Training Verifiers to Solve Math Word Problems](https://arxiv.org/abs/2110.14168)
168 |
169 | **Tier 3**
170 |
171 | - ✨ [Better & Faster Large Language Models via Multi-token Prediction](https://arxiv.org/abs/2404.19737)
172 | - ✨ [LoRA vs Full Fine-tuning: An Illusion of Equivalence](https://arxiv.org/abs/2410.21228)
173 | - ✨ [QLoRA: Efficient Finetuning of Quantized LLMs](http://arxiv.org/abs/2305.14314)
174 | - [Pretraining Language Models with Human Preferences](http://arxiv.org/abs/2302.08582)
175 | - [Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision](http://arxiv.org/abs/2312.09390)
176 |
177 | Tier 4+
178 |
179 | - [Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning](https://arxiv.org/abs/2205.05638v1)
180 | - [Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models](http://arxiv.org/abs/2312.06585)
181 | - [Improving Code Generation by Training with Natural Language Feedback](http://arxiv.org/abs/2303.16749)
182 | - [Language Modeling Is Compression](https://arxiv.org/abs/2309.10668v1)
183 | - [LIMA: Less Is More for Alignment](http://arxiv.org/abs/2305.11206)
184 | - [Learning to Compress Prompts with Gist Tokens](http://arxiv.org/abs/2304.08467)
185 | - [Lost in the Middle: How Language Models Use Long Contexts](http://arxiv.org/abs/2307.03172)
186 | - [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/abs/2106.09685)
187 | - [Quiet-STaR: Language Models Can Teach Themselves to Think Before Speaking](http://arxiv.org/abs/2403.09629)
188 | - [Reinforced Self-Training (ReST) for Language Modeling](http://arxiv.org/abs/2308.08998)
189 | - [Solving olympiad geometry without human demonstrations](https://www.nature.com/articles/s41586-023-06747-5)
190 | - [Tell, don't show: Declarative facts influence how LLMs generalize](http://arxiv.org/abs/2312.07779)
191 | - [Textbooks Are All You Need](http://arxiv.org/abs/2306.11644)
192 | - [TinyStories: How Small Can Language Models Be and Still Speak Coherent English?](http://arxiv.org/abs/2305.07759)
193 | - [Training Language Models with Language Feedback at Scale](http://arxiv.org/abs/2303.16755)
194 | - [Turing Complete Transformers: Two Transformers Are More Powerful Than One](https://openreview.net/forum?id=MGWsPGogLH)
195 | - [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/abs/2105.13626)
196 | - [Data Distributional Properties Drive Emergent In-Context Learning in Transformers](https://arxiv.org/abs/2205.05055)
197 | - [Diffusion-LM Improves Controllable Text Generation](https://arxiv.org/abs/2205.14217)
198 | - [ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation](https://arxiv.org/abs/2107.02137)
199 | - [Efficient Training of Language Models to Fill in the Middle](https://arxiv.org/abs/2207.14255)
200 | - [ExT5: Towards Extreme Multi-Task Scaling for Transfer Learning](https://arxiv.org/abs/2111.10952)
201 | - [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://arxiv.org/abs/2101.00190)
202 | - [Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning](https://arxiv.org/abs/2106.02584)
203 | - [True Few-Shot Learning with Prompts -- A Real-World Perspective](https://arxiv.org/abs/2111.13440)
204 |
205 |
206 |
207 | ## Reasoning and runtime strategies
208 |
209 | ### In-context reasoning
210 |
211 | **Tier 2**
212 |
213 | - ✨ [Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters](https://arxiv.org/abs/2408.03314)
214 | - [Chain of Thought Prompting Elicits Reasoning in Large Language Models](https://arxiv.org/abs/2201.11903)
215 | - [Large Language Models are Zero-Shot Reasoners](https://arxiv.org/abs/2205.11916) (Let's think step by step)
216 | - [Self-Consistency Improves Chain of Thought Reasoning in Language Models](https://arxiv.org/abs/2203.11171)
217 |
218 | **Tier 3**
219 |
220 | - ✨ [s1: Simple test-time scaling](https://arxiv.org/abs/2501.19393)
221 | - ✨ [Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs](https://arxiv.org/abs/2503.01307)
222 | - ✨ [The Surprising Effectiveness of Test-Time Training for Abstract Reasoning](https://arxiv.org/abs/2411.07279)
223 | - ✨ [Large Language Models Cannot Self-Correct Reasoning Yet](https://arxiv.org/abs/2310.01798v1)
224 | - [Chain-of-Thought Reasoning Without Prompting](http://arxiv.org/abs/2402.10200)
225 |
226 | Tier 4+
227 |
228 | - [Why think step-by-step? Reasoning emerges from the locality of experience](http://arxiv.org/abs/2304.03843)
229 | - [Baldur: Whole-Proof Generation and Repair with Large Language Models](https://arxiv.org/abs/2303.04910v1)
230 | - [Bias-Augmented Consistency Training Reduces Biased Reasoning in Chain-of-Thought](http://arxiv.org/abs/2403.05518)
231 | - [Certified Reasoning with Language Models](http://arxiv.org/abs/2306.04031)
232 | - [Hypothesis Search: Inductive Reasoning with Language Models](http://arxiv.org/abs/2309.05660)
233 | - [LLMs and the Abstraction and Reasoning Corpus: Successes, Failures, and the Importance of Object-based Representations](http://arxiv.org/abs/2305.18354)
234 | - [Stream of Search (SoS): Learning to Search in Language](http://arxiv.org/abs/2404.03683)
235 | - [Training Chain-of-Thought via Latent-Variable Inference](http://arxiv.org/abs/2312.02179)
236 | - [Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?](https://arxiv.org/abs/2202.12837)
237 | - [Surface Form Competition: Why the Highest Probability Answer Isn’t Always Right](https://arxiv.org/abs/2104.08315)
238 |
239 |
240 |
241 | ### Task decomposition
242 |
243 | **Tier 1**
244 |
245 | - [Supervise Process, not Outcomes](https://ought.org/updates/2022-04-06-process)
246 | - [Supervising strong learners by amplifying weak experts](https://arxiv.org/abs/1810.08575)
247 |
248 | **Tier 2**
249 |
250 | - [Tree of Thoughts: Deliberate Problem Solving with Large Language Models](http://arxiv.org/abs/2305.10601)
251 | - [Factored cognition](https://ought.org/research/factored-cognition)
252 | - [Iterated Distillation and Amplification](https://ai-alignment.com/iterated-distillation-and-amplification-157debfd1616)
253 | - [Recursively Summarizing Books with Human Feedback](https://arxiv.org/abs/2109.10862)
254 | - [Solving math word problems with process-based and outcome-based feedback](https://arxiv.org/abs/2211.14275)
255 |
256 | **Tier 3**
257 |
258 | - [Factored Verification: Detecting and Reducing Hallucination in Summaries of Academic Papers](https://arxiv.org/abs/2310.10627)
259 | - [Faithful Reasoning Using Large Language Models](https://arxiv.org/abs/2208.14271)
260 | - [Iterated Decomposition: Improving Science Q&A by Supervising Reasoning Processes](https://arxiv.org/abs/2301.01751)
261 | - [Language Model Cascades](https://arxiv.org/abs/2207.10342)
262 |
263 | Tier 4+
264 |
265 | - [Decontextualization: Making Sentences Stand-Alone](https://doi.org/10.1162/tacl_a_00377)
266 | - [Factored Cognition Primer](https://primer.ought.org)
267 | - [Graph of Thoughts: Solving Elaborate Problems with Large Language Models](http://arxiv.org/abs/2308.09687)
268 | - [Parsel: A Unified Natural Language Framework for Algorithmic Reasoning](http://arxiv.org/abs/2212.10561)
269 | - [AI Chains: Transparent and Controllable Human-AI Interaction by Chaining Large Language Model Prompts](https://arxiv.org/abs/2110.01691)
270 | - [Challenging BIG-Bench tasks and whether chain-of-thought can solve them](https://arxiv.org/abs/2210.09261)
271 | - [Evaluating Arguments One Step at a Time](https://ought.org/updates/2020-01-11-arguments)
272 | - [Least-to-Most Prompting Enables Complex Reasoning in Large Language Models](https://arxiv.org/abs/2205.11822)
273 | - [Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations](https://arxiv.org/abs/2205.11822)
274 | - [Measuring and narrowing the compositionality gap in language models](https://arxiv.org/abs/2210.03350)
275 | - [PAL: Program-aided Language Models](https://arxiv.org/abs/2211.10435)
276 | - [ReAct: Synergizing Reasoning and Acting in Language Models](https://arxiv.org/abs/2210.03629)
277 | - [Selection-Inference: Exploiting Large Language Models for Interpretable Logical Reasoning](https://arxiv.org/abs/2205.10625)
278 | - [Show Your Work: Scratchpads for Intermediate Computation with Language Models](https://arxiv.org/abs/2112.00114)
279 | - [Summ^N: A Multi-Stage Summarization Framework for Long Input Dialogues and Documents](https://arxiv.org/abs/2110.10150)
280 | - [Thinksum: probabilistic reasoning over sets using large language models](https://arxiv.org/abs/2210.01293)
281 |
282 |
283 |
284 | ### Debate
285 |
286 | **Tier 2**
287 |
288 | - [AI safety via debate](https://openai.com/blog/debate/)
289 |
290 | **Tier 3**
291 |
292 | - ✨ [Avoiding Obfuscation with Prover-Estimator Debate](https://arxiv.org/abs/2506.13609)
293 | - ✨ [Improving Factuality and Reasoning in Language Models through Multiagent Debate](http://arxiv.org/abs/2305.14325)
294 | - ✨ [Prover-Verifier Games Improve Legibility of LLM Outputs](https://arxiv.org/abs/2407.13692)
295 | - [Debate Helps Supervise Unreliable Experts](https://twitter.com/joshua_clymer/status/1724851456967417872)
296 |
297 | Tier 4+
298 |
299 | - [Scalable AI Safety via Doubly-Efficient Debate](http://arxiv.org/abs/2311.14125)
300 | - [Two-Turn Debate Doesn’t Help Humans Answer Hard Reading Comprehension Questions](https://arxiv.org/abs/2210.10860)
301 |
302 |
303 |
304 | ### Tool use and scaffolding
305 |
306 | **Tier 2**
307 |
308 | - [Measuring the impact of post-training enhancements](https://metr.github.io/autonomy-evals-guide/elicitation-gap/)
309 | - [WebGPT: Browser-assisted question-answering with human feedback](https://arxiv.org/abs/2112.09332)
310 |
311 | **Tier 3**
312 |
313 | - ✨ [Executable Code Actions Elicit Better LLM Agents](https://arxiv.org/abs/2402.01030)
314 | - ✨ [GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning](https://arxiv.org/abs/2507.19457)
315 | - ✨ [TextGrad: Automatic "Differentiation" via Text](https://arxiv.org/abs/2406.07496)
316 | - [AI capabilities can be significantly improved without expensive retraining](http://arxiv.org/abs/2312.07413)
317 | - [Automated Statistical Model Discovery with Language Models](http://arxiv.org/abs/2402.17879)
318 |
319 | Tier 4+
320 |
321 | - [DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines](http://arxiv.org/abs/2310.03714)
322 | - [Promptbreeder: Self-Referential Self-Improvement Via Prompt Evolution](http://arxiv.org/abs/2309.16797)
323 | - [Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation](https://arxiv.org/abs/2310.02304v1)
324 | - [Voyager: An Open-Ended Embodied Agent with Large Language Models](http://arxiv.org/abs/2305.16291)
325 | - [ReGAL: Refactoring Programs to Discover Generalizable Abstractions](http://arxiv.org/abs/2401.16467)
326 |
327 |
328 |
329 | ### Honesty, factuality, and epistemics
330 |
331 | **Tier 2**
332 |
333 | - [Self-critiquing models for assisting human evaluators](https://arxiv.org/abs/2206.05802v2)
334 |
335 | **Tier 3**
336 |
337 | - [What Evidence Do Language Models Find Convincing?](http://arxiv.org/abs/2402.11782)
338 | - [How to Catch an AI Liar: Lie Detection in Black-Box LLMs by Asking Unrelated Questions](https://arxiv.org/abs/2309.15840)
339 |
340 | Tier 4+
341 |
342 | - [Language Models Don't Always Say What They Think: Unfaithful Explanations in Chain-of-Thought Prompting](http://arxiv.org/abs/2305.04388)
343 | - [Long-form factuality in large language models](http://arxiv.org/abs/2403.18802)
344 |
345 |
346 |
347 | ## Applications
348 |
349 | ### Science
350 |
351 | **Tier 2**
352 |
353 | - ✨ [AlphaEvolve: A coding agent for scientific and algorithmic discovery](https://arxiv.org/abs/2506.13131)
354 | - ✨ [AlphaFold 3: Accurate structure prediction of biomolecular interactions](https://www.nature.com/articles/s41586-024-07487-w)
355 |
356 | **Tier 3**
357 |
358 | - ✨ [Towards an AI Co-Scientist](https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/towards-an-ai-co-scientist/Towards_an_AI_Co-Scientist.pdf)
359 | - [Can large language models provide useful feedback on research papers? A large-scale empirical analysis](http://arxiv.org/abs/2310.01783)
360 | - [Large Language Models Encode Clinical Knowledge](http://arxiv.org/abs/2212.13138)
361 | - [The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4](http://arxiv.org/abs/2311.07361)
362 | - [A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers](https://arxiv.org/abs/2105.03011)
363 |
364 | Tier 4+
365 |
366 | - [Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine](http://arxiv.org/abs/2311.16452)
367 | - [Nougat: Neural Optical Understanding for Academic Documents](http://arxiv.org/abs/2308.13418)
368 | - [Scim: Intelligent Skimming Support for Scientific Papers](http://arxiv.org/abs/2205.04561)
369 | - [SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction and Drug Design](https://www.biorxiv.org/content/10.1101/2023.07.06.547759v1)
370 | - [Towards Accurate Differential Diagnosis with Large Language Models](http://arxiv.org/abs/2312.00164)
371 | - [Towards a Benchmark for Scientific Understanding in Humans and Machines](http://arxiv.org/abs/2304.10327)
372 | - [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751)
373 | - [A full systematic review was completed in 2 weeks using automation tools: a case study](https://pubmed.ncbi.nlm.nih.gov/32004673/)
374 | - [Fact or Fiction: Verifying Scientific Claims](https://arxiv.org/abs/2004.14974)
375 | - [Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles](https://arxiv.org/abs/2010.14235)
376 | - [PEER: A Collaborative Language Model](https://arxiv.org/abs/2208.11663)
377 | - [PubMedQA: A Dataset for Biomedical Research Question Answering](https://arxiv.org/abs/1909.06146)
378 | - [SciCo: Hierarchical Cross-Document Coreference for Scientific Concepts](https://arxiv.org/abs/2104.08809)
379 | - [SciTail: A Textual Entailment Dataset from Science Question Answering](http://ai2-website.s3.amazonaws.com/team/ashishs/scitail-aaai2018.pdf)
380 |
381 |
382 |
383 | ### Forecasting
384 |
385 | **Tier 3**
386 |
387 | - ✨ [Consistency Checks for Language Model Forecasters](https://arxiv.org/abs/2412.18544)
388 | - ✨ [LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language](https://arxiv.org/abs/2405.12856)
389 | - [AI-Augmented Predictions: LLM Assistants Improve Human Forecasting Accuracy](https://arxiv.org/abs/2402.07862v1)
390 | - [Approaching Human-Level Forecasting with Language Models](http://arxiv.org/abs/2402.18563)
391 | - [Forecasting Future World Events with Neural Networks](https://arxiv.org/abs/2206.15474)
392 |
393 | Tier 4+
394 |
395 | - [Are Transformers Effective for Time Series Forecasting?](https://arxiv.org/abs/2205.13504)
396 |
397 |
398 |
399 | ### Search and ranking
400 |
401 | **Tier 2**
402 |
403 | - [Learning Dense Representations of Phrases at Scale](https://arxiv.org/abs/2012.12624)
404 | - [Text and Code Embeddings by Contrastive Pre-Training](https://arxiv.org/abs/2201.10005) (OpenAI embeddings)
405 |
406 | **Tier 3**
407 |
408 | - [Large Language Models are Effective Text Rankers with Pairwise Ranking Prompting](http://arxiv.org/abs/2306.17563)
409 | - [Not All Vector Databases Are Made Equal](https://dmitry-kan.medium.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696)
410 | - [REALM: Retrieval-Augmented Language Model Pre-Training](https://arxiv.org/abs/2002.08909)
411 | - [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401)
412 | - [Task-aware Retrieval with Instructions](https://arxiv.org/abs/2211.09260)
413 |
414 | Tier 4+
415 |
416 | - [RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!](http://arxiv.org/abs/2312.02724)
417 | - [Some Common Mistakes In IR Evaluation, And How They Can Be Avoided](https://dl.acm.org/doi/10.1145/3190580.3190586)
418 | - [Boosting Search Engines with Interactive Agents](https://arxiv.org/abs/2109.00527)
419 | - [ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT](https://arxiv.org/abs/2004.12832)
420 | - [Moving Beyond Downstream Task Accuracy for Information Retrieval Benchmarking](https://arxiv.org/abs/2212.01340)
421 | - [UnifiedQA: Crossing Format Boundaries With a Single QA System](https://arxiv.org/abs/2005.00700)
422 |
423 |
424 |
425 | ## ML in practice
426 |
427 | ### Production deployment
428 |
429 | **Tier 1**
430 |
431 | - [Machine Learning in Python: Main developments and technology trends in data science, machine learning, and AI](https://arxiv.org/abs/2002.04803v2)
432 | - [Machine Learning: The High Interest Credit Card of Technical Debt](https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf)
433 |
434 | **Tier 2**
435 |
436 | - [Designing Data-Intensive Applications](https://dataintensive.net/)
437 | - [A Recipe for Training Neural Networks](http://karpathy.github.io/2019/04/25/recipe/) (Karpathy)
438 |
439 | ### Benchmarks
440 |
441 | **Tier 2**
442 |
443 | - ✨ [GAIA: a benchmark for General AI Assistants](http://arxiv.org/abs/2311.12983)
444 | - [GPQA: A Graduate-Level Google-Proof Q&A Benchmark](http://arxiv.org/abs/2311.12022)
445 | - [SWE-bench: Can Language Models Resolve Real-World GitHub Issues?](https://arxiv.org/abs/2310.06770v1)
446 | - [TruthfulQA: Measuring How Models Mimic Human Falsehoods](https://arxiv.org/abs/2109.07958)
447 |
448 | **Tier 3**
449 |
450 | - ✨ [RE-Bench: Evaluating Frontier AI R&D Capabilities](https://arxiv.org/abs/2411.15114)
451 | - ✨ [SimpleQA: Measuring Short-Form Factuality](https://openai.com/index/introducing-simpleqa/)
452 | - ✨ [ARC Prize 2024: Technical Report](https://arcprize.org/blog/oai-o3-pub-breakthrough)
453 | - ✨ [FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI](https://arxiv.org/abs/2411.04872)
454 | - [Measuring Massive Multitask Language Understanding](https://arxiv.org/abs/2009.03300)
455 |
456 | Tier 4+
457 |
458 | - [FLEX: Unifying Evaluation for Few-Shot NLP](https://arxiv.org/abs/2107.07170)
459 | - [Holistic Evaluation of Language Models](https://arxiv.org/abs/2107.07170) (HELM)
460 | - [True Few-Shot Learning with Language Models](https://arxiv.org/abs/2105.11447)
461 | - [ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers](https://arxiv.org/abs/2110.06884)
462 | - [Measuring Mathematical Problem Solving With the MATH Dataset](https://arxiv.org/abs/2103.03874)
463 | - [QuALITY: Question Answering with Long Input Texts, Yes!](https://arxiv.org/abs/2112.08608)
464 | - [SCROLLS: Standardized CompaRison Over Long Language Sequences](https://arxiv.org/abs/2201.03533)
465 | - [What Will it Take to Fix Benchmarking in Natural Language Understanding?](https://arxiv.org/abs/2104.02145)
466 |
467 |
468 |
469 | ### Datasets
470 |
471 | **Tier 2**
472 |
473 | - [Common Crawl](https://arxiv.org/abs/2105.02732)
474 | - [The Pile: An 800GB Dataset of Diverse Text for Language Modeling](https://arxiv.org/abs/2101.00027)
475 |
476 | **Tier 3**
477 |
478 | - ✨ [FineWeb: Decanting the Web for the Finest Text Data at Scale](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1)
479 | - [Dialog Inpainting: Turning Documents into Dialogs](https://arxiv.org/abs/2205.09073)
480 | - [MS MARCO: A Human Generated MAchine Reading COmprehension Dataset](https://arxiv.org/abs/1611.09268)
481 | - [Microsoft Academic Graph](https://internal-journal.frontiersin.org/articles/10.3389/fdata.2019.00045/full)
482 |
483 | ## Advanced topics
484 |
485 | ### World models and causality
486 |
487 | **Tier 3**
488 |
489 | - [Emergent World Representations: Exploring a Sequence Model Trained on a Synthetic Task](http://arxiv.org/abs/2210.13382)
490 | - [From Word Models to World Models: Translating from Natural Language to the Probabilistic Language of Thought](http://arxiv.org/abs/2306.12672)
491 | - [Language Models Represent Space and Time](http://arxiv.org/abs/2310.02207)
492 |
493 | Tier 4+
494 |
495 | - [Amortizing intractable inference in large language models](http://arxiv.org/abs/2310.04363)
496 | - [CLADDER: Assessing Causal Reasoning in Language Models](http://zhijing-jin.com/files/papers/CLadder_2023.pdf)
497 | - [Causal Bayesian Optimization](https://proceedings.mlr.press/v108/aglietti20a.html)
498 | - [Causal Reasoning and Large Language Models: Opening a New Frontier for Causality](http://arxiv.org/abs/2305.00050)
499 | - [Generative Agents: Interactive Simulacra of Human Behavior](http://arxiv.org/abs/2304.03442)
500 | - [Passive learning of active causal strategies in agents and language models](http://arxiv.org/abs/2305.16183)
501 |
502 |
503 |
504 | ### Planning
505 |
506 | Tier 4+
507 |
508 | - [Beyond A\*: Better Planning with Transformers via Search Dynamics Bootstrapping](http://arxiv.org/abs/2402.14083)
509 | - [Cognitive Architectures for Language Agents](http://arxiv.org/abs/2309.02427)
510 |
511 |
512 |
513 | ### Uncertainty, calibration, and active learning
514 |
515 | **Tier 2**
516 |
517 | - [Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs](http://arxiv.org/abs/2402.08733)
518 | - [A Simple Baseline for Bayesian Uncertainty in Deep Learning](https://arxiv.org/abs/1902.02476)
519 | - [Plex: Towards Reliability using Pretrained Large Model Extensions](https://arxiv.org/abs/2207.07411)
520 |
521 | **Tier 3**
522 |
523 | - ✨ [Textual Bayes: Quantifying Uncertainty in LLM-Based Systems](https://arxiv.org/abs/2506.10060)
524 | - [Active Preference Inference using Language Models and Probabilistic Reasoning](http://arxiv.org/abs/2312.12009)
525 | - [Eliciting Human Preferences with Language Models](http://arxiv.org/abs/2310.11589)
526 | - [Describing Differences between Text Distributions with Natural Language](https://arxiv.org/abs/2201.12323)
527 | - [Teaching Models to Express Their Uncertainty in Words](https://arxiv.org/abs/2205.14334)
528 |
529 | Tier 4+
530 |
531 | - [Active Learning by Acquiring Contrastive Examples](https://arxiv.org/abs/2109.03764)
532 | - [Doing Experiments and Revising Rules with Natural Language and Probabilistic Reasoning](http://arxiv.org/abs/2402.06025)
533 | - [STaR-GATE: Teaching Language Models to Ask Clarifying Questions](http://arxiv.org/abs/2403.19154)
534 | - [Active Testing: Sample-Efficient Model Evaluation](https://arxiv.org/abs/2103.05331)
535 | - [Uncertainty Estimation for Language Reward Models](https://arxiv.org/abs/2203.07472)
536 |
537 |
538 |
539 | ### Interpretability and model editing
540 |
541 | **Tier 2**
542 |
543 | - ✨ [Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet](https://transformer-circuits.pub/2024/scaling-monosemanticity/)
544 | - ✨ [Interpretability at Scale: Identifying Causal Mechanisms in Alpaca](http://arxiv.org/abs/2305.08809)
545 | - [Discovering Latent Knowledge in Language Models Without Supervision](https://arxiv.org/abs/2212.03827v1)
546 |
547 | **Tier 3**
548 |
549 | - ✨ [Scaling and Evaluating Sparse Autoencoders](https://cdn.openai.com/papers/sparse-autoencoders.pdf)
550 | - ✨ [Opening the AI black box: program synthesis via mechanistic interpretability](https://arxiv.org/abs/2402.05110v1)
551 | - [Mechanistically analyzing the effects of fine-tuning on procedurally defined tasks](http://arxiv.org/abs/2311.12786)
552 | - [Representation Engineering: A Top-Down Approach to AI Transparency](http://arxiv.org/abs/2310.01405)
553 | - [Studying Large Language Model Generalization with Influence Functions](http://arxiv.org/abs/2308.03296)
554 |
555 | Tier 4+
556 |
557 | - [Codebook Features: Sparse and Discrete Interpretability for Neural Networks](http://arxiv.org/abs/2310.17230)
558 | - [Eliciting Latent Predictions from Transformers with the Tuned Lens](http://arxiv.org/abs/2303.08112)
559 | - [How do Language Models Bind Entities in Context?](http://arxiv.org/abs/2310.17191)
560 | - [Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small](https://arxiv.org/abs/2211.00593)
561 | - [Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models](http://arxiv.org/abs/2403.19647)
562 | - [Uncovering mesa-optimization algorithms in Transformers](http://arxiv.org/abs/2309.05858)
563 | - [Fast Model Editing at Scale](https://arxiv.org/abs/2110.11309)
564 | - [Git Re-Basin: Merging Models modulo Permutation Symmetries](https://arxiv.org/abs/2209.04836)
565 | - [Locating and Editing Factual Associations in GPT](https://arxiv.org/abs/2202.05262)
566 | - [Mass-Editing Memory in a Transformer](https://arxiv.org/abs/2210.07229)
567 |
568 |
569 |
570 | ### Reinforcement learning
571 |
572 | **Tier 2**
573 |
574 | - ✨ [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://arxiv.org/abs/2402.03300) (GRPO)
575 | - [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](http://arxiv.org/abs/2305.18290)
576 | - [Reflexion: Language Agents with Verbal Reinforcement Learning](http://arxiv.org/abs/2303.11366)
577 | - [Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm](https://arxiv.org/abs/1712.01815) (AlphaZero)
578 | - [MuZero: Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model](https://arxiv.org/abs/1911.08265)
579 |
580 | **Tier 3**
581 |
582 | - [Open Problems and Fundamental Limitations of Reinforcement Learning from Human Feedback](http://arxiv.org/abs/2307.15217)
583 | - [AlphaStar: mastering the real-time strategy game StarCraft II](https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii)
584 | - [Decision Transformer](https://arxiv.org/abs/2106.01345)
585 | - [Mastering Atari Games with Limited Data](https://arxiv.org/abs/2111.00210) (EfficientZero)
586 | - [Mastering Stratego, the classic game of imperfect information](https://www.science.org/doi/10.1126/science.add4679) (DeepNash)
587 |
588 | Tier 4+
589 |
590 | - [AlphaStar Unplugged: Large-Scale Offline Reinforcement Learning](http://arxiv.org/abs/2308.03526)
591 | - [Bayesian Reinforcement Learning with Limited Cognitive Load](http://arxiv.org/abs/2305.03263)
592 | - [Contrastive Prefence Learning: Learning from Human Feedback without RL](http://arxiv.org/abs/2310.13639)
593 | - [Grandmaster-Level Chess Without Search](http://arxiv.org/abs/2402.04494)
594 | - [A data-driven approach for learning to control computers](https://arxiv.org/abs/2202.08137)
595 | - [Acquisition of Chess Knowledge in AlphaZero](https://arxiv.org/abs/2111.09259)
596 | - [Player of Games](https://arxiv.org/abs/2112.03178)
597 | - [Retrieval-Augmented Reinforcement Learning](https://arxiv.org/abs/2202.08417)
598 |
599 |
600 |
601 | ## The big picture
602 |
603 | ### AI scaling
604 |
605 | **Tier 1**
606 |
607 | - [Scaling Laws for Neural Language Models](https://arxiv.org/abs/2001.08361)
608 | - [Takeoff speeds](https://sideways-view.com/2018/02/24/takeoff-speeds/)
609 | - [The Bitter Lesson](http://www.incompleteideas.net/IncIdeas/BitterLesson.html)
610 |
611 | **Tier 2**
612 |
613 | - [AI and compute](https://openai.com/blog/ai-and-compute/)
614 | - [Scaling Laws for Transfer](https://arxiv.org/abs/2102.01293)
615 | - [Training Compute-Optimal Large Language Models](https://arxiv.org/abs/2203.15556) (Chinchilla)
616 |
617 | **Tier 3**
618 |
619 | - ✨ [Pre-training under Infinite Compute](https://arxiv.org/abs/2509.14786)
620 | - [Emergent Abilities of Large Language Models](https://arxiv.org/abs/2206.07682)
621 | - [Transcending Scaling Laws with 0.1% Extra Compute](https://arxiv.org/abs/2210.11399) (U-PaLM)
622 |
623 | Tier 4+
624 |
625 | - [Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws](http://arxiv.org/abs/2404.05405)
626 | - [Power Law Trends in Speedrunning and Machine Learning](http://arxiv.org/abs/2304.10004)
627 | - [Scaling laws for single-agent reinforcement learning](http://arxiv.org/abs/2301.13442)
628 | - [Beyond neural scaling laws: beating power law scaling via data pruning](https://arxiv.org/abs/2206.14486)
629 | - [Emergent Abilities of Large Language Models](https://arxiv.org/abs/2206.07682)
630 | - [Scaling Scaling Laws with Board Games](https://arxiv.org/abs/2104.03113)
631 |
632 |
633 |
634 | ### AI safety
635 |
636 | **Tier 1**
637 |
638 | - [Three impacts of machine intelligence](https://www.effectivealtruism.org/articles/three-impacts-of-machine-intelligence-paul-christiano/)
639 | - [What failure looks like](https://www.alignmentforum.org/posts/HBxe6wdjxK239zajf/what-failure-looks-like)
640 | - [Without specific countermeasures, the easiest path to transformative AI likely leads to AI takeover](https://www.lesswrong.com/posts/pRkFkzwKZ2zfa3R6H/without-specific-countermeasures-the-easiest-path-to)
641 |
642 | **Tier 2**
643 |
644 | - [An Overview of Catastrophic AI Risks](http://arxiv.org/abs/2306.12001)
645 | - [Clarifying “What failure looks like” (part 1)](https://www.lesswrong.com/posts/v6Q7T335KCMxujhZu/clarifying-what-failure-looks-like-part-1)
646 | - [Deep RL from human preferences](https://openai.com/blog/deep-reinforcement-learning-from-human-preferences/)
647 | - [The alignment problem from a deep learning perspective](https://arxiv.org/abs/2209.00626)
648 |
649 | **Tier 3**
650 |
651 | - ✨ [Alignment Faking in Large Language Models](https://arxiv.org/abs/2412.14093)
652 | - ✨ [Constitutional Classifiers: Defending against Universal Jailbreaks](https://arxiv.org/abs/2501.18837)
653 | - ✨ [Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs](https://arxiv.org/abs/2502.17424)
654 | - ✨ [Gradual Disempowerment: Systemic Existential Risks from Incremental AI Development](https://arxiv.org/abs/2501.16946)
655 | - [Scheming AIs: Will AIs fake alignment during training in order to get power?](http://arxiv.org/abs/2311.08379)
656 |
657 | Tier 4+
658 |
659 | - [Towards a Law of Iterated Expectations for Heuristic Estimators](https://arxiv.org/abs/2410.01290)
660 | - [Measuring Progress on Scalable Oversight for Large Language Models](https://arxiv.org/abs/2211.03540)
661 | - [Scalable agent alignment via reward modelling](https://arxiv.org/abs/1811.07871)
662 | - [AI Deception: A Survey of Examples, Risks, and Potential Solutions](http://arxiv.org/abs/2308.14752)
663 | - [Benchmarks for Detecting Measurement Tampering](http://arxiv.org/abs/2308.15605)
664 | - [Chess as a Testing Grounds for the Oracle Approach to AI Safety](http://arxiv.org/abs/2010.02911)
665 | - [Close the Gates to an Inhuman Future: How and why we should choose to not develop superhuman general-purpose artificial intelligence](https://papers.ssrn.com/abstract=4608505)
666 | - [Model evaluation for extreme risks](http://arxiv.org/abs/2305.15324)
667 | - [Responsible Reporting for Frontier AI Development](http://arxiv.org/abs/2404.02675)
668 | - [Safety Cases: How to Justify the Safety of Advanced AI Systems](http://arxiv.org/abs/2403.10462)
669 | - [Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training](http://arxiv.org/abs/2401.05566)
670 | - [Technical Report: Large Language Models can Strategically Deceive their Users when Put Under Pressure](http://arxiv.org/abs/2311.07590)
671 | - [Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game](http://arxiv.org/abs/2311.01011)
672 | - [Tools for Verifying Neural Models' Training Data](http://arxiv.org/abs/2307.00682)
673 | - [Towards a Cautious Scientist AI with Convergent Safety Bounds](https://yoshuabengio.org/2024/02/26/towards-a-cautious-scientist-ai-with-convergent-safety-bounds/)
674 | - [Alignment of Language Agents](https://arxiv.org/abs/2103.14659)
675 | - [Eliciting Latent Knowledge](https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit?usp=sharing)
676 | - [Red Teaming Language Models to Reduce Harms: Methods, Scaling Behaviors, and Lessons Learned](https://arxiv.org/abs/2209.07858)
677 | - [Red Teaming Language Models with Language Models](https://storage.googleapis.com/deepmind-media/Red%20Teaming/Red%20Teaming.pdf)
678 | - [Risks from Learned Optimization in Advanced Machine Learning Systems](https://arxiv.org/abs/1906.01820)
679 | - [Unsolved Problems in ML Safety](https://arxiv.org/abs/2109.13916)
680 |
681 |
682 |
683 | ### Economic and social impacts
684 |
685 | **Tier 2**
686 |
687 | - ✨ [AI 2027](https://ai-2027.com/)
688 | - ✨ [Situational Awareness](https://situational-awareness.ai/) (Aschenbrenner)
689 |
690 | **Tier 3**
691 |
692 | - [Explosive growth from AI automation: A review of the arguments](http://arxiv.org/abs/2309.11690)
693 | - [Language Models Can Reduce Asymmetry in Information Markets](http://arxiv.org/abs/2403.14443)
694 |
695 | Tier 4+
696 |
697 | - [Bridging the Human-AI Knowledge Gap: Concept Discovery and Transfer in AlphaZero](http://arxiv.org/abs/2310.16410)
698 | - [Foundation Models and Fair Use](https://arxiv.org/abs/2303.15715v1)
699 | - [GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models](http://arxiv.org/abs/2303.10130)
700 | - [Levels of AGI: Operationalizing Progress on the Path to AGI](http://arxiv.org/abs/2311.02462)
701 | - [Opportunities and Risks of LLMs for Scalable Deliberation with Polis](http://arxiv.org/abs/2306.11932)
702 | - [On the Opportunities and Risks of Foundation Models](https://arxiv.org/abs/2108.07258)
703 |
704 |
705 |
706 | ### Philosophy
707 |
708 | **Tier 2**
709 |
710 | - [Meaning without reference in large language models](https://arxiv.org/abs/2208.02957)
711 |
712 | Tier 4+
713 |
714 | - [Consciousness in Artificial Intelligence: Insights from the Science of Consciousness](http://arxiv.org/abs/2308.08708)
715 | - [Philosophers Ought to Develop, Theorize About, and Use Philosophically Relevant AI](https://philarchive.org/archive/CLAPOT-16)
716 | - [Towards Evaluating AI Systems for Moral Status Using Self-Reports](http://arxiv.org/abs/2311.08576)
717 |
718 |
719 |
720 | ## Maintainer
721 |
722 | [andreas@elicit.com](mailto:andreas@elicit.com)
723 |
--------------------------------------------------------------------------------