├── .github
├── FUNDING.yml
└── workflows
│ └── arduino-lint.yml
├── COPYING
├── README.md
├── examples
└── Si5351JTDemo
│ └── Si5351JTDemo.ino
├── keywords.txt
├── library.properties
└── src
├── JTEncode.cpp
├── JTEncode.h
├── crc14.c
├── crc14.h
├── encode_rs.h
├── encode_rs_int.cpp
├── generator.h
├── init_rs.h
├── init_rs_int.cpp
├── int.h
├── nhash.c
├── nhash.h
└── rs_common.h
/.github/FUNDING.yml:
--------------------------------------------------------------------------------
1 | # These are supported funding model platforms
2 |
3 | github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
4 | custom: ['https://paypal.me/NT7S', 'https://www.subscribestar.com/nt7s']
5 |
--------------------------------------------------------------------------------
/.github/workflows/arduino-lint.yml:
--------------------------------------------------------------------------------
1 | name: arduino-lint
2 |
3 | on: [push, pull_request]
4 | jobs:
5 | lint:
6 | runs-on: ubuntu-latest
7 | steps:
8 | - uses: actions/checkout@v2
9 | - uses: arduino/arduino-lint-action@v1.0.0
10 | with:
11 | library-manager: update
12 | compliance: specification
13 |
--------------------------------------------------------------------------------
/COPYING:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | JT65/JT9/JT4/FT8/WSPR/FSQ Encoder Library for Arduino
2 | =====================================================
3 |
4 | This library very simply generates a set of channel symbols for JT65, JT9, JT4, FT8, or WSPR based on the user providing a properly formatted Type 6 message for JT65, JT9, or JT4 (which is 13 valid characters), Type 0.0 or 0.5 message for FT8 (v2.0.0 protocol) or a Type 1, Type 2, or Type 3 message for WSPR. It will also generate an arbitrary FSQ message of up to 200 characters in both directed and non-directed format. When paired with a synthesizer that can output frequencies in fine, phase-continuous tuning steps (such as the Si5351), then a beacon or telemetry transmitter can be created which can change the transmitted characters as needed from the Arduino.
5 |
6 | Please feel free to use the issues feature of GitHub if you run into problems or have suggestions for important features to implement.
7 |
8 | Thanks For Your Support!
9 | ------------------------
10 | If you would like to support my library development efforts, I would ask that you please consider sending a [one-time PayPal tip](https://paypal.me/NT7S) or [subscribe to me on SubscribeStar](https://www.subscribestar.com/nt7s) for an ongoing contribution.. Thank you!
11 |
12 | Hardware Requirements and Setup
13 | -------------------------------
14 | This library has been written for the Arduino platform and has been successfully tested on the Arduino Uno, an Uno clone, an Arduino Zero clone, and a NodeMCU. Since the library itself does not access the hardware, there is no reason it should not run on any Arduino model of recent vintage as long as it has at least 2 kB of RAM.
15 |
16 | How To Install
17 | --------------
18 | The best way to install the library is via the Arduino Library Manager, which is available if you are using Arduino IDE version 1.6.2 or greater. To install it this way, simply go to the menu Sketch > Include Library > Manage Libraries..., and then in the search box at the upper-right, type "Etherkit JTEncode". Click on the entry in the list below, then click on the provided "Install" button. By installing the library this way, you will always have notifications of future library updates, and can easily switch between library versions.
19 |
20 | If you need to or would like to install the library in the old way, then you can download a copy of the library in a ZIP file. Download a ZIP file of the library from the GitHub repository by going to [this page](https://github.com/etherkit/JTEncode/releases) and clicking the "Source code (zip)" link under the latest release. Finally, open the Arduino IDE, select menu Sketch > Import Library... > Add Library..., and select the ZIP that you just downloaded.
21 |
22 | RAM Usage
23 | ---------
24 | Most of the encoding functions need to manipulate multiple arrays of symbols in RAM at the same time, and therefore are quite RAM intensive. Care has been taken to put as much data into program memory as is possible, but the encoding functions still can cause problems with the low RAM microcontrollers such as the ATmegaxx8 series. If you are using these, then please be sure to call them only once when a transmit buffer needs to be created or changed, and call them separately of other subroutine calls. When using other microcontrollers that have more RAM, such as most of the ARM ICs, this won't be as much of a problem. If you see unusual freezes, that almost certainly indicates a RAM shortage.
25 |
26 | WSPR Messages
27 | -------------
28 | JTEncode includes support for all three WSPR message types. A brief listing of the three types is given below:
29 |
30 | | Message Type | Fields | Example |
31 | |--------------|--------|---------|
32 | | Type 1 | Callsign, Grid (4 digit), Power | NT7S CN85 30 |
33 | | Type 2 | Callsign with prefix or suffix, Power | NT7S/P 30 |
34 | | Type 3 | Callsign Hash, Grid (6 digit), Power | \ CN85NM 30 |
35 |
36 | Most WSPR messages are type 1, however sometimes type 2 and 3 messages are needed. Type 2 messages allow you to send a callsign with a prefix of up to three characters, a suffix of a single character, or a suffix consisting of two numerical digits. Type 3 messages are typically used in conjunction with type 2 messages since type 2 messages don't include a grid locator. The type 3 message sends a 15-bit hash of the included callsign, along with a 6 digit grid locator and the power.
37 |
38 | Type 2 messages can be sent in JTEncode simply by including the slashed prefix or suffix in the callsign field. A type 3 message can be sent by enclosing a callsign with angle brackets (as seen in the example above).
39 |
40 | Example
41 | -------
42 | There is a simple example that is placed in your examples menu under JTEncode. Open this to see how to incorporate this library with your code. The example provided with with the library is meant to be used in conjunction with the [Etherkit Si5351A Breakout Board](https://www.etherkit.com/rf-modules/si5351a-breakout-board.html), although it could be modified to use with other synthesizers which meet the technical requirements of the JT65/JT9/JT4/WSPR/FSQ modes.
43 |
44 | To run this example, be sure to download the [Si5351Arduino](https://github.com/etherkit/Si5351Arduino) library and follow the instructions there to connect the Si5351A Breakout Board to your Arduino. In order to trigger transmissions, you will also need to connect a momentary pushbutton from pin 12 of the Arduino to ground.
45 |
46 | The example sketch itself is fairly straightforward. JT65, JT9, JT4, FT8, WSPR, and FSQ modes are modulated in same way: phase-continuous multiple-frequency shift keying (MFSK). The message to be transmitted is passed to the JTEncode method corresponding to the desired mode, along with a pointer to an array which holds the returned channel symbols. When the pushbutton is pushed, the sketch then transmits each channel symbol sequentially as an offset from the base frequency given in the sketch define section.
47 |
48 | An instance of the JTEncode object is created:
49 |
50 | JTEncode jtencode;
51 |
52 | On sketch startup, the mode parameters are set based on which mode is currently selected (by the DEFAULT_MODE define):
53 |
54 | // Set the proper frequency, tone spacing, symbol count, and
55 | // tone delay depending on mode
56 | switch(cur_mode)
57 | {
58 | case MODE_JT9:
59 | freq = JT9_DEFAULT_FREQ;
60 | symbol_count = JT9_SYMBOL_COUNT; // From the library defines
61 | tone_spacing = JT9_TONE_SPACING;
62 | tone_delay = JT9_DELAY;
63 | break;
64 | case MODE_JT65:
65 | freq = JT65_DEFAULT_FREQ;
66 | symbol_count = JT65_SYMBOL_COUNT; // From the library defines
67 | tone_spacing = JT65_TONE_SPACING;
68 | tone_delay = JT65_DELAY;
69 | break;
70 | case MODE_JT4:
71 | freq = JT4_DEFAULT_FREQ;
72 | symbol_count = JT4_SYMBOL_COUNT; // From the library defines
73 | tone_spacing = JT4_TONE_SPACING;
74 | tone_delay = JT4_DELAY;
75 | break;
76 | case MODE_WSPR:
77 | freq = WSPR_DEFAULT_FREQ;
78 | symbol_count = WSPR_SYMBOL_COUNT; // From the library defines
79 | tone_spacing = WSPR_TONE_SPACING;
80 | tone_delay = WSPR_DELAY;
81 | break;
82 | case MODE_FT8:
83 | freq = FT8_DEFAULT_FREQ;
84 | symbol_count = FT8_SYMBOL_COUNT; // From the library defines
85 | tone_spacing = FT8_TONE_SPACING;
86 | tone_delay = FT8_DELAY;
87 | break;
88 | case MODE_FSQ_2:
89 | freq = FSQ_DEFAULT_FREQ;
90 | tone_spacing = FSQ_TONE_SPACING;
91 | tone_delay = FSQ_2_DELAY;
92 | break;
93 | case MODE_FSQ_3:
94 | freq = FSQ_DEFAULT_FREQ;
95 | tone_spacing = FSQ_TONE_SPACING;
96 | tone_delay = FSQ_3_DELAY;
97 | break;
98 | case MODE_FSQ_4_5:
99 | freq = FSQ_DEFAULT_FREQ;
100 | tone_spacing = FSQ_TONE_SPACING;
101 | tone_delay = FSQ_4_5_DELAY;
102 | break;
103 | case MODE_FSQ_6:
104 | freq = FSQ_DEFAULT_FREQ;
105 | tone_spacing = FSQ_TONE_SPACING;
106 | tone_delay = FSQ_6_DELAY;
107 | break;
108 | }
109 |
110 | Note that the number of channel symbols for each mode is defined in the library, so you can use those defines to initialize your own symbol array sizes.
111 |
112 | Before transmit, the proper class method is chosen based on the desired mode, then the transmit symbol buffer and the other mode information is set:
113 |
114 | // Set the proper frequency and timer CTC depending on mode
115 | switch(cur_mode)
116 | {
117 | case MODE_JT9:
118 | jtencode.jt9_encode(message, tx_buffer);
119 | break;
120 | case MODE_JT65:
121 | jtencode.jt65_encode(message, tx_buffer);
122 | break;
123 | case MODE_JT4:
124 | jtencode.jt4_encode(message, tx_buffer);
125 | break;
126 | case MODE_WSPR:
127 | jtencode.wspr_encode(call, loc, dbm, tx_buffer);
128 | break;
129 | case MODE_FT8:
130 | jtencode.ft_encode(message, tx_buffer);
131 | break;
132 | case MODE_FSQ_2:
133 | case MODE_FSQ_3:
134 | case MODE_FSQ_4_5:
135 | case MODE_FSQ_6:
136 | jtencode.fsq_dir_encode(call, "n0call", " ", "hello world", tx_buffer);
137 | break;
138 | }
139 |
140 | As mentioned above, it is best if the message encoding functions are called only when needed, in its own subroutine.
141 |
142 | Once the channel symbols have been generated, it is a simple matter of transmitting them in sequence, each the correct amount of time:
143 |
144 | // Now transmit the channel symbols
145 | for(i = 0; i < symbol_count; i++)
146 | {
147 | si5351.set_freq((freq * 100) + (tx_buffer[i] * tone_spacing), SI5351_CLK0);
148 | delay(tone_delay);
149 | }
150 |
151 | Public Methods
152 | ------------------
153 | ### jt65_encode()
154 | ```
155 | /*
156 | * jt65_encode(const char * message, uint8_t * symbols)
157 | *
158 | * Takes an arbitrary message of up to 13 allowable characters and returns
159 | * a channel symbol table.
160 | *
161 | * message - Plaintext Type 6 message.
162 | * symbols - Array of channel symbols to transmit returned by the method.
163 | * Ensure that you pass a uint8_t array of at least size JT65_SYMBOL_COUNT to the method.
164 | *
165 | */
166 | ```
167 | ### jt9_encode()
168 | ```
169 | /*
170 | * jt9_encode(const char * message, uint8_t * symbols)
171 | *
172 | * Takes an arbitrary message of up to 13 allowable characters and returns
173 | * a channel symbol table.
174 | *
175 | * message - Plaintext Type 6 message.
176 | * symbols - Array of channel symbols to transmit returned by the method.
177 | * Ensure that you pass a uint8_t array of at least size JT9_SYMBOL_COUNT to the method.
178 | *
179 | */
180 | ```
181 |
182 | ### jt4_encode()
183 | ```
184 | /*
185 | * jt4_encode(const char * message, uint8_t * symbols)
186 | *
187 | * Takes an arbitrary message of up to 13 allowable characters and returns
188 | * a channel symbol table.
189 | *
190 | * message - Plaintext Type 6 message.
191 | * symbols - Array of channel symbols to transmit returned by the method.
192 | * Ensure that you pass a uint8_t array of at least size JT9_SYMBOL_COUNT to the method.
193 | *
194 | */
195 | ```
196 |
197 | ### wspr_encode()
198 | ```
199 | /*
200 | * wspr_encode(const char * call, const char * loc, const uint8_t dbm, uint8_t * symbols)
201 | *
202 | * Takes a callsign, grid locator, and power level and returns a WSPR symbol
203 | * table for a Type 1, 2, or 3 message.
204 | *
205 | * call - Callsign (12 characters maximum).
206 | * loc - Maidenhead grid locator (6 characters maximum).
207 | * dbm - Output power in dBm.
208 | * symbols - Array of channel symbols to transmit returned by the method.
209 | * Ensure that you pass a uint8_t array of at least size WSPR_SYMBOL_COUNT to the method.
210 | *
211 | */
212 | ```
213 |
214 | ### ft8_encode()
215 | ```
216 | /*
217 | * ft8_encode(const char * message, uint8_t * symbols)
218 | *
219 | * Takes an arbitrary message of up to 13 allowable characters or a telemetry message
220 | * of up to 18 hexadecimal digit (in string format) and returns a channel symbol table.
221 | * Encoded for the FT8 protocol used in WSJT-X v2.0 and beyond (79 channel symbols).
222 | *
223 | * message - Type 0.0 free text message or Type 0.5 telemetry message.
224 | * symbols - Array of channel symbols to transmit returned by the method.
225 | * Ensure that you pass a uint8_t array of at least size FT8_SYMBOL_COUNT to the method.
226 | *
227 | */
228 | ```
229 |
230 | ### fsq_encode()
231 | ```
232 | /*
233 | * fsq_encode(const char * from_call, const char * message, uint8_t * symbols)
234 | *
235 | * Takes an arbitrary message and returns a FSQ channel symbol table.
236 | *
237 | * from_call - Callsign of issuing station (maximum size: 20)
238 | * message - Null-terminated message string, no greater than 130 chars in length
239 | * symbols - Array of channel symbols to transmit returned by the method.
240 | * Ensure that you pass a uint8_t array of at least the size of the message
241 | * plus 5 characters to the method. Terminated in 0xFF.
242 | *
243 | */
244 | ```
245 |
246 | ### fsq_dir_encode()
247 | ```
248 | /*
249 | * fsq_dir_encode(const char * from_call, const char * to_call, const char cmd, const char * message, uint8_t * symbols)
250 | *
251 | * Takes an arbitrary message and returns a FSQ channel symbol table.
252 | *
253 | * from_call - Callsign from which message is directed (maximum size: 20)
254 | * to_call - Callsign to which message is directed (maximum size: 20)
255 | * cmd - Directed command
256 | * message - Null-terminated message string, no greater than 100 chars in length
257 | * symbols - Array of channel symbols to transmit returned by the method.
258 | * Ensure that you pass a uint8_t array of at least the size of the message
259 | * plus 5 characters to the method. Terminated in 0xFF.
260 | *
261 | */
262 | ```
263 |
264 | ### latlon_to_grid()
265 | ```
266 | /*
267 | * latlon_to_grid(float lat, float lon, char* ret_grid)
268 | *
269 | * Takes a station latitude and longitude provided in decimal degrees format and
270 | * returns a string with the 6-digit Maidenhead grid designator.
271 | *
272 | * lat - Latitude in decimal degrees format.
273 | * lon - Longitude in decimal degrees format.
274 | * ret_grid - Derived Maidenhead grid square. A pointer to a character array of
275 | * at least 7 bytes must be provided here for the function return value.
276 | *
277 | */
278 | ```
279 |
280 | Tokens
281 | ------
282 | Here are the defines, structs, and enumerations you will find handy to use with the library.
283 |
284 | Defines:
285 |
286 | JT65_SYMBOL_COUNT, JT9_SYMBOL_COUNT, JT4_SYMBOL_COUNT, WSPR_SYMBOL_COUNT, FT8_SYMBOL_COUNT
287 |
288 | Acknowledgements
289 | ----------------
290 | Many thanks to Joe Taylor K1JT for his innovative work in amateur radio. We are lucky to have him. The algorithms in this program were derived from the source code in the [WSJT-X](https://sourceforge.net/p/wsjt/) suite of applications. Also, many thanks for Andy Talbot G4JNT for [his paper](http://www.g4jnt.com/JTModesBcns.htm) on the WSPR coding protocol, which helped me to understand the WSPR encoding process, which in turn helped me to understand the related JT protocols.
291 |
292 | Also, a big thank you to Murray Greenman, ZL1BPU for working allowing me to pick his brain regarding his neat new mode FSQ.
293 |
294 | Changelog
295 | ---------
296 | * v1.3.1
297 |
298 | * Added latitude/longitude to Maidenhead grid convenience function
299 |
300 | * v1.3.0
301 |
302 | * WSPR Type 2 and Type 3 message capability added
303 |
304 | * v1.2.1
305 |
306 | * Fix keywords.txt
307 |
308 | * v1.2.0
309 |
310 | * Add support for FT8 protocol (79 symbol version introduced December 2018)
311 |
312 | * v1.1.3
313 |
314 | * Add support for ESP8266
315 | * Fix WSPR regression in last release
316 |
317 | * v1.1.2
318 |
319 | * Fix buffer bug in _jt_message_prep()_ that caused messages of 11 chars to lock up the processor
320 | * Made a handful of changes to make the library more friendly to ATmegaxx8 processors
321 | * Rewrote example sketch to be generically compatible with most Arduino platforms
322 |
323 | * v1.1.1
324 |
325 | * Update example sketch for Si5351Arduino v2.0.0
326 |
327 | * v1.1.0
328 |
329 | * Added FSQ
330 |
331 | * v1.0.1
332 |
333 | * Fixed a bug in _jt65_interleave()_ that was causing a buffer overrun.
334 |
335 | * v1.0.0
336 |
337 | * Initial Release
338 |
339 | Arduino Lint Status
340 | -------------------
341 | [](https://github.com/etherkit/JTEncode/actions)
342 |
343 |
344 | License
345 | -------
346 | JTEncode is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
347 |
348 | JTEncode is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
349 |
350 | You should have received a copy of the GNU General Public License along with JTEncode. If not, see .
351 |
--------------------------------------------------------------------------------
/examples/Si5351JTDemo/Si5351JTDemo.ino:
--------------------------------------------------------------------------------
1 | //
2 | // Simple JT65/JT9/JT4/FT8/WSPR/FSQ beacon for Arduino, with the Etherkit
3 | // Si5351A Breakout Board, by Jason Milldrum NT7S.
4 | //
5 | // Transmit an abritrary message of up to 13 valid characters
6 | // (a Type 6 message) in JT65, JT9, JT4, a type 0.0 or type 0.5 FT8 message,
7 | // a FSQ message, or a standard Type 1 message in WSPR.
8 | //
9 | // Connect a momentary push button to pin 12 to use as the
10 | // transmit trigger. Get fancy by adding your own code to trigger
11 | // off of the time from a GPS or your PC via virtual serial.
12 | //
13 | // Original code based on Feld Hell beacon for Arduino by Mark
14 | // Vandewettering K6HX, adapted for the Si5351A by Robert
15 | // Liesenfeld AK6L .
16 | //
17 | // Permission is hereby granted, free of charge, to any person obtaining
18 | // a copy of this software and associated documentation files (the
19 | // "Software"), to deal in the Software without restriction, including
20 | // without limitation the rights to use, copy, modify, merge, publish,
21 | // distribute, sublicense, and/or sell copies of the Software, and to
22 | // permit persons to whom the Software is furnished to do so, subject
23 | // to the following conditions:
24 | //
25 | // The above copyright notice and this permission notice shall be
26 | // included in all copies or substantial portions of the Software.
27 | //
28 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 | // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
31 | // IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
32 | // ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
33 | // CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
34 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
35 | //
36 |
37 | #include
38 | #include
39 | #include
40 | #include
41 | #include
42 |
43 | #include "Wire.h"
44 |
45 | // Mode defines
46 | #define JT9_TONE_SPACING 174 // ~1.74 Hz
47 | #define JT65_TONE_SPACING 269 // ~2.69 Hz
48 | #define JT4_TONE_SPACING 437 // ~4.37 Hz
49 | #define WSPR_TONE_SPACING 146 // ~1.46 Hz
50 | #define FSQ_TONE_SPACING 879 // ~8.79 Hz
51 | #define FT8_TONE_SPACING 625 // ~6.25 Hz
52 |
53 | #define JT9_DELAY 576 // Delay value for JT9-1
54 | #define JT65_DELAY 371 // Delay in ms for JT65A
55 | #define JT4_DELAY 229 // Delay value for JT4A
56 | #define WSPR_DELAY 683 // Delay value for WSPR
57 | #define FSQ_2_DELAY 500 // Delay value for 2 baud FSQ
58 | #define FSQ_3_DELAY 333 // Delay value for 3 baud FSQ
59 | #define FSQ_4_5_DELAY 222 // Delay value for 4.5 baud FSQ
60 | #define FSQ_6_DELAY 167 // Delay value for 6 baud FSQ
61 | #define FT8_DELAY 159 // Delay value for FT8
62 |
63 | #define JT9_DEFAULT_FREQ 14078700UL
64 | #define JT65_DEFAULT_FREQ 14078300UL
65 | #define JT4_DEFAULT_FREQ 14078500UL
66 | #define WSPR_DEFAULT_FREQ 14097200UL
67 | #define FSQ_DEFAULT_FREQ 7105350UL // Base freq is 1350 Hz higher than dial freq in USB
68 | #define FT8_DEFAULT_FREQ 14075000UL
69 |
70 | #define DEFAULT_MODE MODE_JT65
71 |
72 | // Hardware defines
73 | #define BUTTON 12
74 | #define LED_PIN 13
75 |
76 | // Enumerations
77 | enum mode {MODE_JT9, MODE_JT65, MODE_JT4, MODE_WSPR, MODE_FSQ_2, MODE_FSQ_3,
78 | MODE_FSQ_4_5, MODE_FSQ_6, MODE_FT8};
79 |
80 | // Class instantiation
81 | Si5351 si5351;
82 | JTEncode jtencode;
83 |
84 | // Global variables
85 | unsigned long freq;
86 | char message[] = "N0CALL AA00";
87 | char call[] = "N0CALL";
88 | char loc[] = "AA00";
89 | uint8_t dbm = 27;
90 | uint8_t tx_buffer[255];
91 | enum mode cur_mode = DEFAULT_MODE;
92 | uint8_t symbol_count;
93 | uint16_t tone_delay, tone_spacing;
94 |
95 | // Loop through the string, transmitting one character at a time.
96 | void encode()
97 | {
98 | uint8_t i;
99 |
100 | // Reset the tone to the base frequency and turn on the output
101 | si5351.output_enable(SI5351_CLK0, 1);
102 | digitalWrite(LED_PIN, HIGH);
103 |
104 | // Now transmit the channel symbols
105 | if(cur_mode == MODE_FSQ_2 || cur_mode == MODE_FSQ_3 || cur_mode == MODE_FSQ_4_5 || cur_mode == MODE_FSQ_6)
106 | {
107 | uint8_t j = 0;
108 |
109 | while(tx_buffer[j++] != 0xff);
110 |
111 | symbol_count = j - 1;
112 | }
113 |
114 | for(i = 0; i < symbol_count; i++)
115 | {
116 | si5351.set_freq((freq * 100) + (tx_buffer[i] * tone_spacing), SI5351_CLK0);
117 | delay(tone_delay);
118 | }
119 |
120 | // Turn off the output
121 | si5351.output_enable(SI5351_CLK0, 0);
122 | digitalWrite(LED_PIN, LOW);
123 | }
124 |
125 | void set_tx_buffer()
126 | {
127 | // Clear out the transmit buffer
128 | memset(tx_buffer, 0, 255);
129 |
130 | // Set the proper frequency and timer CTC depending on mode
131 | switch(cur_mode)
132 | {
133 | case MODE_JT9:
134 | jtencode.jt9_encode(message, tx_buffer);
135 | break;
136 | case MODE_JT65:
137 | jtencode.jt65_encode(message, tx_buffer);
138 | break;
139 | case MODE_JT4:
140 | jtencode.jt4_encode(message, tx_buffer);
141 | break;
142 | case MODE_WSPR:
143 | jtencode.wspr_encode(call, loc, dbm, tx_buffer);
144 | break;
145 | case MODE_FT8:
146 | jtencode.ft8_encode(message, tx_buffer);
147 | break;
148 | case MODE_FSQ_2:
149 | case MODE_FSQ_3:
150 | case MODE_FSQ_4_5:
151 | case MODE_FSQ_6:
152 | jtencode.fsq_dir_encode(call, "n0call", ' ', "hello world", tx_buffer);
153 | break;
154 | }
155 | }
156 |
157 | void setup()
158 | {
159 | // Initialize the Si5351
160 | // Change the 2nd parameter in init if using a ref osc other
161 | // than 25 MHz
162 | si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
163 |
164 | // Use the Arduino's on-board LED as a keying indicator.
165 | pinMode(LED_PIN, OUTPUT);
166 | digitalWrite(LED_PIN, LOW);
167 |
168 | // Use a button connected to pin 12 as a transmit trigger
169 | pinMode(BUTTON, INPUT_PULLUP);
170 |
171 | // Set the mode to use
172 | cur_mode = MODE_JT65;
173 |
174 | // Set the proper frequency, tone spacing, symbol count, and
175 | // tone delay depending on mode
176 | switch(cur_mode)
177 | {
178 | case MODE_JT9:
179 | freq = JT9_DEFAULT_FREQ;
180 | symbol_count = JT9_SYMBOL_COUNT; // From the library defines
181 | tone_spacing = JT9_TONE_SPACING;
182 | tone_delay = JT9_DELAY;
183 | break;
184 | case MODE_JT65:
185 | freq = JT65_DEFAULT_FREQ;
186 | symbol_count = JT65_SYMBOL_COUNT; // From the library defines
187 | tone_spacing = JT65_TONE_SPACING;
188 | tone_delay = JT65_DELAY;
189 | break;
190 | case MODE_JT4:
191 | freq = JT4_DEFAULT_FREQ;
192 | symbol_count = JT4_SYMBOL_COUNT; // From the library defines
193 | tone_spacing = JT4_TONE_SPACING;
194 | tone_delay = JT4_DELAY;
195 | break;
196 | case MODE_WSPR:
197 | freq = WSPR_DEFAULT_FREQ;
198 | symbol_count = WSPR_SYMBOL_COUNT; // From the library defines
199 | tone_spacing = WSPR_TONE_SPACING;
200 | tone_delay = WSPR_DELAY;
201 | break;
202 | case MODE_FT8:
203 | freq = FT8_DEFAULT_FREQ;
204 | symbol_count = FT8_SYMBOL_COUNT; // From the library defines
205 | tone_spacing = FT8_TONE_SPACING;
206 | tone_delay = FT8_DELAY;
207 | break;
208 | case MODE_FSQ_2:
209 | freq = FSQ_DEFAULT_FREQ;
210 | tone_spacing = FSQ_TONE_SPACING;
211 | tone_delay = FSQ_2_DELAY;
212 | break;
213 | case MODE_FSQ_3:
214 | freq = FSQ_DEFAULT_FREQ;
215 | tone_spacing = FSQ_TONE_SPACING;
216 | tone_delay = FSQ_3_DELAY;
217 | break;
218 | case MODE_FSQ_4_5:
219 | freq = FSQ_DEFAULT_FREQ;
220 | tone_spacing = FSQ_TONE_SPACING;
221 | tone_delay = FSQ_4_5_DELAY;
222 | break;
223 | case MODE_FSQ_6:
224 | freq = FSQ_DEFAULT_FREQ;
225 | tone_spacing = FSQ_TONE_SPACING;
226 | tone_delay = FSQ_6_DELAY;
227 | break;
228 | }
229 |
230 | // Set CLK0 output
231 | si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA); // Set for max power if desired
232 | si5351.output_enable(SI5351_CLK0, 0); // Disable the clock initially
233 |
234 | // Encode the message in the transmit buffer
235 | // This is RAM intensive and should be done separately from other subroutines
236 | set_tx_buffer();
237 | }
238 |
239 | void loop()
240 | {
241 | // Debounce the button and trigger TX on push
242 | if(digitalRead(BUTTON) == LOW)
243 | {
244 | delay(50); // delay to debounce
245 | if (digitalRead(BUTTON) == LOW)
246 | {
247 | encode();
248 | delay(50); //delay to avoid extra triggers
249 | }
250 | }
251 | }
252 |
--------------------------------------------------------------------------------
/keywords.txt:
--------------------------------------------------------------------------------
1 | JTEncode KEYWORD1
2 |
3 | jt65_encode KEYWORD2
4 | jt9_encode KEYWORD2
5 | jt4_encode KEYWORD2
6 | wspr_encode KEYWORD2
7 | ft8_encode KEYWORD2
8 | fsq_encode KEYWORD2
9 | fsq_dir_encode KEYWORD2
10 |
11 | JT65_SYMBOL_COUNT LITERAL1
12 | JT9_SYMBOL_COUNT LITERAL1
13 | JT4_SYMBOL_COUNT LITERAL1
14 | WSPR_SYMBOL_COUNT LITERAL1
15 | FT8_SYMBOL_COUNT LITERAL1
16 | JT65_ENCODE_COUNT LITERAL1
17 | JT9_ENCODE_COUNT LITERAL1
18 | FT8_ENCODE_COUNT LITERAL1
19 | JT9_BIT_COUNT LITERAL1
20 | JT4_BIT_COUNT LITERAL1
21 | WSPR_BIT_COUNT LITERAL1
22 | FT8_BIT_COUNT LITERAL1
23 |
--------------------------------------------------------------------------------
/library.properties:
--------------------------------------------------------------------------------
1 | name=Etherkit JTEncode
2 | version=1.3.1
3 | author=Jason Milldrum
4 | maintainer=Jason Milldrum
5 | sentence=Generate JT65, JT9, JT4, FT8, WSPR, and FSQ symbols on your Arduino.
6 | paragraph=This library very simply generates a set of channel symbols for JT65, JT9, JT4, FT8, or WSPR based on the user providing a properly formatted Type 6 message for JT65, JT9, or JT4 (which is 13 valid characters), Type 0.0 or 0.5 message for FT8 (v2.0.0 protocol) or a callsign, Maidenhead grid locator, and power output for WSPR. It will also generate an arbitrary FSQ message of up to 200 characters in both directed and non-directed format. When paired with a synthesizer that can output frequencies in fine, phase-continuous tuning steps (such as the Si5351), then a beacon or telemetry transmitter can be created which can change the transmitted characters as needed from the Arduino.
7 | category=Data Processing
8 | url=https://github.com/etherkit/JTEncode
9 | architectures=*
10 |
--------------------------------------------------------------------------------
/src/JTEncode.cpp:
--------------------------------------------------------------------------------
1 | /*
2 | * JTEncode.cpp - JT65/JT9/WSPR/FSQ encoder library for Arduino
3 | *
4 | * Copyright (C) 2015-2021 Jason Milldrum
5 | *
6 | * Based on the algorithms presented in the WSJT software suite.
7 | * Thanks to Andy Talbot G4JNT for the whitepaper on the WSPR encoding
8 | * process that helped me to understand all of this.
9 | *
10 | * This program is free software: you can redistribute it and/or modify
11 | * it under the terms of the GNU General Public License as published by
12 | * the Free Software Foundation, either version 3 of the License, or
13 | * (at your option) any later version.
14 | *
15 | * This program is distributed in the hope that it will be useful,
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 | * GNU General Public License for more details.
19 | *
20 | * You should have received a copy of the GNU General Public License
21 | * along with this program. If not, see .
22 | */
23 |
24 | #include
25 | #include
26 | #include
27 | #include
28 |
29 | #include
30 | #include
31 | #include
32 | #include
33 | #include
34 |
35 | #if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) || defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega16U4__)
36 | #include
37 | #endif
38 |
39 | #include "Arduino.h"
40 |
41 | // Define an upper bound on the number of glyphs. Defining it this
42 | // way allows adding characters without having to update a hard-coded
43 | // upper bound.
44 | #define NGLYPHS (sizeof(fsq_code_table)/sizeof(fsq_code_table[0]))
45 |
46 | /* Public Class Members */
47 |
48 | JTEncode::JTEncode(void)
49 | {
50 | // Initialize the Reed-Solomon encoder
51 | rs_inst = (struct rs *)(intptr_t)init_rs_int(6, 0x43, 3, 1, 51, 0);
52 | // memset(callsign, 0, 13);
53 | }
54 |
55 | /*
56 | * jt65_encode(const char * message, uint8_t * symbols)
57 | *
58 | * Takes an arbitrary message of up to 13 allowable characters and returns
59 | * a channel symbol table.
60 | *
61 | * message - Plaintext Type 6 message.
62 | * symbols - Array of channel symbols to transmit returned by the method.
63 | * Ensure that you pass a uint8_t array of at least size JT65_SYMBOL_COUNT to the method.
64 | *
65 | */
66 | void JTEncode::jt65_encode(const char * msg, uint8_t * symbols)
67 | {
68 | char message[14];
69 | memset(message, 0, 14);
70 | strcpy(message, msg);
71 |
72 | // Ensure that the message text conforms to standards
73 | // --------------------------------------------------
74 | jt_message_prep(message);
75 |
76 | // Bit packing
77 | // -----------
78 | uint8_t c[12];
79 | jt65_bit_packing(message, c);
80 |
81 | // Reed-Solomon encoding
82 | // ---------------------
83 | uint8_t s[JT65_ENCODE_COUNT];
84 | rs_encode(c, s);
85 |
86 | // Interleaving
87 | // ------------
88 | jt65_interleave(s);
89 |
90 | // Gray Code
91 | // ---------
92 | jt_gray_code(s, JT65_ENCODE_COUNT);
93 |
94 | // Merge with sync vector
95 | // ----------------------
96 | jt65_merge_sync_vector(s, symbols);
97 | }
98 |
99 | /*
100 | * jt9_encode(const char * message, uint8_t * symbols)
101 | *
102 | * Takes an arbitrary message of up to 13 allowable characters and returns
103 | * a channel symbol table.
104 | *
105 | * message - Plaintext Type 6 message.
106 | * symbols - Array of channel symbols to transmit returned by the method.
107 | * Ensure that you pass a uint8_t array of at least size JT9_SYMBOL_COUNT to the method.
108 | *
109 | */
110 | void JTEncode::jt9_encode(const char * msg, uint8_t * symbols)
111 | {
112 | char message[14];
113 | memset(message, 0, 14);
114 | strcpy(message, msg);
115 |
116 | // Ensure that the message text conforms to standards
117 | // --------------------------------------------------
118 | jt_message_prep(message);
119 |
120 | // Bit packing
121 | // -----------
122 | uint8_t c[13];
123 | jt9_bit_packing(message, c);
124 |
125 | // Convolutional Encoding
126 | // ---------------------
127 | uint8_t s[JT9_BIT_COUNT];
128 | convolve(c, s, 13, JT9_BIT_COUNT);
129 |
130 | // Interleaving
131 | // ------------
132 | jt9_interleave(s);
133 |
134 | // Pack into 3-bit symbols
135 | // -----------------------
136 | uint8_t a[JT9_ENCODE_COUNT];
137 | jt9_packbits(s, a);
138 |
139 | // Gray Code
140 | // ---------
141 | jt_gray_code(a, JT9_ENCODE_COUNT);
142 |
143 | // Merge with sync vector
144 | // ----------------------
145 | jt9_merge_sync_vector(a, symbols);
146 | }
147 |
148 | /*
149 | * jt4_encode(const char * message, uint8_t * symbols)
150 | *
151 | * Takes an arbitrary message of up to 13 allowable characters and returns
152 | * a channel symbol table.
153 | *
154 | * message - Plaintext Type 6 message.
155 | * symbols - Array of channel symbols to transmit returned by the method.
156 | * Ensure that you pass a uint8_t array of at least size JT9_SYMBOL_COUNT to the method.
157 | *
158 | */
159 | void JTEncode::jt4_encode(const char * msg, uint8_t * symbols)
160 | {
161 | char message[14];
162 | memset(message, 0, 14);
163 | strcpy(message, msg);
164 |
165 | // Ensure that the message text conforms to standards
166 | // --------------------------------------------------
167 | jt_message_prep(message);
168 |
169 | // Bit packing
170 | // -----------
171 | uint8_t c[13];
172 | jt9_bit_packing(message, c);
173 |
174 | // Convolutional Encoding
175 | // ---------------------
176 | uint8_t s[JT4_SYMBOL_COUNT];
177 | convolve(c, s, 13, JT4_BIT_COUNT);
178 |
179 | // Interleaving
180 | // ------------
181 | jt9_interleave(s);
182 | memmove(s + 1, s, JT4_BIT_COUNT);
183 | s[0] = 0; // Append a 0 bit to start of sequence
184 |
185 | // Merge with sync vector
186 | // ----------------------
187 | jt4_merge_sync_vector(s, symbols);
188 | }
189 |
190 | /*
191 | * wspr_encode(const char * call, const char * loc, const uint8_t dbm, uint8_t * symbols)
192 | *
193 | * Takes a callsign, grid locator, and power level and returns a WSPR symbol
194 | * table for a Type 1, 2, or 3 message.
195 | *
196 | * call - Callsign (12 characters maximum).
197 | * loc - Maidenhead grid locator (6 characters maximum).
198 | * dbm - Output power in dBm.
199 | * symbols - Array of channel symbols to transmit returned by the method.
200 | * Ensure that you pass a uint8_t array of at least size WSPR_SYMBOL_COUNT to the method.
201 | *
202 | */
203 | void JTEncode::wspr_encode(const char * call, const char * loc, const int8_t dbm, uint8_t * symbols)
204 | {
205 | char call_[13];
206 | char loc_[7];
207 | uint8_t dbm_ = dbm;
208 | strcpy(call_, call);
209 | strcpy(loc_, loc);
210 |
211 | // Ensure that the message text conforms to standards
212 | // --------------------------------------------------
213 | wspr_message_prep(call_, loc_, dbm_);
214 |
215 | // Bit packing
216 | // -----------
217 | uint8_t c[11];
218 | wspr_bit_packing(c);
219 |
220 | // Convolutional Encoding
221 | // ---------------------
222 | uint8_t s[WSPR_SYMBOL_COUNT];
223 | convolve(c, s, 11, WSPR_BIT_COUNT);
224 |
225 | // Interleaving
226 | // ------------
227 | wspr_interleave(s);
228 |
229 | // Merge with sync vector
230 | // ----------------------
231 | wspr_merge_sync_vector(s, symbols);
232 | }
233 |
234 | /*
235 | * fsq_encode(const char * from_call, const char * message, uint8_t * symbols)
236 | *
237 | * Takes an arbitrary message and returns a FSQ channel symbol table.
238 | *
239 | * from_call - Callsign of issuing station (maximum size: 20)
240 | * message - Null-terminated message string, no greater than 130 chars in length
241 | * symbols - Array of channel symbols to transmit returned by the method.
242 | * Ensure that you pass a uint8_t array of at least the size of the message
243 | * plus 5 characters to the method. Terminated in 0xFF.
244 | *
245 | */
246 | void JTEncode::fsq_encode(const char * from_call, const char * message, uint8_t * symbols)
247 | {
248 | char tx_buffer[155];
249 | char * tx_message;
250 | uint16_t symbol_pos = 0;
251 | uint8_t i, fch, vcode1, vcode2, tone;
252 | uint8_t cur_tone = 0;
253 |
254 | // Clear out the transmit buffer
255 | // -----------------------------
256 | memset(tx_buffer, 0, 155);
257 |
258 | // Create the message to be transmitted
259 | // ------------------------------------
260 | sprintf(tx_buffer, " \n%s: %s", from_call, message);
261 |
262 | tx_message = tx_buffer;
263 |
264 | // Iterate through the message and encode
265 | // --------------------------------------
266 | while(*tx_message != '\0')
267 | {
268 | for(i = 0; i < NGLYPHS; i++)
269 | {
270 | uint8_t ch = (uint8_t)*tx_message;
271 |
272 | // Check each element of the varicode table to see if we've found the
273 | // character we're trying to send.
274 | fch = pgm_read_byte(&fsq_code_table[i].ch);
275 |
276 | if(fch == ch)
277 | {
278 | // Found the character, now fetch the varicode chars
279 | vcode1 = pgm_read_byte(&(fsq_code_table[i].var[0]));
280 | vcode2 = pgm_read_byte(&(fsq_code_table[i].var[1]));
281 |
282 | // Transmit the appropriate tone per a varicode char
283 | if(vcode2 == 0)
284 | {
285 | // If the 2nd varicode char is a 0 in the table,
286 | // we are transmitting a lowercase character, and thus
287 | // only transmit one tone for this character.
288 |
289 | // Generate tone
290 | cur_tone = ((cur_tone + vcode1 + 1) % 33);
291 | symbols[symbol_pos++] = cur_tone;
292 | }
293 | else
294 | {
295 | // If the 2nd varicode char is anything other than 0 in
296 | // the table, then we need to transmit both
297 |
298 | // Generate 1st tone
299 | cur_tone = ((cur_tone + vcode1 + 1) % 33);
300 | symbols[symbol_pos++] = cur_tone;
301 |
302 | // Generate 2nd tone
303 | cur_tone = ((cur_tone + vcode2 + 1) % 33);
304 | symbols[symbol_pos++] = cur_tone;
305 | }
306 | break; // We've found and transmitted the char,
307 | // so exit the for loop
308 | }
309 | }
310 |
311 | tx_message++;
312 | }
313 |
314 | // Message termination
315 | // ----------------
316 | symbols[symbol_pos] = 0xff;
317 | }
318 |
319 | /*
320 | * fsq_dir_encode(const char * from_call, const char * to_call, const char cmd, const char * message, uint8_t * symbols)
321 | *
322 | * Takes an arbitrary message and returns a FSQ channel symbol table.
323 | *
324 | * from_call - Callsign from which message is directed (maximum size: 20)
325 | * to_call - Callsign to which message is directed (maximum size: 20)
326 | * cmd - Directed command
327 | * message - Null-terminated message string, no greater than 100 chars in length
328 | * symbols - Array of channel symbols to transmit returned by the method.
329 | * Ensure that you pass a uint8_t array of at least the size of the message
330 | * plus 5 characters to the method. Terminated in 0xFF.
331 | *
332 | */
333 | void JTEncode::fsq_dir_encode(const char * from_call, const char * to_call, const char cmd, const char * message, uint8_t * symbols)
334 | {
335 | char tx_buffer[155];
336 | char * tx_message;
337 | uint16_t symbol_pos = 0;
338 | uint8_t i, fch, vcode1, vcode2, tone, from_call_crc;
339 | uint8_t cur_tone = 0;
340 |
341 | // Generate a CRC on from_call
342 | // ---------------------------
343 | from_call_crc = crc8(from_call);
344 |
345 | // Clear out the transmit buffer
346 | // -----------------------------
347 | memset(tx_buffer, 0, 155);
348 |
349 | // Create the message to be transmitted
350 | // We are building a directed message here.
351 | // FSQ very specifically needs " \b " in
352 | // directed mode to indicate EOT. A single backspace won't do it.
353 | sprintf(tx_buffer, " \n%s:%02x%s%c%s%s", from_call, from_call_crc, to_call, cmd, message, " \b ");
354 |
355 | tx_message = tx_buffer;
356 |
357 | // Iterate through the message and encode
358 | // --------------------------------------
359 | while(*tx_message != '\0')
360 | {
361 | for(i = 0; i < NGLYPHS; i++)
362 | {
363 | uint8_t ch = (uint8_t)*tx_message;
364 |
365 | // Check each element of the varicode table to see if we've found the
366 | // character we're trying to send.
367 | fch = pgm_read_byte(&fsq_code_table[i].ch);
368 |
369 | if(fch == ch)
370 | {
371 | // Found the character, now fetch the varicode chars
372 | vcode1 = pgm_read_byte(&(fsq_code_table[i].var[0]));
373 | vcode2 = pgm_read_byte(&(fsq_code_table[i].var[1]));
374 |
375 | // Transmit the appropriate tone per a varicode char
376 | if(vcode2 == 0)
377 | {
378 | // If the 2nd varicode char is a 0 in the table,
379 | // we are transmitting a lowercase character, and thus
380 | // only transmit one tone for this character.
381 |
382 | // Generate tone
383 | cur_tone = ((cur_tone + vcode1 + 1) % 33);
384 | symbols[symbol_pos++] = cur_tone;
385 | }
386 | else
387 | {
388 | // If the 2nd varicode char is anything other than 0 in
389 | // the table, then we need to transmit both
390 |
391 | // Generate 1st tone
392 | cur_tone = ((cur_tone + vcode1 + 1) % 33);
393 | symbols[symbol_pos++] = cur_tone;
394 |
395 | // Generate 2nd tone
396 | cur_tone = ((cur_tone + vcode2 + 1) % 33);
397 | symbols[symbol_pos++] = cur_tone;
398 | }
399 | break; // We've found and transmitted the char,
400 | // so exit the for loop
401 | }
402 | }
403 |
404 | tx_message++;
405 | }
406 |
407 | // Message termination
408 | // ----------------
409 | symbols[symbol_pos] = 0xff;
410 | }
411 |
412 | /*
413 | * ft8_encode(const char * message, uint8_t * symbols)
414 | *
415 | * Takes an arbitrary message of up to 13 allowable characters or a telemetry message
416 | * of up to 18 hexadecimal digit (in string format) and returns a channel symbol table.
417 | * Encoded for the FT8 protocol used in WSJT-X v2.0 and beyond (79 channel symbols).
418 | *
419 | * message - Type 0.0 free text message or Type 0.5 telemetry message.
420 | * symbols - Array of channel symbols to transmit returned by the method.
421 | * Ensure that you pass a uint8_t array of at least size FT8_SYMBOL_COUNT to the method.
422 | *
423 | */
424 | void JTEncode::ft8_encode(const char * msg, uint8_t * symbols)
425 | {
426 | uint8_t i;
427 |
428 | char message[19];
429 | memset(message, 0, 19);
430 | strcpy(message, msg);
431 |
432 | // Bit packing
433 | // -----------
434 | uint8_t c[77];
435 | memset(c, 0, 77);
436 | ft8_bit_packing(message, c);
437 |
438 | // Message Encoding
439 | // ----------------
440 | uint8_t s[FT8_BIT_COUNT];
441 | ft8_encode(c, s);
442 |
443 | // Merge with sync vector
444 | // ----------------------
445 | ft8_merge_sync_vector(s, symbols);
446 | }
447 |
448 | /*
449 | * latlon_to_grid(float lat, float lon, char* ret_grid)
450 | *
451 | * Takes a station latitude and longitude provided in decimal degrees format and
452 | * returns a string with the 6-digit Maidenhead grid designator.
453 | *
454 | * lat - Latitude in decimal degrees format.
455 | * lon - Longitude in decimal degrees format.
456 | * ret_grid - Derived Maidenhead grid square. A pointer to a character array of
457 | * at least 7 bytes must be provided here for the function return value.
458 | *
459 | */
460 | void JTEncode::latlon_to_grid(float lat, float lon, char* ret_grid)
461 | {
462 | char grid[7];
463 | memset(grid, 0, 7);
464 |
465 | // Bounds checks
466 | if(lat < -90.0) {
467 | lat = -90.0;
468 | }
469 | if(lat > 90.0) {
470 | lat = 90.0;
471 | }
472 | if(lon < -180.0) {
473 | lon = -180.0;
474 | }
475 | if(lon > 180.0) {
476 | lon = 180.0;
477 | }
478 |
479 | // Normalize lat and lon
480 | lon += 180.0;
481 | lat += 90.0;
482 |
483 | // Derive first coordinate pair
484 | grid[0] = (char)((uint8_t)(lon / 20) + 'A');
485 | grid[1] = (char)((uint8_t)(lat / 10) + 'A');
486 |
487 | // Derive second coordinate pair
488 | lon = lon - ((uint8_t)(lon / 20) * 20);
489 | lat = lat - ((uint8_t)(lat / 10) * 10);
490 | grid[2] = (char)((uint8_t)(lon / 2) + '0');
491 | grid[3] = (char)((uint8_t)(lat) + '0');
492 |
493 | // Derive third coordinate pair
494 | lon = lon - ((uint8_t)(lon / 2) * 2);
495 | lat = lat - ((uint8_t)(lat));
496 | grid[4] = (char)((uint8_t)(lon * 12) + 'a');
497 | grid[5] = (char)((uint8_t)(lat * 24) + 'a');
498 |
499 | strncpy(ret_grid, grid, 6);
500 | }
501 |
502 | /* Private Class Members */
503 |
504 | uint8_t JTEncode::jt_code(char c)
505 | {
506 | // Validate the input then return the proper integer code.
507 | // Return 255 as an error code if the char is not allowed.
508 |
509 | if(isdigit(c))
510 | {
511 | return (uint8_t)(c - 48);
512 | }
513 | else if(c >= 'A' && c <= 'Z')
514 | {
515 | return (uint8_t)(c - 55);
516 | }
517 | else if(c == ' ')
518 | {
519 | return 36;
520 | }
521 | else if(c == '+')
522 | {
523 | return 37;
524 | }
525 | else if(c == '-')
526 | {
527 | return 38;
528 | }
529 | else if(c == '.')
530 | {
531 | return 39;
532 | }
533 | else if(c == '/')
534 | {
535 | return 40;
536 | }
537 | else if(c == '?')
538 | {
539 | return 41;
540 | }
541 | else
542 | {
543 | return 255;
544 | }
545 | }
546 |
547 | uint8_t JTEncode::ft_code(char c)
548 | {
549 | /* Validate the input then return the proper integer code */
550 | // Return 255 as an error code if the char is not allowed
551 |
552 | if(isdigit(c))
553 | {
554 | return (uint8_t)(c) - 47;
555 | }
556 | else if(c >= 'A' && c <= 'Z')
557 | {
558 | return (uint8_t)(c) - 54;
559 | }
560 | else if(c == ' ')
561 | {
562 | return 0;
563 | }
564 | else if(c == '+')
565 | {
566 | return 37;
567 | }
568 | else if(c == '-')
569 | {
570 | return 38;
571 | }
572 | else if(c == '.')
573 | {
574 | return 39;
575 | }
576 | else if(c == '/')
577 | {
578 | return 40;
579 | }
580 | else if(c == '?')
581 | {
582 | return 41;
583 | }
584 | else
585 | {
586 | return 255;
587 | }
588 | }
589 |
590 | uint8_t JTEncode::wspr_code(char c)
591 | {
592 | // Validate the input then return the proper integer code.
593 | // Change character to a space if the char is not allowed.
594 |
595 | if(isdigit(c))
596 | {
597 | return (uint8_t)(c - 48);
598 | }
599 | else if(c == ' ')
600 | {
601 | return 36;
602 | }
603 | else if(c >= 'A' && c <= 'Z')
604 | {
605 | return (uint8_t)(c - 55);
606 | }
607 | else
608 | {
609 | return 36;
610 | }
611 | }
612 |
613 | uint8_t JTEncode::gray_code(uint8_t c)
614 | {
615 | return (c >> 1) ^ c;
616 | }
617 |
618 | int8_t JTEncode::hex2int(char ch)
619 | {
620 | if (ch >= '0' && ch <= '9')
621 | return ch - '0';
622 | if (ch >= 'A' && ch <= 'F')
623 | return ch - 'A' + 10;
624 | if (ch >= 'a' && ch <= 'f')
625 | return ch - 'a' + 10;
626 | return -1;
627 | }
628 |
629 | void JTEncode::jt_message_prep(char * message)
630 | {
631 | uint8_t i;
632 |
633 | // Pad the message with trailing spaces
634 | uint8_t len = strlen(message);
635 |
636 | for(i = len; i < 13; i++)
637 | {
638 | message[i] = ' ';
639 | }
640 |
641 | // Convert all chars to uppercase
642 | for(i = 0; i < 13; i++)
643 | {
644 | if(islower(message[i]))
645 | {
646 | message[i] = toupper(message[i]);
647 | }
648 | }
649 | }
650 |
651 | void JTEncode::ft_message_prep(char * message)
652 | {
653 | uint8_t i;
654 | char temp_msg[14];
655 |
656 | snprintf(temp_msg, 14, "%13s", message);
657 |
658 | // Convert all chars to uppercase
659 | for(i = 0; i < 13; i++)
660 | {
661 | if(islower(temp_msg[i]))
662 | {
663 | temp_msg[i] = toupper(temp_msg[i]);
664 | }
665 | }
666 |
667 | strcpy(message, temp_msg);
668 | }
669 |
670 | void JTEncode::wspr_message_prep(char * call, char * loc, int8_t dbm)
671 | {
672 | // Callsign validation and padding
673 | // -------------------------------
674 |
675 | // Ensure that the only allowed characters are digits, uppercase letters, slash, and angle brackets
676 | uint8_t i;
677 | for(i = 0; i < 12; i++)
678 | {
679 | if(call[i] != '/' && call[i] != '<' && call[i] != '>')
680 | {
681 | call[i] = toupper(call[i]);
682 | if(!(isdigit(call[i]) || isupper(call[i])))
683 | {
684 | call[i] = ' ';
685 | }
686 | }
687 | }
688 | call[12] = 0;
689 |
690 | strncpy(callsign, call, 12);
691 |
692 | // Grid locator validation
693 | if(strlen(loc) == 4 || strlen(loc) == 6)
694 | {
695 | for(i = 0; i <= 1; i++)
696 | {
697 | loc[i] = toupper(loc[i]);
698 | if((loc[i] < 'A' || loc[i] > 'R'))
699 | {
700 | strncpy(loc, "AA00AA", 7);
701 | }
702 | }
703 | for(i = 2; i <= 3; i++)
704 | {
705 | if(!(isdigit(loc[i])))
706 | {
707 | strncpy(loc, "AA00AA", 7);
708 | }
709 | }
710 | }
711 | else
712 | {
713 | strncpy(loc, "AA00AA", 7);
714 | }
715 |
716 | if(strlen(loc) == 6)
717 | {
718 | for(i = 4; i <= 5; i++)
719 | {
720 | loc[i] = toupper(loc[i]);
721 | if((loc[i] < 'A' || loc[i] > 'X'))
722 | {
723 | strncpy(loc, "AA00AA", 7);
724 | }
725 | }
726 | }
727 |
728 | strncpy(locator, loc, 7);
729 |
730 | // Power level validation
731 | // Only certain increments are allowed
732 | if(dbm > 60)
733 | {
734 | dbm = 60;
735 | }
736 | const uint8_t VALID_DBM_SIZE = 28;
737 | const int8_t valid_dbm[VALID_DBM_SIZE] =
738 | {-30, -27, -23, -20, -17, -13, -10, -7, -3,
739 | 0, 3, 7, 10, 13, 17, 20, 23, 27, 30, 33, 37, 40,
740 | 43, 47, 50, 53, 57, 60};
741 | for(i = 0; i < VALID_DBM_SIZE; i++)
742 | {
743 | if(dbm == valid_dbm[i])
744 | {
745 | power = dbm;
746 | }
747 | }
748 | // If we got this far, we have an invalid power level, so we'll round down
749 | for(i = 1; i < VALID_DBM_SIZE; i++)
750 | {
751 | if(dbm < valid_dbm[i] && dbm >= valid_dbm[i - 1])
752 | {
753 | power = valid_dbm[i - 1];
754 | }
755 | }
756 | }
757 |
758 | void JTEncode::jt65_bit_packing(char * message, uint8_t * c)
759 | {
760 | uint32_t n1, n2, n3;
761 |
762 | // Find the N values
763 | n1 = jt_code(message[0]);
764 | n1 = n1 * 42 + jt_code(message[1]);
765 | n1 = n1 * 42 + jt_code(message[2]);
766 | n1 = n1 * 42 + jt_code(message[3]);
767 | n1 = n1 * 42 + jt_code(message[4]);
768 |
769 | n2 = jt_code(message[5]);
770 | n2 = n2 * 42 + jt_code(message[6]);
771 | n2 = n2 * 42 + jt_code(message[7]);
772 | n2 = n2 * 42 + jt_code(message[8]);
773 | n2 = n2 * 42 + jt_code(message[9]);
774 |
775 | n3 = jt_code(message[10]);
776 | n3 = n3 * 42 + jt_code(message[11]);
777 | n3 = n3 * 42 + jt_code(message[12]);
778 |
779 | // Pack bits 15 and 16 of N3 into N1 and N2,
780 | // then mask reset of N3 bits
781 | n1 = (n1 << 1) + ((n3 >> 15) & 1);
782 | n2 = (n2 << 1) + ((n3 >> 16) & 1);
783 | n3 = n3 & 0x7fff;
784 |
785 | // Set the freeform message flag
786 | n3 += 32768;
787 |
788 | c[0] = (n1 >> 22) & 0x003f;
789 | c[1] = (n1 >> 16) & 0x003f;
790 | c[2] = (n1 >> 10) & 0x003f;
791 | c[3] = (n1 >> 4) & 0x003f;
792 | c[4] = ((n1 & 0x000f) << 2) + ((n2 >> 26) & 0x0003);
793 | c[5] = (n2 >> 20) & 0x003f;
794 | c[6] = (n2 >> 14) & 0x003f;
795 | c[7] = (n2 >> 8) & 0x003f;
796 | c[8] = (n2 >> 2) & 0x003f;
797 | c[9] = ((n2 & 0x0003) << 4) + ((n3 >> 12) & 0x000f);
798 | c[10] = (n3 >> 6) & 0x003f;
799 | c[11] = n3 & 0x003f;
800 | }
801 |
802 | void JTEncode::jt9_bit_packing(char * message, uint8_t * c)
803 | {
804 | uint32_t n1, n2, n3;
805 |
806 | // Find the N values
807 | n1 = jt_code(message[0]);
808 | n1 = n1 * 42 + jt_code(message[1]);
809 | n1 = n1 * 42 + jt_code(message[2]);
810 | n1 = n1 * 42 + jt_code(message[3]);
811 | n1 = n1 * 42 + jt_code(message[4]);
812 |
813 | n2 = jt_code(message[5]);
814 | n2 = n2 * 42 + jt_code(message[6]);
815 | n2 = n2 * 42 + jt_code(message[7]);
816 | n2 = n2 * 42 + jt_code(message[8]);
817 | n2 = n2 * 42 + jt_code(message[9]);
818 |
819 | n3 = jt_code(message[10]);
820 | n3 = n3 * 42 + jt_code(message[11]);
821 | n3 = n3 * 42 + jt_code(message[12]);
822 |
823 | // Pack bits 15 and 16 of N3 into N1 and N2,
824 | // then mask reset of N3 bits
825 | n1 = (n1 << 1) + ((n3 >> 15) & 1);
826 | n2 = (n2 << 1) + ((n3 >> 16) & 1);
827 | n3 = n3 & 0x7fff;
828 |
829 | // Set the freeform message flag
830 | n3 += 32768;
831 |
832 | // 71 message bits to pack, plus 1 bit flag for freeform message.
833 | // 31 zero bits appended to end.
834 | // N1 and N2 are 28 bits each, N3 is 16 bits
835 | // A little less work to start with the least-significant bits
836 | c[3] = (uint8_t)((n1 & 0x0f) << 4);
837 | n1 = n1 >> 4;
838 | c[2] = (uint8_t)(n1 & 0xff);
839 | n1 = n1 >> 8;
840 | c[1] = (uint8_t)(n1 & 0xff);
841 | n1 = n1 >> 8;
842 | c[0] = (uint8_t)(n1 & 0xff);
843 |
844 | c[6] = (uint8_t)(n2 & 0xff);
845 | n2 = n2 >> 8;
846 | c[5] = (uint8_t)(n2 & 0xff);
847 | n2 = n2 >> 8;
848 | c[4] = (uint8_t)(n2 & 0xff);
849 | n2 = n2 >> 8;
850 | c[3] |= (uint8_t)(n2 & 0x0f);
851 |
852 | c[8] = (uint8_t)(n3 & 0xff);
853 | n3 = n3 >> 8;
854 | c[7] = (uint8_t)(n3 & 0xff);
855 |
856 | c[9] = 0;
857 | c[10] = 0;
858 | c[11] = 0;
859 | c[12] = 0;
860 | }
861 |
862 | void JTEncode::wspr_bit_packing(uint8_t * c)
863 | {
864 | uint32_t n, m;
865 |
866 | // Determine if type 1, 2 or 3 message
867 | char* slash_avail = strchr(callsign, (int)'/');
868 | if(callsign[0] == '<')
869 | {
870 | // Type 3 message
871 | char base_call[13];
872 | memset(base_call, 0, 13);
873 | uint32_t init_val = 146;
874 | char* bracket_avail = strchr(callsign, (int)'>');
875 | int call_len = bracket_avail - callsign - 1;
876 | strncpy(base_call, callsign + 1, call_len);
877 | uint32_t hash = nhash_(base_call, &call_len, &init_val);
878 | hash &= 32767;
879 |
880 | // Convert 6 char grid square to "callsign" format for transmission
881 | // by putting the first character at the end
882 | char temp_loc = locator[0];
883 | locator[0] = locator[1];
884 | locator[1] = locator[2];
885 | locator[2] = locator[3];
886 | locator[3] = locator[4];
887 | locator[4] = locator[5];
888 | locator[5] = temp_loc;
889 |
890 | n = wspr_code(locator[0]);
891 | n = n * 36 + wspr_code(locator[1]);
892 | n = n * 10 + wspr_code(locator[2]);
893 | n = n * 27 + (wspr_code(locator[3]) - 10);
894 | n = n * 27 + (wspr_code(locator[4]) - 10);
895 | n = n * 27 + (wspr_code(locator[5]) - 10);
896 |
897 | m = (hash * 128) - (power + 1) + 64;
898 | }
899 | else if(slash_avail == (void *)0)
900 | {
901 | // Type 1 message
902 | pad_callsign(callsign);
903 | n = wspr_code(callsign[0]);
904 | n = n * 36 + wspr_code(callsign[1]);
905 | n = n * 10 + wspr_code(callsign[2]);
906 | n = n * 27 + (wspr_code(callsign[3]) - 10);
907 | n = n * 27 + (wspr_code(callsign[4]) - 10);
908 | n = n * 27 + (wspr_code(callsign[5]) - 10);
909 |
910 | m = ((179 - 10 * (locator[0] - 'A') - (locator[2] - '0')) * 180) +
911 | (10 * (locator[1] - 'A')) + (locator[3] - '0');
912 | m = (m * 128) + power + 64;
913 | }
914 | else if(slash_avail)
915 | {
916 | // Type 2 message
917 | int slash_pos = slash_avail - callsign;
918 | uint8_t i;
919 |
920 | // Determine prefix or suffix
921 | if(callsign[slash_pos + 2] == ' ' || callsign[slash_pos + 2] == 0)
922 | {
923 | // Single character suffix
924 | char base_call[7];
925 | memset(base_call, 0, 7);
926 | strncpy(base_call, callsign, slash_pos);
927 | for(i = 0; i < 7; i++)
928 | {
929 | base_call[i] = toupper(base_call[i]);
930 | if(!(isdigit(base_call[i]) || isupper(base_call[i])))
931 | {
932 | base_call[i] = ' ';
933 | }
934 | }
935 | pad_callsign(base_call);
936 |
937 | n = wspr_code(base_call[0]);
938 | n = n * 36 + wspr_code(base_call[1]);
939 | n = n * 10 + wspr_code(base_call[2]);
940 | n = n * 27 + (wspr_code(base_call[3]) - 10);
941 | n = n * 27 + (wspr_code(base_call[4]) - 10);
942 | n = n * 27 + (wspr_code(base_call[5]) - 10);
943 |
944 | char x = callsign[slash_pos + 1];
945 | if(x >= 48 && x <= 57)
946 | {
947 | x -= 48;
948 | }
949 | else if(x >= 65 && x <= 90)
950 | {
951 | x -= 55;
952 | }
953 | else
954 | {
955 | x = 38;
956 | }
957 |
958 | m = 60000 - 32768 + x;
959 |
960 | m = (m * 128) + power + 2 + 64;
961 | }
962 | else if(callsign[slash_pos + 3] == ' ' || callsign[slash_pos + 3] == 0)
963 | {
964 | // Two-digit numerical suffix
965 | char base_call[7];
966 | memset(base_call, 0, 7);
967 | strncpy(base_call, callsign, slash_pos);
968 | for(i = 0; i < 6; i++)
969 | {
970 | base_call[i] = toupper(base_call[i]);
971 | if(!(isdigit(base_call[i]) || isupper(base_call[i])))
972 | {
973 | base_call[i] = ' ';
974 | }
975 | }
976 | pad_callsign(base_call);
977 |
978 | n = wspr_code(base_call[0]);
979 | n = n * 36 + wspr_code(base_call[1]);
980 | n = n * 10 + wspr_code(base_call[2]);
981 | n = n * 27 + (wspr_code(base_call[3]) - 10);
982 | n = n * 27 + (wspr_code(base_call[4]) - 10);
983 | n = n * 27 + (wspr_code(base_call[5]) - 10);
984 |
985 | // TODO: needs validation of digit
986 | m = 10 * (callsign[slash_pos + 1] - 48) + callsign[slash_pos + 2] - 48;
987 | m = 60000 + 26 + m;
988 | m = (m * 128) + power + 2 + 64;
989 | }
990 | else
991 | {
992 | // Prefix
993 | char prefix[4];
994 | char base_call[7];
995 | memset(prefix, 0, 4);
996 | memset(base_call, 0, 7);
997 | strncpy(prefix, callsign, slash_pos);
998 | strncpy(base_call, callsign + slash_pos + 1, 7);
999 |
1000 | if(prefix[2] == ' ' || prefix[2] == 0)
1001 | {
1002 | // Right align prefix
1003 | prefix[3] = 0;
1004 | prefix[2] = prefix[1];
1005 | prefix[1] = prefix[0];
1006 | prefix[0] = ' ';
1007 | }
1008 |
1009 | for(uint8_t i = 0; i < 6; i++)
1010 | {
1011 | base_call[i] = toupper(base_call[i]);
1012 | if(!(isdigit(base_call[i]) || isupper(base_call[i])))
1013 | {
1014 | base_call[i] = ' ';
1015 | }
1016 | }
1017 | pad_callsign(base_call);
1018 |
1019 | n = wspr_code(base_call[0]);
1020 | n = n * 36 + wspr_code(base_call[1]);
1021 | n = n * 10 + wspr_code(base_call[2]);
1022 | n = n * 27 + (wspr_code(base_call[3]) - 10);
1023 | n = n * 27 + (wspr_code(base_call[4]) - 10);
1024 | n = n * 27 + (wspr_code(base_call[5]) - 10);
1025 |
1026 | m = 0;
1027 | for(uint8_t i = 0; i < 3; ++i)
1028 | {
1029 | m = 37 * m + wspr_code(prefix[i]);
1030 | }
1031 |
1032 | if(m >= 32768)
1033 | {
1034 | m -= 32768;
1035 | m = (m * 128) + power + 2 + 64;
1036 | }
1037 | else
1038 | {
1039 | m = (m * 128) + power + 1 + 64;
1040 | }
1041 | }
1042 | }
1043 |
1044 | // Callsign is 28 bits, locator/power is 22 bits.
1045 | // A little less work to start with the least-significant bits
1046 | c[3] = (uint8_t)((n & 0x0f) << 4);
1047 | n = n >> 4;
1048 | c[2] = (uint8_t)(n & 0xff);
1049 | n = n >> 8;
1050 | c[1] = (uint8_t)(n & 0xff);
1051 | n = n >> 8;
1052 | c[0] = (uint8_t)(n & 0xff);
1053 |
1054 | c[6] = (uint8_t)((m & 0x03) << 6);
1055 | m = m >> 2;
1056 | c[5] = (uint8_t)(m & 0xff);
1057 | m = m >> 8;
1058 | c[4] = (uint8_t)(m & 0xff);
1059 | m = m >> 8;
1060 | c[3] |= (uint8_t)(m & 0x0f);
1061 | c[7] = 0;
1062 | c[8] = 0;
1063 | c[9] = 0;
1064 | c[10] = 0;
1065 | }
1066 |
1067 | void JTEncode::ft8_bit_packing(char* message, uint8_t* codeword)
1068 | {
1069 | // Just encoding type 0 free text and type 0.5 telemetry for now
1070 |
1071 | // The bit packing algorithm is:
1072 | // sum(message(pos) * 42^pos)
1073 |
1074 | uint8_t i3 = 0;
1075 | uint8_t n3 = 0;
1076 | uint8_t qa[10];
1077 | uint8_t qb[10];
1078 | char c18[19];
1079 | bool telem = false;
1080 | char temp_msg[19];
1081 | memset(qa, 0, 10);
1082 | memset(qb, 0, 10);
1083 |
1084 | uint8_t i, j, x, i0;
1085 | uint32_t ireg = 0;
1086 |
1087 | // See if this is a telemetry message
1088 | // Has to be hex digits, can be no more than 18
1089 | for(i = 0; i < 19; ++i)
1090 | {
1091 | if(message[i] == 0 || message[i] == ' ')
1092 | {
1093 | break;
1094 | }
1095 | else if(hex2int(message[i]) == -1)
1096 | {
1097 | telem = false;
1098 | break;
1099 | }
1100 | else
1101 | {
1102 | c18[i] = message[i];
1103 | telem = true;
1104 | }
1105 | }
1106 |
1107 | // If telemetry
1108 | if(telem)
1109 | {
1110 | // Get the first 18 hex digits
1111 | for(i = 0; i < strlen(message); ++i)
1112 | {
1113 | i0 = i;
1114 | if(message[i] == ' ')
1115 | {
1116 | --i0;
1117 | break;
1118 | }
1119 | }
1120 |
1121 | memset(c18, 0, 19);
1122 | memmove(c18, message, i0 + 1);
1123 | snprintf(temp_msg, 19, "%*s", 18, c18);
1124 |
1125 | // Convert all chars to uppercase
1126 | for(i = 0; i < strlen(temp_msg); i++)
1127 | {
1128 | if(islower(temp_msg[i]))
1129 | {
1130 | temp_msg[i] = toupper(temp_msg[i]);
1131 | }
1132 | }
1133 | strcpy(message, temp_msg);
1134 |
1135 |
1136 | uint8_t temp_int;
1137 | temp_int = message[0] == ' ' ? 0 : hex2int(message[0]);
1138 | for(i = 1; i < 4; ++i)
1139 | {
1140 | codeword[i - 1] = (((temp_int << i) & 0x8) >> 3) & 1;
1141 | }
1142 | temp_int = message[1] == ' ' ? 0 : hex2int(message[1]);
1143 | for(i = 0; i < 4; ++i)
1144 | {
1145 | codeword[i + 3] = (((temp_int << i) & 0x8) >> 3) & 1;
1146 | }
1147 | for(i = 0; i < 8; ++i)
1148 | {
1149 | if(message[2 * i + 2] == ' ')
1150 | {
1151 | temp_int = 0;
1152 | }
1153 | else
1154 | {
1155 | temp_int = hex2int(message[2 * i + 2]);
1156 | }
1157 | for(j = 0; j < 4; ++j)
1158 | {
1159 | codeword[(i + 1) * 8 + j - 1] = (((temp_int << j) & 0x8) >> 3) & 1;
1160 | }
1161 | if(message[2 * i + 3] == ' ')
1162 | {
1163 | temp_int = 0;
1164 | }
1165 | else
1166 | {
1167 | temp_int = hex2int(message[2 * i + 3]);
1168 | }
1169 | for(j = 0; j < 4; ++j)
1170 | {
1171 | codeword[(i + 1) * 8 + j + 3] = (((temp_int << j) & 0x8) >> 3) & 1;
1172 | }
1173 | }
1174 |
1175 | i3 = 0;
1176 | n3 = 5;
1177 | }
1178 | else
1179 | {
1180 | ft_message_prep(message);
1181 |
1182 | for(i = 0; i < 13; ++i)
1183 | {
1184 | x = ft_code(message[i]);
1185 |
1186 | // mult
1187 | ireg = 0;
1188 | for(j = 0; j < 9; ++j)
1189 | {
1190 | ireg = (uint8_t)qa[j] * 42 + (uint8_t)((ireg >> 8) & 0xff);
1191 | qb[j] = (uint8_t)(ireg & 0xff);
1192 | }
1193 | qb[9] = (uint8_t)((ireg >> 8) & 0xff);
1194 |
1195 | // add
1196 | ireg = x << 8;
1197 | for(j = 0; j < 9; ++j)
1198 | {
1199 | ireg = (uint8_t)qb[j] + (uint8_t)((ireg >> 8) & 0xff);
1200 | qa[j] = (uint8_t)(ireg & 0xff);
1201 | }
1202 | qa[9] = (uint8_t)((ireg >> 8) & 0xff);
1203 | }
1204 |
1205 | // Format bits to output array
1206 | for(i = 1; i < 8; ++i)
1207 | {
1208 | codeword[i - 1] = (((qa[8] << i) & 0x80) >> 7) & 1;
1209 | }
1210 | for(i = 0; i < 8; ++i)
1211 | {
1212 | for(j = 0; j < 8; ++j)
1213 | {
1214 | codeword[(i + 1) * 8 + j - 1] = (((qa[7 - i] << j) & 0x80) >> 7) & 1;
1215 | }
1216 | }
1217 | }
1218 |
1219 | // Write the message type bits at the end of the array
1220 | for(i = 0; i < 3; ++i)
1221 | {
1222 | codeword[i + 71] = (n3 >> i) & 1;
1223 | }
1224 | for(i = 0; i < 3; ++i)
1225 | {
1226 | codeword[i + 74] = (i3 >> i) & 1;
1227 | }
1228 | }
1229 |
1230 | void JTEncode::jt65_interleave(uint8_t * s)
1231 | {
1232 | uint8_t i, j;
1233 | uint8_t d[JT65_ENCODE_COUNT];
1234 |
1235 | // Interleave
1236 | for(i = 0; i < 9; i++)
1237 | {
1238 | for(j = 0; j < 7; j++)
1239 | {
1240 | d[(j * 9) + i] = s[(i * 7) + j];
1241 | }
1242 | }
1243 |
1244 | memcpy(s, d, JT65_ENCODE_COUNT);
1245 | }
1246 |
1247 | void JTEncode::jt9_interleave(uint8_t * s)
1248 | {
1249 | uint8_t i, j;
1250 | uint8_t d[JT9_BIT_COUNT];
1251 |
1252 | // Do the interleave
1253 | for(i = 0; i < JT9_BIT_COUNT; i++)
1254 | {
1255 | //#if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) || defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega16U4__)
1256 | #if defined(__arm__)
1257 | d[jt9i[i]] = s[i];
1258 | #else
1259 | j = pgm_read_byte(&jt9i[i]);
1260 | d[j] = s[i];
1261 | #endif
1262 | }
1263 |
1264 | memcpy(s, d, JT9_BIT_COUNT);
1265 | }
1266 |
1267 | void JTEncode::wspr_interleave(uint8_t * s)
1268 | {
1269 | uint8_t d[WSPR_BIT_COUNT];
1270 | uint8_t rev, index_temp, i, j, k;
1271 |
1272 | i = 0;
1273 |
1274 | for(j = 0; j < 255; j++)
1275 | {
1276 | // Bit reverse the index
1277 | index_temp = j;
1278 | rev = 0;
1279 |
1280 | for(k = 0; k < 8; k++)
1281 | {
1282 | if(index_temp & 0x01)
1283 | {
1284 | rev = rev | (1 << (7 - k));
1285 | }
1286 | index_temp = index_temp >> 1;
1287 | }
1288 |
1289 | if(rev < WSPR_BIT_COUNT)
1290 | {
1291 | d[rev] = s[i];
1292 | i++;
1293 | }
1294 |
1295 | if(i >= WSPR_BIT_COUNT)
1296 | {
1297 | break;
1298 | }
1299 | }
1300 |
1301 | memcpy(s, d, WSPR_BIT_COUNT);
1302 | }
1303 |
1304 | void JTEncode::jt9_packbits(uint8_t * d, uint8_t * a)
1305 | {
1306 | uint8_t i, k;
1307 | k = 0;
1308 | memset(a, 0, JT9_ENCODE_COUNT);
1309 |
1310 | for(i = 0; i < JT9_ENCODE_COUNT; i++)
1311 | {
1312 | a[i] = (d[k] & 1) << 2;
1313 | k++;
1314 |
1315 | a[i] |= ((d[k] & 1) << 1);
1316 | k++;
1317 |
1318 | a[i] |= (d[k] & 1);
1319 | k++;
1320 | }
1321 | }
1322 |
1323 | void JTEncode::jt_gray_code(uint8_t * g, uint8_t symbol_count)
1324 | {
1325 | uint8_t i;
1326 |
1327 | for(i = 0; i < symbol_count; i++)
1328 | {
1329 | g[i] = gray_code(g[i]);
1330 | }
1331 | }
1332 |
1333 | void JTEncode::ft8_encode(uint8_t* codeword, uint8_t* symbols)
1334 | {
1335 | const uint8_t FT8_N = 174;
1336 | const uint8_t FT8_K = 91;
1337 | const uint8_t FT8_M = FT8_N - FT8_K;
1338 |
1339 | uint8_t tempchar[FT8_K];
1340 | uint8_t message91[FT8_K];
1341 | uint8_t pchecks[FT8_M];
1342 | uint8_t i1_msg_bytes[12];
1343 | uint8_t i, j;
1344 | uint16_t ncrc14;
1345 |
1346 | crc_t crc;
1347 | crc_cfg_t crc_cfg;
1348 | crc_cfg.reflect_in = 0;
1349 | crc_cfg.xor_in = 0;
1350 | crc_cfg.reflect_out = 0;
1351 | crc_cfg.xor_out = 0;
1352 | crc = crc_init(&crc_cfg);
1353 |
1354 | // Add 14-bit CRC to form 91-bit message
1355 | memset(tempchar, 0, 91);
1356 | memcpy(tempchar, codeword, 77);
1357 | tempchar[77] = 0;
1358 | tempchar[78] = 0;
1359 | tempchar[79] = 0;
1360 | memset(i1_msg_bytes, 0, 12);
1361 | for(i = 0; i < 10; ++i)
1362 | {
1363 | for(j = 0; j < 8; ++j)
1364 | {
1365 | i1_msg_bytes[i] <<= 1;
1366 | i1_msg_bytes[i] |= tempchar[i * 8 + j];
1367 | }
1368 | }
1369 |
1370 | ncrc14 = crc_update(&crc_cfg, crc, (unsigned char *)i1_msg_bytes, 12);
1371 | crc = crc_finalize(&crc_cfg, crc);
1372 |
1373 | for(i = 0; i < 14; ++i)
1374 | {
1375 | if((((ncrc14 << (i + 2)) & 0x8000) >> 15) & 1)
1376 | {
1377 | tempchar[i + 77] = 1;
1378 | }
1379 | else
1380 | {
1381 | tempchar[i + 77] = 0;
1382 | }
1383 | }
1384 | memcpy(message91, tempchar, 91);
1385 |
1386 | for(i = 0; i < FT8_M; ++i)
1387 | {
1388 | uint32_t nsum = 0;
1389 | for(j = 0; j < FT8_K; ++j)
1390 | {
1391 | #if defined(__arm__)
1392 | uint8_t bits = generator_bits[i][j / 8];
1393 | #else
1394 | uint8_t bits = pgm_read_byte(&(generator_bits[i][j / 8]));
1395 | #endif
1396 | bits <<= (j % 8);
1397 | bits &= 0x80;
1398 | bits >>= 7;
1399 | bits &= 1;
1400 | nsum += (message91[j] * bits);
1401 | }
1402 | pchecks[i] = nsum % 2;
1403 | }
1404 |
1405 | memcpy(symbols, message91, FT8_K);
1406 | memcpy(symbols + FT8_K, pchecks, FT8_M);
1407 | }
1408 |
1409 | void JTEncode::jt65_merge_sync_vector(uint8_t * g, uint8_t * symbols)
1410 | {
1411 | uint8_t i, j = 0;
1412 | const uint8_t sync_vector[JT65_SYMBOL_COUNT] =
1413 | {1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0,
1414 | 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
1415 | 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,
1416 | 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
1417 | 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1,
1418 | 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1,
1419 | 1, 1, 1, 1, 1, 1};
1420 |
1421 | for(i = 0; i < JT65_SYMBOL_COUNT; i++)
1422 | {
1423 | if(sync_vector[i])
1424 | {
1425 | symbols[i] = 0;
1426 | }
1427 | else
1428 | {
1429 | symbols[i] = g[j] + 2;
1430 | j++;
1431 | }
1432 | }
1433 | }
1434 |
1435 | void JTEncode::jt9_merge_sync_vector(uint8_t * g, uint8_t * symbols)
1436 | {
1437 | uint8_t i, j = 0;
1438 | const uint8_t sync_vector[JT9_SYMBOL_COUNT] =
1439 | {1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
1440 | 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
1441 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1,
1442 | 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
1443 | 0, 0, 1, 0, 1};
1444 |
1445 | for(i = 0; i < JT9_SYMBOL_COUNT; i++)
1446 | {
1447 | if(sync_vector[i])
1448 | {
1449 | symbols[i] = 0;
1450 | }
1451 | else
1452 | {
1453 | symbols[i] = g[j] + 1;
1454 | j++;
1455 | }
1456 | }
1457 | }
1458 |
1459 | void JTEncode::jt4_merge_sync_vector(uint8_t * g, uint8_t * symbols)
1460 | {
1461 | uint8_t i;
1462 | const uint8_t sync_vector[JT4_SYMBOL_COUNT] =
1463 | {0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0,
1464 | 0, 0, 0, 0, 1, 1, 0, 0, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,0 ,1 ,1,
1465 | 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
1466 | 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0,
1467 | 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
1468 | 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1,
1469 | 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1,
1470 | 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,
1471 | 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1,
1472 | 0, 1, 1, 1, 1, 0, 1, 0, 1};
1473 |
1474 | for(i = 0; i < JT4_SYMBOL_COUNT; i++)
1475 | {
1476 | symbols[i] = sync_vector[i] + (2 * g[i]);
1477 | }
1478 | }
1479 |
1480 | void JTEncode::wspr_merge_sync_vector(uint8_t * g, uint8_t * symbols)
1481 | {
1482 | uint8_t i;
1483 | const uint8_t sync_vector[WSPR_SYMBOL_COUNT] =
1484 | {1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
1485 | 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0,
1486 | 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1,
1487 | 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
1488 | 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
1489 | 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
1490 | 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,
1491 | 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0};
1492 |
1493 | for(i = 0; i < WSPR_SYMBOL_COUNT; i++)
1494 | {
1495 | symbols[i] = sync_vector[i] + (2 * g[i]);
1496 | }
1497 | }
1498 |
1499 | void JTEncode::ft8_merge_sync_vector(uint8_t* symbols, uint8_t* output)
1500 | {
1501 | const uint8_t costas7x7[7] = {3, 1, 4, 0, 6, 5, 2};
1502 | const uint8_t graymap[8] = {0, 1, 3, 2, 5, 6, 4, 7};
1503 | uint8_t i, j, k, idx;
1504 |
1505 | // Insert Costas sync arrays
1506 | memcpy(output, costas7x7, 7);
1507 | memcpy(output + 36, costas7x7, 7);
1508 | memcpy(output + FT8_SYMBOL_COUNT - 7, costas7x7, 7);
1509 |
1510 | k = 6;
1511 | for(j = 0; j < 58; ++j) // 58 data symbols
1512 | {
1513 | i = 3 * j;
1514 | ++k;
1515 | if(j == 29)
1516 | {
1517 | k += 7;
1518 | }
1519 | idx = symbols[i] * 4 + symbols[i + 1] * 2 + symbols[i + 2];
1520 | output[k] = graymap[idx];
1521 | }
1522 | }
1523 |
1524 | void JTEncode::convolve(uint8_t * c, uint8_t * s, uint8_t message_size, uint8_t bit_size)
1525 | {
1526 | uint32_t reg_0 = 0;
1527 | uint32_t reg_1 = 0;
1528 | uint32_t reg_temp = 0;
1529 | uint8_t input_bit, parity_bit;
1530 | uint8_t bit_count = 0;
1531 | uint8_t i, j, k;
1532 |
1533 | for(i = 0; i < message_size; i++)
1534 | {
1535 | for(j = 0; j < 8; j++)
1536 | {
1537 | // Set input bit according the MSB of current element
1538 | input_bit = (((c[i] << j) & 0x80) == 0x80) ? 1 : 0;
1539 |
1540 | // Shift both registers and put in the new input bit
1541 | reg_0 = reg_0 << 1;
1542 | reg_1 = reg_1 << 1;
1543 | reg_0 |= (uint32_t)input_bit;
1544 | reg_1 |= (uint32_t)input_bit;
1545 |
1546 | // AND Register 0 with feedback taps, calculate parity
1547 | reg_temp = reg_0 & 0xf2d05351;
1548 | parity_bit = 0;
1549 | for(k = 0; k < 32; k++)
1550 | {
1551 | parity_bit = parity_bit ^ (reg_temp & 0x01);
1552 | reg_temp = reg_temp >> 1;
1553 | }
1554 | s[bit_count] = parity_bit;
1555 | bit_count++;
1556 |
1557 | // AND Register 1 with feedback taps, calculate parity
1558 | reg_temp = reg_1 & 0xe4613c47;
1559 | parity_bit = 0;
1560 | for(k = 0; k < 32; k++)
1561 | {
1562 | parity_bit = parity_bit ^ (reg_temp & 0x01);
1563 | reg_temp = reg_temp >> 1;
1564 | }
1565 | s[bit_count] = parity_bit;
1566 | bit_count++;
1567 | if(bit_count >= bit_size)
1568 | {
1569 | break;
1570 | }
1571 | }
1572 | }
1573 | }
1574 |
1575 | void JTEncode::rs_encode(uint8_t * data, uint8_t * symbols)
1576 | {
1577 | // Adapted from wrapkarn.c in the WSJT-X source code
1578 | uint8_t dat1[12];
1579 | uint8_t b[51];
1580 | uint8_t sym[JT65_ENCODE_COUNT];
1581 | uint8_t i;
1582 |
1583 | // Reverse data order for the Karn codec.
1584 | for(i = 0; i < 12; i++)
1585 | {
1586 | dat1[i] = data[11 - i];
1587 | }
1588 |
1589 | // Compute the parity symbols
1590 | encode_rs_int(rs_inst, dat1, b);
1591 |
1592 | // Move parity symbols and data into symbols array, in reverse order.
1593 | for (i = 0; i < 51; i++)
1594 | {
1595 | sym[50 - i] = b[i];
1596 | }
1597 |
1598 | for (i = 0; i < 12; i++)
1599 | {
1600 | sym[i + 51] = dat1[11 - i];
1601 | }
1602 |
1603 | memcpy(symbols, sym, JT65_ENCODE_COUNT);
1604 | }
1605 |
1606 | uint8_t JTEncode::crc8(const char * text)
1607 | {
1608 | uint8_t crc = '\0';
1609 | uint8_t ch;
1610 |
1611 | int i;
1612 | for(i = 0; i < strlen(text); i++)
1613 | {
1614 | ch = text[i];
1615 | //#if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) || defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega16U4__)
1616 | #if defined(__arm__)
1617 | crc = crc8_table[(crc) ^ ch];
1618 | #else
1619 | crc = pgm_read_byte(&(crc8_table[(crc) ^ ch]));
1620 | #endif
1621 | crc &= 0xFF;
1622 | }
1623 |
1624 | return crc;
1625 | }
1626 |
1627 | void JTEncode::pad_callsign(char * call)
1628 | {
1629 | // If only the 2nd character is a digit, then pad with a space.
1630 | // If this happens, then the callsign will be truncated if it is
1631 | // longer than 6 characters.
1632 | if(isdigit(call[1]) && isupper(call[2]))
1633 | {
1634 | // memmove(call + 1, call, 6);
1635 | call[5] = call[4];
1636 | call[4] = call[3];
1637 | call[3] = call[2];
1638 | call[2] = call[1];
1639 | call[1] = call[0];
1640 | call[0] = ' ';
1641 | }
1642 |
1643 | // Now the 3rd charcter in the callsign must be a digit
1644 | // if(call[2] < '0' || call[2] > '9')
1645 | // {
1646 | // // return 1;
1647 | // }
1648 | }
--------------------------------------------------------------------------------
/src/JTEncode.h:
--------------------------------------------------------------------------------
1 | /*
2 | * JTEncode.h - JT65/JT9/WSPR/FSQ encoder library for Arduino
3 | *
4 | * Copyright (C) 2015-2021 Jason Milldrum
5 | *
6 | * Based on the algorithms presented in the WSJT software suite.
7 | * Thanks to Andy Talbot G4JNT for the whitepaper on the WSPR encoding
8 | * process that helped me to understand all of this.
9 | *
10 | * This program is free software: you can redistribute it and/or modify
11 | * it under the terms of the GNU General Public License as published by
12 | * the Free Software Foundation, either version 3 of the License, or
13 | * (at your option) any later version.
14 | *
15 | * This program is distributed in the hope that it will be useful,
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 | * GNU General Public License for more details.
19 | *
20 | * You should have received a copy of the GNU General Public License
21 | * along with this program. If not, see .
22 | */
23 |
24 | #ifndef JTENCODE_H
25 | #define JTENCODE_H
26 |
27 | #include "int.h"
28 | #include "rs_common.h"
29 | #include "nhash.h"
30 |
31 | #include "Arduino.h"
32 |
33 | #include
34 |
35 | #if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) || defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega16U4__)
36 | #include
37 | #endif
38 |
39 | #define JT65_SYMBOL_COUNT 126
40 | #define JT9_SYMBOL_COUNT 85
41 | #define JT4_SYMBOL_COUNT 207
42 | #define WSPR_SYMBOL_COUNT 162
43 | #define FT8_SYMBOL_COUNT 79
44 |
45 | #define JT65_ENCODE_COUNT 63
46 | #define JT9_ENCODE_COUNT 69
47 | #define FT8_ENCODE_COUNT 77
48 |
49 | #define JT9_BIT_COUNT 206
50 | #define JT4_BIT_COUNT 206
51 | #define WSPR_BIT_COUNT 162
52 | #define FT8_BIT_COUNT 174
53 |
54 | // Define the structure of a varicode table
55 | typedef struct fsq_varicode
56 | {
57 | uint8_t ch;
58 | uint8_t var[2];
59 | } Varicode;
60 |
61 | // The FSQ varicode table, based on the FSQ Varicode V3.0
62 | // document provided by Murray Greenman, ZL1BPU
63 |
64 | const Varicode fsq_code_table[] PROGMEM =
65 | {
66 | {' ', {00, 00}}, // space
67 | {'!', {11, 30}},
68 | {'"', {12, 30}},
69 | {'#', {13, 30}},
70 | {'$', {14, 30}},
71 | {'%', {15, 30}},
72 | {'&', {16, 30}},
73 | {'\'', {17, 30}},
74 | {'(', {18, 30}},
75 | {')', {19, 30}},
76 | {'*', {20, 30}},
77 | {'+', {21, 30}},
78 | {',', {27, 29}},
79 | {'-', {22, 30}},
80 | {'.', {27, 00}},
81 | {'/', {23, 30}},
82 | {'0', {10, 30}},
83 | {'1', {01, 30}},
84 | {'2', {02, 30}},
85 | {'3', {03, 30}},
86 | {'4', {04, 30}},
87 | {'5', {05, 30}},
88 | {'6', {06, 30}},
89 | {'7', {07, 30}},
90 | {'8', {8, 30}},
91 | {'9', {9, 30}},
92 | {':', {24, 30}},
93 | {';', {25, 30}},
94 | {'<', {26, 30}},
95 | {'=', {00, 31}},
96 | {'>', {27, 30}},
97 | {'?', {28, 29}},
98 | {'@', {00, 29}},
99 | {'A', {01, 29}},
100 | {'B', {02, 29}},
101 | {'C', {03, 29}},
102 | {'D', {04, 29}},
103 | {'E', {05, 29}},
104 | {'F', {06, 29}},
105 | {'G', {07, 29}},
106 | {'H', {8, 29}},
107 | {'I', {9, 29}},
108 | {'J', {10, 29}},
109 | {'K', {11, 29}},
110 | {'L', {12, 29}},
111 | {'M', {13, 29}},
112 | {'N', {14, 29}},
113 | {'O', {15, 29}},
114 | {'P', {16, 29}},
115 | {'Q', {17, 29}},
116 | {'R', {18, 29}},
117 | {'S', {19, 29}},
118 | {'T', {20, 29}},
119 | {'U', {21, 29}},
120 | {'V', {22, 29}},
121 | {'W', {23, 29}},
122 | {'X', {24, 29}},
123 | {'Y', {25, 29}},
124 | {'Z', {26, 29}},
125 | {'[', {01, 31}},
126 | {'\\', {02, 31}},
127 | {']', {03, 31}},
128 | {'^', {04, 31}},
129 | {'_', {05, 31}},
130 | {'`', {9, 31}},
131 | {'a', {01, 00}},
132 | {'b', {02, 00}},
133 | {'c', {03, 00}},
134 | {'d', {04, 00}},
135 | {'e', {05, 00}},
136 | {'f', {06, 00}},
137 | {'g', {07, 00}},
138 | {'h', {8, 00}},
139 | {'i', {9, 00}},
140 | {'j', {10, 00}},
141 | {'k', {11, 00}},
142 | {'l', {12, 00}},
143 | {'m', {13, 00}},
144 | {'n', {14, 00}},
145 | {'o', {15, 00}},
146 | {'p', {16, 00}},
147 | {'q', {17, 00}},
148 | {'r', {18, 00}},
149 | {'s', {19, 00}},
150 | {'t', {20, 00}},
151 | {'u', {21, 00}},
152 | {'v', {22, 00}},
153 | {'w', {23, 00}},
154 | {'x', {24, 00}},
155 | {'y', {25, 00}},
156 | {'z', {26, 00}},
157 | {'{', {06, 31}},
158 | {'|', {07, 31}},
159 | {'}', {8, 31}},
160 | {'~', {00, 30}},
161 | {127, {28, 31}}, // DEL
162 | {13, {28, 00}}, // CR
163 | {10, {28, 00}}, // LF
164 | {0, {28, 30}}, // IDLE
165 | {241, {10, 31}}, // plus/minus
166 | {246, {11, 31}}, // division sign
167 | {248, {12, 31}}, // degrees sign
168 | {158, {13, 31}}, // multiply sign
169 | {156, {14, 31}}, // pound sterling sign
170 | {8, {27, 31}} // BS
171 | };
172 |
173 | const uint8_t crc8_table[] PROGMEM = {
174 | 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15, 0x38, 0x3f, 0x36, 0x31,
175 | 0x24, 0x23, 0x2a, 0x2d, 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
176 | 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d, 0xe0, 0xe7, 0xee, 0xe9,
177 | 0xfc, 0xfb, 0xf2, 0xf5, 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
178 | 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85, 0xa8, 0xaf, 0xa6, 0xa1,
179 | 0xb4, 0xb3, 0xba, 0xbd, 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
180 | 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea, 0xb7, 0xb0, 0xb9, 0xbe,
181 | 0xab, 0xac, 0xa5, 0xa2, 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
182 | 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32, 0x1f, 0x18, 0x11, 0x16,
183 | 0x03, 0x04, 0x0d, 0x0a, 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
184 | 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a, 0x89, 0x8e, 0x87, 0x80,
185 | 0x95, 0x92, 0x9b, 0x9c, 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
186 | 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec, 0xc1, 0xc6, 0xcf, 0xc8,
187 | 0xdd, 0xda, 0xd3, 0xd4, 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
188 | 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44, 0x19, 0x1e, 0x17, 0x10,
189 | 0x05, 0x02, 0x0b, 0x0c, 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
190 | 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b, 0x76, 0x71, 0x78, 0x7f,
191 | 0x6a, 0x6d, 0x64, 0x63, 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
192 | 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13, 0xae, 0xa9, 0xa0, 0xa7,
193 | 0xb2, 0xb5, 0xbc, 0xbb, 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
194 | 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb, 0xe6, 0xe1, 0xe8, 0xef,
195 | 0xfa, 0xfd, 0xf4, 0xf3
196 | };
197 |
198 | const uint8_t jt9i[JT9_BIT_COUNT] PROGMEM = {
199 | 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0x10, 0x90, 0x50, 0x30, 0xb0, 0x70,
200 | 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0x18, 0x98, 0x58, 0x38, 0xb8, 0x78,
201 | 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0x14, 0x94, 0x54, 0x34, 0xb4, 0x74,
202 | 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0x1c, 0x9c, 0x5c, 0x3c, 0xbc, 0x7c,
203 | 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0x12, 0x92, 0x52, 0x32, 0xb2, 0x72,
204 | 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0x1a, 0x9a, 0x5a, 0x3a, 0xba, 0x7a,
205 | 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0x16, 0x96, 0x56, 0x36, 0xb6, 0x76,
206 | 0x0e, 0x8e, 0x4e, 0x2e, 0xae, 0x6e, 0x1e, 0x9e, 0x5e, 0x3e, 0xbe, 0x7e, 0x01,
207 | 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0x11, 0x91, 0x51, 0x31, 0xb1, 0x71, 0x09,
208 | 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0x19, 0x99, 0x59, 0x39, 0xb9, 0x79, 0x05,
209 | 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0x15, 0x95, 0x55, 0x35, 0xb5, 0x75, 0x0d,
210 | 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0x1d, 0x9d, 0x5d, 0x3d, 0xbd, 0x7d, 0x03,
211 | 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0x13, 0x93, 0x53, 0x33, 0xb3, 0x73, 0x0b,
212 | 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0x1b, 0x9b, 0x5b, 0x3b, 0xbb, 0x7b, 0x07,
213 | 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0x17, 0x97, 0x57, 0x37, 0xb7, 0x77, 0x0f,
214 | 0x8f, 0x4f, 0x2f, 0xaf, 0x6f, 0x1f, 0x9f, 0x5f, 0x3f, 0xbf, 0x7f
215 | };
216 |
217 | class JTEncode
218 | {
219 | public:
220 | JTEncode(void);
221 | void jt65_encode(const char *, uint8_t *);
222 | void jt9_encode(const char *, uint8_t *);
223 | void jt4_encode(const char *, uint8_t *);
224 | void wspr_encode(const char *, const char *, const int8_t, uint8_t *);
225 | void fsq_encode(const char *, const char *, uint8_t *);
226 | void fsq_dir_encode(const char *, const char *, const char, const char *, uint8_t *);
227 | void ft8_encode(const char *, uint8_t *);
228 | void latlon_to_grid(float, float, char*);
229 | private:
230 | uint8_t jt_code(char);
231 | uint8_t ft_code(char);
232 | uint8_t wspr_code(char);
233 | uint8_t gray_code(uint8_t);
234 | int8_t hex2int(char);
235 | void jt_message_prep(char *);
236 | void ft_message_prep(char *);
237 | void wspr_message_prep(char *, char *, int8_t);
238 | void jt65_bit_packing(char *, uint8_t *);
239 | void jt9_bit_packing(char *, uint8_t *);
240 | void wspr_bit_packing(uint8_t *);
241 | void ft8_bit_packing(char*, uint8_t*);
242 | void jt65_interleave(uint8_t *);
243 | void jt9_interleave(uint8_t *);
244 | void wspr_interleave(uint8_t *);
245 | void jt9_packbits(uint8_t *, uint8_t *);
246 | void jt_gray_code(uint8_t *, uint8_t);
247 | void ft8_encode(uint8_t*, uint8_t*);
248 | void jt65_merge_sync_vector(uint8_t *, uint8_t *);
249 | void jt9_merge_sync_vector(uint8_t *, uint8_t *);
250 | void jt4_merge_sync_vector(uint8_t *, uint8_t *);
251 | void wspr_merge_sync_vector(uint8_t *, uint8_t *);
252 | void ft8_merge_sync_vector(uint8_t*, uint8_t*);
253 | void convolve(uint8_t *, uint8_t *, uint8_t, uint8_t);
254 | void rs_encode(uint8_t *, uint8_t *);
255 | void encode_rs_int(void *,data_t *, data_t *);
256 | void free_rs_int(void *);
257 | void * init_rs_int(int, int, int, int, int, int);
258 | uint8_t crc8(const char *);
259 | void pad_callsign(char *);
260 | void * rs_inst;
261 | char callsign[12];
262 | char locator[7];
263 | int8_t power;
264 | };
265 |
266 | #endif
267 |
--------------------------------------------------------------------------------
/src/crc14.c:
--------------------------------------------------------------------------------
1 | /**
2 | * \file
3 | * Functions and types for CRC checks.
4 | *
5 | * Generated on Thu Dec 6 17:52:34 2018
6 | * by pycrc v0.9.1, https://pycrc.org
7 | * using the configuration:
8 | * - Width = 14
9 | * - Poly = 0x2757
10 | * - XorIn = Undefined
11 | * - ReflectIn = Undefined
12 | * - XorOut = Undefined
13 | * - ReflectOut = Undefined
14 | * - Algorithm = bit-by-bit
15 | */
16 | #include "crc14.h" /* include the header file generated with pycrc */
17 | #include
18 | #include
19 | #include
20 |
21 | static crc_t crc_reflect(crc_t data, size_t data_len);
22 |
23 |
24 |
25 | crc_t crc_reflect(crc_t data, size_t data_len)
26 | {
27 | unsigned int i;
28 | crc_t ret;
29 |
30 | ret = data & 0x01;
31 | for (i = 1; i < data_len; i++) {
32 | data >>= 1;
33 | ret = (ret << 1) | (data & 0x01);
34 | }
35 | return ret;
36 | }
37 |
38 |
39 | crc_t crc_init(const crc_cfg_t *cfg)
40 | {
41 | unsigned int i;
42 | bool bit;
43 | crc_t crc = cfg->xor_in;
44 | for (i = 0; i < 14; i++) {
45 | bit = crc & 0x01;
46 | if (bit) {
47 | crc = ((crc ^ 0x2757) >> 1) | 0x2000;
48 | } else {
49 | crc >>= 1;
50 | }
51 | }
52 | return crc & 0x3fff;
53 | }
54 |
55 |
56 | crc_t crc_update(const crc_cfg_t *cfg, crc_t crc, const void *data, size_t data_len)
57 | {
58 | const unsigned char *d = (const unsigned char *)data;
59 | unsigned int i;
60 | bool bit;
61 | unsigned char c;
62 |
63 | while (data_len--) {
64 | if (cfg->reflect_in) {
65 | c = crc_reflect(*d++, 8);
66 | } else {
67 | c = *d++;
68 | }
69 | for (i = 0; i < 8; i++) {
70 | bit = crc & 0x2000;
71 | crc = (crc << 1) | ((c >> (7 - i)) & 0x01);
72 | if (bit) {
73 | crc ^= 0x2757;
74 | }
75 | }
76 | crc &= 0x3fff;
77 | }
78 | return crc & 0x3fff;
79 | }
80 |
81 |
82 | crc_t crc_finalize(const crc_cfg_t *cfg, crc_t crc)
83 | {
84 | unsigned int i;
85 | bool bit;
86 |
87 | for (i = 0; i < 14; i++) {
88 | bit = crc & 0x2000;
89 | crc <<= 1;
90 | if (bit) {
91 | crc ^= 0x2757;
92 | }
93 | }
94 | if (cfg->reflect_out) {
95 | crc = crc_reflect(crc, 14);
96 | }
97 | return (crc ^ cfg->xor_out) & 0x3fff;
98 | }
99 |
--------------------------------------------------------------------------------
/src/crc14.h:
--------------------------------------------------------------------------------
1 | /**
2 | * \file
3 | * Functions and types for CRC checks.
4 | *
5 | * Generated on Thu Dec 6 17:52:01 2018
6 | * by pycrc v0.9.1, https://pycrc.org
7 | * using the configuration:
8 | * - Width = 14
9 | * - Poly = 0x2757
10 | * - XorIn = Undefined
11 | * - ReflectIn = Undefined
12 | * - XorOut = Undefined
13 | * - ReflectOut = Undefined
14 | * - Algorithm = bit-by-bit
15 | *
16 | * This file defines the functions crc_init(), crc_update() and crc_finalize().
17 | *
18 | * The crc_init() function returns the inital \c crc value and must be called
19 | * before the first call to crc_update().
20 | * Similarly, the crc_finalize() function must be called after the last call
21 | * to crc_update(), before the \c crc is being used.
22 | * is being used.
23 | *
24 | * The crc_update() function can be called any number of times (including zero
25 | * times) in between the crc_init() and crc_finalize() calls.
26 | *
27 | * This pseudo-code shows an example usage of the API:
28 | * \code{.c}
29 | * crc_cfg_t cfg = {
30 | * 0, // reflect_in
31 | * 0, // xor_in
32 | * 0, // reflect_out
33 | * 0, // xor_out
34 | * };
35 | * crc_t crc;
36 | * unsigned char data[MAX_DATA_LEN];
37 | * size_t data_len;
38 | *
39 | * crc = crc_init(&cfg);
40 | * while ((data_len = read_data(data, MAX_DATA_LEN)) > 0) {
41 | * crc = crc_update(&cfg, crc, data, data_len);
42 | * }
43 | * crc = crc_finalize(&cfg, crc);
44 | * \endcode
45 | */
46 | #ifndef CRC14_H
47 | #define CRC14_H
48 |
49 | #include
50 | #include
51 | #include
52 |
53 | #ifdef __cplusplus
54 | extern "C" {
55 | #endif
56 |
57 |
58 | /**
59 | * The definition of the used algorithm.
60 | *
61 | * This is not used anywhere in the generated code, but it may be used by the
62 | * application code to call algorithm-specific code, if desired.
63 | */
64 | #define CRC_ALGO_BIT_BY_BIT 1
65 |
66 |
67 | /**
68 | * The type of the CRC values.
69 | *
70 | * This type must be big enough to contain at least 14 bits.
71 | */
72 | typedef uint_fast16_t crc_t;
73 |
74 |
75 | /**
76 | * The configuration type of the CRC algorithm.
77 | */
78 | typedef struct {
79 | bool reflect_in; /*!< Whether the input shall be reflected or not */
80 | crc_t xor_in; /*!< The initial value of the register */
81 | bool reflect_out; /*!< Whether the output shall be reflected or not */
82 | crc_t xor_out; /*!< The value which shall be XOR-ed to the final CRC value */
83 | } crc_cfg_t;
84 |
85 |
86 | /**
87 | * Calculate the initial crc value.
88 | *
89 | * \param[in] cfg A pointer to an initialised crc_cfg_t structure.
90 | * \return The initial crc value.
91 | */
92 | crc_t crc_init(const crc_cfg_t *cfg);
93 |
94 |
95 | /**
96 | * Update the crc value with new data.
97 | *
98 | * \param[in] crc The current crc value.
99 | * \param[in] cfg A pointer to an initialised crc_cfg_t structure.
100 | * \param[in] data Pointer to a buffer of \a data_len bytes.
101 | * \param[in] data_len Number of bytes in the \a data buffer.
102 | * \return The updated crc value.
103 | */
104 | crc_t crc_update(const crc_cfg_t *cfg, crc_t crc, const void *data, size_t data_len);
105 |
106 |
107 | /**
108 | * Calculate the final crc value.
109 | *
110 | * \param[in] cfg A pointer to an initialised crc_cfg_t structure.
111 | * \param[in] crc The current crc value.
112 | * \return The final crc value.
113 | */
114 | crc_t crc_finalize(const crc_cfg_t *cfg, crc_t crc);
115 |
116 |
117 | #ifdef __cplusplus
118 | } /* closing brace for extern "C" */
119 | #endif
120 |
121 | #endif /* CRC14_H */
122 |
--------------------------------------------------------------------------------
/src/encode_rs.h:
--------------------------------------------------------------------------------
1 | /* The guts of the Reed-Solomon encoder, meant to be #included
2 | * into a function body with the following typedefs, macros and variables supplied
3 | * according to the code parameters:
4 |
5 | * data_t - a typedef for the data symbol
6 | * data_t data[] - array of NN-NROOTS-PAD and type data_t to be encoded
7 | * data_t parity[] - an array of NROOTS and type data_t to be written with parity symbols
8 | * NROOTS - the number of roots in the RS code generator polynomial,
9 | * which is the same as the number of parity symbols in a block.
10 | Integer variable or literal.
11 | *
12 | * NN - the total number of symbols in a RS block. Integer variable or literal.
13 | * PAD - the number of pad symbols in a block. Integer variable or literal.
14 | * ALPHA_TO - The address of an array of NN elements to convert Galois field
15 | * elements in index (log) form to polynomial form. Read only.
16 | * INDEX_OF - The address of an array of NN elements to convert Galois field
17 | * elements in polynomial form to index (log) form. Read only.
18 | * MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
19 | * GENPOLY - an array of NROOTS+1 elements containing the generator polynomial in index form
20 |
21 | * The memset() and memmove() functions are used. The appropriate header
22 | * file declaring these functions (usually ) must be included by the calling
23 | * program.
24 |
25 | * Copyright 2004, Phil Karn, KA9Q
26 | * May be used under the terms of the GNU Lesser General Public License (LGPL)
27 | */
28 |
29 |
30 | #undef A0
31 | #define A0 (NN) /* Special reserved value encoding zero in index form */
32 |
33 | {
34 | int i, j;
35 | data_t feedback;
36 |
37 | memset(parity,0,NROOTS*sizeof(data_t));
38 |
39 | for(i=0;i) must be included by the calling
29 | * program.
30 | */
31 |
32 | #include
33 | #include
34 | #include "int.h"
35 | #include "rs_common.h"
36 |
37 | void JTEncode::encode_rs_int(void *p, data_t *data, data_t *parity)
38 | {
39 | struct rs *rs = (struct rs *)p;
40 |
41 | #undef A_0
42 | #define A_0 (NN) /* Special reserved value encoding zero in index form */
43 |
44 | {
45 | int i, j;
46 | data_t feedback;
47 |
48 | memset(parity,0,NROOTS*sizeof(data_t));
49 |
50 | for(i=0;i
5 |
6 | #if defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__) || defined(__AVR_ATmega32U4__) || defined(__AVR_ATmega16U4__)
7 | #include
8 | #endif
9 |
10 | const uint8_t generator_bits[83][12] PROGMEM =
11 | {
12 | {0b10000011, 0b00101001, 0b11001110, 0b00010001, 0b10111111, 0b00110001, 0b11101010, 0b11110101, 0b00001001, 0b11110010, 0b01111111, 0b11000000},
13 | {0b01110110, 0b00011100, 0b00100110, 0b01001110, 0b00100101, 0b11000010, 0b01011001, 0b00110011, 0b01010100, 0b10010011, 0b00010011, 0b00100000},
14 | {0b11011100, 0b00100110, 0b01011001, 0b00000010, 0b11111011, 0b00100111, 0b01111100, 0b01100100, 0b00010000, 0b10100001, 0b10111101, 0b11000000},
15 | {0b00011011, 0b00111111, 0b01000001, 0b01111000, 0b01011000, 0b11001101, 0b00101101, 0b11010011, 0b00111110, 0b11000111, 0b11110110, 0b00100000},
16 | {0b00001001, 0b11111101, 0b10100100, 0b11111110, 0b11100000, 0b01000001, 0b10010101, 0b11111101, 0b00000011, 0b01000111, 0b10000011, 0b10100000},
17 | {0b00000111, 0b01111100, 0b11001100, 0b11000001, 0b00011011, 0b10001000, 0b01110011, 0b11101101, 0b01011100, 0b00111101, 0b01001000, 0b10100000},
18 | {0b00101001, 0b10110110, 0b00101010, 0b11111110, 0b00111100, 0b10100000, 0b00110110, 0b11110100, 0b11111110, 0b00011010, 0b10011101, 0b10100000},
19 | {0b01100000, 0b01010100, 0b11111010, 0b11110101, 0b11110011, 0b01011101, 0b10010110, 0b11010011, 0b10110000, 0b11001000, 0b11000011, 0b11100000},
20 | {0b11100010, 0b00000111, 0b10011000, 0b11100100, 0b00110001, 0b00001110, 0b11101101, 0b00100111, 0b10001000, 0b01001010, 0b11101001, 0b00000000},
21 | {0b01110111, 0b01011100, 0b10011100, 0b00001000, 0b11101000, 0b00001110, 0b00100110, 0b11011101, 0b10101110, 0b01010110, 0b00110001, 0b10000000},
22 | {0b10110000, 0b10111000, 0b00010001, 0b00000010, 0b10001100, 0b00101011, 0b11111001, 0b10010111, 0b00100001, 0b00110100, 0b10000111, 0b11000000},
23 | {0b00011000, 0b10100000, 0b11001001, 0b00100011, 0b00011111, 0b11000110, 0b00001010, 0b11011111, 0b01011100, 0b01011110, 0b10100011, 0b00100000},
24 | {0b01110110, 0b01000111, 0b00011110, 0b10000011, 0b00000010, 0b10100000, 0b01110010, 0b00011110, 0b00000001, 0b10110001, 0b00101011, 0b10000000},
25 | {0b11111111, 0b10111100, 0b11001011, 0b10000000, 0b11001010, 0b10000011, 0b01000001, 0b11111010, 0b11111011, 0b01000111, 0b10110010, 0b11100000},
26 | {0b01100110, 0b10100111, 0b00101010, 0b00010101, 0b10001111, 0b10010011, 0b00100101, 0b10100010, 0b10111111, 0b01100111, 0b00010111, 0b00000000},
27 | {0b11000100, 0b00100100, 0b00110110, 0b10001001, 0b11111110, 0b10000101, 0b10110001, 0b11000101, 0b00010011, 0b01100011, 0b10100001, 0b10000000},
28 | {0b00001101, 0b11111111, 0b01110011, 0b10010100, 0b00010100, 0b11010001, 0b10100001, 0b10110011, 0b01001011, 0b00011100, 0b00100111, 0b00000000},
29 | {0b00010101, 0b10110100, 0b10001000, 0b00110000, 0b01100011, 0b01101100, 0b10001011, 0b10011001, 0b10001001, 0b01001001, 0b01110010, 0b11100000},
30 | {0b00101001, 0b10101000, 0b10011100, 0b00001101, 0b00111101, 0b11101000, 0b00011101, 0b01100110, 0b01010100, 0b10001001, 0b10110000, 0b11100000},
31 | {0b01001111, 0b00010010, 0b01101111, 0b00110111, 0b11111010, 0b01010001, 0b11001011, 0b11100110, 0b00011011, 0b11010110, 0b10111001, 0b01000000},
32 | {0b10011001, 0b11000100, 0b01110010, 0b00111001, 0b11010000, 0b11011001, 0b01111101, 0b00111100, 0b10000100, 0b11100000, 0b10010100, 0b00000000},
33 | {0b00011001, 0b00011001, 0b10110111, 0b01010001, 0b00011001, 0b01110110, 0b01010110, 0b00100001, 0b10111011, 0b01001111, 0b00011110, 0b10000000},
34 | {0b00001001, 0b11011011, 0b00010010, 0b11010111, 0b00110001, 0b11111010, 0b11101110, 0b00001011, 0b10000110, 0b11011111, 0b01101011, 0b10000000},
35 | {0b01001000, 0b10001111, 0b11000011, 0b00111101, 0b11110100, 0b00111111, 0b10111101, 0b11101110, 0b10100100, 0b11101010, 0b11111011, 0b01000000},
36 | {0b10000010, 0b01110100, 0b00100011, 0b11101110, 0b01000000, 0b10110110, 0b01110101, 0b11110111, 0b01010110, 0b11101011, 0b01011111, 0b11100000},
37 | {0b10101011, 0b11100001, 0b10010111, 0b11000100, 0b10000100, 0b11001011, 0b01110100, 0b01110101, 0b01110001, 0b01000100, 0b10101001, 0b10100000},
38 | {0b00101011, 0b01010000, 0b00001110, 0b01001011, 0b11000000, 0b11101100, 0b01011010, 0b01101101, 0b00101011, 0b11011011, 0b11011101, 0b00000000},
39 | {0b11000100, 0b01110100, 0b10101010, 0b01010011, 0b11010111, 0b00000010, 0b00011000, 0b01110110, 0b00010110, 0b01101001, 0b00110110, 0b00000000},
40 | {0b10001110, 0b10111010, 0b00011010, 0b00010011, 0b11011011, 0b00110011, 0b10010000, 0b10111101, 0b01100111, 0b00011000, 0b11001110, 0b11000000},
41 | {0b01110101, 0b00111000, 0b01000100, 0b01100111, 0b00111010, 0b00100111, 0b01111000, 0b00101100, 0b11000100, 0b00100000, 0b00010010, 0b11100000},
42 | {0b00000110, 0b11111111, 0b10000011, 0b10100001, 0b01000101, 0b11000011, 0b01110000, 0b00110101, 0b10100101, 0b11000001, 0b00100110, 0b10000000},
43 | {0b00111011, 0b00110111, 0b01000001, 0b01111000, 0b01011000, 0b11001100, 0b00101101, 0b11010011, 0b00111110, 0b11000011, 0b11110110, 0b00100000},
44 | {0b10011010, 0b01001010, 0b01011010, 0b00101000, 0b11101110, 0b00010111, 0b11001010, 0b10011100, 0b00110010, 0b01001000, 0b01000010, 0b11000000},
45 | {0b10111100, 0b00101001, 0b11110100, 0b01100101, 0b00110000, 0b10011100, 0b10010111, 0b01111110, 0b10001001, 0b01100001, 0b00001010, 0b01000000},
46 | {0b00100110, 0b01100011, 0b10101110, 0b01101101, 0b11011111, 0b10001011, 0b01011100, 0b11100010, 0b10111011, 0b00101001, 0b01001000, 0b10000000},
47 | {0b01000110, 0b11110010, 0b00110001, 0b11101111, 0b11100100, 0b01010111, 0b00000011, 0b01001100, 0b00011000, 0b00010100, 0b01000001, 0b10000000},
48 | {0b00111111, 0b10110010, 0b11001110, 0b10000101, 0b10101011, 0b11101001, 0b10110000, 0b11000111, 0b00101110, 0b00000110, 0b11111011, 0b11100000},
49 | {0b11011110, 0b10000111, 0b01001000, 0b00011111, 0b00101000, 0b00101100, 0b00010101, 0b00111001, 0b01110001, 0b10100000, 0b10100010, 0b11100000},
50 | {0b11111100, 0b11010111, 0b11001100, 0b11110010, 0b00111100, 0b01101001, 0b11111010, 0b10011001, 0b10111011, 0b10100001, 0b01000001, 0b00100000},
51 | {0b11110000, 0b00100110, 0b00010100, 0b01000111, 0b11101001, 0b01001001, 0b00001100, 0b10101000, 0b11100100, 0b01110100, 0b11001110, 0b11000000},
52 | {0b01000100, 0b00010000, 0b00010001, 0b01011000, 0b00011000, 0b00011001, 0b01101111, 0b10010101, 0b11001101, 0b11010111, 0b00000001, 0b00100000},
53 | {0b00001000, 0b10001111, 0b11000011, 0b00011101, 0b11110100, 0b10111111, 0b10111101, 0b11100010, 0b10100100, 0b11101010, 0b11111011, 0b01000000},
54 | {0b10111000, 0b11111110, 0b11110001, 0b10110110, 0b00110000, 0b01110111, 0b00101001, 0b11111011, 0b00001010, 0b00000111, 0b10001100, 0b00000000},
55 | {0b01011010, 0b11111110, 0b10100111, 0b10101100, 0b11001100, 0b10110111, 0b01111011, 0b10111100, 0b10011101, 0b10011001, 0b10101001, 0b00000000},
56 | {0b01001001, 0b10100111, 0b00000001, 0b01101010, 0b11000110, 0b01010011, 0b11110110, 0b01011110, 0b11001101, 0b11001001, 0b00000111, 0b01100000},
57 | {0b00011001, 0b01000100, 0b11010000, 0b10000101, 0b10111110, 0b01001110, 0b01111101, 0b10101000, 0b11010110, 0b11001100, 0b01111101, 0b00000000},
58 | {0b00100101, 0b00011111, 0b01100010, 0b10101101, 0b11000100, 0b00000011, 0b00101111, 0b00001110, 0b11100111, 0b00010100, 0b00000000, 0b00100000},
59 | {0b01010110, 0b01000111, 0b00011111, 0b10000111, 0b00000010, 0b10100000, 0b01110010, 0b00011110, 0b00000000, 0b10110001, 0b00101011, 0b10000000},
60 | {0b00101011, 0b10001110, 0b01001001, 0b00100011, 0b11110010, 0b11011101, 0b01010001, 0b11100010, 0b11010101, 0b00110111, 0b11111010, 0b00000000},
61 | {0b01101011, 0b01010101, 0b00001010, 0b01000000, 0b10100110, 0b01101111, 0b01000111, 0b01010101, 0b11011110, 0b10010101, 0b11000010, 0b01100000},
62 | {0b10100001, 0b10001010, 0b11010010, 0b10001101, 0b01001110, 0b00100111, 0b11111110, 0b10010010, 0b10100100, 0b11110110, 0b11001000, 0b01000000},
63 | {0b00010000, 0b11000010, 0b11100101, 0b10000110, 0b00111000, 0b10001100, 0b10111000, 0b00101010, 0b00111101, 0b10000000, 0b01110101, 0b10000000},
64 | {0b11101111, 0b00110100, 0b10100100, 0b00011000, 0b00010111, 0b11101110, 0b00000010, 0b00010011, 0b00111101, 0b10110010, 0b11101011, 0b00000000},
65 | {0b01111110, 0b10011100, 0b00001100, 0b01010100, 0b00110010, 0b01011010, 0b10011100, 0b00010101, 0b10000011, 0b01101110, 0b00000000, 0b00000000},
66 | {0b00110110, 0b10010011, 0b11100101, 0b01110010, 0b11010001, 0b11111101, 0b11100100, 0b11001101, 0b11110000, 0b01111001, 0b11101000, 0b01100000},
67 | {0b10111111, 0b10110010, 0b11001110, 0b11000101, 0b10101011, 0b11100001, 0b10110000, 0b11000111, 0b00101110, 0b00000111, 0b11111011, 0b11100000},
68 | {0b01111110, 0b11100001, 0b10000010, 0b00110000, 0b11000101, 0b10000011, 0b11001100, 0b11001100, 0b01010111, 0b11010100, 0b10110000, 0b10000000},
69 | {0b10100000, 0b01100110, 0b11001011, 0b00101111, 0b11101101, 0b10101111, 0b11001001, 0b11110101, 0b00100110, 0b01100100, 0b00010010, 0b01100000},
70 | {0b10111011, 0b00100011, 0b01110010, 0b01011010, 0b10111100, 0b01000111, 0b11001100, 0b01011111, 0b01001100, 0b11000100, 0b11001101, 0b00100000},
71 | {0b11011110, 0b11011001, 0b11011011, 0b10100011, 0b10111110, 0b11100100, 0b00001100, 0b01011001, 0b10110101, 0b01100000, 0b10011011, 0b01000000},
72 | {0b11011001, 0b10100111, 0b00000001, 0b01101010, 0b11000110, 0b01010011, 0b11100110, 0b11011110, 0b11001101, 0b11001001, 0b00000011, 0b01100000},
73 | {0b10011010, 0b11010100, 0b01101010, 0b11101101, 0b01011111, 0b01110000, 0b01111111, 0b00101000, 0b00001010, 0b10110101, 0b11111100, 0b01000000},
74 | {0b11100101, 0b10010010, 0b00011100, 0b01110111, 0b10000010, 0b00100101, 0b10000111, 0b00110001, 0b01101101, 0b01111101, 0b00111100, 0b00100000},
75 | {0b01001111, 0b00010100, 0b11011010, 0b10000010, 0b01000010, 0b10101000, 0b10111000, 0b01101101, 0b11001010, 0b01110011, 0b00110101, 0b00100000},
76 | {0b10001011, 0b10001011, 0b01010000, 0b01111010, 0b11010100, 0b01100111, 0b11010100, 0b01000100, 0b00011101, 0b11110111, 0b01110000, 0b11100000},
77 | {0b00100010, 0b10000011, 0b00011100, 0b10011100, 0b11110001, 0b00010110, 0b10010100, 0b01100111, 0b10101101, 0b00000100, 0b10110110, 0b10000000},
78 | {0b00100001, 0b00111011, 0b10000011, 0b10001111, 0b11100010, 0b10101110, 0b01010100, 0b11000011, 0b10001110, 0b11100111, 0b00011000, 0b00000000},
79 | {0b01011101, 0b10010010, 0b01101011, 0b01101101, 0b11010111, 0b00011111, 0b00001000, 0b01010001, 0b10000001, 0b10100100, 0b11100001, 0b00100000},
80 | {0b01100110, 0b10101011, 0b01111001, 0b11010100, 0b10110010, 0b10011110, 0b11100110, 0b11100110, 0b10010101, 0b00001001, 0b11100101, 0b01100000},
81 | {0b10010101, 0b10000001, 0b01001000, 0b01101000, 0b00101101, 0b01110100, 0b10001010, 0b00111000, 0b11011101, 0b01101000, 0b10111010, 0b10100000},
82 | {0b10111000, 0b11001110, 0b00000010, 0b00001100, 0b11110000, 0b01101001, 0b11000011, 0b00101010, 0b01110010, 0b00111010, 0b10110001, 0b01000000},
83 | {0b11110100, 0b00110011, 0b00011101, 0b01101101, 0b01000110, 0b00010110, 0b00000111, 0b11101001, 0b01010111, 0b01010010, 0b01110100, 0b01100000},
84 | {0b01101101, 0b10100010, 0b00111011, 0b10100100, 0b00100100, 0b10111001, 0b01011001, 0b01100001, 0b00110011, 0b11001111, 0b10011100, 0b10000000},
85 | {0b10100110, 0b00110110, 0b10111100, 0b10111100, 0b01111011, 0b00110000, 0b11000101, 0b11111011, 0b11101010, 0b11100110, 0b01111111, 0b11100000},
86 | {0b01011100, 0b10110000, 0b11011000, 0b01101010, 0b00000111, 0b11011111, 0b01100101, 0b01001010, 0b10010000, 0b10001001, 0b10100010, 0b00000000},
87 | {0b11110001, 0b00011111, 0b00010000, 0b01101000, 0b01001000, 0b01111000, 0b00001111, 0b11001001, 0b11101100, 0b11011101, 0b10000000, 0b10100000},
88 | {0b00011111, 0b10111011, 0b01010011, 0b01100100, 0b11111011, 0b10001101, 0b00101100, 0b10011101, 0b01110011, 0b00001101, 0b01011011, 0b10100000},
89 | {0b11111100, 0b10111000, 0b01101011, 0b11000111, 0b00001010, 0b01010000, 0b11001001, 0b11010000, 0b00101010, 0b01011101, 0b00000011, 0b01000000},
90 | {0b10100101, 0b00110100, 0b01000011, 0b00110000, 0b00101001, 0b11101010, 0b11000001, 0b01011111, 0b00110010, 0b00101110, 0b00110100, 0b11000000},
91 | {0b11001001, 0b10001001, 0b11011001, 0b11000111, 0b11000011, 0b11010011, 0b10111000, 0b11000101, 0b01011101, 0b01110101, 0b00010011, 0b00000000},
92 | {0b01111011, 0b10110011, 0b10001011, 0b00101111, 0b00000001, 0b10000110, 0b11010100, 0b01100110, 0b01000011, 0b10101110, 0b10010110, 0b00100000},
93 | {0b00100110, 0b01000100, 0b11101011, 0b10101101, 0b11101011, 0b01000100, 0b10111001, 0b01000110, 0b01111101, 0b00011111, 0b01000010, 0b11000000},
94 | {0b01100000, 0b10001100, 0b11001000, 0b01010111, 0b01011001, 0b01001011, 0b11111011, 0b10110101, 0b01011101, 0b01101001, 0b01100000, 0b00000000}
95 | };
96 |
97 | #endif
98 |
--------------------------------------------------------------------------------
/src/init_rs.h:
--------------------------------------------------------------------------------
1 | /* Common code for intializing a Reed-Solomon control block (char or int symbols)
2 | * Copyright 2004 Phil Karn, KA9Q
3 | * May be used under the terms of the GNU Lesser General Public License (LGPL)
4 | */
5 | #undef NULL
6 | #define NULL ((void *)0)
7 |
8 | //{
9 | int i, j, sr,root,iprim;
10 |
11 | rs = NULL;
12 | /* Check parameter ranges */
13 | if(symsize < 0 || symsize > 8*sizeof(data_t)){
14 | goto done;
15 | }
16 |
17 | if(fcr < 0 || fcr >= (1<= (1<= (1<= ((1<mm = symsize;
31 | rs->nn = (1<pad = pad;
33 |
34 | rs->alpha_to = (data_t *)malloc(sizeof(data_t)*(rs->nn+1));
35 | if(rs->alpha_to == NULL){
36 | free(rs);
37 | rs = NULL;
38 | goto done;
39 | }
40 | rs->index_of = (data_t *)malloc(sizeof(data_t)*(rs->nn+1));
41 | if(rs->index_of == NULL){
42 | free(rs->alpha_to);
43 | free(rs);
44 | rs = NULL;
45 | goto done;
46 | }
47 |
48 | /* Generate Galois field lookup tables */
49 | rs->index_of[0] = A0; /* log(zero) = -inf */
50 | rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
51 | sr = 1;
52 | for(i=0;inn;i++){
53 | rs->index_of[sr] = i;
54 | rs->alpha_to[i] = sr;
55 | sr <<= 1;
56 | if(sr & (1<nn;
59 | }
60 | if(sr != 1){
61 | /* field generator polynomial is not primitive! */
62 | free(rs->alpha_to);
63 | free(rs->index_of);
64 | free(rs);
65 | rs = NULL;
66 | goto done;
67 | }
68 |
69 | /* Form RS code generator polynomial from its roots */
70 | rs->genpoly = (data_t *)malloc(sizeof(data_t)*(nroots+1));
71 | if(rs->genpoly == NULL){
72 | free(rs->alpha_to);
73 | free(rs->index_of);
74 | free(rs);
75 | rs = NULL;
76 | goto done;
77 | }
78 | rs->fcr = fcr;
79 | rs->prim = prim;
80 | rs->nroots = nroots;
81 |
82 | /* Find prim-th root of 1, used in decoding */
83 | for(iprim=1;(iprim % prim) != 0;iprim += rs->nn)
84 | ;
85 | rs->iprim = iprim / prim;
86 |
87 | rs->genpoly[0] = 1;
88 | for (i = 0,root=fcr*prim; i < nroots; i++,root += prim) {
89 | rs->genpoly[i+1] = 1;
90 |
91 | /* Multiply rs->genpoly[] by @**(root + x) */
92 | for (j = i; j > 0; j--){
93 | if (rs->genpoly[j] != 0)
94 | rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
95 | else
96 | rs->genpoly[j] = rs->genpoly[j-1];
97 | }
98 | /* rs->genpoly[0] can never be zero */
99 | rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
100 | }
101 | /* convert rs->genpoly[] to index form for quicker encoding */
102 | for (i = 0; i <= nroots; i++)
103 | rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
104 | done:;
105 |
106 | //}
107 |
--------------------------------------------------------------------------------
/src/init_rs_int.cpp:
--------------------------------------------------------------------------------
1 | /* Initialize a RS codec
2 | *
3 | * Copyright 2002 Phil Karn, KA9Q
4 | * May be used under the terms of the GNU Lesser General Public License (LGPL)
5 | *
6 | * Slightly modified by Jason Milldrum NT7S, 2015 to fit into the Arduino framework
7 | */
8 |
9 | #include
10 | #include
11 | #include
12 | #include "rs_common.h"
13 |
14 | void JTEncode::free_rs_int(void * p)
15 | {
16 | struct rs *rs = (struct rs *)p;
17 |
18 | free(rs->alpha_to);
19 | free(rs->index_of);
20 | free(rs->genpoly);
21 | free(rs);
22 | }
23 |
24 | void * JTEncode::init_rs_int(int symsize, int gfpoly, int fcr, int prim,
25 | int nroots, int pad)
26 | {
27 | struct rs *rs;
28 |
29 | int i, j, sr,root,iprim;
30 |
31 | rs = ((struct rs *)0);
32 | /* Check parameter ranges */
33 | if(symsize < 0 || symsize > 8*sizeof(data_t)){
34 | goto done;
35 | }
36 |
37 | if(fcr < 0 || fcr >= (1<= (1<= (1<= ((1<mm = symsize;
51 | rs->nn = (1<pad = pad;
53 |
54 | rs->alpha_to = (data_t *)malloc(sizeof(data_t)*(rs->nn+1));
55 | if(rs->alpha_to == NULL){
56 | free(rs);
57 | rs = ((struct rs *)0);
58 | goto done;
59 | }
60 | rs->index_of = (data_t *)malloc(sizeof(data_t)*(rs->nn+1));
61 | if(rs->index_of == NULL){
62 | free(rs->alpha_to);
63 | free(rs);
64 | rs = ((struct rs *)0);
65 | goto done;
66 | }
67 |
68 | /* Generate Galois field lookup tables */
69 | rs->index_of[0] = A_0; /* log(zero) = -inf */
70 | rs->alpha_to[A_0] = 0; /* alpha**-inf = 0 */
71 | sr = 1;
72 | for(i=0;inn;i++){
73 | rs->index_of[sr] = i;
74 | rs->alpha_to[i] = sr;
75 | sr <<= 1;
76 | if(sr & (1<nn;
79 | }
80 | if(sr != 1){
81 | /* field generator polynomial is not primitive! */
82 | free(rs->alpha_to);
83 | free(rs->index_of);
84 | free(rs);
85 | rs = ((struct rs *)0);
86 | goto done;
87 | }
88 |
89 | /* Form RS code generator polynomial from its roots */
90 | rs->genpoly = (data_t *)malloc(sizeof(data_t)*(nroots+1));
91 | if(rs->genpoly == NULL){
92 | free(rs->alpha_to);
93 | free(rs->index_of);
94 | free(rs);
95 | rs = ((struct rs *)0);
96 | goto done;
97 | }
98 | rs->fcr = fcr;
99 | rs->prim = prim;
100 | rs->nroots = nroots;
101 |
102 | /* Find prim-th root of 1, used in decoding */
103 | for(iprim=1;(iprim % prim) != 0;iprim += rs->nn)
104 | ;
105 | rs->iprim = iprim / prim;
106 |
107 | rs->genpoly[0] = 1;
108 | for (i = 0,root=fcr*prim; i < nroots; i++,root += prim) {
109 | rs->genpoly[i+1] = 1;
110 |
111 | /* Multiply rs->genpoly[] by @**(root + x) */
112 | for (j = i; j > 0; j--){
113 | if (rs->genpoly[j] != 0)
114 | rs->genpoly[j] = rs->genpoly[j-1] ^ rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[j]] + root)];
115 | else
116 | rs->genpoly[j] = rs->genpoly[j-1];
117 | }
118 | /* rs->genpoly[0] can never be zero */
119 | rs->genpoly[0] = rs->alpha_to[modnn(rs,rs->index_of[rs->genpoly[0]] + root)];
120 | }
121 | /* convert rs->genpoly[] to index form for quicker encoding */
122 | for (i = 0; i <= nroots; i++)
123 | rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
124 | done:;
125 |
126 | return rs;
127 | }
128 |
--------------------------------------------------------------------------------
/src/int.h:
--------------------------------------------------------------------------------
1 | /* Stuff specific to the general (integer) version of the Reed-Solomon codecs
2 | *
3 | * Copyright 2003, Phil Karn, KA9Q
4 | * May be used under the terms of the GNU Lesser General Public License (LGPL)
5 | */
6 | #ifndef INT_H_
7 | #define INT_H_
8 |
9 | #include
10 |
11 | typedef uint8_t data_t;
12 | //typedef unsigned int data_t;
13 |
14 | #define MODNN(x) modnn(rs,x)
15 | #define MM (rs->mm)
16 | #define NN (rs->nn)
17 | #define ALPHA_TO (rs->alpha_to)
18 | #define INDEX_OF (rs->index_of)
19 | #define GENPOLY (rs->genpoly)
20 | #define NROOTS (rs->nroots)
21 | #define FCR (rs->fcr)
22 | #define PRIM (rs->prim)
23 | #define IPRIM (rs->iprim)
24 | #define PAD (rs->pad)
25 | #define A_0 (NN)
26 |
27 | #endif
28 |
--------------------------------------------------------------------------------
/src/nhash.c:
--------------------------------------------------------------------------------
1 | /*
2 | *-------------------------------------------------------------------------------
3 | *
4 | * This file is part of the WSPR application, Weak Signal Propagation Reporter
5 | *
6 | * File Name: nhash.c
7 | * Description: Functions to produce 32-bit hashes for hash table lookup
8 | *
9 | * Copyright (C) 2008-2014 Joseph Taylor, K1JT
10 | * License: GPL-3
11 | *
12 | * This program is free software; you can redistribute it and/or modify it under
13 | * the terms of the GNU General Public License as published by the Free Software
14 | * Foundation; either version 3 of the License, or (at your option) any later
15 | * version.
16 | *
17 | * This program is distributed in the hope that it will be useful, but WITHOUT
18 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19 | * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
20 | * details.
21 | *
22 | * You should have received a copy of the GNU General Public License along with
23 | * this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
24 | * Street, Fifth Floor, Boston, MA 02110-1301, USA.
25 | *
26 | * Files: lookup3.c
27 | * Copyright: Copyright (C) 2006 Bob Jenkins
28 | * License: public-domain
29 | * You may use this code any way you wish, private, educational, or commercial.
30 | * It's free.
31 | *
32 | *-------------------------------------------------------------------------------
33 | */
34 |
35 | /*
36 | These are functions for producing 32-bit hashes for hash table lookup.
37 | hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
38 | are externally useful functions. Routines to test the hash are included
39 | if SELF_TEST is defined. You can use this free for any purpose. It's in
40 | the public domain. It has no warranty.
41 |
42 | You probably want to use hashlittle(). hashlittle() and hashbig()
43 | hash byte arrays. hashlittle() is is faster than hashbig() on
44 | little-endian machines. Intel and AMD are little-endian machines.
45 | On second thought, you probably want hashlittle2(), which is identical to
46 | hashlittle() except it returns two 32-bit hashes for the price of one.
47 | You could implement hashbig2() if you wanted but I haven't bothered here.
48 |
49 | If you want to find a hash of, say, exactly 7 integers, do
50 | a = i1; b = i2; c = i3;
51 | mix(a,b,c);
52 | a += i4; b += i5; c += i6;
53 | mix(a,b,c);
54 | a += i7;
55 | final(a,b,c);
56 | then use c as the hash value. If you have a variable length array of
57 | 4-byte integers to hash, use hashword(). If you have a byte array (like
58 | a character string), use hashlittle(). If you have several byte arrays, or
59 | a mix of things, see the comments above hashlittle().
60 |
61 | Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
62 | then mix those integers. This is fast (you can do a lot more thorough
63 | mixing with 12*3 instructions on 3 integers than you can with 3 instructions
64 | on 1 byte), but shoehorning those bytes into integers efficiently is messy.
65 | */
66 |
67 | #define SELF_TEST 1
68 |
69 | #include /* defines printf for tests */
70 | #include /* defines time_t for timings in the test */
71 | #ifdef Win32
72 | #include "win_stdint.h" /* defines uint32_t etc */
73 | #else
74 | #include /* defines uint32_t etc */
75 | #endif
76 | //#include /* attempt to define endianness */
77 | //#ifdef linux
78 | //# include /* attempt to define endianness */
79 | //#endif
80 |
81 | #define HASH_LITTLE_ENDIAN 1
82 |
83 | #define hashsize(n) ((uint32_t)1<<(n))
84 | #define hashmask(n) (hashsize(n)-1)
85 | #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
86 |
87 | /*
88 | -------------------------------------------------------------------------------
89 | mix -- mix 3 32-bit values reversibly.
90 |
91 | This is reversible, so any information in (a,b,c) before mix() is
92 | still in (a,b,c) after mix().
93 |
94 | If four pairs of (a,b,c) inputs are run through mix(), or through
95 | mix() in reverse, there are at least 32 bits of the output that
96 | are sometimes the same for one pair and different for another pair.
97 | This was tested for:
98 | * pairs that differed by one bit, by two bits, in any combination
99 | of top bits of (a,b,c), or in any combination of bottom bits of
100 | (a,b,c).
101 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
102 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
103 | is commonly produced by subtraction) look like a single 1-bit
104 | difference.
105 | * the base values were pseudorandom, all zero but one bit set, or
106 | all zero plus a counter that starts at zero.
107 |
108 | Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
109 | satisfy this are
110 | 4 6 8 16 19 4
111 | 9 15 3 18 27 15
112 | 14 9 3 7 17 3
113 | Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
114 | for "differ" defined as + with a one-bit base and a two-bit delta. I
115 | used http://burtleburtle.net/bob/hash/avalanche.html to choose
116 | the operations, constants, and arrangements of the variables.
117 |
118 | This does not achieve avalanche. There are input bits of (a,b,c)
119 | that fail to affect some output bits of (a,b,c), especially of a. The
120 | most thoroughly mixed value is c, but it doesn't really even achieve
121 | avalanche in c.
122 |
123 | This allows some parallelism. Read-after-writes are good at doubling
124 | the number of bits affected, so the goal of mixing pulls in the opposite
125 | direction as the goal of parallelism. I did what I could. Rotates
126 | seem to cost as much as shifts on every machine I could lay my hands
127 | on, and rotates are much kinder to the top and bottom bits, so I used
128 | rotates.
129 | -------------------------------------------------------------------------------
130 | */
131 | #define mix(a,b,c) \
132 | { \
133 | a -= c; a ^= rot(c, 4); c += b; \
134 | b -= a; b ^= rot(a, 6); a += c; \
135 | c -= b; c ^= rot(b, 8); b += a; \
136 | a -= c; a ^= rot(c,16); c += b; \
137 | b -= a; b ^= rot(a,19); a += c; \
138 | c -= b; c ^= rot(b, 4); b += a; \
139 | }
140 |
141 | /*
142 | -------------------------------------------------------------------------------
143 | final -- final mixing of 3 32-bit values (a,b,c) into c
144 |
145 | Pairs of (a,b,c) values differing in only a few bits will usually
146 | produce values of c that look totally different. This was tested for
147 | * pairs that differed by one bit, by two bits, in any combination
148 | of top bits of (a,b,c), or in any combination of bottom bits of
149 | (a,b,c).
150 | * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
151 | the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
152 | is commonly produced by subtraction) look like a single 1-bit
153 | difference.
154 | * the base values were pseudorandom, all zero but one bit set, or
155 | all zero plus a counter that starts at zero.
156 |
157 | These constants passed:
158 | 14 11 25 16 4 14 24
159 | 12 14 25 16 4 14 24
160 | and these came close:
161 | 4 8 15 26 3 22 24
162 | 10 8 15 26 3 22 24
163 | 11 8 15 26 3 22 24
164 | -------------------------------------------------------------------------------
165 | */
166 | #define final(a,b,c) \
167 | { \
168 | c ^= b; c -= rot(b,14); \
169 | a ^= c; a -= rot(c,11); \
170 | b ^= a; b -= rot(a,25); \
171 | c ^= b; c -= rot(b,16); \
172 | a ^= c; a -= rot(c,4); \
173 | b ^= a; b -= rot(a,14); \
174 | c ^= b; c -= rot(b,24); \
175 | }
176 |
177 | /*
178 | -------------------------------------------------------------------------------
179 | hashlittle() -- hash a variable-length key into a 32-bit value
180 | k : the key (the unaligned variable-length array of bytes)
181 | length : the length of the key, counting by bytes
182 | initval : can be any 4-byte value
183 | Returns a 32-bit value. Every bit of the key affects every bit of
184 | the return value. Two keys differing by one or two bits will have
185 | totally different hash values.
186 |
187 | The best hash table sizes are powers of 2. There is no need to do
188 | mod a prime (mod is sooo slow!). If you need less than 32 bits,
189 | use a bitmask. For example, if you need only 10 bits, do
190 | h = (h & hashmask(10));
191 | In which case, the hash table should have hashsize(10) elements.
192 |
193 | If you are hashing n strings (uint8_t **)k, do it like this:
194 | for (i=0, h=0; i 12)
230 | {
231 | a += k[0];
232 | b += k[1];
233 | c += k[2];
234 | mix(a,b,c);
235 | length -= 12;
236 | k += 3;
237 | }
238 |
239 | /*----------------------------- handle the last (probably partial) block */
240 | /*
241 | * "k[2]&0xffffff" actually reads beyond the end of the string, but
242 | * then masks off the part it's not allowed to read. Because the
243 | * string is aligned, the masked-off tail is in the same word as the
244 | * rest of the string. Every machine with memory protection I've seen
245 | * does it on word boundaries, so is OK with this. But VALGRIND will
246 | * still catch it and complain. The masking trick does make the hash
247 | * noticably faster for short strings (like English words).
248 | */
249 | #ifndef VALGRIND
250 |
251 | switch(length)
252 | {
253 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
254 | case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
255 | case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
256 | case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
257 | case 8 : b+=k[1]; a+=k[0]; break;
258 | case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
259 | case 6 : b+=k[1]&0xffff; a+=k[0]; break;
260 | case 5 : b+=k[1]&0xff; a+=k[0]; break;
261 | case 4 : a+=k[0]; break;
262 | case 3 : a+=k[0]&0xffffff; break;
263 | case 2 : a+=k[0]&0xffff; break;
264 | case 1 : a+=k[0]&0xff; break;
265 | case 0 : return c; /* zero length strings require no mixing */
266 | }
267 |
268 | #else /* make valgrind happy */
269 |
270 | k8 = (const uint8_t *)k;
271 | switch(length)
272 | {
273 | case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
274 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
275 | case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
276 | case 9 : c+=k8[8]; /* fall through */
277 | case 8 : b+=k[1]; a+=k[0]; break;
278 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
279 | case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
280 | case 5 : b+=k8[4]; /* fall through */
281 | case 4 : a+=k[0]; break;
282 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
283 | case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
284 | case 1 : a+=k8[0]; break;
285 | case 0 : return c;
286 | }
287 |
288 | #endif /* !valgrind */
289 |
290 | } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
291 | const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
292 | const uint8_t *k8;
293 |
294 | /*--------------- all but last block: aligned reads and different mixing */
295 | while (length > 12)
296 | {
297 | a += k[0] + (((uint32_t)k[1])<<16);
298 | b += k[2] + (((uint32_t)k[3])<<16);
299 | c += k[4] + (((uint32_t)k[5])<<16);
300 | mix(a,b,c);
301 | length -= 12;
302 | k += 6;
303 | }
304 |
305 | /*----------------------------- handle the last (probably partial) block */
306 | k8 = (const uint8_t *)k;
307 | switch(length)
308 | {
309 | case 12: c+=k[4]+(((uint32_t)k[5])<<16);
310 | b+=k[2]+(((uint32_t)k[3])<<16);
311 | a+=k[0]+(((uint32_t)k[1])<<16);
312 | break;
313 | case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
314 | case 10: c+=k[4];
315 | b+=k[2]+(((uint32_t)k[3])<<16);
316 | a+=k[0]+(((uint32_t)k[1])<<16);
317 | break;
318 | case 9 : c+=k8[8]; /* fall through */
319 | case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
320 | a+=k[0]+(((uint32_t)k[1])<<16);
321 | break;
322 | case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
323 | case 6 : b+=k[2];
324 | a+=k[0]+(((uint32_t)k[1])<<16);
325 | break;
326 | case 5 : b+=k8[4]; /* fall through */
327 | case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
328 | break;
329 | case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
330 | case 2 : a+=k[0];
331 | break;
332 | case 1 : a+=k8[0];
333 | break;
334 | case 0 : return c; /* zero length requires no mixing */
335 | }
336 |
337 | } else { /* need to read the key one byte at a time */
338 | const uint8_t *k = (const uint8_t *)key;
339 |
340 | /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
341 | while (length > 12)
342 | {
343 | a += k[0];
344 | a += ((uint32_t)k[1])<<8;
345 | a += ((uint32_t)k[2])<<16;
346 | a += ((uint32_t)k[3])<<24;
347 | b += k[4];
348 | b += ((uint32_t)k[5])<<8;
349 | b += ((uint32_t)k[6])<<16;
350 | b += ((uint32_t)k[7])<<24;
351 | c += k[8];
352 | c += ((uint32_t)k[9])<<8;
353 | c += ((uint32_t)k[10])<<16;
354 | c += ((uint32_t)k[11])<<24;
355 | mix(a,b,c);
356 | length -= 12;
357 | k += 12;
358 | }
359 |
360 | /*-------------------------------- last block: affect all 32 bits of (c) */
361 | switch(length) /* all the case statements fall through */
362 | {
363 | case 12: c+=((uint32_t)k[11])<<24; /* fall through */
364 | case 11: c+=((uint32_t)k[10])<<16; /* fall through */
365 | case 10: c+=((uint32_t)k[9])<<8; /* fall through */
366 | case 9 : c+=k[8]; /* fall through */
367 | case 8 : b+=((uint32_t)k[7])<<24; /* fall through */
368 | case 7 : b+=((uint32_t)k[6])<<16; /* fall through */
369 | case 6 : b+=((uint32_t)k[5])<<8; /* fall through */
370 | case 5 : b+=k[4]; /* fall through */
371 | case 4 : a+=((uint32_t)k[3])<<24; /* fall through */
372 | case 3 : a+=((uint32_t)k[2])<<16; /* fall through */
373 | case 2 : a+=((uint32_t)k[1])<<8; /* fall through */
374 | case 1 : a+=k[0];
375 | break;
376 | case 0 : return c;
377 | }
378 | }
379 |
380 | final(a,b,c);
381 | return c;
382 | }
383 |
384 | //uint32_t __stdcall NHASH(const void *key, size_t length, uint32_t initval)
385 |
--------------------------------------------------------------------------------
/src/nhash.h:
--------------------------------------------------------------------------------
1 | #ifdef __cplusplus
2 | extern "C" {
3 | #endif
4 |
5 | #ifndef NHASH_H_
6 | #define NHASH_H_
7 |
8 | uint32_t nhash_( const void *, int *, uint32_t *);
9 |
10 | #endif
11 |
12 | #ifdef __cplusplus
13 | }
14 | #endif
--------------------------------------------------------------------------------
/src/rs_common.h:
--------------------------------------------------------------------------------
1 | /* Stuff common to all the general-purpose Reed-Solomon codecs
2 | * Copyright 2004 Phil Karn, KA9Q
3 | * May be used under the terms of the GNU Lesser General Public License (LGPL)
4 | */
5 |
6 | #ifndef RS_COMMON_H_
7 | #define RS_COMMON_H_
8 |
9 | #include "int.h"
10 |
11 | /* Reed-Solomon codec control block */
12 | struct rs {
13 | int mm; /* Bits per symbol */
14 | int nn; /* Symbols per block (= (1<= rs->nn) {
27 | x -= rs->nn;
28 | x = (x >> rs->mm) + (x & rs->nn);
29 | }
30 | return x;
31 | }
32 |
33 | #endif
34 |
--------------------------------------------------------------------------------