├── .github
├── ISSUE_TEMPLATE
│ ├── 1_bug_report.md
│ ├── 2_need_help.md
│ └── 3_feature_request.md
├── dependabot.yml
├── pull_request_template.md
└── workflows
│ └── main.yml
├── .gitignore
├── LICENSE
├── README.md
├── assets
├── dog.png
├── giraffe.png
├── messi.png
└── traffic.png
├── config
├── coco.data
├── create_custom_model.sh
├── custom.data
├── yolov3-tiny.cfg
└── yolov3.cfg
├── data
├── coco.names
├── custom
│ ├── classes.names
│ ├── images
│ │ └── train.jpg
│ ├── labels
│ │ └── train.txt
│ ├── train.txt
│ └── valid.txt
├── get_coco_dataset.sh
└── samples
│ ├── dog.jpg
│ ├── eagle.jpg
│ ├── field.jpg
│ ├── giraffe.jpg
│ ├── herd_of_horses.jpg
│ ├── messi.jpg
│ ├── person.jpg
│ ├── room.jpg
│ └── street.jpg
├── poetry.lock
├── pyproject.toml
├── pytorchyolo
├── __init__.py
├── detect.py
├── models.py
├── test.py
├── train.py
└── utils
│ ├── __init__.py
│ ├── augmentations.py
│ ├── datasets.py
│ ├── logger.py
│ ├── loss.py
│ ├── parse_config.py
│ ├── transforms.py
│ └── utils.py
└── weights
└── download_weights.sh
/.github/ISSUE_TEMPLATE/1_bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "\U0001F41B Bug report"
3 | about: Report a bug, crash or some misbehavior
4 | title: ''
5 | labels: 'bug'
6 | assignees: ''
7 | ---
8 |
9 |
10 | ## Context
11 |
12 | - [ ] I have installed this repo manually and the issue occurred on this commit:
13 |
14 | - [ ] I have installed this repo via `PIP` and the issue occurred on version:
15 | - [ ] The issue occurred when using the following .cfg model:
16 | - [ ] `yolov3`
17 | - [ ] `yolov3-tiny`
18 | - [ ] `CUSTOM`
19 |
20 | ## Necessary Checks
21 |
22 | - [ ] The issue occurred on the newest version
23 |
24 |
25 | - [ ] I couldn't find a similar issue here on this project's github repo
26 | - [ ] If the issue is CUDA related (CUDA error), I have tested and provided the traceback also when CUDA is turned off
27 | - [ ] I have provided all tracebacks or printouts in ```Text Form```
28 | - [ ] In case, the issue occurred on a custom .cfg model, I have provided the model down below
29 |
30 | ## Expected behavior
31 |
32 |
33 | ## Current behavior
34 |
35 |
36 | ## Steps to Reproduce
37 |
38 |
39 | 1.
40 | 2.
41 | 3.
42 | ...
43 |
44 | ## Possible Solution
45 |
46 |
47 |
48 | ### Custom `.cfg`
49 |
50 | Custom .cfg
51 |
52 |
53 |
54 |
55 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/2_need_help.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "⁉️ Need help?"
3 | about: "Get help with using or improving our software"
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 | ---
8 |
9 | ## What I'm trying to do
10 |
11 |
12 | ## What I've tried
13 |
14 |
15 | ## Additional context
16 |
17 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/3_feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: "\U0001F680 Feature request"
3 | about: Suggest an idea for this project
4 | labels: 'enhancement'
5 | ---
6 |
7 |
12 |
13 | ## Is your feature request related to a problem? Please describe.
14 |
15 |
16 | ## Describe the solution you'd like
17 |
18 |
19 | ## Describe alternatives you've considered
20 |
21 |
22 |
--------------------------------------------------------------------------------
/.github/dependabot.yml:
--------------------------------------------------------------------------------
1 | # To get started with Dependabot version updates, you'll need to specify which
2 | # package ecosystems to update and where the package manifests are located.
3 | # Please see the documentation for all configuration options:
4 | # https://help.github.com/github/administering-a-repository/configuration-options-for-dependency-updates
5 |
6 | version: 2
7 | updates:
8 | - package-ecosystem: "pip" # See documentation for possible values
9 | directory: "/" # Location of package manifests
10 | schedule:
11 | interval: "daily"
12 |
--------------------------------------------------------------------------------
/.github/pull_request_template.md:
--------------------------------------------------------------------------------
1 | ## Proposed changes
2 |
3 |
4 | ## Related issues
5 |
6 |
7 |
8 |
9 | ## Necessary checks
10 | - [ ] Update poetry package version [semantically](https://semver.org/)
11 | - [ ] Write documentation
12 | - [ ] Create issues for future work
13 | - [ ] Test on your machine
14 |
--------------------------------------------------------------------------------
/.github/workflows/main.yml:
--------------------------------------------------------------------------------
1 | name: CI
2 |
3 | on: [pull_request, workflow_dispatch]
4 |
5 | jobs:
6 | main:
7 | runs-on: ${{ matrix.os }}
8 | strategy:
9 | matrix:
10 | os: [ubuntu-22.04, ubuntu-20.04, windows-latest]
11 | steps:
12 | - uses: actions/checkout@v2
13 |
14 | - name: Set up Python
15 | uses: actions/setup-python@v1
16 | with:
17 | python-version: 3.8
18 |
19 | - name: Upgrade pip
20 | run: python3 -m pip install --upgrade pip
21 |
22 | - name: Install Poetry
23 | run: pip3 install poetry --user
24 |
25 | - name: Install Dependencies
26 | run: poetry install
27 |
28 | # Prints the help pages of all scripts to see if the imports etc. work
29 | - name: Test the help pages
30 | run: |
31 | poetry run yolo-train -h
32 | poetry run yolo-test -h
33 | poetry run yolo-detect -h
34 |
35 | - name: Demo Training
36 | run: poetry run yolo-train --data config/custom.data --model config/yolov3.cfg --epochs 30
37 |
38 | - name: Demo Evaluate
39 | run: poetry run yolo-test --data config/custom.data --model config/yolov3.cfg --weights checkpoints/yolov3_ckpt_29.pth
40 |
41 | - name: Demo Detect
42 | run: poetry run yolo-detect --batch_size 2 --weights checkpoints/yolov3_ckpt_29.pth
43 |
44 | linter:
45 | runs-on: ubuntu-latest
46 | steps:
47 | - uses: actions/checkout@v2
48 |
49 | - name: Flake8
50 | uses: TrueBrain/actions-flake8@master
51 | with:
52 | only_warn: 1
53 | max_line_length: 150
54 | path: pytorchyolo
55 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 |
2 | .DS_Store
3 | build
4 | .git
5 | *.egg-info
6 | dist
7 | output/
8 | data/*
9 | backup
10 | weights/*.weights
11 | weights/*.conv.*
12 | __pycache__
13 | checkpoints/
14 |
15 | .vscode/
16 | logs/
17 |
18 | .python-version
19 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PyTorch YOLO
2 | A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.
3 |
4 | YOLOv4 and YOLOv7 weights are also compatible with this implementation.
5 |
6 | [](https://github.com/eriklindernoren/PyTorch-YOLOv3/actions/workflows/main.yml) [](https://pypi.python.org/pypi/pytorchyolo/) [](LICENSE)
7 |
8 | ## Installation
9 | ### Installing from source
10 |
11 | For normal training and evaluation we recommend installing the package from source using a poetry virtual environment.
12 |
13 | ```bash
14 | git clone https://github.com/eriklindernoren/PyTorch-YOLOv3
15 | cd PyTorch-YOLOv3/
16 | pip3 install poetry --user
17 | poetry install
18 | ```
19 |
20 | You need to join the virtual environment by running `poetry shell` in this directory before running any of the following commands without the `poetry run` prefix.
21 | Also have a look at the other installing method, if you want to use the commands everywhere without opening a poetry-shell.
22 |
23 | #### Download pretrained weights
24 |
25 | ```bash
26 | ./weights/download_weights.sh
27 | ```
28 |
29 | #### Download COCO
30 |
31 | ```bash
32 | ./data/get_coco_dataset.sh
33 | ```
34 |
35 | ### Install via pip
36 |
37 | This installation method is recommended, if you want to use this package as a dependency in another python project.
38 | This method only includes the code, is less isolated and may conflict with other packages.
39 | Weights and the COCO dataset need to be downloaded as stated above.
40 | See __API__ for further information regarding the packages API.
41 | It also enables the CLI tools `yolo-detect`, `yolo-train`, and `yolo-test` everywhere without any additional commands.
42 |
43 | ```bash
44 | pip3 install pytorchyolo --user
45 | ```
46 |
47 | ## Test
48 | Evaluates the model on COCO test dataset.
49 | To download this dataset as well as weights, see above.
50 |
51 | ```bash
52 | poetry run yolo-test --weights weights/yolov3.weights
53 | ```
54 |
55 | | Model | mAP (min. 50 IoU) |
56 | | ----------------------- |:-----------------:|
57 | | YOLOv3 608 (paper) | 57.9 |
58 | | YOLOv3 608 (this impl.) | 57.3 |
59 | | YOLOv3 416 (paper) | 55.3 |
60 | | YOLOv3 416 (this impl.) | 55.5 |
61 |
62 | ## Inference
63 | Uses pretrained weights to make predictions on images. Below table displays the inference times when using as inputs images scaled to 256x256. The ResNet backbone measurements are taken from the YOLOv3 paper. The Darknet-53 measurement marked shows the inference time of this implementation on my 1080ti card.
64 |
65 | | Backbone | GPU | FPS |
66 | | ----------------------- |:--------:|:--------:|
67 | | ResNet-101 | Titan X | 53 |
68 | | ResNet-152 | Titan X | 37 |
69 | | Darknet-53 (paper) | Titan X | 76 |
70 | | Darknet-53 (this impl.) | 1080ti | 74 |
71 |
72 | ```bash
73 | poetry run yolo-detect --images data/samples/
74 | ```
75 |
76 | 
77 | 
78 | 
79 | 
80 |
81 | ## Train
82 | For argument descriptions have a look at `poetry run yolo-train --help`
83 |
84 | #### Example (COCO)
85 | To train on COCO using a Darknet-53 backend pretrained on ImageNet run:
86 |
87 | ```bash
88 | poetry run yolo-train --data config/coco.data --pretrained_weights weights/darknet53.conv.74
89 | ```
90 |
91 | #### Tensorboard
92 | Track training progress in Tensorboard:
93 | * Initialize training
94 | * Run the command below
95 | * Go to http://localhost:6006/
96 |
97 | ```bash
98 | poetry run tensorboard --logdir='logs' --port=6006
99 | ```
100 |
101 | Storing the logs on a slow drive possibly leads to a significant training speed decrease.
102 |
103 | You can adjust the log directory using `--logdir ` when running `tensorboard` and `yolo-train`.
104 |
105 | ## Train on Custom Dataset
106 |
107 | #### Custom model
108 | Run the commands below to create a custom model definition, replacing `` with the number of classes in your dataset.
109 |
110 | ```bash
111 | cd config
112 | ./create_custom_model.sh # Will create custom model 'yolov3-custom.cfg'
113 | ```
114 |
115 | #### Classes
116 | Add class names to `data/custom/classes.names`. This file should have one row per class name.
117 |
118 | #### Image Folder
119 | Move the images of your dataset to `data/custom/images/`.
120 |
121 | #### Annotation Folder
122 | Move your annotations to `data/custom/labels/`. The dataloader expects that the annotation file corresponding to the image `data/custom/images/train.jpg` has the path `data/custom/labels/train.txt`. Each row in the annotation file should define one bounding box, using the syntax `label_idx x_center y_center width height`. The coordinates should be scaled `[0, 1]`, and the `label_idx` should be zero-indexed and correspond to the row number of the class name in `data/custom/classes.names`.
123 |
124 | #### Define Train and Validation Sets
125 | In `data/custom/train.txt` and `data/custom/valid.txt`, add paths to images that will be used as train and validation data respectively.
126 |
127 | #### Train
128 | To train on the custom dataset run:
129 |
130 | ```bash
131 | poetry run yolo-train --model config/yolov3-custom.cfg --data config/custom.data
132 | ```
133 |
134 | Add `--pretrained_weights weights/darknet53.conv.74` to train using a backend pretrained on ImageNet.
135 |
136 |
137 | ## API
138 |
139 | You are able to import the modules of this repo in your own project if you install the pip package `pytorchyolo`.
140 |
141 | An example prediction call from a simple OpenCV python script would look like this:
142 |
143 | ```python
144 | import cv2
145 | from pytorchyolo import detect, models
146 |
147 | # Load the YOLO model
148 | model = models.load_model(
149 | "/yolov3.cfg",
150 | "/yolov3.weights")
151 |
152 | # Load the image as a numpy array
153 | img = cv2.imread("")
154 |
155 | # Convert OpenCV bgr to rgb
156 | img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
157 |
158 | # Runs the YOLO model on the image
159 | boxes = detect.detect_image(model, img)
160 |
161 | print(boxes)
162 | # Output will be a numpy array in the following format:
163 | # [[x1, y1, x2, y2, confidence, class]]
164 | ```
165 |
166 | For more advanced usage look at the method's doc strings.
167 |
168 | ## Credit
169 |
170 | ### YOLOv3: An Incremental Improvement
171 | _Joseph Redmon, Ali Farhadi_
172 |
173 | **Abstract**
174 | We present some updates to YOLO! We made a bunch
175 | of little design changes to make it better. We also trained
176 | this new network that’s pretty swell. It’s a little bigger than
177 | last time but more accurate. It’s still fast though, don’t
178 | worry. At 320 × 320 YOLOv3 runs in 22 ms at 28.2 mAP,
179 | as accurate as SSD but three times faster. When we look
180 | at the old .5 IOU mAP detection metric YOLOv3 is quite
181 | good. It achieves 57.9 AP50 in 51 ms on a Titan X, compared
182 | to 57.5 AP50 in 198 ms by RetinaNet, similar performance
183 | but 3.8× faster. As always, all the code is online at
184 | https://pjreddie.com/yolo/.
185 |
186 | [[Paper]](https://pjreddie.com/media/files/papers/YOLOv3.pdf) [[Project Webpage]](https://pjreddie.com/darknet/yolo/) [[Authors' Implementation]](https://github.com/pjreddie/darknet)
187 |
188 | ```
189 | @article{yolov3,
190 | title={YOLOv3: An Incremental Improvement},
191 | author={Redmon, Joseph and Farhadi, Ali},
192 | journal = {arXiv},
193 | year={2018}
194 | }
195 | ```
196 |
197 | ## Other
198 |
199 | ### YOEO — You Only Encode Once
200 |
201 | [YOEO](https://github.com/bit-bots/YOEO) extends this repo with the ability to train an additional semantic segmentation decoder. The lightweight example model is mainly targeted towards embedded real-time applications.
202 |
--------------------------------------------------------------------------------
/assets/dog.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/assets/dog.png
--------------------------------------------------------------------------------
/assets/giraffe.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/assets/giraffe.png
--------------------------------------------------------------------------------
/assets/messi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/assets/messi.png
--------------------------------------------------------------------------------
/assets/traffic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/assets/traffic.png
--------------------------------------------------------------------------------
/config/coco.data:
--------------------------------------------------------------------------------
1 | classes= 80
2 | train=data/coco/trainvalno5k.txt
3 | valid=data/coco/5k.txt
4 | names=data/coco.names
5 | backup=backup/
6 | eval=coco
7 |
--------------------------------------------------------------------------------
/config/create_custom_model.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | NUM_CLASSES=$1
4 |
5 | echo "
6 | [net]
7 | # Testing
8 | #batch=1
9 | #subdivisions=1
10 | # Training
11 | batch=16
12 | subdivisions=1
13 | width=416
14 | height=416
15 | channels=3
16 | momentum=0.9
17 | decay=0.0005
18 | angle=0
19 | saturation = 1.5
20 | exposure = 1.5
21 | hue=.1
22 |
23 | learning_rate=0.001
24 | burn_in=1000
25 | max_batches = 500200
26 | policy=steps
27 | steps=400000,450000
28 | scales=.1,.1
29 |
30 | [convolutional]
31 | batch_normalize=1
32 | filters=32
33 | size=3
34 | stride=1
35 | pad=1
36 | activation=leaky
37 |
38 | # Downsample
39 |
40 | [convolutional]
41 | batch_normalize=1
42 | filters=64
43 | size=3
44 | stride=2
45 | pad=1
46 | activation=leaky
47 |
48 | [convolutional]
49 | batch_normalize=1
50 | filters=32
51 | size=1
52 | stride=1
53 | pad=1
54 | activation=leaky
55 |
56 | [convolutional]
57 | batch_normalize=1
58 | filters=64
59 | size=3
60 | stride=1
61 | pad=1
62 | activation=leaky
63 |
64 | [shortcut]
65 | from=-3
66 | activation=linear
67 |
68 | # Downsample
69 |
70 | [convolutional]
71 | batch_normalize=1
72 | filters=128
73 | size=3
74 | stride=2
75 | pad=1
76 | activation=leaky
77 |
78 | [convolutional]
79 | batch_normalize=1
80 | filters=64
81 | size=1
82 | stride=1
83 | pad=1
84 | activation=leaky
85 |
86 | [convolutional]
87 | batch_normalize=1
88 | filters=128
89 | size=3
90 | stride=1
91 | pad=1
92 | activation=leaky
93 |
94 | [shortcut]
95 | from=-3
96 | activation=linear
97 |
98 | [convolutional]
99 | batch_normalize=1
100 | filters=64
101 | size=1
102 | stride=1
103 | pad=1
104 | activation=leaky
105 |
106 | [convolutional]
107 | batch_normalize=1
108 | filters=128
109 | size=3
110 | stride=1
111 | pad=1
112 | activation=leaky
113 |
114 | [shortcut]
115 | from=-3
116 | activation=linear
117 |
118 | # Downsample
119 |
120 | [convolutional]
121 | batch_normalize=1
122 | filters=256
123 | size=3
124 | stride=2
125 | pad=1
126 | activation=leaky
127 |
128 | [convolutional]
129 | batch_normalize=1
130 | filters=128
131 | size=1
132 | stride=1
133 | pad=1
134 | activation=leaky
135 |
136 | [convolutional]
137 | batch_normalize=1
138 | filters=256
139 | size=3
140 | stride=1
141 | pad=1
142 | activation=leaky
143 |
144 | [shortcut]
145 | from=-3
146 | activation=linear
147 |
148 | [convolutional]
149 | batch_normalize=1
150 | filters=128
151 | size=1
152 | stride=1
153 | pad=1
154 | activation=leaky
155 |
156 | [convolutional]
157 | batch_normalize=1
158 | filters=256
159 | size=3
160 | stride=1
161 | pad=1
162 | activation=leaky
163 |
164 | [shortcut]
165 | from=-3
166 | activation=linear
167 |
168 | [convolutional]
169 | batch_normalize=1
170 | filters=128
171 | size=1
172 | stride=1
173 | pad=1
174 | activation=leaky
175 |
176 | [convolutional]
177 | batch_normalize=1
178 | filters=256
179 | size=3
180 | stride=1
181 | pad=1
182 | activation=leaky
183 |
184 | [shortcut]
185 | from=-3
186 | activation=linear
187 |
188 | [convolutional]
189 | batch_normalize=1
190 | filters=128
191 | size=1
192 | stride=1
193 | pad=1
194 | activation=leaky
195 |
196 | [convolutional]
197 | batch_normalize=1
198 | filters=256
199 | size=3
200 | stride=1
201 | pad=1
202 | activation=leaky
203 |
204 | [shortcut]
205 | from=-3
206 | activation=linear
207 |
208 |
209 | [convolutional]
210 | batch_normalize=1
211 | filters=128
212 | size=1
213 | stride=1
214 | pad=1
215 | activation=leaky
216 |
217 | [convolutional]
218 | batch_normalize=1
219 | filters=256
220 | size=3
221 | stride=1
222 | pad=1
223 | activation=leaky
224 |
225 | [shortcut]
226 | from=-3
227 | activation=linear
228 |
229 | [convolutional]
230 | batch_normalize=1
231 | filters=128
232 | size=1
233 | stride=1
234 | pad=1
235 | activation=leaky
236 |
237 | [convolutional]
238 | batch_normalize=1
239 | filters=256
240 | size=3
241 | stride=1
242 | pad=1
243 | activation=leaky
244 |
245 | [shortcut]
246 | from=-3
247 | activation=linear
248 |
249 | [convolutional]
250 | batch_normalize=1
251 | filters=128
252 | size=1
253 | stride=1
254 | pad=1
255 | activation=leaky
256 |
257 | [convolutional]
258 | batch_normalize=1
259 | filters=256
260 | size=3
261 | stride=1
262 | pad=1
263 | activation=leaky
264 |
265 | [shortcut]
266 | from=-3
267 | activation=linear
268 |
269 | [convolutional]
270 | batch_normalize=1
271 | filters=128
272 | size=1
273 | stride=1
274 | pad=1
275 | activation=leaky
276 |
277 | [convolutional]
278 | batch_normalize=1
279 | filters=256
280 | size=3
281 | stride=1
282 | pad=1
283 | activation=leaky
284 |
285 | [shortcut]
286 | from=-3
287 | activation=linear
288 |
289 | # Downsample
290 |
291 | [convolutional]
292 | batch_normalize=1
293 | filters=512
294 | size=3
295 | stride=2
296 | pad=1
297 | activation=leaky
298 |
299 | [convolutional]
300 | batch_normalize=1
301 | filters=256
302 | size=1
303 | stride=1
304 | pad=1
305 | activation=leaky
306 |
307 | [convolutional]
308 | batch_normalize=1
309 | filters=512
310 | size=3
311 | stride=1
312 | pad=1
313 | activation=leaky
314 |
315 | [shortcut]
316 | from=-3
317 | activation=linear
318 |
319 |
320 | [convolutional]
321 | batch_normalize=1
322 | filters=256
323 | size=1
324 | stride=1
325 | pad=1
326 | activation=leaky
327 |
328 | [convolutional]
329 | batch_normalize=1
330 | filters=512
331 | size=3
332 | stride=1
333 | pad=1
334 | activation=leaky
335 |
336 | [shortcut]
337 | from=-3
338 | activation=linear
339 |
340 |
341 | [convolutional]
342 | batch_normalize=1
343 | filters=256
344 | size=1
345 | stride=1
346 | pad=1
347 | activation=leaky
348 |
349 | [convolutional]
350 | batch_normalize=1
351 | filters=512
352 | size=3
353 | stride=1
354 | pad=1
355 | activation=leaky
356 |
357 | [shortcut]
358 | from=-3
359 | activation=linear
360 |
361 |
362 | [convolutional]
363 | batch_normalize=1
364 | filters=256
365 | size=1
366 | stride=1
367 | pad=1
368 | activation=leaky
369 |
370 | [convolutional]
371 | batch_normalize=1
372 | filters=512
373 | size=3
374 | stride=1
375 | pad=1
376 | activation=leaky
377 |
378 | [shortcut]
379 | from=-3
380 | activation=linear
381 |
382 | [convolutional]
383 | batch_normalize=1
384 | filters=256
385 | size=1
386 | stride=1
387 | pad=1
388 | activation=leaky
389 |
390 | [convolutional]
391 | batch_normalize=1
392 | filters=512
393 | size=3
394 | stride=1
395 | pad=1
396 | activation=leaky
397 |
398 | [shortcut]
399 | from=-3
400 | activation=linear
401 |
402 |
403 | [convolutional]
404 | batch_normalize=1
405 | filters=256
406 | size=1
407 | stride=1
408 | pad=1
409 | activation=leaky
410 |
411 | [convolutional]
412 | batch_normalize=1
413 | filters=512
414 | size=3
415 | stride=1
416 | pad=1
417 | activation=leaky
418 |
419 | [shortcut]
420 | from=-3
421 | activation=linear
422 |
423 |
424 | [convolutional]
425 | batch_normalize=1
426 | filters=256
427 | size=1
428 | stride=1
429 | pad=1
430 | activation=leaky
431 |
432 | [convolutional]
433 | batch_normalize=1
434 | filters=512
435 | size=3
436 | stride=1
437 | pad=1
438 | activation=leaky
439 |
440 | [shortcut]
441 | from=-3
442 | activation=linear
443 |
444 | [convolutional]
445 | batch_normalize=1
446 | filters=256
447 | size=1
448 | stride=1
449 | pad=1
450 | activation=leaky
451 |
452 | [convolutional]
453 | batch_normalize=1
454 | filters=512
455 | size=3
456 | stride=1
457 | pad=1
458 | activation=leaky
459 |
460 | [shortcut]
461 | from=-3
462 | activation=linear
463 |
464 | # Downsample
465 |
466 | [convolutional]
467 | batch_normalize=1
468 | filters=1024
469 | size=3
470 | stride=2
471 | pad=1
472 | activation=leaky
473 |
474 | [convolutional]
475 | batch_normalize=1
476 | filters=512
477 | size=1
478 | stride=1
479 | pad=1
480 | activation=leaky
481 |
482 | [convolutional]
483 | batch_normalize=1
484 | filters=1024
485 | size=3
486 | stride=1
487 | pad=1
488 | activation=leaky
489 |
490 | [shortcut]
491 | from=-3
492 | activation=linear
493 |
494 | [convolutional]
495 | batch_normalize=1
496 | filters=512
497 | size=1
498 | stride=1
499 | pad=1
500 | activation=leaky
501 |
502 | [convolutional]
503 | batch_normalize=1
504 | filters=1024
505 | size=3
506 | stride=1
507 | pad=1
508 | activation=leaky
509 |
510 | [shortcut]
511 | from=-3
512 | activation=linear
513 |
514 | [convolutional]
515 | batch_normalize=1
516 | filters=512
517 | size=1
518 | stride=1
519 | pad=1
520 | activation=leaky
521 |
522 | [convolutional]
523 | batch_normalize=1
524 | filters=1024
525 | size=3
526 | stride=1
527 | pad=1
528 | activation=leaky
529 |
530 | [shortcut]
531 | from=-3
532 | activation=linear
533 |
534 | [convolutional]
535 | batch_normalize=1
536 | filters=512
537 | size=1
538 | stride=1
539 | pad=1
540 | activation=leaky
541 |
542 | [convolutional]
543 | batch_normalize=1
544 | filters=1024
545 | size=3
546 | stride=1
547 | pad=1
548 | activation=leaky
549 |
550 | [shortcut]
551 | from=-3
552 | activation=linear
553 |
554 | ######################
555 |
556 | [convolutional]
557 | batch_normalize=1
558 | filters=512
559 | size=1
560 | stride=1
561 | pad=1
562 | activation=leaky
563 |
564 | [convolutional]
565 | batch_normalize=1
566 | size=3
567 | stride=1
568 | pad=1
569 | filters=1024
570 | activation=leaky
571 |
572 | [convolutional]
573 | batch_normalize=1
574 | filters=512
575 | size=1
576 | stride=1
577 | pad=1
578 | activation=leaky
579 |
580 | [convolutional]
581 | batch_normalize=1
582 | size=3
583 | stride=1
584 | pad=1
585 | filters=1024
586 | activation=leaky
587 |
588 | [convolutional]
589 | batch_normalize=1
590 | filters=512
591 | size=1
592 | stride=1
593 | pad=1
594 | activation=leaky
595 |
596 | [convolutional]
597 | batch_normalize=1
598 | size=3
599 | stride=1
600 | pad=1
601 | filters=1024
602 | activation=leaky
603 |
604 | [convolutional]
605 | size=1
606 | stride=1
607 | pad=1
608 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5))
609 | activation=linear
610 |
611 |
612 | [yolo]
613 | mask = 6,7,8
614 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
615 | classes=$NUM_CLASSES
616 | num=9
617 | jitter=.3
618 | ignore_thresh = .7
619 | truth_thresh = 1
620 | random=1
621 |
622 |
623 | [route]
624 | layers = -4
625 |
626 | [convolutional]
627 | batch_normalize=1
628 | filters=256
629 | size=1
630 | stride=1
631 | pad=1
632 | activation=leaky
633 |
634 | [upsample]
635 | stride=2
636 |
637 | [route]
638 | layers = -1, 61
639 |
640 |
641 |
642 | [convolutional]
643 | batch_normalize=1
644 | filters=256
645 | size=1
646 | stride=1
647 | pad=1
648 | activation=leaky
649 |
650 | [convolutional]
651 | batch_normalize=1
652 | size=3
653 | stride=1
654 | pad=1
655 | filters=512
656 | activation=leaky
657 |
658 | [convolutional]
659 | batch_normalize=1
660 | filters=256
661 | size=1
662 | stride=1
663 | pad=1
664 | activation=leaky
665 |
666 | [convolutional]
667 | batch_normalize=1
668 | size=3
669 | stride=1
670 | pad=1
671 | filters=512
672 | activation=leaky
673 |
674 | [convolutional]
675 | batch_normalize=1
676 | filters=256
677 | size=1
678 | stride=1
679 | pad=1
680 | activation=leaky
681 |
682 | [convolutional]
683 | batch_normalize=1
684 | size=3
685 | stride=1
686 | pad=1
687 | filters=512
688 | activation=leaky
689 |
690 | [convolutional]
691 | size=1
692 | stride=1
693 | pad=1
694 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5))
695 | activation=linear
696 |
697 |
698 | [yolo]
699 | mask = 3,4,5
700 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
701 | classes=$NUM_CLASSES
702 | num=9
703 | jitter=.3
704 | ignore_thresh = .7
705 | truth_thresh = 1
706 | random=1
707 |
708 |
709 |
710 | [route]
711 | layers = -4
712 |
713 | [convolutional]
714 | batch_normalize=1
715 | filters=128
716 | size=1
717 | stride=1
718 | pad=1
719 | activation=leaky
720 |
721 | [upsample]
722 | stride=2
723 |
724 | [route]
725 | layers = -1, 36
726 |
727 |
728 |
729 | [convolutional]
730 | batch_normalize=1
731 | filters=128
732 | size=1
733 | stride=1
734 | pad=1
735 | activation=leaky
736 |
737 | [convolutional]
738 | batch_normalize=1
739 | size=3
740 | stride=1
741 | pad=1
742 | filters=256
743 | activation=leaky
744 |
745 | [convolutional]
746 | batch_normalize=1
747 | filters=128
748 | size=1
749 | stride=1
750 | pad=1
751 | activation=leaky
752 |
753 | [convolutional]
754 | batch_normalize=1
755 | size=3
756 | stride=1
757 | pad=1
758 | filters=256
759 | activation=leaky
760 |
761 | [convolutional]
762 | batch_normalize=1
763 | filters=128
764 | size=1
765 | stride=1
766 | pad=1
767 | activation=leaky
768 |
769 | [convolutional]
770 | batch_normalize=1
771 | size=3
772 | stride=1
773 | pad=1
774 | filters=256
775 | activation=leaky
776 |
777 | [convolutional]
778 | size=1
779 | stride=1
780 | pad=1
781 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5))
782 | activation=linear
783 |
784 |
785 | [yolo]
786 | mask = 0,1,2
787 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
788 | classes=$NUM_CLASSES
789 | num=9
790 | jitter=.3
791 | ignore_thresh = .7
792 | truth_thresh = 1
793 | random=1
794 | " >> yolov3-custom.cfg
795 |
--------------------------------------------------------------------------------
/config/custom.data:
--------------------------------------------------------------------------------
1 | classes= 1
2 | train=data/custom/train.txt
3 | valid=data/custom/valid.txt
4 | names=data/custom/classes.names
5 |
--------------------------------------------------------------------------------
/config/yolov3-tiny.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=64
7 | subdivisions=2
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.0001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | # 0
26 | [convolutional]
27 | batch_normalize=1
28 | filters=16
29 | size=3
30 | stride=1
31 | pad=1
32 | activation=leaky
33 |
34 | # 1
35 | [maxpool]
36 | size=2
37 | stride=2
38 |
39 | # 2
40 | [convolutional]
41 | batch_normalize=1
42 | filters=32
43 | size=3
44 | stride=1
45 | pad=1
46 | activation=leaky
47 |
48 | # 3
49 | [maxpool]
50 | size=2
51 | stride=2
52 |
53 | # 4
54 | [convolutional]
55 | batch_normalize=1
56 | filters=64
57 | size=3
58 | stride=1
59 | pad=1
60 | activation=leaky
61 |
62 | # 5
63 | [maxpool]
64 | size=2
65 | stride=2
66 |
67 | # 6
68 | [convolutional]
69 | batch_normalize=1
70 | filters=128
71 | size=3
72 | stride=1
73 | pad=1
74 | activation=leaky
75 |
76 | # 7
77 | [maxpool]
78 | size=2
79 | stride=2
80 |
81 | # 8
82 | [convolutional]
83 | batch_normalize=1
84 | filters=256
85 | size=3
86 | stride=1
87 | pad=1
88 | activation=leaky
89 |
90 | # 9
91 | [maxpool]
92 | size=2
93 | stride=2
94 |
95 | # 10
96 | [convolutional]
97 | batch_normalize=1
98 | filters=512
99 | size=3
100 | stride=1
101 | pad=1
102 | activation=leaky
103 |
104 | # 11
105 | [maxpool]
106 | size=2
107 | stride=1
108 |
109 | # 12
110 | [convolutional]
111 | batch_normalize=1
112 | filters=1024
113 | size=3
114 | stride=1
115 | pad=1
116 | activation=leaky
117 |
118 | ###########
119 |
120 | # 13
121 | [convolutional]
122 | batch_normalize=1
123 | filters=256
124 | size=1
125 | stride=1
126 | pad=1
127 | activation=leaky
128 |
129 | # 14
130 | [convolutional]
131 | batch_normalize=1
132 | filters=512
133 | size=3
134 | stride=1
135 | pad=1
136 | activation=leaky
137 |
138 | # 15
139 | [convolutional]
140 | size=1
141 | stride=1
142 | pad=1
143 | filters=255
144 | activation=linear
145 |
146 |
147 |
148 | # 16
149 | [yolo]
150 | mask = 3,4,5
151 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
152 | classes=80
153 | num=6
154 | jitter=.3
155 | ignore_thresh = .7
156 | truth_thresh = 1
157 | random=1
158 |
159 | # 17
160 | [route]
161 | layers = -4
162 |
163 | # 18
164 | [convolutional]
165 | batch_normalize=1
166 | filters=128
167 | size=1
168 | stride=1
169 | pad=1
170 | activation=leaky
171 |
172 | # 19
173 | [upsample]
174 | stride=2
175 |
176 | # 20
177 | [route]
178 | layers = -1, 8
179 |
180 | # 21
181 | [convolutional]
182 | batch_normalize=1
183 | filters=256
184 | size=3
185 | stride=1
186 | pad=1
187 | activation=leaky
188 |
189 | # 22
190 | [convolutional]
191 | size=1
192 | stride=1
193 | pad=1
194 | filters=255
195 | activation=linear
196 |
197 | # 23
198 | [yolo]
199 | mask = 1,2,3
200 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
201 | classes=80
202 | num=6
203 | jitter=.3
204 | ignore_thresh = .7
205 | truth_thresh = 1
206 | random=1
207 |
--------------------------------------------------------------------------------
/config/yolov3.cfg:
--------------------------------------------------------------------------------
1 | [net]
2 | # Testing
3 | #batch=1
4 | #subdivisions=1
5 | # Training
6 | batch=16
7 | subdivisions=1
8 | width=416
9 | height=416
10 | channels=3
11 | momentum=0.9
12 | decay=0.0005
13 | angle=0
14 | saturation = 1.5
15 | exposure = 1.5
16 | hue=.1
17 |
18 | learning_rate=0.0001
19 | burn_in=1000
20 | max_batches = 500200
21 | policy=steps
22 | steps=400000,450000
23 | scales=.1,.1
24 |
25 | [convolutional]
26 | batch_normalize=1
27 | filters=32
28 | size=3
29 | stride=1
30 | pad=1
31 | activation=leaky
32 |
33 | # Downsample
34 |
35 | [convolutional]
36 | batch_normalize=1
37 | filters=64
38 | size=3
39 | stride=2
40 | pad=1
41 | activation=leaky
42 |
43 | [convolutional]
44 | batch_normalize=1
45 | filters=32
46 | size=1
47 | stride=1
48 | pad=1
49 | activation=leaky
50 |
51 | [convolutional]
52 | batch_normalize=1
53 | filters=64
54 | size=3
55 | stride=1
56 | pad=1
57 | activation=leaky
58 |
59 | [shortcut]
60 | from=-3
61 | activation=linear
62 |
63 | # Downsample
64 |
65 | [convolutional]
66 | batch_normalize=1
67 | filters=128
68 | size=3
69 | stride=2
70 | pad=1
71 | activation=leaky
72 |
73 | [convolutional]
74 | batch_normalize=1
75 | filters=64
76 | size=1
77 | stride=1
78 | pad=1
79 | activation=leaky
80 |
81 | [convolutional]
82 | batch_normalize=1
83 | filters=128
84 | size=3
85 | stride=1
86 | pad=1
87 | activation=leaky
88 |
89 | [shortcut]
90 | from=-3
91 | activation=linear
92 |
93 | [convolutional]
94 | batch_normalize=1
95 | filters=64
96 | size=1
97 | stride=1
98 | pad=1
99 | activation=leaky
100 |
101 | [convolutional]
102 | batch_normalize=1
103 | filters=128
104 | size=3
105 | stride=1
106 | pad=1
107 | activation=leaky
108 |
109 | [shortcut]
110 | from=-3
111 | activation=linear
112 |
113 | # Downsample
114 |
115 | [convolutional]
116 | batch_normalize=1
117 | filters=256
118 | size=3
119 | stride=2
120 | pad=1
121 | activation=leaky
122 |
123 | [convolutional]
124 | batch_normalize=1
125 | filters=128
126 | size=1
127 | stride=1
128 | pad=1
129 | activation=leaky
130 |
131 | [convolutional]
132 | batch_normalize=1
133 | filters=256
134 | size=3
135 | stride=1
136 | pad=1
137 | activation=leaky
138 |
139 | [shortcut]
140 | from=-3
141 | activation=linear
142 |
143 | [convolutional]
144 | batch_normalize=1
145 | filters=128
146 | size=1
147 | stride=1
148 | pad=1
149 | activation=leaky
150 |
151 | [convolutional]
152 | batch_normalize=1
153 | filters=256
154 | size=3
155 | stride=1
156 | pad=1
157 | activation=leaky
158 |
159 | [shortcut]
160 | from=-3
161 | activation=linear
162 |
163 | [convolutional]
164 | batch_normalize=1
165 | filters=128
166 | size=1
167 | stride=1
168 | pad=1
169 | activation=leaky
170 |
171 | [convolutional]
172 | batch_normalize=1
173 | filters=256
174 | size=3
175 | stride=1
176 | pad=1
177 | activation=leaky
178 |
179 | [shortcut]
180 | from=-3
181 | activation=linear
182 |
183 | [convolutional]
184 | batch_normalize=1
185 | filters=128
186 | size=1
187 | stride=1
188 | pad=1
189 | activation=leaky
190 |
191 | [convolutional]
192 | batch_normalize=1
193 | filters=256
194 | size=3
195 | stride=1
196 | pad=1
197 | activation=leaky
198 |
199 | [shortcut]
200 | from=-3
201 | activation=linear
202 |
203 |
204 | [convolutional]
205 | batch_normalize=1
206 | filters=128
207 | size=1
208 | stride=1
209 | pad=1
210 | activation=leaky
211 |
212 | [convolutional]
213 | batch_normalize=1
214 | filters=256
215 | size=3
216 | stride=1
217 | pad=1
218 | activation=leaky
219 |
220 | [shortcut]
221 | from=-3
222 | activation=linear
223 |
224 | [convolutional]
225 | batch_normalize=1
226 | filters=128
227 | size=1
228 | stride=1
229 | pad=1
230 | activation=leaky
231 |
232 | [convolutional]
233 | batch_normalize=1
234 | filters=256
235 | size=3
236 | stride=1
237 | pad=1
238 | activation=leaky
239 |
240 | [shortcut]
241 | from=-3
242 | activation=linear
243 |
244 | [convolutional]
245 | batch_normalize=1
246 | filters=128
247 | size=1
248 | stride=1
249 | pad=1
250 | activation=leaky
251 |
252 | [convolutional]
253 | batch_normalize=1
254 | filters=256
255 | size=3
256 | stride=1
257 | pad=1
258 | activation=leaky
259 |
260 | [shortcut]
261 | from=-3
262 | activation=linear
263 |
264 | [convolutional]
265 | batch_normalize=1
266 | filters=128
267 | size=1
268 | stride=1
269 | pad=1
270 | activation=leaky
271 |
272 | [convolutional]
273 | batch_normalize=1
274 | filters=256
275 | size=3
276 | stride=1
277 | pad=1
278 | activation=leaky
279 |
280 | [shortcut]
281 | from=-3
282 | activation=linear
283 |
284 | # Downsample
285 |
286 | [convolutional]
287 | batch_normalize=1
288 | filters=512
289 | size=3
290 | stride=2
291 | pad=1
292 | activation=leaky
293 |
294 | [convolutional]
295 | batch_normalize=1
296 | filters=256
297 | size=1
298 | stride=1
299 | pad=1
300 | activation=leaky
301 |
302 | [convolutional]
303 | batch_normalize=1
304 | filters=512
305 | size=3
306 | stride=1
307 | pad=1
308 | activation=leaky
309 |
310 | [shortcut]
311 | from=-3
312 | activation=linear
313 |
314 |
315 | [convolutional]
316 | batch_normalize=1
317 | filters=256
318 | size=1
319 | stride=1
320 | pad=1
321 | activation=leaky
322 |
323 | [convolutional]
324 | batch_normalize=1
325 | filters=512
326 | size=3
327 | stride=1
328 | pad=1
329 | activation=leaky
330 |
331 | [shortcut]
332 | from=-3
333 | activation=linear
334 |
335 |
336 | [convolutional]
337 | batch_normalize=1
338 | filters=256
339 | size=1
340 | stride=1
341 | pad=1
342 | activation=leaky
343 |
344 | [convolutional]
345 | batch_normalize=1
346 | filters=512
347 | size=3
348 | stride=1
349 | pad=1
350 | activation=leaky
351 |
352 | [shortcut]
353 | from=-3
354 | activation=linear
355 |
356 |
357 | [convolutional]
358 | batch_normalize=1
359 | filters=256
360 | size=1
361 | stride=1
362 | pad=1
363 | activation=leaky
364 |
365 | [convolutional]
366 | batch_normalize=1
367 | filters=512
368 | size=3
369 | stride=1
370 | pad=1
371 | activation=leaky
372 |
373 | [shortcut]
374 | from=-3
375 | activation=linear
376 |
377 | [convolutional]
378 | batch_normalize=1
379 | filters=256
380 | size=1
381 | stride=1
382 | pad=1
383 | activation=leaky
384 |
385 | [convolutional]
386 | batch_normalize=1
387 | filters=512
388 | size=3
389 | stride=1
390 | pad=1
391 | activation=leaky
392 |
393 | [shortcut]
394 | from=-3
395 | activation=linear
396 |
397 |
398 | [convolutional]
399 | batch_normalize=1
400 | filters=256
401 | size=1
402 | stride=1
403 | pad=1
404 | activation=leaky
405 |
406 | [convolutional]
407 | batch_normalize=1
408 | filters=512
409 | size=3
410 | stride=1
411 | pad=1
412 | activation=leaky
413 |
414 | [shortcut]
415 | from=-3
416 | activation=linear
417 |
418 |
419 | [convolutional]
420 | batch_normalize=1
421 | filters=256
422 | size=1
423 | stride=1
424 | pad=1
425 | activation=leaky
426 |
427 | [convolutional]
428 | batch_normalize=1
429 | filters=512
430 | size=3
431 | stride=1
432 | pad=1
433 | activation=leaky
434 |
435 | [shortcut]
436 | from=-3
437 | activation=linear
438 |
439 | [convolutional]
440 | batch_normalize=1
441 | filters=256
442 | size=1
443 | stride=1
444 | pad=1
445 | activation=leaky
446 |
447 | [convolutional]
448 | batch_normalize=1
449 | filters=512
450 | size=3
451 | stride=1
452 | pad=1
453 | activation=leaky
454 |
455 | [shortcut]
456 | from=-3
457 | activation=linear
458 |
459 | # Downsample
460 |
461 | [convolutional]
462 | batch_normalize=1
463 | filters=1024
464 | size=3
465 | stride=2
466 | pad=1
467 | activation=leaky
468 |
469 | [convolutional]
470 | batch_normalize=1
471 | filters=512
472 | size=1
473 | stride=1
474 | pad=1
475 | activation=leaky
476 |
477 | [convolutional]
478 | batch_normalize=1
479 | filters=1024
480 | size=3
481 | stride=1
482 | pad=1
483 | activation=leaky
484 |
485 | [shortcut]
486 | from=-3
487 | activation=linear
488 |
489 | [convolutional]
490 | batch_normalize=1
491 | filters=512
492 | size=1
493 | stride=1
494 | pad=1
495 | activation=leaky
496 |
497 | [convolutional]
498 | batch_normalize=1
499 | filters=1024
500 | size=3
501 | stride=1
502 | pad=1
503 | activation=leaky
504 |
505 | [shortcut]
506 | from=-3
507 | activation=linear
508 |
509 | [convolutional]
510 | batch_normalize=1
511 | filters=512
512 | size=1
513 | stride=1
514 | pad=1
515 | activation=leaky
516 |
517 | [convolutional]
518 | batch_normalize=1
519 | filters=1024
520 | size=3
521 | stride=1
522 | pad=1
523 | activation=leaky
524 |
525 | [shortcut]
526 | from=-3
527 | activation=linear
528 |
529 | [convolutional]
530 | batch_normalize=1
531 | filters=512
532 | size=1
533 | stride=1
534 | pad=1
535 | activation=leaky
536 |
537 | [convolutional]
538 | batch_normalize=1
539 | filters=1024
540 | size=3
541 | stride=1
542 | pad=1
543 | activation=leaky
544 |
545 | [shortcut]
546 | from=-3
547 | activation=linear
548 |
549 | ######################
550 |
551 | [convolutional]
552 | batch_normalize=1
553 | filters=512
554 | size=1
555 | stride=1
556 | pad=1
557 | activation=leaky
558 |
559 | [convolutional]
560 | batch_normalize=1
561 | size=3
562 | stride=1
563 | pad=1
564 | filters=1024
565 | activation=leaky
566 |
567 | [convolutional]
568 | batch_normalize=1
569 | filters=512
570 | size=1
571 | stride=1
572 | pad=1
573 | activation=leaky
574 |
575 | [convolutional]
576 | batch_normalize=1
577 | size=3
578 | stride=1
579 | pad=1
580 | filters=1024
581 | activation=leaky
582 |
583 | [convolutional]
584 | batch_normalize=1
585 | filters=512
586 | size=1
587 | stride=1
588 | pad=1
589 | activation=leaky
590 |
591 | [convolutional]
592 | batch_normalize=1
593 | size=3
594 | stride=1
595 | pad=1
596 | filters=1024
597 | activation=leaky
598 |
599 | [convolutional]
600 | size=1
601 | stride=1
602 | pad=1
603 | filters=255
604 | activation=linear
605 |
606 |
607 | [yolo]
608 | mask = 6,7,8
609 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610 | classes=80
611 | num=9
612 | jitter=.3
613 | ignore_thresh = .7
614 | truth_thresh = 1
615 | random=1
616 |
617 |
618 | [route]
619 | layers = -4
620 |
621 | [convolutional]
622 | batch_normalize=1
623 | filters=256
624 | size=1
625 | stride=1
626 | pad=1
627 | activation=leaky
628 |
629 | [upsample]
630 | stride=2
631 |
632 | [route]
633 | layers = -1, 61
634 |
635 |
636 |
637 | [convolutional]
638 | batch_normalize=1
639 | filters=256
640 | size=1
641 | stride=1
642 | pad=1
643 | activation=leaky
644 |
645 | [convolutional]
646 | batch_normalize=1
647 | size=3
648 | stride=1
649 | pad=1
650 | filters=512
651 | activation=leaky
652 |
653 | [convolutional]
654 | batch_normalize=1
655 | filters=256
656 | size=1
657 | stride=1
658 | pad=1
659 | activation=leaky
660 |
661 | [convolutional]
662 | batch_normalize=1
663 | size=3
664 | stride=1
665 | pad=1
666 | filters=512
667 | activation=leaky
668 |
669 | [convolutional]
670 | batch_normalize=1
671 | filters=256
672 | size=1
673 | stride=1
674 | pad=1
675 | activation=leaky
676 |
677 | [convolutional]
678 | batch_normalize=1
679 | size=3
680 | stride=1
681 | pad=1
682 | filters=512
683 | activation=leaky
684 |
685 | [convolutional]
686 | size=1
687 | stride=1
688 | pad=1
689 | filters=255
690 | activation=linear
691 |
692 |
693 | [yolo]
694 | mask = 3,4,5
695 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696 | classes=80
697 | num=9
698 | jitter=.3
699 | ignore_thresh = .7
700 | truth_thresh = 1
701 | random=1
702 |
703 |
704 |
705 | [route]
706 | layers = -4
707 |
708 | [convolutional]
709 | batch_normalize=1
710 | filters=128
711 | size=1
712 | stride=1
713 | pad=1
714 | activation=leaky
715 |
716 | [upsample]
717 | stride=2
718 |
719 | [route]
720 | layers = -1, 36
721 |
722 |
723 |
724 | [convolutional]
725 | batch_normalize=1
726 | filters=128
727 | size=1
728 | stride=1
729 | pad=1
730 | activation=leaky
731 |
732 | [convolutional]
733 | batch_normalize=1
734 | size=3
735 | stride=1
736 | pad=1
737 | filters=256
738 | activation=leaky
739 |
740 | [convolutional]
741 | batch_normalize=1
742 | filters=128
743 | size=1
744 | stride=1
745 | pad=1
746 | activation=leaky
747 |
748 | [convolutional]
749 | batch_normalize=1
750 | size=3
751 | stride=1
752 | pad=1
753 | filters=256
754 | activation=leaky
755 |
756 | [convolutional]
757 | batch_normalize=1
758 | filters=128
759 | size=1
760 | stride=1
761 | pad=1
762 | activation=leaky
763 |
764 | [convolutional]
765 | batch_normalize=1
766 | size=3
767 | stride=1
768 | pad=1
769 | filters=256
770 | activation=leaky
771 |
772 | [convolutional]
773 | size=1
774 | stride=1
775 | pad=1
776 | filters=255
777 | activation=linear
778 |
779 |
780 | [yolo]
781 | mask = 0,1,2
782 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783 | classes=80
784 | num=9
785 | jitter=.3
786 | ignore_thresh = .7
787 | truth_thresh = 1
788 | random=1
789 |
--------------------------------------------------------------------------------
/data/coco.names:
--------------------------------------------------------------------------------
1 | person
2 | bicycle
3 | car
4 | motorbike
5 | aeroplane
6 | bus
7 | train
8 | truck
9 | boat
10 | traffic light
11 | fire hydrant
12 | stop sign
13 | parking meter
14 | bench
15 | bird
16 | cat
17 | dog
18 | horse
19 | sheep
20 | cow
21 | elephant
22 | bear
23 | zebra
24 | giraffe
25 | backpack
26 | umbrella
27 | handbag
28 | tie
29 | suitcase
30 | frisbee
31 | skis
32 | snowboard
33 | sports ball
34 | kite
35 | baseball bat
36 | baseball glove
37 | skateboard
38 | surfboard
39 | tennis racket
40 | bottle
41 | wine glass
42 | cup
43 | fork
44 | knife
45 | spoon
46 | bowl
47 | banana
48 | apple
49 | sandwich
50 | orange
51 | broccoli
52 | carrot
53 | hot dog
54 | pizza
55 | donut
56 | cake
57 | chair
58 | sofa
59 | pottedplant
60 | bed
61 | diningtable
62 | toilet
63 | tvmonitor
64 | laptop
65 | mouse
66 | remote
67 | keyboard
68 | cell phone
69 | microwave
70 | oven
71 | toaster
72 | sink
73 | refrigerator
74 | book
75 | clock
76 | vase
77 | scissors
78 | teddy bear
79 | hair drier
80 | toothbrush
81 |
--------------------------------------------------------------------------------
/data/custom/classes.names:
--------------------------------------------------------------------------------
1 | train
2 |
--------------------------------------------------------------------------------
/data/custom/images/train.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/custom/images/train.jpg
--------------------------------------------------------------------------------
/data/custom/labels/train.txt:
--------------------------------------------------------------------------------
1 | 0 0.515 0.5 0.21694873 0.18286777
2 |
--------------------------------------------------------------------------------
/data/custom/train.txt:
--------------------------------------------------------------------------------
1 | data/custom/images/train.jpg
2 |
--------------------------------------------------------------------------------
/data/custom/valid.txt:
--------------------------------------------------------------------------------
1 | data/custom/images/train.jpg
2 |
--------------------------------------------------------------------------------
/data/get_coco_dataset.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # CREDIT: https://github.com/pjreddie/darknet/tree/master/scripts/get_coco_dataset.sh
4 |
5 | # Clone COCO API
6 | git clone https://github.com/pdollar/coco
7 | cd coco
8 |
9 | mkdir images
10 | cd images
11 |
12 | # Download Images
13 | wget -c "https://pjreddie.com/media/files/train2014.zip" --header "Referer: pjreddie.com"
14 | wget -c "https://pjreddie.com/media/files/val2014.zip" --header "Referer: pjreddie.com"
15 |
16 | # Unzip
17 | unzip -q train2014.zip
18 | unzip -q val2014.zip
19 |
20 | cd ..
21 |
22 | # Download COCO Metadata
23 | wget -c "https://pjreddie.com/media/files/instances_train-val2014.zip" --header "Referer: pjreddie.com"
24 | wget -c "https://pjreddie.com/media/files/coco/5k.part" --header "Referer: pjreddie.com"
25 | wget -c "https://pjreddie.com/media/files/coco/trainvalno5k.part" --header "Referer: pjreddie.com"
26 | wget -c "https://pjreddie.com/media/files/coco/labels.tgz" --header "Referer: pjreddie.com"
27 | tar xzf labels.tgz
28 | unzip -q instances_train-val2014.zip
29 |
30 | # Set Up Image Lists
31 | paste <(awk "{print \"$PWD\"}" <5k.part) 5k.part | tr -d '\t' > 5k.txt
32 | paste <(awk "{print \"$PWD\"}" trainvalno5k.txt
33 |
--------------------------------------------------------------------------------
/data/samples/dog.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/dog.jpg
--------------------------------------------------------------------------------
/data/samples/eagle.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/eagle.jpg
--------------------------------------------------------------------------------
/data/samples/field.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/field.jpg
--------------------------------------------------------------------------------
/data/samples/giraffe.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/giraffe.jpg
--------------------------------------------------------------------------------
/data/samples/herd_of_horses.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/herd_of_horses.jpg
--------------------------------------------------------------------------------
/data/samples/messi.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/messi.jpg
--------------------------------------------------------------------------------
/data/samples/person.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/person.jpg
--------------------------------------------------------------------------------
/data/samples/room.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/room.jpg
--------------------------------------------------------------------------------
/data/samples/street.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/data/samples/street.jpg
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.poetry]
2 | name = "PyTorchYolo"
3 | version = "1.8.0"
4 | readme = "README.md"
5 | repository = "https://github.com/eriklindernoren/PyTorch-YOLOv3"
6 | description = "Minimal PyTorch implementation of YOLO"
7 | authors = ["Florian Vahl ", "Erik Linder-Noren "]
8 | license = "GPL-3.0"
9 |
10 | [tool.poetry.dependencies]
11 | python = ">=3.8,<4.0"
12 | torch = ">=1.10.1, < 1.13.0"
13 | torchvision = ">=0.13.1"
14 | matplotlib = "^3.3.3"
15 | tensorboard = "^2.10.0"
16 | terminaltables = "^3.1.0"
17 | Pillow = "^9.1.0"
18 | tqdm = "^4.64.1"
19 | urllib3 = [
20 | {version = "<=1.22", python = ">=3.8,<3.9"},
21 | {version = "^1.23", python = ">=3.9"}
22 | ] # Temp pin because of crash issue
23 | scipy = [
24 | {version = "<=1.6", python = ">=3.8,<3.9"},
25 | {version = "^1.9", python = ">=3.9,<4.0"}
26 | ]
27 | imgaug = "^0.4.0"
28 | torchsummary = "^1.5.1"
29 | numpy = "^1.23.4"
30 |
31 | [tool.poetry.dev-dependencies]
32 | profilehooks = "^1.12.0"
33 |
34 | [build-system]
35 | requires = ["poetry-core>=1.0.0"]
36 | build-backend = "poetry.core.masonry.api"
37 |
38 | [tool.poetry.scripts]
39 | yolo-detect = "pytorchyolo.detect:run"
40 | yolo-train = "pytorchyolo.train:run"
41 | yolo-test = "pytorchyolo.test:run"
42 |
--------------------------------------------------------------------------------
/pytorchyolo/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/pytorchyolo/__init__.py
--------------------------------------------------------------------------------
/pytorchyolo/detect.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python3
2 |
3 | from __future__ import division
4 |
5 | import os
6 | import argparse
7 | import tqdm
8 | import random
9 | import numpy as np
10 |
11 | from PIL import Image
12 |
13 | import torch
14 | import torchvision.transforms as transforms
15 | from torch.utils.data import DataLoader
16 | from torch.autograd import Variable
17 |
18 | from pytorchyolo.models import load_model
19 | from pytorchyolo.utils.utils import load_classes, rescale_boxes, non_max_suppression, print_environment_info
20 | from pytorchyolo.utils.datasets import ImageFolder
21 | from pytorchyolo.utils.transforms import Resize, DEFAULT_TRANSFORMS
22 |
23 | import matplotlib.pyplot as plt
24 | import matplotlib.patches as patches
25 | from matplotlib.ticker import NullLocator
26 |
27 |
28 | def detect_directory(model_path, weights_path, img_path, classes, output_path,
29 | batch_size=8, img_size=416, n_cpu=8, conf_thres=0.5, nms_thres=0.5):
30 | """Detects objects on all images in specified directory and saves output images with drawn detections.
31 |
32 | :param model_path: Path to model definition file (.cfg)
33 | :type model_path: str
34 | :param weights_path: Path to weights or checkpoint file (.weights or .pth)
35 | :type weights_path: str
36 | :param img_path: Path to directory with images to inference
37 | :type img_path: str
38 | :param classes: List of class names
39 | :type classes: [str]
40 | :param output_path: Path to output directory
41 | :type output_path: str
42 | :param batch_size: Size of each image batch, defaults to 8
43 | :type batch_size: int, optional
44 | :param img_size: Size of each image dimension for yolo, defaults to 416
45 | :type img_size: int, optional
46 | :param n_cpu: Number of cpu threads to use during batch generation, defaults to 8
47 | :type n_cpu: int, optional
48 | :param conf_thres: Object confidence threshold, defaults to 0.5
49 | :type conf_thres: float, optional
50 | :param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
51 | :type nms_thres: float, optional
52 | """
53 | dataloader = _create_data_loader(img_path, batch_size, img_size, n_cpu)
54 | model = load_model(model_path, weights_path)
55 | img_detections, imgs = detect(
56 | model,
57 | dataloader,
58 | output_path,
59 | conf_thres,
60 | nms_thres)
61 | _draw_and_save_output_images(
62 | img_detections, imgs, img_size, output_path, classes)
63 |
64 | print(f"---- Detections were saved to: '{output_path}' ----")
65 |
66 |
67 | def detect_image(model, image, img_size=416, conf_thres=0.5, nms_thres=0.5):
68 | """Inferences one image with model.
69 |
70 | :param model: Model for inference
71 | :type model: models.Darknet
72 | :param image: Image to inference
73 | :type image: nd.array
74 | :param img_size: Size of each image dimension for yolo, defaults to 416
75 | :type img_size: int, optional
76 | :param conf_thres: Object confidence threshold, defaults to 0.5
77 | :type conf_thres: float, optional
78 | :param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
79 | :type nms_thres: float, optional
80 | :return: Detections on image with each detection in the format: [x1, y1, x2, y2, confidence, class]
81 | :rtype: nd.array
82 | """
83 | model.eval() # Set model to evaluation mode
84 |
85 | # Configure input
86 | input_img = transforms.Compose([
87 | DEFAULT_TRANSFORMS,
88 | Resize(img_size)])(
89 | (image, np.zeros((1, 5))))[0].unsqueeze(0)
90 |
91 | if torch.cuda.is_available():
92 | input_img = input_img.to("cuda")
93 |
94 | # Get detections
95 | with torch.no_grad():
96 | detections = model(input_img)
97 | detections = non_max_suppression(detections, conf_thres, nms_thres)
98 | detections = rescale_boxes(detections[0], img_size, image.shape[:2])
99 | return detections.numpy()
100 |
101 |
102 | def detect(model, dataloader, output_path, conf_thres, nms_thres):
103 | """Inferences images with model.
104 |
105 | :param model: Model for inference
106 | :type model: models.Darknet
107 | :param dataloader: Dataloader provides the batches of images to inference
108 | :type dataloader: DataLoader
109 | :param output_path: Path to output directory
110 | :type output_path: str
111 | :param conf_thres: Object confidence threshold, defaults to 0.5
112 | :type conf_thres: float, optional
113 | :param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
114 | :type nms_thres: float, optional
115 | :return: List of detections. The coordinates are given for the padded image that is provided by the dataloader.
116 | Use `utils.rescale_boxes` to transform them into the desired input image coordinate system before its transformed by the dataloader),
117 | List of input image paths
118 | :rtype: [Tensor], [str]
119 | """
120 | # Create output directory, if missing
121 | os.makedirs(output_path, exist_ok=True)
122 |
123 | model.eval() # Set model to evaluation mode
124 |
125 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
126 |
127 | img_detections = [] # Stores detections for each image index
128 | imgs = [] # Stores image paths
129 |
130 | for (img_paths, input_imgs) in tqdm.tqdm(dataloader, desc="Detecting"):
131 | # Configure input
132 | input_imgs = Variable(input_imgs.type(Tensor))
133 |
134 | # Get detections
135 | with torch.no_grad():
136 | detections = model(input_imgs)
137 | detections = non_max_suppression(detections, conf_thres, nms_thres)
138 |
139 | # Store image and detections
140 | img_detections.extend(detections)
141 | imgs.extend(img_paths)
142 | return img_detections, imgs
143 |
144 |
145 | def _draw_and_save_output_images(img_detections, imgs, img_size, output_path, classes):
146 | """Draws detections in output images and stores them.
147 |
148 | :param img_detections: List of detections
149 | :type img_detections: [Tensor]
150 | :param imgs: List of paths to image files
151 | :type imgs: [str]
152 | :param img_size: Size of each image dimension for yolo
153 | :type img_size: int
154 | :param output_path: Path of output directory
155 | :type output_path: str
156 | :param classes: List of class names
157 | :type classes: [str]
158 | """
159 |
160 | # Iterate through images and save plot of detections
161 | for (image_path, detections) in zip(imgs, img_detections):
162 | print(f"Image {image_path}:")
163 | _draw_and_save_output_image(
164 | image_path, detections, img_size, output_path, classes)
165 |
166 |
167 | def _draw_and_save_output_image(image_path, detections, img_size, output_path, classes):
168 | """Draws detections in output image and stores this.
169 |
170 | :param image_path: Path to input image
171 | :type image_path: str
172 | :param detections: List of detections on image
173 | :type detections: [Tensor]
174 | :param img_size: Size of each image dimension for yolo
175 | :type img_size: int
176 | :param output_path: Path of output directory
177 | :type output_path: str
178 | :param classes: List of class names
179 | :type classes: [str]
180 | """
181 | # Create plot
182 | img = np.array(Image.open(image_path))
183 | plt.figure()
184 | fig, ax = plt.subplots(1)
185 | ax.imshow(img)
186 | # Rescale boxes to original image
187 | detections = rescale_boxes(detections, img_size, img.shape[:2])
188 | unique_labels = detections[:, -1].cpu().unique()
189 | n_cls_preds = len(unique_labels)
190 | # Bounding-box colors
191 | cmap = plt.get_cmap("tab20b")
192 | colors = [cmap(i) for i in np.linspace(0, 1, n_cls_preds)]
193 | bbox_colors = random.sample(colors, n_cls_preds)
194 | for x1, y1, x2, y2, conf, cls_pred in detections:
195 |
196 | print(f"\t+ Label: {classes[int(cls_pred)]} | Confidence: {conf.item():0.4f}")
197 |
198 | box_w = x2 - x1
199 | box_h = y2 - y1
200 |
201 | color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
202 | # Create a Rectangle patch
203 | bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none")
204 | # Add the bbox to the plot
205 | ax.add_patch(bbox)
206 | # Add label
207 | plt.text(
208 | x1,
209 | y1,
210 | s=f"{classes[int(cls_pred)]}: {conf:.2f}",
211 | color="white",
212 | verticalalignment="top",
213 | bbox={"color": color, "pad": 0})
214 |
215 | # Save generated image with detections
216 | plt.axis("off")
217 | plt.gca().xaxis.set_major_locator(NullLocator())
218 | plt.gca().yaxis.set_major_locator(NullLocator())
219 | filename = os.path.basename(image_path).split(".")[0]
220 | output_path = os.path.join(output_path, f"{filename}.png")
221 | plt.savefig(output_path, bbox_inches="tight", pad_inches=0.0)
222 | plt.close()
223 |
224 |
225 | def _create_data_loader(img_path, batch_size, img_size, n_cpu):
226 | """Creates a DataLoader for inferencing.
227 |
228 | :param img_path: Path to file containing all paths to validation images.
229 | :type img_path: str
230 | :param batch_size: Size of each image batch
231 | :type batch_size: int
232 | :param img_size: Size of each image dimension for yolo
233 | :type img_size: int
234 | :param n_cpu: Number of cpu threads to use during batch generation
235 | :type n_cpu: int
236 | :return: Returns DataLoader
237 | :rtype: DataLoader
238 | """
239 | dataset = ImageFolder(
240 | img_path,
241 | transform=transforms.Compose([DEFAULT_TRANSFORMS, Resize(img_size)]))
242 | dataloader = DataLoader(
243 | dataset,
244 | batch_size=batch_size,
245 | shuffle=False,
246 | num_workers=n_cpu,
247 | pin_memory=True)
248 | return dataloader
249 |
250 |
251 | def run():
252 | print_environment_info()
253 | parser = argparse.ArgumentParser(description="Detect objects on images.")
254 | parser.add_argument("-m", "--model", type=str, default="config/yolov3.cfg", help="Path to model definition file (.cfg)")
255 | parser.add_argument("-w", "--weights", type=str, default="weights/yolov3.weights", help="Path to weights or checkpoint file (.weights or .pth)")
256 | parser.add_argument("-i", "--images", type=str, default="data/samples", help="Path to directory with images to inference")
257 | parser.add_argument("-c", "--classes", type=str, default="data/coco.names", help="Path to classes label file (.names)")
258 | parser.add_argument("-o", "--output", type=str, default="output", help="Path to output directory")
259 | parser.add_argument("-b", "--batch_size", type=int, default=1, help="Size of each image batch")
260 | parser.add_argument("--img_size", type=int, default=416, help="Size of each image dimension for yolo")
261 | parser.add_argument("--n_cpu", type=int, default=8, help="Number of cpu threads to use during batch generation")
262 | parser.add_argument("--conf_thres", type=float, default=0.5, help="Object confidence threshold")
263 | parser.add_argument("--nms_thres", type=float, default=0.4, help="IOU threshold for non-maximum suppression")
264 | args = parser.parse_args()
265 | print(f"Command line arguments: {args}")
266 |
267 | # Extract class names from file
268 | classes = load_classes(args.classes) # List of class names
269 |
270 | detect_directory(
271 | args.model,
272 | args.weights,
273 | args.images,
274 | classes,
275 | args.output,
276 | batch_size=args.batch_size,
277 | img_size=args.img_size,
278 | n_cpu=args.n_cpu,
279 | conf_thres=args.conf_thres,
280 | nms_thres=args.nms_thres)
281 |
282 |
283 | if __name__ == '__main__':
284 | run()
285 |
--------------------------------------------------------------------------------
/pytorchyolo/models.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | import os
4 | from itertools import chain
5 | from typing import List, Tuple
6 |
7 | import numpy as np
8 | import torch
9 | import torch.nn as nn
10 | import torch.nn.functional as F
11 |
12 | from pytorchyolo.utils.parse_config import parse_model_config
13 | from pytorchyolo.utils.utils import weights_init_normal
14 |
15 |
16 | def create_modules(module_defs: List[dict]) -> Tuple[dict, nn.ModuleList]:
17 | """
18 | Constructs module list of layer blocks from module configuration in module_defs
19 |
20 | :param module_defs: List of dictionaries with module definitions
21 | :return: Hyperparameters and pytorch module list
22 | """
23 | hyperparams = module_defs.pop(0)
24 | hyperparams.update({
25 | 'batch': int(hyperparams['batch']),
26 | 'subdivisions': int(hyperparams['subdivisions']),
27 | 'width': int(hyperparams['width']),
28 | 'height': int(hyperparams['height']),
29 | 'channels': int(hyperparams['channels']),
30 | 'optimizer': hyperparams.get('optimizer'),
31 | 'momentum': float(hyperparams['momentum']),
32 | 'decay': float(hyperparams['decay']),
33 | 'learning_rate': float(hyperparams['learning_rate']),
34 | 'burn_in': int(hyperparams['burn_in']),
35 | 'max_batches': int(hyperparams['max_batches']),
36 | 'policy': hyperparams['policy'],
37 | 'lr_steps': list(zip(map(int, hyperparams["steps"].split(",")),
38 | map(float, hyperparams["scales"].split(","))))
39 | })
40 | assert hyperparams["height"] == hyperparams["width"], \
41 | "Height and width should be equal! Non square images are padded with zeros."
42 | output_filters = [hyperparams["channels"]]
43 | module_list = nn.ModuleList()
44 | for module_i, module_def in enumerate(module_defs):
45 | modules = nn.Sequential()
46 |
47 | if module_def["type"] == "convolutional":
48 | bn = int(module_def["batch_normalize"])
49 | filters = int(module_def["filters"])
50 | kernel_size = int(module_def["size"])
51 | pad = (kernel_size - 1) // 2
52 | modules.add_module(
53 | f"conv_{module_i}",
54 | nn.Conv2d(
55 | in_channels=output_filters[-1],
56 | out_channels=filters,
57 | kernel_size=kernel_size,
58 | stride=int(module_def["stride"]),
59 | padding=pad,
60 | bias=not bn,
61 | ),
62 | )
63 | if bn:
64 | modules.add_module(f"batch_norm_{module_i}",
65 | nn.BatchNorm2d(filters, momentum=0.1, eps=1e-5))
66 | if module_def["activation"] == "leaky":
67 | modules.add_module(f"leaky_{module_i}", nn.LeakyReLU(0.1))
68 | elif module_def["activation"] == "mish":
69 | modules.add_module(f"mish_{module_i}", nn.Mish())
70 | elif module_def["activation"] == "logistic":
71 | modules.add_module(f"sigmoid_{module_i}", nn.Sigmoid())
72 | elif module_def["activation"] == "swish":
73 | modules.add_module(f"swish_{module_i}", nn.SiLU())
74 |
75 | elif module_def["type"] == "maxpool":
76 | kernel_size = int(module_def["size"])
77 | stride = int(module_def["stride"])
78 | if kernel_size == 2 and stride == 1:
79 | modules.add_module(f"_debug_padding_{module_i}", nn.ZeroPad2d((0, 1, 0, 1)))
80 | maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride,
81 | padding=int((kernel_size - 1) // 2))
82 | modules.add_module(f"maxpool_{module_i}", maxpool)
83 |
84 | elif module_def["type"] == "upsample":
85 | upsample = Upsample(scale_factor=int(module_def["stride"]), mode="nearest")
86 | modules.add_module(f"upsample_{module_i}", upsample)
87 |
88 | elif module_def["type"] == "route":
89 | layers = [int(x) for x in module_def["layers"].split(",")]
90 | filters = sum([output_filters[1:][i] for i in layers]) // int(module_def.get("groups", 1))
91 | modules.add_module(f"route_{module_i}", nn.Sequential())
92 |
93 | elif module_def["type"] == "shortcut":
94 | filters = output_filters[1:][int(module_def["from"])]
95 | modules.add_module(f"shortcut_{module_i}", nn.Sequential())
96 |
97 | elif module_def["type"] == "yolo":
98 | anchor_idxs = [int(x) for x in module_def["mask"].split(",")]
99 | # Extract anchors
100 | anchors = [int(x) for x in module_def["anchors"].split(",")]
101 | anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)]
102 | anchors = [anchors[i] for i in anchor_idxs]
103 | num_classes = int(module_def["classes"])
104 | new_coords = bool(module_def.get("new_coords", False))
105 | # Define detection layer
106 | yolo_layer = YOLOLayer(anchors, num_classes, new_coords)
107 | modules.add_module(f"yolo_{module_i}", yolo_layer)
108 | # Register module list and number of output filters
109 | module_list.append(modules)
110 | output_filters.append(filters)
111 |
112 | return hyperparams, module_list
113 |
114 |
115 | class Upsample(nn.Module):
116 | """ nn.Upsample is deprecated """
117 |
118 | def __init__(self, scale_factor, mode: str = "nearest"):
119 | super(Upsample, self).__init__()
120 | self.scale_factor = scale_factor
121 | self.mode = mode
122 |
123 | def forward(self, x):
124 | x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
125 | return x
126 |
127 |
128 | class YOLOLayer(nn.Module):
129 | """Detection layer"""
130 |
131 | def __init__(self, anchors: List[Tuple[int, int]], num_classes: int, new_coords: bool):
132 | """
133 | Create a YOLO layer
134 |
135 | :param anchors: List of anchors
136 | :param num_classes: Number of classes
137 | :param new_coords: Whether to use the new coordinate format from YOLO V7
138 | """
139 | super(YOLOLayer, self).__init__()
140 | self.num_anchors = len(anchors)
141 | self.num_classes = num_classes
142 | self.new_coords = new_coords
143 | self.mse_loss = nn.MSELoss()
144 | self.bce_loss = nn.BCELoss()
145 | self.no = num_classes + 5 # number of outputs per anchor
146 | self.grid = torch.zeros(1) # TODO
147 |
148 | anchors = torch.tensor(list(chain(*anchors))).float().view(-1, 2)
149 | self.register_buffer('anchors', anchors)
150 | self.register_buffer(
151 | 'anchor_grid', anchors.clone().view(1, -1, 1, 1, 2))
152 | self.stride = None
153 |
154 | def forward(self, x: torch.Tensor, img_size: int) -> torch.Tensor:
155 | """
156 | Forward pass of the YOLO layer
157 |
158 | :param x: Input tensor
159 | :param img_size: Size of the input image
160 | """
161 | stride = img_size // x.size(2)
162 | self.stride = stride
163 | bs, _, ny, nx = x.shape # x(bs,255,20,20) to x(bs,3,20,20,85)
164 | x = x.view(bs, self.num_anchors, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
165 |
166 | if not self.training: # inference
167 | if self.grid.shape[2:4] != x.shape[2:4]:
168 | self.grid = self._make_grid(nx, ny).to(x.device)
169 |
170 | if self.new_coords:
171 | x[..., 0:2] = (x[..., 0:2] + self.grid) * stride # xy
172 | x[..., 2:4] = x[..., 2:4] ** 2 * (4 * self.anchor_grid) # wh
173 | else:
174 | x[..., 0:2] = (x[..., 0:2].sigmoid() + self.grid) * stride # xy
175 | x[..., 2:4] = torch.exp(x[..., 2:4]) * self.anchor_grid # wh
176 | x[..., 4:] = x[..., 4:].sigmoid() # conf, cls
177 | x = x.view(bs, -1, self.no)
178 |
179 | return x
180 |
181 | @staticmethod
182 | def _make_grid(nx: int = 20, ny: int = 20) -> torch.Tensor:
183 | """
184 | Create a grid of (x, y) coordinates
185 |
186 | :param nx: Number of x coordinates
187 | :param ny: Number of y coordinates
188 | """
189 | yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)], indexing='ij')
190 | return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
191 |
192 |
193 | class Darknet(nn.Module):
194 | """YOLOv3 object detection model"""
195 |
196 | def __init__(self, config_path):
197 | super(Darknet, self).__init__()
198 | self.module_defs = parse_model_config(config_path)
199 | self.hyperparams, self.module_list = create_modules(self.module_defs)
200 | self.yolo_layers = [layer[0]
201 | for layer in self.module_list if isinstance(layer[0], YOLOLayer)]
202 | self.seen = 0
203 | self.header_info = np.array([0, 0, 0, self.seen, 0], dtype=np.int32)
204 |
205 | def forward(self, x):
206 | img_size = x.size(2)
207 | layer_outputs, yolo_outputs = [], []
208 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
209 | if module_def["type"] in ["convolutional", "upsample", "maxpool"]:
210 | x = module(x)
211 | elif module_def["type"] == "route":
212 | combined_outputs = torch.cat([layer_outputs[int(layer_i)] for layer_i in module_def["layers"].split(",")], 1)
213 | group_size = combined_outputs.shape[1] // int(module_def.get("groups", 1))
214 | group_id = int(module_def.get("group_id", 0))
215 | x = combined_outputs[:, group_size * group_id : group_size * (group_id + 1)] # Slice groupings used by yolo v4
216 | elif module_def["type"] == "shortcut":
217 | layer_i = int(module_def["from"])
218 | x = layer_outputs[-1] + layer_outputs[layer_i]
219 | elif module_def["type"] == "yolo":
220 | x = module[0](x, img_size)
221 | yolo_outputs.append(x)
222 | layer_outputs.append(x)
223 | return yolo_outputs if self.training else torch.cat(yolo_outputs, 1)
224 |
225 | def load_darknet_weights(self, weights_path):
226 | """Parses and loads the weights stored in 'weights_path'"""
227 |
228 | # Open the weights file
229 | with open(weights_path, "rb") as f:
230 | # First five are header values
231 | header = np.fromfile(f, dtype=np.int32, count=5)
232 | self.header_info = header # Needed to write header when saving weights
233 | self.seen = header[3] # number of images seen during training
234 | weights = np.fromfile(f, dtype=np.float32) # The rest are weights
235 |
236 | # Establish cutoff for loading backbone weights
237 | cutoff = None
238 | # If the weights file has a cutoff, we can find out about it by looking at the filename
239 | # examples: darknet53.conv.74 -> cutoff is 74
240 | filename = os.path.basename(weights_path)
241 | if ".conv." in filename:
242 | try:
243 | cutoff = int(filename.split(".")[-1]) # use last part of filename
244 | except ValueError:
245 | pass
246 |
247 | ptr = 0
248 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)):
249 | if i == cutoff:
250 | break
251 | if module_def["type"] == "convolutional":
252 | conv_layer = module[0]
253 | if module_def["batch_normalize"]:
254 | # Load BN bias, weights, running mean and running variance
255 | bn_layer = module[1]
256 | num_b = bn_layer.bias.numel() # Number of biases
257 | # Bias
258 | bn_b = torch.from_numpy(
259 | weights[ptr: ptr + num_b]).view_as(bn_layer.bias)
260 | bn_layer.bias.data.copy_(bn_b)
261 | ptr += num_b
262 | # Weight
263 | bn_w = torch.from_numpy(
264 | weights[ptr: ptr + num_b]).view_as(bn_layer.weight)
265 | bn_layer.weight.data.copy_(bn_w)
266 | ptr += num_b
267 | # Running Mean
268 | bn_rm = torch.from_numpy(
269 | weights[ptr: ptr + num_b]).view_as(bn_layer.running_mean)
270 | bn_layer.running_mean.data.copy_(bn_rm)
271 | ptr += num_b
272 | # Running Var
273 | bn_rv = torch.from_numpy(
274 | weights[ptr: ptr + num_b]).view_as(bn_layer.running_var)
275 | bn_layer.running_var.data.copy_(bn_rv)
276 | ptr += num_b
277 | else:
278 | # Load conv. bias
279 | num_b = conv_layer.bias.numel()
280 | conv_b = torch.from_numpy(
281 | weights[ptr: ptr + num_b]).view_as(conv_layer.bias)
282 | conv_layer.bias.data.copy_(conv_b)
283 | ptr += num_b
284 | # Load conv. weights
285 | num_w = conv_layer.weight.numel()
286 | conv_w = torch.from_numpy(
287 | weights[ptr: ptr + num_w]).view_as(conv_layer.weight)
288 | conv_layer.weight.data.copy_(conv_w)
289 | ptr += num_w
290 |
291 | def save_darknet_weights(self, path, cutoff=-1):
292 | """
293 | @:param path - path of the new weights file
294 | @:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved)
295 | """
296 | fp = open(path, "wb")
297 | self.header_info[3] = self.seen
298 | self.header_info.tofile(fp)
299 |
300 | # Iterate through layers
301 | for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])):
302 | if module_def["type"] == "convolutional":
303 | conv_layer = module[0]
304 | # If batch norm, load bn first
305 | if module_def["batch_normalize"]:
306 | bn_layer = module[1]
307 | bn_layer.bias.data.cpu().numpy().tofile(fp)
308 | bn_layer.weight.data.cpu().numpy().tofile(fp)
309 | bn_layer.running_mean.data.cpu().numpy().tofile(fp)
310 | bn_layer.running_var.data.cpu().numpy().tofile(fp)
311 | # Load conv bias
312 | else:
313 | conv_layer.bias.data.cpu().numpy().tofile(fp)
314 | # Load conv weights
315 | conv_layer.weight.data.cpu().numpy().tofile(fp)
316 |
317 | fp.close()
318 |
319 |
320 | def load_model(model_path, weights_path=None):
321 | """Loads the yolo model from file.
322 |
323 | :param model_path: Path to model definition file (.cfg)
324 | :type model_path: str
325 | :param weights_path: Path to weights or checkpoint file (.weights or .pth)
326 | :type weights_path: str
327 | :return: Returns model
328 | :rtype: Darknet
329 | """
330 | device = torch.device("cuda" if torch.cuda.is_available()
331 | else "cpu") # Select device for inference
332 | model = Darknet(model_path).to(device)
333 |
334 | model.apply(weights_init_normal)
335 |
336 | # If pretrained weights are specified, start from checkpoint or weight file
337 | if weights_path:
338 | if weights_path.endswith(".pth"):
339 | # Load checkpoint weights
340 | model.load_state_dict(torch.load(weights_path, map_location=device))
341 | else:
342 | # Load darknet weights
343 | model.load_darknet_weights(weights_path)
344 | return model
345 |
--------------------------------------------------------------------------------
/pytorchyolo/test.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python3
2 |
3 | from __future__ import division
4 |
5 | import argparse
6 | import tqdm
7 | import numpy as np
8 |
9 | from terminaltables import AsciiTable
10 |
11 | import torch
12 | from torch.utils.data import DataLoader
13 | from torch.autograd import Variable
14 |
15 | from pytorchyolo.models import load_model
16 | from pytorchyolo.utils.utils import load_classes, ap_per_class, get_batch_statistics, non_max_suppression, to_cpu, xywh2xyxy, print_environment_info
17 | from pytorchyolo.utils.datasets import ListDataset
18 | from pytorchyolo.utils.transforms import DEFAULT_TRANSFORMS
19 | from pytorchyolo.utils.parse_config import parse_data_config
20 |
21 |
22 | def evaluate_model_file(model_path, weights_path, img_path, class_names, batch_size=8, img_size=416,
23 | n_cpu=8, iou_thres=0.5, conf_thres=0.5, nms_thres=0.5, verbose=True):
24 | """Evaluate model on validation dataset.
25 |
26 | :param model_path: Path to model definition file (.cfg)
27 | :type model_path: str
28 | :param weights_path: Path to weights or checkpoint file (.weights or .pth)
29 | :type weights_path: str
30 | :param img_path: Path to file containing all paths to validation images.
31 | :type img_path: str
32 | :param class_names: List of class names
33 | :type class_names: [str]
34 | :param batch_size: Size of each image batch, defaults to 8
35 | :type batch_size: int, optional
36 | :param img_size: Size of each image dimension for yolo, defaults to 416
37 | :type img_size: int, optional
38 | :param n_cpu: Number of cpu threads to use during batch generation, defaults to 8
39 | :type n_cpu: int, optional
40 | :param iou_thres: IOU threshold required to qualify as detected, defaults to 0.5
41 | :type iou_thres: float, optional
42 | :param conf_thres: Object confidence threshold, defaults to 0.5
43 | :type conf_thres: float, optional
44 | :param nms_thres: IOU threshold for non-maximum suppression, defaults to 0.5
45 | :type nms_thres: float, optional
46 | :param verbose: If True, prints stats of model, defaults to True
47 | :type verbose: bool, optional
48 | :return: Returns precision, recall, AP, f1, ap_class
49 | """
50 | dataloader = _create_validation_data_loader(
51 | img_path, batch_size, img_size, n_cpu)
52 | model = load_model(model_path, weights_path)
53 | metrics_output = _evaluate(
54 | model,
55 | dataloader,
56 | class_names,
57 | img_size,
58 | iou_thres,
59 | conf_thres,
60 | nms_thres,
61 | verbose)
62 | return metrics_output
63 |
64 |
65 | def print_eval_stats(metrics_output, class_names, verbose):
66 | if metrics_output is not None:
67 | precision, recall, AP, f1, ap_class = metrics_output
68 | if verbose:
69 | # Prints class AP and mean AP
70 | ap_table = [["Index", "Class", "AP"]]
71 | for i, c in enumerate(ap_class):
72 | ap_table += [[c, class_names[c], "%.5f" % AP[i]]]
73 | print(AsciiTable(ap_table).table)
74 | print(f"---- mAP {AP.mean():.5f} ----")
75 | else:
76 | print("---- mAP not measured (no detections found by model) ----")
77 |
78 |
79 | def _evaluate(model, dataloader, class_names, img_size, iou_thres, conf_thres, nms_thres, verbose):
80 | """Evaluate model on validation dataset.
81 |
82 | :param model: Model to evaluate
83 | :type model: models.Darknet
84 | :param dataloader: Dataloader provides the batches of images with targets
85 | :type dataloader: DataLoader
86 | :param class_names: List of class names
87 | :type class_names: [str]
88 | :param img_size: Size of each image dimension for yolo
89 | :type img_size: int
90 | :param iou_thres: IOU threshold required to qualify as detected
91 | :type iou_thres: float
92 | :param conf_thres: Object confidence threshold
93 | :type conf_thres: float
94 | :param nms_thres: IOU threshold for non-maximum suppression
95 | :type nms_thres: float
96 | :param verbose: If True, prints stats of model
97 | :type verbose: bool
98 | :return: Returns precision, recall, AP, f1, ap_class
99 | """
100 | model.eval() # Set model to evaluation mode
101 |
102 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
103 |
104 | labels = []
105 | sample_metrics = [] # List of tuples (TP, confs, pred)
106 | for _, imgs, targets in tqdm.tqdm(dataloader, desc="Validating"):
107 | # Extract labels
108 | labels += targets[:, 1].tolist()
109 | # Rescale target
110 | targets[:, 2:] = xywh2xyxy(targets[:, 2:])
111 | targets[:, 2:] *= img_size
112 |
113 | imgs = Variable(imgs.type(Tensor), requires_grad=False)
114 |
115 | with torch.no_grad():
116 | outputs = model(imgs)
117 | outputs = non_max_suppression(outputs, conf_thres=conf_thres, iou_thres=nms_thres)
118 |
119 | sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=iou_thres)
120 |
121 | if len(sample_metrics) == 0: # No detections over whole validation set.
122 | print("---- No detections over whole validation set ----")
123 | return None
124 |
125 | # Concatenate sample statistics
126 | true_positives, pred_scores, pred_labels = [
127 | np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
128 | metrics_output = ap_per_class(
129 | true_positives, pred_scores, pred_labels, labels)
130 |
131 | print_eval_stats(metrics_output, class_names, verbose)
132 |
133 | return metrics_output
134 |
135 |
136 | def _create_validation_data_loader(img_path, batch_size, img_size, n_cpu):
137 | """
138 | Creates a DataLoader for validation.
139 |
140 | :param img_path: Path to file containing all paths to validation images.
141 | :type img_path: str
142 | :param batch_size: Size of each image batch
143 | :type batch_size: int
144 | :param img_size: Size of each image dimension for yolo
145 | :type img_size: int
146 | :param n_cpu: Number of cpu threads to use during batch generation
147 | :type n_cpu: int
148 | :return: Returns DataLoader
149 | :rtype: DataLoader
150 | """
151 | dataset = ListDataset(img_path, img_size=img_size, multiscale=False, transform=DEFAULT_TRANSFORMS)
152 | dataloader = DataLoader(
153 | dataset,
154 | batch_size=batch_size,
155 | shuffle=False,
156 | num_workers=n_cpu,
157 | pin_memory=True,
158 | collate_fn=dataset.collate_fn)
159 | return dataloader
160 |
161 |
162 | def run():
163 | print_environment_info()
164 | parser = argparse.ArgumentParser(description="Evaluate validation data.")
165 | parser.add_argument("-m", "--model", type=str, default="config/yolov3.cfg", help="Path to model definition file (.cfg)")
166 | parser.add_argument("-w", "--weights", type=str, default="weights/yolov3.weights", help="Path to weights or checkpoint file (.weights or .pth)")
167 | parser.add_argument("-d", "--data", type=str, default="config/coco.data", help="Path to data config file (.data)")
168 | parser.add_argument("-b", "--batch_size", type=int, default=8, help="Size of each image batch")
169 | parser.add_argument("-v", "--verbose", action='store_true', help="Makes the validation more verbose")
170 | parser.add_argument("--img_size", type=int, default=416, help="Size of each image dimension for yolo")
171 | parser.add_argument("--n_cpu", type=int, default=8, help="Number of cpu threads to use during batch generation")
172 | parser.add_argument("--iou_thres", type=float, default=0.5, help="IOU threshold required to qualify as detected")
173 | parser.add_argument("--conf_thres", type=float, default=0.01, help="Object confidence threshold")
174 | parser.add_argument("--nms_thres", type=float, default=0.4, help="IOU threshold for non-maximum suppression")
175 | args = parser.parse_args()
176 | print(f"Command line arguments: {args}")
177 |
178 | # Load configuration from data file
179 | data_config = parse_data_config(args.data)
180 | # Path to file containing all images for validation
181 | valid_path = data_config["valid"]
182 | class_names = load_classes(data_config["names"]) # List of class names
183 |
184 | precision, recall, AP, f1, ap_class = evaluate_model_file(
185 | args.model,
186 | args.weights,
187 | valid_path,
188 | class_names,
189 | batch_size=args.batch_size,
190 | img_size=args.img_size,
191 | n_cpu=args.n_cpu,
192 | iou_thres=args.iou_thres,
193 | conf_thres=args.conf_thres,
194 | nms_thres=args.nms_thres,
195 | verbose=True)
196 |
197 |
198 | if __name__ == "__main__":
199 | run()
200 |
--------------------------------------------------------------------------------
/pytorchyolo/train.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python3
2 |
3 | from __future__ import division
4 |
5 | import os
6 | import argparse
7 | import tqdm
8 |
9 | import torch
10 | from torch.utils.data import DataLoader
11 | import torch.optim as optim
12 |
13 | from pytorchyolo.models import load_model
14 | from pytorchyolo.utils.logger import Logger
15 | from pytorchyolo.utils.utils import to_cpu, load_classes, print_environment_info, provide_determinism, worker_seed_set
16 | from pytorchyolo.utils.datasets import ListDataset
17 | from pytorchyolo.utils.augmentations import AUGMENTATION_TRANSFORMS
18 | #from pytorchyolo.utils.transforms import DEFAULT_TRANSFORMS
19 | from pytorchyolo.utils.parse_config import parse_data_config
20 | from pytorchyolo.utils.loss import compute_loss
21 | from pytorchyolo.test import _evaluate, _create_validation_data_loader
22 |
23 | from terminaltables import AsciiTable
24 |
25 | from torchsummary import summary
26 |
27 |
28 | def _create_data_loader(img_path, batch_size, img_size, n_cpu, multiscale_training=False):
29 | """Creates a DataLoader for training.
30 |
31 | :param img_path: Path to file containing all paths to training images.
32 | :type img_path: str
33 | :param batch_size: Size of each image batch
34 | :type batch_size: int
35 | :param img_size: Size of each image dimension for yolo
36 | :type img_size: int
37 | :param n_cpu: Number of cpu threads to use during batch generation
38 | :type n_cpu: int
39 | :param multiscale_training: Scale images to different sizes randomly
40 | :type multiscale_training: bool
41 | :return: Returns DataLoader
42 | :rtype: DataLoader
43 | """
44 | dataset = ListDataset(
45 | img_path,
46 | img_size=img_size,
47 | multiscale=multiscale_training,
48 | transform=AUGMENTATION_TRANSFORMS)
49 | dataloader = DataLoader(
50 | dataset,
51 | batch_size=batch_size,
52 | shuffle=True,
53 | num_workers=n_cpu,
54 | pin_memory=True,
55 | collate_fn=dataset.collate_fn,
56 | worker_init_fn=worker_seed_set)
57 | return dataloader
58 |
59 |
60 | def run():
61 | print_environment_info()
62 | parser = argparse.ArgumentParser(description="Trains the YOLO model.")
63 | parser.add_argument("-m", "--model", type=str, default="config/yolov3.cfg", help="Path to model definition file (.cfg)")
64 | parser.add_argument("-d", "--data", type=str, default="config/coco.data", help="Path to data config file (.data)")
65 | parser.add_argument("-e", "--epochs", type=int, default=300, help="Number of epochs")
66 | parser.add_argument("-v", "--verbose", action='store_true', help="Makes the training more verbose")
67 | parser.add_argument("--n_cpu", type=int, default=8, help="Number of cpu threads to use during batch generation")
68 | parser.add_argument("--pretrained_weights", type=str, help="Path to checkpoint file (.weights or .pth). Starts training from checkpoint model")
69 | parser.add_argument("--checkpoint_interval", type=int, default=1, help="Interval of epochs between saving model weights")
70 | parser.add_argument("--evaluation_interval", type=int, default=1, help="Interval of epochs between evaluations on validation set")
71 | parser.add_argument("--multiscale_training", action="store_true", help="Allow multi-scale training")
72 | parser.add_argument("--iou_thres", type=float, default=0.5, help="Evaluation: IOU threshold required to qualify as detected")
73 | parser.add_argument("--conf_thres", type=float, default=0.1, help="Evaluation: Object confidence threshold")
74 | parser.add_argument("--nms_thres", type=float, default=0.5, help="Evaluation: IOU threshold for non-maximum suppression")
75 | parser.add_argument("--logdir", type=str, default="logs", help="Directory for training log files (e.g. for TensorBoard)")
76 | parser.add_argument("--seed", type=int, default=-1, help="Makes results reproducable. Set -1 to disable.")
77 | args = parser.parse_args()
78 | print(f"Command line arguments: {args}")
79 |
80 | if args.seed != -1:
81 | provide_determinism(args.seed)
82 |
83 | logger = Logger(args.logdir) # Tensorboard logger
84 |
85 | # Create output directories if missing
86 | os.makedirs("output", exist_ok=True)
87 | os.makedirs("checkpoints", exist_ok=True)
88 |
89 | # Get data configuration
90 | data_config = parse_data_config(args.data)
91 | train_path = data_config["train"]
92 | valid_path = data_config["valid"]
93 | class_names = load_classes(data_config["names"])
94 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
95 |
96 | # ############
97 | # Create model
98 | # ############
99 |
100 | model = load_model(args.model, args.pretrained_weights)
101 |
102 | # Print model
103 | if args.verbose:
104 | summary(model, input_size=(3, model.hyperparams['height'], model.hyperparams['height']))
105 |
106 | mini_batch_size = model.hyperparams['batch'] // model.hyperparams['subdivisions']
107 |
108 | # #################
109 | # Create Dataloader
110 | # #################
111 |
112 | # Load training dataloader
113 | dataloader = _create_data_loader(
114 | train_path,
115 | mini_batch_size,
116 | model.hyperparams['height'],
117 | args.n_cpu,
118 | args.multiscale_training)
119 |
120 | # Load validation dataloader
121 | validation_dataloader = _create_validation_data_loader(
122 | valid_path,
123 | mini_batch_size,
124 | model.hyperparams['height'],
125 | args.n_cpu)
126 |
127 | # ################
128 | # Create optimizer
129 | # ################
130 |
131 | params = [p for p in model.parameters() if p.requires_grad]
132 |
133 | if (model.hyperparams['optimizer'] in [None, "adam"]):
134 | optimizer = optim.Adam(
135 | params,
136 | lr=model.hyperparams['learning_rate'],
137 | weight_decay=model.hyperparams['decay'],
138 | )
139 | elif (model.hyperparams['optimizer'] == "sgd"):
140 | optimizer = optim.SGD(
141 | params,
142 | lr=model.hyperparams['learning_rate'],
143 | weight_decay=model.hyperparams['decay'],
144 | momentum=model.hyperparams['momentum'])
145 | else:
146 | print("Unknown optimizer. Please choose between (adam, sgd).")
147 |
148 | # skip epoch zero, because then the calculations for when to evaluate/checkpoint makes more intuitive sense
149 | # e.g. when you stop after 30 epochs and evaluate every 10 epochs then the evaluations happen after: 10,20,30
150 | # instead of: 0, 10, 20
151 | for epoch in range(1, args.epochs+1):
152 |
153 | print("\n---- Training Model ----")
154 |
155 | model.train() # Set model to training mode
156 |
157 | for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc=f"Training Epoch {epoch}")):
158 | batches_done = len(dataloader) * epoch + batch_i
159 |
160 | imgs = imgs.to(device, non_blocking=True)
161 | targets = targets.to(device)
162 |
163 | outputs = model(imgs)
164 |
165 | loss, loss_components = compute_loss(outputs, targets, model)
166 |
167 | loss.backward()
168 |
169 | ###############
170 | # Run optimizer
171 | ###############
172 |
173 | if batches_done % model.hyperparams['subdivisions'] == 0:
174 | # Adapt learning rate
175 | # Get learning rate defined in cfg
176 | lr = model.hyperparams['learning_rate']
177 | if batches_done < model.hyperparams['burn_in']:
178 | # Burn in
179 | lr *= (batches_done / model.hyperparams['burn_in'])
180 | else:
181 | # Set and parse the learning rate to the steps defined in the cfg
182 | for threshold, value in model.hyperparams['lr_steps']:
183 | if batches_done > threshold:
184 | lr *= value
185 | # Log the learning rate
186 | logger.scalar_summary("train/learning_rate", lr, batches_done)
187 | # Set learning rate
188 | for g in optimizer.param_groups:
189 | g['lr'] = lr
190 |
191 | # Run optimizer
192 | optimizer.step()
193 | # Reset gradients
194 | optimizer.zero_grad()
195 |
196 | # ############
197 | # Log progress
198 | # ############
199 | if args.verbose:
200 | print(AsciiTable(
201 | [
202 | ["Type", "Value"],
203 | ["IoU loss", float(loss_components[0])],
204 | ["Object loss", float(loss_components[1])],
205 | ["Class loss", float(loss_components[2])],
206 | ["Loss", float(loss_components[3])],
207 | ["Batch loss", to_cpu(loss).item()],
208 | ]).table)
209 |
210 | # Tensorboard logging
211 | tensorboard_log = [
212 | ("train/iou_loss", float(loss_components[0])),
213 | ("train/obj_loss", float(loss_components[1])),
214 | ("train/class_loss", float(loss_components[2])),
215 | ("train/loss", to_cpu(loss).item())]
216 | logger.list_of_scalars_summary(tensorboard_log, batches_done)
217 |
218 | model.seen += imgs.size(0)
219 |
220 | # #############
221 | # Save progress
222 | # #############
223 |
224 | # Save model to checkpoint file
225 | if epoch % args.checkpoint_interval == 0:
226 | checkpoint_path = f"checkpoints/yolov3_ckpt_{epoch}.pth"
227 | print(f"---- Saving checkpoint to: '{checkpoint_path}' ----")
228 | torch.save(model.state_dict(), checkpoint_path)
229 |
230 | # ########
231 | # Evaluate
232 | # ########
233 |
234 | if epoch % args.evaluation_interval == 0:
235 | print("\n---- Evaluating Model ----")
236 | # Evaluate the model on the validation set
237 | metrics_output = _evaluate(
238 | model,
239 | validation_dataloader,
240 | class_names,
241 | img_size=model.hyperparams['height'],
242 | iou_thres=args.iou_thres,
243 | conf_thres=args.conf_thres,
244 | nms_thres=args.nms_thres,
245 | verbose=args.verbose
246 | )
247 |
248 | if metrics_output is not None:
249 | precision, recall, AP, f1, ap_class = metrics_output
250 | evaluation_metrics = [
251 | ("validation/precision", precision.mean()),
252 | ("validation/recall", recall.mean()),
253 | ("validation/mAP", AP.mean()),
254 | ("validation/f1", f1.mean())]
255 | logger.list_of_scalars_summary(evaluation_metrics, epoch)
256 |
257 |
258 | if __name__ == "__main__":
259 | run()
260 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/eriklindernoren/PyTorch-YOLOv3/1d621c8489e22c76ceb93bb2397ac6c8dfb5ceb7/pytorchyolo/utils/__init__.py
--------------------------------------------------------------------------------
/pytorchyolo/utils/augmentations.py:
--------------------------------------------------------------------------------
1 | import imgaug.augmenters as iaa
2 | from torchvision import transforms
3 | from pytorchyolo.utils.transforms import ToTensor, PadSquare, RelativeLabels, AbsoluteLabels, ImgAug
4 |
5 |
6 | class DefaultAug(ImgAug):
7 | def __init__(self, ):
8 | self.augmentations = iaa.Sequential([
9 | iaa.Sharpen((0.0, 0.1)),
10 | iaa.Affine(rotate=(-0, 0), translate_percent=(-0.1, 0.1), scale=(0.8, 1.5)),
11 | iaa.AddToBrightness((-60, 40)),
12 | iaa.AddToHue((-10, 10)),
13 | iaa.Fliplr(0.5),
14 | ])
15 |
16 |
17 | class StrongAug(ImgAug):
18 | def __init__(self, ):
19 | self.augmentations = iaa.Sequential([
20 | iaa.Dropout([0.0, 0.01]),
21 | iaa.Sharpen((0.0, 0.1)),
22 | iaa.Affine(rotate=(-10, 10), translate_percent=(-0.1, 0.1), scale=(0.8, 1.5)),
23 | iaa.AddToBrightness((-60, 40)),
24 | iaa.AddToHue((-20, 20)),
25 | iaa.Fliplr(0.5),
26 | ])
27 |
28 |
29 | AUGMENTATION_TRANSFORMS = transforms.Compose([
30 | AbsoluteLabels(),
31 | DefaultAug(),
32 | PadSquare(),
33 | RelativeLabels(),
34 | ToTensor(),
35 | ])
36 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/datasets.py:
--------------------------------------------------------------------------------
1 | from torch.utils.data import Dataset
2 | import torch.nn.functional as F
3 | import torch
4 | import glob
5 | import random
6 | import os
7 | import warnings
8 | import numpy as np
9 | from PIL import Image
10 | from PIL import ImageFile
11 |
12 | ImageFile.LOAD_TRUNCATED_IMAGES = True
13 |
14 |
15 | def pad_to_square(img, pad_value):
16 | c, h, w = img.shape
17 | dim_diff = np.abs(h - w)
18 | # (upper / left) padding and (lower / right) padding
19 | pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2
20 | # Determine padding
21 | pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0)
22 | # Add padding
23 | img = F.pad(img, pad, "constant", value=pad_value)
24 |
25 | return img, pad
26 |
27 |
28 | def resize(image, size):
29 | image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0)
30 | return image
31 |
32 |
33 | class ImageFolder(Dataset):
34 | def __init__(self, folder_path, transform=None):
35 | self.files = sorted(glob.glob("%s/*.*" % folder_path))
36 | self.transform = transform
37 |
38 | def __getitem__(self, index):
39 |
40 | img_path = self.files[index % len(self.files)]
41 | img = np.array(
42 | Image.open(img_path).convert('RGB'),
43 | dtype=np.uint8)
44 |
45 | # Label Placeholder
46 | boxes = np.zeros((1, 5))
47 |
48 | # Apply transforms
49 | if self.transform:
50 | img, _ = self.transform((img, boxes))
51 |
52 | return img_path, img
53 |
54 | def __len__(self):
55 | return len(self.files)
56 |
57 |
58 | class ListDataset(Dataset):
59 | def __init__(self, list_path, img_size=416, multiscale=True, transform=None):
60 | with open(list_path, "r") as file:
61 | self.img_files = file.readlines()
62 |
63 | self.label_files = []
64 | for path in self.img_files:
65 | image_dir = os.path.dirname(path)
66 | label_dir = "labels".join(image_dir.rsplit("images", 1))
67 | assert label_dir != image_dir, \
68 | f"Image path must contain a folder named 'images'! \n'{image_dir}'"
69 | label_file = os.path.join(label_dir, os.path.basename(path))
70 | label_file = os.path.splitext(label_file)[0] + '.txt'
71 | self.label_files.append(label_file)
72 |
73 | self.img_size = img_size
74 | self.max_objects = 100
75 | self.multiscale = multiscale
76 | self.min_size = self.img_size - 3 * 32
77 | self.max_size = self.img_size + 3 * 32
78 | self.batch_count = 0
79 | self.transform = transform
80 |
81 | def __getitem__(self, index):
82 |
83 | # ---------
84 | # Image
85 | # ---------
86 | try:
87 |
88 | img_path = self.img_files[index % len(self.img_files)].rstrip()
89 |
90 | img = np.array(Image.open(img_path).convert('RGB'), dtype=np.uint8)
91 | except Exception:
92 | print(f"Could not read image '{img_path}'.")
93 | return
94 |
95 | # ---------
96 | # Label
97 | # ---------
98 | try:
99 | label_path = self.label_files[index % len(self.img_files)].rstrip()
100 |
101 | # Ignore warning if file is empty
102 | with warnings.catch_warnings():
103 | warnings.simplefilter("ignore")
104 | boxes = np.loadtxt(label_path).reshape(-1, 5)
105 | except Exception:
106 | print(f"Could not read label '{label_path}'.")
107 | return
108 |
109 | # -----------
110 | # Transform
111 | # -----------
112 | if self.transform:
113 | try:
114 | img, bb_targets = self.transform((img, boxes))
115 | except Exception:
116 | print("Could not apply transform.")
117 | return
118 |
119 | return img_path, img, bb_targets
120 |
121 | def collate_fn(self, batch):
122 | self.batch_count += 1
123 |
124 | # Drop invalid images
125 | batch = [data for data in batch if data is not None]
126 |
127 | paths, imgs, bb_targets = list(zip(*batch))
128 |
129 | # Selects new image size every tenth batch
130 | if self.multiscale and self.batch_count % 10 == 0:
131 | self.img_size = random.choice(
132 | range(self.min_size, self.max_size + 1, 32))
133 |
134 | # Resize images to input shape
135 | imgs = torch.stack([resize(img, self.img_size) for img in imgs])
136 |
137 | # Add sample index to targets
138 | for i, boxes in enumerate(bb_targets):
139 | boxes[:, 0] = i
140 | bb_targets = torch.cat(bb_targets, 0)
141 |
142 | return paths, imgs, bb_targets
143 |
144 | def __len__(self):
145 | return len(self.img_files)
146 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/logger.py:
--------------------------------------------------------------------------------
1 | import os
2 | import datetime
3 | from torch.utils.tensorboard import SummaryWriter
4 |
5 |
6 | class Logger(object):
7 | def __init__(self, log_dir, log_hist=True):
8 | """Create a summary writer logging to log_dir."""
9 | if log_hist: # Check a new folder for each log should be dreated
10 | log_dir = os.path.join(
11 | log_dir,
12 | datetime.datetime.now().strftime("%Y_%m_%d__%H_%M_%S"))
13 | self.writer = SummaryWriter(log_dir)
14 |
15 | def scalar_summary(self, tag, value, step):
16 | """Log a scalar variable."""
17 | self.writer.add_scalar(tag, value, step)
18 |
19 | def list_of_scalars_summary(self, tag_value_pairs, step):
20 | """Log scalar variables."""
21 | for tag, value in tag_value_pairs:
22 | self.writer.add_scalar(tag, value, step)
23 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/loss.py:
--------------------------------------------------------------------------------
1 | import math
2 |
3 | import torch
4 | import torch.nn as nn
5 |
6 | from .utils import to_cpu
7 |
8 | # This new loss function is based on https://github.com/ultralytics/yolov3/blob/master/utils/loss.py
9 |
10 |
11 | def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-9):
12 | # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
13 | box2 = box2.T
14 |
15 | # Get the coordinates of bounding boxes
16 | if x1y1x2y2: # x1, y1, x2, y2 = box1
17 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
18 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
19 | else: # transform from xywh to xyxy
20 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
21 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
22 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
23 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
24 |
25 | # Intersection area
26 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
27 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
28 |
29 | # Union Area
30 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
31 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
32 | union = w1 * h1 + w2 * h2 - inter + eps
33 |
34 | iou = inter / union
35 | if GIoU or DIoU or CIoU:
36 | # convex (smallest enclosing box) width
37 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
38 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
39 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
40 | c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
41 | rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
42 | (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
43 | if DIoU:
44 | return iou - rho2 / c2 # DIoU
45 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
46 | v = (4 / math.pi ** 2) * \
47 | torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
48 | with torch.no_grad():
49 | alpha = v / ((1 + eps) - iou + v)
50 | return iou - (rho2 / c2 + v * alpha) # CIoU
51 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
52 | c_area = cw * ch + eps # convex area
53 | return iou - (c_area - union) / c_area # GIoU
54 | else:
55 | return iou # IoU
56 |
57 |
58 | def compute_loss(predictions, targets, model):
59 | # Check which device was used
60 | device = targets.device
61 |
62 | # Add placeholder varables for the different losses
63 | lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
64 |
65 | # Build yolo targets
66 | tcls, tbox, indices, anchors = build_targets(predictions, targets, model) # targets
67 |
68 | # Define different loss functions classification
69 | BCEcls = nn.BCEWithLogitsLoss(
70 | pos_weight=torch.tensor([1.0], device=device))
71 | BCEobj = nn.BCEWithLogitsLoss(
72 | pos_weight=torch.tensor([1.0], device=device))
73 |
74 | # Calculate losses for each yolo layer
75 | for layer_index, layer_predictions in enumerate(predictions):
76 | # Get image ids, anchors, grid index i and j for each target in the current yolo layer
77 | b, anchor, grid_j, grid_i = indices[layer_index]
78 | # Build empty object target tensor with the same shape as the object prediction
79 | tobj = torch.zeros_like(layer_predictions[..., 0], device=device) # target obj
80 | # Get the number of targets for this layer.
81 | # Each target is a label box with some scaling and the association of an anchor box.
82 | # Label boxes may be associated to 0 or multiple anchors. So they are multiple times or not at all in the targets.
83 | num_targets = b.shape[0]
84 | # Check if there are targets for this batch
85 | if num_targets:
86 | # Load the corresponding values from the predictions for each of the targets
87 | ps = layer_predictions[b, anchor, grid_j, grid_i]
88 |
89 | # Regression of the box
90 | # Apply sigmoid to xy offset predictions in each cell that has a target
91 | pxy = ps[:, :2].sigmoid()
92 | # Apply exponent to wh predictions and multiply with the anchor box that matched best with the label for each cell that has a target
93 | pwh = torch.exp(ps[:, 2:4]) * anchors[layer_index]
94 | # Build box out of xy and wh
95 | pbox = torch.cat((pxy, pwh), 1)
96 | # Calculate CIoU or GIoU for each target with the predicted box for its cell + anchor
97 | iou = bbox_iou(pbox.T, tbox[layer_index], x1y1x2y2=False, CIoU=True)
98 | # We want to minimize our loss so we and the best possible IoU is 1 so we take 1 - IoU and reduce it with a mean
99 | lbox += (1.0 - iou).mean() # iou loss
100 |
101 | # Classification of the objectness
102 | # Fill our empty object target tensor with the IoU we just calculated for each target at the targets position
103 | tobj[b, anchor, grid_j, grid_i] = iou.detach().clamp(0).type(tobj.dtype) # Use cells with iou > 0 as object targets
104 |
105 | # Classification of the class
106 | # Check if we need to do a classification (number of classes > 1)
107 | if ps.size(1) - 5 > 1:
108 | # Hot one class encoding
109 | t = torch.zeros_like(ps[:, 5:], device=device) # targets
110 | t[range(num_targets), tcls[layer_index]] = 1
111 | # Use the tensor to calculate the BCE loss
112 | lcls += BCEcls(ps[:, 5:], t) # BCE
113 |
114 | # Classification of the objectness the sequel
115 | # Calculate the BCE loss between the on the fly generated target and the network prediction
116 | lobj += BCEobj(layer_predictions[..., 4], tobj) # obj loss
117 |
118 | lbox *= 0.05
119 | lobj *= 1.0
120 | lcls *= 0.5
121 |
122 | # Merge losses
123 | loss = lbox + lobj + lcls
124 |
125 | return loss, to_cpu(torch.cat((lbox, lobj, lcls, loss)))
126 |
127 |
128 | def build_targets(p, targets, model):
129 | # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
130 | na, nt = 3, targets.shape[0] # number of anchors, targets #TODO
131 | tcls, tbox, indices, anch = [], [], [], []
132 | gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
133 | # Make a tensor that iterates 0-2 for 3 anchors and repeat that as many times as we have target boxes
134 | ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)
135 | # Copy target boxes anchor size times and append an anchor index to each copy the anchor index is also expressed by the new first dimension
136 | targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)
137 |
138 | for i, yolo_layer in enumerate(model.yolo_layers):
139 | # Scale anchors by the yolo grid cell size so that an anchor with the size of the cell would result in 1
140 | anchors = yolo_layer.anchors / yolo_layer.stride
141 | # Add the number of yolo cells in this layer the gain tensor
142 | # The gain tensor matches the collums of our targets (img id, class, x, y, w, h, anchor id)
143 | gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
144 | # Scale targets by the number of yolo layer cells, they are now in the yolo cell coordinate system
145 | t = targets * gain
146 | # Check if we have targets
147 | if nt:
148 | # Calculate ration between anchor and target box for both width and height
149 | r = t[:, :, 4:6] / anchors[:, None]
150 | # Select the ratios that have the highest divergence in any axis and check if the ratio is less than 4
151 | j = torch.max(r, 1. / r).max(2)[0] < 4 # compare #TODO
152 | # Only use targets that have the correct ratios for their anchors
153 | # That means we only keep ones that have a matching anchor and we loose the anchor dimension
154 | # The anchor id is still saved in the 7th value of each target
155 | t = t[j]
156 | else:
157 | t = targets[0]
158 |
159 | # Extract image id in batch and class id
160 | b, c = t[:, :2].long().T
161 | # We isolate the target cell associations.
162 | # x, y, w, h are allready in the cell coordinate system meaning an x = 1.2 would be 1.2 times cellwidth
163 | gxy = t[:, 2:4]
164 | gwh = t[:, 4:6] # grid wh
165 | # Cast to int to get an cell index e.g. 1.2 gets associated to cell 1
166 | gij = gxy.long()
167 | # Isolate x and y index dimensions
168 | gi, gj = gij.T # grid xy indices
169 |
170 | # Convert anchor indexes to int
171 | a = t[:, 6].long()
172 | # Add target tensors for this yolo layer to the output lists
173 | # Add to index list and limit index range to prevent out of bounds
174 | indices.append((b, a, gj.clamp_(0, gain[3].long() - 1), gi.clamp_(0, gain[2].long() - 1)))
175 | # Add to target box list and convert box coordinates from global grid coordinates to local offsets in the grid cell
176 | tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
177 | # Add correct anchor for each target to the list
178 | anch.append(anchors[a])
179 | # Add class for each target to the list
180 | tcls.append(c)
181 |
182 | return tcls, tbox, indices, anch
183 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/parse_config.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | def parse_model_config(path):
4 | """Parses the yolo-v3 layer configuration file and returns module definitions"""
5 | file = open(path, 'r')
6 | lines = file.read().split('\n')
7 | lines = [x for x in lines if x and not x.startswith('#')]
8 | lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces
9 | module_defs = []
10 | for line in lines:
11 | if line.startswith('['): # This marks the start of a new block
12 | module_defs.append({})
13 | module_defs[-1]['type'] = line[1:-1].rstrip()
14 | if module_defs[-1]['type'] == 'convolutional':
15 | module_defs[-1]['batch_normalize'] = 0
16 | else:
17 | key, value = line.split("=")
18 | value = value.strip()
19 | module_defs[-1][key.rstrip()] = value.strip()
20 |
21 | return module_defs
22 |
23 |
24 | def parse_data_config(path):
25 | """Parses the data configuration file"""
26 | options = dict()
27 | options['gpus'] = '0,1,2,3'
28 | options['num_workers'] = '10'
29 | with open(path, 'r') as fp:
30 | lines = fp.readlines()
31 | for line in lines:
32 | line = line.strip()
33 | if line == '' or line.startswith('#'):
34 | continue
35 | key, value = line.split('=')
36 | options[key.strip()] = value.strip()
37 | return options
38 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/transforms.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | import numpy as np
4 |
5 | import imgaug.augmenters as iaa
6 | from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
7 |
8 | from .utils import xywh2xyxy_np
9 | import torchvision.transforms as transforms
10 |
11 |
12 | class ImgAug(object):
13 | def __init__(self, augmentations=[]):
14 | self.augmentations = augmentations
15 |
16 | def __call__(self, data):
17 | # Unpack data
18 | img, boxes = data
19 |
20 | # Convert xywh to xyxy
21 | boxes = np.array(boxes)
22 | boxes[:, 1:] = xywh2xyxy_np(boxes[:, 1:])
23 |
24 | # Convert bounding boxes to imgaug
25 | bounding_boxes = BoundingBoxesOnImage(
26 | [BoundingBox(*box[1:], label=box[0]) for box in boxes],
27 | shape=img.shape)
28 |
29 | # Apply augmentations
30 | img, bounding_boxes = self.augmentations(
31 | image=img,
32 | bounding_boxes=bounding_boxes)
33 |
34 | # Clip out of image boxes
35 | bounding_boxes = bounding_boxes.clip_out_of_image()
36 |
37 | # Convert bounding boxes back to numpy
38 | boxes = np.zeros((len(bounding_boxes), 5))
39 | for box_idx, box in enumerate(bounding_boxes):
40 | # Extract coordinates for unpadded + unscaled image
41 | x1 = box.x1
42 | y1 = box.y1
43 | x2 = box.x2
44 | y2 = box.y2
45 |
46 | # Returns (x, y, w, h)
47 | boxes[box_idx, 0] = box.label
48 | boxes[box_idx, 1] = ((x1 + x2) / 2)
49 | boxes[box_idx, 2] = ((y1 + y2) / 2)
50 | boxes[box_idx, 3] = (x2 - x1)
51 | boxes[box_idx, 4] = (y2 - y1)
52 |
53 | return img, boxes
54 |
55 |
56 | class RelativeLabels(object):
57 | def __init__(self, ):
58 | pass
59 |
60 | def __call__(self, data):
61 | img, boxes = data
62 | h, w, _ = img.shape
63 | boxes[:, [1, 3]] /= w
64 | boxes[:, [2, 4]] /= h
65 | return img, boxes
66 |
67 |
68 | class AbsoluteLabels(object):
69 | def __init__(self, ):
70 | pass
71 |
72 | def __call__(self, data):
73 | img, boxes = data
74 | h, w, _ = img.shape
75 | boxes[:, [1, 3]] *= w
76 | boxes[:, [2, 4]] *= h
77 | return img, boxes
78 |
79 |
80 | class PadSquare(ImgAug):
81 | def __init__(self, ):
82 | self.augmentations = iaa.Sequential([
83 | iaa.PadToAspectRatio(
84 | 1.0,
85 | position="center-center").to_deterministic()
86 | ])
87 |
88 |
89 | class ToTensor(object):
90 | def __init__(self, ):
91 | pass
92 |
93 | def __call__(self, data):
94 | img, boxes = data
95 | # Extract image as PyTorch tensor
96 | img = transforms.ToTensor()(img)
97 |
98 | bb_targets = torch.zeros((len(boxes), 6))
99 | bb_targets[:, 1:] = transforms.ToTensor()(boxes)
100 |
101 | return img, bb_targets
102 |
103 |
104 | class Resize(object):
105 | def __init__(self, size):
106 | self.size = size
107 |
108 | def __call__(self, data):
109 | img, boxes = data
110 | img = F.interpolate(img.unsqueeze(0), size=self.size, mode="nearest").squeeze(0)
111 | return img, boxes
112 |
113 |
114 | DEFAULT_TRANSFORMS = transforms.Compose([
115 | AbsoluteLabels(),
116 | PadSquare(),
117 | RelativeLabels(),
118 | ToTensor(),
119 | ])
120 |
--------------------------------------------------------------------------------
/pytorchyolo/utils/utils.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 |
3 | import time
4 | import platform
5 | import tqdm
6 | import torch
7 | import torch.nn as nn
8 | import torchvision
9 | import numpy as np
10 | import subprocess
11 | import random
12 | import imgaug as ia
13 |
14 |
15 | def provide_determinism(seed=42):
16 | random.seed(seed)
17 | np.random.seed(seed)
18 | torch.manual_seed(seed)
19 | torch.cuda.manual_seed_all(seed)
20 | ia.seed(seed)
21 |
22 | torch.backends.cudnn.benchmark = False
23 | torch.backends.cudnn.deterministic = True
24 |
25 |
26 | def worker_seed_set(worker_id):
27 | # See for details of numpy:
28 | # https://github.com/pytorch/pytorch/issues/5059#issuecomment-817392562
29 | # See for details of random:
30 | # https://pytorch.org/docs/stable/notes/randomness.html#dataloader
31 |
32 | # NumPy
33 | uint64_seed = torch.initial_seed()
34 | ss = np.random.SeedSequence([uint64_seed])
35 | np.random.seed(ss.generate_state(4))
36 |
37 | # random
38 | worker_seed = torch.initial_seed() % 2**32
39 | random.seed(worker_seed)
40 |
41 |
42 | def to_cpu(tensor):
43 | return tensor.detach().cpu()
44 |
45 |
46 | def load_classes(path):
47 | """
48 | Loads class labels at 'path'
49 | """
50 | with open(path, "r") as fp:
51 | names = fp.read().splitlines()
52 | return names
53 |
54 |
55 | def weights_init_normal(m):
56 | classname = m.__class__.__name__
57 | if classname.find("Conv") != -1:
58 | nn.init.normal_(m.weight.data, 0.0, 0.02)
59 | elif classname.find("BatchNorm2d") != -1:
60 | nn.init.normal_(m.weight.data, 1.0, 0.02)
61 | nn.init.constant_(m.bias.data, 0.0)
62 |
63 |
64 | def rescale_boxes(boxes, current_dim, original_shape):
65 | """
66 | Rescales bounding boxes to the original shape
67 | """
68 | orig_h, orig_w = original_shape
69 |
70 | # The amount of padding that was added
71 | pad_x = max(orig_h - orig_w, 0) * (current_dim / max(original_shape))
72 | pad_y = max(orig_w - orig_h, 0) * (current_dim / max(original_shape))
73 |
74 | # Image height and width after padding is removed
75 | unpad_h = current_dim - pad_y
76 | unpad_w = current_dim - pad_x
77 |
78 | # Rescale bounding boxes to dimension of original image
79 | boxes[:, 0] = ((boxes[:, 0] - pad_x // 2) / unpad_w) * orig_w
80 | boxes[:, 1] = ((boxes[:, 1] - pad_y // 2) / unpad_h) * orig_h
81 | boxes[:, 2] = ((boxes[:, 2] - pad_x // 2) / unpad_w) * orig_w
82 | boxes[:, 3] = ((boxes[:, 3] - pad_y // 2) / unpad_h) * orig_h
83 | return boxes
84 |
85 |
86 | def xywh2xyxy(x):
87 | y = x.new(x.shape)
88 | y[..., 0] = x[..., 0] - x[..., 2] / 2
89 | y[..., 1] = x[..., 1] - x[..., 3] / 2
90 | y[..., 2] = x[..., 0] + x[..., 2] / 2
91 | y[..., 3] = x[..., 1] + x[..., 3] / 2
92 | return y
93 |
94 |
95 | def xywh2xyxy_np(x):
96 | y = np.zeros_like(x)
97 | y[..., 0] = x[..., 0] - x[..., 2] / 2
98 | y[..., 1] = x[..., 1] - x[..., 3] / 2
99 | y[..., 2] = x[..., 0] + x[..., 2] / 2
100 | y[..., 3] = x[..., 1] + x[..., 3] / 2
101 | return y
102 |
103 |
104 | def ap_per_class(tp, conf, pred_cls, target_cls):
105 | """ Compute the average precision, given the recall and precision curves.
106 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
107 | # Arguments
108 | tp: True positives (list).
109 | conf: Objectness value from 0-1 (list).
110 | pred_cls: Predicted object classes (list).
111 | target_cls: True object classes (list).
112 | # Returns
113 | The average precision as computed in py-faster-rcnn.
114 | """
115 |
116 | # Sort by objectness
117 | i = np.argsort(-conf)
118 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
119 |
120 | # Find unique classes
121 | unique_classes = np.unique(target_cls)
122 |
123 | # Create Precision-Recall curve and compute AP for each class
124 | ap, p, r = [], [], []
125 | for c in tqdm.tqdm(unique_classes, desc="Computing AP"):
126 | i = pred_cls == c
127 | n_gt = (target_cls == c).sum() # Number of ground truth objects
128 | n_p = i.sum() # Number of predicted objects
129 |
130 | if n_p == 0 and n_gt == 0:
131 | continue
132 | elif n_p == 0 or n_gt == 0:
133 | ap.append(0)
134 | r.append(0)
135 | p.append(0)
136 | else:
137 | # Accumulate FPs and TPs
138 | fpc = (1 - tp[i]).cumsum()
139 | tpc = (tp[i]).cumsum()
140 |
141 | # Recall
142 | recall_curve = tpc / (n_gt + 1e-16)
143 | r.append(recall_curve[-1])
144 |
145 | # Precision
146 | precision_curve = tpc / (tpc + fpc)
147 | p.append(precision_curve[-1])
148 |
149 | # AP from recall-precision curve
150 | ap.append(compute_ap(recall_curve, precision_curve))
151 |
152 | # Compute F1 score (harmonic mean of precision and recall)
153 | p, r, ap = np.array(p), np.array(r), np.array(ap)
154 | f1 = 2 * p * r / (p + r + 1e-16)
155 |
156 | return p, r, ap, f1, unique_classes.astype("int32")
157 |
158 |
159 | def compute_ap(recall, precision):
160 | """ Compute the average precision, given the recall and precision curves.
161 | Code originally from https://github.com/rbgirshick/py-faster-rcnn.
162 |
163 | # Arguments
164 | recall: The recall curve (list).
165 | precision: The precision curve (list).
166 | # Returns
167 | The average precision as computed in py-faster-rcnn.
168 | """
169 | # correct AP calculation
170 | # first append sentinel values at the end
171 | mrec = np.concatenate(([0.0], recall, [1.0]))
172 | mpre = np.concatenate(([0.0], precision, [0.0]))
173 |
174 | # compute the precision envelope
175 | for i in range(mpre.size - 1, 0, -1):
176 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
177 |
178 | # to calculate area under PR curve, look for points
179 | # where X axis (recall) changes value
180 | i = np.where(mrec[1:] != mrec[:-1])[0]
181 |
182 | # and sum (\Delta recall) * prec
183 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
184 | return ap
185 |
186 |
187 | def get_batch_statistics(outputs, targets, iou_threshold):
188 | """ Compute true positives, predicted scores and predicted labels per sample """
189 | batch_metrics = []
190 | for sample_i in range(len(outputs)):
191 |
192 | if outputs[sample_i] is None:
193 | continue
194 |
195 | output = outputs[sample_i]
196 | pred_boxes = output[:, :4]
197 | pred_scores = output[:, 4]
198 | pred_labels = output[:, -1]
199 |
200 | true_positives = np.zeros(pred_boxes.shape[0])
201 |
202 | annotations = targets[targets[:, 0] == sample_i][:, 1:]
203 | target_labels = annotations[:, 0] if len(annotations) else []
204 | if len(annotations):
205 | detected_boxes = []
206 | target_boxes = annotations[:, 1:]
207 |
208 | for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
209 |
210 | # If targets are found break
211 | if len(detected_boxes) == len(annotations):
212 | break
213 |
214 | # Ignore if label is not one of the target labels
215 | if pred_label not in target_labels:
216 | continue
217 |
218 | # Filter target_boxes by pred_label so that we only match against boxes of our own label
219 | filtered_target_position, filtered_targets = zip(*filter(lambda x: target_labels[x[0]] == pred_label, enumerate(target_boxes)))
220 |
221 | # Find the best matching target for our predicted box
222 | iou, box_filtered_index = bbox_iou(pred_box.unsqueeze(0), torch.stack(filtered_targets)).max(0)
223 |
224 | # Remap the index in the list of filtered targets for that label to the index in the list with all targets.
225 | box_index = filtered_target_position[box_filtered_index]
226 |
227 | # Check if the iou is above the min treshold and i
228 | if iou >= iou_threshold and box_index not in detected_boxes:
229 | true_positives[pred_i] = 1
230 | detected_boxes += [box_index]
231 | batch_metrics.append([true_positives, pred_scores, pred_labels])
232 | return batch_metrics
233 |
234 |
235 | def bbox_wh_iou(wh1, wh2):
236 | wh2 = wh2.t()
237 | w1, h1 = wh1[0], wh1[1]
238 | w2, h2 = wh2[0], wh2[1]
239 | inter_area = torch.min(w1, w2) * torch.min(h1, h2)
240 | union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area
241 | return inter_area / union_area
242 |
243 |
244 | def bbox_iou(box1, box2, x1y1x2y2=True):
245 | """
246 | Returns the IoU of two bounding boxes
247 | """
248 | if not x1y1x2y2:
249 | # Transform from center and width to exact coordinates
250 | b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
251 | b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
252 | b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
253 | b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
254 | else:
255 | # Get the coordinates of bounding boxes
256 | b1_x1, b1_y1, b1_x2, b1_y2 = \
257 | box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
258 | b2_x1, b2_y1, b2_x2, b2_y2 = \
259 | box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
260 |
261 | # get the corrdinates of the intersection rectangle
262 | inter_rect_x1 = torch.max(b1_x1, b2_x1)
263 | inter_rect_y1 = torch.max(b1_y1, b2_y1)
264 | inter_rect_x2 = torch.min(b1_x2, b2_x2)
265 | inter_rect_y2 = torch.min(b1_y2, b2_y2)
266 | # Intersection area
267 | inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(
268 | inter_rect_y2 - inter_rect_y1 + 1, min=0
269 | )
270 | # Union Area
271 | b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1)
272 | b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1)
273 |
274 | iou = inter_area / (b1_area + b2_area - inter_area + 1e-16)
275 |
276 | return iou
277 |
278 |
279 | def box_iou(box1, box2):
280 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
281 | """
282 | Return intersection-over-union (Jaccard index) of boxes.
283 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
284 | Arguments:
285 | box1 (Tensor[N, 4])
286 | box2 (Tensor[M, 4])
287 | Returns:
288 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
289 | IoU values for every element in boxes1 and boxes2
290 | """
291 |
292 | def box_area(box):
293 | # box = 4xn
294 | return (box[2] - box[0]) * (box[3] - box[1])
295 |
296 | area1 = box_area(box1.T)
297 | area2 = box_area(box2.T)
298 |
299 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
300 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) -
301 | torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
302 | # iou = inter / (area1 + area2 - inter)
303 | return inter / (area1[:, None] + area2 - inter)
304 |
305 |
306 | def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None):
307 | """Performs Non-Maximum Suppression (NMS) on inference results
308 | Returns:
309 | detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
310 | """
311 |
312 | nc = prediction.shape[2] - 5 # number of classes
313 |
314 | # Settings
315 | # (pixels) minimum and maximum box width and height
316 | max_wh = 4096
317 | max_det = 300 # maximum number of detections per image
318 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
319 | time_limit = 1.0 # seconds to quit after
320 | multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
321 |
322 | t = time.time()
323 | output = [torch.zeros((0, 6), device="cpu")] * prediction.shape[0]
324 |
325 | for xi, x in enumerate(prediction): # image index, image inference
326 | # Apply constraints
327 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
328 | x = x[x[..., 4] > conf_thres] # confidence
329 |
330 | # If none remain process next image
331 | if not x.shape[0]:
332 | continue
333 |
334 | # Compute conf
335 | x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
336 |
337 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
338 | box = xywh2xyxy(x[:, :4])
339 |
340 | # Detections matrix nx6 (xyxy, conf, cls)
341 | if multi_label:
342 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
343 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
344 | else: # best class only
345 | conf, j = x[:, 5:].max(1, keepdim=True)
346 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
347 |
348 | # Filter by class
349 | if classes is not None:
350 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
351 |
352 | # Check shape
353 | n = x.shape[0] # number of boxes
354 | if not n: # no boxes
355 | continue
356 | elif n > max_nms: # excess boxes
357 | # sort by confidence
358 | x = x[x[:, 4].argsort(descending=True)[:max_nms]]
359 |
360 | # Batched NMS
361 | c = x[:, 5:6] * max_wh # classes
362 | # boxes (offset by class), scores
363 | boxes, scores = x[:, :4] + c, x[:, 4]
364 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
365 | if i.shape[0] > max_det: # limit detections
366 | i = i[:max_det]
367 |
368 | output[xi] = to_cpu(x[i])
369 |
370 | if (time.time() - t) > time_limit:
371 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
372 | break # time limit exceeded
373 |
374 | return output
375 |
376 |
377 | def print_environment_info():
378 | """
379 | Prints infos about the environment and the system.
380 | This should help when people make issues containg the printout.
381 | """
382 |
383 | print("Environment information:")
384 |
385 | # Print OS information
386 | print(f"System: {platform.system()} {platform.release()}")
387 |
388 | # Print poetry package version
389 | try:
390 | print(f"Current Version: {subprocess.check_output(['poetry', 'version'], stderr=subprocess.DEVNULL).decode('ascii').strip()}")
391 | except (subprocess.CalledProcessError, FileNotFoundError):
392 | print("Not using the poetry package")
393 |
394 | # Print commit hash if possible
395 | try:
396 | print(f"Current Commit Hash: {subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD'], stderr=subprocess.DEVNULL).decode('ascii').strip()}")
397 | except (subprocess.CalledProcessError, FileNotFoundError):
398 | print("No git or repo found")
399 |
--------------------------------------------------------------------------------
/weights/download_weights.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Download weights for vanilla YOLOv3
3 | wget -c "https://pjreddie.com/media/files/yolov3.weights" --header "Referer: pjreddie.com"
4 | # # Download weights for tiny YOLOv3
5 | wget -c "https://pjreddie.com/media/files/yolov3-tiny.weights" --header "Referer: pjreddie.com"
6 | # Download weights for backbone network
7 | wget -c "https://pjreddie.com/media/files/darknet53.conv.74" --header "Referer: pjreddie.com"
8 |
--------------------------------------------------------------------------------