├── README.md ├── Recetas_Python.md ├── Recetas_R.md ├── Repositorio.md ├── Standford Cheatsheet spanish ├── hoja-referencia-aprendizaje-automatico-consejos-trucos.pdf ├── hoja-referencia-aprendizaje-no-supervisado.pdf ├── hoja-referencia-aprendizaje-profundo.pdf ├── hoja-referencia-aprendizaje-supervisado.pdf ├── repaso-algebra-lineal-calculo.pdf ├── repaso-probabilidades-estadisticas.pdf └── super-hoja-referencia-machine-learning.pdf └── listado_algoritmos.md /README.md: -------------------------------------------------------------------------------- 1 | # Recopilatorio Data Science 2 | Recopilatorio de materiales relacionados con Data Science, Machine Learning, Deep Learning, Inteligencia artificial y todo lo relacionado con esas materias en la red 3 | 4 | ![](https://cdn-images-1.medium.com/max/1200/1*mgXvzNcwfpnBawI6XTkVRg.png) 5 | -------------------------------------------------------------------------------- /Recetas_Python.md: -------------------------------------------------------------------------------- 1 | ### Código de los principales algoritmos en Python 2 | 3 | Regresión lineal, regresión logística, árbol de decisión, SVM, Naive Bayes, kNN, k-Means, Random Forest, PCA, GBM, XGBoost, LightGBM, Catboost 4 | 5 | #### Regresión lineal 6 | ~~~ 7 | #Import Library 8 | #Import other necessary libraries like pandas, numpy... 9 | from sklearn import linear_model 10 | #Load Train and Test datasets 11 | #Identify feature and response variable(s) and values must be numeric and numpy arrays 12 | x_train=input_variables_values_training_datasets 13 | y_train=target_variables_values_training_datasets 14 | x_test=input_variables_values_test_datasets 15 | # Create linear regression object 16 | linear = linear_model.LinearRegression() 17 | # Train the model using the training sets and check score 18 | linear.fit(x_train, y_train) 19 | linear.score(x_train, y_train) 20 | #Equation coefficient and Intercept 21 | print('Coefficient: \n', linear.coef_) 22 | print('Intercept: \n', linear.intercept_) 23 | #Predict Output 24 | predicted= linear.predict(x_test) 25 | ~~~ 26 | 27 | #### Regresión logística 28 | ~~~ 29 | #Import Library 30 | from sklearn.linear_model import LogisticRegression 31 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 32 | # Create logistic regression object 33 | model = LogisticRegression() 34 | # Train the model using the training sets and check score 35 | model.fit(X, y) 36 | model.score(X, y) 37 | #Equation coefficient and Intercept 38 | print('Coefficient: \n', model.coef_) 39 | print('Intercept: \n', model.intercept_) 40 | #Predict Output 41 | predicted= model.predict(x_test) 42 | ~~~ 43 | 44 | #### Árbol de decisión 45 | ~~~ 46 | #Import Library 47 | #Import other necessary libraries like pandas, numpy... 48 | from sklearn import tree 49 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 50 | # Create tree object 51 | model = tree.DecisionTreeClassifier(criterion='gini') # for classification, here you can change the algorithm as gini or entropy (information gain) by default it is gini 52 | # model = tree.DecisionTreeRegressor() for regression 53 | # Train the model using the training sets and check score 54 | model.fit(X, y) 55 | model.score(X, y) 56 | #Predict Output 57 | predicted= model.predict(x_test) 58 | ~~~ 59 | 60 | #### SVM (Support Vector Machine) 61 | ~~~ 62 | #Import Library 63 | from sklearn import svm 64 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 65 | # Create SVM classification object 66 | model = svm.svc() # there is various option associated with it, this is simple for classification. You can refer link, for mo# re detail. 67 | # Train the model using the training sets and check score 68 | model.fit(X, y) 69 | model.score(X, y) 70 | #Predict Output 71 | predicted= model.predict(x_test) 72 | ~~~ 73 | 74 | #### Naive Bayes 75 | ~~~ 76 | #Import Library 77 | from sklearn.naive_bayes import GaussianNB 78 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 79 | # Create SVM classification object model = GaussianNB() # there is other distribution for multinomial classes like Bernoulli Naive Bayes, Refer link 80 | # Train the model using the training sets and check score 81 | model.fit(X, y) 82 | #Predict Output 83 | predicted= model.predict(x_test) 84 | ~~~ 85 | 86 | #### kNN (k-Nearest Neighbors) 87 | ~~~ 88 | #Import Library 89 | from sklearn.neighbors import KNeighborsClassifier 90 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 91 | # Create KNeighbors classifier object model 92 | KNeighborsClassifier(n_neighbors=6) # default value for n_neighbors is 5 93 | # Train the model using the training sets and check score 94 | model.fit(X, y) 95 | #Predict Output 96 | predicted= model.predict(x_test) 97 | ~~~ 98 | 99 | #### K-Means 100 | ~~~ 101 | #Import Library 102 | from sklearn.cluster import KMeans 103 | #Assumed you have, X (attributes) for training data set and x_test(attributes) of test_dataset 104 | # Create KNeighbors classifier object model 105 | k_means = KMeans(n_clusters=3, random_state=0) 106 | # Train the model using the training sets and check score 107 | model.fit(X) 108 | #Predict Output 109 | predicted= model.predict(x_test) 110 | ~~~ 111 | 112 | #### Random Forest 113 | ~~~ 114 | #Import Library 115 | from sklearn.ensemble import RandomForestClassifier 116 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 117 | # Create Random Forest object 118 | model= RandomForestClassifier() 119 | # Train the model using the training sets and check score 120 | model.fit(X, y) 121 | #Predict Output 122 | predicted= model.predict(x_test) 123 | ~~~ 124 | 125 | #### PCA 126 | ~~~ 127 | #Import Library 128 | from sklearn import decomposition 129 | #Assumed you have training and test data set as train and test 130 | # Create PCA obeject pca= decomposition.PCA(n_components=k) #default value of k =min(n_sample, n_features) 131 | # For Factor analysis 132 | #fa= decomposition.FactorAnalysis() 133 | # Reduced the dimension of training dataset using PCA 134 | train_reduced = pca.fit_transform(train) 135 | #Reduced the dimension of test dataset 136 | test_reduced = pca.transform(test) 137 | ~~~ 138 | 139 | #### GBM 140 | ~~~ 141 | #Import Library 142 | from sklearn.ensemble import GradientBoostingClassifier 143 | #Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset 144 | # Create Gradient Boosting Classifier object 145 | model= GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) 146 | # Train the model using the training sets and check score 147 | model.fit(X, y) 148 | #Predict Output 149 | predicted= model.predict(x_test) 150 | ~~~ 151 | 152 | #### XGBoost 153 | ~~~ 154 | from xgboost import XGBClassifier 155 | from sklearn.model_selection import train_test_split 156 | from sklearn.metrics import accuracy_score 157 | X = dataset[:,0:10] 158 | Y = dataset[:,10:] 159 | seed = 1 160 | X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.33, random_state=seed) 161 | model = XGBClassifier() 162 | model.fit(X_train, y_train) 163 | #Make predictions for test data 164 | y_pred = model.predict(X_test) 165 | ~~~ 166 | 167 | #### LightGBM 168 | ~~~ 169 | data = np.random.rand(500, 10) # 500 entities, each contains 10 features 170 | label = np.random.randint(2, size=500) # binary target 171 | 172 | train_data = lgb.Dataset(data, label=label) 173 | test_data = train_data.create_valid('test.svm') 174 | param = {'num_leaves':31, 'num_trees':100, 'objective':'binary'} 175 | param['metric'] = 'auc' 176 | 177 | num_round = 10 178 | bst = lgb.train(param, train_data, num_round, valid_sets=[test_data]) 179 | bst.save_model('model.txt') 180 | # 7 entities, each contains 10 features 181 | data = np.random.rand(7, 10) 182 | ypred = bst.predict(data) 183 | ~~~ 184 | 185 | #### Catboost 186 | ~~~ 187 | import pandas as pd 188 | import numpy as np 189 | from catboost import CatBoostRegressor 190 | 191 | #Read training and testing files 192 | train = pd.read_csv("train.csv") 193 | test = pd.read_csv("test.csv") 194 | 195 | #Imputing missing values for both train and test 196 | train.fillna(-999, inplace=True) 197 | test.fillna(-999,inplace=True) 198 | 199 | #Creating a training set for modeling and validation set to check model performance 200 | X = train.drop(['Item_Outlet_Sales'], axis=1) 201 | y = train.Item_Outlet_Sales 202 | from sklearn.model_selection import train_test_split 203 | X_train, X_validation, y_train, y_validation = train_test_split(X, y, train_size=0.7, random_state=1234) 204 | categorical_features_indices = np.where(X.dtypes != np.float)[0] 205 | 206 | #importing library and building model 207 | from catboost import CatBoostRegressormodel=CatBoostRegressor(iterations=50, depth=3, learning_rate=0.1, loss_function='RMSE') 208 | model.fit(X_train, y_train,cat_features=categorical_features_indices,eval_set=(X_validation, y_validation),plot=True) 209 | submission = pd.DataFrame() 210 | submission['Item_Identifier'] = test['Item_Identifier'] 211 | submission['Outlet_Identifier'] = test['Outlet_Identifier'] 212 | submission['Item_Outlet_Sales'] = model.predict(test) 213 | ~~~ 214 | 215 | **Referencias**: https://www.analyticsvidhya.com/ 216 | 217 | -------------------------------------------------------------------------------- /Recetas_R.md: -------------------------------------------------------------------------------- 1 | ### Código de los principales algoritmos en R 2 | 3 | Regresión lineal, regresión logística, árbol de decisión, SVM, Naive Bayes, kNN, k-Means, Random Forest, PCA, GBM, XGBoost, LightGBM, Catboost 4 | 5 | #### Regresión lineal 6 | ~~~ 7 | #Load Train and Test datasets 8 | #Identify feature and response variable(s) and values must be numeric and numpy arrays 9 | x_train <- input_variables_values_training_datasets 10 | y_train <- target_variables_values_training_datasets 11 | x_test <- input_variables_values_test_datasets 12 | x <- cbind(x_train,y_train) 13 | # Train the model using the training sets and check score 14 | linear <- lm(y_train ~ ., data = x) 15 | summary(linear) 16 | #Predict Output 17 | predicted= predict(linear,x_test) 18 | ~~~ 19 | 20 | #### Regresión logística 21 | ~~~ 22 | x <- cbind(x_train,y_train) 23 | # Train the model using the training sets and check score 24 | logistic <- glm(y_train ~ ., data = x,family='binomial') 25 | summary(logistic) 26 | #Predict Output 27 | predicted= predict(logistic,x_test) 28 | ~~~ 29 | 30 | #### Árbol de decisión 31 | ~~~ 32 | library(rpart) 33 | x <- cbind(x_train,y_train) 34 | # grow tree 35 | fit <- rpart(y_train ~ ., data = x,method="class") 36 | summary(fit) 37 | #Predict Output 38 | predicted= predict(fit,x_test) 39 | ~~~ 40 | 41 | #### SVM (Support Vector Machine) 42 | ~~~ 43 | library(e1071) 44 | x <- cbind(x_train,y_train) 45 | # Fitting model 46 | fit <-svm(y_train ~ ., data = x) 47 | summary(fit) 48 | #Predict Output 49 | predicted= predict(fit,x_test) 50 | ~~~ 51 | 52 | #### Naive Bayes 53 | ~~~ 54 | library(e1071) 55 | x <- cbind(x_train,y_train) 56 | # Fitting model 57 | fit <-naiveBayes(y_train ~ ., data = x) 58 | summary(fit) 59 | #Predict Output 60 | predicted= predict(fit,x_test) 61 | ~~~ 62 | 63 | #### kNN (k-Nearest Neighbors) 64 | ~~~ 65 | library(knn) 66 | x <- cbind(x_train,y_train) 67 | # Fitting model 68 | fit <-knn(y_train ~ ., data = x,k=5) 69 | summary(fit) 70 | #Predict Output 71 | predicted= predict(fit,x_test) 72 | ~~~ 73 | 74 | #### K-Means 75 | ~~~ 76 | library(cluster) 77 | fit <- kmeans(X, 3) # 5 cluster solutio 78 | ~~~ 79 | 80 | #### Random Forest 81 | ~~~ 82 | library(randomForest) 83 | x <- cbind(x_train,y_train) 84 | # Fitting model 85 | fit <- randomForest(Species ~ ., x,ntree=500) 86 | summary(fit) 87 | #Predict Output 88 | predicted= predict(fit,x_test) 89 | ~~~ 90 | 91 | #### PCA 92 | ~~~ 93 | library(stats) 94 | pca <- princomp(train, cor = TRUE) 95 | train_reduced <- predict(pca,train) 96 | test_reduced <- predict(pca,test) 97 | ~~~ 98 | 99 | #### GBM 100 | ~~~ 101 | library(caret) 102 | x <- cbind(x_train,y_train) 103 | # Fitting model 104 | fitControl <- trainControl( method = "repeatedcv", number = 4, repeats = 4) 105 | fit <- train(y ~ ., data = x, method = "gbm", trControl = fitControl,verbose = FALSE) 106 | predicted= predict(fit,x_test,type= "prob")[,2] 107 | ~~~ 108 | 109 | #### XGBoost 110 | ~~~ 111 | require(caret) 112 | x <- cbind(x_train,y_train) 113 | # Fitting model 114 | TrainControl <- trainControl( method = "repeatedcv", number = 10, repeats = 4) 115 | model<- train(y ~ ., data = x, method = "xgbLinear", trControl = TrainControl,verbose = FALSE) 116 | OR 117 | model<- train(y ~ ., data = x, method = "xgbTree", trControl = TrainControl,verbose = FALSE) 118 | predicted <- predict(model, x_test) 119 | ~~~ 120 | 121 | #### LightGBM 122 | ~~~ 123 | require(caret) 124 | require(RLightGBM) 125 | data(iris) 126 | 127 | model <-caretModel.LGBM() 128 | 129 | fit <- train(Species ~ ., data = iris, method=model, verbosity = 0) 130 | print(fit) 131 | y.pred <- predict(fit, iris[,1:4]) 132 | 133 | library(Matrix) 134 | model.sparse <- caretModel.LGBM.sparse() 135 | 136 | #Generate a sparse matrix 137 | mat <- Matrix(as.matrix(iris[,1:4]), sparse = T) 138 | fit <- train(data.frame(idx = 1:nrow(iris)), iris$Species, method = model.sparse, matrix = mat, verbosity = 0) 139 | print(fit) 140 | ~~~ 141 | 142 | #### Catboost 143 | ~~~ 144 | set.seed(1) 145 | require(titanic) 146 | require(caret) 147 | require(catboost) 148 | 149 | tt <- titanic::titanic_train[complete.cases(titanic::titanic_train),] 150 | data <- as.data.frame(as.matrix(tt), stringsAsFactors = TRUE) 151 | drop_columns = c("PassengerId", "Survived", "Name", "Ticket", "Cabin") 152 | x <- data[,!(names(data) %in% drop_columns)]y <- data[,c("Survived")] 153 | fit_control <- trainControl(method = "cv", number = 4,classProbs = TRUE) 154 | grid <- expand.grid(depth = c(4, 6, 8),learning_rate = 0.1,iterations = 100, l2_leaf_reg = 1e-3, rsm = 0.95, border_count = 64) 155 | report <- train(x, as.factor(make.names(y)),method = catboost.caret,verbose = TRUE, preProc = NULL,tuneGrid = grid, trControl = fit_control) 156 | print(report) 157 | importance <- varImp(report, scale = FALSE) 158 | print(importance) 159 | ~~~ 160 | 161 | **Referencias**: https://www.analyticsvidhya.com/ 162 | -------------------------------------------------------------------------------- /Repositorio.md: -------------------------------------------------------------------------------- 1 | # Recopilatorio Data Science 2 | Recopilatorio de materiales relacionados con Data Science, Machine Learning, Deep Learning, Inteligencia artificial y todo lo relacionado con esas materias en la red 3 | *** 4 | **Contenido** 5 | 1. [Recursos](#id1) 6 | 2. [Programas/Webs suite](#id2) 7 | 3. [Datasets](#id3) 8 | 4. [Modelos preentrenados](#id4) 9 | 5. [APIs](#id5) 10 | 6. [Libros y documentos](#id6) 11 | 7. [Blogs](#id7) 12 | 8. [Canales de Youtube](#id8) 13 | 9. [Plataformas de aprendizaje](#id9) 14 | 10. [Otros programas/recursos](#id10) 15 | 11. [Paquetes R](#id11) 16 | 12. [Paquetes Python](#id12) 17 | 13. [Casos de uso](#id13) 18 | 14. [Automated machine learning](#id14) 19 | 15. [Embedded machine learning](#id15) 20 | 16. [Spatial Data Science / Machine Learning](#id16) 21 | 17. [Herramientas de Anotación](#id17) 22 | *** 23 |
24 | 25 |
26 | 27 | ### Recursos 28 | 29 | Google AI education 30 | https://ai.google/education/ 31 | 32 | Microsoft AI school 33 | https://aischool.microsoft.com/en-us/home 34 | 35 | Intel AI academy 36 | https://software.intel.com/es-es/ai-academy/students/courses 37 | 38 | NVIDIA Deep Learning Institute 39 | (https://www.nvidia.com/es-es/deep-learning-ai/education/) 40 | 41 | IBM cognitive class 42 | https://cognitiveclass.ai/ 43 | 44 | Facebook Machine Learning 45 | https://research.fb.com/category/machine-learning/ 46 | 47 | Amazon Machine Learning 48 | https://aws.amazon.com/es/aml/ 49 | 50 | Kaggle 51 | https://www.kaggle.com/learn/overview 52 | 53 | Fast.ai 54 | https://www.fast.ai/ 55 | 56 | Mlcourse.ai 57 | https://mlcourse.ai/ 58 | 59 | Datacamp 60 | https://www.datacamp.com/ 61 | 62 | Dataquest 63 | https://www.dataquest.io/ 64 | 65 | KDnuggets 66 | https://www.kdnuggets.com/ 67 | 68 | Data Science Central 69 | https://www.datasciencecentral.com/ 70 | 71 | Analytics Vidhya 72 | https://www.analyticsvidhya.com/blog/ 73 | 74 | Towards data science 75 | https://towardsdatascience.com/ 76 | 77 | Business Science University 78 | https://university.business-science.io/ 79 | 80 | Quick-R 81 | https://www.statmethods.net/index.html 82 | 83 | RDM 84 | http://www.rdatamining.com/ 85 | 86 | Capacítate para el empleo (Tecnología) 87 | https://capacitateparaelempleo.org 88 | 89 | School of AI 90 | https://www.theschool.ai/ 91 | 92 | DataFlair 93 | https://data-flair.training/blogs/ 94 | 95 | Elements of IA 96 | https://course.elementsofai.com/ 97 | 98 | Made With ML 99 | (https://madewithml.com/) 100 | 101 | New Deep Learning Techniques 102 | (http://www.ipam.ucla.edu/programs/workshops/new-deep-learning-techniques/?tab=schedule) 103 | 104 | AI Institute Geometry of Deep Learning 105 | (https://www.microsoft.com/en-us/research/event/ai-institute-2019/#!videos) 106 | 107 | Machine Learning Práctico (https://elsonidoq.github.io/machine-learning-practico/) 108 | 109 |
110 | 111 | #### Universidades 112 | 113 | ##### Statistics, Probability & Data Science 114 | 115 | * Stanford University Course Probability for Computer Scientists 116 | (https://web.stanford.edu/class/archive/cs/cs109/cs109.1196/schedule.html) 117 | 118 | * EPFL University Course Advanced probability and applications 119 | (https://moodle.epfl.ch/course/view.php?id=14557) 120 | 121 | * Brown University Course Probability & Computing 122 | (http://cs.brown.edu/courses/csci1450/lectures.html) 123 | 124 | * Gothenburg University Course Statistical Methods for Data Science 125 | (https://gu.instructure.com/courses/11025) 126 | 127 | * MIT University Course Statistical Learning Theory and Applications 128 | (http://www.mit.edu/~9.520/fall19/) 129 | 130 | * Cornell University Course Data Science for all 131 | (https://www.cs.cornell.edu/courses/cs1380/2020sp/schedule.html) 132 | 133 | * Brown University Course Introduction to Data Science 134 | (https://cs.brown.edu/courses/csci1951-a/slides/) 135 | 136 | * Brown University Course Data Science 137 | (http://cs.brown.edu/courses/cs195w/slides.shtml) 138 | 139 |
140 | 141 | ##### Machine Learning 142 | 143 | * Stanford University Course Machine Learning (http://cs229.stanford.edu/syllabus-summer2020.html) 144 | 145 | * Harvard University Course Machine Learning (https://harvard-ml-courses.github.io/cs181-web/schedule) 146 | 147 | * Oxford University Course Machine Learning (https://www.cs.ox.ac.uk/people/varun.kanade/teaching/ML-MT2016/lectures/) 148 | 149 | * EPFL University Course Machine Learning (https://www.epfl.ch/labs/mlo/machine-learning-cs-433/) 150 | 151 | * Alberta University Course Machine Learning (https://marthawhite.github.io/mlcourse/schedule.html) 152 | 153 | * Aachen University Course Machine Learning (http://www.vision.rwth-aachen.de/course/31/) 154 | 155 | * Brown University Course Machine Learning (http://cs.brown.edu/courses/csci1420/lectures.html) 156 | 157 | * Cornell University Course Machine Learning for Intelligent Systems (https://www.cs.cornell.edu/courses/cs4780/2019fa/) 158 | 159 | * Cornell University Course Machine Learning for Data Science (https://www.cs.cornell.edu/courses/cs4786/2020sp/lectures.htm) 160 | 161 | * Cornell University Course Advanced Machine Learning (https://www.cs.cornell.edu/courses/cs6780/2019sp/) 162 | 163 | * Aachen University Course Advanced Machine Learning (http://www.vision.rwth-aachen.de/course/29/) 164 | 165 | * Cornell University Course Advanced Machine Learning Systems (https://www.cs.cornell.edu/courses/cs6787/2019fa/) 166 | 167 | * Chalmers University Course Applied Machine Learning (https://chalmers.instructure.com/courses/8685/) 168 | 169 | * McGill University Course Applied Machine Learning (https://cs.mcgill.ca/~wlh/comp551/schedule.html) 170 | 171 | * Cornell University Course Principles of Large-Scale Machine Learning (https://www.cs.cornell.edu/courses/cs4787/2020sp/) 172 | 173 | * Tuebingen University Course Probabilistic Machine Learning (https://uni-tuebingen.de/en/faculties/faculty-of-science/departments/computer-science/lehrstuehle/methods-of-machine-learning/probabilistic-machine-learning/) 174 | 175 | * UC Berkeley University Course Deep Unsupervised Learning 176 | (https://sites.google.com/view/berkeley-cs294-158-sp19/home) 177 | 178 |
179 | 180 | ##### Computer Vision 181 | 182 | * UC Berkeley University Course Computer Vision 183 | (https://inst.eecs.berkeley.edu/~cs280/sp18/) 184 | 185 | * Cornell University Course Introduction to Computer Vision 186 | (https://www.cs.cornell.edu/courses/cs5670/2020sp/lectures/lectures.html) 187 | 188 | * Brown University Course Introduction to Computer Vision 189 | (https://cs.brown.edu/courses/csci1430/) 190 | 191 | * Cornell University Course Computer Vision 192 | (https://www.cs.cornell.edu/courses/cs4670/2020sp/calendar-2020.html) 193 | 194 | * MIT CSAIL Advances in Computer Vision 195 | (http://6.869.csail.mit.edu/fa19/schedule.html) 196 | 197 | * EPFL University Course Computer Vision 198 | (https://moodle.epfl.ch/course/view.php?id=472) 199 | 200 | * Alberta University Course Computer Vision 201 | (https://webdocs.cs.ualberta.ca/~vis/courses/CompVis/) 202 | 203 | * New York University Course Computer Vision 204 | (https://cs.nyu.edu/~fergus/teaching/vision/index.html) 205 | 206 | * Illinois University Course Computer Vision 207 | (https://courses.engr.illinois.edu/cs543/sp2015/) 208 | 209 | * Aachen University Course Computer Vision 210 | (v2016 (más completa) http://www.vision.rwth-aachen.de/course/11/; v2019 http://www.vision.rwth-aachen.de/course/28/) 211 | 212 | * TUM University Course Computer Vision I: Variational Methods 213 | (https://vision.in.tum.de/teaching/online/cvvm) 214 | 215 | * TUM University Course Computer Vision II: Multiple View Geometry 216 | (https://vision.in.tum.de/teaching/online/mvg) 217 | 218 | * Michigan University Course Depp Learning for Computer Vision 219 | (https://francescopochetti.com/dl-for-computer-vision-justin-johnson-university-of-michigan-learning-pills/) (lista videos: https://www.youtube.com/playlist?list=PL5-TkQAfAZFbzxjBHtzdVCWE0Zbhomg7r) 220 | 221 | * Stanford University Course Convolutional Neural Networks for Visual Recognition 222 | (http://cs231n.stanford.edu/syllabus.html) 223 | 224 | * Carnegie Mellon University Course Probabilistic Graphical Models 225 | (https://sailinglab.github.io/pgm-spring-2019/lectures/) 226 | 227 | * Technical University of Munich Course Advanced Deep Learning for Computer Vision 228 | (https://dvl.in.tum.de/teaching/adl4cv-ws18/) 229 | 230 |
231 | 232 | ##### Deep Learning 233 | 234 | * EPFL University Course Artificial Neural Networks 235 | (https://moodle.epfl.ch/course/view.php?id=15633) 236 | 237 | * MIT University Course Introduction to Deep Learning 238 | (http://introtodeeplearning.com/) 239 | 240 | * MIT University Course Deep Learning 241 | (https://deeplearning.mit.edu/) 242 | 243 | * New York University Course Deep Learning 244 | (https://atcold.github.io/pytorch-Deep-Learning/) 245 | 246 | * Stanford University Course Deep Learning 247 | (https://cs230.stanford.edu/syllabus/) 248 | 249 | * Brown University Course Deep Learning in Genomics 250 | (http://cs.brown.edu/courses/csci1850/lectures.html) 251 | 252 |
253 | 254 | ##### Natural Language Processing 255 | 256 | * Chalmers University Course Machine learning for Natural Language Processing 257 | (https://chalmers.instructure.com/courses/7916) 258 | 259 | * Chalmers University Course Deep Learning for Natural Language Processing 260 | (https://liu-nlp.github.io/dl4nlp/) 261 | 262 | * EPFL University Course Introduction to Natural Language Processing 263 | (https://coling.epfl.ch/) 264 | 265 | * EPFL University Course Computer Language Processing 266 | (https://lara.epfl.ch/w/cc19:top) 267 | 268 | * Cornell University Course Natural Language Processing 269 | (https://www.cs.cornell.edu/courses/cs5740/2020sp/schedule.html) 270 | 271 | * Cornell University Course Structured Prediction for NLP 272 | (https://www.cs.cornell.edu/courses/cs6741/2017fa/) 273 | 274 | * Stanford University Course Natural Language Processing with Deep Learning 275 | (http://web.stanford.edu/class/cs224n/index.html#schedule) 276 | 277 | * Brown University Course Introduction to Computational Linguistics 278 | (cs.brown.edu/courses/csci1460/) 279 | 280 |
281 | 282 | ##### Reinforcement Learning 283 | 284 | * UCL University Course on Reinforcement Learning 285 | (https://www.davidsilver.uk/teaching/) 286 | 287 | * UC Berkeley University Course Deep Reinforcement Learning 288 | (http://rail.eecs.berkeley.edu/deeprlcourse/) 289 | 290 | * EPFL University Course Markov chains and algorithmic applications 291 | (https://moodle.epfl.ch/course/view.php?id=15016) 292 | 293 | * Stanford University Course Deep Multi-Task and Meta Learning 294 | (http://cs330.stanford.edu/) 295 | 296 |
297 | 298 | ##### Artificial Intelligence 299 | 300 | * Cornell University Course Foundations of Artificial Intelligence 301 | (https://www.cs.cornell.edu/courses/cs4700/2020sp/) 302 | 303 | * Stanford University Course Artificial Intelligence: Principles and Techniques 304 | (https://stanford-cs221.github.io/spring2020/) 305 | 306 | * UC Berkeley University Course Introduction to Artificial Intelligence 307 | (https://inst.eecs.berkeley.edu/~cs188/fa19/index.html) 308 | 309 | * Brown University Course Artificial Intelligence 310 | (http://cs.brown.edu/courses/csci1410/) 311 | 312 |
313 | 314 | ##### Algorithmics 315 | 316 | * Brown University Course Design and Analysis Algorithms 317 | (http://cs.brown.edu/courses/csci1570/lectures.html) 318 | 319 | 320 |
321 | 322 |
323 | 324 | ### Programas/Webs suite 325 | 326 | Power BI (https://powerbi.microsoft.com/es-es/) 327 | 328 | Knime (https://www.knime.com/) 329 | 330 | Weka (https://www.cs.waikato.ac.nz/ml/weka/) 331 | 332 | Orange (https://orange.biolab.si/) 333 | 334 | RapidMiner (https://rapidminer.com/) 335 | 336 | BIRT (https://www.eclipse.org/birt/) 337 | 338 | Jaspersoft (https://www.jaspersoft.com/es/soluciones) 339 | 340 | Microsoft Azure (https://docs.microsoft.com/es-es/learn/azure/) 341 | 342 | IBM Watson Studio (https://www.ibm.com/cloud/watson-studio) 343 | 344 | Tableau (https://www.tableau.com/es-es) 345 | 346 | Metabase (https://metabase.com/) 347 | 348 | Knowage (https://www.knowage-suite.com/site/home/) 349 | 350 | Pentaho (Hitachi Vintara) (https://sourceforge.net/projects/pentaho/) 351 | 352 | DeepCognition (https://deepcognition.ai/) 353 | 354 | Google Data Studio (https://datastudio.google.com/overview) 355 | 356 | Qlik (https://www.qlik.com/us) 357 | 358 | Zoho Analytics (https://www.zoho.com/es-xl/analytics/) 359 | 360 | Google Cloud Datalab (https://cloud.google.com/datalab/) 361 | 362 | DataRobot (https://www.datarobot.com/) 363 | 364 | Dataiku Data Science Studio (DSS) (https://www.dataiku.com/dss/) 365 | 366 | BigML (https://bigml.com/) 367 | 368 | Google Colaboratory (https://colab.research.google.com/notebooks/welcome.ipynb) 369 | 370 | MLflow (https://mlflow.org/) 371 | 372 | MLkit app mobile (https://developers.google.com/ml-kit/) 373 | 374 |
375 | 376 |
377 | 378 | ### Datasets 379 | 380 | #### Imágenes 381 | 382 | Google repositorio imágenes etiquetadas (https://storage.googleapis.com/openimages/web/index.html) 383 | 384 | Visión artificial (https://www.visualdata.io/) 385 | 386 | Biometría (http://openbiometrics.org/) 387 | 388 | COCO (https://cocodataset.org/#home) 389 | 390 | ImageNet (http://www.image-net.org/) 391 | 392 | Gestos - HaGRID - HAnd Gesture Recognition Image Dataset (https://github.com/hukenovs/hagrid) 393 | 394 |
395 | 396 | #### Audio 397 | 398 | Google repositorio de audio (https://research.google.com/audioset/) 399 | 400 | Common Voice (https://commonvoice.mozilla.org/) 401 | 402 | VoxForge (http://voxforge.org/es) 403 | 404 |
405 | 406 | #### Texto 407 | 408 | The Stanford Question Answering Dataset (https://rajpurkar.github.io/SQuAD-explorer/) 409 | 410 | Amazon question/answer data (http://jmcauley.ucsd.edu/data/amazon/qa/) 411 | 412 | Recommender Systems Datasets (https://cseweb.ucsd.edu/~jmcauley/datasets.html) 413 | 414 | El corpus del español (https://www.corpusdelespanol.org/xs.asp) 415 | 416 | MAS Corpus (Corpus for Marketing Analysis in Spanish) (http://mascorpus.linkeddata.es/) 417 | 418 |
419 | 420 | #### Finanzas 421 | 422 | Quandl (https://www.quandl.com/) 423 | 424 |
425 | 426 | #### Conducción autónoma y coches 427 | 428 | Waymo (https://waymo.com/open/) 429 | 430 | KITTI 360 (http://www.cvlibs.net/datasets/kitti-360/) 431 | 432 | CompCars Dataset (https://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html) 433 | 434 | Stanford Cars Dataset (https://ai.stanford.edu/~jkrause/cars/car_dataset.html) 435 | 436 | BDD100K (https://www.bdd100k.com/) 437 | 438 | SHIFT (https://www.vis.xyz/shift/) 439 | 440 |
441 | 442 | #### Datos científicos/investigación 443 | 444 | Repositorios de datos recomendados por Scientific Data (https://www.nature.com/sdata/policies/repositories) 445 | 446 | Mendeley Data (https://data.mendeley.com/) 447 | 448 | Figshare (https://figshare.com/) 449 | 450 | Dryad Digital Repository (https://datadryad.org/stash) 451 | 452 | Harvard Dataverse (https://dataverse.harvard.edu/) 453 | 454 | Open Scientific Framework (https://osf.io/) 455 | 456 | Zenodo (https://zenodo.org/) 457 | 458 | Open Acces Directory (http://oad.simmons.edu/oadwiki/Data_repositories) 459 | 460 | IEEE DataPort (https://ieee-dataport.org/datasets) 461 | 462 |
463 | 464 | #### UAVs / Drones 465 | 466 | Open Aerial Map (https://openaerialmap.org/) 467 | 468 | Semantic Drone Dataset (https://www.tugraz.at/index.php?id=22387) 469 | 470 | SenseFly Datasets (https://www.sensefly.com/education/datasets/) 471 | 472 | VisDrone Dataset (https://github.com/VisDrone/VisDrone-Dataset) 473 | 474 | UAVid (https://uavid.nl/) 475 | 476 | Rice Seedling Dataset (https://github.com/aipal-nchu/RiceSeedlingDataset) 477 | 478 | UAV Sugarbeets 2015-16 Datasets (https://www.ipb.uni-bonn.de/data/uav-sugarbeets-2015-16/) 479 | 480 | ReforesTree (https://github.com/gyrrei/ReforesTree) 481 | 482 |
483 | 484 | #### Agricultura de precisión 485 | 486 | Plant Pathology 2021 - FGVC8 (https://www.kaggle.com/c/plant-pathology-2021-fgvc8/overview) 487 | 488 | PlantVillage Dataset (https://www.kaggle.com/abdallahalidev/plantvillage-dataset) 489 | 490 | PlantDoc: A Dataset for Visual Plant Disease Detection (https://github.com/pratikkayal/PlantDoc-Dataset) 491 | 492 | Plants_Dataset[99 classes] (https://www.kaggle.com/muhammadjawad1998/plants-dataset99-classes) 493 | 494 | V2 Plant Seedlings Dataset (https://www.kaggle.com/vbookshelf/v2-plant-seedlings-dataset) 495 | 496 | Eden Library (https://edenlibrary.ai/datasets) 497 | 498 | Pl@ntNet - Base de datos e identificación de plantas (https://identify.plantnet.org/es) 499 | 500 | A Crop/Weed Field Image Dataset (https://github.com/cwfid/dataset) 501 | 502 | DeepWeeds (https://github.com/AlexOlsen/DeepWeeds) 503 | 504 | Identification of Plant Leaf Diseases (https://data.mendeley.com/datasets/tywbtsjrjv/1) 505 | 506 | Perrenial Plants Detection (https://www.kaggle.com/benediktgeisler/perrenial-plants-detection) 507 | 508 | Global Wheat Challenge 2021 (https://www.kaggle.com/bendvd/global-wheat-challenge-2021) 509 | 510 | Flower Recognition (https://www.kaggle.com/aymenktari/flowerrecognition) 511 | 512 | Potato Disease Leaf Dataset(PLD) (https://www.kaggle.com/rizwan123456789/potato-disease-leaf-datasetpld) 513 | 514 | Potato and weeds (https://www.kaggle.com/jchrysanthemum/potato-and-weeds) 515 | 516 | Potato Plants Dataset (https://www.kaggle.com/ali7432/potato-plants-dataset) 517 | 518 | Potato Leaf Annotation (https://www.kaggle.com/rizwan123456789/potato-leaf-annotation) 519 | 520 | Cotton-Diseased or Fresh (https://www.kaggle.com/ananysharma/diseasecotton) 521 | 522 | Cucumber plant diseases dataset (https://www.kaggle.com/kareem3egm/cucumber-plant-diseases-dataset) 523 | 524 | Rice Leaf Diseases Dataset (https://www.kaggle.com/vbookshelf/rice-leaf-diseases) 525 | 526 | Rice Plant Dataset (https://www.kaggle.com/rajkumar898/rice-plant-dataset) 527 | 528 | Tomato Cultivars (https://www.kaggle.com/olgabelitskaya/tomato-cultivars) 529 | 530 | AppleScabFDs (https://www.kaggle.com/projectlzp201910094/applescabfds) 531 | 532 | AppleScabLDs (https://www.kaggle.com/projectlzp201910094/applescablds) 533 | 534 | Hops Classification (https://www.kaggle.com/scruggzilla/hops-classification) 535 | 536 | Plant semantic segmentation (https://www.kaggle.com/humansintheloop/plant-semantic-segmentation) 537 | 538 | Synthetic RGB-D data for plant segmentation (https://www.kaggle.com/harlequeen/synthetic-rgbd-images-of-plants) 539 | 540 | Synthetic RGB Data for Grapevine Detection (https://www.kaggle.com/carmenca/synthetic-rgb-data-for-grapevine-detection) 541 | 542 | Leaf disease segmentation dataset (https://www.kaggle.com/fakhrealam9537/leaf-disease-segmentation-dataset) 543 | 544 | Weed-AI Datasets (https://weed-ai.sydney.edu.au/datasets) 545 | 546 | Plant Phenotyping Datasets (https://www.plant-phenotyping.org/datasets-home) 547 | 548 | MinneApple: A Benchmark Dataset for Apple Detection and Segmentation (https://github.com/nicolaihaeni/MinneApple) 549 | 550 | Embrapa Wine Grape Instance Segmentation Dataset (https://github.com/thsant/wgisd) 551 | 552 | A Large-Scale Benchmark Dataset for Insect Pest Recognition (https://github.com/xpwu95/IP102) 553 | 554 | Sugar Beets 2016 (https://www.ipb.uni-bonn.de/data/sugarbeets2016/) 555 | 556 | TobSet: Tobacco Crop and Weeds Image Dataset (https://github.com/mshahabalam/TobSet) 557 | 558 | WE3DS: An RGB-D image dataset for semantic segmentation in agriculture (https://zenodo.org/record/7457983) 559 | 560 |
561 | 562 | #### Ganadería de precisión 563 | 564 | Animal Pose (vaca/oveja/caballo) (https://sites.google.com/view/animal-pose/) 565 | 566 | AwA Pose Dataset (vaca/oveja/caballo/cerdo) (https://github.com/prinik/AwA-Pose) 567 | 568 |
569 | 570 | #### Buscadores 571 | 572 | Google Search Dataset 573 | (https://toolbox.google.com/datasetsearch) 574 | 575 | Repositorio de la UCI para Machine Learning 576 | (http://mlr.cs.umass.edu/ml/) 577 | 578 | Microsoft Research Open Data 579 | (https://msropendata.com/) 580 | 581 | Buscador georreferenciado de datos abiertos (https://opendatainception.io/) 582 | 583 | Portal de datos abiertos de la UE 584 | (http://data.europa.eu/euodp/es/data/) 585 | 586 | Portal de datos abiertos de la FAO 587 | (http://www.fao.org/faostat/en/#data) 588 | 589 | Gobierno de España datos abiertos 590 | (http://datos.gob.es/es) 591 | 592 | Portal de datos abiertos Esri España 593 | (http://opendata.esri.es/) 594 | 595 | Búsqueda de repositorios de datos abiertos 596 | (https://www.re3data.org/) 597 | 598 |
599 | 600 |
601 | 602 | ### Modelos Preentrenados 603 | 604 | Model Zoo (https://modelzoo.co/) 605 | 606 | Tensorflow Model Garden (https://github.com/tensorflow/models) 607 | 608 | Tensorflow Hub (https://tfhub.dev/) 609 | 610 | Pytorch Hub (https://pytorch.org/hub/) 611 | 612 | MediaPipe Models (https://google.github.io/mediapipe/solutions/models) 613 | 614 | Piinto Model Zoo (https://github.com/PINTO0309/PINTO_model_zoo) 615 | 616 | ONNX Model Zoo (https://github.com/onnx/models) 617 | 618 | Jetson Zoo (https://www.elinux.org/Jetson_Zoo#Model_Zoo) 619 | 620 | Awesome CoreML Models (iOS Apple) (https://github.com/likedan/Awesome-CoreML-Models) 621 | 622 | Open Model Zoo (https://github.com/openvinotoolkit/open_model_zoo) 623 | 624 | YOLO v3 y otros detectores (https://pjreddie.com/darknet/yolo/) 625 | 626 | Kaggle Models (https://www.kaggle.com/models) 627 | 628 |
629 | 630 |
631 | 632 | ### APIs 633 | 634 | Listado de APIs de Google 635 | (https://developers.google.com/apis-explorer/#p/) 636 | 637 | Listado de APIs de IBM 638 | (https://developer.ibm.com/api/list) 639 | 640 | Listado de APIs de Microsoft 641 | (https://msdn.microsoft.com/en-us/library/ms123401.aspx) 642 | 643 | Búscadores de APIs por nombre o temática 644 | (https://any-api.com/ ; http://apis.io/ ; https://apis.guru/browse-apis/) 645 | 646 |
647 | 648 |
649 | 650 | ### Libros y documentos 651 | 652 | #### Español 653 | 654 | Aprender R: Iniciación y Perfeccionamiento (https://myrbooksp.netlify.app/) 655 | 656 | AnalizaR Datos políticos (https://arcruz0.github.io/libroadp/index.html) 657 | 658 | Econometría, Estadística y Machine Learning con R (https://econometria.wordpress.com/2017/07/23/estadistica-y-machine-learning-con-r/) 659 | 660 | Fundamentos de Ciencia de Datos con R (https://cdr-book.github.io/index.html) 661 | 662 | Interpretable Machine Learning *Black Box (Spanish Edition) (https://fedefliguer.github.io/AAI/) 663 | 664 | Introducción a estadística con R (https://bookdown.org/matiasandina/R-intro/) 665 | 666 | Introducción a la ciencia de datos - Análisis de datos y algoritmos de predicción con R (https://rafalab.github.io/dslibro/) 667 | 668 | Introducción a la Estadística para Científicos de Datos con R (https://analisisydecision.es/estadistica-data-scientist/index.html) 669 | 670 | Introducción al Análisis de Datos con R (https://rubenfcasal.github.io/intror/) 671 | 672 | Libro vivo de Ciencia de Datos (https://librovivodecienciadedatos.ai/) 673 | 674 | Manual de R (https://fhernanb.github.io/Manual-de-R/) 675 | 676 | Modelos Estadísticos Avanzados (https://pegasus.uprm.edu/~pedro.torres/book/) 677 | 678 | Modelos estadísticos con R (https://bookdown.org/j_morales/weblinmod/) 679 | 680 | Modelos lineales y aditivos en ecología (https://bookdown.org/fxpalacio/bookdown_curso/) 681 | 682 | R para Ciencia de Datos (https://es.r4ds.hadley.nz/) 683 | 684 | R para principiantes (https://bookdown.org/jboscomendoza/r-principiantes4/) 685 | 686 | R para profesionales (https://www.datanalytics.com/libro_r/) 687 | 688 |
689 | 690 | #### Inglés 691 | 692 | Apache Arrow R Cookbook (https://arrow.apache.org/cookbook/r/index.html) 693 | 694 | Behavior Analysis with Machine Learning Using R (https://enriquegit.github.io/behavior-free/index.html) 695 | 696 | Big Book of R (libro recopilatorio de libros) (https://www.bigbookofr.com/) 697 | 698 | Caret Package R (http://topepo.github.io/caret/index.html) 699 | 700 | Causal Inference in R (https://www.r-causal.org/) 701 | 702 | Data Science in Education using R (https://datascienceineducation.com/) 703 | 704 | Data Science Live Book R (https://livebook.datascienceheroes.com/) 705 | 706 | Deep Learning MIT Press book (https://www.deeplearningbook.org/) 707 | 708 | Deep Learning on Graphs (http://cse.msu.edu/~mayao4/dlg_book/) 709 | 710 | Dive into Deep Learning (https://d2l.ai/) 711 | 712 | Elegant and informative maps with tmap (https://r-tmap.github.io/tmap-book/) 713 | 714 | Elegant Graphics for Data Analysis with ggplot2 (https://ggplot2-book.org/index.html) 715 | 716 | Engineering Production-Grade Shiny Apps (https://engineering-shiny.org/) 717 | 718 | Explanatory Model Analysis (https://ema.drwhy.ai/) 719 | 720 | Feature Engineering A-Z (https://feaz-book.com/) 721 | 722 | Feature Engineering and Selection (http://www.feat.engineering/) 723 | 724 | Forecasting and Analytics with ADAM (https://openforecast.org/adam/) 725 | 726 | Forecasting: Principles and Practice (R) (Second Edition: https://otexts.org/fpp2/; Third Edition: https://otexts.org/fpp3/) 727 | 728 | Fundamentals of Data Visualization (https://clauswilke.com/dataviz/index.html) 729 | 730 | Geocomputation with R (https://geocompr.robinlovelace.net/) 731 | 732 | Graph Representation Learning Book (https://www.cs.mcgill.ca/~wlh/grl_book/) 733 | 734 | Interactive web-based data visualization with R, plotly, and shiny (https://plotly-r.com/index.html) 735 | 736 | Interpretable Machine Learning *Black Box* (https://christophm.github.io/interpretable-ml-book/) 737 | 738 | Learning Statistical Models Through Simulation in R (https://psyteachr.github.io/stat-models-v1/index.html) 739 | 740 | Limitations of Interpretable Machine Learning (https://compstat-lmu.github.io/iml_methods_limitations/) 741 | 742 | Machine Learning Engineering Book (http://www.mlebook.com/wiki/doku.php) 743 | 744 | Mastering Spark with R (https://therinspark.com/) 745 | 746 | Mastering Shiny (https://mastering-shiny.org/) 747 | 748 | Modern R with the tidyverse (https://b-rodrigues.github.io/modern_R/) 749 | 750 | Natural Language Processing with Python (https://www.nltk.org/book/) 751 | 752 | Outstanding User Interfaces with Shiny (https://unleash-shiny.rinterface.com/index.html) 753 | 754 | R Base Graphics (http://rstudio-pubs-static.s3.amazonaws.com/7953_4e3efd5b9415444ca065b1167862c349.html) 755 | 756 | R Graphics Cookbook (https://r-graphics.org/) 757 | 758 | R Markdown: The Definitive Guide (https://bookdown.org/yihui/rmarkdown/) 759 | 760 | Statistical rethinking with brms, ggplot2, and the tidyverse: Second edition (https://bookdown.org/content/4857/) 761 | 762 | Supervised Machine Learning for Science (https://ml-science-book.com/) 763 | 764 | The Data Engineering Cookbook (https://github.com/andkret/Cookbook) 765 | 766 | The Hundred-Page Machine Learning Book (http://themlbook.com/wiki/doku.php) 767 | 768 | Tidy Modeling with R (https://www.tmwr.org/) 769 | 770 | UC Business Analytics R Programming Guide (http://uc-r.github.io/) 771 | 772 | YaRrr! The Pirate’s Guide to R (https://bookdown.org/ndphillips/YaRrr/) 773 | 774 |
775 | 776 |
777 | 778 | ### Blogs 779 | 780 | #### Español 781 | 782 | Ciencia y datos (https://medium.com/datos-y-ciencia; https://www.cienciaydatos.org/) 783 | 784 | Materiales de RStudio en Español (https://resources.rstudio.com/espanol) 785 | 786 | Joaquin Amat R (https://rpubs.com/Joaquin_AR) 787 | 788 | Ciencia de Datos, Estadística, Visualización y Machine Learning (https://www.cienciadedatos.net/) 789 | 790 | Escuela de Datos Vivos (https://blog.escueladedatosvivos.ai/) 791 | 792 | Machine Learning para todos (http://machinelearningparatodos.com/blog/) 793 | 794 | Foro argentino de R (https://datosenr.org/) 795 | 796 | Tutoriales R & Python (https://datascienceplus.com/) 797 | 798 | LUCA Telefónica (https://data-speaks.luca-d3.com/) 799 | 800 | Análisis de datos y Machine Learning-dlegorreta (https://dlegorreta.wordpress.com/) 801 | 802 | Aprender machine learning (http://www.aprendemachinelearning.com/) 803 | 804 | BI y Machine Learning con Diego Calvo (http://www.diegocalvo.es/) 805 | 806 | Ejemplos de Machine Learning y Data Mining con R (http://apuntes-r.blogspot.com/) 807 | 808 | Aprendiendo sobre IA-Lidgi González (http://ligdigonzalez.com/) 809 | 810 | Actualidad de Big data e Inteligencia artificial (http://www.sorayapaniagua.com/) 811 | 812 | Blog sobre python (http://www.pythondiario.com/) 813 | 814 | Visión por computador (https://carlosjuliopardoblog.wordpress.com/) 815 | 816 | DataSmarts (https://datasmarts.net/es/) 817 | 818 | OMES, Visión por computador (https://omes-va.com/) 819 | 820 | Inteligencia artificial en la práctica (https://iartificial.net/) 821 | 822 | Tutoriales sobre ML y librerías usadas en ML (https://www.interactivechaos.com/tutoriales) 823 | 824 | Blog con información sobre big data, aprendizaje automático e ia (http://sitiobigdata.com/) 825 | 826 | Blog sobre fundamentos de ML e IA (https://www.juanbarrios.com/machine-learning-aprendizaje-maquina/) 827 | 828 | Todo AI (https://todoia.es/) 829 | 830 | Dream Learning blog (https://dreamlearning.ai/blog/) 831 | 832 | Repositorio de cursos con diapositivas de IA, ML, DL - Fernando Berzal (https://elvex.ugr.es/courses.html) 833 | 834 | Blog del profesor Fernando Sancho Caparrini (ETSI) sobre IA, ML, DL (http://www.cs.us.es/~fsancho/) 835 | 836 | Blog del profesor Jordi Torres (https://torres.ai/blog/) 837 | 838 | Blogg del profesor Eduardo Morales (https://ccc.inaoep.mx/~emorales/) 839 | 840 | Escuela de Datos Vivos (https://escueladedatosvivos.ai/blog) 841 | 842 | Blog Rubiales Alberto Medium (https://rubialesalberto.medium.com/) 843 | 844 | Blog Javi GG (https://javi897.github.io/) 845 | 846 | Blog Ander Fernández (https://anderfernandez.com/blog/) 847 | 848 | Aprender Big Data (https://aprenderbigdata.com/) 849 | 850 | Hablando en Data (https://hablandoendata.com/) 851 | 852 | Análisis y decisión (https://analisisydecision.es/) 853 | 854 | Mis apuntes Data Science (MDS) (https://misapuntesdedatascience.es/) 855 | 856 | Hablamos R (https://hablamosr.blogspot.com/) 857 | 858 | #### Inglés 859 | 860 | ClaoudML (https://www.claoudml.com/) 861 | 862 | Listen Data (https://www.listendata.com/) 863 | 864 | Data Science Heroes (https://blog.datascienceheroes.com/) 865 | 866 | Machine Learning para dispositivos móviles (https://heartbeat.fritz.ai/) 867 | 868 | Tutoriales sobre aprendizaje automático en R y Python (https://www.machinelearningplus.com/) 869 | 870 | Visión artificial con OpenCV (https://www.learnopencv.com/; github: https://github.com/spmallick/learnopencv/blob/master/README.md?ck_subscriber_id=323792569) 871 | 872 | CV-Tricks Visión artificial (https://cv-tricks.com/) 873 | 874 | Business Intelligence y Data Science (http://www.dataprix.com/) 875 | 876 | Towards AI (https://medium.com/towards-artificial-intelligence) 877 | 878 | Data Science Dojo (https://blog.datasciencedojo.com/) 879 | 880 | Machine Learning Mastery (https://machinelearningmastery.com/) 881 | 882 | Open Data Science (https://opendatascience.com/) 883 | 884 | 365 Data Science Blog (https://365datascience.com/blog/) 885 | 886 | PyImageSearch (https://www.pyimagesearch.com/) 887 | 888 | deepwizAI (https://www.deepwizai.com/) 889 | 890 | ML in Production 891 | (http://mlinproduction.com/) 892 | 893 | R in Production 894 | (https://www.rinproduction.com/en/) 895 | 896 |
897 | 898 |
899 | 900 | ### Canales de Youtube 901 | 902 | Dot CSV 903 | (https://www.youtube.com/channel/UCy5znSnfMsDwaLlROnZ7Qbg) 904 | 905 | Lidgi González 906 | (https://www.youtube.com/channel/UCLJV54sFqPiH4MYcJKvGesg) 907 | 908 | Descubriendo la inteligencia artificial 909 | (https://www.youtube.com/channel/UCrEM9nM7pxy0TtgDyTXljFQ) 910 | 911 | Xpikuos - ML / IA / Robótica 912 | (https://www.youtube.com/channel/UCCmHFfUhcgZHenBWRzSEB0w/featured) 913 | 914 | Luca Talks 915 | (https://www.youtube.com/channel/UCiz4K2MbbIEAr31L3Wps3Ew/featured) 916 | 917 | cctmexico 918 | (https://www.youtube.com/playlist?list=PLgHCrivozIb0HQ9oPRLVqw5scdIG-AxQL) 919 | 920 | AMP Tech 921 | (https://www.youtube.com/playlist?list=PLA050nq-BHwMr0uk7pPJUqRgKRRGhdvKb) 922 | 923 | Luis Serrano 924 | (https://www.youtube.com/playlist?list=PLs8w1Cdi-zvZ43xD_AA-eAuEW1FLK0cef) 925 | 926 | Capacítate para el empleo 927 | (https://www.youtube.com/watch?v=kKm1cXSyLqk) 928 | 929 | Full Stack Deep Learning 930 | (https://www.youtube.com/c/FullStackDeepLearning/featured) 931 | 932 | Applied Machine Learning 2020 933 | (https://www.youtube.com/playlist?list=PL_pVmAaAnxIRnSw6wiCpSvshFyCREZmlM) 934 | 935 | Statistical Machine Learning 936 | (https://www.youtube.com/playlist?list=PL05umP7R6ij2XCvrRzLokX6EoHWaGA2cC) 937 | 938 | Advanced Deep Learning & Reinforcement Learning 939 | (https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs) 940 | 941 | Data Driven Control with Machine Learning 942 | (https://www.youtube.com/playlist?list=PLMrJAkhIeNNQkv98vuPjO2X2qJO_UPeWR) 943 | 944 | ECE AI Seminar Series 945 | (https://www.youtube.com/playlist?list=PLhwo5ntex8iY9xhpSwWas451NgVuqBE7U) 946 | 947 | CSEP 546 - Machine Learning 948 | (https://www.youtube.com/playlist?list=PLTPQEx-31JXj87XLsYutYGKw6K9dNaD36) 949 | 950 | CS285 Fall 2019 951 | (https://www.youtube.com/playlist?list=PLkFD6_40KJIwhWJpGazJ9VSj9CFMkb79A) 952 | 953 | Deep Bayes 954 | (https://www.youtube.com/playlist?list=PLe5rNUydzV9QHe8VDStpU0o8Yp63OecdW) 955 | 956 | CMU Neural Nets for NLP 957 | (https://www.youtube.com/playlist?list=PL8PYTP1V4I8CJ7nMxMC8aXv8WqKYwj-aJ) 958 | 959 | Workshop on New Directions in Reinforcement Learning and Con 960 | (https://www.youtube.com/playlist?list=PLdDZb3TwJPZ61sGqd6cbWCmTc275NrKu3) 961 | 962 | Theoretical Machine Leraning Lecture Series 963 | (https://www.youtube.com/playlist?list=PLdDZb3TwJPZ5VLprf2VUfC0h1zOGvV_gz) 964 | 965 |
966 | 967 |
968 | 969 | ### Plataformas de aprendizaje 970 | 971 | Coursera (https://www.coursera.org/) 972 | 973 | edX (https://www.edx.org/es) 974 | 975 | miriadaX (https://miriadax.net/home) 976 | 977 | Udemy (https://www.udemy.com/) 978 | 979 | Udacity (https://eu.udacity.com/) 980 | 981 | SimpliLearn (https://www.simplilearn.com/) 982 | 983 | FutureLearn (https://www.futurelearn.com/) 984 | 985 | freeCodecamp (https://www.freecodecamp.org/) 986 | 987 | Codecademy (https://www.codecademy.com/) 988 | 989 | Cursos python en español (https://unipython.com/) 990 | 991 | Katacoda (www.katacoda.com) 992 | 993 | 365 Data Science (https://365datascience.com/) 994 | 995 | Linux Academy (https://linuxacademy.com/) 996 | 997 | PluralSight (www.pluralsight.com) 998 | 999 | Intellipaat (https://intellipaat.com/) 1000 | 1001 |
1002 | 1003 |
1004 | 1005 | ### Otros programas/recursos 1006 | 1007 | Papers with Code (https://paperswithcode.com/) 1008 | 1009 | Google App Maker (https://blog.google/outreach-initiatives/education/build-custom-apps-your-school-app-maker/) 1010 | 1011 | Cisco Academy Cursos (https://www.netacad.com/es/courses/all-courses) 1012 | 1013 | Estado del arte de la IA (https://www.stateoftheart.ai/) 1014 | 1015 | Generar webs estáticas con Rmarkdown (https://github.com/rstudio/blogdown) 1016 | 1017 | Escribir libros con Rmarkdown (https://github.com/rstudio/bookdown) 1018 | 1019 | Certificaciones Data Science (https://digitaldefynd.com/best-data-science-certification-course-tutorial/) 1020 | 1021 | Diccionario tecnológico IA & Big Data (https://luca-d3.com/es/diccionario-tecnologico/index.html) 1022 | 1023 | Aprendizaje interactivo de Probabilidad básica (https://seeing-theory.brown.edu/) 1024 | 1025 | Google Talk to Books (https://books.google.com/talktobooks/) 1026 | 1027 | Búsqueda repositorios Github (https://gitdiscoverer.shinyapps.io/rstudio-shiny-contest/) 1028 | 1029 | Asociación Española para la Inteligencia Artificial (AEPIA) (http://www.aepia.org/aepia/index.php) 1030 | 1031 | Ayuda interactiva para elección de gráficos (https://www.data-to-viz.com/index.html) 1032 | 1033 | Introducción visual al aprendizaje automático (http://www.r2d3.us/) 1034 | 1035 | Creación de infografías (Infogram, Piktochart, Canvas) (https://infogram.com/; https://piktochart.com/; https://www.canva.com/es_es/) 1036 | 1037 | Presentaciones interactivas (https://www.genial.ly/es) 1038 | 1039 | Galería de gráficos en R (https://www.r-graph-gallery.com/) 1040 | 1041 | Galería de gráficos en Python (https://www.python-graph-gallery.com/) 1042 | 1043 | Página web sobre estadística con R (http://www.sthda.com/english/) 1044 | 1045 |
1046 | 1047 |
1048 | 1049 | ### Paquetes R 1050 | 1051 | #### Importación 1052 | 1053 | readr, readxl, XML, jsonlite, httr, DBI 1054 | 1055 | #### Exploración 1056 | 1057 | DataExplorer, GGally, summarytools, skimr, funModeling, radiant, anomalize, correlationfunnel, corrplot 1058 | 1059 | #### Limpieza y manipulación 1060 | 1061 | tidyr, dplyr, dbplyr, data.table, dtplyr (data.table), datapasta, forcats, janitor, lubridate, stringr, purrr, drake (pipelines) 1062 | 1063 | #### Visualización 1064 | 1065 | ggplot2, plotly, ggstatsplot (jjstatsplot con GUI), trelliscopejs, esquisse, ggplotgui, gganimate, ggforce, rayshader, r2d3 1066 | 1067 | #### Geoespaciales 1068 | 1069 | sen2r, rgee, ggmap, gstat, spatstat, sf, sp, raster, rgdal, leaflet, RQGIS3, tmap, rgeos, whiteboxR 1070 | 1071 | #### Estadística y Machine learning/Deep Learning 1072 | 1073 | infer, rstatix, tidymodels, stacks, caret, mlr, h2o, glmnet, tensorflow, keras, ruta (unsupervised DL), xgboost, lightgbm, parsnip, recipes, recommenderlab 1074 | 1075 | #### Series temporales 1076 | 1077 | forecast, fable, feasts, timetk, maltese, modeltime, modeltime.ensemble, modeltime.gluonts, prophet 1078 | 1079 | #### Procesamiento del lenguaje natural 1080 | 1081 | tidytext, text2vec, quanteda 1082 | 1083 | #### Interpretabilidad de modelos 1084 | 1085 | iml, DALEX, LIME, shapr, modelStudio (interactive dashboard), DrWhy.AI, modelDown 1086 | 1087 | #### Paralelización y Big Data 1088 | 1089 | parallel, foreach, bigmemory, bigtabulate, biganalytics, iotools, sparklyr, rsparkling, furrr 1090 | 1091 | #### Despliegue 1092 | 1093 | plumber, rdocker, cloudml, cloudyr, aws.s3, Paws (AWS), AzureR (familia paquetes) 1094 | 1095 | #### Reporting 1096 | 1097 | knitr, rmarkdown, shiny, flexdashboard, shinydashboard, shinymanager, Microsoft365R 1098 | 1099 | #### WebScrapping 1100 | 1101 | rvest, RSelenium 1102 | 1103 | #### Otros 1104 | 1105 | reticulate, pdftools, tabulizer, tesseract, utils, onnx, aurelius, ArenaR, fs, fusen 1106 | 1107 |
1108 | 1109 |
1110 | 1111 | ### Paquetes Python 1112 | 1113 | #### Importación 1114 | 1115 | SQLAlchemy, pandas, PyMongo 1116 | 1117 | #### Exploración 1118 | 1119 | pandas, bamboolib, pandas_profiling, D-Tale, pandasgui, pandas_ui, sweetviz, funpymodeling, autoplotter, lux, mito, QuickDA 1120 | 1121 | #### Limpieza y manipulación 1122 | 1123 | pandas, numpy, scipy, featuretools, feature-engine, featurewiz, siuba (R dplyr syntax), kangas (pandas for computer vision) 1124 | 1125 | #### Automatización 1126 | 1127 | PyAutoGUI, AutoPy, rpa, rpaframework, watchdog 1128 | 1129 | #### Visualización 1130 | 1131 | seaborn, bokeh, matplotlib, plotly, plotnine (R ggplot syntax) 1132 | 1133 | #### Geoespaciales 1134 | 1135 | GeoPandas, PyQGIS, GDAL, Folium, ipyleaflet, geemap, WhiteboxTools, leafmap 1136 | 1137 | #### Estadística y Machine Learning/Deep Learning 1138 | 1139 | statsmodels, scikit-learn, imbalanced-learn, PyOD, pycaret, Keras, Tensorflow, PyTorch, skorch (sklearn + pytorch), xgboost, ngboost, Hyperopt, scikit-optimize (skopt), DEAP, TPOT 1140 | 1141 | #### Series temporales 1142 | 1143 | statsmodels.tsa, Darts, sktime, skforecast, Kats, AutoTS, tslearn, tsfresh, fbprophet, GluonTS, neuralprophet, tsai, nixtla 1144 | 1145 | #### Procesamiento del lenguaje natural 1146 | 1147 | NLTK, Gensim, spaCy, CoreNLP, TextBlob, polyplot 1148 | 1149 | #### Aprendizaje por refuerzo 1150 | 1151 | Tensorforce, TFAgents, RLlib, Stable Baselines, RL_Coach, Coax 1152 | 1153 | #### Interpretabilidad de modelos 1154 | 1155 | yellowbrick, LIME, ELI5, MLxtend, Shapash, DrWhy.AI 1156 | 1157 | #### Paralelización y Big Data 1158 | 1159 | Dask, Vaex, modin, PySpark, optimus, koalas, polars 1160 | 1161 | #### Despliegue 1162 | 1163 | boto3 (AWS), BentoML, FastAPI, Flask 1164 | 1165 | #### Reporting 1166 | 1167 | dash, streamlit, stlite (Serverless Streamlit), gradio, panel, voilà, PyWebIO, mia, taipy, shinyexpress 1168 | 1169 | #### Monitoring/Drifting 1170 | 1171 | frouros, alibi-detect, evidently 1172 | 1173 | #### WebScrapping 1174 | 1175 | BeautifulSoup, scrapy, selenium 1176 | 1177 | ##### GUIs 1178 | 1179 | Gooey, PySimpleGUI, PyGTK, wxPython, PyQT, Tkinter, PySide2 1180 | 1181 | #### Otros 1182 | 1183 | onnx 1184 | 1185 |
1186 | 1187 |
1188 | 1189 | ### Casos de uso 1190 | 1191 | Recomendaciones personalizadas, análisis social media, predicción de ventas, mantenimiento predictivo, automatización de procesos, detección de fraudes, análisis financiero, servicios asistidos de atención al cliente, procesamiento del lenguaje natural, tratamiento de salud personalizado, traducción, audio y voz, etc. 1192 | 1193 |
1194 | 1195 |
1196 | 1197 | ### Automated machine learning 1198 | 1199 | LazyPredict (https://lazypredict.readthedocs.io/en/latest/index.html) 1200 | 1201 | AutoML (https://cloud.google.com/automl/?hl=es-419) 1202 | 1203 | Auto-Keras (https://autokeras.com/) 1204 | 1205 | Auto-Sklearn (https://automl.github.io/auto-sklearn/master/) 1206 | 1207 | Auto-Weka (https://www.cs.ubc.ca/labs/beta/Projects/autoweka/) 1208 | 1209 | AutoGluon (https://autogluon.mxnet.io/) 1210 | 1211 | AutoGOAL (https://autogoal.github.io/) 1212 | 1213 | MLBox (https://mlbox.readthedocs.io/en/latest/) 1214 | 1215 | TPOT (https://github.com/EpistasisLab/tpot) 1216 | 1217 | H2O AutoML (http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html) 1218 | 1219 | TransmogrifAI (https://transmogrif.ai/) 1220 | 1221 | Glaucus (https://github.com/ccnt-glaucus/glaucus) 1222 | 1223 | EvalML (https://github.com/alteryx/evalml) 1224 | 1225 |
1226 | 1227 |
1228 | 1229 | ### Embedded Machine Learning 1230 | 1231 | * Introduction to Embedded Machine Learning (https://www.coursera.org/learn/introduction-to-embedded-machine-learning) 1232 | * Computer Vision with Embedded Machine Learning (https://www.coursera.org/learn/computer-vision-with-embedded-machine-learning) 1233 | * Device-based Models with TensorFlow Lite (https://www.coursera.org/learn/device-based-models-tensorflow) 1234 | * Tiny Machine Learning (TinyML) (https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning) 1235 | * MLOps for Scaleing TinyML (https://www.edx.org/es/course/mlops-for-scaling-tinyml) 1236 | * CS249r: Tiny Machine Learning - Applied Machine Learning for Embedded IoT Devices (https://sites.google.com/g.harvard.edu/tinyml/lectures) 1237 | * Intel® Edge AI for IoT Developers (https://www.udacity.com/course/intel-edge-ai-for-iot-developers-nanodegree--nd131) 1238 | * Intel® Edge AI Fundamentals with OpenVINO (https://www.udacity.com/course/intel-edge-AI-fundamentals-with-openvino--ud132) 1239 | * Intel® Edge AI Certification (https://www.intel.com/content/www/us/en/developer/tools/devcloud/edge/learn/certification.html) 1240 | * Introduction to TensorFlow Lite (https://www.udacity.com/course/intro-to-tensorflow-lite--ud190) 1241 | * Embedded and Distributed AI TEDS20 Spring 2020 (https://www.youtube.com/playlist?list=PLyulI6o7oOtycIT15i_I2_mhuLxnNvPvX) 1242 | * Edge Impulse - Tutorials (https://www.youtube.com/playlist?list=PL7VEa1KauMQp9bQdo2jLlJCdzprWkc7zC) 1243 | * Arduino TensorFlow Lite Tutorials (https://github.com/arduino/ArduinoTensorFlowLiteTutorials/) 1244 | * Getting Started with Machine Learning at the Edge on Arm (https://www.coursera.org/learn/getting-started-with-machine-learning-at-the-edge-on-arm) 1245 | 1246 | 1247 | #### Optimización de modelos para dipositivos embebidos (edge devices) (arduino, raspberry pi, Jetson Nano, ESP32, móviles....) 1248 | 1249 | * Tensorflow Lite Optimization (https://www.tensorflow.org/model_optimization) 1250 | * TensorRT optimization (https://developer.nvidia.com/tensorrt) 1251 | * OpenVINO optimization (https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html#doxid-openvino-docs-model-optimization-guide) 1252 | 1253 |
1254 | 1255 |
1256 | 1257 | ### Spatial Data Science / Machine Learning 1258 | 1259 | * Spatial Data Science and Applications (https://www.coursera.org/learn/spatial-data-science) 1260 | * Spatial Data Science with R (http://rspatial.org/index.html) 1261 | * Spatial Data Science (Luc Anselin, 2017) (https://www.youtube.com/playlist?list=PLzREt6r1Nenlu-MBaxCRL2KZNk62n7o1g) 1262 | * Geographic Data Science (https://darribas.org/gds_course/content/home.html) 1263 | * Geographic Data Science with PySAL and the PyData Stack (https://geographicdata.science/book/intro.html) 1264 | * Spatial Data Science: The New Frontier in Analytics (https://www.esri.com/training/catalog/5d76dcf7e9ccda09bef61294/spatial-data-science%3A-the-new-frontier-in-analytics/) 1265 | * Introducing Machine Learning for Spatial Data Analysis (https://www.analyticsvidhya.com/blog/2021/03/introducing-machine-learning-for-spatial-data-analysis/) 1266 | 1267 | #### Libros 1268 | 1269 | * Introduction to Spatial Data Programming with R (https://geobgu.xyz/r/index.html) 1270 | * Geocomputation with R (https://geocompr.robinlovelace.net/) 1271 | * Spatial Data Science with applications in R (https://keen-swartz-3146c4.netlify.app/) 1272 | * Spatial Statistics for Data Science: Theory and Practice with R (https://www.paulamoraga.com/book-spatial/) 1273 | * Data Analysis and Visualization with R: Spatial (http://www.geo.hunter.cuny.edu/~ssun/R-Spatial/) 1274 | * Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny (https://www.paulamoraga.com/book-geospatial/index.html) 1275 | * Guía para el análisis de datos espaciales. Aplicaciones en agricultura (https://www.agro.unc.edu.ar/~estadisticaaplicada/GpADEAA/) 1276 | 1277 |
1278 | 1279 |
1280 | 1281 | ### Herramientas de Anotación 1282 | 1283 | * Labelbox (https://labelbox.com/) 1284 | * LabelImg (https://github.com/tzutalin/labelImg) 1285 | * MakesenseAI (https://www.makesense.ai/) 1286 | * Scalabel (https://www.scalabel.ai/) 1287 | * CVAT (https://www.cvat.ai/) 1288 | 1289 | -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/hoja-referencia-aprendizaje-automatico-consejos-trucos.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/hoja-referencia-aprendizaje-automatico-consejos-trucos.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/hoja-referencia-aprendizaje-no-supervisado.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/hoja-referencia-aprendizaje-no-supervisado.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/hoja-referencia-aprendizaje-profundo.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/hoja-referencia-aprendizaje-profundo.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/hoja-referencia-aprendizaje-supervisado.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/hoja-referencia-aprendizaje-supervisado.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/repaso-algebra-lineal-calculo.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/repaso-algebra-lineal-calculo.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/repaso-probabilidades-estadisticas.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/repaso-probabilidades-estadisticas.pdf -------------------------------------------------------------------------------- /Standford Cheatsheet spanish/super-hoja-referencia-machine-learning.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fearro/Data-science/850195a618d8d4bf945a291c20eb8411bb6a0d66/Standford Cheatsheet spanish/super-hoja-referencia-machine-learning.pdf -------------------------------------------------------------------------------- /listado_algoritmos.md: -------------------------------------------------------------------------------- 1 | ## 1. Aprendizaje supervisado 2 | 3 | ### 1.1. *Regresión* 4 | 5 | Regresión lineal, bayesiana, Lasso, Ridge, polinómica, Elastic Net, GBM, XGBoost, LightGBM, CatBoost, AdaBoost, árbol de decisión, Random Forest, Redes Neuronales, Series temporales (Exponential smoothing, AR, MA, ARMA, ARIMA, SARIMA, GARCH). 6 | 7 | ### 1.2. *Clasificación* 8 | 9 | kNN, Naive Bayes, SVM, regresión logística, GBM, XGBoost, LightGBM, CatBoost, AdaBoost, árbol de decisión, 10 | Random Forest, Redes Neuronales. 11 | 12 |
13 | 14 | ## 2. Aprendizaje no supervisado 15 | 16 | ### 2.1. *Agrupamiento (clustering)* 17 | 18 | K-means, Hierarchical clustering, K-medoids (PAM), Expectation-Maximization, DBSCAN, Gaussian Mixture Models, Fuzzy c-Means, 19 | Mean-shift 20 | 21 | ### 2.2. *Reglas de Asociación* 22 | 23 | Apriori, Eclat, FP-Growth 24 | 25 | ### 2.3. *Patrones Secuenciales* 26 | 27 | GSP, PSP, SPADE, DEGSeq, FreeSpan, PrefixSpan, CloSpan, SSMiner, IncSpan, BIDE, MG-FSM 28 | 29 | ### 2.4 *Reducción de dimensionalidad* 30 | 31 | tSNE, PCA, PLS, PCR, LSA, SVD, LDA, ICA, UMAP, ISOMAP, CCA, PCR, NMF (Non-negative matrix factorization), GLRM (Generalized Low Rank Models) 32 | 33 | ### 2.5 *Detección de anomalías* 34 | 35 | Isolation forest, one-class SVM, Cluster analysis, PCA-based Anomaly detection, Local outlier Factor (LoF), Métricas de distancia1 36 | 37 | 1*Numéricas*: euclídea, euclídea normalizada, Manhattan, Canberra, Minkowski, Mahalanobis, Chebyshev; *Categóricas*: chi-cuadrado, Levenshtein, Hamming, Simple matching coefficient, Índice de Jaccard; *Mixta*: Gower 38 | 39 |
40 | 41 | ## 3. Aprendizaje reforzado 42 | 43 | Algoritmos genéticos, SARSA, Q-learning, A3C, DeepQ-network, Monte Carlo, Proceso de decisión de Markov 44 | 45 |
46 | 47 | ## 4. Otros 48 | 49 | ### 4.1. *Selección de variables (feature selection)* 50 | 51 | *Indirecta o filtrado*: Correlación de pearson, LDA, ANOVA, Chi cuadrado, Welch t-prueba, prueba F de Fisher. 52 | 53 | *Directa o wrapper*: Recursive Feature Elimination, Algoritmos genéticos, Simulated annealing, Best Subset Selection, Forward Stepwise Selection, Backward Stepwise Selection, Sequential Feature Selector. 54 | 55 | ### 4.2. *Sistemas de recomendación* 56 | 57 | Filtro colaborativo (Collaborative filtering), filtro basado en contenido (Content-based filtering), mixtos 58 | 59 | ### 4.3. *Visión artificial* 60 | 61 | * Descriptores y/o detectores: HOG, BRIEF, ORB (FAST + BRIEF), BRISK, SIFT, SURF, KAZE, AKAZE, FREAK, GLOH, LESH, LDB, MSER, DAISY, PCBR, LoG, DoG, DoH, VLAD, Viola-Jones, Lucas-Kanade, Horn-Schunk, filtro de Kalman, filtros de Haar 62 | 63 | *** 64 | 65 |
66 | 67 | ![](https://i.pinimg.com/originals/31/74/c4/3174c419e4ab07223f95dcf8ddd86eec.png) 68 | 69 | --------------------------------------------------------------------------------