├── README.md ├── Popular_Baby_Names.sql ├── .ipynb_checkpoints └── Data-Splitter-checkpoint.ipynb └── Data-Splitter.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Data-Splitter -------------------------------------------------------------------------------- /Popular_Baby_Names.sql: -------------------------------------------------------------------------------- 1 | create database Popular_Baby_Names 2 | 3 | use Popular_Baby_Names 4 | 5 | 6 | select * from Popular_Baby_Names -------------------------------------------------------------------------------- /.ipynb_checkpoints/Data-Splitter-checkpoint.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 15, 6 | "id": "6463840f", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd \n", 11 | "import pyodbc\n", 12 | "import json" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 9, 18 | "id": "a1386b5d", 19 | "metadata": {}, 20 | "outputs": [ 21 | { 22 | "data": { 23 | "text/html": [ 24 | "
\n", 25 | "\n", 38 | "\n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | "
Year of BirthGenderEthnicityChild's First NameCountRank
02011FEMALEHISPANICGERALDINE1375
12011FEMALEHISPANICGIA2167
22011FEMALEHISPANICGIANNA4942
32011FEMALEHISPANICGISELLE3851
42011FEMALEHISPANICGRACE3653
.....................
575772014MALEWHITE NON HISPANICYousef1894
575782014MALEWHITE NON HISPANICYoussef2488
575792014MALEWHITE NON HISPANICYusuf1696
575802014MALEWHITE NON HISPANICZachary9039
575812014MALEWHITE NON HISPANICZev4965
\n", 152 | "

57582 rows × 6 columns

\n", 153 | "
" 154 | ], 155 | "text/plain": [ 156 | " Year of Birth Gender Ethnicity Child's First Name Count \\\n", 157 | "0 2011 FEMALE HISPANIC GERALDINE 13 \n", 158 | "1 2011 FEMALE HISPANIC GIA 21 \n", 159 | "2 2011 FEMALE HISPANIC GIANNA 49 \n", 160 | "3 2011 FEMALE HISPANIC GISELLE 38 \n", 161 | "4 2011 FEMALE HISPANIC GRACE 36 \n", 162 | "... ... ... ... ... ... \n", 163 | "57577 2014 MALE WHITE NON HISPANIC Yousef 18 \n", 164 | "57578 2014 MALE WHITE NON HISPANIC Youssef 24 \n", 165 | "57579 2014 MALE WHITE NON HISPANIC Yusuf 16 \n", 166 | "57580 2014 MALE WHITE NON HISPANIC Zachary 90 \n", 167 | "57581 2014 MALE WHITE NON HISPANIC Zev 49 \n", 168 | "\n", 169 | " Rank \n", 170 | "0 75 \n", 171 | "1 67 \n", 172 | "2 42 \n", 173 | "3 51 \n", 174 | "4 53 \n", 175 | "... ... \n", 176 | "57577 94 \n", 177 | "57578 88 \n", 178 | "57579 96 \n", 179 | "57580 39 \n", 180 | "57581 65 \n", 181 | "\n", 182 | "[57582 rows x 6 columns]" 183 | ] 184 | }, 185 | "execution_count": 9, 186 | "metadata": {}, 187 | "output_type": "execute_result" 188 | } 189 | ], 190 | "source": [ 191 | "df = pd.read_csv('Popular_Baby_Names.csv')\n", 192 | "df" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 10, 198 | "id": "8d4f6743", 199 | "metadata": {}, 200 | "outputs": [ 201 | { 202 | "name": "stdout", 203 | "output_type": "stream", 204 | "text": [ 205 | "\n", 206 | "RangeIndex: 57582 entries, 0 to 57581\n", 207 | "Data columns (total 6 columns):\n", 208 | " # Column Non-Null Count Dtype \n", 209 | "--- ------ -------------- ----- \n", 210 | " 0 Year of Birth 57582 non-null int64 \n", 211 | " 1 Gender 57582 non-null object\n", 212 | " 2 Ethnicity 57582 non-null object\n", 213 | " 3 Child's First Name 57582 non-null object\n", 214 | " 4 Count 57582 non-null int64 \n", 215 | " 5 Rank 57582 non-null int64 \n", 216 | "dtypes: int64(3), object(3)\n", 217 | "memory usage: 2.6+ MB\n" 218 | ] 219 | } 220 | ], 221 | "source": [ 222 | "df.info()" 223 | ] 224 | }, 225 | { 226 | "cell_type": "code", 227 | "execution_count": null, 228 | "id": "cd438718", 229 | "metadata": {}, 230 | "outputs": [], 231 | "source": [ 232 | "data = data.sample(frac=1).reset_index(drop=True)\n" 233 | ] 234 | }, 235 | { 236 | "cell_type": "code", 237 | "execution_count": null, 238 | "id": "c64d9a65", 239 | "metadata": {}, 240 | "outputs": [], 241 | "source": [] 242 | } 243 | ], 244 | "metadata": { 245 | "kernelspec": { 246 | "display_name": "Python 3 (ipykernel)", 247 | "language": "python", 248 | "name": "python3" 249 | }, 250 | "language_info": { 251 | "codemirror_mode": { 252 | "name": "ipython", 253 | "version": 3 254 | }, 255 | "file_extension": ".py", 256 | "mimetype": "text/x-python", 257 | "name": "python", 258 | "nbconvert_exporter": "python", 259 | "pygments_lexer": "ipython3", 260 | "version": "3.11.3" 261 | } 262 | }, 263 | "nbformat": 4, 264 | "nbformat_minor": 5 265 | } 266 | -------------------------------------------------------------------------------- /Data-Splitter.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "38f5b7b3", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd \n", 11 | "import pyodbc\n", 12 | "import json" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "id": "01221e86", 19 | "metadata": {}, 20 | "outputs": [ 21 | { 22 | "data": { 23 | "text/html": [ 24 | "
\n", 25 | "\n", 38 | "\n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | "
Year of BirthGenderEthnicityChild's First NameCountRank
02011FEMALEHISPANICGERALDINE1375
12011FEMALEHISPANICGIA2167
22011FEMALEHISPANICGIANNA4942
32011FEMALEHISPANICGISELLE3851
42011FEMALEHISPANICGRACE3653
.....................
575772014MALEWHITE NON HISPANICYousef1894
575782014MALEWHITE NON HISPANICYoussef2488
575792014MALEWHITE NON HISPANICYusuf1696
575802014MALEWHITE NON HISPANICZachary9039
575812014MALEWHITE NON HISPANICZev4965
\n", 152 | "

57582 rows × 6 columns

\n", 153 | "
" 154 | ], 155 | "text/plain": [ 156 | " Year of Birth Gender Ethnicity Child's First Name Count \\\n", 157 | "0 2011 FEMALE HISPANIC GERALDINE 13 \n", 158 | "1 2011 FEMALE HISPANIC GIA 21 \n", 159 | "2 2011 FEMALE HISPANIC GIANNA 49 \n", 160 | "3 2011 FEMALE HISPANIC GISELLE 38 \n", 161 | "4 2011 FEMALE HISPANIC GRACE 36 \n", 162 | "... ... ... ... ... ... \n", 163 | "57577 2014 MALE WHITE NON HISPANIC Yousef 18 \n", 164 | "57578 2014 MALE WHITE NON HISPANIC Youssef 24 \n", 165 | "57579 2014 MALE WHITE NON HISPANIC Yusuf 16 \n", 166 | "57580 2014 MALE WHITE NON HISPANIC Zachary 90 \n", 167 | "57581 2014 MALE WHITE NON HISPANIC Zev 49 \n", 168 | "\n", 169 | " Rank \n", 170 | "0 75 \n", 171 | "1 67 \n", 172 | "2 42 \n", 173 | "3 51 \n", 174 | "4 53 \n", 175 | "... ... \n", 176 | "57577 94 \n", 177 | "57578 88 \n", 178 | "57579 96 \n", 179 | "57580 39 \n", 180 | "57581 65 \n", 181 | "\n", 182 | "[57582 rows x 6 columns]" 183 | ] 184 | }, 185 | "execution_count": 2, 186 | "metadata": {}, 187 | "output_type": "execute_result" 188 | } 189 | ], 190 | "source": [ 191 | "df = pd.read_csv('Popular_Baby_Names.csv')\n", 192 | "df" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 3, 198 | "id": "cc99b3f2", 199 | "metadata": {}, 200 | "outputs": [ 201 | { 202 | "name": "stdout", 203 | "output_type": "stream", 204 | "text": [ 205 | "\n", 206 | "RangeIndex: 57582 entries, 0 to 57581\n", 207 | "Data columns (total 6 columns):\n", 208 | " # Column Non-Null Count Dtype \n", 209 | "--- ------ -------------- ----- \n", 210 | " 0 Year of Birth 57582 non-null int64 \n", 211 | " 1 Gender 57582 non-null object\n", 212 | " 2 Ethnicity 57582 non-null object\n", 213 | " 3 Child's First Name 57582 non-null object\n", 214 | " 4 Count 57582 non-null int64 \n", 215 | " 5 Rank 57582 non-null int64 \n", 216 | "dtypes: int64(3), object(3)\n", 217 | "memory usage: 2.6+ MB\n" 218 | ] 219 | } 220 | ], 221 | "source": [ 222 | "df.info()" 223 | ] 224 | }, 225 | { 226 | "cell_type": "code", 227 | "execution_count": 4, 228 | "id": "67bd91e5", 229 | "metadata": {}, 230 | "outputs": [], 231 | "source": [ 232 | "# Mélanger les lignes pour une répartition aléatoire des données\n", 233 | "df = df.sample(frac=1).reset_index(drop=True)" 234 | ] 235 | }, 236 | { 237 | "cell_type": "code", 238 | "execution_count": 5, 239 | "id": "861978ed", 240 | "metadata": {}, 241 | "outputs": [ 242 | { 243 | "data": { 244 | "text/html": [ 245 | "
\n", 246 | "\n", 259 | "\n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | "
Year of BirthGenderEthnicityChild's First NameCountRank
02014MALEASIAN AND PACIFIC ISLANDERJeffrey1751
12013MALEASIAN AND PACIFIC ISLANDERJordan1948
22014MALEHISPANICKai1395
32012MALEHISPANICISAIAH7943
42013FEMALEWHITE NON HISPANICEster1082
.....................
575772011FEMALEHISPANICAMY8717
575782012MALEHISPANICJORDAN5758
575792013MALEWHITE NON HISPANICMeir4070
575802013FEMALEHISPANICKendra1771
575812014FEMALEBLACK NON HISPANICAlexandria1041
\n", 373 | "

57582 rows × 6 columns

\n", 374 | "
" 375 | ], 376 | "text/plain": [ 377 | " Year of Birth Gender Ethnicity Child's First Name \\\n", 378 | "0 2014 MALE ASIAN AND PACIFIC ISLANDER Jeffrey \n", 379 | "1 2013 MALE ASIAN AND PACIFIC ISLANDER Jordan \n", 380 | "2 2014 MALE HISPANIC Kai \n", 381 | "3 2012 MALE HISPANIC ISAIAH \n", 382 | "4 2013 FEMALE WHITE NON HISPANIC Ester \n", 383 | "... ... ... ... ... \n", 384 | "57577 2011 FEMALE HISPANIC AMY \n", 385 | "57578 2012 MALE HISPANIC JORDAN \n", 386 | "57579 2013 MALE WHITE NON HISPANIC Meir \n", 387 | "57580 2013 FEMALE HISPANIC Kendra \n", 388 | "57581 2014 FEMALE BLACK NON HISPANIC Alexandria \n", 389 | "\n", 390 | " Count Rank \n", 391 | "0 17 51 \n", 392 | "1 19 48 \n", 393 | "2 13 95 \n", 394 | "3 79 43 \n", 395 | "4 10 82 \n", 396 | "... ... ... \n", 397 | "57577 87 17 \n", 398 | "57578 57 58 \n", 399 | "57579 40 70 \n", 400 | "57580 17 71 \n", 401 | "57581 10 41 \n", 402 | "\n", 403 | "[57582 rows x 6 columns]" 404 | ] 405 | }, 406 | "execution_count": 5, 407 | "metadata": {}, 408 | "output_type": "execute_result" 409 | } 410 | ], 411 | "source": [ 412 | "df" 413 | ] 414 | }, 415 | { 416 | "cell_type": "code", 417 | "execution_count": 6, 418 | "id": "e73b61b4", 419 | "metadata": {}, 420 | "outputs": [], 421 | "source": [ 422 | "# Calculer le nombre de lignes pour chaque partie\n", 423 | "total_rows = len(df)\n", 424 | "json_rows = int(0.3 * total_rows)\n", 425 | "db_rows = int(0.3 * total_rows)\n", 426 | "csv_rows = total_rows - json_rows - db_rows" 427 | ] 428 | }, 429 | { 430 | "cell_type": "code", 431 | "execution_count": 7, 432 | "id": "c6fa9de0", 433 | "metadata": {}, 434 | "outputs": [], 435 | "source": [ 436 | "# Diviser les données en trois parties\n", 437 | "json_data = df[:json_rows]\n", 438 | "db_data = df[json_rows:json_rows + db_rows]\n", 439 | "csv_data = df[json_rows + db_rows:]" 440 | ] 441 | }, 442 | { 443 | "cell_type": "code", 444 | "execution_count": 8, 445 | "id": "e7113975", 446 | "metadata": {}, 447 | "outputs": [], 448 | "source": [ 449 | "# Sauvegarder les données au format JSON\n", 450 | "json_data.to_json(\"donnees.json\", orient=\"records\", lines=True)\n" 451 | ] 452 | }, 453 | { 454 | "cell_type": "code", 455 | "execution_count": 9, 456 | "id": "db05b81b", 457 | "metadata": {}, 458 | "outputs": [ 459 | { 460 | "name": "stdout", 461 | "output_type": "stream", 462 | "text": [ 463 | "Microsoft SQL Server 2022 (RTM) - 16.0.1000.6 (X64) \n", 464 | "\tOct 8 2022 05:58:25 \n", 465 | "\tCopyright (C) 2022 Microsoft Corporation\n", 466 | "\tExpress Edition (64-bit) on Windows 10 Pro 10.0 (Build 19045: )\n", 467 | "\n" 468 | ] 469 | } 470 | ], 471 | "source": [ 472 | "# Se connecter à la base de données SQL Server\n", 473 | "conn = pyodbc.connect(\"Driver={SQL Server};Server=LAPTOP-IGO4LBSV\\SQLEXPRESS;Database=Popular_Baby_Names;Trusted_Connection=yes;\")\n", 474 | "cursor = conn.cursor()\n", 475 | "\n", 476 | "cursor.execute(\"SELECT @@version;\")\n", 477 | "row = cursor.fetchone()\n", 478 | "while row: \n", 479 | " print(row[0])\n", 480 | " row = cursor.fetchone()\n" 481 | ] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "execution_count": 29, 486 | "id": "b98aa821", 487 | "metadata": { 488 | "scrolled": true 489 | }, 490 | "outputs": [ 491 | { 492 | "name": "stdout", 493 | "output_type": "stream", 494 | "text": [ 495 | "\n", 496 | "RangeIndex: 57582 entries, 0 to 57581\n", 497 | "Data columns (total 6 columns):\n", 498 | " # Column Non-Null Count Dtype \n", 499 | "--- ------ -------------- ----- \n", 500 | " 0 Year of Birth 57582 non-null int64 \n", 501 | " 1 Gender 57582 non-null object\n", 502 | " 2 Ethnicity 57582 non-null object\n", 503 | " 3 Child's First Name 57582 non-null object\n", 504 | " 4 Count 57582 non-null int64 \n", 505 | " 5 Rank 57582 non-null int64 \n", 506 | "dtypes: int64(3), object(3)\n", 507 | "memory usage: 2.6+ MB\n" 508 | ] 509 | } 510 | ], 511 | "source": [ 512 | "df.info()" 513 | ] 514 | }, 515 | { 516 | "cell_type": "code", 517 | "execution_count": null, 518 | "id": "e99b1194", 519 | "metadata": {}, 520 | "outputs": [], 521 | "source": [ 522 | "# Créer une table dans la base de données\n", 523 | "cursor = conn.cursor()\n", 524 | "cursor.execute('''create table Popular_Baby_Names (\n", 525 | " id INT PRIMARY KEY NOT NULL IDENTITY ,\n", 526 | " year int,\n", 527 | " Gender varchar(55), \n", 528 | " Ethnicity varchar(100),\n", 529 | " FirstName varchar(100),\n", 530 | " Count int,\n", 531 | " Rank int \n", 532 | " )\n", 533 | " ''')\n", 534 | "cursor.commit()\n" 535 | ] 536 | }, 537 | { 538 | "cell_type": "code", 539 | "execution_count": 12, 540 | "id": "6d8974c7", 541 | "metadata": {}, 542 | "outputs": [ 543 | { 544 | "name": "stdout", 545 | "output_type": "stream", 546 | "text": [ 547 | "\n", 548 | "RangeIndex: 57582 entries, 0 to 57581\n", 549 | "Data columns (total 6 columns):\n", 550 | " # Column Non-Null Count Dtype \n", 551 | "--- ------ -------------- ----- \n", 552 | " 0 Year of Birth 57582 non-null int64 \n", 553 | " 1 Gender 57582 non-null object\n", 554 | " 2 Ethnicity 57582 non-null object\n", 555 | " 3 Child's First Name 57582 non-null object\n", 556 | " 4 Count 57582 non-null int64 \n", 557 | " 5 Rank 57582 non-null int64 \n", 558 | "dtypes: int64(3), object(3)\n", 559 | "memory usage: 2.6+ MB\n" 560 | ] 561 | } 562 | ], 563 | "source": [ 564 | "df.info()" 565 | ] 566 | }, 567 | { 568 | "cell_type": "code", 569 | "execution_count": 13, 570 | "id": "3684104c", 571 | "metadata": {}, 572 | "outputs": [], 573 | "source": [ 574 | "cursor = conn.cursor()\n", 575 | "\n", 576 | "for index, row in db_data.iterrows():\n", 577 | " cursor.execute(\"INSERT INTO Popular_Baby_Names (year, Gender,Ethnicity,FirstName,Count,Rank) VALUES (?, ?, ?, ?, ?, ?)\", row[\"Year of Birth\"], row[\"Gender\"], row[\"Ethnicity\"], row[\"Child's First Name\"], row[\"Count\"], row[\"Rank\"])\n", 578 | "\n", 579 | "cursor.commit()\n", 580 | "cursor.close()" 581 | ] 582 | }, 583 | { 584 | "cell_type": "code", 585 | "execution_count": 15, 586 | "id": "c6bcde28", 587 | "metadata": {}, 588 | "outputs": [], 589 | "source": [ 590 | "# Sauvegarder les données au format CSV\n", 591 | "csv_data.to_csv(\"donnees.csv\", index=False, header=False)" 592 | ] 593 | } 594 | ], 595 | "metadata": { 596 | "kernelspec": { 597 | "display_name": "Python 3 (ipykernel)", 598 | "language": "python", 599 | "name": "python3" 600 | }, 601 | "language_info": { 602 | "codemirror_mode": { 603 | "name": "ipython", 604 | "version": 3 605 | }, 606 | "file_extension": ".py", 607 | "mimetype": "text/x-python", 608 | "name": "python", 609 | "nbconvert_exporter": "python", 610 | "pygments_lexer": "ipython3", 611 | "version": "3.11.3" 612 | } 613 | }, 614 | "nbformat": 4, 615 | "nbformat_minor": 5 616 | } 617 | --------------------------------------------------------------------------------