├── LICENSE
├── README.md
├── environment.yml
├── models
├── LundNet3
│ ├── TopTagging
│ │ ├── Top_QCD_500GeV_LundNet3_INFO.txt
│ │ ├── Top_QCD_500GeV_LundNet3_ROC_data.pickle
│ │ └── Top_QCD_500GeV_LundNet3_state.pt
│ └── WTagging
│ │ ├── W_QCD_500GeV_LundNet3_INFO.txt
│ │ ├── W_QCD_500GeV_LundNet3_ROC_data.pickle
│ │ └── W_QCD_500GeV_LundNet3_state.pt
└── LundNet5
│ ├── TopTagging
│ ├── Top_QCD_500GeV_LundNet5_INFO.txt
│ ├── Top_QCD_500GeV_LundNet5_ROC_data.pickle
│ └── Top_QCD_500GeV_LundNet5_state.pt
│ └── WTagging
│ ├── W_QCD_500GeV_LundNet5_INFO.txt
│ ├── W_QCD_500GeV_LundNet5_ROC_data.pickle
│ └── W_QCD_500GeV_LundNet5_state.pt
├── requirements.txt
├── sample_QCD_500GeV.json.gz
├── sample_WW_500GeV.json.gz
├── setup.py
└── src
└── lundnet
├── EdgeConv.py
├── JetTree.py
├── LundNet.py
├── ParticleNet.py
├── dgl_dataset.py
├── dgl_utils.py
├── read_data.py
└── scripts
└── lundnet.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | [](https://doi.org/10.5281/zenodo.4443146)
2 |
3 | LundNet
4 | =======
5 |
6 | This repository contains the code and results presented in
7 | [arXiv:2012.08526](https://arxiv.org/abs/2012.08526 "LundNet paper").
8 |
9 | ## About
10 |
11 | LundNet is a jet tagging framework to train graph-based jet tagging strategies.
12 |
13 | ## Install LundNet
14 |
15 | LundNet is tested and supported on 64-bit systems running Linux.
16 |
17 | Install LundNet with Python's pip package manager:
18 | ```
19 | git clone https://github.com/fdreyer/lundnet.git
20 | cd lundnet
21 | pip install -e .
22 | ```
23 | To install the package in a specific location, use
24 | the "--target=PREFIX_PATH" flag.
25 |
26 | This process will copy the `lundnet` program to your environment python path.
27 |
28 | We recommend the installation of the LundNet package using a `miniconda3`
29 | environment with the
30 | [configuration specified here](https://github.com/fdreyer/LundNet/blob/master/environment.yml).
31 |
32 | LundNet requires the following python 3 packages:
33 | - torch
34 | - dgl
35 | - numpy
36 | - [fastjet](http://fastjet.fr/) (compiled with --enable-pyext)
37 | - pandas
38 | - json
39 | - gzip
40 | - argparse
41 | - tqdm
42 | - networkx
43 | - uproot_methods
44 | - scipy
45 | - sklearn
46 |
47 | ## Pre-trained models
48 |
49 | The final models presented in
50 | [arXiv:2012.08526](https://arxiv.org/abs/2012.08526 "LundNet paper")
51 | are stored in:
52 | - models/LundNet3: contains the LundNet-3 models for each benchmark.
53 | - models/LundNet5: contains the LundNet-5 models for each benchmark.
54 |
55 | ## Input data
56 |
57 | All data used for the final models can be downloaded from the git-lfs repository
58 | at https://github.com/JetsGame/data.
59 |
60 | ## Running the code
61 |
62 | To launch a test of the code, use
63 | ```
64 | lundnet --demo --save test --device cpu --num-epochs 1
65 | ```
66 |
67 | This will run the LundNet code on a sample of 5000 signal and background events and train a model on the CPU for one epoch, saving the results in a new test/ directory.
68 |
69 | To train a full model, you can type:
70 | ```
71 | lundnet --model lundnet5 --train-sig TRAIN_SIG --train-bkg TRAIN_BKG
72 | --val-sig VAL_SIG --val-bkg VAL_BKG --test-sig TEST_SIG --test-bkg TEST_BKG
73 | --save OUTPUT
74 | ```
75 | where the first six filenames are the locations of the signal and background training, validation and testing samples, and the model is saved to an OUTPUT folder.
76 |
77 | To apply an existing LundNet model to a new data set, you can use
78 | ```
79 | lundnet --model lundnet5 --load PATH/TO/model_state.pt --test-sig TEST_SIG --test-bkg TEST_BKG --test-output OUTPUT
80 | ```
81 | which loads the model given as input, before applying it to the TEST_SIG and TEST_BKG samples, with the results then saved to OUTPUT.pickle
82 |
83 | To find more options on how to run full models, use
84 | ```
85 | lundnet --help
86 | ```
87 |
88 | ## References
89 |
90 | * F. A. Dreyer and H. Qu, "Jet tagging in the Lund plane with graph networks,"
91 | [arXiv:2012.08526](https://arxiv.org/abs/2012.08526 "LundNet paper")
92 |
--------------------------------------------------------------------------------
/environment.yml:
--------------------------------------------------------------------------------
1 | name: torch_gpu
2 | channels:
3 | - defaults
4 | dependencies:
5 | - _libgcc_mutex=0.1=main
6 | - _pytorch_select=0.2=gpu_0
7 | - blas=1.0=mkl
8 | - brotlipy=0.7.0=py37h27cfd23_1003
9 | - ca-certificates=2020.12.8=h06a4308_0
10 | - certifi=2020.12.5=py37h06a4308_0
11 | - cffi=1.14.4=py37h261ae71_0
12 | - chardet=4.0.0=py37h06a4308_1003
13 | - cryptography=3.3.1=py37h3c74f83_0
14 | - cudatoolkit=10.1.243=h6bb024c_0
15 | - cudnn=7.6.5=cuda10.1_0
16 | - decorator=4.4.2=py_0
17 | - idna=2.10=py_0
18 | - intel-openmp=2020.2=254
19 | - joblib=1.0.0=pyhd3eb1b0_0
20 | - ld_impl_linux-64=2.33.1=h53a641e_7
21 | - libedit=3.1.20191231=h14c3975_1
22 | - libffi=3.3=he6710b0_2
23 | - libgcc-ng=9.1.0=hdf63c60_0
24 | - libgfortran-ng=7.3.0=hdf63c60_0
25 | - libstdcxx-ng=9.1.0=hdf63c60_0
26 | - mkl=2020.2=256
27 | - mkl-service=2.3.0=py37he8ac12f_0
28 | - mkl_fft=1.2.0=py37h23d657b_0
29 | - mkl_random=1.1.1=py37h0573a6f_0
30 | - ncurses=6.2=he6710b0_1
31 | - networkx=2.5=py_0
32 | - ninja=1.10.2=py37hff7bd54_0
33 | - numpy=1.19.2=py37h54aff64_0
34 | - numpy-base=1.19.2=py37hfa32c7d_0
35 | - openssl=1.1.1i=h27cfd23_0
36 | - pandas=1.1.5=py37ha9443f7_0
37 | - pip=20.3.3=py37h06a4308_0
38 | - pycparser=2.20=py_2
39 | - pyopenssl=20.0.1=pyhd3eb1b0_1
40 | - pysocks=1.7.1=py37_1
41 | - python=3.7.9=h7579374_0
42 | - python-dateutil=2.8.1=py_0
43 | - pytorch=1.4.0=cuda101py37h02f0884_0
44 | - pytz=2020.4=pyhd3eb1b0_0
45 | - readline=8.0=h7b6447c_0
46 | - requests=2.25.1=pyhd3eb1b0_0
47 | - scipy=1.5.2=py37h0b6359f_0
48 | - setuptools=51.0.0=py37h06a4308_2
49 | - six=1.15.0=py37h06a4308_0
50 | - sqlite=3.33.0=h62c20be_0
51 | - tk=8.6.10=hbc83047_0
52 | - tqdm=4.54.1=pyhd3eb1b0_0
53 | - urllib3=1.26.2=pyhd3eb1b0_0
54 | - wheel=0.36.2=pyhd3eb1b0_0
55 | - xz=5.2.5=h7b6447c_0
56 | - zlib=1.2.11=h7b6447c_3
57 | - pip:
58 | - awkward==0.14.0
59 | - dgl-cu101==0.5.3
60 | - scikit-learn==0.24.0
61 | - uproot==4.0.0
62 | - uproot-methods==0.9.2
63 | prefix: /users/dreyer/local/miniconda3/envs/torch_gpu_recent
64 |
--------------------------------------------------------------------------------
/models/LundNet3/TopTagging/Top_QCD_500GeV_LundNet3_INFO.txt:
--------------------------------------------------------------------------------
1 | model_name: tree-lund-net
2 | model_params: {'conv_params': [[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]], 'fc_params': [(256, 0.1)]}
3 | data_format: lund3
4 | lund_dimension: 3
5 | lund_ln_kt_min: None
6 | lund_ln_delta_min: None
7 | rsd-groom: None
8 | remove-secondary: False
9 | date: 2020-05-26
10 | model_path: saved_models/TreeLundNet/TopTagging/Lund_dim3_z-delta-kt/Top_QCD_500GeV_Lund_dim3_z-delta-kt_TreeLundNet
11 | test_sig: data/test/test_Top_500GeV.json.gz
12 | test_bkg: data/test/test_QCD_500GeV.json.gz
13 | train_sig: data/train/Top_500GeV.json.gz
14 | train_bkg: data/train/QCD_500GeV.json.gz
15 | accuracy: 0.9444
16 | auc: 0.982137023
17 | inv_bkg_at_sig_50: 1785.7142857142699
18 | inv_bkg_at_sig_30: 16666.666666680838
19 |
--------------------------------------------------------------------------------
/models/LundNet3/TopTagging/Top_QCD_500GeV_LundNet3_ROC_data.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet3/TopTagging/Top_QCD_500GeV_LundNet3_ROC_data.pickle
--------------------------------------------------------------------------------
/models/LundNet3/TopTagging/Top_QCD_500GeV_LundNet3_state.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet3/TopTagging/Top_QCD_500GeV_LundNet3_state.pt
--------------------------------------------------------------------------------
/models/LundNet3/WTagging/W_QCD_500GeV_LundNet3_INFO.txt:
--------------------------------------------------------------------------------
1 | model_name: tree-lund-net
2 | model_params: {'conv_params': [[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]], 'fc_params': [(256, 0.1)]}
3 | data_format: lund3
4 | lund_dimension: 3
5 | lund_ln_kt_min: None
6 | lund_ln_delta_min: None
7 | rsd-groom: None
8 | remove-secondary: False
9 | date: 2020-05-26
10 | model_path: saved_models/TreeLundNet/WTagging/Lund_dim3_z-delta-kt/W_QCD_500GeV_Lund_dim3_z-delta-kt_TreeLundNet
11 | test_sig: data/test/test_WW_500GeV.json.gz
12 | test_bkg: data/test/test_QCD_500GeV.json.gz
13 | train_sig: data/train/WW_500GeV.json.gz
14 | train_bkg: data/train/QCD_500GeV.json.gz
15 | accuracy: 0.87001
16 | auc: 0.9347001016
17 | inv_bkg_at_sig_50: 499.99999999999955
18 | inv_bkg_at_sig_30: 2941.176470588175
19 |
--------------------------------------------------------------------------------
/models/LundNet3/WTagging/W_QCD_500GeV_LundNet3_ROC_data.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet3/WTagging/W_QCD_500GeV_LundNet3_ROC_data.pickle
--------------------------------------------------------------------------------
/models/LundNet3/WTagging/W_QCD_500GeV_LundNet3_state.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet3/WTagging/W_QCD_500GeV_LundNet3_state.pt
--------------------------------------------------------------------------------
/models/LundNet5/TopTagging/Top_QCD_500GeV_LundNet5_INFO.txt:
--------------------------------------------------------------------------------
1 | model_name: tree-lund-net
2 | model_params: {'conv_params': [[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]], 'fc_params': [(256, 0.1)]}
3 | data_format: lund
4 | lund_dimension: 5
5 | lund_ln_kt_min: None
6 | lund_ln_delta_min: None
7 | rsd-groom: None
8 | remove-secondary: False
9 | date: 2020-12-08
10 | model_path: saved_models/TreeLundNet/TopTagging/Lund_dim5/Top_QCD_500GeV_Lund_dim5_TreeLundNet
11 | test_sig: data/test/test_Top_500GeV.json.gz
12 | test_bkg: data/test/test_QCD_500GeV.json.gz
13 | train_sig: data/train/Top_500GeV.json.gz
14 | train_bkg: data/train/QCD_500GeV.json.gz
15 | accuracy: 0.95994
16 | auc: 0.9867899704
17 | inv_bkg_at_sig_50: 5000.00000000055
18 | inv_bkg_at_sig_30: 49999.99999994999
19 |
--------------------------------------------------------------------------------
/models/LundNet5/TopTagging/Top_QCD_500GeV_LundNet5_ROC_data.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet5/TopTagging/Top_QCD_500GeV_LundNet5_ROC_data.pickle
--------------------------------------------------------------------------------
/models/LundNet5/TopTagging/Top_QCD_500GeV_LundNet5_state.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet5/TopTagging/Top_QCD_500GeV_LundNet5_state.pt
--------------------------------------------------------------------------------
/models/LundNet5/WTagging/W_QCD_500GeV_LundNet5_INFO.txt:
--------------------------------------------------------------------------------
1 | model_name: tree-lund-net
2 | model_params: {'conv_params': [[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]], 'fc_params': [(256, 0.1)]}
3 | data_format: lund
4 | lund_dimension: 5
5 | lund_ln_kt_min: None
6 | lund_ln_delta_min: None
7 | rsd-groom: None
8 | remove-secondary: False
9 | date: 2020-12-09
10 | model_path: saved_models/TreeLundNet/WTagging/Lund_dim5/W_QCD_500GeV_Lund_dim5_TreeLundNet
11 | test_sig: data/test/test_WW_500GeV.json.gz
12 | test_bkg: data/test/test_QCD_500GeV.json.gz
13 | train_sig: data/train/WW_500GeV.json.gz
14 | train_bkg: data/train/QCD_500GeV.json.gz
15 | accuracy: 0.87232
16 | auc: 0.9384987083999999
17 | inv_bkg_at_sig_50: 609.7560975609849
18 | inv_bkg_at_sig_30: 5000.00000000055
19 |
--------------------------------------------------------------------------------
/models/LundNet5/WTagging/W_QCD_500GeV_LundNet5_ROC_data.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet5/WTagging/W_QCD_500GeV_LundNet5_ROC_data.pickle
--------------------------------------------------------------------------------
/models/LundNet5/WTagging/W_QCD_500GeV_LundNet5_state.pt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/models/LundNet5/WTagging/W_QCD_500GeV_LundNet5_state.pt
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | hyperopt==0.1.1
2 | setuptools==40.6.2
3 | gym==0.10.9
4 | matplotlib==3.0.1
5 | Keras==2.2.4
6 | numpy==1.15.4
7 | rl==2.4
8 | fastjet==0.0.3
9 | hfile==1.0.8
10 |
--------------------------------------------------------------------------------
/sample_QCD_500GeV.json.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/sample_QCD_500GeV.json.gz
--------------------------------------------------------------------------------
/sample_WW_500GeV.json.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fdreyer/LundNet/f705e597006e83e07c4608116d0ca1806fbed0c8/sample_WW_500GeV.json.gz
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | from __future__ import print_function
4 | import sys
5 | from setuptools import setup, find_packages
6 |
7 | if sys.version_info < (3,6):
8 | print("LundNet requires Python 3.6 or later", file=sys.stderr)
9 | sys.exit(1)
10 |
11 | with open('README.md') as f:
12 | long_desc = f.read()
13 |
14 | setup(name= "lundnet",
15 | version = '1.0.0',
16 | description = "A jet tagging algorithm based on graph networks",
17 | author = "F. Dreyer, H. Qu",
18 | author_email = "frederic.dreyer@cern.ch, huilin.qu@cern.ch",
19 | url="https://github.com/fdreyer/lundnet",
20 | long_description = long_desc,
21 | entry_points = {'console_scripts':
22 | ['lundnet = lundnet.scripts.lundnet:main']},
23 | package_dir = {'': 'src'},
24 | packages = find_packages('src'),
25 | zip_safe = False,
26 | classifiers=[
27 | 'Operating System :: Unix',
28 | 'Programming Language :: Python',
29 | 'Programming Language :: Python :: 3',
30 | 'Programming Language :: Python :: 3.5',
31 | 'Topic :: Scientific/Engineering',
32 | 'Topic :: Scientific/Engineering :: Physics',
33 | ],
34 | )
35 |
36 |
--------------------------------------------------------------------------------
/src/lundnet/EdgeConv.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | from __future__ import print_function
4 |
5 | import dgl.function as fn
6 | import torch.nn as nn
7 |
8 |
9 | class EdgeConvBlock(nn.Module):
10 | r"""EdgeConv layer.
11 | Introduced in "Dynamic Graph CNN for Learning on Point Clouds" (https://arxiv.org/pdf/1801.07829).
12 | Code adapted from https://github.com/dmlc/dgl/blob/master/python/dgl/nn/pytorch/conv/edgeconv.py.
13 | """
14 |
15 | def __init__(self, in_feat, out_feats, batch_norm=True, activation=True):
16 | super(EdgeConvBlock, self).__init__()
17 | self.batch_norm = batch_norm
18 | self.activation = activation
19 | self.num_layers = len(out_feats)
20 |
21 | out_feat = out_feats[0]
22 | self.theta = nn.Linear(in_feat, out_feat, bias=False if self.batch_norm else True)
23 | self.phi = nn.Linear(in_feat, out_feat, bias=False if self.batch_norm else True)
24 | self.fcs = nn.ModuleList()
25 | for i in range(1, self.num_layers):
26 | self.fcs.append(nn.Linear(out_feats[i - 1], out_feats[i], bias=False if self.batch_norm else True))
27 |
28 | if batch_norm:
29 | self.bns = nn.ModuleList()
30 | for i in range(self.num_layers):
31 | self.bns.append(nn.BatchNorm1d(out_feats[i]))
32 |
33 | if activation:
34 | self.acts = nn.ModuleList()
35 | for i in range(self.num_layers):
36 | self.acts.append(nn.ReLU())
37 |
38 | if in_feat == out_feats[-1]:
39 | self.sc = None
40 | else:
41 | self.sc = nn.Linear(in_feat, out_feats[-1], bias=False if self.batch_norm else True)
42 | self.sc_bn = nn.BatchNorm1d(out_feats[-1])
43 |
44 | if activation:
45 | self.sc_act = nn.ReLU()
46 |
47 | def message(self, edges):
48 | theta_x = self.theta(edges.dst['x'] - edges.src['x'])
49 | phi_x = self.phi(edges.src['x'])
50 | return {'e': theta_x + phi_x}
51 |
52 | def forward(self, g, h):
53 | with g.local_scope():
54 | g.ndata['x'] = h
55 | # generate the message and store it on the edges
56 | g.apply_edges(self.message)
57 | # process the message
58 | e = g.edata['e']
59 | for i in range(self.num_layers):
60 | if i > 0:
61 | e = self.fcs[i - 1](e)
62 | if self.batch_norm:
63 | e = self.bns[i](e)
64 | if self.activation:
65 | e = self.acts[i](e)
66 | g.edata['e'] = e
67 | # pass the message and update the nodes
68 | g.update_all(fn.copy_e('e', 'e'), fn.mean('e', 'x'))
69 | # shortcut connection
70 | x = g.ndata.pop('x')
71 | g.edata.pop('e')
72 | if self.sc is None:
73 | sc = h
74 | else:
75 | sc = self.sc(h)
76 | if self.batch_norm:
77 | sc = self.sc_bn(sc)
78 | if self.activation:
79 | return self.sc_act(x + sc)
80 | else:
81 | return x + sc
82 |
--------------------------------------------------------------------------------
/src/lundnet/JetTree.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | import fastjet as fj
4 | import numpy as np
5 | import math
6 |
7 | # ======================================================================
8 |
9 |
10 | class LundCoordinates:
11 | """
12 | LundCoordinates takes two subjets associated with a declustering,
13 | and store the corresponding Lund coordinates.
14 | """
15 |
16 | # components of the LundCoordinates
17 | components = ['lnz', 'lnDelta', 'psi', 'lnm', 'lnKt']
18 |
19 | # number of dimensions for the state() method
20 | dimension = 5
21 |
22 | # ----------------------------------------------------------------------
23 | def __init__(self, j1, j2):
24 | """Define a number of variables associated with the declustering."""
25 | delta = np.float32(max(1e-6, j1.delta_R(j2)))
26 | z = np.float32(j2.pt() / (j1.pt() + j2.pt()))
27 | self.lnm = np.float32(0.5 * math.log(abs((j1 + j2).m2())))
28 | self.lnKt = np.float32(math.log(j2.pt() * delta))
29 | self.lnz = np.float32(math.log(z))
30 | self.lnDelta = np.float32(math.log(delta))
31 | self.lnKappa = np.float32(math.log(z * delta))
32 | try:
33 | self.psi = np.float32(math.atan((j1.rap() - j2.rap()) / (j1.phi() - j2.phi())))
34 | except ZeroDivisionError:
35 | self.psi = 0
36 |
37 | # ----------------------------------------------------------------------
38 | @staticmethod
39 | def change_dimension(n, order=['lnz', 'lnDelta', 'psi', 'lnm', 'lnKt']):
40 | LundCoordinates.components = order[:n]
41 | print(LundCoordinates.components)
42 | LundCoordinates.dimension = len(LundCoordinates.components)
43 |
44 | # ----------------------------------------------------------------------
45 | def state(self):
46 | # WARNING: For consistency with other parts of the code,
47 | # lnz and lnDelta need to be the first two components
48 | return np.array([getattr(self, v) for v in LundCoordinates.components], dtype='float32')
49 |
50 |
51 | # ======================================================================
52 | class JetTree:
53 | """JetTree keeps track of the tree structure of a jet declustering."""
54 |
55 | ktmin = 0.0
56 | deltamin = 0.0
57 |
58 | # ----------------------------------------------------------------------
59 | def __init__(self, pseudojet, child=None):
60 | """Initialize a new node, and create its two parents if they exist."""
61 | self.harder = None
62 | self.softer = None
63 | self.delta2 = 0.0
64 | self.lundCoord = None
65 | # if it has a direct child (i.e. one level further up in the
66 | # tree), give a link to the corresponding tree object here
67 | self.child = child
68 |
69 | while True:
70 | j1 = fj.PseudoJet()
71 | j2 = fj.PseudoJet()
72 | if pseudojet and pseudojet.has_parents(j1, j2):
73 | # order the parents in pt
74 | if (j2.pt() > j1.pt()):
75 | j1, j2 = j2, j1
76 | # check if we satisfy cuts
77 | delta = j1.delta_R(j2)
78 | kt = j2.pt() * delta
79 | if (delta < JetTree.deltamin):
80 | break
81 | # then create two new tree nodes with j1 and j2
82 | if kt >= JetTree.ktmin:
83 | self.harder = JetTree(j1, child=self)
84 | self.softer = JetTree(j2, child=self)
85 | self.delta2 = np.float32(delta * delta)
86 | self.lundCoord = LundCoordinates(j1, j2)
87 | break
88 | else:
89 | pseudojet = j1
90 | else:
91 | break
92 |
93 | # finally define the current node
94 | self.node = np.array([pseudojet.px(), pseudojet.py(), pseudojet.pz(), pseudojet.E()], dtype='float32')
95 |
96 | # ----------------------------------------------------------------------
97 | @staticmethod
98 | def change_cuts(ktmin=0.0, deltamin=0.0):
99 | JetTree.ktmin = ktmin
100 | JetTree.deltamin = deltamin
101 |
102 | # -------------------------------------------------------------------------------
103 | def remove_soft(self):
104 | """Remove the softer branch of the JetTree node."""
105 | # start by removing softer parent momentum from the rest of the tree
106 | child = self.child
107 | while(child):
108 | child.node -= self.softer.node
109 | child = child.child
110 | del self.softer
111 | # then move the harder branch to the current node,
112 | # effectively deleting the soft branch
113 | newTree = self.harder
114 | self.node = newTree.node
115 | self.softer = newTree.softer
116 | self.harder = newTree.harder
117 | self.delta2 = newTree.delta2
118 | self.lundCoord = newTree.lundCoord
119 | # finally set the child pointer in the two parents to
120 | # the current node
121 | if self.harder:
122 | self.harder.child = self
123 | if self.softer:
124 | self.softer.child = self
125 | # NB: self.child doesn't change, we are just moving up the part
126 | # of the tree below it
127 |
128 | # ----------------------------------------------------------------------
129 | def state(self):
130 | """Return state of lund coordinates."""
131 | if not self.lundCoord:
132 | return np.zeros(LundCoordinates.dimension)
133 | return self.lundCoord.state()
134 |
135 | # ----------------------------------------------------------------------
136 | def jet(self, pseudojet=False):
137 | """Return the kinematics of the JetTree."""
138 | # TODO: implement pseudojet option which returns a pseudojet
139 | # with the reclustered constituents (after grooming)
140 | if not pseudojet:
141 | return self.node
142 | else:
143 | raise ValueError("JetTree: jet() with pseudojet return value not implemented.")
144 |
145 | # ----------------------------------------------------------------------
146 | def __lt__(self, other_tree):
147 | """Comparison operator needed for priority queue."""
148 | return self.delta2 > other_tree.delta2
149 |
150 | # ----------------------------------------------------------------------
151 | def __del__(self):
152 | """Delete the node."""
153 | if self.softer:
154 | del self.softer
155 | if self.harder:
156 | del self.harder
157 | del self.node
158 | del self
159 |
160 | # ======================================================================
161 |
162 |
163 | class LundImage:
164 | """Class to create Lund images from a jet tree."""
165 |
166 | # ----------------------------------------------------------------------
167 | def __init__(self, xval=[0.0, 7.0], yval=[-3.0, 7.0],
168 | npxlx=50, npxly=None):
169 | """Set up the LundImage instance."""
170 | # set up the pixel numbers
171 | self.npxlx = npxlx
172 | if not npxly:
173 | self.npxly = npxlx
174 | else:
175 | self.npxly = npxly
176 | # set up the bin edge and width
177 | self.xmin = xval[0]
178 | self.ymin = yval[0]
179 | self.x_pxl_wdth = (xval[1] - xval[0]) / self.npxlx
180 | self.y_pxl_wdth = (yval[1] - yval[0]) / self.npxly
181 |
182 | # ----------------------------------------------------------------------
183 | def __call__(self, tree):
184 | """Process a jet tree and return an image of the primary Lund plane."""
185 | res = np.zeros((self.npxlx, self.npxly))
186 |
187 | self.fill(tree, res)
188 | return res
189 |
190 | # ----------------------------------------------------------------------
191 | def fill(self, tree, res):
192 | """Fill the res array recursively with the tree declusterings of the hard branch."""
193 | if(tree and tree.lundCoord):
194 | x = -tree.lundCoord.lnDelta
195 | y = tree.lundCoord.lnKt
196 | xind = math.ceil((x - self.xmin) / self.x_pxl_wdth - 1.0)
197 | yind = math.ceil((y - self.ymin) / self.y_pxl_wdth - 1.0)
198 | if (xind < self.npxlx and yind < self.npxly and min(xind, yind) >= 0):
199 | res[xind, yind] += 1
200 | self.fill(tree.harder, res)
201 | #self.fill(tree.softer, res)
202 |
203 |
204 | # ======================================================================
205 | class RSD:
206 | """RSD applies Recursive Soft Drop grooming to a JetTree."""
207 |
208 | # ----------------------------------------------------------------------
209 | def __init__(self, zcut=0.05, beta=1.0, R0=1.0):
210 | """Initialize RSD with its parameters."""
211 | self.lnzcut = math.log(zcut)
212 | self.beta = beta
213 | self.lnR0 = math.log(R0)
214 |
215 | # ----------------------------------------------------------------------
216 | def __call__(self, jet, returnTree=False):
217 | """Apply the groomer after casting the jet to a JetTree, and return groomed momenta."""
218 | # TODO: replace result by reclustered jet of all remaining constituents.
219 | if type(jet) == JetTree:
220 | tree = jet
221 | else:
222 | tree = JetTree(jet)
223 | self._groom(tree)
224 | return tree
225 |
226 | # ----------------------------------------------------------------------
227 | def _groom(self, tree):
228 | """Apply RSD grooming to a jet."""
229 | if not tree.lundCoord:
230 | # current node has no subjets => no grooming
231 | return
232 | state = tree.state()
233 | if not state.size > 0:
234 | # current node has no subjets => no grooming
235 | return
236 | # check the SD condition
237 | lnz, lndelta = state[:1]
238 | remove_soft = (lnz < self.lnzcut + self.beta * (lndelta - self.lnR0))
239 | if remove_soft:
240 | # call internal method to remove soft branch and replace
241 | # current tree node with harder branch
242 | tree.remove_soft()
243 | # now we groom the new tree, since both nodes have been changed
244 | self._groom(tree)
245 | else:
246 | # if we don't groom the current soft branch, then continue
247 | # iterating on both subjets
248 | if tree.harder:
249 | self._groom(tree.harder)
250 | if tree.softer:
251 | self._groom(tree.softer)
252 |
--------------------------------------------------------------------------------
/src/lundnet/LundNet.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | from __future__ import print_function
4 |
5 | import dgl
6 | import torch
7 | import torch.nn as nn
8 | import numpy as np
9 |
10 | from lundnet.EdgeConv import EdgeConvBlock
11 |
12 |
13 | class LundNet(nn.Module):
14 |
15 | def __init__(self,
16 | input_dims,
17 | num_classes,
18 | conv_params=[[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]],
19 | fc_params=[(128, 0.1)],
20 | use_fusion=True,
21 | **kwargs):
22 | super(LundNet, self).__init__(**kwargs)
23 |
24 | self.bn_fts = nn.BatchNorm1d(input_dims)
25 |
26 | self.edge_convs = nn.ModuleList()
27 | for idx, channels in enumerate(conv_params):
28 | in_feat = input_dims if idx == 0 else conv_params[idx - 1][-1]
29 | self.edge_convs.append(EdgeConvBlock(in_feat=in_feat, out_feats=channels))
30 |
31 | self.use_fusion = use_fusion
32 | if self.use_fusion:
33 | in_chn = sum(x[-1] for x in conv_params)
34 | out_chn = np.clip((in_chn // 128) * 128, 128, 1024)
35 | self.fusion_block = nn.Sequential(nn.Linear(in_chn, out_chn), nn.ReLU(), nn.BatchNorm1d(out_chn))
36 |
37 | fcs = []
38 | for idx, layer_param in enumerate(fc_params):
39 | channels, drop_rate = layer_param
40 | if idx == 0:
41 | in_chn = out_chn if self.use_fusion else conv_params[-1][-1]
42 | else:
43 | in_chn = fc_params[idx - 1][0]
44 | fcs.append(nn.Sequential(nn.Linear(in_chn, channels), nn.ReLU(), nn.Dropout(drop_rate)))
45 | fcs.append(nn.Linear(fc_params[-1][0], num_classes))
46 | self.fc = nn.Sequential(*fcs)
47 |
48 | def forward(self, batch_graph, features):
49 | fts = self.bn_fts(features)
50 | outputs = []
51 | for idx, conv in enumerate(self.edge_convs):
52 | fts = conv(batch_graph, fts)
53 | if self.use_fusion:
54 | outputs.append(fts)
55 | if self.use_fusion:
56 | fts = self.fusion_block(torch.cat(outputs, dim=1))
57 |
58 | batch_graph.ndata['fts'] = fts
59 | x = dgl.mean_nodes(batch_graph, 'fts')
60 | return self.fc(x)
61 |
--------------------------------------------------------------------------------
/src/lundnet/ParticleNet.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | from __future__ import print_function
4 |
5 | import dgl
6 | from dgl.transform import remove_self_loop
7 | from .dgl_utils import segmented_knn_graph
8 | import torch
9 | import torch.nn as nn
10 | import numpy as np
11 |
12 | from lundnet.EdgeConv import EdgeConvBlock
13 |
14 |
15 | class ParticleNet(nn.Module):
16 | r"""
17 | DGL implementation of "ParticleNet: Jet Tagging via Particle Clouds" (https://arxiv.org/abs/1902.08570).
18 | """
19 |
20 | def __init__(self,
21 | input_dims,
22 | num_classes,
23 | conv_params=[(7, (32, 32, 32)), (7, (64, 64, 64))],
24 | fc_params=[(128, 0.1)],
25 | use_fusion=False,
26 | **kwargs):
27 | super(ParticleNet, self).__init__(**kwargs)
28 |
29 | self.bn_fts = nn.BatchNorm1d(input_dims)
30 |
31 | self.k_neighbors = []
32 | self.edge_convs = nn.ModuleList()
33 | for idx, layer_param in enumerate(conv_params):
34 | k, channels = layer_param
35 | in_feat = input_dims if idx == 0 else conv_params[idx - 1][1][-1]
36 | self.edge_convs.append(EdgeConvBlock(in_feat=in_feat, out_feats=channels))
37 | self.k_neighbors.append(k)
38 |
39 | self.use_fusion = use_fusion
40 | if self.use_fusion:
41 | in_chn = sum(x[-1] for _, x in conv_params)
42 | out_chn = np.clip((in_chn // 128) * 128, 128, 1024)
43 | self.fusion_block = nn.Sequential(nn.Linear(in_chn, out_chn), nn.ReLU(), nn.BatchNorm1d(out_chn))
44 |
45 | fcs = []
46 | for idx, layer_param in enumerate(fc_params):
47 | channels, drop_rate = layer_param
48 | if idx == 0:
49 | in_chn = out_chn if self.use_fusion else conv_params[-1][1][-1]
50 | else:
51 | in_chn = fc_params[idx - 1][0]
52 | fcs.append(nn.Sequential(nn.Linear(in_chn, channels), nn.ReLU(), nn.Dropout(drop_rate)))
53 | fcs.append(nn.Linear(fc_params[-1][0], num_classes))
54 | self.fc = nn.Sequential(*fcs)
55 |
56 | def forward(self, batch_graph, features):
57 | g = batch_graph
58 | segs = batch_graph.batch_num_nodes().cpu().numpy().tolist()
59 | fts = self.bn_fts(features)
60 | outputs = []
61 | for idx, (k, conv) in enumerate(zip(self.k_neighbors, self.edge_convs)):
62 | if idx > 0:
63 | g = remove_self_loop(segmented_knn_graph(fts, k + 1, segs)).to(features.device)
64 | fts = conv(g, fts)
65 | if self.use_fusion:
66 | outputs.append(fts)
67 | if self.use_fusion:
68 | fts = self.fusion_block(torch.cat(outputs, dim=1))
69 |
70 | batch_graph.ndata['fts'] = fts
71 | x = dgl.mean_nodes(batch_graph, 'fts')
72 | return self.fc(x)
73 |
--------------------------------------------------------------------------------
/src/lundnet/dgl_dataset.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | from __future__ import print_function
4 |
5 | import dgl
6 | import networkx as nx
7 | import numpy as np
8 | from dgl.transform import remove_self_loop
9 | from .dgl_utils import knn_graph
10 | from torch.utils.data import Dataset
11 | from .JetTree import JetTree, LundCoordinates
12 | from .read_data import Jets
13 | import torch
14 | import torch.nn.functional as F
15 | try:
16 | from uproot_methods import TLorentzVectorArray, TLorentzVector
17 | except ImportError:
18 | from uproot3_methods import TLorentzVectorArray, TLorentzVector
19 | import time
20 | import pandas as pd
21 |
22 | groomer = None
23 | dump_number_of_nodes = False
24 |
25 |
26 | class DGLGraphDatasetLund(Dataset):
27 |
28 | fill_secondary = True
29 | node_coordinates = 'eta-phi' # 'lund'
30 |
31 | def __init__(self, filepath_bkg, filepath_sig, nev=-1):
32 | super(DGLGraphDatasetLund, self).__init__()
33 | print('Start loading dataset %s (bkg) and %s (sig)' % (filepath_bkg, filepath_sig))
34 | tic = time.process_time()
35 | reader_bkg = Jets(filepath_bkg, nev, groomer=groomer)
36 | reader_sig = Jets(filepath_sig, nev, groomer=groomer)
37 | # attempt at using less memory
38 | self.data = []
39 | self.label = []
40 | for jet in reader_bkg:
41 | self.data += [self._build_tree(JetTree(jet))]
42 | self.label += [0]
43 | for jet in reader_sig:
44 | self.data += [self._build_tree(JetTree(jet))]
45 | self.label += [1]
46 | print(' ... Total time to read input files + construct the graphs for {num} jets: {ts} seconds'.format(
47 | num=len(self.label), ts=time.process_time() - tic))
48 | if dump_number_of_nodes:
49 | df = pd.DataFrame({'num_nodes': np.array(
50 | [g.number_of_nodes() for g in self.data]), 'label': np.array(self.label)})
51 | df.to_csv('num_nodes_lund_net_ktmin_%s_deltamin_%s.csv' % (JetTree.ktmin, JetTree.deltamin))
52 | self.label = torch.tensor(self.label, dtype=torch.float32)
53 |
54 | def _build_tree(self, root):
55 | g = nx.Graph()
56 | jet_p4 = TLorentzVector(*root.node)
57 |
58 | def _rec_build(nid, node):
59 | branches = [node.harder, node.softer] if DGLGraphDatasetLund.fill_secondary else [node.harder]
60 | for branch in branches:
61 | if branch is None or branch.lundCoord is None:
62 | # stop when reaching the leaf nodes
63 | # we do not add the leaf nodes to the graph/tree as they do not have Lund coordinates
64 | continue
65 | cid = g.number_of_nodes()
66 | if DGLGraphDatasetLund.node_coordinates == 'lund':
67 | spatialCoord = branch.lundCoord.state()[:2]
68 | else:
69 | node_p4 = TLorentzVector(*branch.node)
70 | spatialCoord = np.array(
71 | [delta_eta_reflect(node_p4, jet_p4),
72 | node_p4.delta_phi(jet_p4)],
73 | dtype='float32')
74 | g.add_node(cid, coordinates=spatialCoord, features=branch.lundCoord.state())
75 | g.add_edge(cid, nid)
76 | _rec_build(cid, branch)
77 | # add root
78 | if root.lundCoord is not None:
79 | if DGLGraphDatasetLund.node_coordinates == 'lund':
80 | spatialCoord = root.lundCoord.state()[:2]
81 | else:
82 | spatialCoord = np.zeros(2, dtype='float32')
83 | g.add_node(0, coordinates=spatialCoord, features=root.lundCoord.state())
84 | _rec_build(0, root)
85 | else:
86 | # when a jet has only one particle (?)
87 | g.add_node(0, coordinates=np.zeros(2, dtype='float32'),
88 | features=np.zeros(LundCoordinates.dimension, dtype='float32'))
89 | ret = dgl.from_networkx(g, node_attrs=['coordinates', 'features'])
90 | # print(ret.number_of_nodes())
91 | return ret
92 |
93 | @property
94 | def num_features(self):
95 | return self.data[0].ndata['features'].shape[1]
96 |
97 | def __len__(self):
98 | return len(self.data)
99 |
100 | def __getitem__(self, i):
101 | x = self.data[i]
102 | y = self.label[i]
103 | return x, y
104 |
105 |
106 | class DGLGraphDatasetParticle(Dataset):
107 |
108 | def __init__(self, filepath_bkg, filepath_sig, nev=-1):
109 | super(DGLGraphDatasetParticle, self).__init__()
110 | print('Start loading dataset %s (bkg) and %s (sig)' % (filepath_bkg, filepath_sig))
111 | tic = time.process_time()
112 | reader_bkg = Jets(filepath_bkg, nev, pseudojets=False, groomer=groomer)
113 | reader_sig = Jets(filepath_sig, nev, pseudojets=False, groomer=groomer)
114 | # Format of jets_bkg/jets_sig:
115 | # [# jet
116 | # [ # particle
117 | # [px, py, pz, E],
118 | # # particle 2
119 | # [px, py, pze, E]
120 | # ],
121 | # # jet 2
122 | # #.....
123 | # ]
124 | # attempt at saving memory use:
125 | self.data = []
126 | self.label = []
127 | for constits in reader_bkg:
128 | self.data += [self._build_graph(constits)]
129 | self.label += [0]
130 | for constits in reader_sig:
131 | self.data += [self._build_graph(constits)]
132 | self.label += [1]
133 | print(' ... Total time to read input files + construct the graphs for {num} jets: {ts} seconds'.format(
134 | num=len(self.label), ts=time.process_time() - tic))
135 | if dump_number_of_nodes:
136 | df = pd.DataFrame({'num_nodes': np.array(
137 | [g.number_of_nodes() for g in self.data]), 'label': np.array(self.label)})
138 | df.to_csv('num_nodes_particle_net.csv')
139 | self.label = torch.tensor(self.label, dtype=torch.float32)
140 |
141 | def _build_graph(self, constits):
142 | constits_p4 = TLorentzVectorArray.from_cartesian(*list(zip(*constits)))
143 | jet_p4 = constits_p4.sum()
144 | spatialCoord = np.stack([delta_eta_reflect(constits_p4, jet_p4), constits_p4.delta_phi(jet_p4)], axis=1)
145 | energyFeatures = np.log(np.stack([constits_p4.pt, constits_p4.energy], axis=1))
146 | features = np.concatenate([spatialCoord, energyFeatures], axis=1)
147 | ret = dgl.DGLGraph()
148 | ret.add_nodes(
149 | len(constits),
150 | {'coordinates': torch.tensor(spatialCoord, dtype=torch.float32),
151 | 'features': torch.tensor(features, dtype=torch.float32)})
152 | # print(ret.number_of_nodes())
153 | return ret
154 |
155 | @property
156 | def num_features(self):
157 | return self.data[0].ndata['features'].shape[1]
158 |
159 | def __len__(self):
160 | return len(self.data)
161 |
162 | def __getitem__(self, i):
163 | x = self.data[i]
164 | y = self.label[i]
165 | return x, y
166 |
167 |
168 | def delta_eta_reflect(constits_p4, jet_p4):
169 | deta = constits_p4.eta - jet_p4.eta
170 | return deta if jet_p4.eta > 0 else -deta
171 |
172 |
173 | def pad_array(a, min_len=20, pad_value=0):
174 | if a.shape[0] < min_len:
175 | return F.pad(a, (0, 0, 0, min_len - a.shape[0]), mode='constant', value=pad_value)
176 | else:
177 | return a
178 |
179 |
180 | class _SimpleCustomBatch:
181 |
182 | def __init__(self, data, k, min_nodes=20):
183 | transposed_data = list(zip(*data))
184 | graphs = []
185 | features = []
186 | for g in transposed_data[0]:
187 | nng = remove_self_loop(knn_graph(g.ndata['coordinates'], min(g.number_of_nodes(), k + 1)))
188 | if nng.number_of_nodes() < min_nodes:
189 | nng.add_nodes(min_nodes - nng.number_of_nodes())
190 | graphs.append(nng)
191 | fts = pad_array(g.ndata['features'], min_nodes, 0)
192 | features.append(fts)
193 | assert(nng.number_of_nodes() == fts.shape[0])
194 | self.batch_graph = dgl.batch(graphs)
195 | self.features = torch.cat(features, 0)
196 | self.label = torch.tensor(transposed_data[1])
197 |
198 | def pin_memory(self):
199 | self.features = self.features.pin_memory()
200 | self.label = self.label.pin_memory()
201 | return self
202 |
203 |
204 | def collate_wrapper(batch, k):
205 | return _SimpleCustomBatch(batch, k)
206 |
207 |
208 | class _LundTreeBatch:
209 |
210 | def __init__(self, data):
211 | transposed_data = list(zip(*data))
212 | self.batch_graph = dgl.batch(transposed_data[0])
213 | self.batch_graph.ndata.pop('coordinates') # drop (eta, phi) coordinates
214 | self.features = self.batch_graph.ndata.pop('features')
215 | self.label = torch.tensor(transposed_data[1])
216 |
217 | def pin_memory(self):
218 | self.features = self.features.pin_memory()
219 | self.label = self.label.pin_memory()
220 | return self
221 |
222 |
223 | def collate_wrapper_tree(batch):
224 | return _LundTreeBatch(batch)
225 |
--------------------------------------------------------------------------------
/src/lundnet/dgl_utils.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | import numpy as np
4 | from scipy import sparse
5 | from dgl import DGLGraph
6 | from dgl import backend as F
7 | from dgl.transform import pairwise_squared_distance
8 |
9 | '''copied from dgl.transform and fixed a bug'''
10 |
11 |
12 | def knn_graph(x, k):
13 | """Transforms the given point set to a directed graph, whose coordinates
14 | are given as a matrix. The predecessors of each point are its k-nearest
15 | neighbors.
16 |
17 | If a 3D tensor is given instead, then each row would be transformed into
18 | a separate graph. The graphs will be unioned.
19 |
20 | Parameters
21 | ----------
22 | x : Tensor
23 | The input tensor.
24 |
25 | If 2D, each row of ``x`` corresponds to a node.
26 |
27 | If 3D, a k-NN graph would be constructed for each row. Then
28 | the graphs are unioned.
29 | k : int
30 | The number of neighbors
31 |
32 | Returns
33 | -------
34 | DGLGraph
35 | The graph. The node IDs are in the same order as ``x``.
36 | """
37 | if F.ndim(x) == 2:
38 | x = F.unsqueeze(x, 0)
39 | n_samples, n_points, _ = F.shape(x)
40 | n_total_points = n_samples * n_points
41 |
42 | dist = pairwise_squared_distance(x)
43 | k_indices = F.argtopk(dist, k, 2, descending=False)
44 | dst = F.copy_to(k_indices, F.cpu())
45 |
46 | src = F.zeros_like(dst) + F.reshape(F.arange(0, n_points), (1, -1, 1))
47 |
48 | per_sample_offset = F.reshape(F.arange(0, n_samples) * n_points, (-1, 1, 1))
49 | dst += per_sample_offset
50 | src += per_sample_offset
51 | dst = F.reshape(dst, (-1,))
52 | src = F.reshape(src, (-1,))
53 | adj = sparse.csr_matrix((F.asnumpy(F.zeros_like(dst) + 1), (F.asnumpy(dst), F.asnumpy(src))),
54 | shape=(n_total_points, n_total_points))
55 |
56 | g = DGLGraph(adj, readonly=True)
57 | return g
58 |
59 |
60 | def segmented_knn_graph(x, k, segs):
61 | """Transforms the given point set to a directed graph, whose coordinates
62 | are given as a matrix. The predecessors of each point are its k-nearest
63 | neighbors.
64 |
65 | The matrices are concatenated along the first axis, and are segmented by
66 | ``segs``. Each block would be transformed into a separate graph. The
67 | graphs will be unioned.
68 |
69 | Parameters
70 | ----------
71 | x : Tensor
72 | The input tensor.
73 | k : int
74 | The number of neighbors
75 | segs : iterable of int
76 | Number of points of each point set.
77 | Must sum up to the number of rows in ``x``.
78 |
79 | Returns
80 | -------
81 | DGLGraph
82 | The graph. The node IDs are in the same order as ``x``.
83 | """
84 | n_total_points, _ = F.shape(x)
85 | offset = np.insert(np.cumsum(segs), 0, 0)
86 |
87 | h_list = F.split(x, segs, 0)
88 | dst = [
89 | F.argtopk(pairwise_squared_distance(h_g), k, 1, descending=False) +
90 | offset[i]
91 | for i, h_g in enumerate(h_list)]
92 | dst = F.cat(dst, 0)
93 | src = F.arange(0, n_total_points).unsqueeze(1).expand(n_total_points, k)
94 |
95 | dst = F.reshape(dst, (-1,))
96 | src = F.reshape(src, (-1,))
97 | # !!! fix shape
98 | adj = sparse.csr_matrix((F.asnumpy(F.zeros_like(dst) + 1), (F.asnumpy(dst), F.asnumpy(src))),
99 | shape=(n_total_points, n_total_points))
100 |
101 | g = DGLGraph(adj, readonly=True)
102 | return g
103 |
104 |
105 | def reversed_graph(g):
106 | ret = DGLGraph()
107 | ret.add_nodes(g.number_of_nodes())
108 | u, v = g.all_edges()
109 | ret.add_edges(v, u)
110 | return ret
111 |
--------------------------------------------------------------------------------
/src/lundnet/read_data.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 | # adapted from code written by G. Salam
3 |
4 | import json, gzip, sys
5 | from abc import ABC, abstractmethod
6 | from math import pow
7 | import fastjet as fj
8 |
9 |
10 | # ======================================================================
11 | class Reader(object):
12 | """
13 | Reader for files consisting of a sequence of json objects.
14 | Any pure string object is considered to be part of a header (even if it appears at the end!)
15 | """
16 |
17 | # ----------------------------------------------------------------------
18 | def __init__(self, infile, nmax=-1):
19 | """Initialize the reader."""
20 | self.infile = infile
21 | self.nmax = nmax
22 | self.reset()
23 |
24 | # ----------------------------------------------------------------------
25 | def reset(self):
26 | """
27 | Reset the reader to the start of the file, clear the header and event count.
28 | """
29 | self.stream = gzip.open(self.infile, 'r')
30 | self.n = 0
31 | self.header = []
32 |
33 | # ----------------------------------------------------------------------
34 |
35 | def __iter__(self):
36 | # needed for iteration to work
37 | return self
38 |
39 | # ----------------------------------------------------------------------
40 | def __next__(self):
41 | ev = self.next_event()
42 | if (ev is None):
43 | raise StopIteration
44 | else:
45 | return ev
46 |
47 | # ----------------------------------------------------------------------
48 | def next(self):
49 | return self.__next__()
50 |
51 | # ----------------------------------------------------------------------
52 | def next_event(self):
53 | # we have hit the maximum number of events
54 | if (self.n == self.nmax):
55 | print("# Exiting after having read nmax jet declusterings")
56 | return None
57 |
58 | try:
59 | line = self.stream.readline()
60 | j = json.loads(line.decode('utf-8'))
61 | except IOError:
62 | print("# got to end with IOError (maybe gzip structure broken?) around event", self.n, file=sys.stderr)
63 | return None
64 | except EOFError:
65 | print("# got to end with EOFError (maybe gzip structure broken?) around event", self.n, file=sys.stderr)
66 | return None
67 | except ValueError:
68 | print("# got to end with ValueError (empty json entry) around event", self.n, file=sys.stderr)
69 | return None
70 |
71 | # skip this
72 | if (type(j) is str):
73 | self.header.append(j)
74 | return self.next_event()
75 | self.n += 1
76 | return j
77 |
78 |
79 | # ======================================================================
80 | class Image(ABC):
81 | """Image which transforms point-like information into pixelated 2D
82 | images which can be processed by convolutional neural networks."""
83 |
84 | def __init__(self, infile, nmax):
85 | self.reader = Reader(infile, nmax)
86 |
87 | # ----------------------------------------------------------------------
88 | @abstractmethod
89 | def process(self, event):
90 | pass
91 |
92 | # ----------------------------------------------------------------------
93 | def __iter__(self):
94 | # needed for iteration to work
95 | return self
96 |
97 | # ----------------------------------------------------------------------
98 | def __next__(self):
99 | ev = self.reader.next_event()
100 | if (ev is None):
101 | raise StopIteration
102 | else:
103 | return self.process(ev)
104 |
105 | # ----------------------------------------------------------------------
106 | def next(self): return self.__next__()
107 |
108 | # ----------------------------------------------------------------------
109 | def values(self):
110 | res = []
111 | while True:
112 | event = self.reader.next_event()
113 | if event != None:
114 | res.append(self.process(event))
115 | else:
116 | break
117 | self.reader.reset()
118 | return res
119 |
120 |
121 | # ======================================================================
122 | class Jets(Image):
123 | """Read input file with jet constituents and transform into python jets."""
124 |
125 | # ----------------------------------------------------------------------
126 | def __init__(self, infile, nmax, pseudojets=True, groomer=None):
127 | Image.__init__(self, infile, nmax)
128 | self.jet_def = fj.JetDefinition(fj.cambridge_algorithm, 1000.0)
129 | self.pseudojets = pseudojets
130 | self.groomer = groomer
131 |
132 | # ----------------------------------------------------------------------
133 | def process(self, event):
134 | constits = []
135 | if self.pseudojets or self.groomer:
136 | for p in event[1:]:
137 | constits.append(fj.PseudoJet(p['px'], p['py'], p['pz'], p['E']))
138 | jets = self.jet_def(constits)
139 | if (len(jets) > 0):
140 | if self.groomer:
141 | constits = self.groomer(jets[0], self.pseudojets)
142 | return self.jet_def(constits)[0] if self.pseudojets else constits
143 | return jets[0]
144 | return fj.PseudoJet()
145 | else:
146 | for p in event[1:]:
147 | constits.append([p['px'], p['py'], p['pz'], p['E']])
148 | return constits
149 |
150 |
151 | # ======================================================================
152 | class GroomJetRSD:
153 | """Recursive Soft Drop groomer applicable on fastjet PseudoJets"""
154 |
155 | # ----------------------------------------------------------------------
156 | def __init__(self, zcut=0.05, beta=1.0, R0=1.0):
157 | """Initialize RSD with its parameters."""
158 | self.zcut = zcut
159 | self.beta = beta
160 | self.R0 = R0
161 |
162 | def __call__(self, jet, pseudojets=True):
163 | constits = []
164 | self._groom(jet, constits, pseudojets)
165 | return constits
166 |
167 | def _groom(self, j, constits, pseudojets):
168 | j1 = fj.PseudoJet()
169 | j2 = fj.PseudoJet()
170 | if j.has_parents(j1, j2):
171 | # order the parents in pt
172 | if (j2.pt() > j1.pt()):
173 | j1, j2 = j2, j1
174 | delta = j1.delta_R(j2)
175 | z = j2.pt() / (j1.pt() + j2.pt())
176 | remove_soft = (z < self.zcut * pow(delta / self.R0, self.beta))
177 | if remove_soft:
178 | self._groom(j1, constits, pseudojets)
179 | else:
180 | self._groom(j1, constits, pseudojets)
181 | self._groom(j2, constits, pseudojets)
182 | else:
183 | if pseudojets:
184 | constits.append(fj.PseudoJet(j.px(), j.py(), j.pz(), j.E()))
185 | else:
186 | constits.append([j.px(), j.py(), j.pz(), j.E()])
187 |
--------------------------------------------------------------------------------
/src/lundnet/scripts/lundnet.py:
--------------------------------------------------------------------------------
1 | # This file is part of LundNet by F. Dreyer and H. Qu
2 |
3 | """
4 | lundnet.py: the entry point for LundNet.
5 | """
6 |
7 | from __future__ import print_function
8 |
9 | import numpy as np
10 | import torch
11 | from torch.utils.data import DataLoader
12 |
13 | import tqdm
14 | from functools import partial
15 | import os, time, datetime, argparse, pickle
16 |
17 | from lundnet.dgl_dataset import DGLGraphDatasetParticle, DGLGraphDatasetLund, collate_wrapper, collate_wrapper_tree
18 | from sklearn.metrics import roc_curve
19 |
20 |
21 | def bkg_rejection_at_threshold(signal_eff, background_eff, sig_eff=0.5):
22 | """Background rejection at a given signal efficiency."""
23 | return 1 / (1 - background_eff[np.argmin(np.abs(signal_eff - sig_eff)) + 1])
24 |
25 |
26 | def ROC_area(signal_eff, background_eff):
27 | """Area under the ROC curve."""
28 | normal_order = signal_eff.argsort()
29 | return np.trapz(background_eff[normal_order], signal_eff[normal_order])
30 |
31 |
32 | def accuracy(preds, labels):
33 | """Return the accuracy."""
34 | if labels.ndim == 2:
35 | labels = labels[:, 1]
36 | return (preds.argmax(1) == labels).sum().item() / len(labels)
37 |
38 |
39 | def main():
40 | parser = argparse.ArgumentParser()
41 | parser.add_argument('--demo', action='store_true', default=False)
42 | parser.add_argument('--train-sig', type=str, default='')
43 | parser.add_argument('--train-bkg', type=str, default='')
44 | parser.add_argument('--val-sig', type=str, default='')
45 | parser.add_argument('--val-bkg', type=str, default='')
46 | parser.add_argument('--test-sig', type=str, default='')
47 | parser.add_argument('--test-bkg', type=str, default='')
48 | parser.add_argument('--model', type=str, default='lundnet5', choices=['lundnet5', 'lundnet2',
49 | 'lundnet3', 'lundnet4',
50 | 'particlenet', 'particlenet-lite'])
51 | parser.add_argument('--ln-kt-min', type=float, default=None)
52 | parser.add_argument('--ln-delta-min', type=float, default=None)
53 | parser.add_argument('--load', type=str, default='')
54 | parser.add_argument('--save', type=str, default='')
55 | parser.add_argument('--name', type=str, default='model')
56 | parser.add_argument('--test-output', type=str, default='')
57 | parser.add_argument('--num-epochs', type=int, default=30)
58 | parser.add_argument('--nev', type=int, default=-1)
59 | parser.add_argument('--nev-val', type=int, default=-1)
60 | parser.add_argument('--nev-test', type=int, default=-1)
61 | parser.add_argument('--start-lr', type=float, default=0.001)
62 | parser.add_argument('--lr-steps', type=str, default='10,20')
63 | parser.add_argument('--num-workers', type=int, default=0)
64 | parser.add_argument('--batch-size', type=int, default=-1)
65 | parser.add_argument('--device', type=str, default='cuda:0')
66 | args = parser.parse_args()
67 |
68 | if 'lund' in args.model:
69 | from lundnet.JetTree import JetTree, LundCoordinates
70 | if args.model == 'lundnet4':
71 | LundCoordinates.change_dimension(4, ['lnz', 'lnDelta', 'lnKt', 'psi'])
72 | elif args.model == 'lundnet3':
73 | LundCoordinates.change_dimension(3, ['lnz', 'lnDelta', 'lnKt'])
74 | elif args.model == 'lundnet2':
75 | LundCoordinates.change_dimension(2, ['lnDelta', 'lnKt'])
76 | kt_min = np.exp(args.ln_kt_min) if (args.ln_kt_min is not None and args.ln_kt_min > -99) else 0
77 | delta_min = np.exp(args.ln_delta_min) if args.ln_delta_min is not None else 0
78 | JetTree.change_cuts(kt_min, delta_min)
79 | print('Using %s, kt_min=%f and delta_min=%f' % (args.model, JetTree.ktmin, JetTree.deltamin))
80 |
81 | if args.demo:
82 | args.train_sig = 'sample_WW_500GeV.json.gz'
83 | args.train_bkg = 'sample_QCD_500GeV.json.gz'
84 | args.val_sig = 'sample_WW_500GeV.json.gz'
85 | args.val_bkg = 'sample_QCD_500GeV.json.gz'
86 | args.test_sig = 'sample_WW_500GeV.json.gz'
87 | args.test_bkg = 'sample_QCD_500GeV.json.gz'
88 |
89 | # training/testing mode
90 | if args.train_bkg and args.train_sig:
91 | training_mode = True
92 | else:
93 | assert(args.load)
94 | training_mode = False
95 |
96 | # data format
97 | DGLGraphDataset = DGLGraphDatasetLund if 'lund' in args.model else DGLGraphDatasetParticle
98 |
99 | # model parameter
100 | if args.model == 'particlenet':
101 | from lundnet.ParticleNet import ParticleNet
102 | Net = ParticleNet
103 | conv_params = [
104 | (16, (64, 64, 64)),
105 | (16, (128, 128, 128)),
106 | (16, (256, 256, 256)),
107 | ]
108 | fc_params = [(256, 0.1)]
109 | use_fusion = False
110 | if args.batch_size <= 0:
111 | args.batch_size = 256
112 | collate_fn = partial(collate_wrapper, k=conv_params[0][0])
113 | elif args.model == 'particlenet-lite':
114 | from lundnet.ParticleNet import ParticleNet
115 | Net = ParticleNet
116 | conv_params = [
117 | (7, (32, 32, 32)),
118 | (7, (64, 64, 64))
119 | ]
120 | fc_params = [(128, 0.1)]
121 | use_fusion = False
122 | if args.batch_size <= 0:
123 | args.batch_size = 1024
124 | collate_fn = partial(collate_wrapper, k=conv_params[0][0])
125 | else:
126 | from lundnet.LundNet import LundNet
127 | Net = LundNet
128 | conv_params = [[32, 32], [32, 32], [64, 64], [64, 64], [128, 128], [128, 128]]
129 | fc_params = [(256, 0.1)]
130 | use_fusion = True
131 | if args.batch_size <= 0:
132 | args.batch_size = 256
133 | collate_fn = collate_wrapper_tree
134 |
135 | # device
136 | dev = torch.device(args.device)
137 |
138 | # load data
139 | if training_mode:
140 | train_data = DGLGraphDataset(args.train_bkg, args.train_sig, nev=args.nev)
141 | val_data = DGLGraphDataset(args.val_bkg, args.val_sig, nev=args.nev_val)
142 | train_loader = DataLoader(train_data, num_workers=args.num_workers, batch_size=args.batch_size,
143 | collate_fn=collate_fn, shuffle=True, drop_last=True, pin_memory=True)
144 | val_loader = DataLoader(val_data, num_workers=args.num_workers, batch_size=args.batch_size,
145 | collate_fn=collate_fn, shuffle=False, drop_last=True, pin_memory=True)
146 | input_dims = train_data.num_features
147 | else:
148 | test_data = DGLGraphDataset(args.test_bkg, args.test_sig, nev=args.nev_test)
149 | test_loader = DataLoader(test_data, num_workers=args.num_workers, batch_size=args.batch_size,
150 | collate_fn=collate_fn, shuffle=False, drop_last=False, pin_memory=True)
151 | input_dims = test_data.num_features
152 |
153 | # model
154 | model = Net(input_dims=input_dims, num_classes=2,
155 | conv_params=conv_params,
156 | fc_params=fc_params,
157 | use_fusion=use_fusion)
158 | model = model.to(dev)
159 |
160 | def train(model, opt, scheduler, train_loader, dev):
161 | model.train()
162 |
163 | total_loss = 0
164 | num_batches = 0
165 | total_correct = 0
166 | count = 0
167 | tic = time.time()
168 | with tqdm.tqdm(train_loader, ascii=True) as tq:
169 | for batch in tq:
170 | label = batch.label
171 | num_examples = label.shape[0]
172 | label = label.to(dev).squeeze().long()
173 | opt.zero_grad()
174 | logits = model(batch.batch_graph.to(dev), batch.features.to(dev))
175 | loss = loss_func(logits, label)
176 | loss.backward()
177 | opt.step()
178 |
179 | _, preds = logits.max(1)
180 |
181 | num_batches += 1
182 | count += num_examples
183 | loss = loss.item()
184 | correct = (preds == label).sum().item()
185 | total_loss += loss
186 | total_correct += correct
187 |
188 | tq.set_postfix({
189 | 'Loss': '%.5f' % loss,
190 | 'AvgLoss': '%.5f' % (total_loss / num_batches),
191 | 'Acc': '%.5f' % (correct / num_examples),
192 | 'AvgAcc': '%.5f' % (total_correct / count)})
193 | scheduler.step()
194 |
195 | ts = time.time() - tic
196 | print('Trained over {count} samples in {ts} secs (avg. speed {speed} samples/s.)'.format(
197 | count=count, ts=ts, speed=count / ts
198 | ))
199 |
200 | def evaluate(model, test_loader, dev, return_scores=False, return_time=False):
201 | model.eval()
202 |
203 | total_correct = 0
204 | count = 0
205 | scores = []
206 | tic = time.time()
207 |
208 | with torch.no_grad():
209 | with tqdm.tqdm(test_loader, ascii=True) as tq:
210 | for batch in tq:
211 | label = batch.label
212 | num_examples = label.shape[0]
213 | label = label.to(dev).squeeze().long()
214 | logits = model(batch.batch_graph.to(dev), batch.features.to(dev))
215 | _, preds = logits.max(1)
216 |
217 | if return_scores:
218 | scores.append(torch.softmax(logits, dim=1).cpu().detach().numpy())
219 |
220 | correct = (preds == label).sum().item()
221 | total_correct += correct
222 | count += num_examples
223 |
224 | tq.set_postfix({
225 | 'Acc': '%.5f' % (correct / num_examples),
226 | 'AvgAcc': '%.5f' % (total_correct / count)})
227 |
228 | ts = time.time() - tic
229 | print('Tested over {count} samples in {ts} secs (avg. speed {speed} samples/s.)'.format(
230 | count=count, ts=ts, speed=count / ts
231 | ))
232 | if return_time:
233 | return ts
234 |
235 | if return_scores:
236 | return np.concatenate(scores)
237 | else:
238 | return total_correct / count
239 |
240 | if training_mode:
241 | # loss function
242 | loss_func = torch.nn.CrossEntropyLoss()
243 |
244 | # optimizer
245 | opt = torch.optim.Adam(model.parameters(), lr=args.start_lr)
246 |
247 | # learning rate
248 | lr_steps = [int(x) for x in args.lr_steps.split(',')]
249 | scheduler = torch.optim.lr_scheduler.MultiStepLR(opt, milestones=lr_steps, gamma=0.1)
250 |
251 | # training loop
252 | best_valid_acc = 0
253 | for epoch in range(args.num_epochs):
254 | train(model, opt, scheduler, train_loader, dev)
255 |
256 | print('Epoch #%d Validating' % epoch)
257 | valid_acc = evaluate(model, val_loader, dev)
258 | if valid_acc > best_valid_acc:
259 | best_valid_acc = valid_acc
260 | if args.save:
261 | if args.save and not os.path.exists(args.save):
262 | os.makedirs(args.save)
263 | torch.save(model.state_dict(), os.path.join(args.save, '%s_state.pt' % args.name))
264 | print('Current validation acc: %.5f (best: %.5f)' % (valid_acc, best_valid_acc))
265 |
266 | # evaluate model on test dataset
267 | path = args.save if training_mode else os.path.dirname(args.load)
268 | name = args.test_output if args.test_output else 'test'
269 | if path and not os.path.exists(path):
270 | os.makedirs(path)
271 |
272 | if training_mode:
273 | del train_data, train_loader, val_data, val_loader
274 | test_data = DGLGraphDataset(args.test_bkg, args.test_sig, args.nev_test)
275 | test_loader = DataLoader(test_data, num_workers=args.num_workers, batch_size=args.batch_size,
276 | collate_fn=collate_fn, shuffle=False, drop_last=False, pin_memory=True)
277 |
278 | test_labels = test_data.label.cpu().detach().numpy()
279 | test_preds = np.zeros((len(test_labels), 2), dtype='float32')
280 |
281 | # load saved model
282 | model_path = args.save if training_mode else args.load
283 | if not model_path.endswith('.pt'):
284 | model_path = os.path.join(model_path, '%s_state.pt' % args.name)
285 | print('Loading model %s for eval' % model_path)
286 |
287 | model.load_state_dict(torch.load(model_path, map_location=torch.device(args.device)))
288 |
289 | test_preds += evaluate(model, test_loader, dev, return_scores=True)
290 |
291 | info_dict = {'model_name': args.model,
292 | 'model_params': {'conv_params': conv_params, 'fc_params': fc_params},
293 | 'lund_ln_kt_min': args.ln_kt_min,
294 | 'lund_ln_delta_min': args.ln_delta_min,
295 | 'date': str(datetime.date.today()),
296 | 'model_path': args.save if training_mode else args.load,
297 | 'model_name': args.name,
298 | 'test_sig': args.test_sig,
299 | 'test_bkg': args.test_bkg}
300 | if training_mode:
301 | info_dict.update({'train_sig': args.train_sig,
302 | 'train_bkg': args.train_bkg})
303 |
304 | fpr, tpr, threshs = roc_curve(test_labels, test_preds[:, 1], pos_label=1)
305 | # convert into signal and background efficiency
306 | eff_s = tpr
307 | eff_b = 1 - fpr
308 | auc = ROC_area(eff_s, eff_b)
309 |
310 | info_dict['accuracy'] = accuracy(test_preds, test_labels)
311 | info_dict['auc'] = auc
312 | info_dict['inv_bkg_at_sig_50'] = bkg_rejection_at_threshold(eff_s, eff_b, 0.5)
313 | info_dict['inv_bkg_at_sig_30'] = bkg_rejection_at_threshold(eff_s, eff_b, 0.3)
314 |
315 | print(' === Summary ===')
316 | for k in info_dict:
317 | print('%s: %s' % (k, info_dict[k]))
318 |
319 | info_file = os.path.join(path, args.name if training_mode else name) + '_INFO.txt'
320 | with open(info_file, 'w') as f:
321 | for k in info_dict:
322 | f.write('%s: %s\n' % (k, info_dict[k]))
323 |
324 | base_name = name.split('.')[0]
325 | filename = os.path.join(path, base_name)
326 | with open(filename + '_ROC_data.pickle', 'wb') as f:
327 | pickle.dump({'signal_eff': eff_s,
328 | 'background_eff': eff_b,
329 | 'thresholds': threshs,
330 | 'description': str(args)}, f)
331 |
332 | print('Saving ROC data for %s' % base_name)
333 |
--------------------------------------------------------------------------------