├── implementations ├── Makefile ├── opencl.cl └── x86.c ├── pseudocode ├── memoized.py ├── maskgen.py ├── complexity.py ├── tabled_buffered.py ├── tabled.py ├── naive.py ├── memoization.py ├── unrolled.py ├── hitag2.py ├── generate_memoized_python.py ├── memoized_gen.py └── unrolled_gen.py ├── woot18-paper-verstegen.pdf ├── README.md └── LICENSE /implementations/Makefile: -------------------------------------------------------------------------------- 1 | x86: 2 | gcc -O3 x86.c -o x86 -lpthread 3 | -------------------------------------------------------------------------------- /pseudocode/memoized.py: -------------------------------------------------------------------------------- 1 | from unrolled_gen import * 2 | 3 | testing = True 4 | fill_layer() 5 | 6 | -------------------------------------------------------------------------------- /woot18-paper-verstegen.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/factoritbv/hitag2hell/HEAD/woot18-paper-verstegen.pdf -------------------------------------------------------------------------------- /pseudocode/maskgen.py: -------------------------------------------------------------------------------- 1 | def generate_masks(filt_mask=0x5806b4a2d16c, 2 | lfsr_mask=0xce0044c101cd): 3 | masks = [] 4 | fill = last_lfsr_guess = 0 5 | while fill != 0xffffffffffff: 6 | masks.append(filt_mask) # use taps mask 7 | fill |= filt_mask # track known bits 8 | # Check if LFSR output should be guessed 9 | if (fill & lfsr_mask) != lfsr_mask: 10 | last_lfsr_guess += 1 11 | fill >>= 1 # update LFSR state 12 | fill |= (1<<47) # guess or get LFSR output 13 | # Take out known bits from next mask 14 | filt_mask &= ~fill 15 | #print hex(fill) 16 | return masks, last_lfsr_guess 17 | 18 | if __name__ == "__main__": 19 | m,i = generate_masks() 20 | print map(hex,m) 21 | print i 22 | 23 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Introduction 2 | 3 | This repository complements the research documented in the paper `Hitag 2 Hell - Brutally optimizing guess-and-determine attacks', as presented at USENIX WOOT2018. 4 | 5 | # Pseudocode 6 | 7 | * `maskgen.py`: generate masks for which bits to guess in each layer 8 | * `naive.py`: naive guess-and-determine implementation 9 | * `unrolled.py`: naive implementation which is unrolled 10 | 11 | * `tabled.py`: implementation which avoids impossible guesses 12 | * `tabled_buffered.py`: implementation which avoids impossible guesses, and tries to mitigate the intense cache pressure 13 | 14 | * `memoized.py`: implementation which applies memoization 15 | * `generate_memoized_python.py`: generator for `memoized_gen.py` 16 | * `memoized_gen.py`: generated code from `generate_memoized_python.py`, used in `memoized.py` 17 | 18 | * `complexity.py`: compute complexity at each layer 19 | * `hitag2.py`: HITAG2 implementation 20 | 21 | # Implementations 22 | 23 | Our best implementations from the research, as featured in the paper's appendix verbatim, are also included here for ease of use. 24 | -------------------------------------------------------------------------------- /pseudocode/complexity.py: -------------------------------------------------------------------------------- 1 | from naive import * 2 | from math import log 3 | # Find how many nested loops to peel for subfilter work 4 | def layers_from_avg_to_min(layer=0, avg_states=1, min_states=32): 5 | if layer >= len(keystream) \ 6 | or layer >= len(masks) and avg_states <= min_states: 7 | return layer, avg_states 8 | else: 9 | if layer < last_lfsr_guess: 10 | # guess LFSR output bit 11 | avg_states <<= 1 12 | try: 13 | # guess filter input bits 14 | avg_states <<= bits[layer] 15 | except: 16 | pass 17 | # strike half the candidates on average 18 | avg_states >>= 1 19 | if __name__ == "__main__": 20 | print "Average output states at keystream test", layer, avg_states 21 | return layers_from_avg_to_min(layer+1, avg_states, min_states) 22 | 23 | if __name__ == "__main__": 24 | # Total problem size starting from 1 candidate at layer 0 25 | last_layer, n_states = layers_from_avg_to_min(0,1,1) 26 | #print last_layer, n_states 27 | # Total problem size starting from 1 candidates at layer 1 28 | #cutoff, remaining = layers_from_avg_to_min(1,1,1) 29 | 30 | -------------------------------------------------------------------------------- /pseudocode/tabled_buffered.py: -------------------------------------------------------------------------------- 1 | from tabled import * 2 | 3 | def fill_layer(state, layer, filt_mask=0x5806b4a2d16c): 4 | buf = [[] for _ in range(len(masks)+1)] 5 | buf[layer].append(state) 6 | bsize = 10000000 7 | while any(map(len,buf)): 8 | #print layer, len(buf[layer]) 9 | while len(buf[layer]) and len(buf[layer+1]) < bsize: 10 | state = buf[layer].pop() 11 | try: 12 | for fill in layer_fills[layer][state & filt_mask]: 13 | new_state = state | fill 14 | #assert f20(new_state) == keystream[layer] 15 | if testing and not layer and ((new_state & filt_mask) != (test_states[layer] & filt_mask)): 16 | continue 17 | if layer < last_lfsr_guess: 18 | buf[layer+1].append(new_state>>1) 19 | buf[layer+1].append(new_state>>1|(1<<47)) 20 | else: 21 | buf[layer+1].append(lfsr(new_state)) 22 | except KeyError: # Table miss 23 | pass 24 | layer += 1 25 | if layer == len(masks): 26 | #print len(buf[len(masks)]) 27 | while buf[len(masks)]: 28 | #buf[len(masks)].pop() 29 | test(buf[len(masks)].pop()) 30 | layer %= len(masks) 31 | 32 | if __name__ == "__main__": 33 | print "Generating LUTs" 34 | layer_fills = generate_fills() 35 | #print len(layer_fills[0][0]) 36 | print "Finding state" 37 | testing = True 38 | fill_layer(0, 0) 39 | 40 | -------------------------------------------------------------------------------- /pseudocode/tabled.py: -------------------------------------------------------------------------------- 1 | from naive import * 2 | 3 | def generate_fills(filt_mask=0x5806b4a2d16c): 4 | layer_fills = [{} for _ in range(len(masks))] 5 | for i in range(0, 1<<20): 6 | taps_fill = expand(filt_mask, i) 7 | out = f20(taps_fill) 8 | for layer in range(len(masks)): 9 | if out != keystream[layer]: 10 | continue 11 | new = taps_fill & masks[layer] 12 | old = taps_fill & ~masks[layer] 13 | assert old | new == taps_fill 14 | try: 15 | layer_fills[layer][old].append(new) 16 | except: 17 | layer_fills[layer][old] = [new] 18 | return layer_fills 19 | 20 | def fill_layer(state, layer, filt_mask=0x5806b4a2d16c): 21 | if layer < len(masks): 22 | try: 23 | table = layer_fills[layer][state & filt_mask] 24 | for efill in table: 25 | new_state = state | efill 26 | assert f20(new_state) == keystream[layer] 27 | # debug test 28 | if testing and not layer and ((new_state & filt_mask) != (test_states[layer] & filt_mask)): 29 | continue 30 | if layer < last_lfsr_guess: 31 | fill_layer(new_state>>1, layer+1, filt_mask) 32 | fill_layer(new_state>>1 | (1<<47), layer+1, filt_mask) 33 | else: 34 | fill_layer(lfsr(new_state), layer+1, filt_mask) 35 | except: # Table miss 36 | pass 37 | else: 38 | test(state) 39 | 40 | if __name__ == "__main__": 41 | print "Generating LUTs" 42 | layer_fills = generate_fills() 43 | #print len(layer_fills[0][0]) 44 | print "Finding state" 45 | testing = True 46 | fill_layer(0, 0) 47 | -------------------------------------------------------------------------------- /pseudocode/naive.py: -------------------------------------------------------------------------------- 1 | from maskgen import * 2 | from hitag2 import * 3 | 4 | def popcount(x): 5 | return "{0:0b}".format(x).count('1') 6 | 7 | masks, last_lfsr_guess = generate_masks() 8 | bits = [popcount(x) for x in masks] 9 | 10 | state = hitag2_init(0x414141414141, 0x42424242, 0x43434343) 11 | keystream_int = hitag2(state,32) 12 | keystream = map(int, "{0:032b}".format(keystream_int)) 13 | #print keystream 14 | def expand(mask, x): 15 | res = 0 16 | for i in range(0, 48): 17 | if mask & 1: 18 | res |= (x & 1)<>= 1 20 | mask >>= 1 21 | return res 22 | 23 | def compress(mask, x): 24 | result = 0; 25 | bits_eaten = 0; 26 | bit_index = 0 27 | while bits_eaten < popcount(mask): 28 | if((mask>>bit_index)&1): 29 | if((x>>bit_index)&1): 30 | result |= (1 << bits_eaten) 31 | bits_eaten += 1 32 | bit_index += 1 33 | return result 34 | 35 | def test(state): 36 | for bit in range(len(masks), 32): 37 | if f20(state) != keystream[bit]: 38 | return 39 | state = lfsr(state) 40 | for _ in range(32): 41 | state = lfsr_inv(state) 42 | print hex(state) 43 | 44 | #test(state) 45 | 46 | test_states = [] 47 | for _ in range(len(masks)): 48 | test_states.append(state) 49 | state = lfsr(state) 50 | 51 | def fill_layer(state, layer, filt_mask=0x5806b4a2d16c): 52 | if layer < len(masks): 53 | for fill in range(0, 1<>1, layer+1, filt_mask) 63 | fill_layer((new_state>>1) | (1<<47), layer+1, filt_mask) 64 | else: 65 | fill_layer(lfsr(new_state), layer+1, filt_mask) 66 | else: 67 | test(state) 68 | 69 | if __name__ == "__main__": 70 | testing = True 71 | fill_layer(0, 0) 72 | -------------------------------------------------------------------------------- /pseudocode/memoization.py: -------------------------------------------------------------------------------- 1 | from tabled import * 2 | 3 | def generate_memos(depth, 4 | sub_masks=[0x00000000006c, 5 | 0x00000000d100, 6 | 0x000004a20000, 7 | 0x0002b0000000, 8 | 0x580400000000], 9 | lfsr_mask=0xce0044c101cd): 10 | # keep track of known subfilters and bits 11 | filt_found = [ 12 | [0 for _ in range(len(sub_masks))] 13 | for _ in range(len(keystream)) 14 | ] 15 | lfsr_found = [0 for _ in(range(len(keystream))) ] 16 | fill = 0 17 | lfsr_guess_delay = 0 18 | lfsr_guess_rounds = [0]*lfsr_guess_delay + [1 if i and i <= last_lfsr_guess else 0 for i in range(32)] 19 | print lfsr_guess_rounds 20 | 21 | for layer in range(len(masks)): 22 | print layer 23 | fill |= (masks[layer]<>layer)&lfsr_mask) == lfsr_mask: 28 | fill |= (1<<(47+layer)) # track LFSR output 29 | lfsr_found[layer] = 1 30 | for next_bit in range(layer, depth): 31 | # greedily precompute LFSR output 32 | if (lfsr_mask is not None or layer == len(masks)-1) \ 33 | and not lfsr_found[next_bit] \ 34 | and (((fill<<1)>>next_bit)&lfsr_mask) == lfsr_mask: 35 | print "LFSR output for layer", next_bit-1, \ 36 | "known at layer", layer 37 | fill |= (1<<(47+next_bit)) 38 | lfsr_found[next_bit] = 1 39 | found_on_layer = 0 40 | for next_bit in range(layer, depth): 41 | # find computable subfilters 42 | for subfilter in range(len(sub_masks)): 43 | if filt_found[next_bit][subfilter]: 44 | continue 45 | target = sub_masks[subfilter] 46 | if ((fill>>next_bit) & target) == target: 47 | print "Subfilter", subfilter, \ 48 | "for layer", next_bit, \ 49 | "known at layer", layer 50 | filt_found[next_bit][subfilter] = 1 51 | found_on_layer += 1 52 | print "Found", found_on_layer, "on layer", layer 53 | print hex(fill) 54 | 55 | generate_memos(12) 56 | -------------------------------------------------------------------------------- /pseudocode/unrolled.py: -------------------------------------------------------------------------------- 1 | from naive import * 2 | def fill_layer(a=None, b=None, filt_mask=0x5806b4a2d16c): 3 | for i0 in range(1<>1) | expand(masks[1]|(1<<47), i1) 11 | if testing and (state1 & filt_mask) != (test_states[1] & filt_mask): 12 | continue 13 | if f20(state1) != keystream[1]: 14 | continue 15 | for i2 in range(1<<(bits[2]+1)): # guess LFSR output bit 1 16 | state2 = (state1>>1) | expand(masks[2]|(1<<47), i2) 17 | if testing and (state2 & filt_mask) != (test_states[2] & filt_mask): 18 | continue 19 | if f20(state2) != keystream[2]: 20 | continue 21 | for i3 in range(1<> a) & 1)*8)+((x >> b) & 1)*4+((x >> c) & 1)*2+((x >> d) & 1) 11 | 12 | 13 | def f20_4(state): 14 | return ((0x3c65 >> i4(state,34,43,44,46)) & 1) 15 | 16 | def f20_3(state): 17 | return (( 0xee5 >> i4(state,28,29,31,33)) & 1) 18 | 19 | def f20_2(state): 20 | return (( 0xee5 >> i4(state,17,21,23,26)) & 1) 21 | 22 | def f20_1(state): 23 | return (( 0xee5 >> i4(state, 8,12,14,15)) & 1) 24 | 25 | def f20_0(state): 26 | return ((0x3c65 >> i4(state, 2, 3, 5, 6)) & 1) 27 | 28 | def f20_last(s0,s1,s2,s3,s4): 29 | return (0xdd3929b >> ((s0 * 16) 30 | + (s1 * 8) 31 | + (s2 * 4) 32 | + (s3 * 2) 33 | + (s4 * 1))) & 1 34 | 35 | def f20(state): 36 | return f20_last(f20_0(state), f20_1(state), f20_2(state), f20_3(state), f20_4(state)) 37 | 38 | def lfsr_bs(state, i): 39 | return (state[i+ 0] ^ state[i+ 2] ^ state[i+ 3] ^ state[i+ 6] ^ 40 | state[i+ 7] ^ state[i+ 8] ^ state[i+16] ^ state[i+22] ^ 41 | state[i+23] ^ state[i+26] ^ state[i+30] ^ state[i+41] ^ 42 | state[i+42] ^ state[i+43] ^ state[i+46] ^ state[i+47]) 43 | 44 | def f20a_bs(a,b,c,d): 45 | return (~(((a|b)&c)^(a|d)^b)) # 6 ops 46 | def f20b_bs(a,b,c,d): 47 | return (~(((d|c)&(a^b))^(d|a|b))) # 7 ops 48 | def f20c_bs(a,b,c,d,e): 49 | return (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c)))) # 13 ops 50 | 51 | def filter_bs(state, i): 52 | return (f20c_bs( f20a_bs(state[i+ 2],state[i+ 3],state[i+ 5],state[i+ 6]), 53 | f20b_bs(state[i+ 8],state[i+12],state[i+14],state[i+15]), 54 | f20b_bs(state[i+17],state[i+21],state[i+23],state[i+26]), 55 | f20b_bs(state[i+28],state[i+29],state[i+31],state[i+33]), 56 | f20a_bs(state[i+34],state[i+43],state[i+44],state[i+46]))) 57 | 58 | def unbitslice(s, n): 59 | return int(''.join(map(str,map(int,map(bool,s[n:n+48])))[::-1]),2) 60 | 61 | def hitag2_init(key, uid, nonce): 62 | state = 0 63 | for i in range(32, 48): 64 | state = (state << 1) | ((key >> i) & 1) 65 | for i in range(0, 32): 66 | state = (state << 1) | ((uid >> i) & 1) 67 | #print '%012x' % state 68 | #print '%012x' % (int("{0:048b}".format(state)[::-1],2)) 69 | for i in range(0, 32): 70 | nonce_bit = (f20(state) ^ ((nonce >> (31-i)) & 1)) 71 | #print nonce_bit 72 | state = (state >> 1) | (((nonce_bit ^ (key >> (31-i))) & 1) << 47) 73 | #print '%012x' % state 74 | #print '%012x' % (int("{0:048b}".format(state)[::-1],2)) 75 | return state 76 | 77 | def lfsr_feedback(state): 78 | return (((state >> 0) ^ (state >> 2) ^ (state >> 3) 79 | ^ (state >> 6) ^ (state >> 7) ^ (state >> 8) 80 | ^ (state >> 16) ^ (state >> 22) ^ (state >> 23) 81 | ^ (state >> 26) ^ (state >> 30) ^ (state >> 41) 82 | ^ (state >> 42) ^ (state >> 43) ^ (state >> 46) 83 | ^ (state >> 47)) & 1) 84 | def lfsr(state): 85 | return (state >> 1) + (lfsr_feedback(state) << 47) 86 | 87 | def lfsr_feedback_inv(state): 88 | return (((state >> 47) ^ (state >> 1) ^ (state >> 2) 89 | ^ (state >> 5) ^ (state >> 6) ^ (state >> 7) 90 | ^ (state >> 15) ^ (state >> 21) ^ (state >> 22) 91 | ^ (state >> 25) ^ (state >> 29) ^ (state >> 40) 92 | ^ (state >> 41) ^ (state >> 42) ^ (state >> 45) 93 | ^ (state >> 46)) & 1) 94 | 95 | def lfsr_inv(state): 96 | return ((state << 1) + (lfsr_feedback_inv(state))) & ((1<<48)-1) 97 | 98 | def hitag2(state, length=48): 99 | c = 0 100 | for i in range(0, length): 101 | c = (c << 1) | f20(state) 102 | #print '%012x' % state 103 | #print '%012x' % (int("{0:048b}".format(state)[::-1],2)) 104 | state = lfsr(state) 105 | return c 106 | 107 | if __name__ == "__main__": 108 | import sys 109 | if len(sys.argv) > 3: 110 | key = int(sys.argv[1], 16) 111 | uid = int(sys.argv[2], 16) 112 | nonce = int(sys.argv[3], 16) 113 | state = hitag2_init(key, uid, nonce) 114 | print('%012x' % state) 115 | print('%08x' % (hitag2(state, 32))) 116 | #print('%08x' % (hitag2(state, 32)^0xffffffff)) 117 | elif len(sys.argv) > 1: 118 | state = int(sys.argv[1], 16) 119 | print('%012x' % hitag2(state)) 120 | else: 121 | print(("Usage: python %s " % sys.argv[0] + 122 | " | ")) 123 | -------------------------------------------------------------------------------- /pseudocode/generate_memoized_python.py: -------------------------------------------------------------------------------- 1 | from tabled import * 2 | from complexity import * 3 | from math import log 4 | 5 | def generate_python(depth, 6 | sub_masks=[0x00000000006c, 7 | 0x00000000d100, 8 | 0x000004a20000, 9 | 0x0002b0000000, 10 | 0x580400000000], 11 | lfsr_mask=0xce0044c101cd): 12 | memoize_filter = True 13 | memoize_lfsr = True 14 | # keep track of known subfilters and bits at each layer 15 | found = [[0 for _ in range(len(sub_masks))] for _ in range(32)] 16 | lfsr_found = [0 for _ in range(32)] 17 | fill = 0 18 | print "from naive import *" 19 | print "def fill_layer(a=None, b=None, filt_mask=0x5806b4a2d16c):" 20 | print " state = [0 for _ in range(48+32)]" 21 | 22 | memo_funcs = ['f20a_bs', 'f20b_bs', 'f20b_bs', 'f20b_bs', 'f20a_bs'] 23 | memo_input = [[2,3,5,6],[8,12,14,15],[17,21,23,26],[28,29,31,33],[34,43,44,46]] 24 | 25 | for layer in range(len(masks)): 26 | # define recursion loops 27 | if not layer: 28 | print " "*(layer+1) + "for i%u in range(1<>i) & 1: 32 | print " "*(layer+2) + "state[%u] = bool((i%u & %s))" % (i+layer, layer, hex(inmask)) 33 | inmask <<= 1 34 | elif layer <= last_lfsr_guess: 35 | print " "*(layer+1) + "for i%u in range(1<<(bits[%u]+1)):" % (layer, layer) 36 | inmask = 1 37 | for i in range(48): 38 | if (masks[layer]>>i) & 1: 39 | print " "*(layer+2) + "state[%u] = bool((i%u & %s))" % (i+layer, layer, hex(inmask)) 40 | inmask <<= 1 41 | print " "*(layer+2) + "state[%u] = bool((i%u & %s)) # guess lfsr output %u" % (47+layer, layer, hex(inmask), layer-1) 42 | fill |= (1<<(47+layer)) 43 | lfsr_found[layer] = 1 44 | else: 45 | if not lfsr_found[layer]: 46 | print " "*(layer+1) + "state[%u] = lfsr_bs(state,%u)" % (47+layer, layer-1) 47 | fill |= (1<<(47+layer)) 48 | lfsr_found[layer] = 1 49 | print " "*(layer+1) + "for i%u in range(1<>i) & 1: 53 | print " "*(layer+2) + "state[%u] = bool((i%u & %s))" % (i+layer, layer, hex(inmask)) 54 | inmask <<= 1 55 | 56 | fill |= (masks[layer]<<(layer)) # mask 57 | print " "*(layer+2) + "#", hex(fill>>layer & (1<<48)-1) 58 | 59 | # test at layer 0 60 | if testing and not layer: 61 | print " "*(layer+2) + "if (unbitslice(state,%u) & filt_mask) != (test_states[%u] & filt_mask):" % (layer, layer) 62 | print " "*(layer+3) + "continue" 63 | print " "*(layer+2) + "print %u, hex(unbitslice(state, %u))" % (layer, layer) 64 | 65 | if depth < layer: 66 | depth = layer+1 67 | for next_bit in range(layer, len(masks)): 68 | # greedily precompute LFSR output 69 | if memoize_lfsr and ((((fill<<1)>>next_bit)&lfsr_mask) == lfsr_mask) and not lfsr_found[next_bit]: 70 | #print "LFSR output for layer", next_bit, \ 71 | #"can be determined at layer", layer 72 | print " "*(layer+2) + "state[%u] = lfsr_bs(state,%u)" % (47+next_bit, next_bit-1) 73 | fill |= (1<<(47+next_bit)) 74 | lfsr_found[next_bit] = 1 75 | if not memoize_filter: 76 | continue 77 | for next_bit in range(layer, depth): 78 | # solve next subfilters 79 | for subfilter in range(len(sub_masks)): 80 | if found[next_bit][subfilter]: 81 | continue 82 | target = sub_masks[subfilter] 83 | if ((fill>>next_bit) & target) == target: 84 | #print "Subfilter", subfilter, \ 85 | #"for layer", next_bit, \ 86 | #"known at layer", layer 87 | print " "*(layer+2) + "filter%u_%u = %s(state[%u],state[%u],state[%u],state[%u])" % ((next_bit, subfilter, memo_funcs[subfilter]) + tuple(map(lambda x: x+next_bit, memo_input[subfilter]))) 88 | found[next_bit][subfilter] = 1 89 | 90 | if layer == len(masks)-1: 91 | for bit in range(len(masks), 32): 92 | for subfilter in range(len(sub_masks)): 93 | if not found[bit][subfilter]: 94 | print " "*(layer+2) + "filter%u_%u = %s(state[%u],state[%u],state[%u],state[%u])" % ((bit, subfilter, memo_funcs[subfilter]) + tuple(map(lambda x: x+bit, memo_input[subfilter]))) 95 | found[bit][subfilter] = 1 96 | print " "*(layer+2) + "filter%u = f20c_bs(filter%u_0, filter%u_1, filter%u_2, filter%u_3, filter%u_4)" % (bit, bit, bit, bit, bit, bit) 97 | print " "*(layer+2) + "results%u = filter%u == keystream[%u]" % (bit, bit, bit) 98 | print " "*(layer+2) + "if not results%u:" % bit 99 | print " "*(11) + "continue" 100 | if bit < 31 and not lfsr_found[bit]: 101 | print " "*(layer+2) + "state[%u] = lfsr_bs(state, %u)" % (47+bit, bit-1) 102 | print " "*(layer+2) + "print hex(lfsr_inv(lfsr_inv(unbitslice(state,2))))" 103 | else: 104 | for subfilter in range(len(sub_masks)): 105 | if not found[layer][subfilter]: 106 | print " "*(layer+2) + "filter%u_%u = %s(state[%u],state[%u],state[%u],state[%u])" % ((layer, subfilter, memo_funcs[subfilter]) + tuple(map(lambda x: x+layer, memo_input[subfilter]))) 107 | found[layer][subfilter] = 1 108 | 109 | print " "*(layer+2) + "filter%u = f20c_bs(filter%u_0, filter%u_1, filter%u_2, filter%u_3, filter%u_4)" % (layer, layer, layer, layer, layer, layer) 110 | print " "*(layer+2) + "results%u = filter%u == keystream[%u]" % (layer, layer, layer) 111 | print " "*(layer+2) + "if not results%u:" % layer 112 | print " "*(layer+3) + "continue" 113 | 114 | return found 115 | 116 | # Find how many nested loops to peel for subfilter work 117 | def layers_from_avg_to_min(layer=0, avg_states=1, min_states=32): 118 | if layer >= len(keystream) \ 119 | or layer >= len(masks) and avg_states <= min_states: 120 | return layer, avg_states 121 | else: 122 | if layer < last_lfsr_guess: 123 | # guess LFSR output bit 124 | avg_states <<= 1 125 | try: 126 | # guess filter input bits 127 | avg_states <<= bits[layer] 128 | except: 129 | pass 130 | # strike half the candidates on average 131 | avg_states >>= 1 132 | #print "Avg states at layer", layer, avg_states 133 | return layers_from_avg_to_min(layer+1, avg_states, min_states) 134 | 135 | # Total problem size starting from 1 candidate at layer 0 136 | cutoff, remaining = layers_from_avg_to_min(0,1,1) 137 | # Total problem size starting from 1 candidate at layer 1 138 | #cutoff, remaining = layers_from_avg_to_min(1,1,1) 139 | #print cutoff 140 | 141 | testing = True 142 | #testing = False 143 | # use 32-way bitsliicing (log(32) = 5) 144 | generate_python(cutoff-5) 145 | #generate_python(0) 146 | -------------------------------------------------------------------------------- /pseudocode/memoized_gen.py: -------------------------------------------------------------------------------- 1 | from naive import * 2 | def fill_layer(a=None, b=None, filt_mask=0x5806b4a2d16c): 3 | state = [0 for _ in range(48+32)] 4 | for i0 in range(1<>= 1; 43 | } 44 | } 45 | 46 | // don't care about the complexity of this function 47 | inline ulong unbitslice(const bitslice_t * restrict b, const uchar s, const uchar n) 48 | { 49 | const bitslice_t mask = ((bitslice_t) 1) << s; 50 | ulong result = 0; 51 | for (char i = n-1; i >= 0; --i) { 52 | result <<= 1; 53 | result |= (bool) (b[i] & mask); 54 | } 55 | return result; 56 | } 57 | 58 | // format this array with 32 bitsliced vectors of ones and zeroes representing the inverted keystream 59 | __constant bitslice_t keystream[KEYSTREAM_LENGTH] = %s; 60 | 61 | __kernel 62 | __attribute__((vec_type_hint(bitslice_t))) 63 | void find_state(const uint candidate_index_base, 64 | __global const ushort * restrict candidates, 65 | __global ulong * restrict matches, 66 | __global uint * restrict matches_found) 67 | { 68 | // we never actually set or use the lowest 2 bits the initial state, so we can save 2 bitslices everywhere 69 | bitslice_t state[-2+48+KEYSTREAM_LENGTH]; 70 | // set bits 0+2, 0+3, 0+5, 0+6, 0+8, 0+12, 0+14, 0+15, 0+17, 0+21, 0+23, 0+26, 0+28, 0+29, 0+31, 0+33, 0+34, 0+43, 0+44, 0+46 71 | // get the 48-bit cipher states as 3 16-bit words from the host memory queue (to save 25% throughput) 72 | const uint index = 3 * (candidate_index_base + get_global_id(0)); // dimension 0 should at least keep the execution units saturated - 8k is fine 73 | const ulong candidate = ((ulong) candidates[index] << 32) | ((ulong) candidates[index+1] << 16) | candidates[index+2]; 74 | // set all 48 state bits except the lowest 2 75 | bitslice(&state[-2+2], candidate, 46); 76 | // set bits 3, 6, 8, 12, 15 77 | state[-2+1+3] = 0xaaaaaaaa; 78 | state[-2+1+6] = 0xcccccccc; 79 | state[-2+1+8] = 0xf0f0f0f0; 80 | state[-2+1+12] = 0xff00ff00; 81 | state[-2+1+15] = 0xffff0000; 82 | ushort i1 = get_global_id(1); // dimension 1 should be 1024 83 | state[-2+18] = -((bool) (i1 & 0x1)); 84 | state[-2+22] = -((bool) (i1 & 0x2)); 85 | state[-2+24] = -((bool) (i1 & 0x4)); 86 | state[-2+27] = -((bool) (i1 & 0x8)); 87 | state[-2+30] = -((bool) (i1 & 0x10)); 88 | state[-2+32] = -((bool) (i1 & 0x20)); 89 | state[-2+35] = -((bool) (i1 & 0x40)); 90 | state[-2+45] = -((bool) (i1 & 0x80)); 91 | state[-2+47] = -((bool) (i1 & 0x100)); 92 | state[-2+48] = -((bool) (i1 & 0x200)); // guess lfsr output 0 93 | // 0xfc07fef3f9fe 94 | const bitslice_t filter1_0 = f_a_bs(state[-2+3],state[-2+4],state[-2+6],state[-2+7]); 95 | const bitslice_t filter1_1 = f_b_bs(state[-2+9],state[-2+13],state[-2+15],state[-2+16]); 96 | const bitslice_t filter1_2 = f_b_bs(state[-2+18],state[-2+22],state[-2+24],state[-2+27]); 97 | const bitslice_t filter1_3 = f_b_bs(state[-2+29],state[-2+30],state[-2+32],state[-2+34]); 98 | const bitslice_t filter1_4 = f_a_bs(state[-2+35],state[-2+44],state[-2+45],state[-2+47]); 99 | const bitslice_t filter1 = f_c_bs(filter1_0, filter1_1, filter1_2, filter1_3, filter1_4); 100 | const bitslice_t results1 = filter1 ^ keystream[1]; 101 | if(!results1) return; 102 | const bitslice_t filter2_0 = f_a_bs(state[-2+4],state[-2+5],state[-2+7],state[-2+8]); 103 | const bitslice_t filter2_3 = f_b_bs(state[-2+30],state[-2+31],state[-2+33],state[-2+35]); 104 | const bitslice_t filter3_0 = f_a_bs(state[-2+5],state[-2+6],state[-2+8],state[-2+9]); 105 | const bitslice_t filter5_2 = f_b_bs(state[-2+22],state[-2+26],state[-2+28],state[-2+31]); 106 | const bitslice_t filter6_2 = f_b_bs(state[-2+23],state[-2+27],state[-2+29],state[-2+32]); 107 | const bitslice_t filter7_2 = f_b_bs(state[-2+24],state[-2+28],state[-2+30],state[-2+33]); 108 | const bitslice_t filter9_1 = f_b_bs(state[-2+17],state[-2+21],state[-2+23],state[-2+24]); 109 | const bitslice_t filter9_2 = f_b_bs(state[-2+26],state[-2+30],state[-2+32],state[-2+35]); 110 | const bitslice_t filter10_0 = f_a_bs(state[-2+12],state[-2+13],state[-2+15],state[-2+16]); 111 | const bitslice_t filter11_0 = f_a_bs(state[-2+13],state[-2+14],state[-2+16],state[-2+17]); 112 | const bitslice_t filter12_0 = f_a_bs(state[-2+14],state[-2+15],state[-2+17],state[-2+18]); 113 | const bitslice_t filter14_1 = f_b_bs(state[-2+22],state[-2+26],state[-2+28],state[-2+29]); 114 | const bitslice_t filter15_1 = f_b_bs(state[-2+23],state[-2+27],state[-2+29],state[-2+30]); 115 | const bitslice_t filter15_3 = f_b_bs(state[-2+43],state[-2+44],state[-2+46],state[-2+48]); 116 | const bitslice_t filter16_1 = f_b_bs(state[-2+24],state[-2+28],state[-2+30],state[-2+31]); 117 | for(uchar i2 = 0; i2 < (1<<5);){ 118 | state[-2+10] = -((bool) (i2 & 0x1)); 119 | state[-2+19] = -((bool) (i2 & 0x2)); 120 | state[-2+25] = -((bool) (i2 & 0x4)); 121 | state[-2+36] = -((bool) (i2 & 0x8)); 122 | state[-2+49] = -((bool) (i2 & 0x10)); // guess lfsr output 1 123 | i2++; 124 | // 0xfe07fffbfdff 125 | const bitslice_t filter2_1 = f_b_bs(state[-2+10],state[-2+14],state[-2+16],state[-2+17]); 126 | const bitslice_t filter2_2 = f_b_bs(state[-2+19],state[-2+23],state[-2+25],state[-2+28]); 127 | const bitslice_t filter2_4 = f_a_bs(state[-2+36],state[-2+45],state[-2+46],state[-2+48]); 128 | const bitslice_t filter2 = f_c_bs(filter2_0, filter2_1, filter2_2, filter2_3, filter2_4); 129 | const bitslice_t results2 = results1 & (filter2 ^ keystream[2]); 130 | if(!results2) continue; 131 | state[-2+50] = lfsr_bs(2); 132 | const bitslice_t filter3_3 = f_b_bs(state[-2+31],state[-2+32],state[-2+34],state[-2+36]); 133 | const bitslice_t filter4_0 = f_a_bs(state[-2+6],state[-2+7],state[-2+9],state[-2+10]); 134 | const bitslice_t filter4_1 = f_b_bs(state[-2+12],state[-2+16],state[-2+18],state[-2+19]); 135 | const bitslice_t filter4_2 = f_b_bs(state[-2+21],state[-2+25],state[-2+27],state[-2+30]); 136 | const bitslice_t filter7_0 = f_a_bs(state[-2+9],state[-2+10],state[-2+12],state[-2+13]); 137 | const bitslice_t filter7_1 = f_b_bs(state[-2+15],state[-2+19],state[-2+21],state[-2+22]); 138 | const bitslice_t filter8_2 = f_b_bs(state[-2+25],state[-2+29],state[-2+31],state[-2+34]); 139 | const bitslice_t filter10_1 = f_b_bs(state[-2+18],state[-2+22],state[-2+24],state[-2+25]); 140 | const bitslice_t filter10_2 = f_b_bs(state[-2+27],state[-2+31],state[-2+33],state[-2+36]); 141 | const bitslice_t filter11_1 = f_b_bs(state[-2+19],state[-2+23],state[-2+25],state[-2+26]); 142 | const bitslice_t filter13_0 = f_a_bs(state[-2+15],state[-2+16],state[-2+18],state[-2+19]); 143 | const bitslice_t filter13_1 = f_b_bs(state[-2+21],state[-2+25],state[-2+27],state[-2+28]); 144 | const bitslice_t filter16_0 = f_a_bs(state[-2+18],state[-2+19],state[-2+21],state[-2+22]); 145 | const bitslice_t filter16_3 = f_b_bs(state[-2+44],state[-2+45],state[-2+47],state[-2+49]); 146 | const bitslice_t filter17_1 = f_b_bs(state[-2+25],state[-2+29],state[-2+31],state[-2+32]); 147 | const bitslice_t filter17_3 = f_b_bs(state[-2+45],state[-2+46],state[-2+48],state[-2+50]); 148 | for(uchar i3 = 0; i3 < (1<<3);){ 149 | state[-2+11] = -((bool) (i3 & 0x1)); 150 | state[-2+20] = -((bool) (i3 & 0x2)); 151 | state[-2+37] = -((bool) (i3 & 0x4)); 152 | i3++; 153 | // 0xff07ffffffff 154 | const bitslice_t filter3_1 = f_b_bs(state[-2+11],state[-2+15],state[-2+17],state[-2+18]); 155 | const bitslice_t filter3_2 = f_b_bs(state[-2+20],state[-2+24],state[-2+26],state[-2+29]); 156 | const bitslice_t filter3_4 = f_a_bs(state[-2+37],state[-2+46],state[-2+47],state[-2+49]); 157 | const bitslice_t filter3 = f_c_bs(filter3_0, filter3_1, filter3_2, filter3_3, filter3_4); 158 | const bitslice_t results3 = results2 & (filter3 ^ keystream[3]); 159 | if(!results3) continue; 160 | state[-2+51] = lfsr_bs(3); 161 | state[-2+52] = lfsr_bs(4); 162 | state[-2+53] = lfsr_bs(5); 163 | state[-2+54] = lfsr_bs(6); 164 | state[-2+55] = lfsr_bs(7); 165 | const bitslice_t filter4_3 = f_b_bs(state[-2+32],state[-2+33],state[-2+35],state[-2+37]); 166 | const bitslice_t filter5_0 = f_a_bs(state[-2+7],state[-2+8],state[-2+10],state[-2+11]); 167 | const bitslice_t filter5_1 = f_b_bs(state[-2+13],state[-2+17],state[-2+19],state[-2+20]); 168 | const bitslice_t filter6_0 = f_a_bs(state[-2+8],state[-2+9],state[-2+11],state[-2+12]); 169 | const bitslice_t filter6_1 = f_b_bs(state[-2+14],state[-2+18],state[-2+20],state[-2+21]); 170 | const bitslice_t filter8_0 = f_a_bs(state[-2+10],state[-2+11],state[-2+13],state[-2+14]); 171 | const bitslice_t filter8_1 = f_b_bs(state[-2+16],state[-2+20],state[-2+22],state[-2+23]); 172 | const bitslice_t filter9_0 = f_a_bs(state[-2+11],state[-2+12],state[-2+14],state[-2+15]); 173 | const bitslice_t filter9_4 = f_a_bs(state[-2+43],state[-2+52],state[-2+53],state[-2+55]); 174 | const bitslice_t filter11_2 = f_b_bs(state[-2+28],state[-2+32],state[-2+34],state[-2+37]); 175 | const bitslice_t filter12_1 = f_b_bs(state[-2+20],state[-2+24],state[-2+26],state[-2+27]); 176 | const bitslice_t filter14_0 = f_a_bs(state[-2+16],state[-2+17],state[-2+19],state[-2+20]); 177 | const bitslice_t filter15_0 = f_a_bs(state[-2+17],state[-2+18],state[-2+20],state[-2+21]); 178 | const bitslice_t filter17_0 = f_a_bs(state[-2+19],state[-2+20],state[-2+22],state[-2+23]); 179 | for(uchar i4 = 0; i4 < (1<<1);){ 180 | state[-2+38] = -i4; 181 | i4++; 182 | // 0xff87ffffffff 183 | const bitslice_t filter4_4 = f_a_bs(state[-2+38],state[-2+47],state[-2+48],state[-2+50]); 184 | const bitslice_t filter4 = f_c_bs(filter4_0, filter4_1, filter4_2, filter4_3, filter4_4); 185 | const bitslice_t results4 = results3 & (filter4 ^ keystream[4]); 186 | if(!results4) continue; 187 | state[-2+56] = lfsr_bs(8); 188 | const bitslice_t filter5_3 = f_b_bs(state[-2+33],state[-2+34],state[-2+36],state[-2+38]); 189 | const bitslice_t filter10_4 = f_a_bs(state[-2+44],state[-2+53],state[-2+54],state[-2+56]); 190 | const bitslice_t filter12_2 = f_b_bs(state[-2+29],state[-2+33],state[-2+35],state[-2+38]); 191 | for(uchar i5 = 0; i5 < (1<<1);){ 192 | state[-2+39] = -i5; 193 | i5++; 194 | // 0xffc7ffffffff 195 | const bitslice_t filter5_4 = f_a_bs(state[-2+39],state[-2+48],state[-2+49],state[-2+51]); 196 | const bitslice_t filter5 = f_c_bs(filter5_0, filter5_1, filter5_2, filter5_3, filter5_4); 197 | const bitslice_t results5 = results4 & (filter5 ^ keystream[5]); 198 | if(!results5) continue; 199 | state[-2+57] = lfsr_bs(9); 200 | const bitslice_t filter6_3 = f_b_bs(state[-2+34],state[-2+35],state[-2+37],state[-2+39]); 201 | const bitslice_t filter11_4 = f_a_bs(state[-2+45],state[-2+54],state[-2+55],state[-2+57]); 202 | const bitslice_t filter13_2 = f_b_bs(state[-2+30],state[-2+34],state[-2+36],state[-2+39]); 203 | for(uchar i6 = 0; i6 < (1<<1);){ 204 | state[-2+40] = -i6; 205 | i6++; 206 | // 0xffe7ffffffff 207 | const bitslice_t filter6_4 = f_a_bs(state[-2+40],state[-2+49],state[-2+50],state[-2+52]); 208 | const bitslice_t filter6 = f_c_bs(filter6_0, filter6_1, filter6_2, filter6_3, filter6_4); 209 | const bitslice_t results6 = results5 & (filter6 ^ keystream[6]); 210 | if(!results6) continue; 211 | state[-2+58] = lfsr_bs(10); 212 | const bitslice_t filter7_3 = f_b_bs(state[-2+35],state[-2+36],state[-2+38],state[-2+40]); 213 | const bitslice_t filter12_4 = f_a_bs(state[-2+46],state[-2+55],state[-2+56],state[-2+58]); 214 | const bitslice_t filter14_2 = f_b_bs(state[-2+31],state[-2+35],state[-2+37],state[-2+40]); 215 | const bitslice_t filter17_2 = f_b_bs(state[-2+34],state[-2+38],state[-2+40],state[-2+43]); 216 | #pragma unroll 217 | for(uchar i7 = 0; i7 < (1<<1);){ 218 | state[-2+41] = -i7; 219 | i7++; 220 | // 0xfff7ffffffff 221 | const bitslice_t filter7_4 = f_a_bs(state[-2+41],state[-2+50],state[-2+51],state[-2+53]); 222 | const bitslice_t filter7 = f_c_bs(filter7_0, filter7_1, filter7_2, filter7_3, filter7_4); 223 | const bitslice_t results7 = results6 & (filter7 ^ keystream[7]); 224 | if(!results7) continue; 225 | state[-2+59] = lfsr_bs(11); 226 | const bitslice_t filter8_3 = f_b_bs(state[-2+36],state[-2+37],state[-2+39],state[-2+41]); 227 | const bitslice_t filter10_3 = f_b_bs(state[-2+38],state[-2+39],state[-2+41],state[-2+43]); 228 | const bitslice_t filter10 = f_c_bs(filter10_0, filter10_1, filter10_2, filter10_3, filter10_4); 229 | const bitslice_t filter12_3 = f_b_bs(state[-2+40],state[-2+41],state[-2+43],state[-2+45]); 230 | const bitslice_t filter12 = f_c_bs(filter12_0, filter12_1, filter12_2, filter12_3, filter12_4); 231 | const bitslice_t filter13_4 = f_a_bs(state[-2+47],state[-2+56],state[-2+57],state[-2+59]); 232 | const bitslice_t filter15_2 = f_b_bs(state[-2+32],state[-2+36],state[-2+38],state[-2+41]); 233 | #pragma unroll 234 | for(uchar i8 = 0; i8 < (1<<1);){ 235 | state[-2+42] = -i8; 236 | i8++; 237 | // 0xffffffffffff 238 | const bitslice_t filter8_4 = f_a_bs(state[-2+42],state[-2+51],state[-2+52],state[-2+54]); 239 | const bitslice_t filter8 = f_c_bs(filter8_0, filter8_1, filter8_2, filter8_3, filter8_4); 240 | bitslice_t results8 = results7 & (filter8 ^ keystream[8]); 241 | if(!results8) continue; 242 | const bitslice_t filter9_3 = f_b_bs(state[-2+37],state[-2+38],state[-2+40],state[-2+42]); 243 | const bitslice_t filter9 = f_c_bs(filter9_0, filter9_1, filter9_2, filter9_3, filter9_4); 244 | results8 &= (filter9 ^ keystream[9]); 245 | if(!results8) continue; 246 | results8 &= (filter10 ^ keystream[10]); 247 | if(!results8) continue; 248 | const bitslice_t filter11_3 = f_b_bs(state[-2+39],state[-2+40],state[-2+42],state[-2+44]); 249 | const bitslice_t filter11 = f_c_bs(filter11_0, filter11_1, filter11_2, filter11_3, filter11_4); 250 | results8 &= (filter11 ^ keystream[11]); 251 | if(!results8) continue; 252 | results8 &= (filter12 ^ keystream[12]); 253 | if(!results8) continue; 254 | const bitslice_t filter13_3 = f_b_bs(state[-2+41],state[-2+42],state[-2+44],state[-2+46]); 255 | const bitslice_t filter13 = f_c_bs(filter13_0, filter13_1, filter13_2, filter13_3, filter13_4); 256 | results8 &= (filter13 ^ keystream[13]); 257 | if(!results8) continue; 258 | state[-2+60] = lfsr_bs(12); 259 | const bitslice_t filter14_3 = f_b_bs(state[-2+42],state[-2+43],state[-2+45],state[-2+47]); 260 | const bitslice_t filter14_4 = f_a_bs(state[-2+48],state[-2+57],state[-2+58],state[-2+60]); 261 | const bitslice_t filter14 = f_c_bs(filter14_0, filter14_1, filter14_2, filter14_3, filter14_4); 262 | results8 &= (filter14 ^ keystream[14]); 263 | if(!results8) continue; 264 | state[-2+61] = lfsr_bs(13); 265 | const bitslice_t filter15_4 = f_a_bs(state[-2+49],state[-2+58],state[-2+59],state[-2+61]); 266 | const bitslice_t filter15 = f_c_bs(filter15_0, filter15_1, filter15_2, filter15_3, filter15_4); 267 | results8 &= (filter15 ^ keystream[15]); 268 | if(!results8) continue; 269 | state[-2+62] = lfsr_bs(14); 270 | const bitslice_t filter16_2 = f_b_bs(state[-2+33],state[-2+37],state[-2+39],state[-2+42]); 271 | const bitslice_t filter16_4 = f_a_bs(state[-2+50],state[-2+59],state[-2+60],state[-2+62]); 272 | const bitslice_t filter16 = f_c_bs(filter16_0, filter16_1, filter16_2, filter16_3, filter16_4); 273 | results8 &= (filter16 ^ keystream[16]); 274 | if(!results8) continue; 275 | state[-2+63] = lfsr_bs(15); 276 | const bitslice_t filter17_4 = f_a_bs(state[-2+51],state[-2+60],state[-2+61],state[-2+63]); 277 | const bitslice_t filter17 = f_c_bs(filter17_0, filter17_1, filter17_2, filter17_3, filter17_4); 278 | results8 &= (filter17 ^ keystream[17]); 279 | if(!results8) continue; 280 | state[-2+64] = lfsr_bs(16); 281 | const bitslice_t filter18_0 = f_a_bs(state[-2+20],state[-2+21],state[-2+23],state[-2+24]); 282 | const bitslice_t filter18_1 = f_b_bs(state[-2+26],state[-2+30],state[-2+32],state[-2+33]); 283 | const bitslice_t filter18_2 = f_b_bs(state[-2+35],state[-2+39],state[-2+41],state[-2+44]); 284 | const bitslice_t filter18_3 = f_b_bs(state[-2+46],state[-2+47],state[-2+49],state[-2+51]); 285 | const bitslice_t filter18_4 = f_a_bs(state[-2+52],state[-2+61],state[-2+62],state[-2+64]); 286 | const bitslice_t filter18 = f_c_bs(filter18_0, filter18_1, filter18_2, filter18_3, filter18_4); 287 | results8 &= (filter18 ^ keystream[18]); 288 | if(!results8) continue; 289 | state[-2+65] = lfsr_bs(17); 290 | const bitslice_t filter19_0 = f_a_bs(state[-2+21],state[-2+22],state[-2+24],state[-2+25]); 291 | const bitslice_t filter19_1 = f_b_bs(state[-2+27],state[-2+31],state[-2+33],state[-2+34]); 292 | const bitslice_t filter19_2 = f_b_bs(state[-2+36],state[-2+40],state[-2+42],state[-2+45]); 293 | const bitslice_t filter19_3 = f_b_bs(state[-2+47],state[-2+48],state[-2+50],state[-2+52]); 294 | const bitslice_t filter19_4 = f_a_bs(state[-2+53],state[-2+62],state[-2+63],state[-2+65]); 295 | const bitslice_t filter19 = f_c_bs(filter19_0, filter19_1, filter19_2, filter19_3, filter19_4); 296 | results8 &= (filter19 ^ keystream[19]); 297 | if(!results8) continue; 298 | state[-2+66] = lfsr_bs(18); 299 | const bitslice_t filter20_0 = f_a_bs(state[-2+22],state[-2+23],state[-2+25],state[-2+26]); 300 | const bitslice_t filter20_1 = f_b_bs(state[-2+28],state[-2+32],state[-2+34],state[-2+35]); 301 | const bitslice_t filter20_2 = f_b_bs(state[-2+37],state[-2+41],state[-2+43],state[-2+46]); 302 | const bitslice_t filter20_3 = f_b_bs(state[-2+48],state[-2+49],state[-2+51],state[-2+53]); 303 | const bitslice_t filter20_4 = f_a_bs(state[-2+54],state[-2+63],state[-2+64],state[-2+66]); 304 | const bitslice_t filter20 = f_c_bs(filter20_0, filter20_1, filter20_2, filter20_3, filter20_4); 305 | results8 &= (filter20 ^ keystream[20]); 306 | if(!results8) continue; 307 | state[-2+67] = lfsr_bs(19); 308 | const bitslice_t filter21_0 = f_a_bs(state[-2+23],state[-2+24],state[-2+26],state[-2+27]); 309 | const bitslice_t filter21_1 = f_b_bs(state[-2+29],state[-2+33],state[-2+35],state[-2+36]); 310 | const bitslice_t filter21_2 = f_b_bs(state[-2+38],state[-2+42],state[-2+44],state[-2+47]); 311 | const bitslice_t filter21_3 = f_b_bs(state[-2+49],state[-2+50],state[-2+52],state[-2+54]); 312 | const bitslice_t filter21_4 = f_a_bs(state[-2+55],state[-2+64],state[-2+65],state[-2+67]); 313 | const bitslice_t filter21 = f_c_bs(filter21_0, filter21_1, filter21_2, filter21_3, filter21_4); 314 | results8 &= (filter21 ^ keystream[21]); 315 | if(!results8) continue; 316 | state[-2+68] = lfsr_bs(20); 317 | const bitslice_t filter22_0 = f_a_bs(state[-2+24],state[-2+25],state[-2+27],state[-2+28]); 318 | const bitslice_t filter22_1 = f_b_bs(state[-2+30],state[-2+34],state[-2+36],state[-2+37]); 319 | const bitslice_t filter22_2 = f_b_bs(state[-2+39],state[-2+43],state[-2+45],state[-2+48]); 320 | const bitslice_t filter22_3 = f_b_bs(state[-2+50],state[-2+51],state[-2+53],state[-2+55]); 321 | const bitslice_t filter22_4 = f_a_bs(state[-2+56],state[-2+65],state[-2+66],state[-2+68]); 322 | const bitslice_t filter22 = f_c_bs(filter22_0, filter22_1, filter22_2, filter22_3, filter22_4); 323 | results8 &= (filter22 ^ keystream[22]); 324 | if(!results8) continue; 325 | state[-2+69] = lfsr_bs(21); 326 | const bitslice_t filter23_0 = f_a_bs(state[-2+25],state[-2+26],state[-2+28],state[-2+29]); 327 | const bitslice_t filter23_1 = f_b_bs(state[-2+31],state[-2+35],state[-2+37],state[-2+38]); 328 | const bitslice_t filter23_2 = f_b_bs(state[-2+40],state[-2+44],state[-2+46],state[-2+49]); 329 | const bitslice_t filter23_3 = f_b_bs(state[-2+51],state[-2+52],state[-2+54],state[-2+56]); 330 | const bitslice_t filter23_4 = f_a_bs(state[-2+57],state[-2+66],state[-2+67],state[-2+69]); 331 | const bitslice_t filter23 = f_c_bs(filter23_0, filter23_1, filter23_2, filter23_3, filter23_4); 332 | results8 &= (filter23 ^ keystream[23]); 333 | if(!results8) continue; 334 | state[-2+70] = lfsr_bs(22); 335 | const bitslice_t filter24_0 = f_a_bs(state[-2+26],state[-2+27],state[-2+29],state[-2+30]); 336 | const bitslice_t filter24_1 = f_b_bs(state[-2+32],state[-2+36],state[-2+38],state[-2+39]); 337 | const bitslice_t filter24_2 = f_b_bs(state[-2+41],state[-2+45],state[-2+47],state[-2+50]); 338 | const bitslice_t filter24_3 = f_b_bs(state[-2+52],state[-2+53],state[-2+55],state[-2+57]); 339 | const bitslice_t filter24_4 = f_a_bs(state[-2+58],state[-2+67],state[-2+68],state[-2+70]); 340 | const bitslice_t filter24 = f_c_bs(filter24_0, filter24_1, filter24_2, filter24_3, filter24_4); 341 | results8 &= (filter24 ^ keystream[24]); 342 | if(!results8) continue; 343 | state[-2+71] = lfsr_bs(23); 344 | const bitslice_t filter25_0 = f_a_bs(state[-2+27],state[-2+28],state[-2+30],state[-2+31]); 345 | const bitslice_t filter25_1 = f_b_bs(state[-2+33],state[-2+37],state[-2+39],state[-2+40]); 346 | const bitslice_t filter25_2 = f_b_bs(state[-2+42],state[-2+46],state[-2+48],state[-2+51]); 347 | const bitslice_t filter25_3 = f_b_bs(state[-2+53],state[-2+54],state[-2+56],state[-2+58]); 348 | const bitslice_t filter25_4 = f_a_bs(state[-2+59],state[-2+68],state[-2+69],state[-2+71]); 349 | const bitslice_t filter25 = f_c_bs(filter25_0, filter25_1, filter25_2, filter25_3, filter25_4); 350 | results8 &= (filter25 ^ keystream[25]); 351 | if(!results8) continue; 352 | state[-2+72] = lfsr_bs(24); 353 | const bitslice_t filter26_0 = f_a_bs(state[-2+28],state[-2+29],state[-2+31],state[-2+32]); 354 | const bitslice_t filter26_1 = f_b_bs(state[-2+34],state[-2+38],state[-2+40],state[-2+41]); 355 | const bitslice_t filter26_2 = f_b_bs(state[-2+43],state[-2+47],state[-2+49],state[-2+52]); 356 | const bitslice_t filter26_3 = f_b_bs(state[-2+54],state[-2+55],state[-2+57],state[-2+59]); 357 | const bitslice_t filter26_4 = f_a_bs(state[-2+60],state[-2+69],state[-2+70],state[-2+72]); 358 | const bitslice_t filter26 = f_c_bs(filter26_0, filter26_1, filter26_2, filter26_3, filter26_4); 359 | results8 &= (filter26 ^ keystream[26]); 360 | if(!results8) continue; 361 | state[-2+73] = lfsr_bs(25); 362 | const bitslice_t filter27_0 = f_a_bs(state[-2+29],state[-2+30],state[-2+32],state[-2+33]); 363 | const bitslice_t filter27_1 = f_b_bs(state[-2+35],state[-2+39],state[-2+41],state[-2+42]); 364 | const bitslice_t filter27_2 = f_b_bs(state[-2+44],state[-2+48],state[-2+50],state[-2+53]); 365 | const bitslice_t filter27_3 = f_b_bs(state[-2+55],state[-2+56],state[-2+58],state[-2+60]); 366 | const bitslice_t filter27_4 = f_a_bs(state[-2+61],state[-2+70],state[-2+71],state[-2+73]); 367 | const bitslice_t filter27 = f_c_bs(filter27_0, filter27_1, filter27_2, filter27_3, filter27_4); 368 | results8 &= (filter27 ^ keystream[27]); 369 | if(!results8) continue; 370 | state[-2+74] = lfsr_bs(26); 371 | const bitslice_t filter28_0 = f_a_bs(state[-2+30],state[-2+31],state[-2+33],state[-2+34]); 372 | const bitslice_t filter28_1 = f_b_bs(state[-2+36],state[-2+40],state[-2+42],state[-2+43]); 373 | const bitslice_t filter28_2 = f_b_bs(state[-2+45],state[-2+49],state[-2+51],state[-2+54]); 374 | const bitslice_t filter28_3 = f_b_bs(state[-2+56],state[-2+57],state[-2+59],state[-2+61]); 375 | const bitslice_t filter28_4 = f_a_bs(state[-2+62],state[-2+71],state[-2+72],state[-2+74]); 376 | const bitslice_t filter28 = f_c_bs(filter28_0, filter28_1, filter28_2, filter28_3, filter28_4); 377 | results8 &= (filter28 ^ keystream[28]); 378 | if(!results8) continue; 379 | state[-2+75] = lfsr_bs(27); 380 | const bitslice_t filter29_0 = f_a_bs(state[-2+31],state[-2+32],state[-2+34],state[-2+35]); 381 | const bitslice_t filter29_1 = f_b_bs(state[-2+37],state[-2+41],state[-2+43],state[-2+44]); 382 | const bitslice_t filter29_2 = f_b_bs(state[-2+46],state[-2+50],state[-2+52],state[-2+55]); 383 | const bitslice_t filter29_3 = f_b_bs(state[-2+57],state[-2+58],state[-2+60],state[-2+62]); 384 | const bitslice_t filter29_4 = f_a_bs(state[-2+63],state[-2+72],state[-2+73],state[-2+75]); 385 | const bitslice_t filter29 = f_c_bs(filter29_0, filter29_1, filter29_2, filter29_3, filter29_4); 386 | results8 &= (filter29 ^ keystream[29]); 387 | if(!results8) continue; 388 | state[-2+76] = lfsr_bs(28); 389 | const bitslice_t filter30_0 = f_a_bs(state[-2+32],state[-2+33],state[-2+35],state[-2+36]); 390 | const bitslice_t filter30_1 = f_b_bs(state[-2+38],state[-2+42],state[-2+44],state[-2+45]); 391 | const bitslice_t filter30_2 = f_b_bs(state[-2+47],state[-2+51],state[-2+53],state[-2+56]); 392 | const bitslice_t filter30_3 = f_b_bs(state[-2+58],state[-2+59],state[-2+61],state[-2+63]); 393 | const bitslice_t filter30_4 = f_a_bs(state[-2+64],state[-2+73],state[-2+74],state[-2+76]); 394 | const bitslice_t filter30 = f_c_bs(filter30_0, filter30_1, filter30_2, filter30_3, filter30_4); 395 | results8 &= (filter30 ^ keystream[30]); 396 | if(!results8) continue; 397 | state[-2+77] = lfsr_bs(29); 398 | const bitslice_t filter31_0 = f_a_bs(state[-2+33],state[-2+34],state[-2+36],state[-2+37]); 399 | const bitslice_t filter31_1 = f_b_bs(state[-2+39],state[-2+43],state[-2+45],state[-2+46]); 400 | const bitslice_t filter31_2 = f_b_bs(state[-2+48],state[-2+52],state[-2+54],state[-2+57]); 401 | const bitslice_t filter31_3 = f_b_bs(state[-2+59],state[-2+60],state[-2+62],state[-2+64]); 402 | const bitslice_t filter31_4 = f_a_bs(state[-2+65],state[-2+74],state[-2+75],state[-2+77]); 403 | const bitslice_t filter31 = f_c_bs(filter31_0, filter31_1, filter31_2, filter31_3, filter31_4); 404 | results8 &= (filter31 ^ keystream[31]); 405 | if(!results8) continue; 406 | uchar match_index = 0; 407 | // Save results 408 | while(results8 && (match_index < MAX_BITSLICES)){ 409 | uchar shift = clz(results8)+1; 410 | match_index += shift; 411 | // take the state from layer 2 so we can recover the lowest 2 bits on the host by inverting the LFSR 412 | matches[atomic_inc(matches_found)] = unbitslice(&state[-2+2], MAX_BITSLICES-match_index, 48); 413 | results8 <<= shift; 414 | } 415 | } // 8 416 | } // 7 417 | } // 6 418 | } // 5 419 | } // 4 420 | } // 3 421 | } // 2 422 | } // 1 423 | 424 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /implementations/x86.c: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | #include 6 | #include 7 | 8 | const uint8_t bits[9] = {20, 14, 4, 3, 1, 1, 1, 1, 1}; 9 | #define lfsr_inv(state) (((state)<<1) | (__builtin_parityll((state) & ((0xce0044c101cd>>1)|(1ull<<(47)))))) 10 | #define i4(x,a,b,c,d) ((uint32_t)((((x)>>(a))&1)<<3)|(((x)>>(b))&1)<<2|(((x)>>(c))&1)<<1|(((x)>>(d))&1)) 11 | #define f(state) ((0xdd3929b >> ( (((0x3c65 >> i4(state, 2, 3, 5, 6) ) & 1) <<4) \ 12 | | ((( 0xee5 >> i4(state, 8,12,14,15) ) & 1) <<3) \ 13 | | ((( 0xee5 >> i4(state,17,21,23,26) ) & 1) <<2) \ 14 | | ((( 0xee5 >> i4(state,28,29,31,33) ) & 1) <<1) \ 15 | | (((0x3c65 >> i4(state,34,43,44,46) ) & 1) ))) & 1) 16 | 17 | #define MAX_BITSLICES 256 18 | #define VECTOR_SIZE (MAX_BITSLICES/8) 19 | 20 | typedef unsigned int __attribute__((aligned(VECTOR_SIZE))) __attribute__((vector_size(VECTOR_SIZE))) bitslice_value_t; 21 | typedef union { 22 | bitslice_value_t value; 23 | uint64_t bytes64[MAX_BITSLICES/64]; 24 | uint8_t bytes[MAX_BITSLICES/8]; 25 | } bitslice_t; 26 | 27 | // we never actually set or use the lowest 2 bits the initial state, so we can save 2 bitslices everywhere 28 | __thread bitslice_t state[-2+32+48]; 29 | 30 | bitslice_t keystream[32]; 31 | bitslice_t bs_zeroes, bs_ones; 32 | 33 | #define f_a_bs(a,b,c,d) (~(((a|b)&c)^(a|d)^b)) // 6 ops 34 | #define f_b_bs(a,b,c,d) (~(((d|c)&(a^b))^(d|a|b))) // 7 ops 35 | #define f_c_bs(a,b,c,d,e) (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c)))) // 13 ops 36 | #define lfsr_bs(i) (state[-2+i+ 0].value ^ state[-2+i+ 2].value ^ state[-2+i+ 3].value ^ state[-2+i+ 6].value ^ \ 37 | state[-2+i+ 7].value ^ state[-2+i+ 8].value ^ state[-2+i+16].value ^ state[-2+i+22].value ^ \ 38 | state[-2+i+23].value ^ state[-2+i+26].value ^ state[-2+i+30].value ^ state[-2+i+41].value ^ \ 39 | state[-2+i+42].value ^ state[-2+i+43].value ^ state[-2+i+46].value ^ state[-2+i+47].value); 40 | #define get_bit(n, word) ((word >> (n)) & 1) 41 | #define get_vector_bit(slice, value) get_bit(slice&0x3f, value.bytes64[slice>>6]) 42 | 43 | const uint64_t expand(uint64_t mask, uint64_t value){ 44 | uint64_t fill = 0; 45 | for(uint64_t bit_index = 0; bit_index < 48; bit_index++){ 46 | if(mask & 1){ 47 | fill |= (value&1)<>= 1; 49 | } 50 | mask >>= 1; 51 | } 52 | return fill; 53 | } 54 | 55 | void bitslice(const uint64_t value, bitslice_t * restrict bitsliced_value, const size_t bit_len, bool reverse){ 56 | size_t bit_idx; 57 | for(bit_idx = 0; bit_idx < bit_len; bit_idx++){ 58 | bool bit; 59 | if(reverse){ 60 | bit = get_bit(bit_len-1-bit_idx, value); 61 | } else { 62 | bit = get_bit(bit_idx, value); 63 | } 64 | if(bit){ 65 | bitsliced_value[bit_idx].value = bs_ones.value; 66 | } else { 67 | bitsliced_value[bit_idx].value = bs_zeroes.value; 68 | } 69 | } 70 | } 71 | 72 | const uint64_t unbitslice(const bitslice_t * restrict b, const uint8_t s, const uint8_t n){ 73 | uint64_t result = 0; 74 | for (uint8_t i = 0; i < n; ++i) { 75 | result <<= 1; 76 | result |= get_vector_bit(s, b[n-1-i]); 77 | } 78 | return result; 79 | } 80 | 81 | uint64_t candidates[(1<<20)]; 82 | bitslice_t initial_bitslices[48]; 83 | size_t filter_pos[20] = {4, 7, 9, 13, 16, 18, 22, 24, 27, 30, 32, 35, 45, 47 }; 84 | size_t thread_count = 8; 85 | size_t layer_0_found; 86 | void find_state(size_t thread); 87 | 88 | void main(int argc, char* argv[]){ 89 | // set constants 90 | memset(bs_ones.bytes, 0xff, VECTOR_SIZE); 91 | memset(bs_zeroes.bytes, 0x00, VECTOR_SIZE); 92 | 93 | uint64_t target = 0x48656c6c; 94 | 95 | // bitslice inverse target bits 96 | bitslice(~target, keystream, 32, true); 97 | 98 | // bitslice all possible 256 values in the lowest 8 bits 99 | memset(initial_bitslices[0].bytes, 0xaa, VECTOR_SIZE); 100 | memset(initial_bitslices[1].bytes, 0xcc, VECTOR_SIZE); 101 | memset(initial_bitslices[2].bytes, 0xf0, VECTOR_SIZE); 102 | size_t interval = 1; 103 | for(size_t bit = 3; bit < 8; bit++){ 104 | for(size_t byte = 0; byte < VECTOR_SIZE;){ 105 | for(size_t length = 0; length < interval; length++){ 106 | initial_bitslices[bit].bytes[byte++] = 0x00; 107 | } 108 | for(size_t length = 0; length < interval; length++){ 109 | initial_bitslices[bit].bytes[byte++] = 0xff; 110 | } 111 | } 112 | interval<<=1; 113 | } 114 | 115 | // compute layer 0 output 116 | for(size_t i0 = 0; i0 < 1<<20; i0++){ 117 | uint64_t state0 = expand(0x5806b4a2d16c, i0); 118 | if(f(state0) == target>>31){ 119 | candidates[layer_0_found++] = state0; 120 | } 121 | } 122 | 123 | // start threads and wait on them 124 | pthread_t thread_handles[thread_count]; 125 | for(size_t thread = 0; thread < thread_count; thread++){ 126 | pthread_create(&thread_handles[thread], NULL, find_state, (void*) thread); 127 | } 128 | for(size_t thread = 0; thread < thread_count; thread++){ 129 | pthread_join(thread_handles[thread], NULL); 130 | } 131 | } 132 | 133 | void find_state(size_t thread){ 134 | for(size_t index = thread; index < layer_0_found; index+=thread_count){ 135 | uint64_t state0 = candidates[index]; 136 | bitslice(state0>>2, &state[0], 46, false); 137 | for(size_t bit = 0; bit < 8; bit++){ 138 | state[-2+filter_pos[bit]] = initial_bitslices[bit]; 139 | } 140 | for(uint16_t i1 = 0; i1 < (1<<(bits[1]+1)>>8); i1++){ 141 | state[-2+27].value = ((bool) (i1 & 0x1)) ? bs_ones.value : bs_zeroes.value; 142 | state[-2+30].value = ((bool) (i1 & 0x2)) ? bs_ones.value : bs_zeroes.value; 143 | state[-2+32].value = ((bool) (i1 & 0x4)) ? bs_ones.value : bs_zeroes.value; 144 | state[-2+35].value = ((bool) (i1 & 0x8)) ? bs_ones.value : bs_zeroes.value; 145 | state[-2+45].value = ((bool) (i1 & 0x10)) ? bs_ones.value : bs_zeroes.value; 146 | state[-2+47].value = ((bool) (i1 & 0x20)) ? bs_ones.value : bs_zeroes.value; 147 | state[-2+48].value = ((bool) (i1 & 0x40)) ? bs_ones.value : bs_zeroes.value; // guess lfsr output 0 148 | // 0xfc07fef3f9fe 149 | const bitslice_value_t filter1_0 = f_a_bs(state[-2+3].value,state[-2+4].value,state[-2+6].value,state[-2+7].value); 150 | const bitslice_value_t filter1_1 = f_b_bs(state[-2+9].value,state[-2+13].value,state[-2+15].value,state[-2+16].value); 151 | const bitslice_value_t filter1_2 = f_b_bs(state[-2+18].value,state[-2+22].value,state[-2+24].value,state[-2+27].value); 152 | const bitslice_value_t filter1_3 = f_b_bs(state[-2+29].value,state[-2+30].value,state[-2+32].value,state[-2+34].value); 153 | const bitslice_value_t filter1_4 = f_a_bs(state[-2+35].value,state[-2+44].value,state[-2+45].value,state[-2+47].value); 154 | const bitslice_value_t filter1 = f_c_bs(filter1_0, filter1_1, filter1_2, filter1_3, filter1_4); 155 | bitslice_t results1; 156 | results1.value = filter1 ^ keystream[1].value; 157 | if(results1.bytes64[0] == 0 158 | && results1.bytes64[1] == 0 159 | && results1.bytes64[2] == 0 160 | && results1.bytes64[3] == 0 161 | ){ 162 | continue; 163 | } 164 | const bitslice_value_t filter2_0 = f_a_bs(state[-2+4].value,state[-2+5].value,state[-2+7].value,state[-2+8].value); 165 | const bitslice_value_t filter2_3 = f_b_bs(state[-2+30].value,state[-2+31].value,state[-2+33].value,state[-2+35].value); 166 | const bitslice_value_t filter3_0 = f_a_bs(state[-2+5].value,state[-2+6].value,state[-2+8].value,state[-2+9].value); 167 | const bitslice_value_t filter5_2 = f_b_bs(state[-2+22].value,state[-2+26].value,state[-2+28].value,state[-2+31].value); 168 | const bitslice_value_t filter6_2 = f_b_bs(state[-2+23].value,state[-2+27].value,state[-2+29].value,state[-2+32].value); 169 | const bitslice_value_t filter7_2 = f_b_bs(state[-2+24].value,state[-2+28].value,state[-2+30].value,state[-2+33].value); 170 | const bitslice_value_t filter9_1 = f_b_bs(state[-2+17].value,state[-2+21].value,state[-2+23].value,state[-2+24].value); 171 | const bitslice_value_t filter9_2 = f_b_bs(state[-2+26].value,state[-2+30].value,state[-2+32].value,state[-2+35].value); 172 | const bitslice_value_t filter10_0 = f_a_bs(state[-2+12].value,state[-2+13].value,state[-2+15].value,state[-2+16].value); 173 | const bitslice_value_t filter11_0 = f_a_bs(state[-2+13].value,state[-2+14].value,state[-2+16].value,state[-2+17].value); 174 | const bitslice_value_t filter12_0 = f_a_bs(state[-2+14].value,state[-2+15].value,state[-2+17].value,state[-2+18].value); 175 | for(uint16_t i2 = 0; i2 < (1<<(bits[2]+1)); i2++){ 176 | state[-2+10].value = ((bool) (i2 & 0x1)) ? bs_ones.value : bs_zeroes.value; 177 | state[-2+19].value = ((bool) (i2 & 0x2)) ? bs_ones.value : bs_zeroes.value; 178 | state[-2+25].value = ((bool) (i2 & 0x4)) ? bs_ones.value : bs_zeroes.value; 179 | state[-2+36].value = ((bool) (i2 & 0x8)) ? bs_ones.value : bs_zeroes.value; 180 | state[-2+49].value = ((bool) (i2 & 0x10)) ? bs_ones.value : bs_zeroes.value; // guess lfsr output 1 181 | // 0xfe07fffbfdff 182 | const bitslice_value_t filter2_1 = f_b_bs(state[-2+10].value,state[-2+14].value,state[-2+16].value,state[-2+17].value); 183 | const bitslice_value_t filter2_2 = f_b_bs(state[-2+19].value,state[-2+23].value,state[-2+25].value,state[-2+28].value); 184 | const bitslice_value_t filter2_4 = f_a_bs(state[-2+36].value,state[-2+45].value,state[-2+46].value,state[-2+48].value); 185 | const bitslice_value_t filter2 = f_c_bs(filter2_0, filter2_1, filter2_2, filter2_3, filter2_4); 186 | bitslice_t results2; 187 | results2.value = results1.value & (filter2 ^ keystream[2].value); 188 | if(results2.bytes64[0] == 0 189 | && results2.bytes64[1] == 0 190 | && results2.bytes64[2] == 0 191 | && results2.bytes64[3] == 0 192 | ){ 193 | continue; 194 | } 195 | state[-2+50].value = lfsr_bs(2); 196 | const bitslice_value_t filter3_3 = f_b_bs(state[-2+31].value,state[-2+32].value,state[-2+34].value,state[-2+36].value); 197 | const bitslice_value_t filter4_0 = f_a_bs(state[-2+6].value,state[-2+7].value,state[-2+9].value,state[-2+10].value); 198 | const bitslice_value_t filter4_1 = f_b_bs(state[-2+12].value,state[-2+16].value,state[-2+18].value,state[-2+19].value); 199 | const bitslice_value_t filter4_2 = f_b_bs(state[-2+21].value,state[-2+25].value,state[-2+27].value,state[-2+30].value); 200 | const bitslice_value_t filter7_0 = f_a_bs(state[-2+9].value,state[-2+10].value,state[-2+12].value,state[-2+13].value); 201 | const bitslice_value_t filter7_1 = f_b_bs(state[-2+15].value,state[-2+19].value,state[-2+21].value,state[-2+22].value); 202 | const bitslice_value_t filter8_2 = f_b_bs(state[-2+25].value,state[-2+29].value,state[-2+31].value,state[-2+34].value); 203 | const bitslice_value_t filter10_1 = f_b_bs(state[-2+18].value,state[-2+22].value,state[-2+24].value,state[-2+25].value); 204 | const bitslice_value_t filter10_2 = f_b_bs(state[-2+27].value,state[-2+31].value,state[-2+33].value,state[-2+36].value); 205 | const bitslice_value_t filter11_1 = f_b_bs(state[-2+19].value,state[-2+23].value,state[-2+25].value,state[-2+26].value); 206 | for(uint8_t i3 = 0; i3 < (1<