├── logo.png ├── user.png ├── assistant.png ├── smoLM135M.gif ├── models └── yourModelGGUF here.md ├── instructions.txt ├── README.md ├── st-SmoL135M-llamafile.py └── models_details.txt /logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fabiomatricardi/135M-you-cannot-go-Smaller/main/logo.png -------------------------------------------------------------------------------- /user.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fabiomatricardi/135M-you-cannot-go-Smaller/main/user.png -------------------------------------------------------------------------------- /assistant.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fabiomatricardi/135M-you-cannot-go-Smaller/main/assistant.png -------------------------------------------------------------------------------- /smoLM135M.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fabiomatricardi/135M-you-cannot-go-Smaller/main/smoLM135M.gif -------------------------------------------------------------------------------- /models/yourModelGGUF here.md: -------------------------------------------------------------------------------- 1 | Download the model in this subfolder 2 | 3 | ``` 4 | wget https://huggingface.co/MaziyarPanahi/SmolLM-135M-Instruct-GGUF/resolve/main/SmolLM-135M-Instruct.Q8_0.gguf -OutFile SmolLM-135M-Instruct.Q8_0.gguf 5 | ``` 6 | 7 | -------------------------------------------------------------------------------- /instructions.txt: -------------------------------------------------------------------------------- 1 | mkdir HFSmol_LM 2 | 3 | cd HFSmol_LM 4 | python -m venv venv 5 | 6 | venv\Scripts\activate 7 | 8 | deactivate 9 | 10 | pip install streamlit==1.36.0 openai tiktoken 11 | 12 | 13 | Download llamafile 14 | wget https://github.com/Mozilla-Ocho/llamafile/releases/download/0.8.12/llamafile-0.8.12 -OutFile llamafile-0.8.12.exe 15 | 16 | 17 | download the weights 18 | mkdir models 19 | cd models 20 | 21 | wget https://huggingface.co/MaziyarPanahi/SmolLM-135M-Instruct-GGUF/resolve/main/SmolLM-135M-Instruct.Q8_0.gguf -OutFile SmolLM-135M-Instruct.Q8_0.gguf 22 | 23 | wget https://huggingface.co/MaziyarPanahi/SmolLM-360M-Instruct-GGUF/resolve/main/SmolLM-360M-Instruct.Q8_0.gguf -OutFile SmolLM-360M-Instruct.Q8_0.gguf 24 | 25 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | # 135M-you-cannot-go-Smaller 4 | Repo of the code from the Medium article 135M: you cannot go Smaller 5 | 6 | 7 | 8 | it is tested on Windows 11, with 16 GB RAM. Python 3.11+ 9 | 10 | #### Create VENV and Install dependencies 11 | ``` 12 | mkdir HFSmol_LM 13 | 14 | cd HFSmol_LM 15 | python -m venv venv 16 | 17 | venv\Scripts\activate 18 | 19 | deactivate 20 | 21 | pip install streamlit==1.36.0 openai tiktoken 22 | ``` 23 | 24 | #### Dowmnload Llamafile 25 | ``` 26 | wget https://github.com/Mozilla-Ocho/llamafile/releases/download/0.8.12/llamafile-0.8.12 -OutFile llamafile-0.8.12.exe 27 | ``` 28 | 29 | #### Download the model in the `models` subfolder 30 | ``` 31 | mkdir models 32 | cd models 33 | 34 | wget https://huggingface.co/MaziyarPanahi/SmolLM-135M-Instruct-GGUF/resolve/main/SmolLM-135M-Instruct.Q8_0.gguf -OutFile SmolLM-135M-Instruct.Q8_0.gguf 35 | ``` 36 | 37 | ### How to run 38 | 1. in one terminal window, even withouth the venv activated run 39 | ``` 40 | .\llamafile-0.8.12.exe --nobrowser --host 0.0.0.0 -m .\models\SmolLM-135M-Instruct.Q8_0.gguf -c 2048 41 | ``` 42 | 2. in another terminal window, with the `venv` active, run 43 | ``` 44 | streamlit run st-SmoL135M-llamafile.py 45 | ``` 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | -------------------------------------------------------------------------------- /st-SmoL135M-llamafile.py: -------------------------------------------------------------------------------- 1 | import streamlit as st 2 | from openai import OpenAI 3 | from time import sleep 4 | import datetime 5 | import random 6 | import string 7 | import tiktoken 8 | 9 | # for counting the tokens in the prompt and in the result 10 | #context_count = len(encoding.encode(yourtext)) 11 | encoding = tiktoken.get_encoding("r50k_base") 12 | 13 | modelname = 'SmolLM-135M-Instruct' 14 | modelfile = 'models\SmolLM-135M-Instruct.Q8_0.gguf' 15 | 16 | # function to write the content in the log file 17 | def writehistory(filename,text): 18 | with open(filename, 'a', encoding='utf-8') as f: 19 | f.write(text) 20 | f.write('\n') 21 | f.close() 22 | 23 | #AVATARS 👷🐦 🥶🌀 24 | av_us = 'user.png' #"🦖" #A single emoji, e.g. "🧑‍💻", "🤖", "🦖". Shortcodes are not supported. 25 | av_ass = 'assistant.png' 26 | 27 | # Set the webpage title 28 | st.set_page_config( 29 | page_title=f"Your LocalGPT with 🌟 {modelname}", 30 | page_icon="🌟", 31 | layout="wide") 32 | 33 | # Create a header element 34 | mytitle = '# Your own LocalGPT 🌟' 35 | st.markdown(mytitle, unsafe_allow_html=True) 36 | st.markdown('### SmolLM-135M-Instruct, 2048 tokens context window') 37 | # function to generate random alphanumeric sequence for the filename 38 | def genRANstring(n): 39 | """ 40 | n = int number of char to randomize 41 | """ 42 | N = n 43 | res = ''.join(random.choices(string.ascii_uppercase + 44 | string.digits, k=N)) 45 | return res 46 | 47 | # create THE SESSIoN STATES 48 | if "logfilename" not in st.session_state: 49 | ## Logger file 50 | logfile = f'{genRANstring(5)}_log.txt' 51 | st.session_state.logfilename = logfile 52 | #Write in the history the first 2 sessions 53 | writehistory(st.session_state.logfilename,f'{str(datetime.datetime.now())}\n\nYour own LocalGPT with 🌀 {modelname}\n---\n🧠🫡: You are a helpful assistant.') 54 | writehistory(st.session_state.logfilename,f'🌀: How may I help you today?') 55 | 56 | if "repeat" not in st.session_state: 57 | st.session_state.repeat = 1.35 58 | 59 | if "temperature" not in st.session_state: 60 | st.session_state.temperature = 0.1 61 | 62 | if "maxlength" not in st.session_state: 63 | st.session_state.maxlength = 500 64 | 65 | # Point to the local server 66 | # Change localhost with the IP ADDRESS of the computer acting as a server if not the local machine 67 | # itmay be something like "http://192.168.1.52:8000/v1" 68 | client = OpenAI(base_url="http://localhost:8080/v1", api_key="not-needed", organization='SelectedModel') 69 | 70 | # CREATE THE SIDEBAR 71 | with st.sidebar: 72 | st.image('logo.png', use_column_width=True) 73 | st.session_state.temperature = st.slider('Temperature:', min_value=0.0, max_value=1.0, value=0.1, step=0.02) 74 | st.session_state.maxlength = st.slider('Length reply:', min_value=150, max_value=1000, 75 | value=500, step=50) 76 | st.session_state.repeat = st.slider('Repeat Penalty:', min_value=0.0, max_value=2.0, value=1.35, step=0.01) 77 | st.markdown(f"**Logfile**: {st.session_state.logfilename}") 78 | btnClear = st.button("Clear History",type="primary", use_container_width=True) 79 | 80 | # We store the conversation in the session state. 81 | # This will be used to render the chat conversation. 82 | # We initialize it with the first message we want to be greeted with. 83 | #Note that the first 3 messages will never be used for the genration, they are only for the Chat interface 84 | if "messages" not in st.session_state: 85 | st.session_state.messages = [ 86 | {"role": "system", "content": "You are SmolLM, a helpful assistant. You reply only to the user questions. You always reply in the language of the instructions.",}, 87 | {"role": "user", "content": "Hi, I am Fabio."}, 88 | {"role": "assistant", "content": "Hi there, I am SmolLM, how may I help you today?"} 89 | ] 90 | # we define the function to clear from the screen the conversation history 91 | def clearHistory(): 92 | st.session_state.messages = [ 93 | {"role": "system", "content": "You are SmolLM, a helpful assistant. You reply only to the user questions. You always reply in the language of the instructions.",}, 94 | {"role": "user", "content": "Hi, I am Fabio."}, 95 | {"role": "assistant", "content": "Hi there, I am SmolLM, how may I help you today?"} 96 | ] 97 | if btnClear: 98 | clearHistory() 99 | 100 | # We loop through each message in the session state and render it as # a chat message. 101 | for message in st.session_state.messages[1:]: 102 | if message["role"] == "user": 103 | with st.chat_message(message["role"],avatar=av_us): 104 | st.markdown(message["content"]) 105 | else: 106 | with st.chat_message(message["role"],avatar=av_ass): 107 | st.markdown(message["content"]) 108 | 109 | # We take questions/instructions from the chat input to pass to the LLM 110 | if user_prompt := st.chat_input("Your message here. Shift+Enter to add a new line", key="user_input"): 111 | 112 | # Add our input to the session state 113 | st.session_state.messages.append( 114 | {"role": "user", "content": user_prompt} 115 | ) 116 | 117 | # Add our input to the chat window 118 | with st.chat_message("user", avatar=av_us): 119 | st.markdown(user_prompt) 120 | writehistory(st.session_state.logfilename,f'👷: {user_prompt}') 121 | 122 | 123 | with st.chat_message("assistant",avatar=av_ass): 124 | message_placeholder = st.empty() 125 | with st.spinner("Thinking..."): 126 | response = '' 127 | conv_messages = [] 128 | conv_messages.append(st.session_state.messages[-1]) 129 | full_response = "" 130 | completion = client.chat.completions.create( 131 | model="local-model", # this field is currently unused 132 | messages=conv_messages, #st.session_state.messages if you want to keep previous messages, 133 | temperature=st.session_state.temperature, 134 | frequency_penalty = st.session_state.repeat, 135 | stop=['<|im_end|>',''], 136 | max_tokens=st.session_state.maxlength, 137 | stream=True, 138 | ) 139 | for chunk in completion: 140 | if chunk.choices[0].delta.content: 141 | full_response += chunk.choices[0].delta.content 142 | message_placeholder.markdown(full_response + "🌟") 143 | toregister = full_response + f""" 144 | ``` 145 | 146 | prompt tokens: {len(encoding.encode(st.session_state.messages[-1]['content']))} 147 | generated tokens: {len(encoding.encode(full_response))} 148 | ```""" 149 | message_placeholder.markdown(toregister) 150 | writehistory(st.session_state.logfilename,f'🌟: {toregister}\n\n---\n\n') 151 | 152 | 153 | # Add the response to the session state 154 | st.session_state.messages.append( 155 | {"role": "assistant", "content": toregister} 156 | ) 157 | -------------------------------------------------------------------------------- /models_details.txt: -------------------------------------------------------------------------------- 1 | >>> q = Llama(model_path='models\Lite-Oute-1-65M-Instruct-Q8_0.gguf', verbose=True) 2 | llama_model_loader: loaded meta data with 27 key-value pairs and 75 tensors from models\Lite-Oute-1-65M-Instruct-Q8_0.gguf (version GGUF V3 (latest)) 3 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 4 | llama_model_loader: - kv 0: general.architecture str = llama 5 | llama_model_loader: - kv 1: general.name str = Lite-Oute-1-65M-Instruct 6 | llama_model_loader: - kv 2: llama.block_count u32 = 8 7 | llama_model_loader: - kv 3: llama.context_length u32 = 2048 8 | llama_model_loader: - kv 4: llama.embedding_length u32 = 512 9 | llama_model_loader: - kv 5: llama.feed_forward_length u32 = 2048 10 | llama_model_loader: - kv 6: llama.attention.head_count u32 = 16 11 | llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8 12 | llama_model_loader: - kv 8: llama.rope.freq_base f32 = 10000.000000 13 | llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001 14 | llama_model_loader: - kv 10: general.file_type u32 = 7 15 | llama_model_loader: - kv 11: llama.vocab_size u32 = 32768 16 | llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 32 17 | llama_model_loader: - kv 13: tokenizer.ggml.add_space_prefix bool = true 18 | llama_model_loader: - kv 14: tokenizer.ggml.model str = llama 19 | llama_model_loader: - kv 15: tokenizer.ggml.pre str = default 20 | llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,32768] = ["", "", "", "<0x00>", "<... 21 | llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,32768] = [0.000000, 0.000000, 0.000000, 0.0000... 22 | llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32768] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 23 | llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 1 24 | llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 32000 25 | llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 0 26 | llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 32000 27 | llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = true 28 | llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = false 29 | llama_model_loader: - kv 25: tokenizer.chat_template str = {% for message in messages %}{{'<|im_... 30 | llama_model_loader: - kv 26: general.quantization_version u32 = 2 31 | llama_model_loader: - type f32: 17 tensors 32 | llama_model_loader: - type q8_0: 58 tensors 33 | llm_load_vocab: special tokens cache size = 771 34 | llm_load_vocab: token to piece cache size = 0.1710 MB 35 | llm_load_print_meta: format = GGUF V3 (latest) 36 | llm_load_print_meta: arch = llama 37 | llm_load_print_meta: vocab type = SPM 38 | llm_load_print_meta: n_vocab = 32768 39 | llm_load_print_meta: n_merges = 0 40 | llm_load_print_meta: vocab_only = 0 41 | llm_load_print_meta: n_ctx_train = 2048 42 | llm_load_print_meta: n_embd = 512 43 | llm_load_print_meta: n_layer = 8 44 | llm_load_print_meta: n_head = 16 45 | llm_load_print_meta: n_head_kv = 8 46 | llm_load_print_meta: n_rot = 32 47 | llm_load_print_meta: n_swa = 0 48 | llm_load_print_meta: n_embd_head_k = 32 49 | llm_load_print_meta: n_embd_head_v = 32 50 | llm_load_print_meta: n_gqa = 2 51 | llm_load_print_meta: n_embd_k_gqa = 256 52 | llm_load_print_meta: n_embd_v_gqa = 256 53 | llm_load_print_meta: f_norm_eps = 0.0e+00 54 | llm_load_print_meta: f_norm_rms_eps = 1.0e-06 55 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 56 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 57 | llm_load_print_meta: f_logit_scale = 0.0e+00 58 | llm_load_print_meta: n_ff = 2048 59 | llm_load_print_meta: n_expert = 0 60 | llm_load_print_meta: n_expert_used = 0 61 | llm_load_print_meta: causal attn = 1 62 | llm_load_print_meta: pooling type = 0 63 | llm_load_print_meta: rope type = 0 64 | llm_load_print_meta: rope scaling = linear 65 | llm_load_print_meta: freq_base_train = 10000.0 66 | llm_load_print_meta: freq_scale_train = 1 67 | llm_load_print_meta: n_ctx_orig_yarn = 2048 68 | llm_load_print_meta: rope_finetuned = unknown 69 | llm_load_print_meta: ssm_d_conv = 0 70 | llm_load_print_meta: ssm_d_inner = 0 71 | llm_load_print_meta: ssm_d_state = 0 72 | llm_load_print_meta: ssm_dt_rank = 0 73 | llm_load_print_meta: model type = ?B 74 | llm_load_print_meta: model ftype = Q8_0 75 | llm_load_print_meta: model params = 65.02 M 76 | llm_load_print_meta: model size = 65.91 MiB (8.50 BPW) 77 | llm_load_print_meta: general.name = Lite-Oute-1-65M-Instruct 78 | llm_load_print_meta: BOS token = 1 '' 79 | llm_load_print_meta: EOS token = 32000 '<|im_end|>' 80 | llm_load_print_meta: UNK token = 0 '' 81 | llm_load_print_meta: PAD token = 32000 '<|im_end|>' 82 | llm_load_print_meta: LF token = 13 '<0x0A>' 83 | llm_load_print_meta: EOT token = 32000 '<|im_end|>' 84 | llm_load_print_meta: max token length = 48 85 | llm_load_tensors: ggml ctx size = 0.04 MiB 86 | llm_load_tensors: CPU buffer size = 65.91 MiB 87 | ...................................... 88 | llama_new_context_with_model: n_ctx = 512 89 | llama_new_context_with_model: n_batch = 512 90 | llama_new_context_with_model: n_ubatch = 512 91 | llama_new_context_with_model: flash_attn = 0 92 | llama_new_context_with_model: freq_base = 10000.0 93 | llama_new_context_with_model: freq_scale = 1 94 | llama_kv_cache_init: CPU KV buffer size = 4.00 MiB 95 | llama_new_context_with_model: KV self size = 4.00 MiB, K (f16): 2.00 MiB, V (f16): 2.00 MiB 96 | llama_new_context_with_model: CPU output buffer size = 0.13 MiB 97 | llama_new_context_with_model: CPU compute buffer size = 65.00 MiB 98 | llama_new_context_with_model: graph nodes = 262 99 | llama_new_context_with_model: graph splits = 1 100 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 101 | Model metadata: {'general.name': 'Lite-Oute-1-65M-Instruct', 'general.architecture': 'llama', 'llama.block_count': '8', 'llama.context_length': '2048', 'tokenizer.ggml.eos_token_id': '32000', 'general.file_type': '7', 'llama.attention.head_count_kv': '8', 'llama.embedding_length': '512', 'llama.feed_forward_length': '2048', 'llama.attention.head_count': '16', 'llama.rope.freq_base': '10000.000000', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.vocab_size': '32768', 'llama.rope.dimension_count': '32', 'tokenizer.ggml.pre': 'default', 'tokenizer.ggml.add_space_prefix': 'true', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.padding_token_id': '32000', 'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'false', 'tokenizer.chat_template': "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"} 102 | Available chat formats from metadata: chat_template.default 103 | Guessed chat format: chatml 104 | 105 | 106 | 107 | //////////////////////////////////////////////////////////////////////////////////////////////////////// 108 | >>> q = Llama(model_path='models\Lite-Mistral-150M-v2-Instruct-Q8_0.gguf', verbose=True) 109 | llama_model_loader: loaded meta data with 26 key-value pairs and 111 tensors from models\Lite-Mistral-150M-v2-Instruct-Q8_0.gguf (version GGUF V3 (latest)) 110 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 111 | llama_model_loader: - kv 0: general.architecture str = llama 112 | llama_model_loader: - kv 1: general.name str = Lite-Mistral-150M-v2-Instruct 113 | llama_model_loader: - kv 2: llama.block_count u32 = 12 114 | llama_model_loader: - kv 3: llama.context_length u32 = 2048 115 | llama_model_loader: - kv 4: llama.embedding_length u32 = 768 116 | llama_model_loader: - kv 5: llama.feed_forward_length u32 = 3072 117 | llama_model_loader: - kv 6: llama.attention.head_count u32 = 16 118 | llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8 119 | llama_model_loader: - kv 8: llama.rope.freq_base f32 = 10000.000000 120 | llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001 121 | llama_model_loader: - kv 10: general.file_type u32 = 7 122 | llama_model_loader: - kv 11: llama.vocab_size u32 = 32768 123 | llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 48 124 | llama_model_loader: - kv 13: tokenizer.ggml.add_space_prefix bool = true 125 | llama_model_loader: - kv 14: tokenizer.ggml.model str = llama 126 | llama_model_loader: - kv 15: tokenizer.ggml.pre str = default 127 | llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,32768] = ["", "", "", "<0x00>", "<... 128 | llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,32768] = [0.000000, 0.000000, 0.000000, 0.0000... 129 | llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32768] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 130 | llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 1 131 | llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 2 132 | llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 0 133 | llama_model_loader: - kv 22: tokenizer.ggml.add_bos_token bool = true 134 | llama_model_loader: - kv 23: tokenizer.ggml.add_eos_token bool = false 135 | llama_model_loader: - kv 24: tokenizer.chat_template str = {% for message in messages %}{{bos_to... 136 | llama_model_loader: - kv 25: general.quantization_version u32 = 2 137 | llama_model_loader: - type f32: 25 tensors 138 | llama_model_loader: - type q8_0: 86 tensors 139 | llm_load_vocab: special tokens cache size = 771 140 | llm_load_vocab: token to piece cache size = 0.1710 MB 141 | llm_load_print_meta: format = GGUF V3 (latest) 142 | llm_load_print_meta: arch = llama 143 | llm_load_print_meta: vocab type = SPM 144 | llm_load_print_meta: n_vocab = 32768 145 | llm_load_print_meta: n_merges = 0 146 | llm_load_print_meta: vocab_only = 0 147 | llm_load_print_meta: n_ctx_train = 2048 148 | llm_load_print_meta: n_embd = 768 149 | llm_load_print_meta: n_layer = 12 150 | llm_load_print_meta: n_head = 16 151 | llm_load_print_meta: n_head_kv = 8 152 | llm_load_print_meta: n_rot = 48 153 | llm_load_print_meta: n_swa = 0 154 | llm_load_print_meta: n_embd_head_k = 48 155 | llm_load_print_meta: n_embd_head_v = 48 156 | llm_load_print_meta: n_gqa = 2 157 | llm_load_print_meta: n_embd_k_gqa = 384 158 | llm_load_print_meta: n_embd_v_gqa = 384 159 | llm_load_print_meta: f_norm_eps = 0.0e+00 160 | llm_load_print_meta: f_norm_rms_eps = 1.0e-06 161 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 162 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 163 | llm_load_print_meta: f_logit_scale = 0.0e+00 164 | llm_load_print_meta: n_ff = 3072 165 | llm_load_print_meta: n_expert = 0 166 | llm_load_print_meta: n_expert_used = 0 167 | llm_load_print_meta: causal attn = 1 168 | llm_load_print_meta: pooling type = 0 169 | llm_load_print_meta: rope type = 0 170 | llm_load_print_meta: rope scaling = linear 171 | llm_load_print_meta: freq_base_train = 10000.0 172 | llm_load_print_meta: freq_scale_train = 1 173 | llm_load_print_meta: n_ctx_orig_yarn = 2048 174 | llm_load_print_meta: rope_finetuned = unknown 175 | llm_load_print_meta: ssm_d_conv = 0 176 | llm_load_print_meta: ssm_d_inner = 0 177 | llm_load_print_meta: ssm_d_state = 0 178 | llm_load_print_meta: ssm_dt_rank = 0 179 | llm_load_print_meta: model type = ?B 180 | llm_load_print_meta: model ftype = Q8_0 181 | llm_load_print_meta: model params = 156.52 M 182 | llm_load_print_meta: model size = 158.65 MiB (8.50 BPW) 183 | llm_load_print_meta: general.name = Lite-Mistral-150M-v2-Instruct 184 | llm_load_print_meta: BOS token = 1 '' 185 | llm_load_print_meta: EOS token = 2 '' 186 | llm_load_print_meta: UNK token = 0 '' 187 | llm_load_print_meta: LF token = 13 '<0x0A>' 188 | llm_load_print_meta: max token length = 48 189 | llm_load_tensors: ggml ctx size = 0.05 MiB 190 | llm_load_tensors: CPU buffer size = 158.65 MiB 191 | .................................................. 192 | llama_new_context_with_model: n_ctx = 512 193 | llama_new_context_with_model: n_batch = 512 194 | llama_new_context_with_model: n_ubatch = 512 195 | llama_new_context_with_model: flash_attn = 0 196 | llama_new_context_with_model: freq_base = 10000.0 197 | llama_new_context_with_model: freq_scale = 1 198 | llama_kv_cache_init: CPU KV buffer size = 9.00 MiB 199 | llama_new_context_with_model: KV self size = 9.00 MiB, K (f16): 4.50 MiB, V (f16): 4.50 MiB 200 | llama_new_context_with_model: CPU output buffer size = 0.13 MiB 201 | llama_new_context_with_model: CPU compute buffer size = 65.50 MiB 202 | llama_new_context_with_model: graph nodes = 390 203 | llama_new_context_with_model: graph splits = 1 204 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 205 | Model metadata: {'general.name': 'Lite-Mistral-150M-v2-Instruct', 'general.architecture': 'llama', 'llama.block_count': '12', 'llama.context_length': '2048', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '7', 'llama.attention.head_count_kv': '8', 'llama.embedding_length': '768', 'llama.feed_forward_length': '3072', 'llama.attention.head_count': '16', 'llama.rope.freq_base': '10000.000000', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.vocab_size': '32768', 'llama.rope.dimension_count': '48', 'tokenizer.ggml.pre': 'default', 'tokenizer.ggml.add_space_prefix': 'true', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'false', 'tokenizer.chat_template': "{% for message in messages %}{{bos_token + message['role'] + '\n' + message['content'] + eos_token + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant\n' }}{% endif %}"} 206 | Available chat formats from metadata: chat_template.default 207 | Using gguf chat template: {% for message in messages %}{{bos_token + message['role'] + ' 208 | ' + message['content'] + eos_token + ' 209 | '}}{% endfor %}{% if add_generation_prompt %}{{ bos_token + 'assistant 210 | ' }}{% endif %} 211 | Using chat eos_token: 212 | Using chat bos_token: 213 | 214 | 215 | ///////////////////////////////////////////////////////////////////////////////////////////////////// 216 | >>> q = Llama(model_path='models\Lite-Oute-1-300M-Instruct-Q8_0.gguf', verbose=True) 217 | llama_model_loader: loaded meta data with 27 key-value pairs and 183 tensors from models\Lite-Oute-1-300M-Instruct-Q8_0.gguf (version GGUF V3 (latest)) 218 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 219 | llama_model_loader: - kv 0: general.architecture str = llama 220 | llama_model_loader: - kv 1: general.name str = Lite-Oute-1-300M-Instruct 221 | llama_model_loader: - kv 2: llama.block_count u32 = 20 222 | llama_model_loader: - kv 3: llama.context_length u32 = 4096 223 | llama_model_loader: - kv 4: llama.embedding_length u32 = 896 224 | llama_model_loader: - kv 5: llama.feed_forward_length u32 = 3584 225 | llama_model_loader: - kv 6: llama.attention.head_count u32 = 16 226 | llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 8 227 | llama_model_loader: - kv 8: llama.rope.freq_base f32 = 10000.000000 228 | llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001 229 | llama_model_loader: - kv 10: general.file_type u32 = 7 230 | llama_model_loader: - kv 11: llama.vocab_size u32 = 32768 231 | llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 56 232 | llama_model_loader: - kv 13: tokenizer.ggml.add_space_prefix bool = true 233 | llama_model_loader: - kv 14: tokenizer.ggml.model str = llama 234 | llama_model_loader: - kv 15: tokenizer.ggml.pre str = default 235 | llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,32768] = ["", "", "", "<0x00>", "<... 236 | llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,32768] = [0.000000, 0.000000, 0.000000, 0.0000... 237 | llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32768] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 238 | llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 1 239 | llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 32000 240 | llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 0 241 | llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 32000 242 | llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = true 243 | llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = false 244 | llama_model_loader: - kv 25: tokenizer.chat_template str = {% for message in messages %}{{'<|im_... 245 | llama_model_loader: - kv 26: general.quantization_version u32 = 2 246 | llama_model_loader: - type f32: 41 tensors 247 | llama_model_loader: - type q8_0: 142 tensors 248 | llm_load_vocab: special tokens cache size = 771 249 | llm_load_vocab: token to piece cache size = 0.1710 MB 250 | llm_load_print_meta: format = GGUF V3 (latest) 251 | llm_load_print_meta: arch = llama 252 | llm_load_print_meta: vocab type = SPM 253 | llm_load_print_meta: n_vocab = 32768 254 | llm_load_print_meta: n_merges = 0 255 | llm_load_print_meta: vocab_only = 0 256 | llm_load_print_meta: n_ctx_train = 4096 257 | llm_load_print_meta: n_embd = 896 258 | llm_load_print_meta: n_layer = 20 259 | llm_load_print_meta: n_head = 16 260 | llm_load_print_meta: n_head_kv = 8 261 | llm_load_print_meta: n_rot = 56 262 | llm_load_print_meta: n_swa = 0 263 | llm_load_print_meta: n_embd_head_k = 56 264 | llm_load_print_meta: n_embd_head_v = 56 265 | llm_load_print_meta: n_gqa = 2 266 | llm_load_print_meta: n_embd_k_gqa = 448 267 | llm_load_print_meta: n_embd_v_gqa = 448 268 | llm_load_print_meta: f_norm_eps = 0.0e+00 269 | llm_load_print_meta: f_norm_rms_eps = 1.0e-06 270 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 271 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 272 | llm_load_print_meta: f_logit_scale = 0.0e+00 273 | llm_load_print_meta: n_ff = 3584 274 | llm_load_print_meta: n_expert = 0 275 | llm_load_print_meta: n_expert_used = 0 276 | llm_load_print_meta: causal attn = 1 277 | llm_load_print_meta: pooling type = 0 278 | llm_load_print_meta: rope type = 0 279 | llm_load_print_meta: rope scaling = linear 280 | llm_load_print_meta: freq_base_train = 10000.0 281 | llm_load_print_meta: freq_scale_train = 1 282 | llm_load_print_meta: n_ctx_orig_yarn = 4096 283 | llm_load_print_meta: rope_finetuned = unknown 284 | llm_load_print_meta: ssm_d_conv = 0 285 | llm_load_print_meta: ssm_d_inner = 0 286 | llm_load_print_meta: ssm_d_state = 0 287 | llm_load_print_meta: ssm_dt_rank = 0 288 | llm_load_print_meta: model type = ?B 289 | llm_load_print_meta: model ftype = Q8_0 290 | llm_load_print_meta: model params = 299.60 M 291 | llm_load_print_meta: model size = 303.68 MiB (8.50 BPW) 292 | llm_load_print_meta: general.name = Lite-Oute-1-300M-Instruct 293 | llm_load_print_meta: BOS token = 1 '' 294 | llm_load_print_meta: EOS token = 32000 '<|im_end|>' 295 | llm_load_print_meta: UNK token = 0 '' 296 | llm_load_print_meta: PAD token = 32000 '<|im_end|>' 297 | llm_load_print_meta: LF token = 13 '<0x0A>' 298 | llm_load_print_meta: EOT token = 32000 '<|im_end|>' 299 | llm_load_print_meta: max token length = 48 300 | llm_load_tensors: ggml ctx size = 0.09 MiB 301 | llm_load_tensors: CPU buffer size = 303.68 MiB 302 | .................................................................................. 303 | llama_new_context_with_model: n_ctx = 512 304 | llama_new_context_with_model: n_batch = 512 305 | llama_new_context_with_model: n_ubatch = 512 306 | llama_new_context_with_model: flash_attn = 0 307 | llama_new_context_with_model: freq_base = 10000.0 308 | llama_new_context_with_model: freq_scale = 1 309 | llama_kv_cache_init: CPU KV buffer size = 17.50 MiB 310 | llama_new_context_with_model: KV self size = 17.50 MiB, K (f16): 8.75 MiB, V (f16): 8.75 MiB 311 | llama_new_context_with_model: CPU output buffer size = 0.13 MiB 312 | llama_new_context_with_model: CPU compute buffer size = 65.75 MiB 313 | llama_new_context_with_model: graph nodes = 646 314 | llama_new_context_with_model: graph splits = 1 315 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 316 | Model metadata: {'general.name': 'Lite-Oute-1-300M-Instruct', 'general.architecture': 'llama', 'llama.block_count': '20', 'llama.context_length': '4096', 'tokenizer.ggml.eos_token_id': '32000', 'general.file_type': '7', 'llama.attention.head_count_kv': '8', 'llama.embedding_length': '896', 'llama.feed_forward_length': '3584', 'llama.attention.head_count': '16', 'llama.rope.freq_base': '10000.000000', 'llama.attention.layer_norm_rms_epsilon': '0.000001', 'llama.vocab_size': '32768', 'llama.rope.dimension_count': '56', 'tokenizer.ggml.pre': 'default', 'tokenizer.ggml.add_space_prefix': 'true', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.padding_token_id': '32000', 'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'false', 'tokenizer.chat_template': "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"} 317 | Available chat formats from metadata: chat_template.default 318 | Guessed chat format: chatml 319 | >>> 320 | ///////////////////////////////////////////////////////////////////////////////////////////////////// 321 | TINYLLAMA JSON 322 | 323 | >>> q = Llama(model_path='models/unsloth.Q4_K_M.gguf', verbose=True) 324 | llama_model_loader: loaded meta data with 33 key-value pairs and 201 tensors from models/unsloth.Q4_K_M.gguf (version GGUF V3 (latest)) 325 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 326 | llama_model_loader: - kv 0: general.architecture str = llama 327 | llama_model_loader: - kv 1: general.type str = model 328 | llama_model_loader: - kv 2: general.name str = Tinyllama Bnb 4bit 329 | llama_model_loader: - kv 3: general.organization str = Unsloth 330 | llama_model_loader: - kv 4: general.finetune str = 4bit 331 | llama_model_loader: - kv 5: general.basename str = tinyllama-bnb 332 | llama_model_loader: - kv 6: general.size_label str = 1.1B 333 | llama_model_loader: - kv 7: llama.block_count u32 = 22 334 | llama_model_loader: - kv 8: llama.context_length u32 = 4096 335 | llama_model_loader: - kv 9: llama.embedding_length u32 = 2048 336 | llama_model_loader: - kv 10: llama.feed_forward_length u32 = 5632 337 | llama_model_loader: - kv 11: llama.attention.head_count u32 = 32 338 | llama_model_loader: - kv 12: llama.attention.head_count_kv u32 = 4 339 | llama_model_loader: - kv 13: llama.rope.freq_base f32 = 10000.000000 340 | llama_model_loader: - kv 14: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 341 | llama_model_loader: - kv 15: general.file_type u32 = 15 342 | llama_model_loader: - kv 16: llama.vocab_size u32 = 32000 343 | llama_model_loader: - kv 17: llama.rope.dimension_count u32 = 64 344 | llama_model_loader: - kv 18: llama.rope.scaling.type str = linear 345 | llama_model_loader: - kv 19: llama.rope.scaling.factor f32 = 2.000000 346 | llama_model_loader: - kv 20: tokenizer.ggml.add_space_prefix bool = false 347 | llama_model_loader: - kv 21: tokenizer.ggml.model str = llama 348 | llama_model_loader: - kv 22: tokenizer.ggml.pre str = default 349 | llama_model_loader: - kv 23: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... 350 | llama_model_loader: - kv 24: tokenizer.ggml.scores arr[f32,32000] = [-1000.000000, -1000.000000, -1000.00... 351 | llama_model_loader: - kv 25: tokenizer.ggml.token_type arr[i32,32000] = [3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 352 | llama_model_loader: - kv 26: tokenizer.ggml.bos_token_id u32 = 1 353 | llama_model_loader: - kv 27: tokenizer.ggml.eos_token_id u32 = 2 354 | llama_model_loader: - kv 28: tokenizer.ggml.unknown_token_id u32 = 0 355 | llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 0 356 | llama_model_loader: - kv 30: tokenizer.ggml.add_bos_token bool = true 357 | llama_model_loader: - kv 31: tokenizer.ggml.add_eos_token bool = false 358 | llama_model_loader: - kv 32: general.quantization_version u32 = 2 359 | llama_model_loader: - type f32: 45 tensors 360 | llama_model_loader: - type q4_K: 135 tensors 361 | llama_model_loader: - type q6_K: 21 tensors 362 | llm_load_vocab: special tokens cache size = 3 363 | llm_load_vocab: token to piece cache size = 0.1684 MB 364 | llm_load_print_meta: format = GGUF V3 (latest) 365 | llm_load_print_meta: arch = llama 366 | llm_load_print_meta: vocab type = SPM 367 | llm_load_print_meta: n_vocab = 32000 368 | llm_load_print_meta: n_merges = 0 369 | llm_load_print_meta: vocab_only = 0 370 | llm_load_print_meta: n_ctx_train = 4096 371 | llm_load_print_meta: n_embd = 2048 372 | llm_load_print_meta: n_layer = 22 373 | llm_load_print_meta: n_head = 32 374 | llm_load_print_meta: n_head_kv = 4 375 | llm_load_print_meta: n_rot = 64 376 | llm_load_print_meta: n_swa = 0 377 | llm_load_print_meta: n_embd_head_k = 64 378 | llm_load_print_meta: n_embd_head_v = 64 379 | llm_load_print_meta: n_gqa = 8 380 | llm_load_print_meta: n_embd_k_gqa = 256 381 | llm_load_print_meta: n_embd_v_gqa = 256 382 | llm_load_print_meta: f_norm_eps = 0.0e+00 383 | llm_load_print_meta: f_norm_rms_eps = 1.0e-05 384 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 385 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 386 | llm_load_print_meta: f_logit_scale = 0.0e+00 387 | llm_load_print_meta: n_ff = 5632 388 | llm_load_print_meta: n_expert = 0 389 | llm_load_print_meta: n_expert_used = 0 390 | llm_load_print_meta: causal attn = 1 391 | llm_load_print_meta: pooling type = 0 392 | llm_load_print_meta: rope type = 0 393 | llm_load_print_meta: rope scaling = linear 394 | llm_load_print_meta: freq_base_train = 10000.0 395 | llm_load_print_meta: freq_scale_train = 0.5 396 | llm_load_print_meta: n_ctx_orig_yarn = 4096 397 | llm_load_print_meta: rope_finetuned = unknown 398 | llm_load_print_meta: ssm_d_conv = 0 399 | llm_load_print_meta: ssm_d_inner = 0 400 | llm_load_print_meta: ssm_d_state = 0 401 | llm_load_print_meta: ssm_dt_rank = 0 402 | llm_load_print_meta: model type = 1B 403 | llm_load_print_meta: model ftype = Q4_K - Medium 404 | llm_load_print_meta: model params = 1.10 B 405 | llm_load_print_meta: model size = 636.18 MiB (4.85 BPW) 406 | llm_load_print_meta: general.name = Tinyllama Bnb 4bit 407 | llm_load_print_meta: BOS token = 1 '' 408 | llm_load_print_meta: EOS token = 2 '' 409 | llm_load_print_meta: UNK token = 0 '' 410 | llm_load_print_meta: PAD token = 0 '' 411 | llm_load_print_meta: LF token = 13 '<0x0A>' 412 | llm_load_print_meta: max token length = 48 413 | llm_load_tensors: ggml ctx size = 0.09 MiB 414 | llm_load_tensors: CPU buffer size = 636.18 MiB 415 | .................................................................................... 416 | llama_new_context_with_model: n_ctx = 512 417 | llama_new_context_with_model: n_batch = 512 418 | llama_new_context_with_model: n_ubatch = 512 419 | llama_new_context_with_model: flash_attn = 0 420 | llama_new_context_with_model: freq_base = 10000.0 421 | llama_new_context_with_model: freq_scale = 0.5 422 | llama_kv_cache_init: CPU KV buffer size = 11.00 MiB 423 | llama_new_context_with_model: KV self size = 11.00 MiB, K (f16): 5.50 MiB, V (f16): 5.50 MiB 424 | llama_new_context_with_model: CPU output buffer size = 0.12 MiB 425 | llama_new_context_with_model: CPU compute buffer size = 66.50 MiB 426 | llama_new_context_with_model: graph nodes = 710 427 | llama_new_context_with_model: graph splits = 1 428 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 429 | Model metadata: {'general.name': 'Tinyllama Bnb 4bit', 'general.architecture': 'llama', 'general.type': 'model', 'llama.context_length': '4096', 'general.organization': 'Unsloth', 'llama.block_count': '22', 'general.basename': 'tinyllama-bnb', 'general.finetune': '4bit', 'general.size_label': '1.1B', 'llama.embedding_length': '2048', 'llama.feed_forward_length': '5632', 'llama.attention.head_count': '32', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '15', 'llama.attention.head_count_kv': '4', 'llama.rope.freq_base': '10000.000000', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.vocab_size': '32000', 'llama.rope.dimension_count': '64', 'llama.rope.scaling.type': 'linear', 'llama.rope.scaling.factor': '2.000000', 'tokenizer.ggml.pre': 'default', 'tokenizer.ggml.add_space_prefix': 'false', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.padding_token_id': '0', 'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'false'} 430 | Using fallback chat format: llama-2 431 | 432 | /////////////////////////////////////////////////////////////////////////////////////////////////////////// 433 | 434 | TINYLLAMA 2B CTX 2048 no CHAT 435 | >>> q = Llama(model_path='models/Tinyllama-2B-Q8_0.gguf', verbose=True) 436 | llama_model_loader: loaded meta data with 26 key-value pairs and 399 tensors from models/Tinyllama-2B-Q8_0.gguf (version GGUF V3 (latest)) 437 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 438 | llama_model_loader: - kv 0: general.architecture str = llama 439 | llama_model_loader: - kv 1: general.name str = model 440 | llama_model_loader: - kv 2: llama.block_count u32 = 44 441 | llama_model_loader: - kv 3: llama.context_length u32 = 2048 442 | llama_model_loader: - kv 4: llama.embedding_length u32 = 2048 443 | llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632 444 | llama_model_loader: - kv 6: llama.attention.head_count u32 = 32 445 | llama_model_loader: - kv 7: llama.attention.head_count_kv u32 = 4 446 | llama_model_loader: - kv 8: llama.rope.freq_base f32 = 10000.000000 447 | llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 448 | llama_model_loader: - kv 10: general.file_type u32 = 7 449 | llama_model_loader: - kv 11: llama.vocab_size u32 = 32000 450 | llama_model_loader: - kv 12: llama.rope.dimension_count u32 = 64 451 | llama_model_loader: - kv 13: tokenizer.ggml.add_space_prefix bool = false 452 | llama_model_loader: - kv 14: tokenizer.ggml.model str = llama 453 | llama_model_loader: - kv 15: tokenizer.ggml.pre str = default 454 | llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... 455 | llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,32000] = [-1000.000000, -1000.000000, -1000.00... 456 | llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32000] = [3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 457 | llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 1 458 | llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 2 459 | llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 0 460 | llama_model_loader: - kv 22: tokenizer.ggml.padding_token_id u32 = 0 461 | llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = true 462 | llama_model_loader: - kv 24: tokenizer.ggml.add_eos_token bool = false 463 | llama_model_loader: - kv 25: general.quantization_version u32 = 2 464 | llama_model_loader: - type f32: 89 tensors 465 | llama_model_loader: - type q8_0: 310 tensors 466 | llm_load_vocab: special tokens cache size = 3 467 | llm_load_vocab: token to piece cache size = 0.1684 MB 468 | llm_load_print_meta: format = GGUF V3 (latest) 469 | llm_load_print_meta: arch = llama 470 | llm_load_print_meta: vocab type = SPM 471 | llm_load_print_meta: n_vocab = 32000 472 | llm_load_print_meta: n_merges = 0 473 | llm_load_print_meta: vocab_only = 0 474 | llm_load_print_meta: n_ctx_train = 2048 475 | llm_load_print_meta: n_embd = 2048 476 | llm_load_print_meta: n_layer = 44 477 | llm_load_print_meta: n_head = 32 478 | llm_load_print_meta: n_head_kv = 4 479 | llm_load_print_meta: n_rot = 64 480 | llm_load_print_meta: n_swa = 0 481 | llm_load_print_meta: n_embd_head_k = 64 482 | llm_load_print_meta: n_embd_head_v = 64 483 | llm_load_print_meta: n_gqa = 8 484 | llm_load_print_meta: n_embd_k_gqa = 256 485 | llm_load_print_meta: n_embd_v_gqa = 256 486 | llm_load_print_meta: f_norm_eps = 0.0e+00 487 | llm_load_print_meta: f_norm_rms_eps = 1.0e-05 488 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 489 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 490 | llm_load_print_meta: f_logit_scale = 0.0e+00 491 | llm_load_print_meta: n_ff = 5632 492 | llm_load_print_meta: n_expert = 0 493 | llm_load_print_meta: n_expert_used = 0 494 | llm_load_print_meta: causal attn = 1 495 | llm_load_print_meta: pooling type = 0 496 | llm_load_print_meta: rope type = 0 497 | llm_load_print_meta: rope scaling = linear 498 | llm_load_print_meta: freq_base_train = 10000.0 499 | llm_load_print_meta: freq_scale_train = 1 500 | llm_load_print_meta: n_ctx_orig_yarn = 2048 501 | llm_load_print_meta: rope_finetuned = unknown 502 | llm_load_print_meta: ssm_d_conv = 0 503 | llm_load_print_meta: ssm_d_inner = 0 504 | llm_load_print_meta: ssm_d_state = 0 505 | llm_load_print_meta: ssm_dt_rank = 0 506 | llm_load_print_meta: model type = ?B 507 | llm_load_print_meta: model ftype = Q8_0 508 | llm_load_print_meta: model params = 2.07 B 509 | llm_load_print_meta: model size = 2.05 GiB (8.50 BPW) 510 | llm_load_print_meta: general.name = model 511 | llm_load_print_meta: BOS token = 1 '' 512 | llm_load_print_meta: EOS token = 2 '' 513 | llm_load_print_meta: UNK token = 0 '' 514 | llm_load_print_meta: PAD token = 0 '' 515 | llm_load_print_meta: LF token = 13 '<0x0A>' 516 | llm_load_print_meta: max token length = 48 517 | llm_load_tensors: ggml ctx size = 0.19 MiB 518 | llm_load_tensors: CPU buffer size = 2097.01 MiB 519 | ................................................................................................ 520 | llama_new_context_with_model: n_ctx = 512 521 | llama_new_context_with_model: n_batch = 512 522 | llama_new_context_with_model: n_ubatch = 512 523 | llama_new_context_with_model: flash_attn = 0 524 | llama_new_context_with_model: freq_base = 10000.0 525 | llama_new_context_with_model: freq_scale = 1 526 | llama_kv_cache_init: CPU KV buffer size = 22.00 MiB 527 | llama_new_context_with_model: KV self size = 22.00 MiB, K (f16): 11.00 MiB, V (f16): 11.00 MiB 528 | llama_new_context_with_model: CPU output buffer size = 0.12 MiB 529 | llama_new_context_with_model: CPU compute buffer size = 66.50 MiB 530 | llama_new_context_with_model: graph nodes = 1414 531 | llama_new_context_with_model: graph splits = 1 532 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 533 | Model metadata: {'general.name': 'model', 'general.architecture': 'llama', 'llama.block_count': '44', 'llama.context_length': '2048', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '7', 'llama.attention.head_count_kv': '4', 'llama.embedding_length': '2048', 'llama.feed_forward_length': '5632', 'llama.attention.head_count': '32', 'llama.rope.freq_base': '10000.000000', 'llama.attention.layer_norm_rms_epsilon': '0.000010', 'llama.vocab_size': '32000', 'llama.rope.dimension_count': '64', 'tokenizer.ggml.pre': 'default', 'tokenizer.ggml.add_space_prefix': 'false', 'tokenizer.ggml.model': 'llama', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.padding_token_id': '0', 'tokenizer.ggml.add_bos_token': 'true', 'tokenizer.ggml.add_eos_token': 'false'} 534 | Using fallback chat format: llama-2 535 | 536 | 537 | //////////////////////////////////////////////////////////////////////////////////////////////////// 538 | >>> q = Llama(model_path='models/Ci-0_5B-Chat.Q8_0.gguf', verbose=True) 539 | llama_model_loader: loaded meta data with 34 key-value pairs and 290 tensors from models/Ci-0_5B-Chat.Q8_0.gguf (version GGUF V3 (latest)) 540 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 541 | llama_model_loader: - kv 0: general.architecture str = qwen2 542 | llama_model_loader: - kv 1: general.type str = model 543 | llama_model_loader: - kv 2: general.name str = Ci 0_5B Chat 544 | llama_model_loader: - kv 3: general.organization str = LLMCi 545 | llama_model_loader: - kv 4: general.finetune str = Chat 546 | llama_model_loader: - kv 5: general.basename str = Ci 547 | llama_model_loader: - kv 6: general.size_label str = 0.5B 548 | llama_model_loader: - kv 7: general.tags arr[str,3] = ["cible", "trl", "sft"] 549 | llama_model_loader: - kv 8: qwen2.block_count u32 = 24 550 | llama_model_loader: - kv 9: qwen2.context_length u32 = 32768 551 | llama_model_loader: - kv 10: qwen2.embedding_length u32 = 1024 552 | llama_model_loader: - kv 11: qwen2.feed_forward_length u32 = 2816 553 | llama_model_loader: - kv 12: qwen2.attention.head_count u32 = 16 554 | llama_model_loader: - kv 13: qwen2.attention.head_count_kv u32 = 16 555 | llama_model_loader: - kv 14: qwen2.rope.freq_base f32 = 1000000.000000 556 | llama_model_loader: - kv 15: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001 557 | llama_model_loader: - kv 16: general.file_type u32 = 7 558 | llama_model_loader: - kv 17: tokenizer.ggml.model str = gpt2 559 | llama_model_loader: - kv 18: tokenizer.ggml.pre str = qwen2 560 | llama_model_loader: - kv 19: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ... 561 | llama_model_loader: - kv 20: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 562 | llama_model_loader: - kv 21: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",... 563 | llama_model_loader: - kv 22: tokenizer.ggml.eos_token_id u32 = 151645 564 | llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 151643 565 | llama_model_loader: - kv 24: tokenizer.ggml.bos_token_id u32 = 151643 566 | llama_model_loader: - kv 25: tokenizer.chat_template str = {% for message in messages %}{% if lo... 567 | llama_model_loader: - kv 26: general.quantization_version u32 = 2 568 | llama_model_loader: - kv 27: general.url str = https://huggingface.co/mradermacher/C... 569 | llama_model_loader: - kv 28: mradermacher.quantize_version str = 2 570 | llama_model_loader: - kv 29: mradermacher.quantized_by str = mradermacher 571 | llama_model_loader: - kv 30: mradermacher.quantized_at str = 2024-07-29T18:49:33+02:00 572 | llama_model_loader: - kv 31: mradermacher.quantized_on str = leia 573 | llama_model_loader: - kv 32: general.source.url str = https://huggingface.co/LLMCi/Ci-0_5B-... 574 | llama_model_loader: - kv 33: mradermacher.convert_type str = hf 575 | llama_model_loader: - type f32: 121 tensors 576 | llama_model_loader: - type q8_0: 169 tensors 577 | llm_load_vocab: special tokens cache size = 3 578 | llm_load_vocab: token to piece cache size = 0.9308 MB 579 | llm_load_print_meta: format = GGUF V3 (latest) 580 | llm_load_print_meta: arch = qwen2 581 | llm_load_print_meta: vocab type = BPE 582 | llm_load_print_meta: n_vocab = 151936 583 | llm_load_print_meta: n_merges = 151387 584 | llm_load_print_meta: vocab_only = 0 585 | llm_load_print_meta: n_ctx_train = 32768 586 | llm_load_print_meta: n_embd = 1024 587 | llm_load_print_meta: n_layer = 24 588 | llm_load_print_meta: n_head = 16 589 | llm_load_print_meta: n_head_kv = 16 590 | llm_load_print_meta: n_rot = 64 591 | llm_load_print_meta: n_swa = 0 592 | llm_load_print_meta: n_embd_head_k = 64 593 | llm_load_print_meta: n_embd_head_v = 64 594 | llm_load_print_meta: n_gqa = 1 595 | llm_load_print_meta: n_embd_k_gqa = 1024 596 | llm_load_print_meta: n_embd_v_gqa = 1024 597 | llm_load_print_meta: f_norm_eps = 0.0e+00 598 | llm_load_print_meta: f_norm_rms_eps = 1.0e-06 599 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 600 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 601 | llm_load_print_meta: f_logit_scale = 0.0e+00 602 | llm_load_print_meta: n_ff = 2816 603 | llm_load_print_meta: n_expert = 0 604 | llm_load_print_meta: n_expert_used = 0 605 | llm_load_print_meta: causal attn = 1 606 | llm_load_print_meta: pooling type = 0 607 | llm_load_print_meta: rope type = 2 608 | llm_load_print_meta: rope scaling = linear 609 | llm_load_print_meta: freq_base_train = 1000000.0 610 | llm_load_print_meta: freq_scale_train = 1 611 | llm_load_print_meta: n_ctx_orig_yarn = 32768 612 | llm_load_print_meta: rope_finetuned = unknown 613 | llm_load_print_meta: ssm_d_conv = 0 614 | llm_load_print_meta: ssm_d_inner = 0 615 | llm_load_print_meta: ssm_d_state = 0 616 | llm_load_print_meta: ssm_dt_rank = 0 617 | llm_load_print_meta: model type = 0.5B 618 | llm_load_print_meta: model ftype = Q8_0 619 | llm_load_print_meta: model params = 463.99 M 620 | llm_load_print_meta: model size = 470.50 MiB (8.51 BPW) 621 | llm_load_print_meta: general.name = Ci 0_5B Chat 622 | llm_load_print_meta: BOS token = 151643 '<|endoftext|>' 623 | llm_load_print_meta: EOS token = 151645 '<|im_end|>' 624 | llm_load_print_meta: PAD token = 151643 '<|endoftext|>' 625 | llm_load_print_meta: LF token = 148848 'ÄĬ' 626 | llm_load_print_meta: EOT token = 151645 '<|im_end|>' 627 | llm_load_print_meta: max token length = 256 628 | llm_load_tensors: ggml ctx size = 0.13 MiB 629 | llm_load_tensors: CPU buffer size = 470.50 MiB 630 | .................................................... 631 | llama_new_context_with_model: n_ctx = 512 632 | llama_new_context_with_model: n_batch = 512 633 | llama_new_context_with_model: n_ubatch = 512 634 | llama_new_context_with_model: flash_attn = 0 635 | llama_new_context_with_model: freq_base = 1000000.0 636 | llama_new_context_with_model: freq_scale = 1 637 | llama_kv_cache_init: CPU KV buffer size = 48.00 MiB 638 | llama_new_context_with_model: KV self size = 48.00 MiB, K (f16): 24.00 MiB, V (f16): 24.00 MiB 639 | llama_new_context_with_model: CPU output buffer size = 0.58 MiB 640 | llama_new_context_with_model: CPU compute buffer size = 298.75 MiB 641 | llama_new_context_with_model: graph nodes = 846 642 | llama_new_context_with_model: graph splits = 1 643 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 644 | Model metadata: {'mradermacher.convert_type': 'hf', 'general.name': 'Ci 0_5B Chat', 'general.architecture': 'qwen2', 'general.type': 'model', 'general.organization': 'LLMCi', 'general.basename': 'Ci', 'general.finetune': 'Chat', 'qwen2.block_count': '24', 'mradermacher.quantized_on': 'leia', 'general.size_label': '0.5B', 'qwen2.context_length': '32768', 'general.url': 'https://huggingface.co/mradermacher/Ci-0_5B-Chat-GGUF', 'qwen2.embedding_length': '1024', 'general.source.url': 'https://huggingface.co/LLMCi/Ci-0_5B-Chat', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '151643', 'qwen2.feed_forward_length': '2816', 'qwen2.attention.head_count': '16', 'qwen2.attention.head_count_kv': '16', 'tokenizer.ggml.padding_token_id': '151643', 'qwen2.rope.freq_base': '1000000.000000', 'qwen2.attention.layer_norm_rms_epsilon': '0.000001', 'tokenizer.ggml.eos_token_id': '151645', 'general.file_type': '7', 'tokenizer.ggml.model': 'gpt2', 'tokenizer.ggml.pre': 'qwen2', 'tokenizer.chat_template': "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}", 'mradermacher.quantize_version': '2', 'mradermacher.quantized_by': 'mradermacher', 'mradermacher.quantized_at': '2024-07-29T18:49:33+02:00'} 645 | Available chat formats from metadata: chat_template.default 646 | Using gguf chat template: {% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system 647 | You are a helpful assistant.<|im_end|> 648 | ' }}{% endif %}{{'<|im_start|>' + message['role'] + ' 649 | ' + message['content'] + '<|im_end|>' + ' 650 | '}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant 651 | ' }}{% endif %} 652 | Using chat eos_token: <|im_end|> 653 | Using chat bos_token: <|endoftext|> 654 | >>> 655 | 656 | 657 | ////////////////////////////////////////////////////////////////////////////// 658 | >>> q = Llama(model_path='models/openelm-270m-instruct-q8_0.gguf', verbose=True) 659 | llama_model_loader: loaded meta data with 25 key-value pairs and 146 tensors from models/openelm-270m-instruct-q8_0.gguf (version GGUF V3 (latest)) 660 | llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. 661 | llama_model_loader: - kv 0: general.architecture str = openelm 662 | llama_model_loader: - kv 1: general.name str = OpenELM-270M-Instruct 663 | llama_model_loader: - kv 2: openelm.block_count u32 = 16 664 | llama_model_loader: - kv 3: openelm.context_length u32 = 2048 665 | llama_model_loader: - kv 4: openelm.embedding_length u32 = 1280 666 | llama_model_loader: - kv 5: openelm.feed_forward_length arr[i32,16] = [768, 1024, 1280, 1536, 1792, 2048, 2... 667 | llama_model_loader: - kv 6: openelm.attention.head_count arr[i32,16] = [12, 12, 12, 12, 12, 16, 16, 16, 16, ... 668 | llama_model_loader: - kv 7: openelm.attention.head_count_kv arr[i32,16] = [3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, ... 669 | llama_model_loader: - kv 8: openelm.rope.freq_base f32 = 10000.000000 670 | llama_model_loader: - kv 9: openelm.attention.layer_norm_rms_epsilon f32 = 0.000001 671 | llama_model_loader: - kv 10: openelm.rope.dimension_count u32 = 64 672 | llama_model_loader: - kv 11: openelm.attention.key_length u32 = 64 673 | llama_model_loader: - kv 12: openelm.attention.value_length u32 = 64 674 | llama_model_loader: - kv 13: general.file_type u32 = 7 675 | llama_model_loader: - kv 14: tokenizer.ggml.model str = llama 676 | llama_model_loader: - kv 15: tokenizer.ggml.pre str = default 677 | llama_model_loader: - kv 16: tokenizer.ggml.tokens arr[str,32000] = ["", "", "", "<0x00>", "<... 678 | llama_model_loader: - kv 17: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000... 679 | llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... 680 | llama_model_loader: - kv 19: tokenizer.ggml.bos_token_id u32 = 1 681 | llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 2 682 | llama_model_loader: - kv 21: tokenizer.ggml.unknown_token_id u32 = 0 683 | llama_model_loader: - kv 22: tokenizer.ggml.add_bos_token bool = true 684 | llama_model_loader: - kv 23: tokenizer.ggml.add_eos_token bool = false 685 | llama_model_loader: - kv 24: general.quantization_version u32 = 2 686 | llama_model_loader: - type f32: 65 tensors 687 | llama_model_loader: - type q8_0: 81 tensors 688 | llm_load_vocab: special tokens cache size = 3 689 | llm_load_vocab: token to piece cache size = 0.1684 MB 690 | llm_load_print_meta: format = GGUF V3 (latest) 691 | llm_load_print_meta: arch = openelm 692 | llm_load_print_meta: vocab type = SPM 693 | llm_load_print_meta: n_vocab = 32000 694 | llm_load_print_meta: n_merges = 0 695 | llm_load_print_meta: vocab_only = 0 696 | llm_load_print_meta: n_ctx_train = 2048 697 | llm_load_print_meta: n_embd = 1280 698 | llm_load_print_meta: n_layer = 16 699 | llm_load_print_meta: n_head = [12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20] 700 | llm_load_print_meta: n_head_kv = [3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5] 701 | llm_load_print_meta: n_rot = 64 702 | llm_load_print_meta: n_swa = 0 703 | llm_load_print_meta: n_embd_head_k = 64 704 | llm_load_print_meta: n_embd_head_v = 64 705 | llm_load_print_meta: n_gqa = 4 706 | llm_load_print_meta: n_embd_k_gqa = [192, 192, 192, 192, 192, 256, 256, 256, 256, 256, 256, 256, 320, 320, 320, 320] 707 | llm_load_print_meta: n_embd_v_gqa = [192, 192, 192, 192, 192, 256, 256, 256, 256, 256, 256, 256, 320, 320, 320, 320] 708 | llm_load_print_meta: f_norm_eps = 0.0e+00 709 | llm_load_print_meta: f_norm_rms_eps = 1.0e-06 710 | llm_load_print_meta: f_clamp_kqv = 0.0e+00 711 | llm_load_print_meta: f_max_alibi_bias = 0.0e+00 712 | llm_load_print_meta: f_logit_scale = 0.0e+00 713 | llm_load_print_meta: n_ff = [768, 1024, 1280, 1536, 1792, 2048, 2560, 2816, 3072, 3328, 3584, 3840, 4352, 4608, 4864, 5120] 714 | llm_load_print_meta: n_expert = 0 715 | llm_load_print_meta: n_expert_used = 0 716 | llm_load_print_meta: causal attn = 1 717 | llm_load_print_meta: pooling type = 0 718 | llm_load_print_meta: rope type = 2 719 | llm_load_print_meta: rope scaling = linear 720 | llm_load_print_meta: freq_base_train = 10000.0 721 | llm_load_print_meta: freq_scale_train = 1 722 | llm_load_print_meta: n_ctx_orig_yarn = 2048 723 | llm_load_print_meta: rope_finetuned = unknown 724 | llm_load_print_meta: ssm_d_conv = 0 725 | llm_load_print_meta: ssm_d_inner = 0 726 | llm_load_print_meta: ssm_d_state = 0 727 | llm_load_print_meta: ssm_dt_rank = 0 728 | llm_load_print_meta: model type = 270M 729 | llm_load_print_meta: model ftype = Q8_0 730 | llm_load_print_meta: model params = 271.53 M 731 | llm_load_print_meta: model size = 275.26 MiB (8.50 BPW) 732 | llm_load_print_meta: general.name = OpenELM-270M-Instruct 733 | llm_load_print_meta: BOS token = 1 '' 734 | llm_load_print_meta: EOS token = 2 '' 735 | llm_load_print_meta: UNK token = 0 '' 736 | llm_load_print_meta: LF token = 13 '<0x0A>' 737 | llm_load_print_meta: max token length = 48 738 | llm_load_tensors: ggml ctx size = 0.07 MiB 739 | llm_load_tensors: CPU buffer size = 275.26 MiB 740 | ......................................................... 741 | llama_new_context_with_model: n_ctx = 512 742 | llama_new_context_with_model: n_batch = 512 743 | llama_new_context_with_model: n_ubatch = 512 744 | llama_new_context_with_model: flash_attn = 0 745 | llama_new_context_with_model: freq_base = 10000.0 746 | llama_new_context_with_model: freq_scale = 1 747 | llama_kv_cache_init: CPU KV buffer size = 7.88 MiB 748 | llama_new_context_with_model: KV self size = 7.88 MiB, K (f16): 3.94 MiB, V (f16): 3.94 MiB 749 | llama_new_context_with_model: CPU output buffer size = 0.12 MiB 750 | llama_new_context_with_model: CPU compute buffer size = 68.51 MiB 751 | llama_new_context_with_model: graph nodes = 646 752 | llama_new_context_with_model: graph splits = 1 753 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 754 | Model metadata: {'general.name': 'OpenELM-270M-Instruct', 'general.architecture': 'openelm', 'openelm.block_count': '16', 'tokenizer.ggml.add_bos_token': 'true', 'openelm.rope.freq_base': '10000.000000', 'openelm.attention.layer_norm_rms_epsilon': '0.000001', 'openelm.context_length': '2048', 'openelm.attention.value_length': '64', 'openelm.embedding_length': '1280', 'openelm.rope.dimension_count': '64', 'openelm.attention.key_length': '64', 'tokenizer.ggml.eos_token_id': '2', 'general.file_type': '7', 'tokenizer.ggml.model': 'llama', 'tokenizer.ggml.pre': 'default', 'general.quantization_version': '2', 'tokenizer.ggml.bos_token_id': '1', 'tokenizer.ggml.unknown_token_id': '0', 'tokenizer.ggml.add_eos_token': 'false'} 755 | Using fallback chat format: llama-2 756 | 757 | 758 | 759 | 760 | 761 | 762 | --------------------------------------------------------------------------------