├── job-data.csv ├── README.md └── dataJob.ipynb /job-data.csv: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/elouardyabderrahim/Analyse-des-opportunites-emploi/HEAD/job-data.csv -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Understanding Job Market Trends in AI, Data Science, and Big Data to Optimize Recruitment and Talent Management 2 | 3 | ### Project Overview 4 | 5 | As a Data Developer, the aim of this project is to conduct an in-depth analysis of the job market in the emerging fields of Artificial Intelligence (AI), Data Science, and Big Data. The goal is to enhance our recruitment initiatives, talent acquisition strategies, and skills development programs. 6 | 7 | ### Objectives 8 | 9 | 1. **Market Analysis**: Perform a comprehensive analysis of the job market in AI, Data Science, and Big Data to identify key trends and insights. 10 | 11 | 2. **Recruitment Targeting**: Use the analysis to better target recruitment efforts, ensuring that we attract the most suitable talent for our needs. 12 | 13 | 3. **Talent Acquisition and Skill Development**: Develop strategies for effective talent acquisition and create programs for skill development based on the identified market trends. 14 | 15 | 4. **Data Visualization**: Create clear and informative visualizations of the analysis results to help stakeholders understand the conclusions drawn from the data. 16 | 17 | 5. **Data Storage System**: Implement a data storage system to manage and facilitate access to the information collected throughout the project. 18 | 19 | ### Key Deliverables 20 | 21 | - **Market Analysis Report**: A detailed report highlighting the key trends and insights from the job market analysis. 22 | - **Visualization Dashboards**: Interactive and informative dashboards that present the analysis results in a clear manner. 23 | - **Data Storage Solution**: A robust system for storing and managing the collected data, ensuring easy access and retrieval for future use. 24 | 25 | 26 | -------------------------------------------------------------------------------- /dataJob.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Exploration des données" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 2, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "import pandas as pd\n", 17 | "import numpy as np\n", 18 | "dataFrame=pd.read_csv(\"job-data.csv\", encoding='latin-1')" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 3, 24 | "metadata": {}, 25 | "outputs": [ 26 | { 27 | "data": { 28 | "text/html": [ 29 | "
| \n", 47 | " | Company | \n", 48 | "Job Title | \n", 49 | "Location | \n", 50 | "Job Type | \n", 51 | "Experience level | \n", 52 | "Salary | \n", 53 | "Requirment of the company | \n", 54 | "Facilities | \n", 55 | "
|---|---|---|---|---|---|---|---|---|
| 0 | \n", 60 | "SGS | \n", 61 | "Clinical Data Analyst | \n", 62 | "Richardson, TX, United States | \n", 63 | "Full Time | \n", 64 | "Entry-level | \n", 65 | "48K+ * | \n", 66 | "Computer Science,Data quality,Genetics,Mathema... | \n", 67 | ",,,, | \n", 68 | "
| 1 | \n", 71 | "Ocorian | \n", 72 | "AML/CFT & Data Analyst | \n", 73 | "Ebène, Mauritius | \n", 74 | "Full Time | \n", 75 | "Entry-level | \n", 76 | "48K+ * | \n", 77 | "Agile,Data management,Finance,Security,, | \n", 78 | ",,,, | \n", 79 | "
| 2 | \n", 82 | "Cricut | \n", 83 | "Machine Learning Engineer | \n", 84 | "South Jordan, UT, United States | \n", 85 | "Full Time | \n", 86 | "NaN | \n", 87 | "90K+ * | \n", 88 | "Agile,Architecture,AWS,Computer Science,Comput... | \n", 89 | "Career development,,,, | \n", 90 | "
| 3 | \n", 93 | "Bosch Group | \n", 94 | "Application Developer & Data Analyst | \n", 95 | "Nonantola, Italy | \n", 96 | "Full Time | \n", 97 | "Entry-level | \n", 98 | "48K+ * | \n", 99 | "Engineering,Industrial,Oracle,Power BI,R,R&D | \n", 100 | ",,,, | \n", 101 | "
| 4 | \n", 104 | "Publicis Groupe | \n", 105 | "Data Engineer Full time (Public Sector) USA | \n", 106 | "Arlington, VA, United States | \n", 107 | "Full Time | \n", 108 | "Mid-level | \n", 109 | "108K+ | \n", 110 | "AWS,Azure,Computer Science,Consulting,Dataflow... | \n", 111 | "Flex hours,Flex vacation,Parental leave,Unlimi... | \n", 112 | "
| \n", 256 | " | Company | \n", 257 | "Job Title | \n", 258 | "Location | \n", 259 | "Job Type | \n", 260 | "Experience level | \n", 261 | "Salary | \n", 262 | "Requirment of the company | \n", 263 | "Facilities | \n", 264 | "
|---|---|---|---|---|---|---|---|---|
| count | \n", 269 | "3197 | \n", 270 | "3197 | \n", 271 | "3197 | \n", 272 | "3197 | \n", 273 | "2962 | \n", 274 | "3009 | \n", 275 | "3198 | \n", 276 | "3198 | \n", 277 | "
| unique | \n", 280 | "1106 | \n", 281 | "2138 | \n", 282 | "1117 | \n", 283 | "3 | \n", 284 | "4 | \n", 285 | "218 | \n", 286 | "2600 | \n", 287 | "777 | \n", 288 | "
| top | \n", 291 | "Publicis Groupe | \n", 292 | "Data Engineer | \n", 293 | "Bengaluru, India | \n", 294 | "Full Time | \n", 295 | "Senior-level | \n", 296 | "115K+ * | \n", 297 | "Big Data,Business Intelligence,Data analysis,E... | \n", 298 | ",,,, | \n", 299 | "
| freq | \n", 302 | "126 | \n", 303 | "105 | \n", 304 | "90 | \n", 305 | "3116 | \n", 306 | "1876 | \n", 307 | "253 | \n", 308 | "12 | \n", 309 | "542 | \n", 310 | "
Est-ce qu'on peut remplir ces valeurs ? Ou bien faut-il les supprimer ?
\n", 1514 | "Une liste qu'on peut séparer
\n", 1516 | "Des salaires avec des étoiles, quelle est la signification de ces étoiles ? On remarque qu'on a des salaires sans \"*\".
\n", 1518 | "On remarque que les salaires sont en différentes devises, il faut les unifier (€, £, $).
\n", 1519 | "\n", 1520 | "| \n", 1779 | " | Company | \n", 1780 | "Job Title | \n", 1781 | "Location | \n", 1782 | "Job Type | \n", 1783 | "Experience level | \n", 1784 | "Salary | \n", 1785 | "Requirment of the company | \n", 1786 | "Facilities | \n", 1787 | "Is English | \n", 1788 | "
|---|---|---|---|---|---|---|---|---|---|
| 7 | \n", 1793 | "NielsenIQ | \n", 1794 | "Intern (Business Intelligence Service Support) | \n", 1795 | "Bangkok, Thailand | \n", 1796 | "Internship | \n", 1797 | "Entry-level | \n", 1798 | "NaN | \n", 1799 | "Business Intelligence,Excel,Genetics,,, | \n", 1800 | ",,,, | \n", 1801 | "True | \n", 1802 | "
| 8 | \n", 1805 | "Western Digital | \n", 1806 | "Summer 2023 Data Engineering Intern | \n", 1807 | "San Jose, CA, United States | \n", 1808 | "Internship | \n", 1809 | "Entry-level | \n", 1810 | "NaN | \n", 1811 | "Big Data,Computer Science,Engineering,Machine ... | \n", 1812 | "Career development,Competitive pay,Equity,Flex... | \n", 1813 | "False | \n", 1814 | "
| 44 | \n", 1817 | "REWE International Dienstleistungsgesellschaft... | \n", 1818 | "Junior Data Science Engineer (m/w/x) | \n", 1819 | "Wien, Austria | \n", 1820 | "Full Time | \n", 1821 | "Entry-level | \n", 1822 | "NaN | \n", 1823 | "CI/CD,Computer Science,Data pipelines,Deep Lea... | \n", 1824 | ",,,, | \n", 1825 | "True | \n", 1826 | "
| 75 | \n", 1829 | "Metiora | \n", 1830 | "Data Analyst Intern | \n", 1831 | "Madrid, Spain | \n", 1832 | "Full Time | \n", 1833 | "Entry-level | \n", 1834 | "NaN | \n", 1835 | "Matplotlib,MongoDB,NumPy,Pandas,Power BI,Python | \n", 1836 | ",,,, | \n", 1837 | "True | \n", 1838 | "
| 170 | \n", 1841 | "Wallbox | \n", 1842 | "Analytics Engineer Intern | \n", 1843 | "Barcelona, Catalonia, Spain | \n", 1844 | "Internship | \n", 1845 | "Entry-level | \n", 1846 | "NaN | \n", 1847 | "Airflow,BigQuery,CI/CD,Databricks,Data quality... | \n", 1848 | "Career development,Flex hours,Team events,, | \n", 1849 | "True | \n", 1850 | "
| ... | \n", 1853 | "... | \n", 1854 | "... | \n", 1855 | "... | \n", 1856 | "... | \n", 1857 | "... | \n", 1858 | "... | \n", 1859 | "... | \n", 1860 | "... | \n", 1861 | "... | \n", 1862 | "
| 3107 | \n", 1865 | "Barbaricum | \n", 1866 | "AI Intern (ChatGPT Specialist) | \n", 1867 | "Remote | \n", 1868 | "Internship | \n", 1869 | "Entry-level | \n", 1870 | "NaN | \n", 1871 | "APIs,ChatGPT,Engineering,GPT,GPT-3,GPT-4 | \n", 1872 | "Career development,,,, | \n", 1873 | "True | \n", 1874 | "
| 3109 | \n", 1877 | "METRO/MAKRO | \n", 1878 | "STAGE 6 mois - Data Scientist Junior H/F | \n", 1879 | "Nanterre, France | \n", 1880 | "Full Time | \n", 1881 | "Entry-level | \n", 1882 | "NaN | \n", 1883 | "Big Data,Power BI,Python,R,SQL, | \n", 1884 | ",,,, | \n", 1885 | "True | \n", 1886 | "
| 3134 | \n", 1889 | "Junglee Games | \n", 1890 | "ETL and Data Warehouse Testing Intern | \n", 1891 | "Bengaluru, Karnataka, India | \n", 1892 | "Internship | \n", 1893 | "Entry-level | \n", 1894 | "NaN | \n", 1895 | "Computer Science,Data quality,Data warehouse,E... | \n", 1896 | ",,,, | \n", 1897 | "True | \n", 1898 | "
| 3152 | \n", 1901 | "Lely | \n", 1902 | "Stage: Computer Science, Robotics, Computer Vi... | \n", 1903 | "Maassluis, Netherlands | \n", 1904 | "Full Time | \n", 1905 | "Entry-level | \n", 1906 | "NaN | \n", 1907 | "Computer Science,Computer Vision,Engineering,O... | \n", 1908 | ",,,, | \n", 1909 | "True | \n", 1910 | "
| 3159 | \n", 1913 | "Deezer | \n", 1914 | "Data Analyst Intern m/f/d - Business | \n", 1915 | "Paris, France | \n", 1916 | "Internship | \n", 1917 | "Entry-level | \n", 1918 | "NaN | \n", 1919 | "Data analysis,Data pipelines,Data visualizatio... | \n", 1920 | "Career development,Health care,Insurance,Start... | \n", 1921 | "True | \n", 1922 | "
114 rows × 9 columns
\n", 1926 | "| \n", 2032 | " | Company | \n", 2033 | "Job Title | \n", 2034 | "Location | \n", 2035 | "Job Type | \n", 2036 | "Experience level | \n", 2037 | "Salary | \n", 2038 | "Requirment of the company | \n", 2039 | "Facilities | \n", 2040 | "Is English | \n", 2041 | "
|---|---|---|---|---|---|---|---|---|---|
| 39 | \n", 2046 | "Angi | \n", 2047 | "Senior Data Scientist | \n", 2048 | "Indianapolis, IN - Hybrid | \n", 2049 | "Full Time | \n", 2050 | "Senior-level | \n", 2051 | "NaN | \n", 2052 | "Big Data,Data Mining,Machine Learning,Mathemat... | \n", 2053 | "401(k) matching,Career development,Competitive... | \n", 2054 | "False | \n", 2055 | "
| 87 | \n", 2058 | "Civis Analytics | \n", 2059 | "Lead Applied Data Scientist (Experience with M... | \n", 2060 | "Remote | \n", 2061 | "Full Time | \n", 2062 | "Senior-level | \n", 2063 | "NaN | \n", 2064 | "Causal inference,Computer Science,Consulting,D... | \n", 2065 | "401(k) matching,Career development,Competitive... | \n", 2066 | "True | \n", 2067 | "
| 168 | \n", 2070 | "Faraday Future | \n", 2071 | "Senior Big Data Engineer | \n", 2072 | "San Jose, California, United States | \n", 2073 | "Full Time | \n", 2074 | "Senior-level | \n", 2075 | "NaN | \n", 2076 | "Airflow,AWS,Azure,Big Data,Computer Science,Da... | \n", 2077 | "Equity,Relocation support,,, | \n", 2078 | "True | \n", 2079 | "
| 201 | \n", 2082 | "Veritone | \n", 2083 | "Data Analytics Engineer | \n", 2084 | "United States | \n", 2085 | "Full Time | \n", 2086 | "Senior-level | \n", 2087 | "NaN | \n", 2088 | "Agile,APIs,AWS,Business Analytics,Business Int... | \n", 2089 | "401(k) matching,Career development,Competitive... | \n", 2090 | "True | \n", 2091 | "
| 208 | \n", 2094 | "Publicis Groupe | \n", 2095 | "Senior Associate Data Engineering | \n", 2096 | "Houston, TX, United States | \n", 2097 | "Full Time | \n", 2098 | "Mid-level | \n", 2099 | "NaN | \n", 2100 | "Agile,Architecture,AWS,Azure,BigQuery,Bigtable | \n", 2101 | "Career development,Flex hours,Flex vacation,Pa... | \n", 2102 | "True | \n", 2103 | "
| ... | \n", 2106 | "... | \n", 2107 | "... | \n", 2108 | "... | \n", 2109 | "... | \n", 2110 | "... | \n", 2111 | "... | \n", 2112 | "... | \n", 2113 | "... | \n", 2114 | "... | \n", 2115 | "
| 2896 | \n", 2118 | "Zappi | \n", 2119 | "Data Scientist | \n", 2120 | "London, England, United Kingdom | \n", 2121 | "Full Time | \n", 2122 | "Mid-level | \n", 2123 | "NaN | \n", 2124 | "APIs,AWS,CI/CD,Computer Vision,Data Mining,Eng... | \n", 2125 | "Career development,Flex hours,Flex vacation,Ho... | \n", 2126 | "False | \n", 2127 | "
| 2936 | \n", 2130 | "ComplyAdvantage | \n", 2131 | "Director of Data Science | \n", 2132 | "London, England, United Kingdom | \n", 2133 | "Full Time | \n", 2134 | "Executive-level | \n", 2135 | "NaN | \n", 2136 | "Data strategy,Engineering,Machine Learning,NLP... | \n", 2137 | "Career development,Competitive pay,Equity,Flex... | \n", 2138 | "True | \n", 2139 | "
| 3080 | \n", 2142 | "DuckDuckGo | \n", 2143 | "Senior Backend Engineer, AI | \n", 2144 | "Remote job | \n", 2145 | "Full Time | \n", 2146 | "Senior-level | \n", 2147 | "NaN | \n", 2148 | "Engineering,Genetics,Machine Learning,ML model... | \n", 2149 | "Career development,Equity,Flex hours,Flex vaca... | \n", 2150 | "False | \n", 2151 | "
| 3099 | \n", 2154 | "NBCUniversal | \n", 2155 | "Data Scientist, Data & Analytics | \n", 2156 | "New York City, United States | \n", 2157 | "Full Time | \n", 2158 | "Senior-level | \n", 2159 | "NaN | \n", 2160 | "Agile,Airflow,Architecture,AWS,Azure,CI/CD | \n", 2161 | "Career development,Health care,Insurance,Medic... | \n", 2162 | "True | \n", 2163 | "
| 3166 | \n", 2166 | "DNSFilter | \n", 2167 | "Senior Data Scientist | \n", 2168 | "Washington, District of Columbia, United State... | \n", 2169 | "Full Time | \n", 2170 | "Mid-level | \n", 2171 | "NaN | \n", 2172 | "AWS,Computer Science,Data analysis,Data visual... | \n", 2173 | "Career development,Flex hours,Flex vacation,He... | \n", 2174 | "False | \n", 2175 | "
61 rows × 9 columns
\n", 2179 | "