└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Setup-NVIDIA-GPU-for-Deep-Learning 2 | 3 | ## Step 1: NVIDIA Video Driver 4 | 5 | You should install the latest version of your GPUs driver. You can download drivers here: 6 | - [NVIDIA GPU Drive Download](https://www.nvidia.com/Download/index.aspx) 7 | 8 | ## Step 2: Visual Studio C++ 9 | 10 | You will need Visual Studio, with C++ installed. By default, C++ is not installed with Visual Studio, so make sure you select all of the C++ options. 11 | - [Visual Studio Community Edition](https://visualstudio.microsoft.com/vs/community/) 12 | 13 | ## Step 3: Anaconda/Miniconda 14 | 15 | You will need anaconda to install all deep learning packages 16 | - [Download Anaconda](https://www.anaconda.com/download/success) 17 | 18 | ## Step 4: CUDA Toolkit 19 | 20 | - [Download CUDA Toolkit](https://developer.nvidia.com/cuda-toolkit-archive) 21 | 22 | ## Step 5: cuDNN 23 | 24 | - [Download cuDNN](https://developer.nvidia.com/rdp/cudnn-archive) 25 | 26 | 27 | ## Step 6: Install PyTorch 28 | 29 | - [Install PyTorch](https://pytorch.org/get-started/locally/) 30 | 31 | 32 | 33 | 34 | ## Finally run the following script to test your GPU 35 | 36 | ```python 37 | import torch 38 | 39 | print("Number of GPU: ", torch.cuda.device_count()) 40 | print("GPU Name: ", torch.cuda.get_device_name()) 41 | 42 | 43 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 44 | print('Using device:', device) 45 | ``` 46 | --------------------------------------------------------------------------------