├── .gitignore ├── LifeCon1 ├── .Rbuildignore ├── .gitignore ├── .travis.yml ├── Bibliography │ ├── Bibliography.Rmd │ ├── LDAReference.bib │ ├── LossDataAnalyticsReference.bib │ └── packages.bib ├── Chapters │ ├── EmergingCosts29Dec2011B_utf8.Rmd │ ├── InterestRateRisk05Nov2012.Rmd │ ├── JointLife31May2017.Rmd │ ├── MultiStateLecture24October2014.Rmd │ ├── MultipleDecrementsLecture07Oct2012.Rmd │ ├── PensionLecture06Nov2014.Rmd │ ├── PolicyValues.Rmd │ └── UnivLifeLecture14Nov2012.Rmd ├── Data │ ├── CLAIMLEVEL.csv │ └── PropertyFundInsample.csv ├── Figures │ ├── IRR_BinaryDF.eps │ ├── IRR_DiscreteRVDF.eps │ ├── IRR_InverseDF.eps │ ├── IRR_MixedDF.eps │ ├── JL_ActMathCh3Figure4.png │ ├── JL_ActMathCh3Figure6.png │ ├── JL_JointLifeTimeline.pdf │ ├── MDM_MultipleDecrement.pdf │ ├── MDM_RetirementSystemTurnoverL.pdf │ ├── MDM_RetirementSystemTurnoverR.pdf │ ├── MSM_HealthyDisabledDead.pdf │ ├── MSM_JointLifeStatus.pdf │ ├── MSM_LifeDeathOtherDeath.pdf │ ├── MSM_MultipleDecrement.pdf │ ├── MSM_TwoState.pdf │ ├── PC_RetirementSystemTurnoverL.pdf │ ├── PC_RetirementSystemTurnoverR.pdf │ ├── PV_F1WholeLife.eps │ ├── PV_F2WholeLifeDistn.eps │ ├── PV_FWholeLifeTimeLine.eps │ ├── UL_Fig9DHWSN43TypeAULProfitTest.pdf │ ├── UL_Figs6,7DHWSN42TypeBULProfitTest.pdf │ ├── UL_Figs6,7DHWSN42TypeBULProfitTestB.pdf │ ├── UL_LifeCycleExample.pdf │ ├── UL_UniversalLifeFigure1.png │ ├── UL_VaryingBenefitAmounts.pdf │ └── Unused │ │ ├── ActMathCh3Figure5.pdf │ │ └── JointLifeStatus.pdf ├── LifeCon1Version1.0.Rproj ├── ShowHide.js ├── _bookdown.yml ├── _build.sh ├── _deploy.sh ├── _output.yml ├── disqus.html ├── index.Rmd ├── preamble.tex ├── style.css └── toc.css ├── LifeCon2 ├── .Rbuildignore ├── .gitignore ├── .travis.yml ├── Bibliography │ ├── Bibliography.Rmd │ ├── LDAReference.bib │ ├── LossDataAnalyticsReference.bib │ └── packages.bib ├── Chapters │ ├── 01-SurvivalModelsLifeTables.Rmd │ ├── 02-Selection.Rmd │ ├── 03-InsuranceBenefitsI (OLD).Rmd │ ├── 03-InsuranceBenefitsI.Rmd │ ├── 04-InsuranceBenefitsII.Rmd │ ├── 05-AnnuitiesI.Rmd │ ├── 06-AnnuitiesII.Rmd │ ├── 07-PremiumCalculationI.Rmd │ ├── 08-PremiumCalculationII.Rmd │ ├── 09-ReservesI.Rmd │ ├── 10-ReservesII.Rmd │ ├── 11-MultipleStateModels.Rmd │ ├── 12-MultipleDecrementsI.Rmd │ ├── 13-MultipleDecrementsII.Rmd │ ├── 14-MultipleLivesI.Rmd │ ├── 15-MultipleLivesII.Rmd │ ├── 16-OtherTopics.Rmd │ └── 18-MAFAppendix.Rmd ├── Data │ ├── CLAIMLEVEL.csv │ └── PropertyFundInsample.csv ├── Figures │ └── Appendix_MSM.pdf ├── LICENSE ├── LifeCon2.epub ├── LifeCon2Version1.0.Rproj ├── ShowHide.js ├── _bookdown.yml ├── _build.sh ├── _deploy.sh ├── _output.yml ├── disqus.html ├── index.Rmd ├── lifecon.sty ├── mathspec.sty ├── preamble.tex ├── style.css ├── temp │ ├── ActMathAnalytics.pdf │ ├── ActMathAnalytics.synctex.gz │ ├── ActMathAnalytics.tex │ └── lifecon.sty └── toc.css ├── LifeCon3 ├── .Rbuildignore ├── .gitignore ├── .travis.yml ├── Bibliography │ ├── Bibliography.Rmd │ ├── LDAReference.bib │ ├── LossDataAnalyticsReference.bib │ └── packages.bib ├── Chapters │ ├── 01-SurvivalModelsLifeTables.Rmd │ └── 04-NetPremiums.Rmd ├── Figures │ ├── Ch1_01_ex1.1.16.JPG │ ├── Ch1_02_ex_1.1.17.JPG │ ├── Ch1_03_1.2.1.JPG │ ├── Ch1_04_1.2.3a.JPG │ ├── Ch1_05_1.2.3b.JPG │ ├── Ch1_06_ex_1.2.1a.JPG │ ├── Ch1_07_ex_1.2.1b.JPG │ ├── Ch1_08_ex_1.2.3.JPG │ ├── Ch1_09_ex_1.3.2.JPG │ ├── Ch1_10_1.4.2.JPG │ ├── Ch1_11_ex_1.4.4.JPG │ ├── Ch1_12_ex_1.4.5.JPG │ └── Ch4_01_4.2.JPG ├── LifeCon3Version1.0.Rproj ├── ShowHide.js ├── _bookdown.yml ├── _build.sh ├── _deploy.sh ├── _output.yml ├── disqus.html ├── index.Rmd ├── preamble.tex ├── style.css └── toc.css └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | .Rproj.user 2 | .Rhistory 3 | .RData 4 | .Ruserdata 5 | -------------------------------------------------------------------------------- /LifeCon1/.Rbuildignore: -------------------------------------------------------------------------------- 1 | ^.*\.Rproj$ 2 | ^\.Rproj\.user$ 3 | -------------------------------------------------------------------------------- /LifeCon1/.gitignore: -------------------------------------------------------------------------------- 1 | .Rproj.user 2 | .Rhistory 3 | .RData 4 | _publish.R 5 | _book 6 | _bookdown_files 7 | rsconnect 8 | -------------------------------------------------------------------------------- /LifeCon1/.travis.yml: -------------------------------------------------------------------------------- 1 | language: r 2 | cache: packages 3 | 4 | env: 5 | global: 6 | - secure: "InF/z62wD/4enP/GKotyZp399PsOMpO+Gn8lc7AH7+4drYLU+u/hAfH56Qm4PpPtY9kdK3ZCYAmFnfP0Tnbi3mGyfeT2InqCPe6p3EDGwVI+l5QJ+dJU5RyBdnJ18Big4wYJ9osybQTmuHDzjH5sI15ozUMsXoxmanZlvFK+Xj3H0objDRiCaY3CsDZ8KutRoXuXL/ODD/h2Au5JM2UG8QSBdsYil5DTRl6gYKDj3yGl+52jb7QVrEpkMZECzgRvep+KApQPTU0jPAJmSPvKKAo2gm3C5C+ZAeKORzJpS3N1USjI8buxXdDAK49bFIfbLYMgJk2pjuKbDQ3WAaJVo7pgVNq/foXH913/jJQoS/0/VBKZlr+ZtwNjHRq12asGX7L8U5i21ENky5wQp/GnJYU6GP1bMA7gxnJMFcHD0Jb8V805iPrJWzj07gkkZ4nnv44IDzDuNBEp+psI01r/rrJ2oqUzkiOnESthCT50UG4qDDdKyQIVgh7kLKzyB6psgdsi+ntXvQbHEnrk1gCW2jxYlSxqmhiKL1FqeUNFPWINcQ7RQbXtSIfcFa4PQi/J5as0dYv2JlmWjjnTr1i2V6Z7iiROOrJzypGuxPn6hrE2cQcCG6/3cfQP5CikodCgBRLX+9rrMML8mgc/QXcV4TxCpGgLnV6E7vFCSlThg6M=" 7 | 8 | before_script: 9 | - chmod +x ./_build.sh 10 | - chmod +x ./_deploy.sh 11 | 12 | script: 13 | - ./_build.sh 14 | - ./_deploy.sh 15 | -------------------------------------------------------------------------------- /LifeCon1/Bibliography/Bibliography.Rmd: -------------------------------------------------------------------------------- 1 | `r if (knitr:::is_html_output()) '# Bibliography {-}'` 2 | -------------------------------------------------------------------------------- /LifeCon1/Bibliography/LDAReference.bib: -------------------------------------------------------------------------------- 1 | @Book{xie2015, 2 | title = {Dynamic Documents with {R} and knitr}, 3 | author = {Yihui Xie}, 4 | publisher = {Chapman and Hall/CRC}, 5 | address = {Boca Raton, Florida}, 6 | year = {2015}, 7 | edition = {2nd}, 8 | note = {ISBN 978-1498716963}, 9 | url = {http://yihui.name/knitr/}, 10 | } 11 | 12 | @InProceedings{III2015, 13 | Title = {International Insurance Fact Book}, 14 | Author = {{Insurance~Information~Institute}}, 15 | Year = {2015}, 16 | Note = {[Retrieved on May 10, 2016]}, 17 | Publisher = {Insurance Information Institute}, 18 | Url = {http://www.iii.org/sites/default/files/docs/pdf/international_insurance_factbook_2015.pdf} 19 | } 20 | 21 | @Book{bowers1986actuarial, 22 | Title = {Actuarial Mathematics}, 23 | Author = {Bowers, Newton L. and Gerber, Hans U. and Hickman, James C. and Jones, Donald A. and Nesbitt, Cecil J.}, 24 | Publisher = {Society of Actuaries Itasca, Ill.}, 25 | Year = {1986} 26 | } 27 | 28 | @Book{dickson2013actuarial, 29 | Title = {Actuarial Mathematics for Life Contingent Risks}, 30 | Author = {Dickson, David C. M. and Hardy, Mary and Waters, Howard R.}, 31 | Publisher = {Cambridge University Press}, 32 | Year = {2013} 33 | } 34 | 35 | @InProceedings{survey2013, 36 | Title = {2013 Insurance Predictive Modeling Survey}, 37 | Author = {Earnix}, 38 | Year = {2013}, 39 | Note = {[Retrieved on July 7, 2014]}, 40 | Publisher = {Earnix and Insurance Services Office, Inc.}, 41 | Url = {http://earnix.com/2013-insurance-predictive-modeling-survey/3594/} 42 | } 43 | 44 | @Article{bailey1960, 45 | Title = {Two studies in automobile ratemaking}, 46 | Author = {Bailey, Robert A. and LeRoy, J. Simon}, 47 | Journal = {Proceedings of the Casualty Actuarial Society Casualty Actuarial Society}, 48 | Year = {1960}, 49 | Number = {I}, 50 | Volume = {XLVII} 51 | } 52 | 53 | @InProceedings{SASsurvey, 54 | Title = {Building believers: How to expand the use of predictive analytics in claims}, 55 | Author = {Gorman, Mark and Swenson, Stephen}, 56 | Year = {2013}, 57 | Note = {[Retrieved on August 17, 2014]}, 58 | Publisher = {SAS}, 59 | Url = {http://www.sas.com/resources/whitepaper/wp_59831.pdf} 60 | } 61 | 62 | @inproceedings{venter1983transformed, 63 | title={Transformed beta and gamma distributions and aggregate losses}, 64 | author={Venter, Gary}, 65 | booktitle={Proceedings of the Casualty Actuarial Society}, 66 | volume={70}, 67 | number={133 \& 134}, 68 | pages={289--308}, 69 | year={1983} 70 | } 71 | 72 | @article{mcdonald1984some, 73 | title={Some generalized functions for the size distribution of income}, 74 | author={McDonald, James B}, 75 | journal={Econometrica: journal of the Econometric Society}, 76 | pages={647--663}, 77 | year={1984}, 78 | publisher={JSTOR} 79 | } 80 | -------------------------------------------------------------------------------- /LifeCon1/Bibliography/LossDataAnalyticsReference.bib: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Bibliography/LossDataAnalyticsReference.bib -------------------------------------------------------------------------------- /LifeCon1/Bibliography/packages.bib: -------------------------------------------------------------------------------- 1 | @Manual{R-base, 2 | title = {R: A Language and Environment for Statistical Computing}, 3 | author = {{R Core Team}}, 4 | organization = {R Foundation for Statistical Computing}, 5 | address = {Vienna, Austria}, 6 | year = {2016}, 7 | url = {https://www.R-project.org/}, 8 | } 9 | @Manual{R-bookdown, 10 | title = {bookdown: Authoring Books and Technical Documents with R Markdown}, 11 | author = {Yihui Xie}, 12 | year = {2016}, 13 | note = {R package version 0.3}, 14 | url = {https://CRAN.R-project.org/package=bookdown}, 15 | } 16 | @Manual{R-knitr, 17 | title = {knitr: A General-Purpose Package for Dynamic Report Generation in R}, 18 | author = {Yihui Xie}, 19 | year = {2016}, 20 | note = {R package version 1.15.1}, 21 | url = {https://CRAN.R-project.org/package=knitr}, 22 | } 23 | @Manual{R-rmarkdown, 24 | title = {rmarkdown: Dynamic Documents for R}, 25 | author = {JJ Allaire and Joe Cheng and Yihui Xie and Jonathan McPherson and Winston Chang and Jeff Allen and Hadley Wickham and Aron Atkins and Rob Hyndman}, 26 | year = {2016}, 27 | note = {R package version 1.2}, 28 | url = {https://CRAN.R-project.org/package=rmarkdown}, 29 | } 30 | -------------------------------------------------------------------------------- /LifeCon1/Chapters/EmergingCosts29Dec2011B_utf8.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | title: "Emerging Costs" 3 | output: 4 | html_document: 5 | toc: yes 6 | toc_depth: 3 7 | # pdf_document: 8 | # toc: yes 9 | # toc_depth: '3' 10 | --- 11 | # Emerging Costs 12 | ## Cash Values {#S:CashValue} 13 | 14 | Policy values quantify the obligations, or liabilities, of a life 15 | insurance company. 16 | 17 | - They are used by managers and investors to determine the financial 18 | position of the company. 19 | 20 | - They are also used by managers and regulators to determine the 21 | likelihood that a company will continue as an ongoing operation to 22 | fulfill promises made to policyholders. 23 | 24 | Policy values are also used to determine the allocation of investment 25 | assets needed to fulfill company obligations from issuing policies - 26 | this is the topic of Section \[S:AssetShares\]. This section is devoted 27 | to the application of policy values to determine a policy's value to the 28 | insured upon cancelation of the policy, its *cash value*. 29 | 30 | An insurance policy provides a combination of protection against 31 | unforeseen risks (the insurance element) as well as a savings plan (the 32 | investment component). When a policyholder decides to terminate the 33 | contract prematurely (before called for in the plan design), in many 34 | cases the policyholder will receive an amount known as a cash value, 35 | *withdrawal benefit*, or *nonforfeiture benefit*. You can think of the 36 | cash value as the policy value minus a surrender charge, that is, 37 | $$\begin{aligned} 38 | _k CV = ~ _k V -~ _k SC.\end{aligned}$$ Because of the difficulty of 39 | collecting additional funds from a withdrawing policyholder, 40 | $_k CV \geq 0.$ 41 | 42 | Determining the cash value (or, equivalently the surrender charge) is 43 | not straightforward. One needs to think about fairness to the continuing 44 | policyholders as well as fairness to those that terminate the contract. 45 | One viewpoint is that those that surrender their policy have not 46 | fulfilled their contract and therefore are not entitled to any benefits. 47 | Another viewpoint is that those that surrender their policy should 48 | receive all of their premiums minus a charge for the insurance 49 | protection received. 50 | 51 | It is also important to recognize the timing and incidence of expenses 52 | because most insurance contracts are costly to underwrite and incur 53 | substantial expenses in the early years. In Section \[S:DAExpenses\], we 54 | discuss an alternative reserving basis that acknowledges high early 55 | expenses. 56 | 57 | ## Asset Shares {#S:AssetShares} 58 | 59 | The “asset share” of a policy in force is the share of the insurer’s 60 | assets attributable to that policy. Here, expenses, interest, mortality 61 | and so forth are calculated based on the insurer’s experience for 62 | similar policies over the period. 63 | 64 | Asset share calculations are similar to those used for policy values 65 | although the purposes of the two concepts are quite different. The 66 | policy value represents an amount the insurer *needs to have*, the asset 67 | share represents the amount that the insurer *actually does have*. 68 | 69 | Asset shares are typically calculated recursively, such as using 70 | relationship similar to those for policy values, e.g., $$\begin{aligned} 71 | (~_k AS + G_k - e_k)(1+i_k) &= & 72 | q_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1}\right) + q_{[x]+k}^{(w)} ~_{k+1} CV + p_{[x]+k}^{(\tau)} ~_{k+1} AS\end{aligned}$$ 73 | where 74 | 75 | - at the beginning of the year, $~_k AS$ is the asset share, $G_k$ is 76 | the contract premium, $e_k$ are annual expenses per contract 77 | 78 | - at death, $q_{[x]+k}^{(d)}$ is the probability of death, $b_{k+1}$ 79 | is the insurance benefit, and $E_k$ are settlement expenses per 80 | contract 81 | 82 | - at withdrawal, $q_{[x]+k}^{(w)}$ is the probability of withdrawal, 83 | $~_{k+1} CV$ is the cash value, 84 | 85 | - at survival to the end of the year, 86 | $p_{[x]+k}^{(\tau)} = 1 - (q_{[x]+k}^{(d)}+q_{[x]+k}^{(w)})$ is the 87 | probability of survivorship and $~_{k+1} AS$ is the asset share. 88 | 89 | Asset shares define the notion of how quickly a policy builds policy 90 | values (assets) and hence profits. 91 | 92 | The main advantage of this recursive approach is that we can examine the 93 | incidence (timing) of profits. 94 | 95 | The recursive relation can be expanded to include other ancillary 96 | benefits, taxes, more complex expense structures, and so forth. 97 | 98 | Asset shares are primarily used to set premiums by defining a profit 99 | goal. For example, 100 | 101 | - PV(profit) = $x$% PV (premium) 102 | 103 | - A return on investment = $x$% 104 | 105 | - The product breaks even $n$ years or sooner. 106 | 107 | Asset shares can easily be used for flexible (variable) plans. 108 | 109 | They can also be used to determine reserves, dividend schedules, 110 | withdrawal benefits or so-called “model offices” (combining asset shares 111 | over several plans, age at issue, new versus old business, and so on). 112 | 113 | **Example (SoA \# 336).** 114 | 115 | For a fully discrete insurance of 1000 on ($x$), you are given: 116 | 117 | - $~_4 AS = 396.63$ is the asset share at the end of year 4. 118 | 119 | - $~_5 AS = 694.50$ is the asset share at the end of year 5. 120 | 121 | - $G = 281.77$ is the gross premium. 122 | 123 | - $~_5 CV = 572.12$ is the cash value at the end of year 5. 124 | 125 | - $c_4 = 0.05$ is the fraction of the gross premium paid at time 4 for 126 | expenses. 127 | 128 | - $e_4 = 7.0$ is the amount of per policy expenses paid at time 4. 129 | 130 | - $q_{x+4}^{(1)} = 0.09$ is the probability of decrement by death. 131 | 132 | - $q_{x+4}^{(2)} = 0.26$ is the probability of decrement by 133 | withdrawal. 134 | 135 | Calculate $i$. 136 | 137 | **Solution.** 138 | 139 | At the beginning of the year, the asset share plus net income available 140 | is $$\begin{aligned} 141 | ~_4 AS + G(1-e_4) - e_4 = 396.63 +281.77(1-0.05) - 7 = 657.3115 .\end{aligned}$$ 142 | At the end of the year, funds must be sufficient to pay those who 143 | survive, die and withdraw: $$\begin{aligned} 144 | & & p_{x+4}^{(\tau)} ~_5 AS + 1000 q_{x+4}^{(1)} + ~_5 CV q_{x+4}^{(2)} \\ 145 | &~~~~~~~~=& (1 - 0.09 - 0.26) (694.50) + 1000 (0.09) + (572.12) (0.26) = 690.1762 .\end{aligned}$$ 146 | Using the relation $657.3115 (1+i) =690.1762$, we get 147 | $i = 4.9999\% \approx 5\%$. 148 | 149 | **Example (SoA \# 242).** 150 | 151 | For a fully discrete whole life insurance of 10,000 on ($x$), you are 152 | given: 153 | 154 | - $~_{10} AS =1600$ is the asset share at the end of year 10. 155 | 156 | - $G = 200$ is the gross premium. 157 | 158 | - $~_{11} CV =1700$ is the cash value at the end of year 11. 159 | 160 | - $c_{10} = 0.04$ is the fraction of gross premium paid at time 10 161 | for expenses. 162 | 163 | - $e_{10} ƒ= 70$ is the amount of per policy expense paid at time 10. 164 | 165 | - Death and withdrawal are the only decrements. 166 | 167 | - $q_{x+10}^{(d)} = 0.02$ 168 | 169 | - $q_{x+10}^{(w)} = 0.18$ 170 | 171 | - $i = 0.05$ 172 | 173 | Calculate $~_{11} AS$, the asset share at the end of year 11. 174 | 175 | *Solution.* 176 | 177 | At the beginning of the year, the asset share plus net income available 178 | is $$\begin{aligned} 179 | ~_{10} AS + G(1-c_{10}) - e_{10} = 1600 + 200(1-0.04) - 70 = 1722.\end{aligned}$$ 180 | At the end of the year, funds must be sufficient to pay those who 181 | survive, die and withdraw: $$\begin{aligned} 182 | & & p_{x+4}^{(\tau)} ~_{11} AS + 10000 q_{x+10}^{(d)} + ~_{11} CV q_{x+10}^{(w)} \\ 183 | &~~~~~~~~=& (1 - 0.02 - 0.18) ~_{11} AS + 10000 (0.02) + (1700) (0.18) = 0.8 ~_{11} AS +506.\end{aligned}$$ 184 | Thus, with $i = 0.05$, we have $(1.05) 1722 = 0.8 ~_{11} AS +506$, or 185 | $~_{11} AS = 1627.625$. 186 | 187 | ## Emerging Costs {#S:Expenses} 188 | 189 | Under “cash accounting,” a person or firm counts income when it is 190 | received and claims deductions when money is paid. Annual cash flows may 191 | consist of income items: premium income, interest and dividends on 192 | assets, maturity proceeds of assets, and reinsurance recoveries in 193 | respect of claims. The outflows may consist of: claims settle or amounts 194 | paid on account, reinsurance premiums, expenses, tax, and dividends. In 195 | cash accounting, the profit, or net income, is simply the excess of 196 | money received over money paid. Following cash makes life easy - one 197 | simply has to look at the checkbook to see when money is coming in and 198 | when it goes out. Projecting annual cash flows as they “emerge,” or 199 | emerging cash flows, is an important task. 200 | 201 | However, firms cannot simply follow cash to determine profitability. 202 | Consider the case of a savings bank that receives deposits from their 203 | customers without making any payments. This money received is not a 204 | “profit” to the bank - rather the bank receives the deposit as money 205 | coming in but also has an obligation to return the money when demanded 206 | by the customer. That is, the bank’s obligations have increased with the 207 | customer deposit. 208 | 209 | Under “accrual accounting,” revenues and costs are recognized when they 210 | are incurred, not necessarily when related payments are received or 211 | made. In many businesses, the timing of incurral is easy to identify. 212 | Typically, a company records revenue as incurred when a product or 213 | service is shipped or billed to a customer, not when payments are 214 | actually made (they could be much later if you are buying on a payment 215 | plan). To assess profitability, a company’s costs need to be matched to 216 | the revenue. 217 | 218 | Matching costs to revenue is difficult in life insurance because of the 219 | potential time lag between premiums (one type of revenue) and benefits. 220 | To understand the cost of a life insurance product, let us begin by 221 | considering a net basis, ignoring expenses from doing business as well 222 | as any profit motivation. 223 | 224 | Suppose that we have 1,000 identical policyholders age $x$ who purchase 225 | a policy with a generic premium payment schedule {$P_h$} and benefit 226 | schedule {$b_h$}. At some future time point, say $h$ years later, we 227 | expect there to be $1000 ~_h p_x$ policyholders alive with each policy 228 | having value $_h V$. Thus, the company’s total obligation is 229 | $1000 ~_h p_x ~_h V$. One year later, the company’s obligation will be 230 | $1000 v ~_{h+1} p_x ~_{h+1} V$. The increase in this obligation is a 231 | cost to the company. Using the recursive reserve formula, this cost may 232 | be expressed as $$\begin{aligned} 233 | 1000 ~v _{h+1} p_x ~_{h+1} V &-& 1000 ~_h p_x ~_h V \\ &= 234 | 1000 ~_h p_x \left( v p_{x+h}~_{h+1} V - ~_h V \right) \\ 235 | &= 1000 ~_h p_x \left( v p_{x+h}~_{h+1} V - \left\{ v q_{x+h} 236 | b_{h+1} - P_h +v p_{x+h}~_{h+1} V 237 | \right\}\right) \\ 238 | &= 1000 ~_h p_x \left( P_h - v q_{x+h} b_{h+1} \right) ,\end{aligned}$$ 239 | with the relation $~_{h+1} p_x = ~_h p_x ~p_{x+h}$. Thus, the cost is 240 | simply the expected cash inflow, premiums in excess of benefits. This is 241 | anticipated as we are working on a net basis which implies zero profits. 242 | 243 | ## Annual Profits {#S:AnnProfit} 244 | 245 | It is important to monitor the actual experience of a block of business. 246 | To this end, we use carats, or “hats,” to denote actual values. We use 247 | 248 | - $\hat{i}_k$ is the actual rate of return from invested assets, 249 | 250 | - $\hat{e}_k$ is the actual annual expenses per contract, 251 | 252 | - at death, $\hat{q}_{[x]+k}^{(d)}$ is the realized fraction of 253 | deaths, 254 | 255 | - at withdrawal, $\hat{q}_{[x]+k}^{(w)}$ is the realized fraction of 256 | withdrawals, and 257 | 258 | - at survival to the end of the year, 259 | $\hat{p}_{[x]+k}^{(\tau)} = 1 - (\hat{q}_{[x]+k}^{(d)}+\hat{q}_{[x]+k}^{(w)})$ 260 | is realized fraction that survived. 261 | 262 | With these quantities, the profit during the year (at time $k+1$) is 263 | $$\begin{aligned} 264 | Profit_{k+1} &= & 265 | \left( _k AS + G_k -\hat{e}_k\right) (1+ \hat{i}_k) - 266 | \hat{q}_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1}\right) - \hat{q}_{[x]+k}^{(w)} ~_{k+1} CV - \hat{p}_{[x]+k}^{(\tau)} ~_{k+1} AS .\end{aligned}$$ 267 | For this illustration, we have that assumed premiums $G_k$ and 268 | settlement expenses $E_k$ are the same as actual values. We also assume 269 | that $ _k AS$ represents the terminal (year-end) company obligation 270 | (that does not depend on experience). Recall the recursive asset share 271 | calculation $$\begin{aligned} 272 | (~_k AS + G_k - e_k)(1+i_k) = 273 | q_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1} - ~_{k+1} AS \right) + q_{[x]+k}^{(w)} ( _{k+1} CV - ~_{k+1} AS) + ~_{k+1} AS\end{aligned}$$ 274 | Substituting for $_{k+1} AS$, we may write the profit during the year is 275 | $$\begin{aligned} 276 | Profit_{k+1} &= & 277 | \left( _k AS + G_k -\hat{e}_k\right) (1+ \hat{i}_k) - 278 | \hat{q}_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1} - ~_{k+1} AS\right) \\ 279 | &~~~~~~~~-& \hat{q}_{[x]+k}^{(w)} (~_{k+1} CV -~_{k+1} AS) - ~_{k+1} AS \\ 280 | &= & 281 | \left( _k AS + G_k \right) (\hat{i}_k - i_k) \\ 282 | &~~~~~~~~+& e_k (1+ \hat{i}_k) - \hat{e}_k (1+ i_k) \\ 283 | &~~~~~~~~+& \left(b_{k+1} + E_{k+1} - ~_{k+1} AS\right) (q_{[x]+k}^{(d)} - \hat{q}_{[x]+k}^{(d)} ) \\ 284 | &~~~~~~~~+& \left( _{k+1} CV - ~_{k+1} AS\right) (q_{[x]+k}^{(w)} - \hat{q}_{[x]+k}^{(w)} ) .\end{aligned}$$ 285 | This is one way to decompose the profit into identifiable components, 286 | known as the *analysis of surplus*. Here, we interpret these portions of 287 | the profit: 288 | 289 | - $\left( _k AS + G_k \right) (\hat{i}_k - i_k)$ - due to favorable 290 | investment experience, 291 | 292 | - $e_k (1+ \hat{i}_k) - \hat{e}_k (1+ i_k)$ - due to favorable 293 | expense experience, 294 | 295 | - $\left(b_{k+1} + E_{k+1} - ~_{k+1} AS\right) (q_{[x]+k}^{(d)} - \hat{q}_{[x]+k}^{(d)} )$ - 296 | due to favorable mortality experience, and 297 | 298 | - $\left( _{k+1} CV - ~_{k+1} AS\right) (q_{[x]+k}^{(w)} - \hat{q}_{[x]+k}^{(w)} )$ - 299 | due to favorable withdrawal experience. 300 | 301 | ## Profit Testing {#S:ProfitTest} 302 | 303 | In the prior section, we defined profits based on actual experience. It 304 | is also helpful to define a profit at the plan design stage, before 305 | experience is realized. Instead of using actual experience, we now 306 | remove the carats and employ a *profit test basis* which is the set of 307 | assumptions used to examine the incidence and timing of profits. 308 | 309 | The profit during the year (at time $k+1$) is $$\begin{aligned} 310 | Pr_{k+1} &= & 311 | \left( _k AS + G_k -e_k\right) (1+ i_k) - 312 | q_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1}\right) - q_{[x]+k}^{(w)} ~_{k+1} CV - p_{[x]+k}^{(\tau)} ~_{k+1} AS .\end{aligned}$$ 313 | When summarizing profits, it can be helpful to remind ourselves that 314 | profits are only available for those policies in force at the beginning 315 | of the year. Thus, we might define a term such as 316 | $\Pi_{k+1} = ~_k p_{[x]}^{(\tau)} Pr_{k+1}$ for profits discounted for 317 | survivorship. The term *profit signature* is used for the vector of 318 | discounted profits 319 | $\boldsymbol{\Pi} = \left(\Pi_0, \Pi_1 \ldots\right)^{\prime}$. 320 | 321 | Profits depend on all the assumptions, including assumed interest. To 322 | summarize profits, one measure used is the *internal rate of return* 323 | (*IRR*), defined to be the solution of the equation $$\begin{aligned} 324 | \sum_k \left(\frac{1}{1+j} \right)^k \Pi_k = \sum_k \left(\frac{1}{1+j} \right)^k ~_{k-1} p_{[x]}^{(\tau)} Pr_k = 0,\end{aligned}$$ 325 | where profits are calculated using interest rate $i_k \equiv j$. The 326 | *IRR* is the solution of a nonlinear equation and so may not exist or 327 | may have multiple solutions. For the multiple solution problem, we can 328 | use the *hurdle rate*, defined to be the smallest *IRR* so that the 329 | contract is deemed adequately profitable. 330 | 331 | We can summarize profits using an assumed discount rate, $r$. Define the 332 | *net present value*, also known as the *expected present value of future 333 | profits*, to be $$\begin{aligned} 334 | NPV = \sum_k \left(\frac{1}{1+r} \right)^k \Pi_k = \sum_k \left(\frac{1}{1+r} \right)^k ~_{k-1} p_{[x]}^{(\tau)} Pr_k,\end{aligned}$$ 335 | where profits are calculated using interest rate $i_k \equiv r$. 336 | 337 | Another profit measure is the *discounted payback period*, the first 338 | time that the sum of discounted profits is non-negative. Here, the 339 | discounting is for (1) survival and (2) for interest, using risk 340 | discount rate $r$. That is, the discounted payback period is the 341 | smallest value of $m$ such that $$\begin{aligned} 342 | \sum_{k=0}^m \left(\frac{1}{1+r} \right)^k \Pi_k \ge 0.\end{aligned}$$ 343 | 344 | ## Deferred Acquisition Expenses and Modified Premium Reserves {#S:DAExpenses} 345 | 346 | In Chapter 7, we introduced the random future net and gross loss 347 | variables. Taking expectations, we have the corresponding policy values, 348 | 349 | $~_t V^n =$ EPV future benefits - EPV future net premiums 350 | 351 | and 352 | 353 | $~_t V^g =$ EPV future benefits + EPV future expenses - EPV future gross 354 | premiums. 355 | 356 | We interpret the difference, EPV future gross premiums - EPV future net 357 | premiums, to be the expected present value (EPV) of future expense 358 | loadings. Thus, we may define the EPV of expenses as 359 | 360 | $~_t V^e =~_t V^g - ~_t V^n$ = EPV future expenses - EPV future expense 361 | loadings. 362 | 363 | If we further assume that $~_0 V^g = ~_0 V^n =0 $ as is customary under 364 | the equivalence principle, then $~_0 V^e =0$. As we have seen in 365 | Section \[S:ExpenseAugment\], it is common for expenses to be high 366 | during early policy durations relative to later durations. It is also 367 | common for expense loading to be flat, meaning that in general one can 368 | anticipate a negative expense value in early durations. A negative 369 | expense value is referred to as a *deferred acquisition cost*, or DAC. 370 | 371 | Insurers use policy values for reserves, or liabilities, held against 372 | future obligations. At least at early durations, an insurer is required 373 | to hold more capital under a net premium basis than a gross premium 374 | basis. While it is not common to use gross premium basis in many 375 | jurisdictions, in the US the net premium valuation basis has been 376 | preferred, in part because it restricts an insurer’s ability to 377 | manipulate reserves by making accounting adjustments. 378 | 379 | Changes in reserves are expenses to a company and using a larger net 380 | premium basis can mean large expenses that may penalize smaller, 381 | fast-growing companies. Thus, a number of modified premium reserve bases 382 | have been introduced over the years, the most commonly used one being 383 | the 384 | 385 | **Full Preliminary Term Approach.** Let $P^n$ be the valuation net 386 | premium that we assume level for now. Further, define, for valuation 387 | purposes, 388 | 389 | - $_1 P_{[x]}^n = b_1 v q_{[x]}$ a modified first year cost of 390 | insurance and 391 | 392 | - $P^{FPT}$ a modified premium for subsequent years. 393 | 394 | The idea is the $P^n - ~ _1 P_{[x]}^n$ is the additional first year 395 | expense allowance. Thus, we have 396 | $0 \leq ~_1 P_{[x]}^n \leq P^n \leq P^{FPT}$. 397 | 398 | Let $h$ be the number of premium-payment periods and $j$ ($\leq h$) be 399 | the number of years that $P^{FPT}>P^n$. Then, $$\begin{aligned} 400 | _1 P_{[x]}^n + P^{FPT} a_{x:\overline{j-1|}} = P^n \ddot{a}_{x:\overline{j|}} .\end{aligned}$$ 401 | This is equivalent to considering splitting the policy into two 402 | components, a 1-year term and a separate contract issued to the same 403 | life one year later, if the life survives. 404 | 405 | With this $V_k^{FPT} = V_k^n, k\ge j$, that is, the full preliminary 406 | term reserve equals the net premium reserve when the premiums are the 407 | same. For $1 \le k < j$, we have $$\begin{aligned} 408 | V_k^{FPT} = \textrm{EPV Future Benefits} - P^{FPT} \ddot{a}_{[x]+k:\overline{j-k|}} - P^n ~_{j-k|h-j} \ddot{a}_{[x]+k} .\end{aligned}$$ 409 | Thus, for $1 \le k < j$ we have $V_k^{FPT} < V_k^n$ and 410 | $$\begin{aligned} 411 | V_k^n - V_k^{FPT}& =& \left\{\textrm{EPV Future Benefits} - P^{FPT} \ddot{a}_{[x]+k:\overline{k-j|}} - P^n ~_{j-k|h-j} \ddot{a}_{[x]+k} \right\}\\ 412 | & ~~~ -& \left\{\textrm{EPV Future Benefits} - P^n \ddot{a}_{[x]+k:\overline{k-j|}} - P^n ~_{j-k|h-j} \ddot{a}_{[x]+k} \right\} \\ 413 | & = & (P^{FPT}- P^n) \ddot{a}_{[x]+k:\overline{k-j|}} .\end{aligned}$$ 414 | We can think of the modified reserve $V_k^{FPT}$ as the net premium 415 | reserve minus a reserve for the unamortized excess premium. 416 | 417 | **Special Case 1. Ordinary Whole Life.** Here, take $j = \omega - x$ and 418 | $_1 P_{[x]}^n = v _1 q_{[x]} = A_{[x]:\overline{1|}}^1$. Thus, 419 | $A_{[x]:\overline{1|}}^1+ P^{FPT} a_x =P_x \ddot{a}_x$ and 420 | $$\begin{aligned} 421 | P^{FPT} &= \frac{P_x \ddot{a}_x - A_{[x]:\overline{1|}}^1}{a_x} = \frac{A_x - A_{[x]:\overline{1|}}^1}{a_x} \\ 422 | &= \frac{_1 E_x A_{x+1}}{ _1 E_x \ddot{a}_{x+1}} = \frac{A_{x+1}}{\ddot{a}_{x+1}} = P_{x+1} .\end{aligned}$$ 423 | 424 | **Special Case 2. $n$-pay, $m$-year Endowment.** Here, take $j = n$. 425 | Then, use the same logic in Special Case 1 to check that 426 | $P^{FPT} = _{n-1} P_{x+1:\overline{m-1|}}.$ Further, $$\begin{aligned} 427 | V_k^{FPT} &= A_{x+k:\overline{m-k|}} - _{n-1} P_{x+1:\overline{m-1|}} \ddot{a}_{x+k:\overline{m-k|}} 428 | = ~_{k-1}^{n-1} V_{x+1:\overline{m-1|}},\end{aligned}$$ that is, a 429 | reserve for a life age ($x+1$) at duration $k-1$ for an $n-1$-pay, 430 | $m-1$-year endowment policy. 431 | -------------------------------------------------------------------------------- /LifeCon1/Chapters/PensionLecture06Nov2014.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | title: "Pension Contingencies" 3 | output: 4 | html_document: 5 | toc: yes 6 | toc_depth: 3 7 | # pdf_document: 8 | # toc: yes 9 | # toc_depth: '3' 10 | --- 11 | # Pension Contingencies 12 | ## Introduction 13 | 14 | We think of a pension plan as a type of deferred compensation scheme - 15 | an arrangement made by an employer wherein benefits are accrued during a 16 | working lifetime of an employee and are paid during retirement. 17 | 18 | Several *ancillary* (i.e., auxiliary, assisting) benefits are typically 19 | associated with such a scheme: 20 | 21 | - survivor’s pension 22 | 23 | - lump sum death benefit 24 | 25 | - disability benefit 26 | 27 | - withdrawal benefit. 28 | 29 | The main benefit is a life annuity payable at retirement. 30 | 31 | There are two major categories of pension plans 32 | 33 | - *Defined Contribution Plans*. This type of plan specifies how much 34 | the employer (and employee) will contribute into the plan. 35 | Contributions are accumulated until withdrawal and then are 36 | typically converted into a life annuity. 37 | 38 | - *Defined Benefit Plans*. This type of plan specifies the level of 39 | benefit promised by a plan. Although the plan may call for some 40 | employee contributions, it is typically the responsibility of the 41 | employer, as plan sponsor, to make sure that the plans has 42 | sufficient funds to provide the promised benefits. 43 | 44 | When designing the plan, participants look to a desired *replacement 45 | ratio*, defined to be $$\begin{aligned} 46 | R = \frac{\text{pension income in the year after retirement}}{\text{salary in the year before retirement}} ,\end{aligned}$$ 47 | e.g., 50-70%. 48 | 49 | Pension contingencies is similar to life contingencies but there are 50 | pragmatic (and theoretical) differences: 51 | 52 | - Pension plans deal with smaller numbers of people. Hence, the 53 | uncertainty takes on a greater role. 54 | 55 | - Unlike life insurance, there is no real “underwriting” concept in 56 | pension work. Thus, pension actuaries have less control over many 57 | variables that go into projections, e.g., salary scales in benefit 58 | formulas, demographic variables such as number of new entrants, 59 | age/service composition of the workforce. 60 | 61 | - There is a different attitude towards “conservatism.” In pricing, 62 | the life actuary errs on the side of the company in setting 63 | assumptions and uses dividends/bonuses to address equity 64 | considerations. However, for the pension actuary, an error on the 65 | low side can cause plan ruination while an error on the high side 66 | means that the current profit of an employer is considerably 67 | reduced. 68 | 69 | - Because the employer is a major contributor to costs of a plan, we 70 | tend to take a “macro” in lieu of a “micro” viewpoint. That is, a 71 | plan’s overall ability to meet objectives may outweigh equity 72 | concerns for each individual participant. 73 | 74 | Employers sponsor plans for a number of reasons, including: 75 | 76 | - competitions for new employees; 77 | 78 | - to facilitate turnover of older employees by ensuring that they can 79 | retire 80 | 81 | - retention - to provide incentive for employees to stay with the 82 | employer 83 | 84 | - pressure from trade unions 85 | 86 | - tax efficient method of remunerating employees 87 | 88 | - responsibility to employees who have contributed to the company. 89 | 90 | ## Demographic Assumptions 91 | 92 | We assume we have available a (primary) multidecrement table with $T$ is 93 | the time to termination of employment. The cause of termination may 94 | include withdrawal, death in service, retirement for disability, or 95 | retirement for age-service. Recall our example discussed earlier: 96 | 97 | **Special Case 2. Pension Plan Termination and Retirement Model.** In 98 | this special case, we might let 99 | 100 | - 0 means Active 101 | 102 | - 1 means Retired 103 | 104 | - 2 means Disabled 105 | 106 | - 3 means Death 107 | 108 | - 4 means Termination 109 | 110 | - 5 means Withdraw for Other Reasons 111 | 112 | This model is relevant for certain retirement systems where benefit 113 | amounts vary by the reason for leaving employment. 114 | 115 | Source: 2003 *Society of Actuaries Pension Plan Turnover Study*. 116 | 117 | http://www.soa.org/research/experience-study/ 118 | pension/research-2003-soa-pension-plan-turnover-study.aspx 119 | 120 | {width=".5\textwidth"} 125 | 126 | {width=".5\textwidth"} 131 | 132 | We may also have secondary decrement tables that summarize quantities 133 | such as $\bar{a}_x^r$ - a life annuity for a retiree aged $x$. This life 134 | annuity may follow a different mortality pattern than those in service 135 | and, indeed, may use a different interest rate for discounting present 136 | values. 137 | 138 | ## Interest and Salary Assumptions 139 | 140 | Many plans, such as multiple employer plans, provide pension benefits in 141 | terms of \$*K* per month per year of service. So, for example, if an 142 | individual who has worked for 30 years receives $K=10$ \$, then that 143 | person receives $10 \times 30 = 300$ \$ per month at retirement. 144 | 145 | Further, it is also common for plans to provide a percent of salary at 146 | retirement. To this end, we may project salaries using 147 | 148 | $$\begin{aligned} 149 | (ES)_{x+k} = (AS)_x \frac{s_{x+k}}{s_x},\end{aligned}$$ 150 | 151 | where 152 | 153 | - $(ES)_{x+k}$ is the estimated or projected salary at age $x+k$, 154 | 155 | - $(AS)_x$ is the actual salary at age $x$, and 156 | 157 | - $s_x$ is the salary scale at age $x$. 158 | 159 | The salary scale $s_x$ may come from an integer age table or be based on 160 | a continuous mathematical function. For example, it is common to use 161 | $s_y = 1.04^y$ to represent a 4% salary escalation assumption. 162 | 163 | **Salary Rate**.\ 164 | Let $\bar{s}_y$ be the annual rate of salary at age $y$ so that the 165 | salary received from age $y$ to $y+1$ is $$\begin{aligned} 166 | s_y = \int_0^1 \bar{s}_{y+t} dt ,\end{aligned}$$ Thus, 167 | $$\begin{aligned} 168 | \frac{s_y}{s_x} &= \frac{\int_0^1 \bar{s}_{y+t} dt}{\int_0^1 \bar{s}_{x+t} dt} \\ 169 | &= \frac{\text{salary received from age y to y+1 }}{\text{salary received from age x to x+1 }} ,\end{aligned}$$ 170 | Now, suppose that $\bar{s}_y = 1.04^{y-20}$. Then $$\begin{aligned} 171 | s_y &= \int_0^1 \bar{s}_{y+t} dt = \int_0^1 1.04^{y-20+t} dt \\ 172 | &= 1.04^{y-20} \int_0^1 1.04^t dt =1.04^{y-20} \times \text{constant}\end{aligned}$$ 173 | Thus, $$\begin{aligned} 174 | \frac{s_y}{s_x} &= \frac{1.04^{y-20} \times \text{constant}}{1.04^{x-20} \times \text{constant}} \\ 175 | &= \frac{1.04^{y-20}}{1.04^{x-20} } =\frac{\bar{s}_y}{\bar{s}_x} \end{aligned}$$ 176 | Using the rate or the salary scale gives the same result. 177 | 178 | **AMLCR Example 10.2.** 179 | 180 | The pension benefit final average salary is the average salary three 181 | years before retirement. Assume a salary scale $s_y = 1.04^y$. Members’ 182 | salaries are increased each year, six months before the valuation date. 183 | 184 | - a\) A member aged 35 received \$75,000 in the year before the valuation 185 | date. Calculate the projected final average salary assuming retirement 186 | at age 65. 187 | 188 | - b\) A member aged 55 received was paid salary at a rate of \$100,000 per 189 | year before at that time. Calculate the projected final average salary 190 | assuming retirement at age 65. 191 | 192 | *Solution:* a) Received salary of 75,000 from age 34 to 35, so 193 | $(AS)_{34}=75000$. Thus, $$\begin{aligned} 194 | \text{Pred 3 Year Avg Salary}&= \frac{(ES)_{62}+(ES)_{63}+(ES)_{64}}{3} \\ 195 | &= (AS)_{34} \frac{s_{62}+s_{63}+s_{64}}{3 s_{34}} \\ 196 | &= (75000) \frac{1.04^{62}+1.04^{63}+1.04^{64}}{3 (1.04^{34})} \\ 197 | &= (75000) \frac{1.04^{28}+1.04^{29}+1.04^{30}}{3 } = 234,018.80.\end{aligned}$$ 198 | 199 | b\) Using mid-year assumption, the actual salary from 54.5 to 55.5 is 200 | 100,000. Thus, we have $$\begin{aligned} 201 | \text{Pred 3 Year Avg Salary} &= \frac{(ES)_{62}+(ES)_{63}+(ES)_{64}}{3} \\ 202 | &= (AS)_{54.5} \frac{s_{62}+s_{63}+s_{64}}{3 s_{54.5}} \\ 203 | &= (100000) \frac{1.04^{62}+1.04^{63}+1.04^{64}}{3 (1.04^{54.5})} = 139,638.80.\end{aligned}$$ 204 | 205 | $\Box$ 206 | 207 | ## Defined Contribution Plans 208 | 209 | In a defined contribution plan, the actuarial present value is the 210 | accumulation under interest of contributions made by or for the 211 | participants. The benefit is an annuity that can be purchased by such 212 | accumulation. The accumulated valued is typically available upon death 213 | and, under certain conditions, upon withdrawal before retirement. 214 | 215 | One task is to set the contribution rate to meet the target replacement 216 | rate for a “model” employee. 217 | 218 | **Actuarial Mathematics Example 11.5.2.** The contribution rate, which 219 | is to be applied as a proportion of salary, is calculated for a new 220 | participant at age 30. Assume that contributions are made at mid-year 221 | and use the UDD assumption for active multiple decrements. 222 | 223 | - Assume that there are no withdrawal benefits for the first 5 years 224 | but after that the accumulated contributions are vested, that is, 225 | become the property of the withdrawing participant, and will be 226 | applied toward an annuity to start no earlier than age 60. 227 | 228 | - Upon death after the end of the 5-year vesting period but before 229 | retirement income has commenced, the accumulated contributions are 230 | paid out. 231 | 232 | - For age-retirement at age 65, the benefit is a 10-year certain and 233 | life annuity with a benefit rate of 50% of the average salary over 234 | the 5 years between ages 60 and 65. 235 | 236 | Find the contribution level to provide for this benefit. 237 | 238 | *Solution.* 239 | 240 | The expected present value of benefits is $$\begin{aligned} 241 | APVB = ~_5 p_{30}^{(\tau)} ~v^{35} (0.5) ~(ES)_{65} ~\bar{a}_{\overline{65:\overline{10|}}}^r\end{aligned}$$ 242 | where $~\bar{a}_{\overline{65:\overline{10|}}}^r$ is the APV of a 243 | 10-year certain and life annuity to a retiree and $$\begin{aligned} 244 | (ES)_{65} = \frac{s_{60}+s_{61}+s_{62}+s_{63}+s_{64}}{5 s_{30}}\end{aligned}$$ 245 | is the projected (estimated) salary at age 65. Note that because 246 | contributions are as a percentage of salary, we may take the actual 247 | salary to equal 1. Thus, 248 | $(0.5) ~(ES)_{65} ~\bar{a}_{\overline{65:\overline{10|}}}^r$ is the 249 | present value of retirement benefit at age 65. We discount this for 250 | interest using $v^{35}$. Because those withdrawing after 5 years receive 251 | their full benefit, we need only consider the fraction that survive 5 252 | years, $~_5 p_{30}^{(\tau)}$. 253 | 254 | The expected present value of contributions for the first five years is 255 | $$\begin{aligned} 256 | APVC_1 &= 257 | c \sum_{k=0}^4 v^{k+1/2} ~ \frac{s_{30+k}}{s_{30}} ~_{k+1/2} p_{30}^{(\tau)} \\ 258 | &= 259 | c \sum_{k=0}^4 v^{k+1/2} ~ \frac{s_{30+k}}{s_{30}} ~_k p_{30}^{(\tau)} \left(1-0.5 q_{30+k}^{(\tau)} \right) ,\end{aligned}$$ 260 | using the UDD assumption. The expected present value of contributions 261 | for the next 30 years is $$\begin{aligned} 262 | APVC_2 = 263 | c ~_5 p_{30}^{(\tau)} \sum_{k=5}^{34} v^{k+1/2}~ \frac{s_{30+k}}{s_{30}} .\end{aligned}$$ 264 | Thus, we determine the contribution rate $c$ through equating 265 | $APVC_1 +APVC_2 = APVB$. 266 | 267 | $\Box$ 268 | 269 | ## Valuation of Benefits 270 | 271 | ### Final Salary Plans 272 | 273 | $$\begin{aligned} 274 | Benefit = (Yrs Of Service)\times(Final Average Salary)\times (Accrual Rate)\end{aligned}$$ 275 | 276 | Accrual Rate - $\alpha$, typically 1-2%, Wisconsin Retirement System is 277 | 1.6%. 278 | 279 | Entry age $x$, current age $y$, Retirement age 60. You could decompose 280 | this as: $$\begin{aligned} 281 | (60-x) (FAS) (AR) = (y-x) (FAS) (AR) +(60-y) (FAS) (AR)\end{aligned}$$ 282 | think of $(y-x) (FAS) (AR)$ as from past service, the accrued benefit. 283 | This is the part that the plan has agreed to fund based on past service 284 | and so is a liability of the plan (for valuation purposes). 285 | 286 | **Withdrawal Pension** Similarly, $(y-x) (FAS) (AR)$ is the amount that 287 | a person is due when he/she leaves the plan, except that $FAS$ is 288 | replaced by actual salary. 289 | 290 | This is sometimes adjusted by cost of living (inflation) increases 291 | (mandatory in the UK). 292 | 293 | - Projected Unit Credit - salaries are projected to exit date 294 | 295 | - Traditional (Current) Unit Credit - salaries are not projected 296 | 297 | ### Career Average Earnings Plans 298 | 299 | $$\begin{aligned} 300 | Benefit = (Yrs Of Service)\times(Career Average Salary)\times(Accrual Rate)\end{aligned}$$ 301 | 302 | *Career average revalued plan*, inflation adjustment is made before 303 | averaging salaries. 304 | -------------------------------------------------------------------------------- /LifeCon1/Chapters/UnivLifeLecture14Nov2012.Rmd: -------------------------------------------------------------------------------- 1 | --- 2 | title: "Universal Life" 3 | output: 4 | html_document: 5 | toc: yes 6 | toc_depth: 3 7 | # pdf_document: 8 | # toc: yes 9 | # toc_depth: '3' 10 | --- 11 | # Universal Life 12 | ## Introduction to Universal Life 13 | 14 | A **Universal Life** (UL) contract combines life insurance with an 15 | investment product in a transparent, flexible format. The policyholder 16 | may vary the amount and timing of premiums, within some constraints. 17 | Here is how it works: 18 | 19 | - The **premium** is deposited into an account, which is used to 20 | determine the death and survival benefits. 21 | 22 | - The insurer credits **interest** to the account at regular intervals 23 | (typically monthly). 24 | 25 | - The account, made up of the premiums and credited interest, is 26 | subject to deductions for management **expenses** and for the **cost 27 | of life insurance** coverage. 28 | 29 | - The account balance or **account value** (AV) is the balance of 30 | funds in the account. 31 | 32 | The account value represents the insurer’s liability, analogous to the 33 | reserve under a traditional contract. 34 | 35 | - Universal Life (UL) policies are sold as “permanent” life contracts 36 | (with tax advantages) 37 | 38 | - The AV represents the underlying value of the contract, and is used 39 | to determined the cash value 40 | 41 | With the UL, the policyholder’s money is not associated with specific 42 | assets, they are held in “notional” accounts. Credited interest declared 43 | need not reflect actual earnings 44 | 45 | In contrast, the **Variable Universal Life** (VUL), monies are held in 46 | separate accounts. Interest credited is directly associated with the 47 | yields on these funds. This is studied in Chapter 12 of DHW (but not by 48 | us). 49 | 50 | {width="120.00000%"} 51 | 52 | **Origins of Universal Life** 53 | 54 | Universal Life (UL) account values are based on an accumulation 55 | (recursive) process - known for well over 100 years. The idea behind UL 56 | apparently came up in the 1960’s, was made public in the 1970’s, and 57 | took off as a product in the 1980’s. Here are some references from Black 58 | and Skipper on *Life Insurance*, 59 | 60 | - George R. Dinney, “Universal Life,” *The Actuary*, Vol. XV, 61 | supplement (September 1981). p. 1; 62 | 63 | - Timothy Lynch, ”Universal Life Insurance: A Primer,” *The Journal of 64 | the American Society of Chartered Life Underwriters*, Vol. XXXVI 65 | (July 1982) 66 | 67 | According to Black and Skipper, the UL concept was at first not welcomed 68 | by most persons in the North American life insurance business. It was 69 | perceived as a threat to the orderly development of the industry, and as 70 | not being in consumers’ or agents’ best interests. 71 | 72 | Universal life policy sales in the United States had a meteoric rise 73 | from an effective zero market share of new sales in 1979 to over 38 74 | percent in 1985, its peak year. Since then, its share has declined to 75 | around a quarter of new individual life premiums-still a major 76 | proportion. 77 | 78 | ## Design Features of a UL Policy 79 | 80 | We now review in more detail the key design features of a UL policy. 81 | 82 | - **Death Benefit:** On the policyholder’s death the total benefit 83 | paid is the account value of the policy, plus an **additional death 84 | benefit** (ADB). 85 | 86 | There are two types of death benefit: 87 | 88 | - **Type A** offers a *level* total death benefit $\equiv$ the 89 | **Face Amount** of the policy. Here, Face Amount = AV + ADB. As 90 | the account value (AV) increases, the ADB decreases. 91 | 92 | - **Type B** offers a *level ADB*. The amount paid on death would 93 | be the AV plus the level ADB selected by the policyholder. The 94 | policyholder may have the option to adjust the ADB to allow for 95 | inflation. 96 | 97 | - Corridor factor = $\frac{\text{AV + ADB}}{\text{AV}}$. 98 | 99 | - The ADB is required to be significant, e.g., around 2.5 at age 40, 100 | decreasing to 1.05 at age 90. 101 | 102 | {width="120.00000%"} 103 | 104 | - **Premiums:** These may be subject to some minimum level, but 105 | otherwise are highly flexible. 106 | 107 | - **Expense Charges:** These are deducted from the account value. The 108 | rates will be variable at the insurer’s discretion, subject to a 109 | maximum specified in the original contract. 110 | 111 | - **Credited Interest:** Usually the credited interest rate will be 112 | decided at the insurer’s discretion, but it may be based on a 113 | published exogenous rate, such as yields on government bonds. A 114 | minimum guaranteed annual credited interest rate will be specified 115 | in the policy document. 116 | 117 | 118 | 119 | - **Cost of Insurance:** Each year the UL account value is subject to 120 | a charge to cover the cost of the selected death benefit cover. 121 | 122 | - The charge is called the Cost of Insurance, or CoI. 123 | 124 | - Usually, the CoI is calculated using an estimate (perhaps 125 | conservative) of the mortality rate for that period, so that, as 126 | the policyholder ages, the mortality charge (per \$1 of ADB) 127 | increases. 128 | 129 | - The CoI is then the single premium for a 1-year term insurance 130 | with sum insured equal to the ADB. 131 | 132 | - **Surrender Charge:** If the policyholder chooses to surrender the 133 | policy early, the surrender value paid will be the policyholder’s 134 | account balance reduced by a surrender charge. 135 | 136 | - The main purpose of the charge is to ensure that the insurer 137 | receives enough to pay its acquisition expenses. 138 | 139 | - The total cash available to the policyholder on surrender is the 140 | account value minus the surrender charge (or zero if greater), 141 | and is referred to as the **Cash Value** of the contract at each 142 | duration. 143 | 144 | 145 | 146 | - **Secondary Guarantees:** A common feature is a no lapse guarantee 147 | 148 | - Coverage continues even if the account value declines to zero, 149 | provided that the policyholder pays a pre-specified minimum 150 | premium 151 | 152 | - This guarantee comes into play if expense and mortality charges 153 | exceed the minimum premium 154 | 155 | - **Policy Loans:** Option: policyholder takes out a loan using the 156 | cash value as collateral. 157 | 158 | **Example: DHW SN 4.1: Type B UL Account Values** 159 | 160 | - A universal life policy is sold to a 45 year old man. The initial 161 | premium is \$2250 and the ADB is a fixed \$100,000. The policy 162 | charges are: $$\begin{aligned} 163 | \text{Cost of Insurance:}&&\text{120\% of the mortality of the Standard Select Mortality Model.}\\ 164 | &&\text{5\% per year interest.}\\ 165 | \text{Expense Charges:}&&\text{\$48 + 1\% of premium at the start of 166 | each year.}\end{aligned}$$ 167 | 168 | - Surrender penalties at each year end are the lesser of the full 169 | account value and the following surrender penalty schedule: 170 | 171 | ------------------- ------ ------ ------ ------ ------ ------- 172 | Year of surrender 1 2 3-4 5-7 8-10 $>$10 173 | Penalty 4500 4100 3500 2500 1200 0 174 | ------------------- ------ ------ ------ ------ ------ ------- 175 | 176 | - Assume (i) the policy remains in force for 20-years, (ii) interest 177 | is credited to the account at 5% per year, (iii) the policyholder 178 | pays the full premium of \$2250 each year, (iv) all cash flows occur 179 | at policy anniversaries. 180 | 181 | - Project the account value and the cash value at each year end for 182 | the 20-year projected term. 183 | 184 | 185 | 186 | - Each year, the insurer deducts from the account value the expense 187 | charge and the cost of insurance (which is the price for a 1-year 188 | term insurance with sum insured equal to the ADB), and adds to the 189 | account value any new premiums paid, and the credited interest for 190 | the year. 191 | 192 | - The first year is: 193 | 194 | ------------------- ------------------------------------------------------ 195 | Premium 2250 196 | Expense Charge $48 + 0.01\times 2250 = 70.50$ 197 | CoI $100,000\times 1.2 \times 0.0006592\times v = 75.34$ 198 | Interest Credited $0.05\times (2250-70.50-75.34) = 105.21$ 199 | Account Value $2250-70.50-75.34+105.21=2209.37$ 200 | Cash Value max$(2209.37-4500,0) = 0$ 201 | ------------------- ------------------------------------------------------ 202 | 203 | - The second year is:\ 204 | 205 | ------------------- ------------------------------------------------------ 206 | Premium 2250 207 | Expense Charge $48 + 0.01\times 2250 = 70.50$ 208 | CoI $100,000\times 1.2 \times 0.0007973\times v = 91.13$ 209 | Interest Credited $0.05\times (2209.37+2250-70.50-91.13) = 214.89$ 210 | Account Value $2209.37+2250-70.50-91.13+214.89=4512.63$ 211 | Cash Value max$(4512.63-4100,0) = 412.63$ 212 | ------------------- ------------------------------------------------------ 213 | 214 | {width=".9\textwidth"} 215 | 216 | ## Recursive Formulas for Universal Life 217 | 218 | ### Review of Asset Shares and Emerging Profits 219 | 220 | Recall our recursive asset share formula $$\begin{aligned} 221 | (~_k AS + G_k - e_k)(1+i_k) &= & 222 | q_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1}\right) \\ 223 | &~~~~+& q_{[x]+k}^{(w)} ~_{k+1} CV + p_{[x]+k}^{(\tau)} ~_{k+1} AS\end{aligned}$$ 224 | 225 | Asset shares are calculated during the year (using experience or another 226 | basis). Then, the profit during the year (at time $k+1$) is 227 | $$\begin{aligned} 228 | Pr_{k+1} &= & \left( _k AS + G_k -e_k\right) (1+ i_k) - 229 | q_{[x]+k}^{(d)} \left(b_{k+1} + E_{k+1}\right) \\ 230 | &~~~~-& q_{[x]+k}^{(w)} ~_{k+1} CV - p_{[x]+k}^{(\tau)} ~_{k+1} AS 231 | .\end{aligned}$$ 232 | 233 | Define $\Pi_{k+1} = ~_k p_{[x]}^{(\tau)} Pr_{k+1}$ to be profits 234 | discounted for survivorship. 235 | 236 | To summarize profits, we might use the net present value 237 | $$\begin{aligned} 238 | NPV = \sum_k \left(\frac{1}{1+r} \right)^k \Pi_k\end{aligned}$$ or 239 | another summary measure. 240 | 241 | ### Universal Life with Type B Death Benefit 242 | 243 | We can now apply these same basic principles to account value formulas. 244 | 245 | Use $AV$ for account value instead of AS, use $FA$ for face amount 246 | instead of benefit, and ignore lapsation. From the asset share formula, 247 | $$\begin{aligned} 248 | (~_k AV + G_k - e_k)(1+i_k^c) &= & 249 | q_{[x]+k} \left(FA_{k+1} + E_{k+1}\right) + p_{[x]+k} ~_{k+1} AV \\ 250 | &= q_{[x]+k} \left(FA_{k+1} + E_{k+1} - ~_{k+1} AV \right) +~_{k+1} 251 | AV\end{aligned}$$ 252 | 253 | With only one decrement (death), we have dropped the cause notation. 254 | Further, use $i_k^c$ for the interest credited. Now, we will define the 255 | Cost of Insurance to be $$\begin{aligned} 256 | CoI_{k} =v_q q_{[x]+k} \left(FA_{k+1} + E_{k+1} - ~_{k+1} AV 257 | \right)\end{aligned}$$ where $v_q$ is a discount factor. In the prior 258 | example, we used 5% for both the interest credited and the CoI discount 259 | factor. 260 | 261 | With discount factor $v_q$, the Cost of Insurance is $$\begin{aligned} 262 | CoI_{k} =v_q q_{[x]+k} \left(FA_{k+1} + E_{k+1} - ~_{k+1} AV 263 | \right) .\end{aligned}$$ With this, we define the account value 264 | $$\begin{aligned} 265 | ~_{k+1} AV = (~_k AV + G_k - e_k -CoI_k )(1+i_k^c)\end{aligned}$$ 266 | 267 | For Type B UL, the additional death benefit is $$\begin{aligned} 268 | ADB_{k+1} = FA_{k+1} - ~_{k+1} AV = \text{constant}\end{aligned}$$ so 269 | the recursion as presented is easy to calculate. Not so for Type A. We 270 | can use account values (with a possibly different interest rate) to 271 | determine the profit during the year (at time $k+1$) $$\begin{aligned} 272 | Pr_{k+1} &= & \left( _k AV + G_k -e_k\right) (1+ i_k) - 273 | q_{[x]+k}^{(d)} \left(FA_{k+1} + E_{k+1}\right) \\ 274 | &~~~~-& q_{[x]+k}^{(w)} ~_{k+1} CV - p_{[x]+k}^{(\tau)} ~_{k+1} AV 275 | .\end{aligned}$$ 276 | 277 | **Example: DHW SN 4.2: Type B UL Profit Test** 278 | 279 | - A universal life policy is sold to a 45 year old man, policy in 280 | force for 20 years. Premium is \$2250 for six years and the ADB is a 281 | fixed \$100,000. 282 | 283 | - 100% of the mortality of the Standard Select Mortality Model, 284 | 285 | - interest on all funds is 7 %, interest credited is 5% 286 | 287 | - Incurred expenses are \$2000 at inception, \$45 plus 1% of premium 288 | at renewal, \$50 on surrender (even if no cash value is paid), \$100 289 | on death. 290 | 291 | - Surrender (withdrawal) rates are:\ 292 | 293 | ------ ------ ------ ------ ------ ------- ------ 294 | Year 1 2-5 6-10 11 12-19 20 295 | Rate 0.05 0.02 0.03 0.10 0.15 1.00 296 | ------ ------ ------ ------ ------ ------- ------ 297 | 298 | - Project the profits at each year end for the 20 years. 299 | 300 | 301 | 302 | - The expense at policy initiation is 2,000, so $Pr_0 =-2000$. 303 | $$\begin{aligned} 304 | Pr_{k+1} &= & \left( _k AV + G_k -e_k\right) (1+ i_k) - 305 | q_{[x]+k}^{(d)} \left(FA_{k+1} + E_{k+1}\right) \\ 306 | &~~~~-& q_{[x]+k}^{(w)} ~_{k+1} CV - p_{[x]+k}^{(\tau)} ~_{k+1} AV 307 | .\end{aligned}$$ 308 | 309 | - The first year is:\ 310 | 311 | -------------------------------- ------------------------------------------------------ 312 | Account Value brought forward 0 313 | Premium 2250 314 | Expenses 0 (all accounted for in $Pr_0$) 315 | Interest Earned 0.07 $\times$ 2250 = 157.50 316 | Expected Death Costs 0.0006592 $\times$ (100 000 + 2209.37 + 100) = 67.44 317 | Expected Surrender Costs 0.999341 $\times$ 0.05 $\times$ (0 + 50) = 2.50 318 | Expected Cost of AV 319 | for continuing policyholders 0.999341 $\times$ 0.95 $\times$ 2209.37 = 2097.52 320 | $Pr_1$ 2250 + 157.50 - 67.44 - 2.50 - 2097.52 = 240.04 321 | -------------------------------- ------------------------------------------------------ 322 | 323 | - $q^{(d)}=q^{\prime (d)}=0.0006592$, 324 | $q^{(w)}=(1-q^{\prime (d)})q^{\prime (w)}=0.999341 \times 0.05$, 325 | and $p^{(\tau)}=(1-q^{\prime (d)})(1-q^{\prime (w)})=(0.999341) 326 | (0.95)$ 327 | 328 | 329 | 330 | - $$\begin{aligned} 331 | Pr_{k+1} &= & \left( _k AV + G_k -e_k\right) (1+ i_k) - 332 | q_{[x]+k}^{(d)} \left(FA_{k+1} + E_{k+1}\right) \\ 333 | &~~~~-& q_{[x]+k}^{(w)} ~_{k+1} CV - p_{[x]+k}^{(\tau)} ~_{k+1} AV 334 | .\end{aligned}$$ 335 | 336 | - The second year is:\ 337 | 338 | -------------------------------- ------------------------------------------------------- 339 | Account Value brought forward 2209.37 340 | Premium 2250 341 | Expenses 45 + 0.01 $\times$ 2250 = 67.50 342 | Interest Earned 0.07 $\times$ (2209.37 + 2250 - 67.50) = 307.43 343 | Expected Death Costs 0.0007973 $\times$ (100 000 + 4512.63 + 100) = 83.41 344 | Expected Surrender Costs 0.9992027 $\times$ 0.02 $\times$ (412.63 + 50) = 9.25 345 | Expected Cost of AV 346 | for continuing policyholders 0.9992027 $\times$ 0.98 $\times$ 4512.63 = 4418.85 347 | $Pr_2$ 2209.37 + 2250 - 67.50 + 307.43 - 83.41 348 | - 9.25 - 4418.85 =187.79 349 | -------------------------------- ------------------------------------------------------- 350 | 351 | {width=".9\textwidth"} 352 | 353 | {width=".9\textwidth"} 354 | 355 | ## Type A Universal Life 356 | 357 | We now modify our definition of the Cost of Insurance to accommodate 358 | Type A policies and the “corridor factor.” To simplify matters, drop 359 | settlement expenses and define the unmodified version to be 360 | $$\begin{aligned} 361 | CoI_{k}^f =v_q q_{[x]+k} \left(FA_{k+1} - ~_{k+1} AV ^f \right)\end{aligned}$$ 362 | and the associated account value $$\begin{aligned} 363 | ~_{k+1} AV^f = (~_k AV + G_k - e_k -CoI_k ^f )(1+i_k^c)\end{aligned}$$ 364 | Recall that we can think of the corridor factor as 365 | $\frac{\text{AV + ADB}}{\text{AV}}=\frac{\text{ADB}}{\text{AV}}+1$. So, 366 | now suppose that the corridor factor $\gamma_{k+1}$ is (exogenously) 367 | given. Define a modified cost of insurance $$\begin{aligned} 368 | CoI_{k}^c &=v_q q_{[x]+k} (\gamma_{k+1} -1) \times ~_{k+1} AV ^c\end{aligned}$$ 369 | and the associated account value $$\begin{aligned} 370 | ~_{k+1} AV^c = (~_k AV + G_k - e_k -CoI_k ^c )(1+i_k^c)\end{aligned}$$ 371 | 372 | The account value is thus $$\begin{aligned} 373 | ~_{k+1} AV = \min \left(~_{k+1} AV^f , ~_{k+1} AV ^c \right) .\end{aligned}$$ 374 | With $$\begin{aligned} 375 | ~_{k+1} AV^f &= (~_k AV + G_k - e_k -CoI_k ^f )(1+i_k^c)\\ 376 | ~_{k+1} AV^c &= (~_k AV + G_k - e_k -CoI_k ^c )(1+i_k^c)\end{aligned}$$ 377 | we can write this recursively as $$\begin{aligned} 378 | ~_{k+1} AV = (~_k AV + G_k - e_k -CoI_k )(1+i_k^c) ,\end{aligned}$$ 379 | where $$\begin{aligned} 380 | CoI_k = \max \left(CoI_k ^f , CoI_k ^c \right)\end{aligned}$$ 381 | 382 | To use the recursive formula for the account value, we need to calculate 383 | the cost of insurance. To this end, we start with $$\begin{aligned} 384 | CoI_{k}^f &=v_q q_{[x]+k} \left(FA_{k+1} - ~_{k+1} AV ^f \right) \\ 385 | ~_{k+1} AV^f &= (~_k AV + G_k - e_k -CoI_k ^f )(1+i_k^c)\end{aligned}$$ 386 | We can write $$\begin{aligned} 387 | CoI_{k}^f = v_q q_{[x]+k} \left(FA_{k+1} - (~_k AV + G_k - e_k 388 | -CoI_k ^f )(1+i_k^c) \right)\end{aligned}$$ so $$\begin{aligned} 389 | CoI_{k}^f (1-v_q q_{[x]+k}(1+i_k^c)) = v_q q_{[x]+k} \left(FA_{k+1} 390 | - (~_k AV + G_k - e_k )(1+i_k^c) \right)\end{aligned}$$ which yields 391 | $$\begin{aligned} 392 | CoI_{k}^f &=\frac{v_q q_{[x]+k} \left(FA_{k+1} - (~_k AV + G_k - 393 | e_k )(1+i_k^c) \right)}{1-v_q q_{[x]+k}(1+i_k^c)}\end{aligned}$$ 394 | 395 | Similarly, using $$\begin{aligned} 396 | CoI_{k}^c &= v_q q_{[x]+k} (\gamma_{k+1} -1) \times ~_{k+1} AV ^c \\ 397 | ~_{k+1} AV^c &= (~_k AV + G_k - e_k -CoI_k ^c )(1+i_k^c)\end{aligned}$$ 398 | We can write $$\begin{aligned} 399 | CoI_{k}^c &= v_q q_{[x]+k} (\gamma_{k+1} -1) (~_k AV + G_k - e_k 400 | -CoI_k ^c )(1+i_k^c)\end{aligned}$$ so $$\begin{aligned} 401 | CoI_{k}^c (1+v_q q_{[x]+k} (\gamma_{k+1} -1)(1+i_k^c)) = v_q 402 | q_{[x]+k} (\gamma_{k+1} -1) (~_k AV + G_k - e_k )(1+i_k^c)\end{aligned}$$ 403 | which yields $$\begin{aligned} 404 | CoI_{k}^c &=\frac{v_q q_{[x]+k} (\gamma_{k+1} -1) (~_k AV + G_k - 405 | e_k )(1+i_k^c)}{1+v_q q_{[x]+k}(\gamma_{k+1} -1)(1+i_k^c)}\end{aligned}$$ 406 | 407 | **Example: DHW SN 4.3: Type A UL Profit Test** Consider the following UL 408 | policy issued to a life age 45: 409 | 410 | - Face Amount \$100 000 and the policyholder surrenders the contract 411 | after 20 years. 412 | 413 | - Assume level premiums of \$3 500 are paid annually in advance 414 | 415 | - Assume that the credited interest rate is 4% per year. 416 | 417 | - Death Benefit Type A with corridor factors ($\gamma_k$)\ 418 | 419 | ------------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -- -- 420 | $k$ 1 2 3 4 5 6 7 8 9 10 421 | $\gamma_k$ 2.15 2.09 2.03 1.97 1.91 1.85 1.78 1.71 1.64 1.57 422 | $k$ 11 12 13 14 15 16 17 18 19 20 423 | $\gamma_k$ 1.50 1.46 1.42 1.38 1.34 1.30 1.28 1.26 1.24 1.24 424 | ------------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ -- -- 425 | 426 | - CoI based on: 120% of SSSM, 4% interest; the CoI is calculated 427 | assuming the fund earns 4% interest during the year. 428 | 429 | - Expense Charge: 20% of first premium + \$200, 3% of subsequent 430 | premiums. 431 | 432 | - Surrender Penalties: 433 | 434 | --------------------- ---------- ------ ------ ----- --------- 435 | Year 1 2 3-4 5-7 $\ge 8$ 436 | Surrender Penalties \$ 2 500 2100 1200 600 0 437 | --------------------- ---------- ------ ------ ----- --------- 438 | 439 | We wish to: 440 | 441 | - \(a) Project the account and cash values for this policy. 442 | 443 | - \(b) Profit test the contract using the basis below. Use annual steps, 444 | and determine the NPV and DPP using a risk discount rate of 10% per 445 | year. 446 | 447 | *Solution:* I will only go through the details for part (a). The study 448 | note provides information about the solution to part (b). 449 | 450 | To begin, we first note that the CoI discount rate equals the credited 451 | interest. This means $$\begin{aligned} 452 | v_q (1+i_k^c)=1\end{aligned}$$ which simplifies our calculations. 453 | 454 | For the First Year ($k=0$), we have 455 | 456 | ---------------- ------------------------- 457 | Premium 3500 458 | Expense Charge 200 + (0.20) 3500 = 900 459 | ---------------- ------------------------- 460 | 461 | The CoI assuming the death benefit is Face Amount - Account Value 462 | $$\begin{aligned} 463 | CoI_0^f &=\frac{q_{[45]} \left(v_q FA_1 - (~_0 AV + G_0 - e_0 ) \right)}{1-q_{[45]}} \\ 464 | &= \frac{(1.2) q_{[45]} (v_{.04}100 000 - (3500-900))} {1 - (1.2) 465 | q_{[45]}} = 74.07\end{aligned}$$ CoI assuming the death benefit is based 466 | on the corridor factor $$\begin{aligned} 467 | CoI_0^c &=\frac{q_{[45]} (\gamma_1 -1) (~_0 AV + G_0 - e_0 )}{1+(1.2 q_{[45]})(\gamma_1 -1)} \\ 468 | &= \frac{1.2(0.0006592) (2.15 -1) (3500-900 )}{1+ 469 | 1.2(0.0006592)(2.15 -1)}=2.36\end{aligned}$$ 470 | 471 | --------------- ---------------------------------------- 472 | $CoI_0$ $\max(CoI_0^f, CoI_0^c) = 74.07$ 473 | Account Value (3500 - 900 - 74.07) (1.04) = 2 626.97 474 | Cash Value max(2626.97 - 2500, 0) = 126.97 475 | --------------- ---------------------------------------- 476 | 477 | Example: DHW SN 4.3: Type A UL Profit Test 478 | 479 | {width=".9\textwidth"} 480 | -------------------------------------------------------------------------------- /LifeCon1/Figures/IRR_BinaryDF.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%DocumentNeededResources: font Helvetica 3 | %%+ font Helvetica-Bold 4 | %%+ font Helvetica-Oblique 5 | %%+ font Helvetica-BoldOblique 6 | %%+ font Symbol 7 | %%Title: R Graphics Output 8 | %%Creator: R Software 9 | %%Pages: (atend) 10 | %%BoundingBox: 0 0 576 360 11 | %%EndComments 12 | %%BeginProlog 13 | /bp { gs gs } def 14 | % begin .ps.prolog 15 | /gs { gsave } def 16 | /gr { grestore } def 17 | /ep { showpage gr gr } def 18 | /m { moveto } def 19 | /l { rlineto } def 20 | /np { newpath } def 21 | /cp { closepath } def 22 | /f { fill } def 23 | /o { stroke } def 24 | /c { newpath 0 360 arc } def 25 | /r { 4 2 roll moveto 1 copy 3 -1 roll exch 0 exch rlineto 0 rlineto -1 mul 0 exch rlineto closepath } def 26 | /p1 { stroke } def 27 | /p2 { gsave bg fill grestore newpath } def 28 | /p3 { gsave bg fill grestore stroke } def 29 | /p6 { gsave bg eofill grestore newpath } def 30 | /p7 { gsave bg eofill grestore stroke } def 31 | /t { 5 -2 roll moveto gsave rotate 32 | 1 index stringwidth pop 33 | mul neg 0 rmoveto show grestore } def 34 | /ta { 4 -2 roll moveto gsave rotate show } def 35 | /tb { 2 -1 roll 0 rmoveto show } def 36 | /cl { grestore gsave newpath 3 index 3 index moveto 1 index 37 | 4 -1 roll lineto exch 1 index lineto lineto 38 | closepath clip newpath } def 39 | /rgb { setrgbcolor } def 40 | /s { scalefont setfont } def 41 | % end .ps.prolog 42 | % begin encoding 43 | /WinAnsiEncoding [ 44 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 45 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 46 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 47 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 48 | /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright 49 | /parenleft /parenright /asterisk /plus /comma /minus /period /slash 50 | /zero /one /two /three /four /five /six /seven 51 | /eight /nine /colon /semicolon /less /equal /greater /question 52 | /at /A /B /C /D /E /F /G 53 | /H /I /J /K /L /M /N /O 54 | /P /Q /R /S /T /U /V /W 55 | /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore 56 | /grave /a /b /c /d /e /f /g 57 | /h /i /j /k /l /m /n /o 58 | /p /q /r /s /t /u /v /w 59 | /x /y /z /braceleft /bar /braceright /asciitilde /.notdef 60 | /Euro /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl 61 | /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /Zcaron /.notdef 62 | /.notdef /quoteleft /quoteright /quotedblleft /quotedblright /bullet /endash /emdash 63 | /tilde /trademark /scaron /guilsinglright /oe /.notdef /zcaron /Ydieresis 64 | /space /exclamdown /cent /sterling /currency /yen /brokenbar /section 65 | /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron 66 | /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered 67 | /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown 68 | /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla 69 | /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis 70 | /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply 71 | /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls 72 | /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla 73 | /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis 74 | /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide 75 | /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis 76 | ] 77 | def 78 | % end encoding 79 | %%IncludeResource: font Helvetica 80 | /Helvetica findfont 81 | dup length dict begin 82 | {1 index /FID ne {def} {pop pop} ifelse} forall 83 | /Encoding WinAnsiEncoding def 84 | currentdict 85 | end 86 | /Font1 exch definefont pop 87 | %%IncludeResource: font Helvetica-Bold 88 | /Helvetica-Bold findfont 89 | dup length dict begin 90 | {1 index /FID ne {def} {pop pop} ifelse} forall 91 | /Encoding WinAnsiEncoding def 92 | currentdict 93 | end 94 | /Font2 exch definefont pop 95 | %%IncludeResource: font Helvetica-Oblique 96 | /Helvetica-Oblique findfont 97 | dup length dict begin 98 | {1 index /FID ne {def} {pop pop} ifelse} forall 99 | /Encoding WinAnsiEncoding def 100 | currentdict 101 | end 102 | /Font3 exch definefont pop 103 | %%IncludeResource: font Helvetica-BoldOblique 104 | /Helvetica-BoldOblique findfont 105 | dup length dict begin 106 | {1 index /FID ne {def} {pop pop} ifelse} forall 107 | /Encoding WinAnsiEncoding def 108 | currentdict 109 | end 110 | /Font4 exch definefont pop 111 | %%IncludeResource: font Symbol 112 | /Symbol findfont 113 | dup length dict begin 114 | {1 index /FID ne {def} {pop pop} ifelse} forall 115 | currentdict 116 | end 117 | /Font5 exch definefont pop 118 | %%EndProlog 119 | %%Page: 1 1 120 | bp 121 | 59.04 73.44 545.76 300.96 cl 122 | /bg { 0 setgray } def 123 | 0 setgray 124 | 0.75 setlinewidth 125 | [] 0 setdash 126 | 1 setlinecap 127 | 1 setlinejoin 128 | 10.00 setmiterlimit 129 | 77.07 81.87 0.54 c p3 130 | 78.57 81.87 0.54 c p3 131 | 80.07 81.87 0.54 c p3 132 | 81.57 81.87 0.54 c p3 133 | 83.08 81.87 0.54 c p3 134 | 84.58 81.87 0.54 c p3 135 | 86.08 81.87 0.54 c p3 136 | 87.58 81.87 0.54 c p3 137 | 89.08 81.87 0.54 c p3 138 | 90.59 81.87 0.54 c p3 139 | 92.09 81.87 0.54 c p3 140 | 93.59 81.87 0.54 c p3 141 | 95.09 81.87 0.54 c p3 142 | 96.60 81.87 0.54 c p3 143 | 98.10 81.87 0.54 c p3 144 | 99.60 81.87 0.54 c p3 145 | 101.10 81.87 0.54 c p3 146 | 102.60 81.87 0.54 c p3 147 | 104.11 81.87 0.54 c p3 148 | 105.61 81.87 0.54 c p3 149 | 107.11 81.87 0.54 c p3 150 | 108.61 81.87 0.54 c p3 151 | 110.12 81.87 0.54 c p3 152 | 111.62 81.87 0.54 c p3 153 | 113.12 81.87 0.54 c p3 154 | 114.62 81.87 0.54 c p3 155 | 116.12 81.87 0.54 c p3 156 | 117.63 81.87 0.54 c p3 157 | 119.13 81.87 0.54 c p3 158 | 120.63 81.87 0.54 c p3 159 | 122.13 81.87 0.54 c p3 160 | 123.64 81.87 0.54 c p3 161 | 125.14 81.87 0.54 c p3 162 | 126.64 81.87 0.54 c p3 163 | 128.14 81.87 0.54 c p3 164 | 129.64 81.87 0.54 c p3 165 | 131.15 81.87 0.54 c p3 166 | 132.65 81.87 0.54 c p3 167 | 134.15 81.87 0.54 c p3 168 | 135.65 81.87 0.54 c p3 169 | 137.16 81.87 0.54 c p3 170 | 138.66 81.87 0.54 c p3 171 | 140.16 81.87 0.54 c p3 172 | 141.66 81.87 0.54 c p3 173 | 143.16 81.87 0.54 c p3 174 | 144.67 81.87 0.54 c p3 175 | 146.17 81.87 0.54 c p3 176 | 147.67 81.87 0.54 c p3 177 | 149.17 81.87 0.54 c p3 178 | 150.68 81.87 0.54 c p3 179 | 152.18 81.87 0.54 c p3 180 | 153.68 81.87 0.54 c p3 181 | 155.18 81.87 0.54 c p3 182 | 156.68 81.87 0.54 c p3 183 | 158.19 81.87 0.54 c p3 184 | 159.69 81.87 0.54 c p3 185 | 161.19 81.87 0.54 c p3 186 | 162.69 81.87 0.54 c p3 187 | 164.20 81.87 0.54 c p3 188 | 165.70 81.87 0.54 c p3 189 | 167.20 81.87 0.54 c p3 190 | 168.70 81.87 0.54 c p3 191 | 170.20 81.87 0.54 c p3 192 | 171.71 81.87 0.54 c p3 193 | 173.21 81.87 0.54 c p3 194 | 174.71 81.87 0.54 c p3 195 | 176.21 81.87 0.54 c p3 196 | 177.72 81.87 0.54 c p3 197 | 179.22 81.87 0.54 c p3 198 | 180.72 81.87 0.54 c p3 199 | 182.22 81.87 0.54 c p3 200 | 183.72 81.87 0.54 c p3 201 | 185.23 81.87 0.54 c p3 202 | 186.73 81.87 0.54 c p3 203 | 188.23 81.87 0.54 c p3 204 | 189.73 81.87 0.54 c p3 205 | 191.24 81.87 0.54 c p3 206 | 192.74 81.87 0.54 c p3 207 | 194.24 81.87 0.54 c p3 208 | 195.74 81.87 0.54 c p3 209 | 197.24 81.87 0.54 c p3 210 | 198.75 81.87 0.54 c p3 211 | 200.25 81.87 0.54 c p3 212 | 201.75 81.87 0.54 c p3 213 | 203.25 81.87 0.54 c p3 214 | 204.76 81.87 0.54 c p3 215 | 206.26 81.87 0.54 c p3 216 | 207.76 81.87 0.54 c p3 217 | 209.26 81.87 0.54 c p3 218 | 210.76 81.87 0.54 c p3 219 | 212.27 81.87 0.54 c p3 220 | 213.77 81.87 0.54 c p3 221 | 215.27 81.87 0.54 c p3 222 | 216.77 81.87 0.54 c p3 223 | 218.28 81.87 0.54 c p3 224 | 219.78 81.87 0.54 c p3 225 | 221.28 81.87 0.54 c p3 226 | 222.78 81.87 0.54 c p3 227 | 224.28 81.87 0.54 c p3 228 | 225.79 81.87 0.54 c p3 229 | 227.29 260.93 0.54 c p3 230 | 228.79 260.93 0.54 c p3 231 | 230.29 260.93 0.54 c p3 232 | 231.80 260.93 0.54 c p3 233 | 233.30 260.93 0.54 c p3 234 | 234.80 260.93 0.54 c p3 235 | 236.30 260.93 0.54 c p3 236 | 237.80 260.93 0.54 c p3 237 | 239.31 260.93 0.54 c p3 238 | 240.81 260.93 0.54 c p3 239 | 242.31 260.93 0.54 c p3 240 | 243.81 260.93 0.54 c p3 241 | 245.32 260.93 0.54 c p3 242 | 246.82 260.93 0.54 c p3 243 | 248.32 260.93 0.54 c p3 244 | 249.82 260.93 0.54 c p3 245 | 251.32 260.93 0.54 c p3 246 | 252.83 260.93 0.54 c p3 247 | 254.33 260.93 0.54 c p3 248 | 255.83 260.93 0.54 c p3 249 | 257.33 260.93 0.54 c p3 250 | 258.84 260.93 0.54 c p3 251 | 260.34 260.93 0.54 c p3 252 | 261.84 260.93 0.54 c p3 253 | 263.34 260.93 0.54 c p3 254 | 264.84 260.93 0.54 c p3 255 | 266.35 260.93 0.54 c p3 256 | 267.85 260.93 0.54 c p3 257 | 269.35 260.93 0.54 c p3 258 | 270.85 260.93 0.54 c p3 259 | 272.36 260.93 0.54 c p3 260 | 273.86 260.93 0.54 c p3 261 | 275.36 260.93 0.54 c p3 262 | 276.86 260.93 0.54 c p3 263 | 278.36 260.93 0.54 c p3 264 | 279.87 260.93 0.54 c p3 265 | 281.37 260.93 0.54 c p3 266 | 282.87 260.93 0.54 c p3 267 | 284.37 260.93 0.54 c p3 268 | 285.88 260.93 0.54 c p3 269 | 287.38 260.93 0.54 c p3 270 | 288.88 260.93 0.54 c p3 271 | 290.38 260.93 0.54 c p3 272 | 291.88 260.93 0.54 c p3 273 | 293.39 260.93 0.54 c p3 274 | 294.89 260.93 0.54 c p3 275 | 296.39 260.93 0.54 c p3 276 | 297.89 260.93 0.54 c p3 277 | 299.40 260.93 0.54 c p3 278 | 300.90 260.93 0.54 c p3 279 | 302.40 260.93 0.54 c p3 280 | 303.90 260.93 0.54 c p3 281 | 305.40 260.93 0.54 c p3 282 | 306.91 260.93 0.54 c p3 283 | 308.41 260.93 0.54 c p3 284 | 309.91 260.93 0.54 c p3 285 | 311.41 260.93 0.54 c p3 286 | 312.92 260.93 0.54 c p3 287 | 314.42 260.93 0.54 c p3 288 | 315.92 260.93 0.54 c p3 289 | 317.42 260.93 0.54 c p3 290 | 318.92 260.93 0.54 c p3 291 | 320.43 260.93 0.54 c p3 292 | 321.93 260.93 0.54 c p3 293 | 323.43 260.93 0.54 c p3 294 | 324.93 260.93 0.54 c p3 295 | 326.44 260.93 0.54 c p3 296 | 327.94 260.93 0.54 c p3 297 | 329.44 260.93 0.54 c p3 298 | 330.94 260.93 0.54 c p3 299 | 332.44 260.93 0.54 c p3 300 | 333.95 260.93 0.54 c p3 301 | 335.45 260.93 0.54 c p3 302 | 336.95 260.93 0.54 c p3 303 | 338.45 260.93 0.54 c p3 304 | 339.96 260.93 0.54 c p3 305 | 341.46 260.93 0.54 c p3 306 | 342.96 260.93 0.54 c p3 307 | 344.46 260.93 0.54 c p3 308 | 345.96 260.93 0.54 c p3 309 | 347.47 260.93 0.54 c p3 310 | 348.97 260.93 0.54 c p3 311 | 350.47 260.93 0.54 c p3 312 | 351.97 260.93 0.54 c p3 313 | 353.48 260.93 0.54 c p3 314 | 354.98 260.93 0.54 c p3 315 | 356.48 260.93 0.54 c p3 316 | 357.98 260.93 0.54 c p3 317 | 359.48 260.93 0.54 c p3 318 | 360.99 260.93 0.54 c p3 319 | 362.49 260.93 0.54 c p3 320 | 363.99 260.93 0.54 c p3 321 | 365.49 260.93 0.54 c p3 322 | 367.00 260.93 0.54 c p3 323 | 368.50 260.93 0.54 c p3 324 | 370.00 260.93 0.54 c p3 325 | 371.50 260.93 0.54 c p3 326 | 373.00 260.93 0.54 c p3 327 | 374.51 260.93 0.54 c p3 328 | 376.01 260.93 0.54 c p3 329 | 377.51 292.53 0.54 c p3 330 | 379.01 292.53 0.54 c p3 331 | 380.52 292.53 0.54 c p3 332 | 382.02 292.53 0.54 c p3 333 | 383.52 292.53 0.54 c p3 334 | 385.02 292.53 0.54 c p3 335 | 386.52 292.53 0.54 c p3 336 | 388.03 292.53 0.54 c p3 337 | 389.53 292.53 0.54 c p3 338 | 391.03 292.53 0.54 c p3 339 | 392.53 292.53 0.54 c p3 340 | 394.04 292.53 0.54 c p3 341 | 395.54 292.53 0.54 c p3 342 | 397.04 292.53 0.54 c p3 343 | 398.54 292.53 0.54 c p3 344 | 400.04 292.53 0.54 c p3 345 | 401.55 292.53 0.54 c p3 346 | 403.05 292.53 0.54 c p3 347 | 404.55 292.53 0.54 c p3 348 | 406.05 292.53 0.54 c p3 349 | 407.56 292.53 0.54 c p3 350 | 409.06 292.53 0.54 c p3 351 | 410.56 292.53 0.54 c p3 352 | 412.06 292.53 0.54 c p3 353 | 413.56 292.53 0.54 c p3 354 | 415.07 292.53 0.54 c p3 355 | 416.57 292.53 0.54 c p3 356 | 418.07 292.53 0.54 c p3 357 | 419.57 292.53 0.54 c p3 358 | 421.08 292.53 0.54 c p3 359 | 422.58 292.53 0.54 c p3 360 | 424.08 292.53 0.54 c p3 361 | 425.58 292.53 0.54 c p3 362 | 427.08 292.53 0.54 c p3 363 | 428.59 292.53 0.54 c p3 364 | 430.09 292.53 0.54 c p3 365 | 431.59 292.53 0.54 c p3 366 | 433.09 292.53 0.54 c p3 367 | 434.60 292.53 0.54 c p3 368 | 436.10 292.53 0.54 c p3 369 | 437.60 292.53 0.54 c p3 370 | 439.10 292.53 0.54 c p3 371 | 440.60 292.53 0.54 c p3 372 | 442.11 292.53 0.54 c p3 373 | 443.61 292.53 0.54 c p3 374 | 445.11 292.53 0.54 c p3 375 | 446.61 292.53 0.54 c p3 376 | 448.12 292.53 0.54 c p3 377 | 449.62 292.53 0.54 c p3 378 | 451.12 292.53 0.54 c p3 379 | 452.62 292.53 0.54 c p3 380 | 454.12 292.53 0.54 c p3 381 | 455.63 292.53 0.54 c p3 382 | 457.13 292.53 0.54 c p3 383 | 458.63 292.53 0.54 c p3 384 | 460.13 292.53 0.54 c p3 385 | 461.64 292.53 0.54 c p3 386 | 463.14 292.53 0.54 c p3 387 | 464.64 292.53 0.54 c p3 388 | 466.14 292.53 0.54 c p3 389 | 467.64 292.53 0.54 c p3 390 | 469.15 292.53 0.54 c p3 391 | 470.65 292.53 0.54 c p3 392 | 472.15 292.53 0.54 c p3 393 | 473.65 292.53 0.54 c p3 394 | 475.16 292.53 0.54 c p3 395 | 476.66 292.53 0.54 c p3 396 | 478.16 292.53 0.54 c p3 397 | 479.66 292.53 0.54 c p3 398 | 481.16 292.53 0.54 c p3 399 | 482.67 292.53 0.54 c p3 400 | 484.17 292.53 0.54 c p3 401 | 485.67 292.53 0.54 c p3 402 | 487.17 292.53 0.54 c p3 403 | 488.68 292.53 0.54 c p3 404 | 490.18 292.53 0.54 c p3 405 | 491.68 292.53 0.54 c p3 406 | 493.18 292.53 0.54 c p3 407 | 494.68 292.53 0.54 c p3 408 | 496.19 292.53 0.54 c p3 409 | 497.69 292.53 0.54 c p3 410 | 499.19 292.53 0.54 c p3 411 | 500.69 292.53 0.54 c p3 412 | 502.20 292.53 0.54 c p3 413 | 503.70 292.53 0.54 c p3 414 | 505.20 292.53 0.54 c p3 415 | 506.70 292.53 0.54 c p3 416 | 508.20 292.53 0.54 c p3 417 | 509.71 292.53 0.54 c p3 418 | 511.21 292.53 0.54 c p3 419 | 512.71 292.53 0.54 c p3 420 | 514.21 292.53 0.54 c p3 421 | 515.72 292.53 0.54 c p3 422 | 517.22 292.53 0.54 c p3 423 | 518.72 292.53 0.54 c p3 424 | 520.22 292.53 0.54 c p3 425 | 521.72 292.53 0.54 c p3 426 | 523.23 292.53 0.54 c p3 427 | 524.73 292.53 0.54 c p3 428 | 526.23 292.53 0.54 c p3 429 | 527.73 292.53 0.54 c p3 430 | 0.00 0.00 576.00 360.00 cl 431 | 0 setgray 432 | 0.75 setlinewidth 433 | [] 0 setdash 434 | 1 setlinecap 435 | 1 setlinejoin 436 | 10.00 setmiterlimit 437 | np 438 | 77.07 73.44 m 439 | 450.66 0 l 440 | o 441 | np 442 | 77.07 73.44 m 443 | 0 -7.20 l 444 | o 445 | np 446 | 152.18 73.44 m 447 | 0 -7.20 l 448 | o 449 | np 450 | 227.29 73.44 m 451 | 0 -7.20 l 452 | o 453 | np 454 | 302.40 73.44 m 455 | 0 -7.20 l 456 | o 457 | np 458 | 377.51 73.44 m 459 | 0 -7.20 l 460 | o 461 | np 462 | 452.62 73.44 m 463 | 0 -7.20 l 464 | o 465 | np 466 | 527.73 73.44 m 467 | 0 -7.20 l 468 | o 469 | /Font1 findfont 12 s 470 | 77.07 47.52 (-1.0) .5 0 t 471 | 152.18 47.52 (-0.5) .5 0 t 472 | 227.29 47.52 (0.0) .5 0 t 473 | 302.40 47.52 (0.5) .5 0 t 474 | 377.51 47.52 (1.0) .5 0 t 475 | 452.62 47.52 (1.5) .5 0 t 476 | 527.73 47.52 (2.0) .5 0 t 477 | np 478 | 59.04 81.87 m 479 | 0 210.66 l 480 | o 481 | np 482 | 59.04 81.87 m 483 | -7.20 0 l 484 | o 485 | np 486 | 59.04 124.00 m 487 | -7.20 0 l 488 | o 489 | np 490 | 59.04 166.13 m 491 | -7.20 0 l 492 | o 493 | np 494 | 59.04 208.27 m 495 | -7.20 0 l 496 | o 497 | np 498 | 59.04 250.40 m 499 | -7.20 0 l 500 | o 501 | np 502 | 59.04 292.53 m 503 | -7.20 0 l 504 | o 505 | 41.76 81.87 (0.0) .5 90 t 506 | 41.76 124.00 (0.2) .5 90 t 507 | 41.76 166.13 (0.4) .5 90 t 508 | 41.76 208.27 (0.6) .5 90 t 509 | 41.76 250.40 (0.8) .5 90 t 510 | 41.76 292.53 (1.0) .5 90 t 511 | np 512 | 59.04 73.44 m 513 | 486.72 0 l 514 | 0 227.52 l 515 | -486.72 0 l 516 | 0 -227.52 l 517 | o 518 | 0.00 0.00 576.00 360.00 cl 519 | /Font1 findfont 12 s 520 | 0 setgray 521 | 302.40 18.72 (x) .5 0 t 522 | 0.00 0.00 576.00 360.00 cl 523 | /Font1 findfont 14 s 524 | 0 setgray 525 | 59.04 308.57 (F\(x\)) 1.60 0 t 526 | 59.04 73.44 545.76 300.96 cl 527 | 0 setgray 528 | 0.75 setlinewidth 529 | [] 0 setdash 530 | 1 setlinecap 531 | 1 setlinejoin 532 | 10.00 setmiterlimit 533 | np 534 | 227.29 81.87 m 535 | 0 179.06 l 536 | o 537 | np 538 | 377.51 260.93 m 539 | 0 31.60 l 540 | o 541 | /bg { 0 setgray } def 542 | 227.29 260.93 4.51 c p3 543 | 227.29 81.87 4.51 c p1 544 | 377.51 260.93 4.51 c p1 545 | 377.51 292.53 4.51 c p3 546 | ep 547 | %%Trailer 548 | %%Pages: 1 549 | %%EOF 550 | -------------------------------------------------------------------------------- /LifeCon1/Figures/JL_ActMathCh3Figure4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/JL_ActMathCh3Figure4.png -------------------------------------------------------------------------------- /LifeCon1/Figures/JL_ActMathCh3Figure6.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/JL_ActMathCh3Figure6.png -------------------------------------------------------------------------------- /LifeCon1/Figures/JL_JointLifeTimeline.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/JL_JointLifeTimeline.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MDM_MultipleDecrement.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MDM_MultipleDecrement.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MDM_RetirementSystemTurnoverL.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MDM_RetirementSystemTurnoverL.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MDM_RetirementSystemTurnoverR.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MDM_RetirementSystemTurnoverR.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MSM_HealthyDisabledDead.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MSM_HealthyDisabledDead.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MSM_JointLifeStatus.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MSM_JointLifeStatus.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MSM_LifeDeathOtherDeath.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MSM_LifeDeathOtherDeath.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MSM_MultipleDecrement.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MSM_MultipleDecrement.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/MSM_TwoState.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/MSM_TwoState.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/PC_RetirementSystemTurnoverL.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/PC_RetirementSystemTurnoverL.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/PC_RetirementSystemTurnoverR.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/PC_RetirementSystemTurnoverR.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/PV_F2WholeLifeDistn.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%DocumentNeededResources: font Helvetica 3 | %%+ font Helvetica-Bold 4 | %%+ font Helvetica-Oblique 5 | %%+ font Helvetica-BoldOblique 6 | %%+ font Symbol 7 | %%Title: R Graphics Output 8 | %%Creator: R Software 9 | %%Pages: (atend) 10 | %%BoundingBox: 0 0 432 288 11 | %%EndComments 12 | %%BeginProlog 13 | /bp { gs gs } def 14 | % begin .ps.prolog 15 | /gs { gsave } def 16 | /gr { grestore } def 17 | /ep { showpage gr gr } def 18 | /m { moveto } def 19 | /l { rlineto } def 20 | /np { newpath } def 21 | /cp { closepath } def 22 | /f { fill } def 23 | /o { stroke } def 24 | /c { newpath 0 360 arc } def 25 | /r { 4 2 roll moveto 1 copy 3 -1 roll exch 0 exch rlineto 0 rlineto -1 mul 0 exch rlineto closepath } def 26 | /p1 { stroke } def 27 | /p2 { gsave bg fill grestore newpath } def 28 | /p3 { gsave bg fill grestore stroke } def 29 | /t { 5 -2 roll moveto gsave rotate 30 | 1 index stringwidth pop 31 | mul neg 0 rmoveto show grestore } def 32 | /ta { 4 -2 roll moveto gsave rotate show } def 33 | /tb { 2 -1 roll 0 rmoveto show } def 34 | /cl { grestore gsave newpath 3 index 3 index moveto 1 index 35 | 4 -1 roll lineto exch 1 index lineto lineto 36 | closepath clip newpath } def 37 | /rgb { setrgbcolor } def 38 | /s { scalefont setfont } def 39 | % end .ps.prolog 40 | % begin encoding 41 | /WinAnsiEncoding [ 42 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 43 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 44 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 45 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 46 | /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright 47 | /parenleft /parenright /asterisk /plus /comma /minus /period /slash 48 | /zero /one /two /three /four /five /six /seven 49 | /eight /nine /colon /semicolon /less /equal /greater /question 50 | /at /A /B /C /D /E /F /G 51 | /H /I /J /K /L /M /N /O 52 | /P /Q /R /S /T /U /V /W 53 | /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore 54 | /grave /a /b /c /d /e /f /g 55 | /h /i /j /k /l /m /n /o 56 | /p /q /r /s /t /u /v /w 57 | /x /y /z /braceleft /bar /braceright /asciitilde /.notdef 58 | /Euro /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl 59 | /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /Zcaron /.notdef 60 | /.notdef /quoteleft /quoteright /quotedblleft /quotedblright /bullet /endash /emdash 61 | /tilde /trademark /scaron /guilsinglright /oe /.notdef /zcaron /Ydieresis 62 | /space /exclamdown /cent /sterling /currency /yen /brokenbar /section 63 | /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron 64 | /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered 65 | /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown 66 | /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla 67 | /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis 68 | /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply 69 | /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls 70 | /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla 71 | /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis 72 | /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide 73 | /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis 74 | ] 75 | def 76 | % end encoding 77 | %%IncludeResource: font Helvetica 78 | /Helvetica findfont 79 | dup length dict begin 80 | {1 index /FID ne {def} {pop pop} ifelse} forall 81 | /Encoding WinAnsiEncoding def 82 | currentdict 83 | end 84 | /Font1 exch definefont pop 85 | %%IncludeResource: font Helvetica-Bold 86 | /Helvetica-Bold findfont 87 | dup length dict begin 88 | {1 index /FID ne {def} {pop pop} ifelse} forall 89 | /Encoding WinAnsiEncoding def 90 | currentdict 91 | end 92 | /Font2 exch definefont pop 93 | %%IncludeResource: font Helvetica-Oblique 94 | /Helvetica-Oblique findfont 95 | dup length dict begin 96 | {1 index /FID ne {def} {pop pop} ifelse} forall 97 | /Encoding WinAnsiEncoding def 98 | currentdict 99 | end 100 | /Font3 exch definefont pop 101 | %%IncludeResource: font Helvetica-BoldOblique 102 | /Helvetica-BoldOblique findfont 103 | dup length dict begin 104 | {1 index /FID ne {def} {pop pop} ifelse} forall 105 | /Encoding WinAnsiEncoding def 106 | currentdict 107 | end 108 | /Font4 exch definefont pop 109 | %%IncludeResource: font Symbol 110 | /Symbol findfont 111 | dup length dict begin 112 | {1 index /FID ne {def} {pop pop} ifelse} forall 113 | currentdict 114 | end 115 | /Font5 exch definefont pop 116 | %%EndProlog 117 | %%Page: 1 1 118 | bp 119 | 0.00 0.00 432.00 288.00 cl 120 | /Font1 findfont 12 s 121 | 0 setgray 122 | 139.70 18.72 (Whole Lif) 0 ta 123 | -0.360 (e Loss Random V) tb 124 | -0.840 (ar) tb 125 | 0.180 (iab) tb 126 | -0.240 (le) tb gr 127 | 12.96 151.20 (Frequency) .5 90 t 128 | 0.00 0.00 432.00 288.00 cl 129 | 0 setgray 130 | 0.75 setlinewidth 131 | [] 0 setdash 132 | 1 setlinecap 133 | 1 setlinejoin 134 | 10.00 setmiterlimit 135 | np 136 | 96.14 73.44 m 137 | 292.93 0 l 138 | o 139 | np 140 | 96.14 73.44 m 141 | 0 -7.20 l 142 | o 143 | np 144 | 144.96 73.44 m 145 | 0 -7.20 l 146 | o 147 | np 148 | 193.78 73.44 m 149 | 0 -7.20 l 150 | o 151 | np 152 | 242.61 73.44 m 153 | 0 -7.20 l 154 | o 155 | np 156 | 291.43 73.44 m 157 | 0 -7.20 l 158 | o 159 | np 160 | 340.25 73.44 m 161 | 0 -7.20 l 162 | o 163 | np 164 | 389.07 73.44 m 165 | 0 -7.20 l 166 | o 167 | /Font1 findfont 12 s 168 | 96.14 47.52 (-0.2) .5 0 t 169 | 144.96 47.52 (0.0) .5 0 t 170 | 193.78 47.52 (0.2) .5 0 t 171 | 242.61 47.52 (0.4) .5 0 t 172 | 291.43 47.52 (0.6) .5 0 t 173 | 340.25 47.52 (0.8) .5 0 t 174 | 389.07 47.52 (1.0) .5 0 t 175 | np 176 | 59.04 79.20 m 177 | 0 143.60 l 178 | o 179 | np 180 | 59.04 79.20 m 181 | -7.20 0 l 182 | o 183 | np 184 | 59.04 107.92 m 185 | -7.20 0 l 186 | o 187 | np 188 | 59.04 136.64 m 189 | -7.20 0 l 190 | o 191 | np 192 | 59.04 165.36 m 193 | -7.20 0 l 194 | o 195 | np 196 | 59.04 194.08 m 197 | -7.20 0 l 198 | o 199 | np 200 | 59.04 222.80 m 201 | -7.20 0 l 202 | o 203 | 41.76 79.20 (0) .5 90 t 204 | 41.76 107.92 (1000) .5 90 t 205 | 41.76 165.36 (3000) .5 90 t 206 | 41.76 222.80 (5000) .5 90 t 207 | 59.04 73.44 401.76 228.96 cl 208 | 0 setgray 209 | 0.75 setlinewidth 210 | [] 0 setdash 211 | 1 setlinecap 212 | 1 setlinejoin 213 | 10.00 setmiterlimit 214 | 71.73 79.20 2.44 50.55 r p1 215 | 74.17 79.20 2.44 144.00 r p1 216 | 76.62 79.20 2.44 122.52 r p1 217 | 79.06 79.20 2.44 105.40 r p1 218 | 81.50 79.20 2.44 97.39 r p1 219 | 83.94 79.20 2.44 85.70 r p1 220 | 86.38 79.20 2.44 79.01 r p1 221 | 88.82 79.20 2.44 74.04 r p1 222 | 91.26 79.20 2.44 66.89 r p1 223 | 93.70 79.20 2.44 62.03 r p1 224 | 96.14 79.20 2.44 57.07 r p1 225 | 98.58 79.20 2.44 55.26 r p1 226 | 101.03 79.20 2.44 53.53 r p1 227 | 103.47 79.20 2.44 50.03 r p1 228 | 105.91 79.20 2.44 45.61 r p1 229 | 108.35 79.20 2.44 42.56 r p1 230 | 110.79 79.20 2.44 41.33 r p1 231 | 113.23 79.20 2.44 42.53 r p1 232 | 115.67 79.20 2.44 38.25 r p1 233 | 118.11 79.20 2.44 37.34 r p1 234 | 120.55 79.20 2.44 35.93 r p1 235 | 122.99 79.20 2.44 36.47 r p1 236 | 125.44 79.20 2.44 33.26 r p1 237 | 127.88 79.20 2.44 32.08 r p1 238 | 130.32 79.20 2.44 30.44 r p1 239 | 132.76 79.20 2.44 29.55 r p1 240 | 135.20 79.20 2.44 28.15 r p1 241 | 137.64 79.20 2.44 26.65 r p1 242 | 140.08 79.20 2.44 27.69 r p1 243 | 142.52 79.20 2.44 26.82 r p1 244 | 144.96 79.20 2.44 26.59 r p1 245 | 147.41 79.20 2.44 25.50 r p1 246 | 149.85 79.20 2.44 24.47 r p1 247 | 152.29 79.20 2.44 24.56 r p1 248 | 154.73 79.20 2.44 22.37 r p1 249 | 157.17 79.20 2.44 21.40 r p1 250 | 159.61 79.20 2.44 22.00 r p1 251 | 162.05 79.20 2.44 19.33 r p1 252 | 164.49 79.20 2.44 21.80 r p1 253 | 166.93 79.20 2.44 20.53 r p1 254 | 169.37 79.20 2.44 19.87 r p1 255 | 171.82 79.20 2.44 18.81 r p1 256 | 174.26 79.20 2.44 18.15 r p1 257 | 176.70 79.20 2.44 17.23 r p1 258 | 179.14 79.20 2.44 18.52 r p1 259 | 181.58 79.20 2.44 18.18 r p1 260 | 184.02 79.20 2.44 17.32 r p1 261 | 186.46 79.20 2.44 16.83 r p1 262 | 188.90 79.20 2.44 16.31 r p1 263 | 191.34 79.20 2.44 16.05 r p1 264 | 193.78 79.20 2.44 16.37 r p1 265 | 196.23 79.20 2.44 16.28 r p1 266 | 198.67 79.20 2.44 16.05 r p1 267 | 201.11 79.20 2.44 15.14 r p1 268 | 203.55 79.20 2.44 14.42 r p1 269 | 205.99 79.20 2.44 15.54 r p1 270 | 208.43 79.20 2.44 14.27 r p1 271 | 210.87 79.20 2.44 14.24 r p1 272 | 213.31 79.20 2.44 15.02 r p1 273 | 215.75 79.20 2.44 13.96 r p1 274 | 218.19 79.20 2.44 13.53 r p1 275 | 220.64 79.20 2.44 15.02 r p1 276 | 223.08 79.20 2.44 13.33 r p1 277 | 225.52 79.20 2.44 13.81 r p1 278 | 227.96 79.20 2.44 13.27 r p1 279 | 230.40 79.20 2.44 12.78 r p1 280 | 232.84 79.20 2.44 13.12 r p1 281 | 235.28 79.20 2.44 11.98 r p1 282 | 237.72 79.20 2.44 11.26 r p1 283 | 240.16 79.20 2.44 11.98 r p1 284 | 242.61 79.20 2.44 11.83 r p1 285 | 245.05 79.20 2.44 11.83 r p1 286 | 247.49 79.20 2.44 11.49 r p1 287 | 249.93 79.20 2.44 12.61 r p1 288 | 252.37 79.20 2.44 12.44 r p1 289 | 254.81 79.20 2.44 10.71 r p1 290 | 257.25 79.20 2.44 10.83 r p1 291 | 259.69 79.20 2.44 10.68 r p1 292 | 262.13 79.20 2.44 10.77 r p1 293 | 264.57 79.20 2.44 10.86 r p1 294 | 267.02 79.20 2.44 10.20 r p1 295 | 269.46 79.20 2.44 9.79 r p1 296 | 271.90 79.20 2.44 10.05 r p1 297 | 274.34 79.20 2.44 10.17 r p1 298 | 276.78 79.20 2.44 10.14 r p1 299 | 279.22 79.20 2.44 9.48 r p1 300 | 281.66 79.20 2.44 9.28 r p1 301 | 284.10 79.20 2.44 10.31 r p1 302 | 286.54 79.20 2.44 9.59 r p1 303 | 288.98 79.20 2.44 9.16 r p1 304 | 291.43 79.20 2.44 10.48 r p1 305 | 293.87 79.20 2.44 9.88 r p1 306 | 296.31 79.20 2.44 8.70 r p1 307 | 298.75 79.20 2.44 8.70 r p1 308 | 301.19 79.20 2.44 9.33 r p1 309 | 303.63 79.20 2.44 8.19 r p1 310 | 306.07 79.20 2.44 9.22 r p1 311 | 308.51 79.20 2.44 8.76 r p1 312 | 310.95 79.20 2.44 8.53 r p1 313 | 313.39 79.20 2.44 8.64 r p1 314 | 315.84 79.20 2.44 7.96 r p1 315 | 318.28 79.20 2.44 9.08 r p1 316 | 320.72 79.20 2.44 8.21 r p1 317 | 323.16 79.20 2.44 7.58 r p1 318 | 325.60 79.20 2.44 9.02 r p1 319 | 328.04 79.20 2.44 7.41 r p1 320 | 330.48 79.20 2.44 7.90 r p1 321 | 332.92 79.20 2.44 8.36 r p1 322 | 335.36 79.20 2.44 7.55 r p1 323 | 337.81 79.20 2.44 7.87 r p1 324 | 340.25 79.20 2.44 8.24 r p1 325 | 342.69 79.20 2.44 7.47 r p1 326 | 345.13 79.20 2.44 7.27 r p1 327 | 347.57 79.20 2.44 7.04 r p1 328 | 350.01 79.20 2.44 7.21 r p1 329 | 352.45 79.20 2.44 7.61 r p1 330 | 354.89 79.20 2.44 7.75 r p1 331 | 357.33 79.20 2.44 7.87 r p1 332 | 359.77 79.20 2.44 6.78 r p1 333 | 362.22 79.20 2.44 6.98 r p1 334 | 364.66 79.20 2.44 7.24 r p1 335 | 367.10 79.20 2.44 6.98 r p1 336 | 369.54 79.20 2.44 7.55 r p1 337 | 371.98 79.20 2.44 7.41 r p1 338 | 374.42 79.20 2.44 6.78 r p1 339 | 376.86 79.20 2.44 6.89 r p1 340 | 379.30 79.20 2.44 6.78 r p1 341 | 381.74 79.20 2.44 6.63 r p1 342 | 384.18 79.20 2.44 6.06 r p1 343 | 386.63 79.20 2.44 6.58 r p1 344 | ep 345 | %%Trailer 346 | %%Pages: 1 347 | %%EOF 348 | -------------------------------------------------------------------------------- /LifeCon1/Figures/PV_FWholeLifeTimeLine.eps: -------------------------------------------------------------------------------- 1 | %!PS-Adobe-3.0 EPSF-3.0 2 | %%DocumentNeededResources: font Helvetica 3 | %%+ font Helvetica-Bold 4 | %%+ font Helvetica-Oblique 5 | %%+ font Helvetica-BoldOblique 6 | %%+ font Symbol 7 | %%Title: R Graphics Output 8 | %%Creator: R Software 9 | %%Pages: (atend) 10 | %%BoundingBox: 0 0 576 360 11 | %%EndComments 12 | %%BeginProlog 13 | /bp { gs gs } def 14 | % begin .ps.prolog 15 | /gs { gsave } def 16 | /gr { grestore } def 17 | /ep { showpage gr gr } def 18 | /m { moveto } def 19 | /l { rlineto } def 20 | /np { newpath } def 21 | /cp { closepath } def 22 | /f { fill } def 23 | /o { stroke } def 24 | /c { newpath 0 360 arc } def 25 | /r { 4 2 roll moveto 1 copy 3 -1 roll exch 0 exch rlineto 0 rlineto -1 mul 0 exch rlineto closepath } def 26 | /p1 { stroke } def 27 | /p2 { gsave bg fill grestore newpath } def 28 | /p3 { gsave bg fill grestore stroke } def 29 | /p6 { gsave bg eofill grestore newpath } def 30 | /p7 { gsave bg eofill grestore stroke } def 31 | /t { 5 -2 roll moveto gsave rotate 32 | 1 index stringwidth pop 33 | mul neg 0 rmoveto show grestore } def 34 | /ta { 4 -2 roll moveto gsave rotate show } def 35 | /tb { 2 -1 roll 0 rmoveto show } def 36 | /cl { grestore gsave newpath 3 index 3 index moveto 1 index 37 | 4 -1 roll lineto exch 1 index lineto lineto 38 | closepath clip newpath } def 39 | /rgb { setrgbcolor } def 40 | /s { scalefont setfont } def 41 | % end .ps.prolog 42 | % begin encoding 43 | /WinAnsiEncoding [ 44 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 45 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 46 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 47 | /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef 48 | /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright 49 | /parenleft /parenright /asterisk /plus /comma /minus /period /slash 50 | /zero /one /two /three /four /five /six /seven 51 | /eight /nine /colon /semicolon /less /equal /greater /question 52 | /at /A /B /C /D /E /F /G 53 | /H /I /J /K /L /M /N /O 54 | /P /Q /R /S /T /U /V /W 55 | /X /Y /Z /bracketleft /backslash /bracketright /asciicircum /underscore 56 | /grave /a /b /c /d /e /f /g 57 | /h /i /j /k /l /m /n /o 58 | /p /q /r /s /t /u /v /w 59 | /x /y /z /braceleft /bar /braceright /asciitilde /.notdef 60 | /Euro /.notdef /quotesinglbase /florin /quotedblbase /ellipsis /dagger /daggerdbl 61 | /circumflex /perthousand /Scaron /guilsinglleft /OE /.notdef /Zcaron /.notdef 62 | /.notdef /quoteleft /quoteright /quotedblleft /quotedblright /bullet /endash /emdash 63 | /tilde /trademark /scaron /guilsinglright /oe /.notdef /zcaron /Ydieresis 64 | /space /exclamdown /cent /sterling /currency /yen /brokenbar /section 65 | /dieresis /copyright /ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron 66 | /degree /plusminus /twosuperior /threesuperior /acute /mu /paragraph /periodcentered 67 | /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf /threequarters /questiondown 68 | /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla 69 | /Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis 70 | /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply 71 | /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute /Thorn /germandbls 72 | /agrave /aacute /acircumflex /atilde /adieresis /aring /ae /ccedilla 73 | /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis 74 | /eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide 75 | /oslash /ugrave /uacute /ucircumflex /udieresis /yacute /thorn /ydieresis 76 | ] 77 | def 78 | % end encoding 79 | %%IncludeResource: font Helvetica 80 | /Helvetica findfont 81 | dup length dict begin 82 | {1 index /FID ne {def} {pop pop} ifelse} forall 83 | /Encoding WinAnsiEncoding def 84 | currentdict 85 | end 86 | /Font1 exch definefont pop 87 | %%IncludeResource: font Helvetica-Bold 88 | /Helvetica-Bold findfont 89 | dup length dict begin 90 | {1 index /FID ne {def} {pop pop} ifelse} forall 91 | /Encoding WinAnsiEncoding def 92 | currentdict 93 | end 94 | /Font2 exch definefont pop 95 | %%IncludeResource: font Helvetica-Oblique 96 | /Helvetica-Oblique findfont 97 | dup length dict begin 98 | {1 index /FID ne {def} {pop pop} ifelse} forall 99 | /Encoding WinAnsiEncoding def 100 | currentdict 101 | end 102 | /Font3 exch definefont pop 103 | %%IncludeResource: font Helvetica-BoldOblique 104 | /Helvetica-BoldOblique findfont 105 | dup length dict begin 106 | {1 index /FID ne {def} {pop pop} ifelse} forall 107 | /Encoding WinAnsiEncoding def 108 | currentdict 109 | end 110 | /Font4 exch definefont pop 111 | %%IncludeResource: font Symbol 112 | /Symbol findfont 113 | dup length dict begin 114 | {1 index /FID ne {def} {pop pop} ifelse} forall 115 | currentdict 116 | end 117 | /Font5 exch definefont pop 118 | %%EndProlog 119 | %%Page: 1 1 120 | bp 121 | 0.00 0.00 576.00 360.00 cl 122 | /Font1 findfont 18 s 123 | 0 setgray 124 | 86.10 240.34 (bir) 0 ta 125 | 0.720 (th) tb gr 126 | 186.67 254.11 (contr) 0 ta 127 | -0.180 (act) tb gr 128 | 186.67 240.34 (initiation) 0 0 t 129 | 467.05 240.34 (death) 0 0 t 130 | 21.33 223.58 (Lif) 0 ta 131 | -0.540 (etime) tb gr 132 | 1.50 setlinewidth 133 | [] 0 setdash 134 | 1 setlinecap 135 | 1 setlinejoin 136 | 10.00 setmiterlimit 137 | np 138 | 93.71 230.00 m 139 | 384.77 0 l 140 | o 141 | np 142 | 471.28 230.00 m 143 | 7.20 0 l 144 | -7.20 0 l 145 | o 146 | np 147 | 93.71 236.67 m 148 | 0 -13.34 l 149 | o 150 | np 151 | 93.71 230.53 m 152 | 0 -7.20 l 153 | 0 7.20 l 154 | o 155 | np 156 | 198.10 236.67 m 157 | 0 -13.34 l 158 | o 159 | np 160 | 198.10 230.53 m 161 | 0 -7.20 l 162 | 0 7.20 l 163 | o 164 | np 165 | 478.48 236.67 m 166 | 0 -13.34 l 167 | o 168 | np 169 | 478.48 230.53 m 170 | 0 -7.20 l 171 | 0 7.20 l 172 | o 173 | 91.05 207.18 (0) 0 0 t 174 | 195.43 207.96 (x) 0 0 t 175 | 264.00 206.71 (x+t) 0 0 t 176 | np 177 | 274.29 236.67 m 178 | 0 -13.34 l 179 | o 180 | np 181 | 274.29 230.53 m 182 | 0 -7.20 l 183 | 0 7.20 l 184 | o 185 | 475.05 206.87 (X) 0 0 t 186 | 21.33 153.54 (Contr) 0 ta 187 | -0.180 (act) tb gr 188 | 32.76 137.01 (Time) 0 0 t 189 | 262.86 184.11 (contr) 0 ta 190 | -0.180 (act) tb gr 191 | 262.86 170.34 (v) 0 ta 192 | -0.450 (aluation) tb gr 193 | np 194 | 197.71 160.00 m 195 | 280.77 0 l 196 | o 197 | np 198 | 471.28 160.00 m 199 | 7.20 0 l 200 | -7.20 0 l 201 | o 202 | 195.43 137.18 (0) 0 0 t 203 | 271.62 137.38 (t) 0 0 t 204 | 475.81 136.87 (T) 0 0 t 205 | np 206 | 198.10 166.67 m 207 | 0 -13.34 l 208 | o 209 | np 210 | 198.10 160.53 m 211 | 0 -7.20 l 212 | 0 7.20 l 213 | o 214 | np 215 | 274.29 166.67 m 216 | 0 -13.34 l 217 | o 218 | np 219 | 274.29 160.53 m 220 | 0 -7.20 l 221 | 0 7.20 l 222 | o 223 | np 224 | 478.48 166.67 m 225 | 0 -13.34 l 226 | o 227 | np 228 | 478.48 160.53 m 229 | 0 -7.20 l 230 | 0 7.20 l 231 | o 232 | ep 233 | %%Trailer 234 | %%Pages: 1 235 | %%EOF 236 | -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_Fig9DHWSN43TypeAULProfitTest.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_Fig9DHWSN43TypeAULProfitTest.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_Figs6,7DHWSN42TypeBULProfitTest.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_Figs6,7DHWSN42TypeBULProfitTest.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_Figs6,7DHWSN42TypeBULProfitTestB.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_Figs6,7DHWSN42TypeBULProfitTestB.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_LifeCycleExample.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_LifeCycleExample.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_UniversalLifeFigure1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_UniversalLifeFigure1.png -------------------------------------------------------------------------------- /LifeCon1/Figures/UL_VaryingBenefitAmounts.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/UL_VaryingBenefitAmounts.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/Unused/ActMathCh3Figure5.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/Unused/ActMathCh3Figure5.pdf -------------------------------------------------------------------------------- /LifeCon1/Figures/Unused/JointLifeStatus.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ewfrees/LifeCon/66e09a97ef093c46778c3d5724f196abdea845f0/LifeCon1/Figures/Unused/JointLifeStatus.pdf -------------------------------------------------------------------------------- /LifeCon1/LifeCon1Version1.0.Rproj: -------------------------------------------------------------------------------- 1 | Version: 1.0 2 | 3 | RestoreWorkspace: Default 4 | SaveWorkspace: Default 5 | AlwaysSaveHistory: Default 6 | 7 | EnableCodeIndexing: Yes 8 | UseSpacesForTab: Yes 9 | NumSpacesForTab: 2 10 | Encoding: UTF-8 11 | 12 | RnwWeave: knitr 13 | LaTeX: XeLaTeX 14 | 15 | AutoAppendNewline: Yes 16 | StripTrailingWhitespace: Yes 17 | 18 | BuildType: Website 19 | -------------------------------------------------------------------------------- /LifeCon1/ShowHide.js: -------------------------------------------------------------------------------- 1 | 4 | -------------------------------------------------------------------------------- /LifeCon1/_bookdown.yml: -------------------------------------------------------------------------------- 1 | book_filename: "LifeCon1" 2 | 3 | rmd_files: ["index.Rmd", "Chapters/JointLife31May2017.Rmd", "Chapters/PolicyValues.Rmd", "Chapters/MultiStateLecture24October2014.Rmd", "Chapters/MultipleDecrementsLecture07Oct2012.Rmd", "Chapters/InterestRateRisk05Nov2012.Rmd", "Chapters/EmergingCosts29Dec2011B_utf8.Rmd", "Chapters/UnivLifeLecture14Nov2012.Rmd", "Chapters/PensionLecture06Nov2014.Rmd", "Bibliography/Bibliography.Rmd"] 4 | 5 | language: 6 | ui: 7 | chapter_name: "Chapter " 8 | -------------------------------------------------------------------------------- /LifeCon1/_build.sh: -------------------------------------------------------------------------------- 1 | #!/bin/sh 2 | 3 | Rscript -e "bookdown::render_book('index.Rmd', 'bookdown::gitbook')" 4 | -------------------------------------------------------------------------------- /LifeCon1/_deploy.sh: -------------------------------------------------------------------------------- 1 | #!/bin/sh 2 | 3 | set -e 4 | 5 | [ -z "${GITHUB_PAT}" ] && exit 0 6 | [ "${TRAVIS_BRANCH}" != "master" ] && exit 0 7 | 8 | git config --global user.email "xie@yihui.name" 9 | git config --global user.name "Yihui Xie" 10 | 11 | git clone -b gh-pages https://${GITHUB_PAT}@github.com/${TRAVIS_REPO_SLUG}.git book-output 12 | cd book-output 13 | cp -r ../_book/* ./ 14 | git add --all * 15 | git commit -m"Update the book" || true 16 | git push origin gh-pages 17 | -------------------------------------------------------------------------------- /LifeCon1/_output.yml: -------------------------------------------------------------------------------- 1 | bookdown::pdf_book: 2 | includes: 3 | in_header: preamble.tex 4 | toc: TRUE 5 | toc_depth: '3' 6 | latex_engine: xelatex 7 | citation_package: natbib 8 | keep_tex: yes 9 | bookdown::epub_book: default 10 | bookdown::gitbook: 11 | css: style.css 12 | includes: 13 | in_header: ShowHide.js 14 | config: 15 | toc: 16 | before: | 17 |