├── 00_00_Introducción_a_Jupyter.pdf
├── 00_01_Introduccion-a-la-Programacion-en-Python.pdf
├── 01_00_Intro_DataScience_Numpy.pdf
├── 01_01_Intro_DataScience_Matplotlib.pdf
├── 01_02_Intro_DataScience_Pandas.pdf
├── 01_03_Introduccion_a_Data_Science_Proceso.pdf
├── 02_Limpieza_de_Datos.pdf
├── 03_Data_Wrangling.pdf
├── 04_Conceptos_básicos_de_estadísticas.pdf
├── 05_Regresión_Lineal.pdf
├── Instalar ambiente de Desarrollo Python_Anaconda.pdf
├── Introducción a Jupyter Notebook.pdf
├── README.md
├── datasets
├── Advertising.csv
├── Athelete_Country_Map.csv
├── Athelete_Sports_Map.csv
├── Bank data dictionary.txt
├── Boston.csv
├── Car Classification.txt
├── Cereal Data Description.txt
├── Cereal data columns.xlsx
├── Cereal data.txt
├── Customer Churn Columns.csv
├── Customer Churn Model.csv
├── Customer Churn Model.txt
├── Description.txt
├── Ecom Expense.csv
├── Ecom Expense.xlsx
├── Medals.csv
├── Tab Customer Churn Model.txt
├── Titanic Description.txt
├── alumnos.csv
├── auto-mpg.csv
├── bank.csv
├── breast-cancer-wisconsin.data.txt
├── breast-cancer-wisconsin.names.txt
├── chopstick-effectiveness.csv
├── downloaded_medals.csv
├── downloaded_medals.xls
├── iris.csv
├── movies.csv
├── test.txt
├── titanic3.csv
├── titanic3.xls
├── titanic3.xlsx
├── titanic_custom.csv
├── titanic_custom.json
├── titanic_custom.xls
├── winequality-red.csv
└── winequality-white.csv
├── imagenes
├── CRISP-DM_Process_Diagram.png
├── Casos_hipotesis.PNG
├── Cnotraste_hipotesis.PNG
├── Conclusion_hipotesis.PNG
├── Corr_Pearson.PNG
├── Distribución_Normal.PNG
├── Estadisticas_bases.PNG
├── FilmDialogueFigure1.png
├── HADOOP-ECOSYSTEM-Edureka.png
├── Intervalos_confianza.PNG
├── MonteCarlo.PNG
├── Rechazo_hipotesis.PNG
├── Teorema_Central_Limite.PNG
├── bullet_gauge.png
├── calidad_datos_ejemplo.png
├── change_cell_type.png
├── circular_gauge.png
├── content_jupyternotebook1.gif
├── data_disciplines.jpg
├── data_science_applications.png
├── data_scientist.png
├── ggplot2_cheatsheet1.png
├── ggplot2_cheatsheet2.png
├── imagen.txt
├── muestreo.PNG
├── nbextensions_example.gif
└── p_valor.PNG
├── mimodulo.py
└── notebooks
├── 00_00_Introducción a Jupyter.ipynb
├── 00_01_Introduccion-a-la-Programacion-en-Python.ipynb
├── 01_00_Intro_DataScience_Numpy.ipynb
├── 01_01_Intro_DataScience_Matplotlib.ipynb
├── 01_02_Intro_DataScience_Pandas.ipynb
├── 01_03_Introduccion a Data Science_Proceso y repaso.ipynb
├── 02_Limpieza_de_Datos.ipynb
├── 03_Data_Wrangling.ipynb
├── 04_Conceptos_básicos_de_estadísticas.ipynb
└── 05_Regresión_Lineal.ipynb
/00_00_Introducción_a_Jupyter.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/00_00_Introducción_a_Jupyter.pdf
--------------------------------------------------------------------------------
/00_01_Introduccion-a-la-Programacion-en-Python.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/00_01_Introduccion-a-la-Programacion-en-Python.pdf
--------------------------------------------------------------------------------
/01_00_Intro_DataScience_Numpy.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/01_00_Intro_DataScience_Numpy.pdf
--------------------------------------------------------------------------------
/01_01_Intro_DataScience_Matplotlib.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/01_01_Intro_DataScience_Matplotlib.pdf
--------------------------------------------------------------------------------
/01_02_Intro_DataScience_Pandas.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/01_02_Intro_DataScience_Pandas.pdf
--------------------------------------------------------------------------------
/01_03_Introduccion_a_Data_Science_Proceso.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/01_03_Introduccion_a_Data_Science_Proceso.pdf
--------------------------------------------------------------------------------
/02_Limpieza_de_Datos.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/02_Limpieza_de_Datos.pdf
--------------------------------------------------------------------------------
/03_Data_Wrangling.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/03_Data_Wrangling.pdf
--------------------------------------------------------------------------------
/04_Conceptos_básicos_de_estadísticas.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/04_Conceptos_básicos_de_estadísticas.pdf
--------------------------------------------------------------------------------
/05_Regresión_Lineal.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/05_Regresión_Lineal.pdf
--------------------------------------------------------------------------------
/Instalar ambiente de Desarrollo Python_Anaconda.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/Instalar ambiente de Desarrollo Python_Anaconda.pdf
--------------------------------------------------------------------------------
/Introducción a Jupyter Notebook.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/Introducción a Jupyter Notebook.pdf
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Repositorio con notebooks para Data Science
2 |
3 | Es normal tener dudas cuando uno comienza, es por esto que te voy a dejar una pequeña guía para que inicies hoy mismo, te aclaro que el repositorio está pensado para hacerlo de manera secuencial.
4 |
5 | De todas formas, dejo una pequeña guía para saber donde partir si ya tienes ciertos conocimientos:
6 |
7 |
8 | 1. ¿Sabes utilizar Jupyter Notebooks? Si no lo sabes, te dejo una guía con lo esencial En el repositorio tienes un Notebook con una introducción a [Jupyter Notebooks](00_00_Introducción_a_Jupyter.pdf)
9 |
10 | 2. ¿No sabes programar?, o bien sabes pero ¿no sabes Python? Entonces comienza [aquí](00_01_Introduccion-a-la-Programacion-en-Python.pdf)
11 |
12 | 3. Sabes Python, pero ¿no conoces las librerías esenciales para data science: numpy / pandas ? Entonces comienza [aquí](01_00_Intro_DataScience_Numpy.pdf)
13 |
14 | 4. Sabes programar en python y has utilizado las librerías numpy/pandas y algunas de visualización, pero ¿no sabes como hacer data science? Entonces comienza [aquí](01_03_Introduccion_a_Data_Science_Proceso.pdf)
15 |
16 | En cualquier otro caso, sientete en libertad de revisar los módulos como quieras :)
17 |
--------------------------------------------------------------------------------
/datasets/Advertising.csv:
--------------------------------------------------------------------------------
1 | TV,Radio,Newspaper,Sales
2 | 230.1,37.8,69.2,22.1
3 | 44.5,39.3,45.1,10.4
4 | 17.2,45.9,69.3,9.3
5 | 151.5,41.3,58.5,18.5
6 | 180.8,10.8,58.4,12.9
7 | 8.7,48.9,75,7.2
8 | 57.5,32.8,23.5,11.8
9 | 120.2,19.6,11.6,13.2
10 | 8.6,2.1,1,4.8
11 | 199.8,2.6,21.2,10.6
12 | 66.1,5.8,24.2,8.6
13 | 214.7,24,4,17.4
14 | 23.8,35.1,65.9,9.2
15 | 97.5,7.6,7.2,9.7
16 | 204.1,32.9,46,19
17 | 195.4,47.7,52.9,22.4
18 | 67.8,36.6,114,12.5
19 | 281.4,39.6,55.8,24.4
20 | 69.2,20.5,18.3,11.3
21 | 147.3,23.9,19.1,14.6
22 | 218.4,27.7,53.4,18
23 | 237.4,5.1,23.5,12.5
24 | 13.2,15.9,49.6,5.6
25 | 228.3,16.9,26.2,15.5
26 | 62.3,12.6,18.3,9.7
27 | 262.9,3.5,19.5,12
28 | 142.9,29.3,12.6,15
29 | 240.1,16.7,22.9,15.9
30 | 248.8,27.1,22.9,18.9
31 | 70.6,16,40.8,10.5
32 | 292.9,28.3,43.2,21.4
33 | 112.9,17.4,38.6,11.9
34 | 97.2,1.5,30,9.6
35 | 265.6,20,0.3,17.4
36 | 95.7,1.4,7.4,9.5
37 | 290.7,4.1,8.5,12.8
38 | 266.9,43.8,5,25.4
39 | 74.7,49.4,45.7,14.7
40 | 43.1,26.7,35.1,10.1
41 | 228,37.7,32,21.5
42 | 202.5,22.3,31.6,16.6
43 | 177,33.4,38.7,17.1
44 | 293.6,27.7,1.8,20.7
45 | 206.9,8.4,26.4,12.9
46 | 25.1,25.7,43.3,8.5
47 | 175.1,22.5,31.5,14.9
48 | 89.7,9.9,35.7,10.6
49 | 239.9,41.5,18.5,23.2
50 | 227.2,15.8,49.9,14.8
51 | 66.9,11.7,36.8,9.7
52 | 199.8,3.1,34.6,11.4
53 | 100.4,9.6,3.6,10.7
54 | 216.4,41.7,39.6,22.6
55 | 182.6,46.2,58.7,21.2
56 | 262.7,28.8,15.9,20.2
57 | 198.9,49.4,60,23.7
58 | 7.3,28.1,41.4,5.5
59 | 136.2,19.2,16.6,13.2
60 | 210.8,49.6,37.7,23.8
61 | 210.7,29.5,9.3,18.4
62 | 53.5,2,21.4,8.1
63 | 261.3,42.7,54.7,24.2
64 | 239.3,15.5,27.3,15.7
65 | 102.7,29.6,8.4,14
66 | 131.1,42.8,28.9,18
67 | 69,9.3,0.9,9.3
68 | 31.5,24.6,2.2,9.5
69 | 139.3,14.5,10.2,13.4
70 | 237.4,27.5,11,18.9
71 | 216.8,43.9,27.2,22.3
72 | 199.1,30.6,38.7,18.3
73 | 109.8,14.3,31.7,12.4
74 | 26.8,33,19.3,8.8
75 | 129.4,5.7,31.3,11
76 | 213.4,24.6,13.1,17
77 | 16.9,43.7,89.4,8.7
78 | 27.5,1.6,20.7,6.9
79 | 120.5,28.5,14.2,14.2
80 | 5.4,29.9,9.4,5.3
81 | 116,7.7,23.1,11
82 | 76.4,26.7,22.3,11.8
83 | 239.8,4.1,36.9,12.3
84 | 75.3,20.3,32.5,11.3
85 | 68.4,44.5,35.6,13.6
86 | 213.5,43,33.8,21.7
87 | 193.2,18.4,65.7,15.2
88 | 76.3,27.5,16,12
89 | 110.7,40.6,63.2,16
90 | 88.3,25.5,73.4,12.9
91 | 109.8,47.8,51.4,16.7
92 | 134.3,4.9,9.3,11.2
93 | 28.6,1.5,33,7.3
94 | 217.7,33.5,59,19.4
95 | 250.9,36.5,72.3,22.2
96 | 107.4,14,10.9,11.5
97 | 163.3,31.6,52.9,16.9
98 | 197.6,3.5,5.9,11.7
99 | 184.9,21,22,15.5
100 | 289.7,42.3,51.2,25.4
101 | 135.2,41.7,45.9,17.2
102 | 222.4,4.3,49.8,11.7
103 | 296.4,36.3,100.9,23.8
104 | 280.2,10.1,21.4,14.8
105 | 187.9,17.2,17.9,14.7
106 | 238.2,34.3,5.3,20.7
107 | 137.9,46.4,59,19.2
108 | 25,11,29.7,7.2
109 | 90.4,0.3,23.2,8.7
110 | 13.1,0.4,25.6,5.3
111 | 255.4,26.9,5.5,19.8
112 | 225.8,8.2,56.5,13.4
113 | 241.7,38,23.2,21.8
114 | 175.7,15.4,2.4,14.1
115 | 209.6,20.6,10.7,15.9
116 | 78.2,46.8,34.5,14.6
117 | 75.1,35,52.7,12.6
118 | 139.2,14.3,25.6,12.2
119 | 76.4,0.8,14.8,9.4
120 | 125.7,36.9,79.2,15.9
121 | 19.4,16,22.3,6.6
122 | 141.3,26.8,46.2,15.5
123 | 18.8,21.7,50.4,7
124 | 224,2.4,15.6,11.6
125 | 123.1,34.6,12.4,15.2
126 | 229.5,32.3,74.2,19.7
127 | 87.2,11.8,25.9,10.6
128 | 7.8,38.9,50.6,6.6
129 | 80.2,0,9.2,8.8
130 | 220.3,49,3.2,24.7
131 | 59.6,12,43.1,9.7
132 | 0.7,39.6,8.7,1.6
133 | 265.2,2.9,43,12.7
134 | 8.4,27.2,2.1,5.7
135 | 219.8,33.5,45.1,19.6
136 | 36.9,38.6,65.6,10.8
137 | 48.3,47,8.5,11.6
138 | 25.6,39,9.3,9.5
139 | 273.7,28.9,59.7,20.8
140 | 43,25.9,20.5,9.6
141 | 184.9,43.9,1.7,20.7
142 | 73.4,17,12.9,10.9
143 | 193.7,35.4,75.6,19.2
144 | 220.5,33.2,37.9,20.1
145 | 104.6,5.7,34.4,10.4
146 | 96.2,14.8,38.9,11.4
147 | 140.3,1.9,9,10.3
148 | 240.1,7.3,8.7,13.2
149 | 243.2,49,44.3,25.4
150 | 38,40.3,11.9,10.9
151 | 44.7,25.8,20.6,10.1
152 | 280.7,13.9,37,16.1
153 | 121,8.4,48.7,11.6
154 | 197.6,23.3,14.2,16.6
155 | 171.3,39.7,37.7,19
156 | 187.8,21.1,9.5,15.6
157 | 4.1,11.6,5.7,3.2
158 | 93.9,43.5,50.5,15.3
159 | 149.8,1.3,24.3,10.1
160 | 11.7,36.9,45.2,7.3
161 | 131.7,18.4,34.6,12.9
162 | 172.5,18.1,30.7,14.4
163 | 85.7,35.8,49.3,13.3
164 | 188.4,18.1,25.6,14.9
165 | 163.5,36.8,7.4,18
166 | 117.2,14.7,5.4,11.9
167 | 234.5,3.4,84.8,11.9
168 | 17.9,37.6,21.6,8
169 | 206.8,5.2,19.4,12.2
170 | 215.4,23.6,57.6,17.1
171 | 284.3,10.6,6.4,15
172 | 50,11.6,18.4,8.4
173 | 164.5,20.9,47.4,14.5
174 | 19.6,20.1,17,7.6
175 | 168.4,7.1,12.8,11.7
176 | 222.4,3.4,13.1,11.5
177 | 276.9,48.9,41.8,27
178 | 248.4,30.2,20.3,20.2
179 | 170.2,7.8,35.2,11.7
180 | 276.7,2.3,23.7,11.8
181 | 165.6,10,17.6,12.6
182 | 156.6,2.6,8.3,10.5
183 | 218.5,5.4,27.4,12.2
184 | 56.2,5.7,29.7,8.7
185 | 287.6,43,71.8,26.2
186 | 253.8,21.3,30,17.6
187 | 205,45.1,19.6,22.6
188 | 139.5,2.1,26.6,10.3
189 | 191.1,28.7,18.2,17.3
190 | 286,13.9,3.7,15.9
191 | 18.7,12.1,23.4,6.7
192 | 39.5,41.1,5.8,10.8
193 | 75.5,10.8,6,9.9
194 | 17.2,4.1,31.6,5.9
195 | 166.8,42,3.6,19.6
196 | 149.7,35.6,6,17.3
197 | 38.2,3.7,13.8,7.6
198 | 94.2,4.9,8.1,9.7
199 | 177,9.3,6.4,12.8
200 | 283.6,42,66.2,25.5
201 | 232.1,8.6,8.7,13.4
202 |
--------------------------------------------------------------------------------
/datasets/Athelete_Country_Map.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Athelete_Country_Map.csv
--------------------------------------------------------------------------------
/datasets/Athelete_Sports_Map.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Athelete_Sports_Map.csv
--------------------------------------------------------------------------------
/datasets/Bank data dictionary.txt:
--------------------------------------------------------------------------------
1 | 1 - age (numeric)
2 | 2 - job : type of job (categorical: "admin.","blue-collar","entrepreneur","housemaid","management","retired","self-employed","services","student","technician","unemployed","unknown")
3 | 3 - marital : marital status (categorical: "divorced","married","single","unknown"; note: "divorced" means divorced or widowed)
4 | 4 - education (categorical: "basic.4y","basic.6y","basic.9y","high.school","illiterate","professional.course","university.degree","unknown")
5 | 5 - default: has credit in default? (categorical: "no","yes","unknown")
6 | 6 - housing: has housing loan? (categorical: "no","yes","unknown")
7 | 7 - loan: has personal loan? (categorical: "no","yes","unknown")
8 | # related with the last contact of the current campaign:
9 | 8 - contact: contact communication type (categorical: "cellular","telephone")
10 | 9 - month: last contact month of year (categorical: "jan", "feb", "mar", ..., "nov", "dec")
11 | 10 - day_of_week: last contact day of the week (categorical: "mon","tue","wed","thu","fri")
12 | 11 - duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y="no"). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model.
13 | # other attributes:
14 | 12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)
15 | 13 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)
16 | 14 - previous: number of contacts performed before this campaign and for this client (numeric)
17 | 15 - poutcome: outcome of the previous marketing campaign (categorical: "failure","nonexistent","success")
18 | # social and economic context attributes
19 | 16 - emp.var.rate: employment variation rate - quarterly indicator (numeric)
20 | 17 - cons.price.idx: consumer price index - monthly indicator (numeric)
21 | 18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric)
22 | 19 - euribor3m: euribor 3 month rate - daily indicator (numeric)
23 | 20 - nr.employed: number of employees - quarterly indicator (numeric)
24 |
25 | Output variable (desired target):
26 | 21 - y - has the client subscribed a term deposit? (binary: "yes","no")
27 |
--------------------------------------------------------------------------------
/datasets/Boston.csv:
--------------------------------------------------------------------------------
1 | crim,zn,indus,chas,nox,rm,age,dis,rad,tax,ptratio,black,lstat,medv
2 | 0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9,4.98,24
3 | 0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.9,9.14,21.6
4 | 0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.83,4.03,34.7
5 | 0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.63,2.94,33.4
6 | 0.06905,0,2.18,0,0.458,7.147,54.2,6.0622,3,222,18.7,396.9,5.33,36.2
7 | 0.02985,0,2.18,0,0.458,6.43,58.7,6.0622,3,222,18.7,394.12,5.21,28.7
8 | 0.08829,12.5,7.87,0,0.524,6.012,66.6,5.5605,5,311,15.2,395.6,12.43,22.9
9 | 0.14455,12.5,7.87,0,0.524,6.172,96.1,5.9505,5,311,15.2,396.9,19.15,27.1
10 | 0.21124,12.5,7.87,0,0.524,5.631,100,6.0821,5,311,15.2,386.63,29.93,16.5
11 | 0.17004,12.5,7.87,0,0.524,6.004,85.9,6.5921,5,311,15.2,386.71,17.1,18.9
12 | 0.22489,12.5,7.87,0,0.524,6.377,94.3,6.3467,5,311,15.2,392.52,20.45,15
13 | 0.11747,12.5,7.87,0,0.524,6.009,82.9,6.2267,5,311,15.2,396.9,13.27,18.9
14 | 0.09378,12.5,7.87,0,0.524,5.889,39,5.4509,5,311,15.2,390.5,15.71,21.7
15 | 0.62976,0,8.14,0,0.538,5.949,61.8,4.7075,4,307,21,396.9,8.26,20.4
16 | 0.63796,0,8.14,0,0.538,6.096,84.5,4.4619,4,307,21,380.02,10.26,18.2
17 | 0.62739,0,8.14,0,0.538,5.834,56.5,4.4986,4,307,21,395.62,8.47,19.9
18 | 1.05393,0,8.14,0,0.538,5.935,29.3,4.4986,4,307,21,386.85,6.58,23.1
19 | 0.7842,0,8.14,0,0.538,5.99,81.7,4.2579,4,307,21,386.75,14.67,17.5
20 | 0.80271,0,8.14,0,0.538,5.456,36.6,3.7965,4,307,21,288.99,11.69,20.2
21 | 0.7258,0,8.14,0,0.538,5.727,69.5,3.7965,4,307,21,390.95,11.28,18.2
22 | 1.25179,0,8.14,0,0.538,5.57,98.1,3.7979,4,307,21,376.57,21.02,13.6
23 | 0.85204,0,8.14,0,0.538,5.965,89.2,4.0123,4,307,21,392.53,13.83,19.6
24 | 1.23247,0,8.14,0,0.538,6.142,91.7,3.9769,4,307,21,396.9,18.72,15.2
25 | 0.98843,0,8.14,0,0.538,5.813,100,4.0952,4,307,21,394.54,19.88,14.5
26 | 0.75026,0,8.14,0,0.538,5.924,94.1,4.3996,4,307,21,394.33,16.3,15.6
27 | 0.84054,0,8.14,0,0.538,5.599,85.7,4.4546,4,307,21,303.42,16.51,13.9
28 | 0.67191,0,8.14,0,0.538,5.813,90.3,4.682,4,307,21,376.88,14.81,16.6
29 | 0.95577,0,8.14,0,0.538,6.047,88.8,4.4534,4,307,21,306.38,17.28,14.8
30 | 0.77299,0,8.14,0,0.538,6.495,94.4,4.4547,4,307,21,387.94,12.8,18.4
31 | 1.00245,0,8.14,0,0.538,6.674,87.3,4.239,4,307,21,380.23,11.98,21
32 | 1.13081,0,8.14,0,0.538,5.713,94.1,4.233,4,307,21,360.17,22.6,12.7
33 | 1.35472,0,8.14,0,0.538,6.072,100,4.175,4,307,21,376.73,13.04,14.5
34 | 1.38799,0,8.14,0,0.538,5.95,82,3.99,4,307,21,232.6,27.71,13.2
35 | 1.15172,0,8.14,0,0.538,5.701,95,3.7872,4,307,21,358.77,18.35,13.1
36 | 1.61282,0,8.14,0,0.538,6.096,96.9,3.7598,4,307,21,248.31,20.34,13.5
37 | 0.06417,0,5.96,0,0.499,5.933,68.2,3.3603,5,279,19.2,396.9,9.68,18.9
38 | 0.09744,0,5.96,0,0.499,5.841,61.4,3.3779,5,279,19.2,377.56,11.41,20
39 | 0.08014,0,5.96,0,0.499,5.85,41.5,3.9342,5,279,19.2,396.9,8.77,21
40 | 0.17505,0,5.96,0,0.499,5.966,30.2,3.8473,5,279,19.2,393.43,10.13,24.7
41 | 0.02763,75,2.95,0,0.428,6.595,21.8,5.4011,3,252,18.3,395.63,4.32,30.8
42 | 0.03359,75,2.95,0,0.428,7.024,15.8,5.4011,3,252,18.3,395.62,1.98,34.9
43 | 0.12744,0,6.91,0,0.448,6.77,2.9,5.7209,3,233,17.9,385.41,4.84,26.6
44 | 0.1415,0,6.91,0,0.448,6.169,6.6,5.7209,3,233,17.9,383.37,5.81,25.3
45 | 0.15936,0,6.91,0,0.448,6.211,6.5,5.7209,3,233,17.9,394.46,7.44,24.7
46 | 0.12269,0,6.91,0,0.448,6.069,40,5.7209,3,233,17.9,389.39,9.55,21.2
47 | 0.17142,0,6.91,0,0.448,5.682,33.8,5.1004,3,233,17.9,396.9,10.21,19.3
48 | 0.18836,0,6.91,0,0.448,5.786,33.3,5.1004,3,233,17.9,396.9,14.15,20
49 | 0.22927,0,6.91,0,0.448,6.03,85.5,5.6894,3,233,17.9,392.74,18.8,16.6
50 | 0.25387,0,6.91,0,0.448,5.399,95.3,5.87,3,233,17.9,396.9,30.81,14.4
51 | 0.21977,0,6.91,0,0.448,5.602,62,6.0877,3,233,17.9,396.9,16.2,19.4
52 | 0.08873,21,5.64,0,0.439,5.963,45.7,6.8147,4,243,16.8,395.56,13.45,19.7
53 | 0.04337,21,5.64,0,0.439,6.115,63,6.8147,4,243,16.8,393.97,9.43,20.5
54 | 0.0536,21,5.64,0,0.439,6.511,21.1,6.8147,4,243,16.8,396.9,5.28,25
55 | 0.04981,21,5.64,0,0.439,5.998,21.4,6.8147,4,243,16.8,396.9,8.43,23.4
56 | 0.0136,75,4,0,0.41,5.888,47.6,7.3197,3,469,21.1,396.9,14.8,18.9
57 | 0.01311,90,1.22,0,0.403,7.249,21.9,8.6966,5,226,17.9,395.93,4.81,35.4
58 | 0.02055,85,0.74,0,0.41,6.383,35.7,9.1876,2,313,17.3,396.9,5.77,24.7
59 | 0.01432,100,1.32,0,0.411,6.816,40.5,8.3248,5,256,15.1,392.9,3.95,31.6
60 | 0.15445,25,5.13,0,0.453,6.145,29.2,7.8148,8,284,19.7,390.68,6.86,23.3
61 | 0.10328,25,5.13,0,0.453,5.927,47.2,6.932,8,284,19.7,396.9,9.22,19.6
62 | 0.14932,25,5.13,0,0.453,5.741,66.2,7.2254,8,284,19.7,395.11,13.15,18.7
63 | 0.17171,25,5.13,0,0.453,5.966,93.4,6.8185,8,284,19.7,378.08,14.44,16
64 | 0.11027,25,5.13,0,0.453,6.456,67.8,7.2255,8,284,19.7,396.9,6.73,22.2
65 | 0.1265,25,5.13,0,0.453,6.762,43.4,7.9809,8,284,19.7,395.58,9.5,25
66 | 0.01951,17.5,1.38,0,0.4161,7.104,59.5,9.2229,3,216,18.6,393.24,8.05,33
67 | 0.03584,80,3.37,0,0.398,6.29,17.8,6.6115,4,337,16.1,396.9,4.67,23.5
68 | 0.04379,80,3.37,0,0.398,5.787,31.1,6.6115,4,337,16.1,396.9,10.24,19.4
69 | 0.05789,12.5,6.07,0,0.409,5.878,21.4,6.498,4,345,18.9,396.21,8.1,22
70 | 0.13554,12.5,6.07,0,0.409,5.594,36.8,6.498,4,345,18.9,396.9,13.09,17.4
71 | 0.12816,12.5,6.07,0,0.409,5.885,33,6.498,4,345,18.9,396.9,8.79,20.9
72 | 0.08826,0,10.81,0,0.413,6.417,6.6,5.2873,4,305,19.2,383.73,6.72,24.2
73 | 0.15876,0,10.81,0,0.413,5.961,17.5,5.2873,4,305,19.2,376.94,9.88,21.7
74 | 0.09164,0,10.81,0,0.413,6.065,7.8,5.2873,4,305,19.2,390.91,5.52,22.8
75 | 0.19539,0,10.81,0,0.413,6.245,6.2,5.2873,4,305,19.2,377.17,7.54,23.4
76 | 0.07896,0,12.83,0,0.437,6.273,6,4.2515,5,398,18.7,394.92,6.78,24.1
77 | 0.09512,0,12.83,0,0.437,6.286,45,4.5026,5,398,18.7,383.23,8.94,21.4
78 | 0.10153,0,12.83,0,0.437,6.279,74.5,4.0522,5,398,18.7,373.66,11.97,20
79 | 0.08707,0,12.83,0,0.437,6.14,45.8,4.0905,5,398,18.7,386.96,10.27,20.8
80 | 0.05646,0,12.83,0,0.437,6.232,53.7,5.0141,5,398,18.7,386.4,12.34,21.2
81 | 0.08387,0,12.83,0,0.437,5.874,36.6,4.5026,5,398,18.7,396.06,9.1,20.3
82 | 0.04113,25,4.86,0,0.426,6.727,33.5,5.4007,4,281,19,396.9,5.29,28
83 | 0.04462,25,4.86,0,0.426,6.619,70.4,5.4007,4,281,19,395.63,7.22,23.9
84 | 0.03659,25,4.86,0,0.426,6.302,32.2,5.4007,4,281,19,396.9,6.72,24.8
85 | 0.03551,25,4.86,0,0.426,6.167,46.7,5.4007,4,281,19,390.64,7.51,22.9
86 | 0.05059,0,4.49,0,0.449,6.389,48,4.7794,3,247,18.5,396.9,9.62,23.9
87 | 0.05735,0,4.49,0,0.449,6.63,56.1,4.4377,3,247,18.5,392.3,6.53,26.6
88 | 0.05188,0,4.49,0,0.449,6.015,45.1,4.4272,3,247,18.5,395.99,12.86,22.5
89 | 0.07151,0,4.49,0,0.449,6.121,56.8,3.7476,3,247,18.5,395.15,8.44,22.2
90 | 0.0566,0,3.41,0,0.489,7.007,86.3,3.4217,2,270,17.8,396.9,5.5,23.6
91 | 0.05302,0,3.41,0,0.489,7.079,63.1,3.4145,2,270,17.8,396.06,5.7,28.7
92 | 0.04684,0,3.41,0,0.489,6.417,66.1,3.0923,2,270,17.8,392.18,8.81,22.6
93 | 0.03932,0,3.41,0,0.489,6.405,73.9,3.0921,2,270,17.8,393.55,8.2,22
94 | 0.04203,28,15.04,0,0.464,6.442,53.6,3.6659,4,270,18.2,395.01,8.16,22.9
95 | 0.02875,28,15.04,0,0.464,6.211,28.9,3.6659,4,270,18.2,396.33,6.21,25
96 | 0.04294,28,15.04,0,0.464,6.249,77.3,3.615,4,270,18.2,396.9,10.59,20.6
97 | 0.12204,0,2.89,0,0.445,6.625,57.8,3.4952,2,276,18,357.98,6.65,28.4
98 | 0.11504,0,2.89,0,0.445,6.163,69.6,3.4952,2,276,18,391.83,11.34,21.4
99 | 0.12083,0,2.89,0,0.445,8.069,76,3.4952,2,276,18,396.9,4.21,38.7
100 | 0.08187,0,2.89,0,0.445,7.82,36.9,3.4952,2,276,18,393.53,3.57,43.8
101 | 0.0686,0,2.89,0,0.445,7.416,62.5,3.4952,2,276,18,396.9,6.19,33.2
102 | 0.14866,0,8.56,0,0.52,6.727,79.9,2.7778,5,384,20.9,394.76,9.42,27.5
103 | 0.11432,0,8.56,0,0.52,6.781,71.3,2.8561,5,384,20.9,395.58,7.67,26.5
104 | 0.22876,0,8.56,0,0.52,6.405,85.4,2.7147,5,384,20.9,70.8,10.63,18.6
105 | 0.21161,0,8.56,0,0.52,6.137,87.4,2.7147,5,384,20.9,394.47,13.44,19.3
106 | 0.1396,0,8.56,0,0.52,6.167,90,2.421,5,384,20.9,392.69,12.33,20.1
107 | 0.13262,0,8.56,0,0.52,5.851,96.7,2.1069,5,384,20.9,394.05,16.47,19.5
108 | 0.1712,0,8.56,0,0.52,5.836,91.9,2.211,5,384,20.9,395.67,18.66,19.5
109 | 0.13117,0,8.56,0,0.52,6.127,85.2,2.1224,5,384,20.9,387.69,14.09,20.4
110 | 0.12802,0,8.56,0,0.52,6.474,97.1,2.4329,5,384,20.9,395.24,12.27,19.8
111 | 0.26363,0,8.56,0,0.52,6.229,91.2,2.5451,5,384,20.9,391.23,15.55,19.4
112 | 0.10793,0,8.56,0,0.52,6.195,54.4,2.7778,5,384,20.9,393.49,13,21.7
113 | 0.10084,0,10.01,0,0.547,6.715,81.6,2.6775,6,432,17.8,395.59,10.16,22.8
114 | 0.12329,0,10.01,0,0.547,5.913,92.9,2.3534,6,432,17.8,394.95,16.21,18.8
115 | 0.22212,0,10.01,0,0.547,6.092,95.4,2.548,6,432,17.8,396.9,17.09,18.7
116 | 0.14231,0,10.01,0,0.547,6.254,84.2,2.2565,6,432,17.8,388.74,10.45,18.5
117 | 0.17134,0,10.01,0,0.547,5.928,88.2,2.4631,6,432,17.8,344.91,15.76,18.3
118 | 0.13158,0,10.01,0,0.547,6.176,72.5,2.7301,6,432,17.8,393.3,12.04,21.2
119 | 0.15098,0,10.01,0,0.547,6.021,82.6,2.7474,6,432,17.8,394.51,10.3,19.2
120 | 0.13058,0,10.01,0,0.547,5.872,73.1,2.4775,6,432,17.8,338.63,15.37,20.4
121 | 0.14476,0,10.01,0,0.547,5.731,65.2,2.7592,6,432,17.8,391.5,13.61,19.3
122 | 0.06899,0,25.65,0,0.581,5.87,69.7,2.2577,2,188,19.1,389.15,14.37,22
123 | 0.07165,0,25.65,0,0.581,6.004,84.1,2.1974,2,188,19.1,377.67,14.27,20.3
124 | 0.09299,0,25.65,0,0.581,5.961,92.9,2.0869,2,188,19.1,378.09,17.93,20.5
125 | 0.15038,0,25.65,0,0.581,5.856,97,1.9444,2,188,19.1,370.31,25.41,17.3
126 | 0.09849,0,25.65,0,0.581,5.879,95.8,2.0063,2,188,19.1,379.38,17.58,18.8
127 | 0.16902,0,25.65,0,0.581,5.986,88.4,1.9929,2,188,19.1,385.02,14.81,21.4
128 | 0.38735,0,25.65,0,0.581,5.613,95.6,1.7572,2,188,19.1,359.29,27.26,15.7
129 | 0.25915,0,21.89,0,0.624,5.693,96,1.7883,4,437,21.2,392.11,17.19,16.2
130 | 0.32543,0,21.89,0,0.624,6.431,98.8,1.8125,4,437,21.2,396.9,15.39,18
131 | 0.88125,0,21.89,0,0.624,5.637,94.7,1.9799,4,437,21.2,396.9,18.34,14.3
132 | 0.34006,0,21.89,0,0.624,6.458,98.9,2.1185,4,437,21.2,395.04,12.6,19.2
133 | 1.19294,0,21.89,0,0.624,6.326,97.7,2.271,4,437,21.2,396.9,12.26,19.6
134 | 0.59005,0,21.89,0,0.624,6.372,97.9,2.3274,4,437,21.2,385.76,11.12,23
135 | 0.32982,0,21.89,0,0.624,5.822,95.4,2.4699,4,437,21.2,388.69,15.03,18.4
136 | 0.97617,0,21.89,0,0.624,5.757,98.4,2.346,4,437,21.2,262.76,17.31,15.6
137 | 0.55778,0,21.89,0,0.624,6.335,98.2,2.1107,4,437,21.2,394.67,16.96,18.1
138 | 0.32264,0,21.89,0,0.624,5.942,93.5,1.9669,4,437,21.2,378.25,16.9,17.4
139 | 0.35233,0,21.89,0,0.624,6.454,98.4,1.8498,4,437,21.2,394.08,14.59,17.1
140 | 0.2498,0,21.89,0,0.624,5.857,98.2,1.6686,4,437,21.2,392.04,21.32,13.3
141 | 0.54452,0,21.89,0,0.624,6.151,97.9,1.6687,4,437,21.2,396.9,18.46,17.8
142 | 0.2909,0,21.89,0,0.624,6.174,93.6,1.6119,4,437,21.2,388.08,24.16,14
143 | 1.62864,0,21.89,0,0.624,5.019,100,1.4394,4,437,21.2,396.9,34.41,14.4
144 | 3.32105,0,19.58,1,0.871,5.403,100,1.3216,5,403,14.7,396.9,26.82,13.4
145 | 4.0974,0,19.58,0,0.871,5.468,100,1.4118,5,403,14.7,396.9,26.42,15.6
146 | 2.77974,0,19.58,0,0.871,4.903,97.8,1.3459,5,403,14.7,396.9,29.29,11.8
147 | 2.37934,0,19.58,0,0.871,6.13,100,1.4191,5,403,14.7,172.91,27.8,13.8
148 | 2.15505,0,19.58,0,0.871,5.628,100,1.5166,5,403,14.7,169.27,16.65,15.6
149 | 2.36862,0,19.58,0,0.871,4.926,95.7,1.4608,5,403,14.7,391.71,29.53,14.6
150 | 2.33099,0,19.58,0,0.871,5.186,93.8,1.5296,5,403,14.7,356.99,28.32,17.8
151 | 2.73397,0,19.58,0,0.871,5.597,94.9,1.5257,5,403,14.7,351.85,21.45,15.4
152 | 1.6566,0,19.58,0,0.871,6.122,97.3,1.618,5,403,14.7,372.8,14.1,21.5
153 | 1.49632,0,19.58,0,0.871,5.404,100,1.5916,5,403,14.7,341.6,13.28,19.6
154 | 1.12658,0,19.58,1,0.871,5.012,88,1.6102,5,403,14.7,343.28,12.12,15.3
155 | 2.14918,0,19.58,0,0.871,5.709,98.5,1.6232,5,403,14.7,261.95,15.79,19.4
156 | 1.41385,0,19.58,1,0.871,6.129,96,1.7494,5,403,14.7,321.02,15.12,17
157 | 3.53501,0,19.58,1,0.871,6.152,82.6,1.7455,5,403,14.7,88.01,15.02,15.6
158 | 2.44668,0,19.58,0,0.871,5.272,94,1.7364,5,403,14.7,88.63,16.14,13.1
159 | 1.22358,0,19.58,0,0.605,6.943,97.4,1.8773,5,403,14.7,363.43,4.59,41.3
160 | 1.34284,0,19.58,0,0.605,6.066,100,1.7573,5,403,14.7,353.89,6.43,24.3
161 | 1.42502,0,19.58,0,0.871,6.51,100,1.7659,5,403,14.7,364.31,7.39,23.3
162 | 1.27346,0,19.58,1,0.605,6.25,92.6,1.7984,5,403,14.7,338.92,5.5,27
163 | 1.46336,0,19.58,0,0.605,7.489,90.8,1.9709,5,403,14.7,374.43,1.73,50
164 | 1.83377,0,19.58,1,0.605,7.802,98.2,2.0407,5,403,14.7,389.61,1.92,50
165 | 1.51902,0,19.58,1,0.605,8.375,93.9,2.162,5,403,14.7,388.45,3.32,50
166 | 2.24236,0,19.58,0,0.605,5.854,91.8,2.422,5,403,14.7,395.11,11.64,22.7
167 | 2.924,0,19.58,0,0.605,6.101,93,2.2834,5,403,14.7,240.16,9.81,25
168 | 2.01019,0,19.58,0,0.605,7.929,96.2,2.0459,5,403,14.7,369.3,3.7,50
169 | 1.80028,0,19.58,0,0.605,5.877,79.2,2.4259,5,403,14.7,227.61,12.14,23.8
170 | 2.3004,0,19.58,0,0.605,6.319,96.1,2.1,5,403,14.7,297.09,11.1,23.8
171 | 2.44953,0,19.58,0,0.605,6.402,95.2,2.2625,5,403,14.7,330.04,11.32,22.3
172 | 1.20742,0,19.58,0,0.605,5.875,94.6,2.4259,5,403,14.7,292.29,14.43,17.4
173 | 2.3139,0,19.58,0,0.605,5.88,97.3,2.3887,5,403,14.7,348.13,12.03,19.1
174 | 0.13914,0,4.05,0,0.51,5.572,88.5,2.5961,5,296,16.6,396.9,14.69,23.1
175 | 0.09178,0,4.05,0,0.51,6.416,84.1,2.6463,5,296,16.6,395.5,9.04,23.6
176 | 0.08447,0,4.05,0,0.51,5.859,68.7,2.7019,5,296,16.6,393.23,9.64,22.6
177 | 0.06664,0,4.05,0,0.51,6.546,33.1,3.1323,5,296,16.6,390.96,5.33,29.4
178 | 0.07022,0,4.05,0,0.51,6.02,47.2,3.5549,5,296,16.6,393.23,10.11,23.2
179 | 0.05425,0,4.05,0,0.51,6.315,73.4,3.3175,5,296,16.6,395.6,6.29,24.6
180 | 0.06642,0,4.05,0,0.51,6.86,74.4,2.9153,5,296,16.6,391.27,6.92,29.9
181 | 0.0578,0,2.46,0,0.488,6.98,58.4,2.829,3,193,17.8,396.9,5.04,37.2
182 | 0.06588,0,2.46,0,0.488,7.765,83.3,2.741,3,193,17.8,395.56,7.56,39.8
183 | 0.06888,0,2.46,0,0.488,6.144,62.2,2.5979,3,193,17.8,396.9,9.45,36.2
184 | 0.09103,0,2.46,0,0.488,7.155,92.2,2.7006,3,193,17.8,394.12,4.82,37.9
185 | 0.10008,0,2.46,0,0.488,6.563,95.6,2.847,3,193,17.8,396.9,5.68,32.5
186 | 0.08308,0,2.46,0,0.488,5.604,89.8,2.9879,3,193,17.8,391,13.98,26.4
187 | 0.06047,0,2.46,0,0.488,6.153,68.8,3.2797,3,193,17.8,387.11,13.15,29.6
188 | 0.05602,0,2.46,0,0.488,7.831,53.6,3.1992,3,193,17.8,392.63,4.45,50
189 | 0.07875,45,3.44,0,0.437,6.782,41.1,3.7886,5,398,15.2,393.87,6.68,32
190 | 0.12579,45,3.44,0,0.437,6.556,29.1,4.5667,5,398,15.2,382.84,4.56,29.8
191 | 0.0837,45,3.44,0,0.437,7.185,38.9,4.5667,5,398,15.2,396.9,5.39,34.9
192 | 0.09068,45,3.44,0,0.437,6.951,21.5,6.4798,5,398,15.2,377.68,5.1,37
193 | 0.06911,45,3.44,0,0.437,6.739,30.8,6.4798,5,398,15.2,389.71,4.69,30.5
194 | 0.08664,45,3.44,0,0.437,7.178,26.3,6.4798,5,398,15.2,390.49,2.87,36.4
195 | 0.02187,60,2.93,0,0.401,6.8,9.9,6.2196,1,265,15.6,393.37,5.03,31.1
196 | 0.01439,60,2.93,0,0.401,6.604,18.8,6.2196,1,265,15.6,376.7,4.38,29.1
197 | 0.01381,80,0.46,0,0.422,7.875,32,5.6484,4,255,14.4,394.23,2.97,50
198 | 0.04011,80,1.52,0,0.404,7.287,34.1,7.309,2,329,12.6,396.9,4.08,33.3
199 | 0.04666,80,1.52,0,0.404,7.107,36.6,7.309,2,329,12.6,354.31,8.61,30.3
200 | 0.03768,80,1.52,0,0.404,7.274,38.3,7.309,2,329,12.6,392.2,6.62,34.6
201 | 0.0315,95,1.47,0,0.403,6.975,15.3,7.6534,3,402,17,396.9,4.56,34.9
202 | 0.01778,95,1.47,0,0.403,7.135,13.9,7.6534,3,402,17,384.3,4.45,32.9
203 | 0.03445,82.5,2.03,0,0.415,6.162,38.4,6.27,2,348,14.7,393.77,7.43,24.1
204 | 0.02177,82.5,2.03,0,0.415,7.61,15.7,6.27,2,348,14.7,395.38,3.11,42.3
205 | 0.0351,95,2.68,0,0.4161,7.853,33.2,5.118,4,224,14.7,392.78,3.81,48.5
206 | 0.02009,95,2.68,0,0.4161,8.034,31.9,5.118,4,224,14.7,390.55,2.88,50
207 | 0.13642,0,10.59,0,0.489,5.891,22.3,3.9454,4,277,18.6,396.9,10.87,22.6
208 | 0.22969,0,10.59,0,0.489,6.326,52.5,4.3549,4,277,18.6,394.87,10.97,24.4
209 | 0.25199,0,10.59,0,0.489,5.783,72.7,4.3549,4,277,18.6,389.43,18.06,22.5
210 | 0.13587,0,10.59,1,0.489,6.064,59.1,4.2392,4,277,18.6,381.32,14.66,24.4
211 | 0.43571,0,10.59,1,0.489,5.344,100,3.875,4,277,18.6,396.9,23.09,20
212 | 0.17446,0,10.59,1,0.489,5.96,92.1,3.8771,4,277,18.6,393.25,17.27,21.7
213 | 0.37578,0,10.59,1,0.489,5.404,88.6,3.665,4,277,18.6,395.24,23.98,19.3
214 | 0.21719,0,10.59,1,0.489,5.807,53.8,3.6526,4,277,18.6,390.94,16.03,22.4
215 | 0.14052,0,10.59,0,0.489,6.375,32.3,3.9454,4,277,18.6,385.81,9.38,28.1
216 | 0.28955,0,10.59,0,0.489,5.412,9.8,3.5875,4,277,18.6,348.93,29.55,23.7
217 | 0.19802,0,10.59,0,0.489,6.182,42.4,3.9454,4,277,18.6,393.63,9.47,25
218 | 0.0456,0,13.89,1,0.55,5.888,56,3.1121,5,276,16.4,392.8,13.51,23.3
219 | 0.07013,0,13.89,0,0.55,6.642,85.1,3.4211,5,276,16.4,392.78,9.69,28.7
220 | 0.11069,0,13.89,1,0.55,5.951,93.8,2.8893,5,276,16.4,396.9,17.92,21.5
221 | 0.11425,0,13.89,1,0.55,6.373,92.4,3.3633,5,276,16.4,393.74,10.5,23
222 | 0.35809,0,6.2,1,0.507,6.951,88.5,2.8617,8,307,17.4,391.7,9.71,26.7
223 | 0.40771,0,6.2,1,0.507,6.164,91.3,3.048,8,307,17.4,395.24,21.46,21.7
224 | 0.62356,0,6.2,1,0.507,6.879,77.7,3.2721,8,307,17.4,390.39,9.93,27.5
225 | 0.6147,0,6.2,0,0.507,6.618,80.8,3.2721,8,307,17.4,396.9,7.6,30.1
226 | 0.31533,0,6.2,0,0.504,8.266,78.3,2.8944,8,307,17.4,385.05,4.14,44.8
227 | 0.52693,0,6.2,0,0.504,8.725,83,2.8944,8,307,17.4,382,4.63,50
228 | 0.38214,0,6.2,0,0.504,8.04,86.5,3.2157,8,307,17.4,387.38,3.13,37.6
229 | 0.41238,0,6.2,0,0.504,7.163,79.9,3.2157,8,307,17.4,372.08,6.36,31.6
230 | 0.29819,0,6.2,0,0.504,7.686,17,3.3751,8,307,17.4,377.51,3.92,46.7
231 | 0.44178,0,6.2,0,0.504,6.552,21.4,3.3751,8,307,17.4,380.34,3.76,31.5
232 | 0.537,0,6.2,0,0.504,5.981,68.1,3.6715,8,307,17.4,378.35,11.65,24.3
233 | 0.46296,0,6.2,0,0.504,7.412,76.9,3.6715,8,307,17.4,376.14,5.25,31.7
234 | 0.57529,0,6.2,0,0.507,8.337,73.3,3.8384,8,307,17.4,385.91,2.47,41.7
235 | 0.33147,0,6.2,0,0.507,8.247,70.4,3.6519,8,307,17.4,378.95,3.95,48.3
236 | 0.44791,0,6.2,1,0.507,6.726,66.5,3.6519,8,307,17.4,360.2,8.05,29
237 | 0.33045,0,6.2,0,0.507,6.086,61.5,3.6519,8,307,17.4,376.75,10.88,24
238 | 0.52058,0,6.2,1,0.507,6.631,76.5,4.148,8,307,17.4,388.45,9.54,25.1
239 | 0.51183,0,6.2,0,0.507,7.358,71.6,4.148,8,307,17.4,390.07,4.73,31.5
240 | 0.08244,30,4.93,0,0.428,6.481,18.5,6.1899,6,300,16.6,379.41,6.36,23.7
241 | 0.09252,30,4.93,0,0.428,6.606,42.2,6.1899,6,300,16.6,383.78,7.37,23.3
242 | 0.11329,30,4.93,0,0.428,6.897,54.3,6.3361,6,300,16.6,391.25,11.38,22
243 | 0.10612,30,4.93,0,0.428,6.095,65.1,6.3361,6,300,16.6,394.62,12.4,20.1
244 | 0.1029,30,4.93,0,0.428,6.358,52.9,7.0355,6,300,16.6,372.75,11.22,22.2
245 | 0.12757,30,4.93,0,0.428,6.393,7.8,7.0355,6,300,16.6,374.71,5.19,23.7
246 | 0.20608,22,5.86,0,0.431,5.593,76.5,7.9549,7,330,19.1,372.49,12.5,17.6
247 | 0.19133,22,5.86,0,0.431,5.605,70.2,7.9549,7,330,19.1,389.13,18.46,18.5
248 | 0.33983,22,5.86,0,0.431,6.108,34.9,8.0555,7,330,19.1,390.18,9.16,24.3
249 | 0.19657,22,5.86,0,0.431,6.226,79.2,8.0555,7,330,19.1,376.14,10.15,20.5
250 | 0.16439,22,5.86,0,0.431,6.433,49.1,7.8265,7,330,19.1,374.71,9.52,24.5
251 | 0.19073,22,5.86,0,0.431,6.718,17.5,7.8265,7,330,19.1,393.74,6.56,26.2
252 | 0.1403,22,5.86,0,0.431,6.487,13,7.3967,7,330,19.1,396.28,5.9,24.4
253 | 0.21409,22,5.86,0,0.431,6.438,8.9,7.3967,7,330,19.1,377.07,3.59,24.8
254 | 0.08221,22,5.86,0,0.431,6.957,6.8,8.9067,7,330,19.1,386.09,3.53,29.6
255 | 0.36894,22,5.86,0,0.431,8.259,8.4,8.9067,7,330,19.1,396.9,3.54,42.8
256 | 0.04819,80,3.64,0,0.392,6.108,32,9.2203,1,315,16.4,392.89,6.57,21.9
257 | 0.03548,80,3.64,0,0.392,5.876,19.1,9.2203,1,315,16.4,395.18,9.25,20.9
258 | 0.01538,90,3.75,0,0.394,7.454,34.2,6.3361,3,244,15.9,386.34,3.11,44
259 | 0.61154,20,3.97,0,0.647,8.704,86.9,1.801,5,264,13,389.7,5.12,50
260 | 0.66351,20,3.97,0,0.647,7.333,100,1.8946,5,264,13,383.29,7.79,36
261 | 0.65665,20,3.97,0,0.647,6.842,100,2.0107,5,264,13,391.93,6.9,30.1
262 | 0.54011,20,3.97,0,0.647,7.203,81.8,2.1121,5,264,13,392.8,9.59,33.8
263 | 0.53412,20,3.97,0,0.647,7.52,89.4,2.1398,5,264,13,388.37,7.26,43.1
264 | 0.52014,20,3.97,0,0.647,8.398,91.5,2.2885,5,264,13,386.86,5.91,48.8
265 | 0.82526,20,3.97,0,0.647,7.327,94.5,2.0788,5,264,13,393.42,11.25,31
266 | 0.55007,20,3.97,0,0.647,7.206,91.6,1.9301,5,264,13,387.89,8.1,36.5
267 | 0.76162,20,3.97,0,0.647,5.56,62.8,1.9865,5,264,13,392.4,10.45,22.8
268 | 0.7857,20,3.97,0,0.647,7.014,84.6,2.1329,5,264,13,384.07,14.79,30.7
269 | 0.57834,20,3.97,0,0.575,8.297,67,2.4216,5,264,13,384.54,7.44,50
270 | 0.5405,20,3.97,0,0.575,7.47,52.6,2.872,5,264,13,390.3,3.16,43.5
271 | 0.09065,20,6.96,1,0.464,5.92,61.5,3.9175,3,223,18.6,391.34,13.65,20.7
272 | 0.29916,20,6.96,0,0.464,5.856,42.1,4.429,3,223,18.6,388.65,13,21.1
273 | 0.16211,20,6.96,0,0.464,6.24,16.3,4.429,3,223,18.6,396.9,6.59,25.2
274 | 0.1146,20,6.96,0,0.464,6.538,58.7,3.9175,3,223,18.6,394.96,7.73,24.4
275 | 0.22188,20,6.96,1,0.464,7.691,51.8,4.3665,3,223,18.6,390.77,6.58,35.2
276 | 0.05644,40,6.41,1,0.447,6.758,32.9,4.0776,4,254,17.6,396.9,3.53,32.4
277 | 0.09604,40,6.41,0,0.447,6.854,42.8,4.2673,4,254,17.6,396.9,2.98,32
278 | 0.10469,40,6.41,1,0.447,7.267,49,4.7872,4,254,17.6,389.25,6.05,33.2
279 | 0.06127,40,6.41,1,0.447,6.826,27.6,4.8628,4,254,17.6,393.45,4.16,33.1
280 | 0.07978,40,6.41,0,0.447,6.482,32.1,4.1403,4,254,17.6,396.9,7.19,29.1
281 | 0.21038,20,3.33,0,0.4429,6.812,32.2,4.1007,5,216,14.9,396.9,4.85,35.1
282 | 0.03578,20,3.33,0,0.4429,7.82,64.5,4.6947,5,216,14.9,387.31,3.76,45.4
283 | 0.03705,20,3.33,0,0.4429,6.968,37.2,5.2447,5,216,14.9,392.23,4.59,35.4
284 | 0.06129,20,3.33,1,0.4429,7.645,49.7,5.2119,5,216,14.9,377.07,3.01,46
285 | 0.01501,90,1.21,1,0.401,7.923,24.8,5.885,1,198,13.6,395.52,3.16,50
286 | 0.00906,90,2.97,0,0.4,7.088,20.8,7.3073,1,285,15.3,394.72,7.85,32.2
287 | 0.01096,55,2.25,0,0.389,6.453,31.9,7.3073,1,300,15.3,394.72,8.23,22
288 | 0.01965,80,1.76,0,0.385,6.23,31.5,9.0892,1,241,18.2,341.6,12.93,20.1
289 | 0.03871,52.5,5.32,0,0.405,6.209,31.3,7.3172,6,293,16.6,396.9,7.14,23.2
290 | 0.0459,52.5,5.32,0,0.405,6.315,45.6,7.3172,6,293,16.6,396.9,7.6,22.3
291 | 0.04297,52.5,5.32,0,0.405,6.565,22.9,7.3172,6,293,16.6,371.72,9.51,24.8
292 | 0.03502,80,4.95,0,0.411,6.861,27.9,5.1167,4,245,19.2,396.9,3.33,28.5
293 | 0.07886,80,4.95,0,0.411,7.148,27.7,5.1167,4,245,19.2,396.9,3.56,37.3
294 | 0.03615,80,4.95,0,0.411,6.63,23.4,5.1167,4,245,19.2,396.9,4.7,27.9
295 | 0.08265,0,13.92,0,0.437,6.127,18.4,5.5027,4,289,16,396.9,8.58,23.9
296 | 0.08199,0,13.92,0,0.437,6.009,42.3,5.5027,4,289,16,396.9,10.4,21.7
297 | 0.12932,0,13.92,0,0.437,6.678,31.1,5.9604,4,289,16,396.9,6.27,28.6
298 | 0.05372,0,13.92,0,0.437,6.549,51,5.9604,4,289,16,392.85,7.39,27.1
299 | 0.14103,0,13.92,0,0.437,5.79,58,6.32,4,289,16,396.9,15.84,20.3
300 | 0.06466,70,2.24,0,0.4,6.345,20.1,7.8278,5,358,14.8,368.24,4.97,22.5
301 | 0.05561,70,2.24,0,0.4,7.041,10,7.8278,5,358,14.8,371.58,4.74,29
302 | 0.04417,70,2.24,0,0.4,6.871,47.4,7.8278,5,358,14.8,390.86,6.07,24.8
303 | 0.03537,34,6.09,0,0.433,6.59,40.4,5.4917,7,329,16.1,395.75,9.5,22
304 | 0.09266,34,6.09,0,0.433,6.495,18.4,5.4917,7,329,16.1,383.61,8.67,26.4
305 | 0.1,34,6.09,0,0.433,6.982,17.7,5.4917,7,329,16.1,390.43,4.86,33.1
306 | 0.05515,33,2.18,0,0.472,7.236,41.1,4.022,7,222,18.4,393.68,6.93,36.1
307 | 0.05479,33,2.18,0,0.472,6.616,58.1,3.37,7,222,18.4,393.36,8.93,28.4
308 | 0.07503,33,2.18,0,0.472,7.42,71.9,3.0992,7,222,18.4,396.9,6.47,33.4
309 | 0.04932,33,2.18,0,0.472,6.849,70.3,3.1827,7,222,18.4,396.9,7.53,28.2
310 | 0.49298,0,9.9,0,0.544,6.635,82.5,3.3175,4,304,18.4,396.9,4.54,22.8
311 | 0.3494,0,9.9,0,0.544,5.972,76.7,3.1025,4,304,18.4,396.24,9.97,20.3
312 | 2.63548,0,9.9,0,0.544,4.973,37.8,2.5194,4,304,18.4,350.45,12.64,16.1
313 | 0.79041,0,9.9,0,0.544,6.122,52.8,2.6403,4,304,18.4,396.9,5.98,22.1
314 | 0.26169,0,9.9,0,0.544,6.023,90.4,2.834,4,304,18.4,396.3,11.72,19.4
315 | 0.26938,0,9.9,0,0.544,6.266,82.8,3.2628,4,304,18.4,393.39,7.9,21.6
316 | 0.3692,0,9.9,0,0.544,6.567,87.3,3.6023,4,304,18.4,395.69,9.28,23.8
317 | 0.25356,0,9.9,0,0.544,5.705,77.7,3.945,4,304,18.4,396.42,11.5,16.2
318 | 0.31827,0,9.9,0,0.544,5.914,83.2,3.9986,4,304,18.4,390.7,18.33,17.8
319 | 0.24522,0,9.9,0,0.544,5.782,71.7,4.0317,4,304,18.4,396.9,15.94,19.8
320 | 0.40202,0,9.9,0,0.544,6.382,67.2,3.5325,4,304,18.4,395.21,10.36,23.1
321 | 0.47547,0,9.9,0,0.544,6.113,58.8,4.0019,4,304,18.4,396.23,12.73,21
322 | 0.1676,0,7.38,0,0.493,6.426,52.3,4.5404,5,287,19.6,396.9,7.2,23.8
323 | 0.18159,0,7.38,0,0.493,6.376,54.3,4.5404,5,287,19.6,396.9,6.87,23.1
324 | 0.35114,0,7.38,0,0.493,6.041,49.9,4.7211,5,287,19.6,396.9,7.7,20.4
325 | 0.28392,0,7.38,0,0.493,5.708,74.3,4.7211,5,287,19.6,391.13,11.74,18.5
326 | 0.34109,0,7.38,0,0.493,6.415,40.1,4.7211,5,287,19.6,396.9,6.12,25
327 | 0.19186,0,7.38,0,0.493,6.431,14.7,5.4159,5,287,19.6,393.68,5.08,24.6
328 | 0.30347,0,7.38,0,0.493,6.312,28.9,5.4159,5,287,19.6,396.9,6.15,23
329 | 0.24103,0,7.38,0,0.493,6.083,43.7,5.4159,5,287,19.6,396.9,12.79,22.2
330 | 0.06617,0,3.24,0,0.46,5.868,25.8,5.2146,4,430,16.9,382.44,9.97,19.3
331 | 0.06724,0,3.24,0,0.46,6.333,17.2,5.2146,4,430,16.9,375.21,7.34,22.6
332 | 0.04544,0,3.24,0,0.46,6.144,32.2,5.8736,4,430,16.9,368.57,9.09,19.8
333 | 0.05023,35,6.06,0,0.4379,5.706,28.4,6.6407,1,304,16.9,394.02,12.43,17.1
334 | 0.03466,35,6.06,0,0.4379,6.031,23.3,6.6407,1,304,16.9,362.25,7.83,19.4
335 | 0.05083,0,5.19,0,0.515,6.316,38.1,6.4584,5,224,20.2,389.71,5.68,22.2
336 | 0.03738,0,5.19,0,0.515,6.31,38.5,6.4584,5,224,20.2,389.4,6.75,20.7
337 | 0.03961,0,5.19,0,0.515,6.037,34.5,5.9853,5,224,20.2,396.9,8.01,21.1
338 | 0.03427,0,5.19,0,0.515,5.869,46.3,5.2311,5,224,20.2,396.9,9.8,19.5
339 | 0.03041,0,5.19,0,0.515,5.895,59.6,5.615,5,224,20.2,394.81,10.56,18.5
340 | 0.03306,0,5.19,0,0.515,6.059,37.3,4.8122,5,224,20.2,396.14,8.51,20.6
341 | 0.05497,0,5.19,0,0.515,5.985,45.4,4.8122,5,224,20.2,396.9,9.74,19
342 | 0.06151,0,5.19,0,0.515,5.968,58.5,4.8122,5,224,20.2,396.9,9.29,18.7
343 | 0.01301,35,1.52,0,0.442,7.241,49.3,7.0379,1,284,15.5,394.74,5.49,32.7
344 | 0.02498,0,1.89,0,0.518,6.54,59.7,6.2669,1,422,15.9,389.96,8.65,16.5
345 | 0.02543,55,3.78,0,0.484,6.696,56.4,5.7321,5,370,17.6,396.9,7.18,23.9
346 | 0.03049,55,3.78,0,0.484,6.874,28.1,6.4654,5,370,17.6,387.97,4.61,31.2
347 | 0.03113,0,4.39,0,0.442,6.014,48.5,8.0136,3,352,18.8,385.64,10.53,17.5
348 | 0.06162,0,4.39,0,0.442,5.898,52.3,8.0136,3,352,18.8,364.61,12.67,17.2
349 | 0.0187,85,4.15,0,0.429,6.516,27.7,8.5353,4,351,17.9,392.43,6.36,23.1
350 | 0.01501,80,2.01,0,0.435,6.635,29.7,8.344,4,280,17,390.94,5.99,24.5
351 | 0.02899,40,1.25,0,0.429,6.939,34.5,8.7921,1,335,19.7,389.85,5.89,26.6
352 | 0.06211,40,1.25,0,0.429,6.49,44.4,8.7921,1,335,19.7,396.9,5.98,22.9
353 | 0.0795,60,1.69,0,0.411,6.579,35.9,10.7103,4,411,18.3,370.78,5.49,24.1
354 | 0.07244,60,1.69,0,0.411,5.884,18.5,10.7103,4,411,18.3,392.33,7.79,18.6
355 | 0.01709,90,2.02,0,0.41,6.728,36.1,12.1265,5,187,17,384.46,4.5,30.1
356 | 0.04301,80,1.91,0,0.413,5.663,21.9,10.5857,4,334,22,382.8,8.05,18.2
357 | 0.10659,80,1.91,0,0.413,5.936,19.5,10.5857,4,334,22,376.04,5.57,20.6
358 | 8.98296,0,18.1,1,0.77,6.212,97.4,2.1222,24,666,20.2,377.73,17.6,17.8
359 | 3.8497,0,18.1,1,0.77,6.395,91,2.5052,24,666,20.2,391.34,13.27,21.7
360 | 5.20177,0,18.1,1,0.77,6.127,83.4,2.7227,24,666,20.2,395.43,11.48,22.7
361 | 4.26131,0,18.1,0,0.77,6.112,81.3,2.5091,24,666,20.2,390.74,12.67,22.6
362 | 4.54192,0,18.1,0,0.77,6.398,88,2.5182,24,666,20.2,374.56,7.79,25
363 | 3.83684,0,18.1,0,0.77,6.251,91.1,2.2955,24,666,20.2,350.65,14.19,19.9
364 | 3.67822,0,18.1,0,0.77,5.362,96.2,2.1036,24,666,20.2,380.79,10.19,20.8
365 | 4.22239,0,18.1,1,0.77,5.803,89,1.9047,24,666,20.2,353.04,14.64,16.8
366 | 3.47428,0,18.1,1,0.718,8.78,82.9,1.9047,24,666,20.2,354.55,5.29,21.9
367 | 4.55587,0,18.1,0,0.718,3.561,87.9,1.6132,24,666,20.2,354.7,7.12,27.5
368 | 3.69695,0,18.1,0,0.718,4.963,91.4,1.7523,24,666,20.2,316.03,14,21.9
369 | 13.5222,0,18.1,0,0.631,3.863,100,1.5106,24,666,20.2,131.42,13.33,23.1
370 | 4.89822,0,18.1,0,0.631,4.97,100,1.3325,24,666,20.2,375.52,3.26,50
371 | 5.66998,0,18.1,1,0.631,6.683,96.8,1.3567,24,666,20.2,375.33,3.73,50
372 | 6.53876,0,18.1,1,0.631,7.016,97.5,1.2024,24,666,20.2,392.05,2.96,50
373 | 9.2323,0,18.1,0,0.631,6.216,100,1.1691,24,666,20.2,366.15,9.53,50
374 | 8.26725,0,18.1,1,0.668,5.875,89.6,1.1296,24,666,20.2,347.88,8.88,50
375 | 11.1081,0,18.1,0,0.668,4.906,100,1.1742,24,666,20.2,396.9,34.77,13.8
376 | 18.4982,0,18.1,0,0.668,4.138,100,1.137,24,666,20.2,396.9,37.97,13.8
377 | 19.6091,0,18.1,0,0.671,7.313,97.9,1.3163,24,666,20.2,396.9,13.44,15
378 | 15.288,0,18.1,0,0.671,6.649,93.3,1.3449,24,666,20.2,363.02,23.24,13.9
379 | 9.82349,0,18.1,0,0.671,6.794,98.8,1.358,24,666,20.2,396.9,21.24,13.3
380 | 23.6482,0,18.1,0,0.671,6.38,96.2,1.3861,24,666,20.2,396.9,23.69,13.1
381 | 17.8667,0,18.1,0,0.671,6.223,100,1.3861,24,666,20.2,393.74,21.78,10.2
382 | 88.9762,0,18.1,0,0.671,6.968,91.9,1.4165,24,666,20.2,396.9,17.21,10.4
383 | 15.8744,0,18.1,0,0.671,6.545,99.1,1.5192,24,666,20.2,396.9,21.08,10.9
384 | 9.18702,0,18.1,0,0.7,5.536,100,1.5804,24,666,20.2,396.9,23.6,11.3
385 | 7.99248,0,18.1,0,0.7,5.52,100,1.5331,24,666,20.2,396.9,24.56,12.3
386 | 20.0849,0,18.1,0,0.7,4.368,91.2,1.4395,24,666,20.2,285.83,30.63,8.8
387 | 16.8118,0,18.1,0,0.7,5.277,98.1,1.4261,24,666,20.2,396.9,30.81,7.2
388 | 24.3938,0,18.1,0,0.7,4.652,100,1.4672,24,666,20.2,396.9,28.28,10.5
389 | 22.5971,0,18.1,0,0.7,5,89.5,1.5184,24,666,20.2,396.9,31.99,7.4
390 | 14.3337,0,18.1,0,0.7,4.88,100,1.5895,24,666,20.2,372.92,30.62,10.2
391 | 8.15174,0,18.1,0,0.7,5.39,98.9,1.7281,24,666,20.2,396.9,20.85,11.5
392 | 6.96215,0,18.1,0,0.7,5.713,97,1.9265,24,666,20.2,394.43,17.11,15.1
393 | 5.29305,0,18.1,0,0.7,6.051,82.5,2.1678,24,666,20.2,378.38,18.76,23.2
394 | 11.5779,0,18.1,0,0.7,5.036,97,1.77,24,666,20.2,396.9,25.68,9.7
395 | 8.64476,0,18.1,0,0.693,6.193,92.6,1.7912,24,666,20.2,396.9,15.17,13.8
396 | 13.3598,0,18.1,0,0.693,5.887,94.7,1.7821,24,666,20.2,396.9,16.35,12.7
397 | 8.71675,0,18.1,0,0.693,6.471,98.8,1.7257,24,666,20.2,391.98,17.12,13.1
398 | 5.87205,0,18.1,0,0.693,6.405,96,1.6768,24,666,20.2,396.9,19.37,12.5
399 | 7.67202,0,18.1,0,0.693,5.747,98.9,1.6334,24,666,20.2,393.1,19.92,8.5
400 | 38.3518,0,18.1,0,0.693,5.453,100,1.4896,24,666,20.2,396.9,30.59,5
401 | 9.91655,0,18.1,0,0.693,5.852,77.8,1.5004,24,666,20.2,338.16,29.97,6.3
402 | 25.0461,0,18.1,0,0.693,5.987,100,1.5888,24,666,20.2,396.9,26.77,5.6
403 | 14.2362,0,18.1,0,0.693,6.343,100,1.5741,24,666,20.2,396.9,20.32,7.2
404 | 9.59571,0,18.1,0,0.693,6.404,100,1.639,24,666,20.2,376.11,20.31,12.1
405 | 24.8017,0,18.1,0,0.693,5.349,96,1.7028,24,666,20.2,396.9,19.77,8.3
406 | 41.5292,0,18.1,0,0.693,5.531,85.4,1.6074,24,666,20.2,329.46,27.38,8.5
407 | 67.9208,0,18.1,0,0.693,5.683,100,1.4254,24,666,20.2,384.97,22.98,5
408 | 20.7162,0,18.1,0,0.659,4.138,100,1.1781,24,666,20.2,370.22,23.34,11.9
409 | 11.9511,0,18.1,0,0.659,5.608,100,1.2852,24,666,20.2,332.09,12.13,27.9
410 | 7.40389,0,18.1,0,0.597,5.617,97.9,1.4547,24,666,20.2,314.64,26.4,17.2
411 | 14.4383,0,18.1,0,0.597,6.852,100,1.4655,24,666,20.2,179.36,19.78,27.5
412 | 51.1358,0,18.1,0,0.597,5.757,100,1.413,24,666,20.2,2.6,10.11,15
413 | 14.0507,0,18.1,0,0.597,6.657,100,1.5275,24,666,20.2,35.05,21.22,17.2
414 | 18.811,0,18.1,0,0.597,4.628,100,1.5539,24,666,20.2,28.79,34.37,17.9
415 | 28.6558,0,18.1,0,0.597,5.155,100,1.5894,24,666,20.2,210.97,20.08,16.3
416 | 45.7461,0,18.1,0,0.693,4.519,100,1.6582,24,666,20.2,88.27,36.98,7
417 | 18.0846,0,18.1,0,0.679,6.434,100,1.8347,24,666,20.2,27.25,29.05,7.2
418 | 10.8342,0,18.1,0,0.679,6.782,90.8,1.8195,24,666,20.2,21.57,25.79,7.5
419 | 25.9406,0,18.1,0,0.679,5.304,89.1,1.6475,24,666,20.2,127.36,26.64,10.4
420 | 73.5341,0,18.1,0,0.679,5.957,100,1.8026,24,666,20.2,16.45,20.62,8.8
421 | 11.8123,0,18.1,0,0.718,6.824,76.5,1.794,24,666,20.2,48.45,22.74,8.4
422 | 11.0874,0,18.1,0,0.718,6.411,100,1.8589,24,666,20.2,318.75,15.02,16.7
423 | 7.02259,0,18.1,0,0.718,6.006,95.3,1.8746,24,666,20.2,319.98,15.7,14.2
424 | 12.0482,0,18.1,0,0.614,5.648,87.6,1.9512,24,666,20.2,291.55,14.1,20.8
425 | 7.05042,0,18.1,0,0.614,6.103,85.1,2.0218,24,666,20.2,2.52,23.29,13.4
426 | 8.79212,0,18.1,0,0.584,5.565,70.6,2.0635,24,666,20.2,3.65,17.16,11.7
427 | 15.8603,0,18.1,0,0.679,5.896,95.4,1.9096,24,666,20.2,7.68,24.39,8.3
428 | 12.2472,0,18.1,0,0.584,5.837,59.7,1.9976,24,666,20.2,24.65,15.69,10.2
429 | 37.6619,0,18.1,0,0.679,6.202,78.7,1.8629,24,666,20.2,18.82,14.52,10.9
430 | 7.36711,0,18.1,0,0.679,6.193,78.1,1.9356,24,666,20.2,96.73,21.52,11
431 | 9.33889,0,18.1,0,0.679,6.38,95.6,1.9682,24,666,20.2,60.72,24.08,9.5
432 | 8.49213,0,18.1,0,0.584,6.348,86.1,2.0527,24,666,20.2,83.45,17.64,14.5
433 | 10.0623,0,18.1,0,0.584,6.833,94.3,2.0882,24,666,20.2,81.33,19.69,14.1
434 | 6.44405,0,18.1,0,0.584,6.425,74.8,2.2004,24,666,20.2,97.95,12.03,16.1
435 | 5.58107,0,18.1,0,0.713,6.436,87.9,2.3158,24,666,20.2,100.19,16.22,14.3
436 | 13.9134,0,18.1,0,0.713,6.208,95,2.2222,24,666,20.2,100.63,15.17,11.7
437 | 11.1604,0,18.1,0,0.74,6.629,94.6,2.1247,24,666,20.2,109.85,23.27,13.4
438 | 14.4208,0,18.1,0,0.74,6.461,93.3,2.0026,24,666,20.2,27.49,18.05,9.6
439 | 15.1772,0,18.1,0,0.74,6.152,100,1.9142,24,666,20.2,9.32,26.45,8.7
440 | 13.6781,0,18.1,0,0.74,5.935,87.9,1.8206,24,666,20.2,68.95,34.02,8.4
441 | 9.39063,0,18.1,0,0.74,5.627,93.9,1.8172,24,666,20.2,396.9,22.88,12.8
442 | 22.0511,0,18.1,0,0.74,5.818,92.4,1.8662,24,666,20.2,391.45,22.11,10.5
443 | 9.72418,0,18.1,0,0.74,6.406,97.2,2.0651,24,666,20.2,385.96,19.52,17.1
444 | 5.66637,0,18.1,0,0.74,6.219,100,2.0048,24,666,20.2,395.69,16.59,18.4
445 | 9.96654,0,18.1,0,0.74,6.485,100,1.9784,24,666,20.2,386.73,18.85,15.4
446 | 12.8023,0,18.1,0,0.74,5.854,96.6,1.8956,24,666,20.2,240.52,23.79,10.8
447 | 10.6718,0,18.1,0,0.74,6.459,94.8,1.9879,24,666,20.2,43.06,23.98,11.8
448 | 6.28807,0,18.1,0,0.74,6.341,96.4,2.072,24,666,20.2,318.01,17.79,14.9
449 | 9.92485,0,18.1,0,0.74,6.251,96.6,2.198,24,666,20.2,388.52,16.44,12.6
450 | 9.32909,0,18.1,0,0.713,6.185,98.7,2.2616,24,666,20.2,396.9,18.13,14.1
451 | 7.52601,0,18.1,0,0.713,6.417,98.3,2.185,24,666,20.2,304.21,19.31,13
452 | 6.71772,0,18.1,0,0.713,6.749,92.6,2.3236,24,666,20.2,0.32,17.44,13.4
453 | 5.44114,0,18.1,0,0.713,6.655,98.2,2.3552,24,666,20.2,355.29,17.73,15.2
454 | 5.09017,0,18.1,0,0.713,6.297,91.8,2.3682,24,666,20.2,385.09,17.27,16.1
455 | 8.24809,0,18.1,0,0.713,7.393,99.3,2.4527,24,666,20.2,375.87,16.74,17.8
456 | 9.51363,0,18.1,0,0.713,6.728,94.1,2.4961,24,666,20.2,6.68,18.71,14.9
457 | 4.75237,0,18.1,0,0.713,6.525,86.5,2.4358,24,666,20.2,50.92,18.13,14.1
458 | 4.66883,0,18.1,0,0.713,5.976,87.9,2.5806,24,666,20.2,10.48,19.01,12.7
459 | 8.20058,0,18.1,0,0.713,5.936,80.3,2.7792,24,666,20.2,3.5,16.94,13.5
460 | 7.75223,0,18.1,0,0.713,6.301,83.7,2.7831,24,666,20.2,272.21,16.23,14.9
461 | 6.80117,0,18.1,0,0.713,6.081,84.4,2.7175,24,666,20.2,396.9,14.7,20
462 | 4.81213,0,18.1,0,0.713,6.701,90,2.5975,24,666,20.2,255.23,16.42,16.4
463 | 3.69311,0,18.1,0,0.713,6.376,88.4,2.5671,24,666,20.2,391.43,14.65,17.7
464 | 6.65492,0,18.1,0,0.713,6.317,83,2.7344,24,666,20.2,396.9,13.99,19.5
465 | 5.82115,0,18.1,0,0.713,6.513,89.9,2.8016,24,666,20.2,393.82,10.29,20.2
466 | 7.83932,0,18.1,0,0.655,6.209,65.4,2.9634,24,666,20.2,396.9,13.22,21.4
467 | 3.1636,0,18.1,0,0.655,5.759,48.2,3.0665,24,666,20.2,334.4,14.13,19.9
468 | 3.77498,0,18.1,0,0.655,5.952,84.7,2.8715,24,666,20.2,22.01,17.15,19
469 | 4.42228,0,18.1,0,0.584,6.003,94.5,2.5403,24,666,20.2,331.29,21.32,19.1
470 | 15.5757,0,18.1,0,0.58,5.926,71,2.9084,24,666,20.2,368.74,18.13,19.1
471 | 13.0751,0,18.1,0,0.58,5.713,56.7,2.8237,24,666,20.2,396.9,14.76,20.1
472 | 4.34879,0,18.1,0,0.58,6.167,84,3.0334,24,666,20.2,396.9,16.29,19.9
473 | 4.03841,0,18.1,0,0.532,6.229,90.7,3.0993,24,666,20.2,395.33,12.87,19.6
474 | 3.56868,0,18.1,0,0.58,6.437,75,2.8965,24,666,20.2,393.37,14.36,23.2
475 | 4.64689,0,18.1,0,0.614,6.98,67.6,2.5329,24,666,20.2,374.68,11.66,29.8
476 | 8.05579,0,18.1,0,0.584,5.427,95.4,2.4298,24,666,20.2,352.58,18.14,13.8
477 | 6.39312,0,18.1,0,0.584,6.162,97.4,2.206,24,666,20.2,302.76,24.1,13.3
478 | 4.87141,0,18.1,0,0.614,6.484,93.6,2.3053,24,666,20.2,396.21,18.68,16.7
479 | 15.0234,0,18.1,0,0.614,5.304,97.3,2.1007,24,666,20.2,349.48,24.91,12
480 | 10.233,0,18.1,0,0.614,6.185,96.7,2.1705,24,666,20.2,379.7,18.03,14.6
481 | 14.3337,0,18.1,0,0.614,6.229,88,1.9512,24,666,20.2,383.32,13.11,21.4
482 | 5.82401,0,18.1,0,0.532,6.242,64.7,3.4242,24,666,20.2,396.9,10.74,23
483 | 5.70818,0,18.1,0,0.532,6.75,74.9,3.3317,24,666,20.2,393.07,7.74,23.7
484 | 5.73116,0,18.1,0,0.532,7.061,77,3.4106,24,666,20.2,395.28,7.01,25
485 | 2.81838,0,18.1,0,0.532,5.762,40.3,4.0983,24,666,20.2,392.92,10.42,21.8
486 | 2.37857,0,18.1,0,0.583,5.871,41.9,3.724,24,666,20.2,370.73,13.34,20.6
487 | 3.67367,0,18.1,0,0.583,6.312,51.9,3.9917,24,666,20.2,388.62,10.58,21.2
488 | 5.69175,0,18.1,0,0.583,6.114,79.8,3.5459,24,666,20.2,392.68,14.98,19.1
489 | 4.83567,0,18.1,0,0.583,5.905,53.2,3.1523,24,666,20.2,388.22,11.45,20.6
490 | 0.15086,0,27.74,0,0.609,5.454,92.7,1.8209,4,711,20.1,395.09,18.06,15.2
491 | 0.18337,0,27.74,0,0.609,5.414,98.3,1.7554,4,711,20.1,344.05,23.97,7
492 | 0.20746,0,27.74,0,0.609,5.093,98,1.8226,4,711,20.1,318.43,29.68,8.1
493 | 0.10574,0,27.74,0,0.609,5.983,98.8,1.8681,4,711,20.1,390.11,18.07,13.6
494 | 0.11132,0,27.74,0,0.609,5.983,83.5,2.1099,4,711,20.1,396.9,13.35,20.1
495 | 0.17331,0,9.69,0,0.585,5.707,54,2.3817,6,391,19.2,396.9,12.01,21.8
496 | 0.27957,0,9.69,0,0.585,5.926,42.6,2.3817,6,391,19.2,396.9,13.59,24.5
497 | 0.17899,0,9.69,0,0.585,5.67,28.8,2.7986,6,391,19.2,393.29,17.6,23.1
498 | 0.2896,0,9.69,0,0.585,5.39,72.9,2.7986,6,391,19.2,396.9,21.14,19.7
499 | 0.26838,0,9.69,0,0.585,5.794,70.6,2.8927,6,391,19.2,396.9,14.1,18.3
500 | 0.23912,0,9.69,0,0.585,6.019,65.3,2.4091,6,391,19.2,396.9,12.92,21.2
501 | 0.17783,0,9.69,0,0.585,5.569,73.5,2.3999,6,391,19.2,395.77,15.1,17.5
502 | 0.22438,0,9.69,0,0.585,6.027,79.7,2.4982,6,391,19.2,396.9,14.33,16.8
503 | 0.06263,0,11.93,0,0.573,6.593,69.1,2.4786,1,273,21,391.99,9.67,22.4
504 | 0.04527,0,11.93,0,0.573,6.12,76.7,2.2875,1,273,21,396.9,9.08,20.6
505 | 0.06076,0,11.93,0,0.573,6.976,91,2.1675,1,273,21,396.9,5.64,23.9
506 | 0.10959,0,11.93,0,0.573,6.794,89.3,2.3889,1,273,21,393.45,6.48,22
507 | 0.04741,0,11.93,0,0.573,6.03,80.8,2.505,1,273,21,396.9,7.88,11.9
508 |
--------------------------------------------------------------------------------
/datasets/Cereal Data Description.txt:
--------------------------------------------------------------------------------
1 | StatLib---1993 Graphics Exposition
2 |
3 | "Serial Correlation or Cereal Correlation ??"
4 |
5 | Call for Poster Presentations for the 1993 Statistical Graphics Exposition
6 | REVISED README FILE
7 |
8 | (new breakfast cereal data and new information about the data)
9 | Every two years the Section on Statistical Graphics sponsors a special exposition where one or more data sets are made available, analyzed by anyone interested and presented in a special poster session at the Annual Meeting.
10 |
11 | For the 1993 Statistical Graphics Exposition, there are two datasets to analyze, one synthesized, one real:
12 |
13 | OSCILLATOR TIME SERIES - a synthesized univariate time series with 1024 observations. These data are similar to those which might be found in a university or industrial laboratory setting, or possibly from a process monitor on a plant floor. They show obvious structure, but there is more than one feature present, and good graphics are key to uncovering the features. The objective is to find ALL the features. At the Exposition next year, the algorithm and coefficients by which the dataset was constructed will be presented, along with the stages of analysis which would uncover the features. Some questions to consider:
14 |
15 | What graphics are helpful in selecting the right analytical tools?
16 | What combinations of graphics are essential to finding all the features?
17 | For what features are the traditional graphics and analytical tools weak?
18 | Are there graphics that you can retrospectively develop which more clearly reveal the features which were hard to uncover?
19 | The oscillator data are available in an ASCII file, one observation per record. To obtain the data, send an email message to statlib@lib.stat.cmu.edu containing the single line:
20 | send oscillator from 1993.expo
21 | BREAKFAST CEREAL DATA (REVISED)- a multivariate dataset describing seventy-seven commonly available breakfast cereals, based on the information now available on the newly-mandated F&DA food label. What are you getting when you eat a bowl of cereal? Can you get a lot of fiber without a lot of calories? Can you describe what cereals are displayed on high, low, and middle shelves? The good news is that none of the cereals for which we collected data had any cholesterol, and manufacturers rarely use artificial sweeteners and colors, nowadays. However, there is still a lot of data for the consumer to understand while choosing a good breakfast cereal.
22 | Two new variables have been added to the data (end of each record):
23 |
24 | weight (in ounces) of one serving (serving size) [weight]
25 | cups per serving [cups]
26 | Otherwise, the data are the same, except for minor typo corrections. The addition of these variables (suggested by Abbe Herzig of Consumers Union. Cereals vary considerably in their densities and listed serving sizes. Thus, the serving sizes listed on cereal labels (in weight units) translate into different amounts of nutrients in your bowl. Most people simply fill a cereal bowl (resulting in constant volume, but not weight). The new variables help standardize other ways, which provides other ways to differentiate and group cereals.
27 | Here are some facts about nutrition that might help you in your analysis. Nutritional recommendations are drawn from the references at the end of this document:
28 |
29 | Adults should consume between 20 and 35 grams of dietary fiber per day.
30 | The recommended daily intake (RDI) for calories is 2200 for women and 2900 for men.
31 | Calories come in three food components. There are 9 calories per gram of fat, and 4 calories per gram of carbohydrate and protein.
32 | Overall, in your diet, no more than 10% of your calories should be consumed from simple carbohydrates (sugars), and no more than 30% should come from fat. The RDI of protein is 50 grams for women and 63 grams for men. The balance of calories should be consumed in the form of complex carbohydrates (starches).
33 | The average adult with no defined risk factors or other dietary restrictions should consume between 1800 and 2400 mg of sodium per day.
34 | The type and amount of milk added to cereal can make a significant difference in the fat and protein content of your breakfast.
35 | One possible task is to develop a graphic that would allow the consumer to quickly compare a particular cereal to other possible choices. Some additional questions to consider, and try to answer with effective graphics:
36 | Can you find the correlations you might expect? Are there any surprising correlations?
37 | What is the true "dimensionality" of the data?
38 | Are there any cereals which are virtually identical?
39 | Is there any way to discriminate among the major manufacturers by cereal characteristics, or do they each have a "balanced portfolio" of cereals?
40 | Do the nutritional claims made in cereal advertisements stand the scrutiny of data analysis?
41 | Are there cereals which are clearly nutritionally superior, or inferior? Are there clusters of cereals?
42 | Is a ranking or scoring scheme possible or reasonable, and if so, are there cereals which are nutritionally superior or inferior under all reasonable weighting schemes?
43 | The variables of the dataset are listed below, in order. For convenience, we suggest that you use the variable name supplied in square brackets.
44 | Breakfast cereal variables:
45 | cereal name [name]
46 | manufacturer (e.g., Kellogg's) [mfr]
47 | type (cold/hot) [type]
48 | calories (number) [calories]
49 | protein(g) [protein]
50 | fat(g) [fat]
51 | sodium(mg) [sodium]
52 | dietary fiber(g) [fiber]
53 | complex carbohydrates(g) [carbo]
54 | sugars(g) [sugars]
55 | display shelf (1, 2, or 3, counting from the floor) [shelf]
56 | potassium(mg) [potass]
57 | vitamins & minerals (0, 25, or 100, respectively indicating
58 | 'none added'; 'enriched, often to 25% FDA recommended'; '100% of
59 | FDA recommended') [vitamins]
60 | weight (in ounces) of one serving (serving size) [weight]
61 | cups per serving [cups]
62 | Manufacturers are represented by their first initial: A=American Home Food Products, G=General Mills, K=Kelloggs, N=Nabisco, P=Post, Q=Quaker Oats, R=Ralston Purina)
63 | The breakfast cereal data are available in an ASCII file, one cereal per record, with underscores in place of the spaces in the cereal name, and spaces separating the different variables. The value -1 indicates missing data. To obtain the data, send an email message to: statlib@lib.stat.cmu.edu containing the single line:
64 |
65 | send cereal from 1993.expo
66 | Work alone or put together a team of data analysts to look at one or both of these two data sets! Try to answer the questions posed here or conduct an exploratory analysis to find and answer your own questions.
67 | To participate in the Exposition, you must submit a contributed paper abstract for inclusion in the formal ASA Contributed Paper Program. This reserves a poster session slot for you. Your abstract, on the official ASA abstract form, is due by the contributed paper deadline, February 1, 1993.
68 |
69 | If you do not have electronic mail access, try to get the data files from someone who already has them. If you cannot obtain the data via electronic mail, contact David Coleman, AMCT-D, Alcoa Technology Center, Alcoa Center, PA 15069, or e-mail COLEMAN1@ncf.al.alcoa.com
70 |
71 | References:
72 |
73 | National Research Council, 1989a. "Diet and Health: Implications for Reducing Chronic Disease Risk". National Academy Press, Washington, D.C.
74 | National Research Council, 1989b. "Recommended Dietary Allowances, 10th Ed." National Academy Press, Washington, D.C.
75 |
76 | National Cancer Institute, 1987. "Diet, Nutrition, and Cancer Prevention: A Guide to Food Choices," NIH Publ. No. 87-2878. National Institutes of Health, Public Health Service, U.S. Department of Health and Human Service, U.S. Government Printing Office, Washington, D.C.
--------------------------------------------------------------------------------
/datasets/Cereal data columns.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Cereal data columns.xlsx
--------------------------------------------------------------------------------
/datasets/Cereal data.txt:
--------------------------------------------------------------------------------
1 | 100%_Bran N C 70 4 1 130 10 5 6 3 280 25 1 0.33
2 | 100%_Natural_Bran Q C 120 3 5 15 2 8 8 3 135 0 1 -1
3 | All-Bran K C 70 4 1 260 9 7 5 3 320 25 1 0.33
4 | All-Bran_with_Extra_Fiber K C 50 4 0 140 14 8 0 3 330 25 1 0.5
5 | Almond_Delight R C 110 2 2 200 1 14 8 3 -1 25 1 0.75
6 | Apple_Cinnamon_Cheerios G C 110 2 2 180 1.5 10.5 10 1 70 25 1 0.75
7 | Apple_Jacks K C 110 2 0 125 1 11 14 2 30 25 1 1
8 | Basic_4 G C 130 3 2 210 2 18 8 3 100 25 1.33 0.75
9 | Bran_Chex R C 90 2 1 200 4 15 6 1 125 25 1 0.67
10 | Bran_Flakes P C 90 3 0 210 5 13 5 3 190 25 1 0.67
11 | Cap'n'Crunch Q C 120 1 2 220 0 12 12 2 35 25 1 0.75
12 | Cheerios G C 110 6 2 290 2 17 1 1 105 25 1 1.25
13 | Cinnamon_Toast_Crunch G C 120 1 3 210 0 13 9 2 45 25 1 0.75
14 | Clusters G C 110 3 2 140 2 13 7 3 105 25 1 0.5
15 | Cocoa_Puffs G C 110 1 1 180 0 12 13 2 55 25 1 1
16 | Corn_Chex R C 110 2 0 280 0 22 3 1 25 25 1 1
17 | Corn_Flakes K C 100 2 0 290 1 21 2 1 35 25 1 1
18 | Corn_Pops K C 110 1 0 90 1 13 12 2 20 25 1 1
19 | Count_Chocula G C 110 1 1 180 0 12 13 2 65 25 1 1
20 | Cracklin'_Oat_Bran K C 110 3 3 140 4 10 7 3 160 25 1 0.5
21 | Cream_of_Wheat_(Quick) N H 100 3 0 80 1 21 0 2 -1 0 1 1
22 | Crispix K C 110 2 0 220 1 21 3 3 30 25 1 1
23 | Crispy_Wheat_&_Raisins G C 100 2 1 140 2 11 10 3 120 25 1 0.75
24 | Double_Chex R C 100 2 0 190 1 18 5 3 80 25 1 0.75
25 | Froot_Loops K C 110 2 1 125 1 11 13 2 30 25 1 1
26 | Frosted_Flakes K C 110 1 0 200 1 14 11 1 25 25 1 0.75
27 | Frosted_Mini-Wheats K C 100 3 0 0 3 14 7 2 100 25 1 0.8
28 | Fruit_&_Fibre_Dates,_Walnuts,_and_Oats P C 120 3 2 160 5 12 10 3 200 25 1.25 0.67
29 | Fruitful_Bran K C 120 3 0 240 5 14 12 3 190 25 1.33 0.67
30 | Fruity_Pebbles P C 110 1 1 135 0 13 12 2 25 25 1 0.75
31 | Golden_Crisp P C 100 2 0 45 0 11 15 1 40 25 1 0.88
32 | Golden_Grahams G C 110 1 1 280 0 15 9 2 45 25 1 0.75
33 | Grape_Nuts_Flakes P C 100 3 1 140 3 15 5 3 85 25 1 0.88
34 | Grape-Nuts P C 110 3 0 170 3 17 3 3 90 25 1 0.25
35 | Great_Grains_Pecan P C 120 3 3 75 3 13 4 3 100 25 1 0.33
36 | Honey_Graham_Ohs Q C 120 1 2 220 1 12 11 2 45 25 1 1
37 | Honey_Nut_Cheerios G C 110 3 1 250 1.5 11.5 10 1 90 25 1 0.75
38 | Honey-comb P C 110 1 0 180 0 14 11 1 35 25 1 1.33
39 | Just_Right_Crunchy__Nuggets K C 110 2 1 170 1 17 6 3 60 100 1 -1
40 | Just_Right_Fruit_&_Nut K C 140 3 1 170 2 20 9 3 95 100 1.3 0.75
41 | Kix G C 110 2 1 260 0 21 3 2 40 25 1 1.5
42 | Life Q C 100 4 2 150 2 12 6 2 95 25 1 0.67
43 | Lucky_Charms G C 110 2 1 180 0 12 12 2 55 25 1 1
44 | Maypo A H 100 4 1 0 0 16 3 2 95 25 1 -1
45 | Muesli_Raisins,_Dates,_&_Almonds R C 150 4 3 95 3 16 11 3 170 25 -1 -1
46 | Muesli_Raisins,_Peaches,_&_Pecans R C 150 4 3 150 3 16 11 3 170 25 -1 -1
47 | Mueslix_Crispy_Blend K C 160 3 2 150 3 17 13 3 160 25 1.5 0.67
48 | Multi-Grain_Cheerios G C 100 2 1 220 2 15 6 1 90 25 1 1
49 | Nut&Honey_Crunch K C 120 2 1 190 0 15 9 2 40 25 1 0.67
50 | Nutri-Grain_Almond-Raisin K C 140 3 2 220 3 21 7 3 130 25 1.33 0.67
51 | Nutri-grain_Wheat K C 90 3 0 170 3 18 2 3 90 25 1 -1
52 | Oatmeal_Raisin_Crisp G C 130 3 2 170 1.5 13.5 10 3 120 25 1.25 0.5
53 | Post_Nat._Raisin_Bran P C 120 3 1 200 6 11 14 3 260 25 1.33 0.67
54 | Product_19 K C 100 3 0 320 1 20 3 3 45 100 1 1
55 | Puffed_Rice Q C 50 1 0 0 0 13 0 3 15 0 0.5 1
56 | Puffed_Wheat Q C 50 2 0 0 1 10 0 3 50 0 0.5 -1
57 | Quaker_Oat_Squares Q C 100 4 1 135 2 14 6 3 110 25 1 0.5
58 | Quaker_Oatmeal Q H 100 5 2 0 2.7 -1 -1 1 110 0 1 0.67
59 | Raisin_Bran K C 120 3 1 210 5 14 12 2 240 25 1.33 0.75
60 | Raisin_Nut_Bran G C 100 3 2 140 2.5 10.5 8 3 140 25 1 0.5
61 | Raisin_Squares K C 90 2 0 0 2 15 6 3 110 25 1 0.5
62 | Rice_Chex R C 110 1 0 240 0 23 2 1 30 25 1 1.13
63 | Rice_Krispies K C 110 2 0 290 0 22 3 1 35 25 1 1
64 | Shredded_Wheat N C 80 2 0 0 3 16 0 1 95 0 0.83 -1
65 | Shredded_Wheat_'n'Bran N C 90 3 0 0 4 19 0 1 140 0 1 0.67
66 | Shredded_Wheat_spoon_size N C 90 3 0 0 3 20 0 1 120 0 1 0.67
67 | Smacks K C 110 2 1 70 1 9 15 2 40 25 1 0.75
68 | Special_K K C 110 6 0 230 1 16 3 1 55 25 1 1
69 | Strawberry_Fruit_Wheats N C 90 2 0 15 3 15 5 2 90 25 1 -1
70 | Total_Corn_Flakes G C 110 2 1 200 0 21 3 3 35 100 1 1
71 | Total_Raisin_Bran G C 140 3 1 190 4 15 14 3 230 100 1.5 1
72 | Total_Whole_Grain G C 100 3 1 200 3 16 3 3 110 100 1 1
73 | Triples G C 110 2 1 250 0 21 3 3 60 25 1 0.75
74 | Trix G C 110 1 1 140 0 13 12 2 25 25 1 1
75 | Wheat_Chex R C 100 3 1 230 3 17 3 1 115 25 1 0.67
76 | Wheaties G C 100 3 1 200 3 17 3 1 110 25 1 1
77 | Wheaties_Honey_Gold G C 110 2 1 200 1 16 8 1 60 25 1 0.75
--------------------------------------------------------------------------------
/datasets/Customer Churn Columns.csv:
--------------------------------------------------------------------------------
1 | Column_Names
2 | A
3 | B
4 | C
5 | D
6 | E
7 | F
8 | G
9 | H
10 | I
11 | J
12 | K
13 | L
14 | M
15 | N
16 | O
17 | P
18 | Q
19 | R
20 | S
21 | T
22 | U
23 |
--------------------------------------------------------------------------------
/datasets/Description.txt:
--------------------------------------------------------------------------------
1 | Data Set Information:
2 |
3 | These data are the results of a chemical analysis of wines grown in the same region in Italy but derived from three different cultivars. The analysis determined the quantities of 13 constituents found in each of the three types of wines.
4 |
5 | I think that the initial data set had around 30 variables, but for some reason I only have the 13 dimensional version. I had a list of what the 30 or so variables were, but a.) I lost it, and b.), I would not know which 13 variables are included in the set.
6 |
7 | The attributes are (dontated by Riccardo Leardi, riclea '@' anchem.unige.it )
8 | 1) Alcohol
9 | 2) Malic acid
10 | 3) Ash
11 | 4) Alcalinity of ash
12 | 5) Magnesium
13 | 6) Total phenols
14 | 7) Flavanoids
15 | 8) Nonflavanoid phenols
16 | 9) Proanthocyanins
17 | 10)Color intensity
18 | 11)Hue
19 | 12)OD280/OD315 of diluted wines
20 | 13)Proline
21 |
22 | In a classification context, this is a well posed problem with "well behaved" class structures. A good data set for first testing of a new classifier, but not very challenging.
23 |
24 |
25 | Attribute Information:
26 |
27 | All attributes are continuous
28 |
29 | No statistics available, but suggest to standardise variables for certain uses (e.g. for us with classifiers which are NOT scale invariant)
30 |
31 | NOTE: 1st attribute is class identifier (1-3)
--------------------------------------------------------------------------------
/datasets/Ecom Expense.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Ecom Expense.xlsx
--------------------------------------------------------------------------------
/datasets/Medals.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Medals.csv
--------------------------------------------------------------------------------
/datasets/Titanic Description.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/Titanic Description.txt
--------------------------------------------------------------------------------
/datasets/alumnos.csv:
--------------------------------------------------------------------------------
1 | nombre,altura,peso,edad,sexo
2 | Hugo,1.67,60,23,h
3 | Paco,1.73,83,25,h
4 | Luis,1.62,70,28,h
5 | Diana,1.58,58,21,m
6 | Francisco,1.86,98,28,h
7 | Felipe,1.79,100,26,h
8 | Jacinta,1.69,62,20,m
9 | Bernardo,1.6,83,31,h
10 | Marisol,1.6,56,30,m
11 | Facundo,1.98,112,36,h
12 | Trinidad,1.72,72,21,m
13 | Camila,1.63,57,26,m
14 | Macarena,1.73,68,27,m
15 | Diego,1.62,78,23,h
16 | Gonzalo,1.58,67,22,h
17 | Alejandra,1.86,74,21,m
18 | Fernando,1.79,93,27,h
19 | Carolina,1.6,63,28,m
20 | Vicente,1.98,102,31,h
21 | Benjamín,1.72,78,36,h
22 | Gloria,1.58,65,23,m
23 |
--------------------------------------------------------------------------------
/datasets/auto-mpg.csv:
--------------------------------------------------------------------------------
1 | mpg,cylinders,displacement,horsepower,weight,acceleration,model year,origin,car name
2 | 18,8,307,130,3504,12,70,1,chevrolet chevelle malibu
3 | 15,8,350,165,3693,11.5,70,1,buick skylark 320
4 | 18,8,318,150,3436,11,70,1,plymouth satellite
5 | 16,8,304,150,3433,12,70,1,amc rebel sst
6 | 17,8,302,140,3449,10.5,70,1,ford torino
7 | 15,8,429,198,4341,10,70,1,ford galaxie 500
8 | 14,8,454,220,4354,9,70,1,chevrolet impala
9 | 14,8,440,215,4312,8.5,70,1,plymouth fury iii
10 | 14,8,455,225,4425,10,70,1,pontiac catalina
11 | 15,8,390,190,3850,8.5,70,1,amc ambassador dpl
12 | NA,4,133,115,3090,17.5,70,2,citroen ds-21 pallas
13 | NA,8,350,165,4142,11.5,70,1,chevrolet chevelle concours (sw)
14 | NA,8,351,153,4034,11,70,1,ford torino (sw)
15 | NA,8,383,175,4166,10.5,70,1,plymouth satellite (sw)
16 | NA,8,360,175,3850,11,70,1,amc rebel sst (sw)
17 | 15,8,383,170,3563,10,70,1,dodge challenger se
18 | 14,8,340,160,3609,8,70,1,plymouth 'cuda 340
19 | NA,8,302,140,3353,8,70,1,ford mustang boss 302
20 | 15,8,400,150,3761,9.5,70,1,chevrolet monte carlo
21 | 14,8,455,225,3086,10,70,1,buick estate wagon (sw)
22 | 24,4,113,95,2372,15,70,3,toyota corona mark ii
23 | 22,6,198,95,2833,15.5,70,1,plymouth duster
24 | 18,6,199,97,2774,15.5,70,1,amc hornet
25 | 21,6,200,85,2587,16,70,1,ford maverick
26 | 27,4,97,88,2130,14.5,70,3,datsun pl510
27 | 26,4,97,46,1835,20.5,70,2,volkswagen 1131 deluxe sedan
28 | 25,4,110,87,2672,17.5,70,2,peugeot 504
29 | 24,4,107,90,2430,14.5,70,2,audi 100 ls
30 | 25,4,104,95,2375,17.5,70,2,saab 99e
31 | 26,4,121,113,2234,12.5,70,2,bmw 2002
32 | 21,6,199,90,2648,15,70,1,amc gremlin
33 | 10,8,360,215,4615,14,70,1,ford f250
34 | 10,8,307,200,4376,15,70,1,chevy c20
35 | 11,8,318,210,4382,13.5,70,1,dodge d200
36 | 9,8,304,193,4732,18.5,70,1,hi 1200d
37 | 27,4,97,88,2130,14.5,71,3,datsun pl510
38 | 28,4,140,90,2264,15.5,71,1,chevrolet vega 2300
39 | 25,4,113,95,2228,14,71,3,toyota corona
40 | 25,4,98,NA,2046,19,71,1,ford pinto
41 | NA,4,97,48,1978,20,71,2,volkswagen super beetle 117
42 | 19,6,232,100,2634,13,71,1,amc gremlin
43 | 16,6,225,105,3439,15.5,71,1,plymouth satellite custom
44 | 17,6,250,100,3329,15.5,71,1,chevrolet chevelle malibu
45 | 19,6,250,88,3302,15.5,71,1,ford torino 500
46 | 18,6,232,100,3288,15.5,71,1,amc matador
47 | 14,8,350,165,4209,12,71,1,chevrolet impala
48 | 14,8,400,175,4464,11.5,71,1,pontiac catalina brougham
49 | 14,8,351,153,4154,13.5,71,1,ford galaxie 500
50 | 14,8,318,150,4096,13,71,1,plymouth fury iii
51 | 12,8,383,180,4955,11.5,71,1,dodge monaco (sw)
52 | 13,8,400,170,4746,12,71,1,ford country squire (sw)
53 | 13,8,400,175,5140,12,71,1,pontiac safari (sw)
54 | 18,6,258,110,2962,13.5,71,1,amc hornet sportabout (sw)
55 | 22,4,140,72,2408,19,71,1,chevrolet vega (sw)
56 | 19,6,250,100,3282,15,71,1,pontiac firebird
57 | 18,6,250,88,3139,14.5,71,1,ford mustang
58 | 23,4,122,86,2220,14,71,1,mercury capri 2000
59 | 28,4,116,90,2123,14,71,2,opel 1900
60 | 30,4,79,70,2074,19.5,71,2,peugeot 304
61 | 30,4,88,76,2065,14.5,71,2,fiat 124b
62 | 31,4,71,65,1773,19,71,3,toyota corolla 1200
63 | 35,4,72,69,1613,18,71,3,datsun 1200
64 | 27,4,97,60,1834,19,71,2,volkswagen model 111
65 | 26,4,91,70,1955,20.5,71,1,plymouth cricket
66 | 24,4,113,95,2278,15.5,72,3,toyota corona hardtop
67 | 25,4,97.5,80,2126,17,72,1,dodge colt hardtop
68 | 23,4,97,54,2254,23.5,72,2,volkswagen type 3
69 | 20,4,140,90,2408,19.5,72,1,chevrolet vega
70 | 21,4,122,86,2226,16.5,72,1,ford pinto runabout
71 | 13,8,350,165,4274,12,72,1,chevrolet impala
72 | 14,8,400,175,4385,12,72,1,pontiac catalina
73 | 15,8,318,150,4135,13.5,72,1,plymouth fury iii
74 | 14,8,351,153,4129,13,72,1,ford galaxie 500
75 | 17,8,304,150,3672,11.5,72,1,amc ambassador sst
76 | 11,8,429,208,4633,11,72,1,mercury marquis
77 | 13,8,350,155,4502,13.5,72,1,buick lesabre custom
78 | 12,8,350,160,4456,13.5,72,1,oldsmobile delta 88 royale
79 | 13,8,400,190,4422,12.5,72,1,chrysler newport royal
80 | 19,3,70,97,2330,13.5,72,3,mazda rx2 coupe
81 | 15,8,304,150,3892,12.5,72,1,amc matador (sw)
82 | 13,8,307,130,4098,14,72,1,chevrolet chevelle concours (sw)
83 | 13,8,302,140,4294,16,72,1,ford gran torino (sw)
84 | 14,8,318,150,4077,14,72,1,plymouth satellite custom (sw)
85 | 18,4,121,112,2933,14.5,72,2,volvo 145e (sw)
86 | 22,4,121,76,2511,18,72,2,volkswagen 411 (sw)
87 | 21,4,120,87,2979,19.5,72,2,peugeot 504 (sw)
88 | 26,4,96,69,2189,18,72,2,renault 12 (sw)
89 | 22,4,122,86,2395,16,72,1,ford pinto (sw)
90 | 28,4,97,92,2288,17,72,3,datsun 510 (sw)
91 | 23,4,120,97,2506,14.5,72,3,toyouta corona mark ii (sw)
92 | 28,4,98,80,2164,15,72,1,dodge colt (sw)
93 | 27,4,97,88,2100,16.5,72,3,toyota corolla 1600 (sw)
94 | 13,8,350,175,4100,13,73,1,buick century 350
95 | 14,8,304,150,3672,11.5,73,1,amc matador
96 | 13,8,350,145,3988,13,73,1,chevrolet malibu
97 | 14,8,302,137,4042,14.5,73,1,ford gran torino
98 | 15,8,318,150,3777,12.5,73,1,dodge coronet custom
99 | 12,8,429,198,4952,11.5,73,1,mercury marquis brougham
100 | 13,8,400,150,4464,12,73,1,chevrolet caprice classic
101 | 13,8,351,158,4363,13,73,1,ford ltd
102 | 14,8,318,150,4237,14.5,73,1,plymouth fury gran sedan
103 | 13,8,440,215,4735,11,73,1,chrysler new yorker brougham
104 | 12,8,455,225,4951,11,73,1,buick electra 225 custom
105 | 13,8,360,175,3821,11,73,1,amc ambassador brougham
106 | 18,6,225,105,3121,16.5,73,1,plymouth valiant
107 | 16,6,250,100,3278,18,73,1,chevrolet nova custom
108 | 18,6,232,100,2945,16,73,1,amc hornet
109 | 18,6,250,88,3021,16.5,73,1,ford maverick
110 | 23,6,198,95,2904,16,73,1,plymouth duster
111 | 26,4,97,46,1950,21,73,2,volkswagen super beetle
112 | 11,8,400,150,4997,14,73,1,chevrolet impala
113 | 12,8,400,167,4906,12.5,73,1,ford country
114 | 13,8,360,170,4654,13,73,1,plymouth custom suburb
115 | 12,8,350,180,4499,12.5,73,1,oldsmobile vista cruiser
116 | 18,6,232,100,2789,15,73,1,amc gremlin
117 | 20,4,97,88,2279,19,73,3,toyota carina
118 | 21,4,140,72,2401,19.5,73,1,chevrolet vega
119 | 22,4,108,94,2379,16.5,73,3,datsun 610
120 | 18,3,70,90,2124,13.5,73,3,maxda rx3
121 | 19,4,122,85,2310,18.5,73,1,ford pinto
122 | 21,6,155,107,2472,14,73,1,mercury capri v6
123 | 26,4,98,90,2265,15.5,73,2,fiat 124 sport coupe
124 | 15,8,350,145,4082,13,73,1,chevrolet monte carlo s
125 | 16,8,400,230,4278,9.5,73,1,pontiac grand prix
126 | 29,4,68,49,1867,19.5,73,2,fiat 128
127 | 24,4,116,75,2158,15.5,73,2,opel manta
128 | 20,4,114,91,2582,14,73,2,audi 100ls
129 | 19,4,121,112,2868,15.5,73,2,volvo 144ea
130 | 15,8,318,150,3399,11,73,1,dodge dart custom
131 | 24,4,121,110,2660,14,73,2,saab 99le
132 | 20,6,156,122,2807,13.5,73,3,toyota mark ii
133 | 11,8,350,180,3664,11,73,1,oldsmobile omega
134 | 20,6,198,95,3102,16.5,74,1,plymouth duster
135 | 21,6,200,NA,2875,17,74,1,ford maverick
136 | 19,6,232,100,2901,16,74,1,amc hornet
137 | 15,6,250,100,3336,17,74,1,chevrolet nova
138 | 31,4,79,67,1950,19,74,3,datsun b210
139 | 26,4,122,80,2451,16.5,74,1,ford pinto
140 | 32,4,71,65,1836,21,74,3,toyota corolla 1200
141 | 25,4,140,75,2542,17,74,1,chevrolet vega
142 | 16,6,250,100,3781,17,74,1,chevrolet chevelle malibu classic
143 | 16,6,258,110,3632,18,74,1,amc matador
144 | 18,6,225,105,3613,16.5,74,1,plymouth satellite sebring
145 | 16,8,302,140,4141,14,74,1,ford gran torino
146 | 13,8,350,150,4699,14.5,74,1,buick century luxus (sw)
147 | 14,8,318,150,4457,13.5,74,1,dodge coronet custom (sw)
148 | 14,8,302,140,4638,16,74,1,ford gran torino (sw)
149 | 14,8,304,150,4257,15.5,74,1,amc matador (sw)
150 | 29,4,98,83,2219,16.5,74,2,audi fox
151 | 26,4,79,67,1963,15.5,74,2,volkswagen dasher
152 | 26,4,97,78,2300,14.5,74,2,opel manta
153 | 31,4,76,52,1649,16.5,74,3,toyota corona
154 | 32,4,83,61,2003,19,74,3,datsun 710
155 | 28,4,90,75,2125,14.5,74,1,dodge colt
156 | 24,4,90,75,2108,15.5,74,2,fiat 128
157 | 26,4,116,75,2246,14,74,2,fiat 124 tc
158 | 24,4,120,97,2489,15,74,3,honda civic
159 | 26,4,108,93,2391,15.5,74,3,subaru
160 | 31,4,79,67,2000,16,74,2,fiat x1.9
161 | 19,6,225,95,3264,16,75,1,plymouth valiant custom
162 | 18,6,250,105,3459,16,75,1,chevrolet nova
163 | 15,6,250,72,3432,21,75,1,mercury monarch
164 | 15,6,250,72,3158,19.5,75,1,ford maverick
165 | 16,8,400,170,4668,11.5,75,1,pontiac catalina
166 | 15,8,350,145,4440,14,75,1,chevrolet bel air
167 | 16,8,318,150,4498,14.5,75,1,plymouth grand fury
168 | 14,8,351,148,4657,13.5,75,1,ford ltd
169 | 17,6,231,110,3907,21,75,1,buick century
170 | 16,6,250,105,3897,18.5,75,1,chevroelt chevelle malibu
171 | 15,6,258,110,3730,19,75,1,amc matador
172 | 18,6,225,95,3785,19,75,1,plymouth fury
173 | 21,6,231,110,3039,15,75,1,buick skyhawk
174 | 20,8,262,110,3221,13.5,75,1,chevrolet monza 2+2
175 | 13,8,302,129,3169,12,75,1,ford mustang ii
176 | 29,4,97,75,2171,16,75,3,toyota corolla
177 | 23,4,140,83,2639,17,75,1,ford pinto
178 | 20,6,232,100,2914,16,75,1,amc gremlin
179 | 23,4,140,78,2592,18.5,75,1,pontiac astro
180 | 24,4,134,96,2702,13.5,75,3,toyota corona
181 | 25,4,90,71,2223,16.5,75,2,volkswagen dasher
182 | 24,4,119,97,2545,17,75,3,datsun 710
183 | 18,6,171,97,2984,14.5,75,1,ford pinto
184 | 29,4,90,70,1937,14,75,2,volkswagen rabbit
185 | 19,6,232,90,3211,17,75,1,amc pacer
186 | 23,4,115,95,2694,15,75,2,audi 100ls
187 | 23,4,120,88,2957,17,75,2,peugeot 504
188 | 22,4,121,98,2945,14.5,75,2,volvo 244dl
189 | 25,4,121,115,2671,13.5,75,2,saab 99le
190 | 33,4,91,53,1795,17.5,75,3,honda civic cvcc
191 | 28,4,107,86,2464,15.5,76,2,fiat 131
192 | 25,4,116,81,2220,16.9,76,2,opel 1900
193 | 25,4,140,92,2572,14.9,76,1,capri ii
194 | 26,4,98,79,2255,17.7,76,1,dodge colt
195 | 27,4,101,83,2202,15.3,76,2,renault 12tl
196 | 17.5,8,305,140,4215,13,76,1,chevrolet chevelle malibu classic
197 | 16,8,318,150,4190,13,76,1,dodge coronet brougham
198 | 15.5,8,304,120,3962,13.9,76,1,amc matador
199 | 14.5,8,351,152,4215,12.8,76,1,ford gran torino
200 | 22,6,225,100,3233,15.4,76,1,plymouth valiant
201 | 22,6,250,105,3353,14.5,76,1,chevrolet nova
202 | 24,6,200,81,3012,17.6,76,1,ford maverick
203 | 22.5,6,232,90,3085,17.6,76,1,amc hornet
204 | 29,4,85,52,2035,22.2,76,1,chevrolet chevette
205 | 24.5,4,98,60,2164,22.1,76,1,chevrolet woody
206 | 29,4,90,70,1937,14.2,76,2,vw rabbit
207 | 33,4,91,53,1795,17.4,76,3,honda civic
208 | 20,6,225,100,3651,17.7,76,1,dodge aspen se
209 | 18,6,250,78,3574,21,76,1,ford granada ghia
210 | 18.5,6,250,110,3645,16.2,76,1,pontiac ventura sj
211 | 17.5,6,258,95,3193,17.8,76,1,amc pacer d/l
212 | 29.5,4,97,71,1825,12.2,76,2,volkswagen rabbit
213 | 32,4,85,70,1990,17,76,3,datsun b-210
214 | 28,4,97,75,2155,16.4,76,3,toyota corolla
215 | 26.5,4,140,72,2565,13.6,76,1,ford pinto
216 | 20,4,130,102,3150,15.7,76,2,volvo 245
217 | 13,8,318,150,3940,13.2,76,1,plymouth volare premier v8
218 | 19,4,120,88,3270,21.9,76,2,peugeot 504
219 | 19,6,156,108,2930,15.5,76,3,toyota mark ii
220 | 16.5,6,168,120,3820,16.7,76,2,mercedes-benz 280s
221 | 16.5,8,350,180,4380,12.1,76,1,cadillac seville
222 | 13,8,350,145,4055,12,76,1,chevy c10
223 | 13,8,302,130,3870,15,76,1,ford f108
224 | 13,8,318,150,3755,14,76,1,dodge d100
225 | 31.5,4,98,68,2045,18.5,77,3,honda accord cvcc
226 | 30,4,111,80,2155,14.8,77,1,buick opel isuzu deluxe
227 | 36,4,79,58,1825,18.6,77,2,renault 5 gtl
228 | 25.5,4,122,96,2300,15.5,77,1,plymouth arrow gs
229 | 33.5,4,85,70,1945,16.8,77,3,datsun f-10 hatchback
230 | 17.5,8,305,145,3880,12.5,77,1,chevrolet caprice classic
231 | 17,8,260,110,4060,19,77,1,oldsmobile cutlass supreme
232 | 15.5,8,318,145,4140,13.7,77,1,dodge monaco brougham
233 | 15,8,302,130,4295,14.9,77,1,mercury cougar brougham
234 | 17.5,6,250,110,3520,16.4,77,1,chevrolet concours
235 | 20.5,6,231,105,3425,16.9,77,1,buick skylark
236 | 19,6,225,100,3630,17.7,77,1,plymouth volare custom
237 | 18.5,6,250,98,3525,19,77,1,ford granada
238 | 16,8,400,180,4220,11.1,77,1,pontiac grand prix lj
239 | 15.5,8,350,170,4165,11.4,77,1,chevrolet monte carlo landau
240 | 15.5,8,400,190,4325,12.2,77,1,chrysler cordoba
241 | 16,8,351,149,4335,14.5,77,1,ford thunderbird
242 | 29,4,97,78,1940,14.5,77,2,volkswagen rabbit custom
243 | 24.5,4,151,88,2740,16,77,1,pontiac sunbird coupe
244 | 26,4,97,75,2265,18.2,77,3,toyota corolla liftback
245 | 25.5,4,140,89,2755,15.8,77,1,ford mustang ii 2+2
246 | 30.5,4,98,63,2051,17,77,1,chevrolet chevette
247 | 33.5,4,98,83,2075,15.9,77,1,dodge colt m/m
248 | 30,4,97,67,1985,16.4,77,3,subaru dl
249 | 30.5,4,97,78,2190,14.1,77,2,volkswagen dasher
250 | 22,6,146,97,2815,14.5,77,3,datsun 810
251 | 21.5,4,121,110,2600,12.8,77,2,bmw 320i
252 | 21.5,3,80,110,2720,13.5,77,3,mazda rx-4
253 | 43.1,4,90,48,1985,21.5,78,2,volkswagen rabbit custom diesel
254 | 36.1,4,98,66,1800,14.4,78,1,ford fiesta
255 | 32.8,4,78,52,1985,19.4,78,3,mazda glc deluxe
256 | 39.4,4,85,70,2070,18.6,78,3,datsun b210 gx
257 | 36.1,4,91,60,1800,16.4,78,3,honda civic cvcc
258 | 19.9,8,260,110,3365,15.5,78,1,oldsmobile cutlass salon brougham
259 | 19.4,8,318,140,3735,13.2,78,1,dodge diplomat
260 | 20.2,8,302,139,3570,12.8,78,1,mercury monarch ghia
261 | 19.2,6,231,105,3535,19.2,78,1,pontiac phoenix lj
262 | 20.5,6,200,95,3155,18.2,78,1,chevrolet malibu
263 | 20.2,6,200,85,2965,15.8,78,1,ford fairmont (auto)
264 | 25.1,4,140,88,2720,15.4,78,1,ford fairmont (man)
265 | 20.5,6,225,100,3430,17.2,78,1,plymouth volare
266 | 19.4,6,232,90,3210,17.2,78,1,amc concord
267 | 20.6,6,231,105,3380,15.8,78,1,buick century special
268 | 20.8,6,200,85,3070,16.7,78,1,mercury zephyr
269 | 18.6,6,225,110,3620,18.7,78,1,dodge aspen
270 | 18.1,6,258,120,3410,15.1,78,1,amc concord d/l
271 | 19.2,8,305,145,3425,13.2,78,1,chevrolet monte carlo landau
272 | 17.7,6,231,165,3445,13.4,78,1,buick regal sport coupe (turbo)
273 | 18.1,8,302,139,3205,11.2,78,1,ford futura
274 | 17.5,8,318,140,4080,13.7,78,1,dodge magnum xe
275 | 30,4,98,68,2155,16.5,78,1,chevrolet chevette
276 | 27.5,4,134,95,2560,14.2,78,3,toyota corona
277 | 27.2,4,119,97,2300,14.7,78,3,datsun 510
278 | 30.9,4,105,75,2230,14.5,78,1,dodge omni
279 | 21.1,4,134,95,2515,14.8,78,3,toyota celica gt liftback
280 | 23.2,4,156,105,2745,16.7,78,1,plymouth sapporo
281 | 23.8,4,151,85,2855,17.6,78,1,oldsmobile starfire sx
282 | 23.9,4,119,97,2405,14.9,78,3,datsun 200-sx
283 | 20.3,5,131,103,2830,15.9,78,2,audi 5000
284 | 17,6,163,125,3140,13.6,78,2,volvo 264gl
285 | 21.6,4,121,115,2795,15.7,78,2,saab 99gle
286 | 16.2,6,163,133,3410,15.8,78,2,peugeot 604sl
287 | 31.5,4,89,71,1990,14.9,78,2,volkswagen scirocco
288 | 29.5,4,98,68,2135,16.6,78,3,honda accord lx
289 | 21.5,6,231,115,3245,15.4,79,1,pontiac lemans v6
290 | 19.8,6,200,85,2990,18.2,79,1,mercury zephyr 6
291 | 22.3,4,140,88,2890,17.3,79,1,ford fairmont 4
292 | 20.2,6,232,90,3265,18.2,79,1,amc concord dl 6
293 | 20.6,6,225,110,3360,16.6,79,1,dodge aspen 6
294 | 17,8,305,130,3840,15.4,79,1,chevrolet caprice classic
295 | 17.6,8,302,129,3725,13.4,79,1,ford ltd landau
296 | 16.5,8,351,138,3955,13.2,79,1,mercury grand marquis
297 | 18.2,8,318,135,3830,15.2,79,1,dodge st. regis
298 | 16.9,8,350,155,4360,14.9,79,1,buick estate wagon (sw)
299 | 15.5,8,351,142,4054,14.3,79,1,ford country squire (sw)
300 | 19.2,8,267,125,3605,15,79,1,chevrolet malibu classic (sw)
301 | 18.5,8,360,150,3940,13,79,1,chrysler lebaron town @ country (sw)
302 | 31.9,4,89,71,1925,14,79,2,vw rabbit custom
303 | 34.1,4,86,65,1975,15.2,79,3,maxda glc deluxe
304 | 35.7,4,98,80,1915,14.4,79,1,dodge colt hatchback custom
305 | 27.4,4,121,80,2670,15,79,1,amc spirit dl
306 | 25.4,5,183,77,3530,20.1,79,2,mercedes benz 300d
307 | 23,8,350,125,3900,17.4,79,1,cadillac eldorado
308 | 27.2,4,141,71,3190,24.8,79,2,peugeot 504
309 | 23.9,8,260,90,3420,22.2,79,1,oldsmobile cutlass salon brougham
310 | 34.2,4,105,70,2200,13.2,79,1,plymouth horizon
311 | 34.5,4,105,70,2150,14.9,79,1,plymouth horizon tc3
312 | 31.8,4,85,65,2020,19.2,79,3,datsun 210
313 | 37.3,4,91,69,2130,14.7,79,2,fiat strada custom
314 | 28.4,4,151,90,2670,16,79,1,buick skylark limited
315 | 28.8,6,173,115,2595,11.3,79,1,chevrolet citation
316 | 26.8,6,173,115,2700,12.9,79,1,oldsmobile omega brougham
317 | 33.5,4,151,90,2556,13.2,79,1,pontiac phoenix
318 | 41.5,4,98,76,2144,14.7,80,2,vw rabbit
319 | 38.1,4,89,60,1968,18.8,80,3,toyota corolla tercel
320 | 32.1,4,98,70,2120,15.5,80,1,chevrolet chevette
321 | 37.2,4,86,65,2019,16.4,80,3,datsun 310
322 | 28,4,151,90,2678,16.5,80,1,chevrolet citation
323 | 26.4,4,140,88,2870,18.1,80,1,ford fairmont
324 | 24.3,4,151,90,3003,20.1,80,1,amc concord
325 | 19.1,6,225,90,3381,18.7,80,1,dodge aspen
326 | 34.3,4,97,78,2188,15.8,80,2,audi 4000
327 | 29.8,4,134,90,2711,15.5,80,3,toyota corona liftback
328 | 31.3,4,120,75,2542,17.5,80,3,mazda 626
329 | 37,4,119,92,2434,15,80,3,datsun 510 hatchback
330 | 32.2,4,108,75,2265,15.2,80,3,toyota corolla
331 | 46.6,4,86,65,2110,17.9,80,3,mazda glc
332 | 27.9,4,156,105,2800,14.4,80,1,dodge colt
333 | 40.8,4,85,65,2110,19.2,80,3,datsun 210
334 | 44.3,4,90,48,2085,21.7,80,2,vw rabbit c (diesel)
335 | 43.4,4,90,48,2335,23.7,80,2,vw dasher (diesel)
336 | 36.4,5,121,67,2950,19.9,80,2,audi 5000s (diesel)
337 | 30,4,146,67,3250,21.8,80,2,mercedes-benz 240d
338 | 44.6,4,91,67,1850,13.8,80,3,honda civic 1500 gl
339 | 40.9,4,85,NA,1835,17.3,80,2,renault lecar deluxe
340 | 33.8,4,97,67,2145,18,80,3,subaru dl
341 | 29.8,4,89,62,1845,15.3,80,2,vokswagen rabbit
342 | 32.7,6,168,132,2910,11.4,80,3,datsun 280-zx
343 | 23.7,3,70,100,2420,12.5,80,3,mazda rx-7 gs
344 | 35,4,122,88,2500,15.1,80,2,triumph tr7 coupe
345 | 23.6,4,140,NA,2905,14.3,80,1,ford mustang cobra
346 | 32.4,4,107,72,2290,17,80,3,honda accord
347 | 27.2,4,135,84,2490,15.7,81,1,plymouth reliant
348 | 26.6,4,151,84,2635,16.4,81,1,buick skylark
349 | 25.8,4,156,92,2620,14.4,81,1,dodge aries wagon (sw)
350 | 23.5,6,173,110,2725,12.6,81,1,chevrolet citation
351 | 30,4,135,84,2385,12.9,81,1,plymouth reliant
352 | 39.1,4,79,58,1755,16.9,81,3,toyota starlet
353 | 39,4,86,64,1875,16.4,81,1,plymouth champ
354 | 35.1,4,81,60,1760,16.1,81,3,honda civic 1300
355 | 32.3,4,97,67,2065,17.8,81,3,subaru
356 | 37,4,85,65,1975,19.4,81,3,datsun 210 mpg
357 | 37.7,4,89,62,2050,17.3,81,3,toyota tercel
358 | 34.1,4,91,68,1985,16,81,3,mazda glc 4
359 | 34.7,4,105,63,2215,14.9,81,1,plymouth horizon 4
360 | 34.4,4,98,65,2045,16.2,81,1,ford escort 4w
361 | 29.9,4,98,65,2380,20.7,81,1,ford escort 2h
362 | 33,4,105,74,2190,14.2,81,2,volkswagen jetta
363 | 34.5,4,100,NA,2320,15.8,81,2,renault 18i
364 | 33.7,4,107,75,2210,14.4,81,3,honda prelude
365 | 32.4,4,108,75,2350,16.8,81,3,toyota corolla
366 | 32.9,4,119,100,2615,14.8,81,3,datsun 200sx
367 | 31.6,4,120,74,2635,18.3,81,3,mazda 626
368 | 28.1,4,141,80,3230,20.4,81,2,peugeot 505s turbo diesel
369 | NA,4,121,110,2800,15.4,81,2,saab 900s
370 | 30.7,6,145,76,3160,19.6,81,2,volvo diesel
371 | 25.4,6,168,116,2900,12.6,81,3,toyota cressida
372 | 24.2,6,146,120,2930,13.8,81,3,datsun 810 maxima
373 | 22.4,6,231,110,3415,15.8,81,1,buick century
374 | 26.6,8,350,105,3725,19,81,1,oldsmobile cutlass ls
375 | 20.2,6,200,88,3060,17.1,81,1,ford granada gl
376 | 17.6,6,225,85,3465,16.6,81,1,chrysler lebaron salon
377 | 28,4,112,88,2605,19.6,82,1,chevrolet cavalier
378 | 27,4,112,88,2640,18.6,82,1,chevrolet cavalier wagon
379 | 34,4,112,88,2395,18,82,1,chevrolet cavalier 2-door
380 | 31,4,112,85,2575,16.2,82,1,pontiac j2000 se hatchback
381 | 29,4,135,84,2525,16,82,1,dodge aries se
382 | 27,4,151,90,2735,18,82,1,pontiac phoenix
383 | 24,4,140,92,2865,16.4,82,1,ford fairmont futura
384 | 23,4,151,NA,3035,20.5,82,1,amc concord dl
385 | 36,4,105,74,1980,15.3,82,2,volkswagen rabbit l
386 | 37,4,91,68,2025,18.2,82,3,mazda glc custom l
387 | 31,4,91,68,1970,17.6,82,3,mazda glc custom
388 | 38,4,105,63,2125,14.7,82,1,plymouth horizon miser
389 | 36,4,98,70,2125,17.3,82,1,mercury lynx l
390 | 36,4,120,88,2160,14.5,82,3,nissan stanza xe
391 | 36,4,107,75,2205,14.5,82,3,honda accord
392 | 34,4,108,70,2245,16.9,82,3,toyota corolla
393 | 38,4,91,67,1965,15,82,3,honda civic
394 | 32,4,91,67,1965,15.7,82,3,honda civic (auto)
395 | 38,4,91,67,1995,16.2,82,3,datsun 310 gx
396 | 25,6,181,110,2945,16.4,82,1,buick century limited
397 | 38,6,262,85,3015,17,82,1,oldsmobile cutlass ciera (diesel)
398 | 26,4,156,92,2585,14.5,82,1,chrysler lebaron medallion
399 | 22,6,232,112,2835,14.7,82,1,ford granada l
400 | 32,4,144,96,2665,13.9,82,3,toyota celica gt
401 | 36,4,135,84,2370,13,82,1,dodge charger 2.2
402 | 27,4,151,90,2950,17.3,82,1,chevrolet camaro
403 | 27,4,140,86,2790,15.6,82,1,ford mustang gl
404 | 44,4,97,52,2130,24.6,82,2,vw pickup
405 | 32,4,135,84,2295,11.6,82,1,dodge rampage
406 | 28,4,120,79,2625,18.6,82,1,ford ranger
407 | 31,4,119,82,2720,19.4,82,1,chevy s-10
408 |
--------------------------------------------------------------------------------
/datasets/breast-cancer-wisconsin.data.txt:
--------------------------------------------------------------------------------
1 | 1000025,5,1,1,1,2,1,3,1,1,2
2 | 1002945,5,4,4,5,7,10,3,2,1,2
3 | 1015425,3,1,1,1,2,2,3,1,1,2
4 | 1016277,6,8,8,1,3,4,3,7,1,2
5 | 1017023,4,1,1,3,2,1,3,1,1,2
6 | 1017122,8,10,10,8,7,10,9,7,1,4
7 | 1018099,1,1,1,1,2,10,3,1,1,2
8 | 1018561,2,1,2,1,2,1,3,1,1,2
9 | 1033078,2,1,1,1,2,1,1,1,5,2
10 | 1033078,4,2,1,1,2,1,2,1,1,2
11 | 1035283,1,1,1,1,1,1,3,1,1,2
12 | 1036172,2,1,1,1,2,1,2,1,1,2
13 | 1041801,5,3,3,3,2,3,4,4,1,4
14 | 1043999,1,1,1,1,2,3,3,1,1,2
15 | 1044572,8,7,5,10,7,9,5,5,4,4
16 | 1047630,7,4,6,4,6,1,4,3,1,4
17 | 1048672,4,1,1,1,2,1,2,1,1,2
18 | 1049815,4,1,1,1,2,1,3,1,1,2
19 | 1050670,10,7,7,6,4,10,4,1,2,4
20 | 1050718,6,1,1,1,2,1,3,1,1,2
21 | 1054590,7,3,2,10,5,10,5,4,4,4
22 | 1054593,10,5,5,3,6,7,7,10,1,4
23 | 1056784,3,1,1,1,2,1,2,1,1,2
24 | 1057013,8,4,5,1,2,?,7,3,1,4
25 | 1059552,1,1,1,1,2,1,3,1,1,2
26 | 1065726,5,2,3,4,2,7,3,6,1,4
27 | 1066373,3,2,1,1,1,1,2,1,1,2
28 | 1066979,5,1,1,1,2,1,2,1,1,2
29 | 1067444,2,1,1,1,2,1,2,1,1,2
30 | 1070935,1,1,3,1,2,1,1,1,1,2
31 | 1070935,3,1,1,1,1,1,2,1,1,2
32 | 1071760,2,1,1,1,2,1,3,1,1,2
33 | 1072179,10,7,7,3,8,5,7,4,3,4
34 | 1074610,2,1,1,2,2,1,3,1,1,2
35 | 1075123,3,1,2,1,2,1,2,1,1,2
36 | 1079304,2,1,1,1,2,1,2,1,1,2
37 | 1080185,10,10,10,8,6,1,8,9,1,4
38 | 1081791,6,2,1,1,1,1,7,1,1,2
39 | 1084584,5,4,4,9,2,10,5,6,1,4
40 | 1091262,2,5,3,3,6,7,7,5,1,4
41 | 1096800,6,6,6,9,6,?,7,8,1,2
42 | 1099510,10,4,3,1,3,3,6,5,2,4
43 | 1100524,6,10,10,2,8,10,7,3,3,4
44 | 1102573,5,6,5,6,10,1,3,1,1,4
45 | 1103608,10,10,10,4,8,1,8,10,1,4
46 | 1103722,1,1,1,1,2,1,2,1,2,2
47 | 1105257,3,7,7,4,4,9,4,8,1,4
48 | 1105524,1,1,1,1,2,1,2,1,1,2
49 | 1106095,4,1,1,3,2,1,3,1,1,2
50 | 1106829,7,8,7,2,4,8,3,8,2,4
51 | 1108370,9,5,8,1,2,3,2,1,5,4
52 | 1108449,5,3,3,4,2,4,3,4,1,4
53 | 1110102,10,3,6,2,3,5,4,10,2,4
54 | 1110503,5,5,5,8,10,8,7,3,7,4
55 | 1110524,10,5,5,6,8,8,7,1,1,4
56 | 1111249,10,6,6,3,4,5,3,6,1,4
57 | 1112209,8,10,10,1,3,6,3,9,1,4
58 | 1113038,8,2,4,1,5,1,5,4,4,4
59 | 1113483,5,2,3,1,6,10,5,1,1,4
60 | 1113906,9,5,5,2,2,2,5,1,1,4
61 | 1115282,5,3,5,5,3,3,4,10,1,4
62 | 1115293,1,1,1,1,2,2,2,1,1,2
63 | 1116116,9,10,10,1,10,8,3,3,1,4
64 | 1116132,6,3,4,1,5,2,3,9,1,4
65 | 1116192,1,1,1,1,2,1,2,1,1,2
66 | 1116998,10,4,2,1,3,2,4,3,10,4
67 | 1117152,4,1,1,1,2,1,3,1,1,2
68 | 1118039,5,3,4,1,8,10,4,9,1,4
69 | 1120559,8,3,8,3,4,9,8,9,8,4
70 | 1121732,1,1,1,1,2,1,3,2,1,2
71 | 1121919,5,1,3,1,2,1,2,1,1,2
72 | 1123061,6,10,2,8,10,2,7,8,10,4
73 | 1124651,1,3,3,2,2,1,7,2,1,2
74 | 1125035,9,4,5,10,6,10,4,8,1,4
75 | 1126417,10,6,4,1,3,4,3,2,3,4
76 | 1131294,1,1,2,1,2,2,4,2,1,2
77 | 1132347,1,1,4,1,2,1,2,1,1,2
78 | 1133041,5,3,1,2,2,1,2,1,1,2
79 | 1133136,3,1,1,1,2,3,3,1,1,2
80 | 1136142,2,1,1,1,3,1,2,1,1,2
81 | 1137156,2,2,2,1,1,1,7,1,1,2
82 | 1143978,4,1,1,2,2,1,2,1,1,2
83 | 1143978,5,2,1,1,2,1,3,1,1,2
84 | 1147044,3,1,1,1,2,2,7,1,1,2
85 | 1147699,3,5,7,8,8,9,7,10,7,4
86 | 1147748,5,10,6,1,10,4,4,10,10,4
87 | 1148278,3,3,6,4,5,8,4,4,1,4
88 | 1148873,3,6,6,6,5,10,6,8,3,4
89 | 1152331,4,1,1,1,2,1,3,1,1,2
90 | 1155546,2,1,1,2,3,1,2,1,1,2
91 | 1156272,1,1,1,1,2,1,3,1,1,2
92 | 1156948,3,1,1,2,2,1,1,1,1,2
93 | 1157734,4,1,1,1,2,1,3,1,1,2
94 | 1158247,1,1,1,1,2,1,2,1,1,2
95 | 1160476,2,1,1,1,2,1,3,1,1,2
96 | 1164066,1,1,1,1,2,1,3,1,1,2
97 | 1165297,2,1,1,2,2,1,1,1,1,2
98 | 1165790,5,1,1,1,2,1,3,1,1,2
99 | 1165926,9,6,9,2,10,6,2,9,10,4
100 | 1166630,7,5,6,10,5,10,7,9,4,4
101 | 1166654,10,3,5,1,10,5,3,10,2,4
102 | 1167439,2,3,4,4,2,5,2,5,1,4
103 | 1167471,4,1,2,1,2,1,3,1,1,2
104 | 1168359,8,2,3,1,6,3,7,1,1,4
105 | 1168736,10,10,10,10,10,1,8,8,8,4
106 | 1169049,7,3,4,4,3,3,3,2,7,4
107 | 1170419,10,10,10,8,2,10,4,1,1,4
108 | 1170420,1,6,8,10,8,10,5,7,1,4
109 | 1171710,1,1,1,1,2,1,2,3,1,2
110 | 1171710,6,5,4,4,3,9,7,8,3,4
111 | 1171795,1,3,1,2,2,2,5,3,2,2
112 | 1171845,8,6,4,3,5,9,3,1,1,4
113 | 1172152,10,3,3,10,2,10,7,3,3,4
114 | 1173216,10,10,10,3,10,8,8,1,1,4
115 | 1173235,3,3,2,1,2,3,3,1,1,2
116 | 1173347,1,1,1,1,2,5,1,1,1,2
117 | 1173347,8,3,3,1,2,2,3,2,1,2
118 | 1173509,4,5,5,10,4,10,7,5,8,4
119 | 1173514,1,1,1,1,4,3,1,1,1,2
120 | 1173681,3,2,1,1,2,2,3,1,1,2
121 | 1174057,1,1,2,2,2,1,3,1,1,2
122 | 1174057,4,2,1,1,2,2,3,1,1,2
123 | 1174131,10,10,10,2,10,10,5,3,3,4
124 | 1174428,5,3,5,1,8,10,5,3,1,4
125 | 1175937,5,4,6,7,9,7,8,10,1,4
126 | 1176406,1,1,1,1,2,1,2,1,1,2
127 | 1176881,7,5,3,7,4,10,7,5,5,4
128 | 1177027,3,1,1,1,2,1,3,1,1,2
129 | 1177399,8,3,5,4,5,10,1,6,2,4
130 | 1177512,1,1,1,1,10,1,1,1,1,2
131 | 1178580,5,1,3,1,2,1,2,1,1,2
132 | 1179818,2,1,1,1,2,1,3,1,1,2
133 | 1180194,5,10,8,10,8,10,3,6,3,4
134 | 1180523,3,1,1,1,2,1,2,2,1,2
135 | 1180831,3,1,1,1,3,1,2,1,1,2
136 | 1181356,5,1,1,1,2,2,3,3,1,2
137 | 1182404,4,1,1,1,2,1,2,1,1,2
138 | 1182410,3,1,1,1,2,1,1,1,1,2
139 | 1183240,4,1,2,1,2,1,2,1,1,2
140 | 1183246,1,1,1,1,1,?,2,1,1,2
141 | 1183516,3,1,1,1,2,1,1,1,1,2
142 | 1183911,2,1,1,1,2,1,1,1,1,2
143 | 1183983,9,5,5,4,4,5,4,3,3,4
144 | 1184184,1,1,1,1,2,5,1,1,1,2
145 | 1184241,2,1,1,1,2,1,2,1,1,2
146 | 1184840,1,1,3,1,2,?,2,1,1,2
147 | 1185609,3,4,5,2,6,8,4,1,1,4
148 | 1185610,1,1,1,1,3,2,2,1,1,2
149 | 1187457,3,1,1,3,8,1,5,8,1,2
150 | 1187805,8,8,7,4,10,10,7,8,7,4
151 | 1188472,1,1,1,1,1,1,3,1,1,2
152 | 1189266,7,2,4,1,6,10,5,4,3,4
153 | 1189286,10,10,8,6,4,5,8,10,1,4
154 | 1190394,4,1,1,1,2,3,1,1,1,2
155 | 1190485,1,1,1,1,2,1,1,1,1,2
156 | 1192325,5,5,5,6,3,10,3,1,1,4
157 | 1193091,1,2,2,1,2,1,2,1,1,2
158 | 1193210,2,1,1,1,2,1,3,1,1,2
159 | 1193683,1,1,2,1,3,?,1,1,1,2
160 | 1196295,9,9,10,3,6,10,7,10,6,4
161 | 1196915,10,7,7,4,5,10,5,7,2,4
162 | 1197080,4,1,1,1,2,1,3,2,1,2
163 | 1197270,3,1,1,1,2,1,3,1,1,2
164 | 1197440,1,1,1,2,1,3,1,1,7,2
165 | 1197510,5,1,1,1,2,?,3,1,1,2
166 | 1197979,4,1,1,1,2,2,3,2,1,2
167 | 1197993,5,6,7,8,8,10,3,10,3,4
168 | 1198128,10,8,10,10,6,1,3,1,10,4
169 | 1198641,3,1,1,1,2,1,3,1,1,2
170 | 1199219,1,1,1,2,1,1,1,1,1,2
171 | 1199731,3,1,1,1,2,1,1,1,1,2
172 | 1199983,1,1,1,1,2,1,3,1,1,2
173 | 1200772,1,1,1,1,2,1,2,1,1,2
174 | 1200847,6,10,10,10,8,10,10,10,7,4
175 | 1200892,8,6,5,4,3,10,6,1,1,4
176 | 1200952,5,8,7,7,10,10,5,7,1,4
177 | 1201834,2,1,1,1,2,1,3,1,1,2
178 | 1201936,5,10,10,3,8,1,5,10,3,4
179 | 1202125,4,1,1,1,2,1,3,1,1,2
180 | 1202812,5,3,3,3,6,10,3,1,1,4
181 | 1203096,1,1,1,1,1,1,3,1,1,2
182 | 1204242,1,1,1,1,2,1,1,1,1,2
183 | 1204898,6,1,1,1,2,1,3,1,1,2
184 | 1205138,5,8,8,8,5,10,7,8,1,4
185 | 1205579,8,7,6,4,4,10,5,1,1,4
186 | 1206089,2,1,1,1,1,1,3,1,1,2
187 | 1206695,1,5,8,6,5,8,7,10,1,4
188 | 1206841,10,5,6,10,6,10,7,7,10,4
189 | 1207986,5,8,4,10,5,8,9,10,1,4
190 | 1208301,1,2,3,1,2,1,3,1,1,2
191 | 1210963,10,10,10,8,6,8,7,10,1,4
192 | 1211202,7,5,10,10,10,10,4,10,3,4
193 | 1212232,5,1,1,1,2,1,2,1,1,2
194 | 1212251,1,1,1,1,2,1,3,1,1,2
195 | 1212422,3,1,1,1,2,1,3,1,1,2
196 | 1212422,4,1,1,1,2,1,3,1,1,2
197 | 1213375,8,4,4,5,4,7,7,8,2,2
198 | 1213383,5,1,1,4,2,1,3,1,1,2
199 | 1214092,1,1,1,1,2,1,1,1,1,2
200 | 1214556,3,1,1,1,2,1,2,1,1,2
201 | 1214966,9,7,7,5,5,10,7,8,3,4
202 | 1216694,10,8,8,4,10,10,8,1,1,4
203 | 1216947,1,1,1,1,2,1,3,1,1,2
204 | 1217051,5,1,1,1,2,1,3,1,1,2
205 | 1217264,1,1,1,1,2,1,3,1,1,2
206 | 1218105,5,10,10,9,6,10,7,10,5,4
207 | 1218741,10,10,9,3,7,5,3,5,1,4
208 | 1218860,1,1,1,1,1,1,3,1,1,2
209 | 1218860,1,1,1,1,1,1,3,1,1,2
210 | 1219406,5,1,1,1,1,1,3,1,1,2
211 | 1219525,8,10,10,10,5,10,8,10,6,4
212 | 1219859,8,10,8,8,4,8,7,7,1,4
213 | 1220330,1,1,1,1,2,1,3,1,1,2
214 | 1221863,10,10,10,10,7,10,7,10,4,4
215 | 1222047,10,10,10,10,3,10,10,6,1,4
216 | 1222936,8,7,8,7,5,5,5,10,2,4
217 | 1223282,1,1,1,1,2,1,2,1,1,2
218 | 1223426,1,1,1,1,2,1,3,1,1,2
219 | 1223793,6,10,7,7,6,4,8,10,2,4
220 | 1223967,6,1,3,1,2,1,3,1,1,2
221 | 1224329,1,1,1,2,2,1,3,1,1,2
222 | 1225799,10,6,4,3,10,10,9,10,1,4
223 | 1226012,4,1,1,3,1,5,2,1,1,4
224 | 1226612,7,5,6,3,3,8,7,4,1,4
225 | 1227210,10,5,5,6,3,10,7,9,2,4
226 | 1227244,1,1,1,1,2,1,2,1,1,2
227 | 1227481,10,5,7,4,4,10,8,9,1,4
228 | 1228152,8,9,9,5,3,5,7,7,1,4
229 | 1228311,1,1,1,1,1,1,3,1,1,2
230 | 1230175,10,10,10,3,10,10,9,10,1,4
231 | 1230688,7,4,7,4,3,7,7,6,1,4
232 | 1231387,6,8,7,5,6,8,8,9,2,4
233 | 1231706,8,4,6,3,3,1,4,3,1,2
234 | 1232225,10,4,5,5,5,10,4,1,1,4
235 | 1236043,3,3,2,1,3,1,3,6,1,2
236 | 1241232,3,1,4,1,2,?,3,1,1,2
237 | 1241559,10,8,8,2,8,10,4,8,10,4
238 | 1241679,9,8,8,5,6,2,4,10,4,4
239 | 1242364,8,10,10,8,6,9,3,10,10,4
240 | 1243256,10,4,3,2,3,10,5,3,2,4
241 | 1270479,5,1,3,3,2,2,2,3,1,2
242 | 1276091,3,1,1,3,1,1,3,1,1,2
243 | 1277018,2,1,1,1,2,1,3,1,1,2
244 | 128059,1,1,1,1,2,5,5,1,1,2
245 | 1285531,1,1,1,1,2,1,3,1,1,2
246 | 1287775,5,1,1,2,2,2,3,1,1,2
247 | 144888,8,10,10,8,5,10,7,8,1,4
248 | 145447,8,4,4,1,2,9,3,3,1,4
249 | 167528,4,1,1,1,2,1,3,6,1,2
250 | 169356,3,1,1,1,2,?,3,1,1,2
251 | 183913,1,2,2,1,2,1,1,1,1,2
252 | 191250,10,4,4,10,2,10,5,3,3,4
253 | 1017023,6,3,3,5,3,10,3,5,3,2
254 | 1100524,6,10,10,2,8,10,7,3,3,4
255 | 1116116,9,10,10,1,10,8,3,3,1,4
256 | 1168736,5,6,6,2,4,10,3,6,1,4
257 | 1182404,3,1,1,1,2,1,1,1,1,2
258 | 1182404,3,1,1,1,2,1,2,1,1,2
259 | 1198641,3,1,1,1,2,1,3,1,1,2
260 | 242970,5,7,7,1,5,8,3,4,1,2
261 | 255644,10,5,8,10,3,10,5,1,3,4
262 | 263538,5,10,10,6,10,10,10,6,5,4
263 | 274137,8,8,9,4,5,10,7,8,1,4
264 | 303213,10,4,4,10,6,10,5,5,1,4
265 | 314428,7,9,4,10,10,3,5,3,3,4
266 | 1182404,5,1,4,1,2,1,3,2,1,2
267 | 1198641,10,10,6,3,3,10,4,3,2,4
268 | 320675,3,3,5,2,3,10,7,1,1,4
269 | 324427,10,8,8,2,3,4,8,7,8,4
270 | 385103,1,1,1,1,2,1,3,1,1,2
271 | 390840,8,4,7,1,3,10,3,9,2,4
272 | 411453,5,1,1,1,2,1,3,1,1,2
273 | 320675,3,3,5,2,3,10,7,1,1,4
274 | 428903,7,2,4,1,3,4,3,3,1,4
275 | 431495,3,1,1,1,2,1,3,2,1,2
276 | 432809,3,1,3,1,2,?,2,1,1,2
277 | 434518,3,1,1,1,2,1,2,1,1,2
278 | 452264,1,1,1,1,2,1,2,1,1,2
279 | 456282,1,1,1,1,2,1,3,1,1,2
280 | 476903,10,5,7,3,3,7,3,3,8,4
281 | 486283,3,1,1,1,2,1,3,1,1,2
282 | 486662,2,1,1,2,2,1,3,1,1,2
283 | 488173,1,4,3,10,4,10,5,6,1,4
284 | 492268,10,4,6,1,2,10,5,3,1,4
285 | 508234,7,4,5,10,2,10,3,8,2,4
286 | 527363,8,10,10,10,8,10,10,7,3,4
287 | 529329,10,10,10,10,10,10,4,10,10,4
288 | 535331,3,1,1,1,3,1,2,1,1,2
289 | 543558,6,1,3,1,4,5,5,10,1,4
290 | 555977,5,6,6,8,6,10,4,10,4,4
291 | 560680,1,1,1,1,2,1,1,1,1,2
292 | 561477,1,1,1,1,2,1,3,1,1,2
293 | 563649,8,8,8,1,2,?,6,10,1,4
294 | 601265,10,4,4,6,2,10,2,3,1,4
295 | 606140,1,1,1,1,2,?,2,1,1,2
296 | 606722,5,5,7,8,6,10,7,4,1,4
297 | 616240,5,3,4,3,4,5,4,7,1,2
298 | 61634,5,4,3,1,2,?,2,3,1,2
299 | 625201,8,2,1,1,5,1,1,1,1,2
300 | 63375,9,1,2,6,4,10,7,7,2,4
301 | 635844,8,4,10,5,4,4,7,10,1,4
302 | 636130,1,1,1,1,2,1,3,1,1,2
303 | 640744,10,10,10,7,9,10,7,10,10,4
304 | 646904,1,1,1,1,2,1,3,1,1,2
305 | 653777,8,3,4,9,3,10,3,3,1,4
306 | 659642,10,8,4,4,4,10,3,10,4,4
307 | 666090,1,1,1,1,2,1,3,1,1,2
308 | 666942,1,1,1,1,2,1,3,1,1,2
309 | 667204,7,8,7,6,4,3,8,8,4,4
310 | 673637,3,1,1,1,2,5,5,1,1,2
311 | 684955,2,1,1,1,3,1,2,1,1,2
312 | 688033,1,1,1,1,2,1,1,1,1,2
313 | 691628,8,6,4,10,10,1,3,5,1,4
314 | 693702,1,1,1,1,2,1,1,1,1,2
315 | 704097,1,1,1,1,1,1,2,1,1,2
316 | 704168,4,6,5,6,7,?,4,9,1,2
317 | 706426,5,5,5,2,5,10,4,3,1,4
318 | 709287,6,8,7,8,6,8,8,9,1,4
319 | 718641,1,1,1,1,5,1,3,1,1,2
320 | 721482,4,4,4,4,6,5,7,3,1,2
321 | 730881,7,6,3,2,5,10,7,4,6,4
322 | 733639,3,1,1,1,2,?,3,1,1,2
323 | 733639,3,1,1,1,2,1,3,1,1,2
324 | 733823,5,4,6,10,2,10,4,1,1,4
325 | 740492,1,1,1,1,2,1,3,1,1,2
326 | 743348,3,2,2,1,2,1,2,3,1,2
327 | 752904,10,1,1,1,2,10,5,4,1,4
328 | 756136,1,1,1,1,2,1,2,1,1,2
329 | 760001,8,10,3,2,6,4,3,10,1,4
330 | 760239,10,4,6,4,5,10,7,1,1,4
331 | 76389,10,4,7,2,2,8,6,1,1,4
332 | 764974,5,1,1,1,2,1,3,1,2,2
333 | 770066,5,2,2,2,2,1,2,2,1,2
334 | 785208,5,4,6,6,4,10,4,3,1,4
335 | 785615,8,6,7,3,3,10,3,4,2,4
336 | 792744,1,1,1,1,2,1,1,1,1,2
337 | 797327,6,5,5,8,4,10,3,4,1,4
338 | 798429,1,1,1,1,2,1,3,1,1,2
339 | 704097,1,1,1,1,1,1,2,1,1,2
340 | 806423,8,5,5,5,2,10,4,3,1,4
341 | 809912,10,3,3,1,2,10,7,6,1,4
342 | 810104,1,1,1,1,2,1,3,1,1,2
343 | 814265,2,1,1,1,2,1,1,1,1,2
344 | 814911,1,1,1,1,2,1,1,1,1,2
345 | 822829,7,6,4,8,10,10,9,5,3,4
346 | 826923,1,1,1,1,2,1,1,1,1,2
347 | 830690,5,2,2,2,3,1,1,3,1,2
348 | 831268,1,1,1,1,1,1,1,3,1,2
349 | 832226,3,4,4,10,5,1,3,3,1,4
350 | 832567,4,2,3,5,3,8,7,6,1,4
351 | 836433,5,1,1,3,2,1,1,1,1,2
352 | 837082,2,1,1,1,2,1,3,1,1,2
353 | 846832,3,4,5,3,7,3,4,6,1,2
354 | 850831,2,7,10,10,7,10,4,9,4,4
355 | 855524,1,1,1,1,2,1,2,1,1,2
356 | 857774,4,1,1,1,3,1,2,2,1,2
357 | 859164,5,3,3,1,3,3,3,3,3,4
358 | 859350,8,10,10,7,10,10,7,3,8,4
359 | 866325,8,10,5,3,8,4,4,10,3,4
360 | 873549,10,3,5,4,3,7,3,5,3,4
361 | 877291,6,10,10,10,10,10,8,10,10,4
362 | 877943,3,10,3,10,6,10,5,1,4,4
363 | 888169,3,2,2,1,4,3,2,1,1,2
364 | 888523,4,4,4,2,2,3,2,1,1,2
365 | 896404,2,1,1,1,2,1,3,1,1,2
366 | 897172,2,1,1,1,2,1,2,1,1,2
367 | 95719,6,10,10,10,8,10,7,10,7,4
368 | 160296,5,8,8,10,5,10,8,10,3,4
369 | 342245,1,1,3,1,2,1,1,1,1,2
370 | 428598,1,1,3,1,1,1,2,1,1,2
371 | 492561,4,3,2,1,3,1,2,1,1,2
372 | 493452,1,1,3,1,2,1,1,1,1,2
373 | 493452,4,1,2,1,2,1,2,1,1,2
374 | 521441,5,1,1,2,2,1,2,1,1,2
375 | 560680,3,1,2,1,2,1,2,1,1,2
376 | 636437,1,1,1,1,2,1,1,1,1,2
377 | 640712,1,1,1,1,2,1,2,1,1,2
378 | 654244,1,1,1,1,1,1,2,1,1,2
379 | 657753,3,1,1,4,3,1,2,2,1,2
380 | 685977,5,3,4,1,4,1,3,1,1,2
381 | 805448,1,1,1,1,2,1,1,1,1,2
382 | 846423,10,6,3,6,4,10,7,8,4,4
383 | 1002504,3,2,2,2,2,1,3,2,1,2
384 | 1022257,2,1,1,1,2,1,1,1,1,2
385 | 1026122,2,1,1,1,2,1,1,1,1,2
386 | 1071084,3,3,2,2,3,1,1,2,3,2
387 | 1080233,7,6,6,3,2,10,7,1,1,4
388 | 1114570,5,3,3,2,3,1,3,1,1,2
389 | 1114570,2,1,1,1,2,1,2,2,1,2
390 | 1116715,5,1,1,1,3,2,2,2,1,2
391 | 1131411,1,1,1,2,2,1,2,1,1,2
392 | 1151734,10,8,7,4,3,10,7,9,1,4
393 | 1156017,3,1,1,1,2,1,2,1,1,2
394 | 1158247,1,1,1,1,1,1,1,1,1,2
395 | 1158405,1,2,3,1,2,1,2,1,1,2
396 | 1168278,3,1,1,1,2,1,2,1,1,2
397 | 1176187,3,1,1,1,2,1,3,1,1,2
398 | 1196263,4,1,1,1,2,1,1,1,1,2
399 | 1196475,3,2,1,1,2,1,2,2,1,2
400 | 1206314,1,2,3,1,2,1,1,1,1,2
401 | 1211265,3,10,8,7,6,9,9,3,8,4
402 | 1213784,3,1,1,1,2,1,1,1,1,2
403 | 1223003,5,3,3,1,2,1,2,1,1,2
404 | 1223306,3,1,1,1,2,4,1,1,1,2
405 | 1223543,1,2,1,3,2,1,1,2,1,2
406 | 1229929,1,1,1,1,2,1,2,1,1,2
407 | 1231853,4,2,2,1,2,1,2,1,1,2
408 | 1234554,1,1,1,1,2,1,2,1,1,2
409 | 1236837,2,3,2,2,2,2,3,1,1,2
410 | 1237674,3,1,2,1,2,1,2,1,1,2
411 | 1238021,1,1,1,1,2,1,2,1,1,2
412 | 1238464,1,1,1,1,1,?,2,1,1,2
413 | 1238633,10,10,10,6,8,4,8,5,1,4
414 | 1238915,5,1,2,1,2,1,3,1,1,2
415 | 1238948,8,5,6,2,3,10,6,6,1,4
416 | 1239232,3,3,2,6,3,3,3,5,1,2
417 | 1239347,8,7,8,5,10,10,7,2,1,4
418 | 1239967,1,1,1,1,2,1,2,1,1,2
419 | 1240337,5,2,2,2,2,2,3,2,2,2
420 | 1253505,2,3,1,1,5,1,1,1,1,2
421 | 1255384,3,2,2,3,2,3,3,1,1,2
422 | 1257200,10,10,10,7,10,10,8,2,1,4
423 | 1257648,4,3,3,1,2,1,3,3,1,2
424 | 1257815,5,1,3,1,2,1,2,1,1,2
425 | 1257938,3,1,1,1,2,1,1,1,1,2
426 | 1258549,9,10,10,10,10,10,10,10,1,4
427 | 1258556,5,3,6,1,2,1,1,1,1,2
428 | 1266154,8,7,8,2,4,2,5,10,1,4
429 | 1272039,1,1,1,1,2,1,2,1,1,2
430 | 1276091,2,1,1,1,2,1,2,1,1,2
431 | 1276091,1,3,1,1,2,1,2,2,1,2
432 | 1276091,5,1,1,3,4,1,3,2,1,2
433 | 1277629,5,1,1,1,2,1,2,2,1,2
434 | 1293439,3,2,2,3,2,1,1,1,1,2
435 | 1293439,6,9,7,5,5,8,4,2,1,2
436 | 1294562,10,8,10,1,3,10,5,1,1,4
437 | 1295186,10,10,10,1,6,1,2,8,1,4
438 | 527337,4,1,1,1,2,1,1,1,1,2
439 | 558538,4,1,3,3,2,1,1,1,1,2
440 | 566509,5,1,1,1,2,1,1,1,1,2
441 | 608157,10,4,3,10,4,10,10,1,1,4
442 | 677910,5,2,2,4,2,4,1,1,1,2
443 | 734111,1,1,1,3,2,3,1,1,1,2
444 | 734111,1,1,1,1,2,2,1,1,1,2
445 | 780555,5,1,1,6,3,1,2,1,1,2
446 | 827627,2,1,1,1,2,1,1,1,1,2
447 | 1049837,1,1,1,1,2,1,1,1,1,2
448 | 1058849,5,1,1,1,2,1,1,1,1,2
449 | 1182404,1,1,1,1,1,1,1,1,1,2
450 | 1193544,5,7,9,8,6,10,8,10,1,4
451 | 1201870,4,1,1,3,1,1,2,1,1,2
452 | 1202253,5,1,1,1,2,1,1,1,1,2
453 | 1227081,3,1,1,3,2,1,1,1,1,2
454 | 1230994,4,5,5,8,6,10,10,7,1,4
455 | 1238410,2,3,1,1,3,1,1,1,1,2
456 | 1246562,10,2,2,1,2,6,1,1,2,4
457 | 1257470,10,6,5,8,5,10,8,6,1,4
458 | 1259008,8,8,9,6,6,3,10,10,1,4
459 | 1266124,5,1,2,1,2,1,1,1,1,2
460 | 1267898,5,1,3,1,2,1,1,1,1,2
461 | 1268313,5,1,1,3,2,1,1,1,1,2
462 | 1268804,3,1,1,1,2,5,1,1,1,2
463 | 1276091,6,1,1,3,2,1,1,1,1,2
464 | 1280258,4,1,1,1,2,1,1,2,1,2
465 | 1293966,4,1,1,1,2,1,1,1,1,2
466 | 1296572,10,9,8,7,6,4,7,10,3,4
467 | 1298416,10,6,6,2,4,10,9,7,1,4
468 | 1299596,6,6,6,5,4,10,7,6,2,4
469 | 1105524,4,1,1,1,2,1,1,1,1,2
470 | 1181685,1,1,2,1,2,1,2,1,1,2
471 | 1211594,3,1,1,1,1,1,2,1,1,2
472 | 1238777,6,1,1,3,2,1,1,1,1,2
473 | 1257608,6,1,1,1,1,1,1,1,1,2
474 | 1269574,4,1,1,1,2,1,1,1,1,2
475 | 1277145,5,1,1,1,2,1,1,1,1,2
476 | 1287282,3,1,1,1,2,1,1,1,1,2
477 | 1296025,4,1,2,1,2,1,1,1,1,2
478 | 1296263,4,1,1,1,2,1,1,1,1,2
479 | 1296593,5,2,1,1,2,1,1,1,1,2
480 | 1299161,4,8,7,10,4,10,7,5,1,4
481 | 1301945,5,1,1,1,1,1,1,1,1,2
482 | 1302428,5,3,2,4,2,1,1,1,1,2
483 | 1318169,9,10,10,10,10,5,10,10,10,4
484 | 474162,8,7,8,5,5,10,9,10,1,4
485 | 787451,5,1,2,1,2,1,1,1,1,2
486 | 1002025,1,1,1,3,1,3,1,1,1,2
487 | 1070522,3,1,1,1,1,1,2,1,1,2
488 | 1073960,10,10,10,10,6,10,8,1,5,4
489 | 1076352,3,6,4,10,3,3,3,4,1,4
490 | 1084139,6,3,2,1,3,4,4,1,1,4
491 | 1115293,1,1,1,1,2,1,1,1,1,2
492 | 1119189,5,8,9,4,3,10,7,1,1,4
493 | 1133991,4,1,1,1,1,1,2,1,1,2
494 | 1142706,5,10,10,10,6,10,6,5,2,4
495 | 1155967,5,1,2,10,4,5,2,1,1,2
496 | 1170945,3,1,1,1,1,1,2,1,1,2
497 | 1181567,1,1,1,1,1,1,1,1,1,2
498 | 1182404,4,2,1,1,2,1,1,1,1,2
499 | 1204558,4,1,1,1,2,1,2,1,1,2
500 | 1217952,4,1,1,1,2,1,2,1,1,2
501 | 1224565,6,1,1,1,2,1,3,1,1,2
502 | 1238186,4,1,1,1,2,1,2,1,1,2
503 | 1253917,4,1,1,2,2,1,2,1,1,2
504 | 1265899,4,1,1,1,2,1,3,1,1,2
505 | 1268766,1,1,1,1,2,1,1,1,1,2
506 | 1277268,3,3,1,1,2,1,1,1,1,2
507 | 1286943,8,10,10,10,7,5,4,8,7,4
508 | 1295508,1,1,1,1,2,4,1,1,1,2
509 | 1297327,5,1,1,1,2,1,1,1,1,2
510 | 1297522,2,1,1,1,2,1,1,1,1,2
511 | 1298360,1,1,1,1,2,1,1,1,1,2
512 | 1299924,5,1,1,1,2,1,2,1,1,2
513 | 1299994,5,1,1,1,2,1,1,1,1,2
514 | 1304595,3,1,1,1,1,1,2,1,1,2
515 | 1306282,6,6,7,10,3,10,8,10,2,4
516 | 1313325,4,10,4,7,3,10,9,10,1,4
517 | 1320077,1,1,1,1,1,1,1,1,1,2
518 | 1320077,1,1,1,1,1,1,2,1,1,2
519 | 1320304,3,1,2,2,2,1,1,1,1,2
520 | 1330439,4,7,8,3,4,10,9,1,1,4
521 | 333093,1,1,1,1,3,1,1,1,1,2
522 | 369565,4,1,1,1,3,1,1,1,1,2
523 | 412300,10,4,5,4,3,5,7,3,1,4
524 | 672113,7,5,6,10,4,10,5,3,1,4
525 | 749653,3,1,1,1,2,1,2,1,1,2
526 | 769612,3,1,1,2,2,1,1,1,1,2
527 | 769612,4,1,1,1,2,1,1,1,1,2
528 | 798429,4,1,1,1,2,1,3,1,1,2
529 | 807657,6,1,3,2,2,1,1,1,1,2
530 | 8233704,4,1,1,1,1,1,2,1,1,2
531 | 837480,7,4,4,3,4,10,6,9,1,4
532 | 867392,4,2,2,1,2,1,2,1,1,2
533 | 869828,1,1,1,1,1,1,3,1,1,2
534 | 1043068,3,1,1,1,2,1,2,1,1,2
535 | 1056171,2,1,1,1,2,1,2,1,1,2
536 | 1061990,1,1,3,2,2,1,3,1,1,2
537 | 1113061,5,1,1,1,2,1,3,1,1,2
538 | 1116192,5,1,2,1,2,1,3,1,1,2
539 | 1135090,4,1,1,1,2,1,2,1,1,2
540 | 1145420,6,1,1,1,2,1,2,1,1,2
541 | 1158157,5,1,1,1,2,2,2,1,1,2
542 | 1171578,3,1,1,1,2,1,1,1,1,2
543 | 1174841,5,3,1,1,2,1,1,1,1,2
544 | 1184586,4,1,1,1,2,1,2,1,1,2
545 | 1186936,2,1,3,2,2,1,2,1,1,2
546 | 1197527,5,1,1,1,2,1,2,1,1,2
547 | 1222464,6,10,10,10,4,10,7,10,1,4
548 | 1240603,2,1,1,1,1,1,1,1,1,2
549 | 1240603,3,1,1,1,1,1,1,1,1,2
550 | 1241035,7,8,3,7,4,5,7,8,2,4
551 | 1287971,3,1,1,1,2,1,2,1,1,2
552 | 1289391,1,1,1,1,2,1,3,1,1,2
553 | 1299924,3,2,2,2,2,1,4,2,1,2
554 | 1306339,4,4,2,1,2,5,2,1,2,2
555 | 1313658,3,1,1,1,2,1,1,1,1,2
556 | 1313982,4,3,1,1,2,1,4,8,1,2
557 | 1321264,5,2,2,2,1,1,2,1,1,2
558 | 1321321,5,1,1,3,2,1,1,1,1,2
559 | 1321348,2,1,1,1,2,1,2,1,1,2
560 | 1321931,5,1,1,1,2,1,2,1,1,2
561 | 1321942,5,1,1,1,2,1,3,1,1,2
562 | 1321942,5,1,1,1,2,1,3,1,1,2
563 | 1328331,1,1,1,1,2,1,3,1,1,2
564 | 1328755,3,1,1,1,2,1,2,1,1,2
565 | 1331405,4,1,1,1,2,1,3,2,1,2
566 | 1331412,5,7,10,10,5,10,10,10,1,4
567 | 1333104,3,1,2,1,2,1,3,1,1,2
568 | 1334071,4,1,1,1,2,3,2,1,1,2
569 | 1343068,8,4,4,1,6,10,2,5,2,4
570 | 1343374,10,10,8,10,6,5,10,3,1,4
571 | 1344121,8,10,4,4,8,10,8,2,1,4
572 | 142932,7,6,10,5,3,10,9,10,2,4
573 | 183936,3,1,1,1,2,1,2,1,1,2
574 | 324382,1,1,1,1,2,1,2,1,1,2
575 | 378275,10,9,7,3,4,2,7,7,1,4
576 | 385103,5,1,2,1,2,1,3,1,1,2
577 | 690557,5,1,1,1,2,1,2,1,1,2
578 | 695091,1,1,1,1,2,1,2,1,1,2
579 | 695219,1,1,1,1,2,1,2,1,1,2
580 | 824249,1,1,1,1,2,1,3,1,1,2
581 | 871549,5,1,2,1,2,1,2,1,1,2
582 | 878358,5,7,10,6,5,10,7,5,1,4
583 | 1107684,6,10,5,5,4,10,6,10,1,4
584 | 1115762,3,1,1,1,2,1,1,1,1,2
585 | 1217717,5,1,1,6,3,1,1,1,1,2
586 | 1239420,1,1,1,1,2,1,1,1,1,2
587 | 1254538,8,10,10,10,6,10,10,10,1,4
588 | 1261751,5,1,1,1,2,1,2,2,1,2
589 | 1268275,9,8,8,9,6,3,4,1,1,4
590 | 1272166,5,1,1,1,2,1,1,1,1,2
591 | 1294261,4,10,8,5,4,1,10,1,1,4
592 | 1295529,2,5,7,6,4,10,7,6,1,4
593 | 1298484,10,3,4,5,3,10,4,1,1,4
594 | 1311875,5,1,2,1,2,1,1,1,1,2
595 | 1315506,4,8,6,3,4,10,7,1,1,4
596 | 1320141,5,1,1,1,2,1,2,1,1,2
597 | 1325309,4,1,2,1,2,1,2,1,1,2
598 | 1333063,5,1,3,1,2,1,3,1,1,2
599 | 1333495,3,1,1,1,2,1,2,1,1,2
600 | 1334659,5,2,4,1,1,1,1,1,1,2
601 | 1336798,3,1,1,1,2,1,2,1,1,2
602 | 1344449,1,1,1,1,1,1,2,1,1,2
603 | 1350568,4,1,1,1,2,1,2,1,1,2
604 | 1352663,5,4,6,8,4,1,8,10,1,4
605 | 188336,5,3,2,8,5,10,8,1,2,4
606 | 352431,10,5,10,3,5,8,7,8,3,4
607 | 353098,4,1,1,2,2,1,1,1,1,2
608 | 411453,1,1,1,1,2,1,1,1,1,2
609 | 557583,5,10,10,10,10,10,10,1,1,4
610 | 636375,5,1,1,1,2,1,1,1,1,2
611 | 736150,10,4,3,10,3,10,7,1,2,4
612 | 803531,5,10,10,10,5,2,8,5,1,4
613 | 822829,8,10,10,10,6,10,10,10,10,4
614 | 1016634,2,3,1,1,2,1,2,1,1,2
615 | 1031608,2,1,1,1,1,1,2,1,1,2
616 | 1041043,4,1,3,1,2,1,2,1,1,2
617 | 1042252,3,1,1,1,2,1,2,1,1,2
618 | 1057067,1,1,1,1,1,?,1,1,1,2
619 | 1061990,4,1,1,1,2,1,2,1,1,2
620 | 1073836,5,1,1,1,2,1,2,1,1,2
621 | 1083817,3,1,1,1,2,1,2,1,1,2
622 | 1096352,6,3,3,3,3,2,6,1,1,2
623 | 1140597,7,1,2,3,2,1,2,1,1,2
624 | 1149548,1,1,1,1,2,1,1,1,1,2
625 | 1174009,5,1,1,2,1,1,2,1,1,2
626 | 1183596,3,1,3,1,3,4,1,1,1,2
627 | 1190386,4,6,6,5,7,6,7,7,3,4
628 | 1190546,2,1,1,1,2,5,1,1,1,2
629 | 1213273,2,1,1,1,2,1,1,1,1,2
630 | 1218982,4,1,1,1,2,1,1,1,1,2
631 | 1225382,6,2,3,1,2,1,1,1,1,2
632 | 1235807,5,1,1,1,2,1,2,1,1,2
633 | 1238777,1,1,1,1,2,1,1,1,1,2
634 | 1253955,8,7,4,4,5,3,5,10,1,4
635 | 1257366,3,1,1,1,2,1,1,1,1,2
636 | 1260659,3,1,4,1,2,1,1,1,1,2
637 | 1268952,10,10,7,8,7,1,10,10,3,4
638 | 1275807,4,2,4,3,2,2,2,1,1,2
639 | 1277792,4,1,1,1,2,1,1,1,1,2
640 | 1277792,5,1,1,3,2,1,1,1,1,2
641 | 1285722,4,1,1,3,2,1,1,1,1,2
642 | 1288608,3,1,1,1,2,1,2,1,1,2
643 | 1290203,3,1,1,1,2,1,2,1,1,2
644 | 1294413,1,1,1,1,2,1,1,1,1,2
645 | 1299596,2,1,1,1,2,1,1,1,1,2
646 | 1303489,3,1,1,1,2,1,2,1,1,2
647 | 1311033,1,2,2,1,2,1,1,1,1,2
648 | 1311108,1,1,1,3,2,1,1,1,1,2
649 | 1315807,5,10,10,10,10,2,10,10,10,4
650 | 1318671,3,1,1,1,2,1,2,1,1,2
651 | 1319609,3,1,1,2,3,4,1,1,1,2
652 | 1323477,1,2,1,3,2,1,2,1,1,2
653 | 1324572,5,1,1,1,2,1,2,2,1,2
654 | 1324681,4,1,1,1,2,1,2,1,1,2
655 | 1325159,3,1,1,1,2,1,3,1,1,2
656 | 1326892,3,1,1,1,2,1,2,1,1,2
657 | 1330361,5,1,1,1,2,1,2,1,1,2
658 | 1333877,5,4,5,1,8,1,3,6,1,2
659 | 1334015,7,8,8,7,3,10,7,2,3,4
660 | 1334667,1,1,1,1,2,1,1,1,1,2
661 | 1339781,1,1,1,1,2,1,2,1,1,2
662 | 1339781,4,1,1,1,2,1,3,1,1,2
663 | 13454352,1,1,3,1,2,1,2,1,1,2
664 | 1345452,1,1,3,1,2,1,2,1,1,2
665 | 1345593,3,1,1,3,2,1,2,1,1,2
666 | 1347749,1,1,1,1,2,1,1,1,1,2
667 | 1347943,5,2,2,2,2,1,1,1,2,2
668 | 1348851,3,1,1,1,2,1,3,1,1,2
669 | 1350319,5,7,4,1,6,1,7,10,3,4
670 | 1350423,5,10,10,8,5,5,7,10,1,4
671 | 1352848,3,10,7,8,5,8,7,4,1,4
672 | 1353092,3,2,1,2,2,1,3,1,1,2
673 | 1354840,2,1,1,1,2,1,3,1,1,2
674 | 1354840,5,3,2,1,3,1,1,1,1,2
675 | 1355260,1,1,1,1,2,1,2,1,1,2
676 | 1365075,4,1,4,1,2,1,1,1,1,2
677 | 1365328,1,1,2,1,2,1,2,1,1,2
678 | 1368267,5,1,1,1,2,1,1,1,1,2
679 | 1368273,1,1,1,1,2,1,1,1,1,2
680 | 1368882,2,1,1,1,2,1,1,1,1,2
681 | 1369821,10,10,10,10,5,10,10,10,7,4
682 | 1371026,5,10,10,10,4,10,5,6,3,4
683 | 1371920,5,1,1,1,2,1,3,2,1,2
684 | 466906,1,1,1,1,2,1,1,1,1,2
685 | 466906,1,1,1,1,2,1,1,1,1,2
686 | 534555,1,1,1,1,2,1,1,1,1,2
687 | 536708,1,1,1,1,2,1,1,1,1,2
688 | 566346,3,1,1,1,2,1,2,3,1,2
689 | 603148,4,1,1,1,2,1,1,1,1,2
690 | 654546,1,1,1,1,2,1,1,1,8,2
691 | 654546,1,1,1,3,2,1,1,1,1,2
692 | 695091,5,10,10,5,4,5,4,4,1,4
693 | 714039,3,1,1,1,2,1,1,1,1,2
694 | 763235,3,1,1,1,2,1,2,1,2,2
695 | 776715,3,1,1,1,3,2,1,1,1,2
696 | 841769,2,1,1,1,2,1,1,1,1,2
697 | 888820,5,10,10,3,7,3,8,10,2,4
698 | 897471,4,8,6,4,3,4,10,6,1,4
699 | 897471,4,8,8,5,4,5,10,4,1,4
700 |
--------------------------------------------------------------------------------
/datasets/breast-cancer-wisconsin.names.txt:
--------------------------------------------------------------------------------
1 | Citation Request:
2 | This breast cancer databases was obtained from the University of Wisconsin
3 | Hospitals, Madison from Dr. William H. Wolberg. If you publish results
4 | when using this database, then please include this information in your
5 | acknowledgements. Also, please cite one or more of:
6 |
7 | 1. O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear
8 | programming", SIAM News, Volume 23, Number 5, September 1990, pp 1 & 18.
9 |
10 | 2. William H. Wolberg and O.L. Mangasarian: "Multisurface method of
11 | pattern separation for medical diagnosis applied to breast cytology",
12 | Proceedings of the National Academy of Sciences, U.S.A., Volume 87,
13 | December 1990, pp 9193-9196.
14 |
15 | 3. O. L. Mangasarian, R. Setiono, and W.H. Wolberg: "Pattern recognition
16 | via linear programming: Theory and application to medical diagnosis",
17 | in: "Large-scale numerical optimization", Thomas F. Coleman and Yuying
18 | Li, editors, SIAM Publications, Philadelphia 1990, pp 22-30.
19 |
20 | 4. K. P. Bennett & O. L. Mangasarian: "Robust linear programming
21 | discrimination of two linearly inseparable sets", Optimization Methods
22 | and Software 1, 1992, 23-34 (Gordon & Breach Science Publishers).
23 |
24 | 1. Title: Wisconsin Breast Cancer Database (January 8, 1991)
25 |
26 | 2. Sources:
27 | -- Dr. WIlliam H. Wolberg (physician)
28 | University of Wisconsin Hospitals
29 | Madison, Wisconsin
30 | USA
31 | -- Donor: Olvi Mangasarian (mangasarian@cs.wisc.edu)
32 | Received by David W. Aha (aha@cs.jhu.edu)
33 | -- Date: 15 July 1992
34 |
35 | 3. Past Usage:
36 |
37 | Attributes 2 through 10 have been used to represent instances.
38 | Each instance has one of 2 possible classes: benign or malignant.
39 |
40 | 1. Wolberg,~W.~H., \& Mangasarian,~O.~L. (1990). Multisurface method of
41 | pattern separation for medical diagnosis applied to breast cytology. In
42 | {\it Proceedings of the National Academy of Sciences}, {\it 87},
43 | 9193--9196.
44 | -- Size of data set: only 369 instances (at that point in time)
45 | -- Collected classification results: 1 trial only
46 | -- Two pairs of parallel hyperplanes were found to be consistent with
47 | 50% of the data
48 | -- Accuracy on remaining 50% of dataset: 93.5%
49 | -- Three pairs of parallel hyperplanes were found to be consistent with
50 | 67% of data
51 | -- Accuracy on remaining 33% of dataset: 95.9%
52 |
53 | 2. Zhang,~J. (1992). Selecting typical instances in instance-based
54 | learning. In {\it Proceedings of the Ninth International Machine
55 | Learning Conference} (pp. 470--479). Aberdeen, Scotland: Morgan
56 | Kaufmann.
57 | -- Size of data set: only 369 instances (at that point in time)
58 | -- Applied 4 instance-based learning algorithms
59 | -- Collected classification results averaged over 10 trials
60 | -- Best accuracy result:
61 | -- 1-nearest neighbor: 93.7%
62 | -- trained on 200 instances, tested on the other 169
63 | -- Also of interest:
64 | -- Using only typical instances: 92.2% (storing only 23.1 instances)
65 | -- trained on 200 instances, tested on the other 169
66 |
67 | 4. Relevant Information:
68 |
69 | Samples arrive periodically as Dr. Wolberg reports his clinical cases.
70 | The database therefore reflects this chronological grouping of the data.
71 | This grouping information appears immediately below, having been removed
72 | from the data itself:
73 |
74 | Group 1: 367 instances (January 1989)
75 | Group 2: 70 instances (October 1989)
76 | Group 3: 31 instances (February 1990)
77 | Group 4: 17 instances (April 1990)
78 | Group 5: 48 instances (August 1990)
79 | Group 6: 49 instances (Updated January 1991)
80 | Group 7: 31 instances (June 1991)
81 | Group 8: 86 instances (November 1991)
82 | -----------------------------------------
83 | Total: 699 points (as of the donated datbase on 15 July 1992)
84 |
85 | Note that the results summarized above in Past Usage refer to a dataset
86 | of size 369, while Group 1 has only 367 instances. This is because it
87 | originally contained 369 instances; 2 were removed. The following
88 | statements summarizes changes to the original Group 1's set of data:
89 |
90 | ##### Group 1 : 367 points: 200B 167M (January 1989)
91 | ##### Revised Jan 10, 1991: Replaced zero bare nuclei in 1080185 & 1187805
92 | ##### Revised Nov 22,1991: Removed 765878,4,5,9,7,10,10,10,3,8,1 no record
93 | ##### : Removed 484201,2,7,8,8,4,3,10,3,4,1 zero epithelial
94 | ##### : Changed 0 to 1 in field 6 of sample 1219406
95 | ##### : Changed 0 to 1 in field 8 of following sample:
96 | ##### : 1182404,2,3,1,1,1,2,0,1,1,1
97 |
98 | 5. Number of Instances: 699 (as of 15 July 1992)
99 |
100 | 6. Number of Attributes: 10 plus the class attribute
101 |
102 | 7. Attribute Information: (class attribute has been moved to last column)
103 |
104 | # Attribute Domain
105 | -- -----------------------------------------
106 | 1. Sample code number id number
107 | 2. Clump Thickness 1 - 10
108 | 3. Uniformity of Cell Size 1 - 10
109 | 4. Uniformity of Cell Shape 1 - 10
110 | 5. Marginal Adhesion 1 - 10
111 | 6. Single Epithelial Cell Size 1 - 10
112 | 7. Bare Nuclei 1 - 10
113 | 8. Bland Chromatin 1 - 10
114 | 9. Normal Nucleoli 1 - 10
115 | 10. Mitoses 1 - 10
116 | 11. Class: (2 for benign, 4 for malignant)
117 |
118 | 8. Missing attribute values: 16
119 |
120 | There are 16 instances in Groups 1 to 6 that contain a single missing
121 | (i.e., unavailable) attribute value, now denoted by "?".
122 |
123 | 9. Class distribution:
124 |
125 | Benign: 458 (65.5%)
126 | Malignant: 241 (34.5%)
127 |
--------------------------------------------------------------------------------
/datasets/chopstick-effectiveness.csv:
--------------------------------------------------------------------------------
1 | "Food.Pinching.Effeciency","Individual","Chopstick.Length"
2 | 19.55,1,180
3 | 27.24,2,180
4 | 28.76,3,180
5 | 31.19,4,180
6 | 21.91,5,180
7 | 27.62,6,180
8 | 29.46,7,180
9 | 26.35,8,180
10 | 26.69,9,180
11 | 30.22,10,180
12 | 27.81,11,180
13 | 23.46,12,180
14 | 23.64,13,180
15 | 27.85,14,180
16 | 20.62,15,180
17 | 25.35,16,180
18 | 28,17,180
19 | 23.49,18,180
20 | 27.77,19,180
21 | 18.48,20,180
22 | 23.01,21,180
23 | 22.66,22,180
24 | 23.24,23,180
25 | 22.82,24,180
26 | 17.94,25,180
27 | 26.67,26,180
28 | 28.98,27,180
29 | 21.48,28,180
30 | 14.47,29,180
31 | 28.29,30,180
32 | 27.97,31,180
33 | 23.53,1,210
34 | 26.39,2,210
35 | 30.9,3,210
36 | 26.05,4,210
37 | 23.27,5,210
38 | 29.17,6,210
39 | 30.93,7,210
40 | 17.55,8,210
41 | 32.55,9,210
42 | 28.87,10,210
43 | 26.53,11,210
44 | 25.26,12,210
45 | 25.65,13,210
46 | 29.39,14,210
47 | 23.26,15,210
48 | 24.77,16,210
49 | 25.42,17,210
50 | 23.65,18,210
51 | 32.22,19,210
52 | 18.86,20,210
53 | 21.75,21,210
54 | 23.07,22,210
55 | 22.3,23,210
56 | 27.04,24,210
57 | 22.24,25,210
58 | 24.87,26,210
59 | 30.85,27,210
60 | 21.15,28,210
61 | 16.47,29,210
62 | 29.05,30,210
63 | 26.99,31,210
64 | 21.34,1,240
65 | 29.94,2,240
66 | 32.95,3,240
67 | 29.4,4,240
68 | 22.32,5,240
69 | 28.36,6,240
70 | 28.49,7,240
71 | 22.24,8,240
72 | 36.15,9,240
73 | 30.62,10,240
74 | 26.53,11,240
75 | 27.95,12,240
76 | 31.49,13,240
77 | 30.24,14,240
78 | 24.8,15,240
79 | 26.43,16,240
80 | 29.35,17,240
81 | 21.15,18,240
82 | 29.18,19,240
83 | 21.6,20,240
84 | 25.39,21,240
85 | 22.26,22,240
86 | 24.85,23,240
87 | 24.56,24,240
88 | 16.35,25,240
89 | 22.96,26,240
90 | 25.82,27,240
91 | 19.46,28,240
92 | 23.6,29,240
93 | 33.1,30,240
94 | 27.13,31,240
95 | 24.4,1,270
96 | 25.88,2,270
97 | 27.97,3,270
98 | 24.54,4,270
99 | 22.66,5,270
100 | 28.94,6,270
101 | 30.72,7,270
102 | 16.7,8,270
103 | 30.27,9,270
104 | 26.29,10,270
105 | 22.33,11,270
106 | 24.85,12,270
107 | 24.33,13,270
108 | 24.5,14,270
109 | 22.67,15,270
110 | 22.28,16,270
111 | 23.8,17,270
112 | 25.36,18,270
113 | 29.5,19,270
114 | 20.19,20,270
115 | 20.14,21,270
116 | 21.09,22,270
117 | 24.78,23,270
118 | 24.74,24,270
119 | 22.73,25,270
120 | 21.08,26,270
121 | 25.7,27,270
122 | 19.79,28,270
123 | 16.82,29,270
124 | 31.15,30,270
125 | 27.84,31,270
126 | 22.5,1,300
127 | 23.1,2,300
128 | 28.26,3,300
129 | 25.55,4,300
130 | 16.71,5,300
131 | 27.88,6,300
132 | 31.07,7,300
133 | 23.44,8,300
134 | 28.82,9,300
135 | 27.77,10,300
136 | 24.54,11,300
137 | 24.55,12,300
138 | 27.78,13,300
139 | 26.14,14,300
140 | 23.44,15,300
141 | 26.44,16,300
142 | 27.47,17,300
143 | 24.94,18,300
144 | 29.68,19,300
145 | 24.33,20,300
146 | 25.42,21,300
147 | 24.64,22,300
148 | 22.78,23,300
149 | 26.5,24,300
150 | 18.71,25,300
151 | 22.86,26,300
152 | 25.09,27,300
153 | 19.72,28,300
154 | 17.05,29,300
155 | 30.91,30,300
156 | 25.92,31,300
157 | 21.32,1,330
158 | 26.18,2,330
159 | 25.93,3,330
160 | 28.61,4,330
161 | 20.54,5,330
162 | 26.44,6,330
163 | 29.36,7,330
164 | 19.77,8,330
165 | 31.69,9,330
166 | 24.64,10,330
167 | 22.09,11,330
168 | 23.42,12,330
169 | 28.63,13,330
170 | 26.3,14,330
171 | 22.89,15,330
172 | 22.68,16,330
173 | 30.92,17,330
174 | 20.74,18,330
175 | 27.24,19,330
176 | 17.12,20,330
177 | 23.63,21,330
178 | 20.91,22,330
179 | 23.49,23,330
180 | 24.86,24,330
181 | 16.28,25,330
182 | 21.52,26,330
183 | 27.22,27,330
184 | 17.41,28,330
185 | 16.42,29,330
186 | 28.22,30,330
187 | 27.52,31,330
188 |
--------------------------------------------------------------------------------
/datasets/downloaded_medals.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/downloaded_medals.xls
--------------------------------------------------------------------------------
/datasets/iris.csv:
--------------------------------------------------------------------------------
1 | Sepal.Length,Sepal.Width,Petal.Length,Petal.Width,Species
2 | 5.1,3.5,1.4,0.2,setosa
3 | 4.9,3,1.4,0.2,setosa
4 | 4.7,3.2,1.3,0.2,setosa
5 | 4.6,3.1,1.5,0.2,setosa
6 | 5,3.6,1.4,0.2,setosa
7 | 5.4,3.9,1.7,0.4,setosa
8 | 4.6,3.4,1.4,0.3,setosa
9 | 5,3.4,1.5,0.2,setosa
10 | 4.4,2.9,1.4,0.2,setosa
11 | 4.9,3.1,1.5,0.1,setosa
12 | 5.4,3.7,1.5,0.2,setosa
13 | 4.8,3.4,1.6,0.2,setosa
14 | 4.8,3,1.4,0.1,setosa
15 | 4.3,3,1.1,0.1,setosa
16 | 5.8,4,1.2,0.2,setosa
17 | 5.7,4.4,1.5,0.4,setosa
18 | 5.4,3.9,1.3,0.4,setosa
19 | 5.1,3.5,1.4,0.3,setosa
20 | 5.7,3.8,1.7,0.3,setosa
21 | 5.1,3.8,1.5,0.3,setosa
22 | 5.4,3.4,1.7,0.2,setosa
23 | 5.1,3.7,1.5,0.4,setosa
24 | 4.6,3.6,1,0.2,setosa
25 | 5.1,3.3,1.7,0.5,setosa
26 | 4.8,3.4,1.9,0.2,setosa
27 | 5,3,1.6,0.2,setosa
28 | 5,3.4,1.6,0.4,setosa
29 | 5.2,3.5,1.5,0.2,setosa
30 | 5.2,3.4,1.4,0.2,setosa
31 | 4.7,3.2,1.6,0.2,setosa
32 | 4.8,3.1,1.6,0.2,setosa
33 | 5.4,3.4,1.5,0.4,setosa
34 | 5.2,4.1,1.5,0.1,setosa
35 | 5.5,4.2,1.4,0.2,setosa
36 | 4.9,3.1,1.5,0.2,setosa
37 | 5,3.2,1.2,0.2,setosa
38 | 5.5,3.5,1.3,0.2,setosa
39 | 4.9,3.6,1.4,0.1,setosa
40 | 4.4,3,1.3,0.2,setosa
41 | 5.1,3.4,1.5,0.2,setosa
42 | 5,3.5,1.3,0.3,setosa
43 | 4.5,2.3,1.3,0.3,setosa
44 | 4.4,3.2,1.3,0.2,setosa
45 | 5,3.5,1.6,0.6,setosa
46 | 5.1,3.8,1.9,0.4,setosa
47 | 4.8,3,1.4,0.3,setosa
48 | 5.1,3.8,1.6,0.2,setosa
49 | 4.6,3.2,1.4,0.2,setosa
50 | 5.3,3.7,1.5,0.2,setosa
51 | 5,3.3,1.4,0.2,setosa
52 | 7,3.2,4.7,1.4,versicolor
53 | 6.4,3.2,4.5,1.5,versicolor
54 | 6.9,3.1,4.9,1.5,versicolor
55 | 5.5,2.3,4,1.3,versicolor
56 | 6.5,2.8,4.6,1.5,versicolor
57 | 5.7,2.8,4.5,1.3,versicolor
58 | 6.3,3.3,4.7,1.6,versicolor
59 | 4.9,2.4,3.3,1,versicolor
60 | 6.6,2.9,4.6,1.3,versicolor
61 | 5.2,2.7,3.9,1.4,versicolor
62 | 5,2,3.5,1,versicolor
63 | 5.9,3,4.2,1.5,versicolor
64 | 6,2.2,4,1,versicolor
65 | 6.1,2.9,4.7,1.4,versicolor
66 | 5.6,2.9,3.6,1.3,versicolor
67 | 6.7,3.1,4.4,1.4,versicolor
68 | 5.6,3,4.5,1.5,versicolor
69 | 5.8,2.7,4.1,1,versicolor
70 | 6.2,2.2,4.5,1.5,versicolor
71 | 5.6,2.5,3.9,1.1,versicolor
72 | 5.9,3.2,4.8,1.8,versicolor
73 | 6.1,2.8,4,1.3,versicolor
74 | 6.3,2.5,4.9,1.5,versicolor
75 | 6.1,2.8,4.7,1.2,versicolor
76 | 6.4,2.9,4.3,1.3,versicolor
77 | 6.6,3,4.4,1.4,versicolor
78 | 6.8,2.8,4.8,1.4,versicolor
79 | 6.7,3,5,1.7,versicolor
80 | 6,2.9,4.5,1.5,versicolor
81 | 5.7,2.6,3.5,1,versicolor
82 | 5.5,2.4,3.8,1.1,versicolor
83 | 5.5,2.4,3.7,1,versicolor
84 | 5.8,2.7,3.9,1.2,versicolor
85 | 6,2.7,5.1,1.6,versicolor
86 | 5.4,3,4.5,1.5,versicolor
87 | 6,3.4,4.5,1.6,versicolor
88 | 6.7,3.1,4.7,1.5,versicolor
89 | 6.3,2.3,4.4,1.3,versicolor
90 | 5.6,3,4.1,1.3,versicolor
91 | 5.5,2.5,4,1.3,versicolor
92 | 5.5,2.6,4.4,1.2,versicolor
93 | 6.1,3,4.6,1.4,versicolor
94 | 5.8,2.6,4,1.2,versicolor
95 | 5,2.3,3.3,1,versicolor
96 | 5.6,2.7,4.2,1.3,versicolor
97 | 5.7,3,4.2,1.2,versicolor
98 | 5.7,2.9,4.2,1.3,versicolor
99 | 6.2,2.9,4.3,1.3,versicolor
100 | 5.1,2.5,3,1.1,versicolor
101 | 5.7,2.8,4.1,1.3,versicolor
102 | 6.3,3.3,6,2.5,virginica
103 | 5.8,2.7,5.1,1.9,virginica
104 | 7.1,3,5.9,2.1,virginica
105 | 6.3,2.9,5.6,1.8,virginica
106 | 6.5,3,5.8,2.2,virginica
107 | 7.6,3,6.6,2.1,virginica
108 | 4.9,2.5,4.5,1.7,virginica
109 | 7.3,2.9,6.3,1.8,virginica
110 | 6.7,2.5,5.8,1.8,virginica
111 | 7.2,3.6,6.1,2.5,virginica
112 | 6.5,3.2,5.1,2,virginica
113 | 6.4,2.7,5.3,1.9,virginica
114 | 6.8,3,5.5,2.1,virginica
115 | 5.7,2.5,5,2,virginica
116 | 5.8,2.8,5.1,2.4,virginica
117 | 6.4,3.2,5.3,2.3,virginica
118 | 6.5,3,5.5,1.8,virginica
119 | 7.7,3.8,6.7,2.2,virginica
120 | 7.7,2.6,6.9,2.3,virginica
121 | 6,2.2,5,1.5,virginica
122 | 6.9,3.2,5.7,2.3,virginica
123 | 5.6,2.8,4.9,2,virginica
124 | 7.7,2.8,6.7,2,virginica
125 | 6.3,2.7,4.9,1.8,virginica
126 | 6.7,3.3,5.7,2.1,virginica
127 | 7.2,3.2,6,1.8,virginica
128 | 6.2,2.8,4.8,1.8,virginica
129 | 6.1,3,4.9,1.8,virginica
130 | 6.4,2.8,5.6,2.1,virginica
131 | 7.2,3,5.8,1.6,virginica
132 | 7.4,2.8,6.1,1.9,virginica
133 | 7.9,3.8,6.4,2,virginica
134 | 6.4,2.8,5.6,2.2,virginica
135 | 6.3,2.8,5.1,1.5,virginica
136 | 6.1,2.6,5.6,1.4,virginica
137 | 7.7,3,6.1,2.3,virginica
138 | 6.3,3.4,5.6,2.4,virginica
139 | 6.4,3.1,5.5,1.8,virginica
140 | 6,3,4.8,1.8,virginica
141 | 6.9,3.1,5.4,2.1,virginica
142 | 6.7,3.1,5.6,2.4,virginica
143 | 6.9,3.1,5.1,2.3,virginica
144 | 5.8,2.7,5.1,1.9,virginica
145 | 6.8,3.2,5.9,2.3,virginica
146 | 6.7,3.3,5.7,2.5,virginica
147 | 6.7,3,5.2,2.3,virginica
148 | 6.3,2.5,5,1.9,virginica
149 | 6.5,3,5.2,2,virginica
150 | 6.2,3.4,5.4,2.3,virginica
151 | 5.9,3,5.1,1.8,virginica
152 |
--------------------------------------------------------------------------------
/datasets/movies.csv:
--------------------------------------------------------------------------------
1 | user_id;star_wars;lord_of_the_rings;harry_potter
1;1.2;4.9;2.1
2;2.1;8.1;7.9
3;7.4;3.0;9.9
4;5.6;0.5;1.8
5;1.5;8.3;2.6
6;2.5;3.7;6.5
7;2.0;8.2;8.5
8;1.8;9.3;4.5
9;2.6;1.7;3.1
10;1.5;4.7;2.3
--------------------------------------------------------------------------------
/datasets/test.txt:
--------------------------------------------------------------------------------
1 | Solo test
2 |
--------------------------------------------------------------------------------
/datasets/titanic3.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/titanic3.xls
--------------------------------------------------------------------------------
/datasets/titanic3.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/titanic3.xlsx
--------------------------------------------------------------------------------
/datasets/titanic_custom.xls:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/datasets/titanic_custom.xls
--------------------------------------------------------------------------------
/imagenes/CRISP-DM_Process_Diagram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/CRISP-DM_Process_Diagram.png
--------------------------------------------------------------------------------
/imagenes/Casos_hipotesis.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Casos_hipotesis.PNG
--------------------------------------------------------------------------------
/imagenes/Cnotraste_hipotesis.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Cnotraste_hipotesis.PNG
--------------------------------------------------------------------------------
/imagenes/Conclusion_hipotesis.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Conclusion_hipotesis.PNG
--------------------------------------------------------------------------------
/imagenes/Corr_Pearson.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Corr_Pearson.PNG
--------------------------------------------------------------------------------
/imagenes/Distribución_Normal.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Distribución_Normal.PNG
--------------------------------------------------------------------------------
/imagenes/Estadisticas_bases.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Estadisticas_bases.PNG
--------------------------------------------------------------------------------
/imagenes/FilmDialogueFigure1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/FilmDialogueFigure1.png
--------------------------------------------------------------------------------
/imagenes/HADOOP-ECOSYSTEM-Edureka.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/HADOOP-ECOSYSTEM-Edureka.png
--------------------------------------------------------------------------------
/imagenes/Intervalos_confianza.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Intervalos_confianza.PNG
--------------------------------------------------------------------------------
/imagenes/MonteCarlo.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/MonteCarlo.PNG
--------------------------------------------------------------------------------
/imagenes/Rechazo_hipotesis.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Rechazo_hipotesis.PNG
--------------------------------------------------------------------------------
/imagenes/Teorema_Central_Limite.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/Teorema_Central_Limite.PNG
--------------------------------------------------------------------------------
/imagenes/bullet_gauge.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/bullet_gauge.png
--------------------------------------------------------------------------------
/imagenes/calidad_datos_ejemplo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/calidad_datos_ejemplo.png
--------------------------------------------------------------------------------
/imagenes/change_cell_type.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/change_cell_type.png
--------------------------------------------------------------------------------
/imagenes/circular_gauge.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/circular_gauge.png
--------------------------------------------------------------------------------
/imagenes/content_jupyternotebook1.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/content_jupyternotebook1.gif
--------------------------------------------------------------------------------
/imagenes/data_disciplines.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/data_disciplines.jpg
--------------------------------------------------------------------------------
/imagenes/data_science_applications.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/data_science_applications.png
--------------------------------------------------------------------------------
/imagenes/data_scientist.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/data_scientist.png
--------------------------------------------------------------------------------
/imagenes/ggplot2_cheatsheet1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/ggplot2_cheatsheet1.png
--------------------------------------------------------------------------------
/imagenes/ggplot2_cheatsheet2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/ggplot2_cheatsheet2.png
--------------------------------------------------------------------------------
/imagenes/imagen.txt:
--------------------------------------------------------------------------------
1 | Imagenes test
2 |
--------------------------------------------------------------------------------
/imagenes/muestreo.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/muestreo.PNG
--------------------------------------------------------------------------------
/imagenes/nbextensions_example.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/nbextensions_example.gif
--------------------------------------------------------------------------------
/imagenes/p_valor.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/felipesanma/Intro_to_DataScience/8d4b1381a534a2dc4ce48b8a2a666464b1d2d492/imagenes/p_valor.PNG
--------------------------------------------------------------------------------
/mimodulo.py:
--------------------------------------------------------------------------------
1 | # -*- coding: UTF-8 -*-
2 | """
3 | Ejemplo de un módulo Python. Contiene una variable llamada mi_variable,
4 | una función llamada mi_function, y una clase llamada MiClase.
5 | """
6 |
7 | mi_variable = 0
8 |
9 | def mi_function():
10 | """
11 | Función ejemplo
12 | """
13 | return mi_variable
14 |
15 | class MiClase:
16 | """
17 | Clase ejemplo.
18 | """
19 |
20 | def __init__(self):
21 | self.variable = mi_variable
22 |
23 | def set_variable(self, nuevo_valor):
24 | """
25 | Asigna self.variable a un nuevo valor
26 | """
27 | self.variable = nuevo_valor
28 |
29 | def get_variable(self):
30 | return self.variable
31 |
--------------------------------------------------------------------------------
/notebooks/00_00_Introducción a Jupyter.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# 0 - Introducción a Jupyter"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "## 0.1 - Corriendo código de Python\n",
15 | "En su versión mas sencilla, cada una de las celdas se puede pensar como un **snippet de codigo que se puede ejecutar independientemente** de las demas.\n",
16 | "Para ejecutar la siguiente celda, selccionarla y apretar el boton ubicado en la barra superior, o equivalentemente, presionar Shift + Enter "
17 | ]
18 | },
19 | {
20 | "cell_type": "code",
21 | "execution_count": 2,
22 | "metadata": {
23 | "scrolled": false
24 | },
25 | "outputs": [
26 | {
27 | "name": "stdout",
28 | "output_type": "stream",
29 | "text": [
30 | "Hola notebook!\n"
31 | ]
32 | }
33 | ],
34 | "source": [
35 | "print('Hola notebook!')"
36 | ]
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "Pueden ver una lista completa de todos los shortcuts disponibles en el menu Help Keyboard Shortcuts o con el shortcut H \n",
43 | " \n",
44 | "Shortcuts importantes:\n",
45 | "- Click para selccionar una celda\n",
46 | "- Shift + Enter para ejecutar una celda y seleccionar la celda siguiente"
47 | ]
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {},
52 | "source": [
53 | "Cada celda es independiente de las demás, pero **comparten el mismo contexto**. Definiciones de variables, funciones y clases, e importaciones de módulos dentro de una celda, permiten que las siguientes celdas tengan acceso a éstas.\n",
54 | "\n",
55 | "Si no sabes que son las variables, funciones y clases, tranquilo sólo quedate con que: *lo que ejecutes desde la primera celda, estará disponible para usar en las siguientes celdas*"
56 | ]
57 | },
58 | {
59 | "cell_type": "code",
60 | "execution_count": 3,
61 | "metadata": {},
62 | "outputs": [],
63 | "source": [
64 | "import getpass\n",
65 | "# defino variable en una celda\n",
66 | "user = getpass.getuser()"
67 | ]
68 | },
69 | {
70 | "cell_type": "code",
71 | "execution_count": 4,
72 | "metadata": {
73 | "scrolled": true
74 | },
75 | "outputs": [
76 | {
77 | "name": "stdout",
78 | "output_type": "stream",
79 | "text": [
80 | "Hola fsanmartin!\n"
81 | ]
82 | }
83 | ],
84 | "source": [
85 | "# accedo a la variable definida en la celda anterior\n",
86 | "print (\"Hola {}!\".format(user))"
87 | ]
88 | },
89 | {
90 | "cell_type": "markdown",
91 | "metadata": {},
92 | "source": [
93 | "Una diferencia notable con un script.py es que **no estamos obligados a ejecutar celdas en un orden preestablecido**. De todas maneras, es recomendable ordenar un notebook según el orden de lectura estandar para evitar confusiones."
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "## 0.2 - Más que solo Python\n",
101 | "El contenido de las celdas no está limitado a solo código de Python. Una alternativa posible es **Markdown**, que es muy útil para explicar las ideas detras de cada snippet de código y para guiar al lector en la ejecución del notebook (como venimos haciendo hasta ahora).\n",
102 | "\n",
103 | "Y extendiendolo aún mas, es posible insertar código html para insertar imágenes, audios, videos y todas las alternativas que esto provee. Esto es especialmente útil para visualizar información y generar gráficos con datos generados por los snippets de código del notebook."
104 | ]
105 | },
106 | {
107 | "cell_type": "markdown",
108 | "metadata": {},
109 | "source": [
110 | "En modo Markdown está habilitada la interpretación de código html, con algunas excepciones por temas de seguridad y consistencia del notebook (ej: interpretación de <script> , <style> y atributos relacionados). "
111 | ]
112 | },
113 | {
114 | "cell_type": "markdown",
115 | "metadata": {},
116 | "source": [
117 | "## 0.3 - Integración con bash\n",
118 | "\n",
119 | "De forma nativa jupyter tiene integración con comandos de bash. Estos son reconocidos mediante el prefijo ! . Por ej, si quisiera ver qué versión de python estoy corriendo, podría correr:"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": 6,
125 | "metadata": {},
126 | "outputs": [
127 | {
128 | "name": "stdout",
129 | "output_type": "stream",
130 | "text": [
131 | "Python 3.7.3\n"
132 | ]
133 | }
134 | ],
135 | "source": [
136 | "!python --version"
137 | ]
138 | },
139 | {
140 | "cell_type": "markdown",
141 | "metadata": {},
142 | "source": [
143 | "Notar que la celda anterior es interpretada como una celda de código al igual que las celdas de que contiene código python. Esto permite que dentro de una celda conviva código de python y de bash sin problemas. \n",
144 | "\n",
145 | "Para ejemplificar esto, usemos el comando **ls** que lista los archivos de la carpeta en la cual estemos parados:"
146 | ]
147 | },
148 | {
149 | "cell_type": "code",
150 | "execution_count": 8,
151 | "metadata": {},
152 | "outputs": [
153 | {
154 | "name": "stdout",
155 | "output_type": "stream",
156 | "text": [
157 | "0 - Introducción a Jupyter.ipynb\n",
158 | "01_Cargar un Zip en Jupyter.ipynb\n",
159 | "02_Limpieza_de_Datos.ipynb\n",
160 | "03_Data_Wrangling.ipynb\n",
161 | "04_Conceptos_básicos_de_estadÃsticas.ipynb\n",
162 | "05_Regresión_Lineal.ipynb\n",
163 | "06_Regresión_LogÃstica.ipynb\n",
164 | "07_Clustering_y_clasificación.ipynb\n"
165 | ]
166 | }
167 | ],
168 | "source": [
169 | "files_in_this_folder = !ls\n",
170 | "for filename in files_in_this_folder:\n",
171 | " if filename[-6:] == '.ipynb':\n",
172 | " print(filename)"
173 | ]
174 | },
175 | {
176 | "cell_type": "markdown",
177 | "metadata": {},
178 | "source": [
179 | "## 0.4 - Jupyter Magic\n",
180 | "\n",
181 | "Extendiendo la capacidad de jupyter de interpretar Python, Bash y Markdown, existen comandos especiales que son parte de la *magia de jupyter*. Estos comandos empiezan con % - para evaluaciones en una sola linea - y con %% para evaluaciones multi linea. Un ejemplo de esto es la posibilidad de insertar html excediendo las capacidad de Markdown y tener la posibilidad de insertar scripts de javascript:"
182 | ]
183 | },
184 | {
185 | "cell_type": "code",
186 | "execution_count": 9,
187 | "metadata": {},
188 | "outputs": [
189 | {
190 | "data": {
191 | "text/html": [
192 | "Clickeame \n",
193 | "No me has clickeado todavía. \n",
194 | "\n"
204 | ],
205 | "text/plain": [
206 | ""
207 | ]
208 | },
209 | "metadata": {},
210 | "output_type": "display_data"
211 | }
212 | ],
213 | "source": [
214 | "%%html\n",
215 | "Clickeame \n",
216 | "No me has clickeado todavía. \n",
217 | ""
227 | ]
228 | },
229 | {
230 | "cell_type": "markdown",
231 | "metadata": {},
232 | "source": [
233 | "Para listar por completo todas las magias con las que viene jupyter, existe el comando % lsmagic "
234 | ]
235 | },
236 | {
237 | "cell_type": "code",
238 | "execution_count": null,
239 | "metadata": {},
240 | "outputs": [],
241 | "source": [
242 | "% lsmagic"
243 | ]
244 | },
245 | {
246 | "cell_type": "markdown",
247 | "metadata": {},
248 | "source": [
249 | "## 0.5 - Servidor remoto\n",
250 | "\n",
251 | "La principal interfaz de Jupyter involucra un navegador para proveer la interfaz al usuario, pero la ejecución de código se realiza del lado del servidor. Esto permite que, habiendo hecho las configuraciones pertinentes, el usuario acceda de forma remota al servidor. Por ej, en la necesidad de procesar una gran cantidad de información, se puede dejar corriendo un servidor de jupyter en una computadora con mejores recursos de hardware y acceder a éste desde cualquier computadora que cuente con un navegador y una conexión a internet.\n",
252 | "\n",
253 | "Para mas información, leer la [documentación oficial de jupyter](http://jupyter-notebook.readthedocs.io/en/latest/public_server.html) sobre este tema"
254 | ]
255 | },
256 | {
257 | "cell_type": "markdown",
258 | "metadata": {},
259 | "source": [
260 | "## 0.6 - Extensiones de la comunidad\n",
261 | "\n",
262 | "Con la rápida adopción y la creciente comunidad de usuarios de Jupyter, han aparecido una gran cantidad de extensiones que le agregan funcionalidades. Éstas se encuentran en el [repositorio de extensiones](https://github.com/ipython-contrib/jupyter_contrib_nbextensions) de Jupyter.\n",
263 | "\n",
264 | "Las extensiones disponibles ofrecen un amplio rango de funcionalidades agregadas. Desde correctores ortográficos hasta generadores automaticos de tablas de contenidos:\n",
265 | "\n",
266 | " "
267 | ]
268 | },
269 | {
270 | "cell_type": "markdown",
271 | "metadata": {},
272 | "source": [
273 | "# Referencias\n",
274 | "\n",
275 | "* https://github.com/datosgobar/taller-analisis-datos-101"
276 | ]
277 | },
278 | {
279 | "cell_type": "code",
280 | "execution_count": null,
281 | "metadata": {},
282 | "outputs": [],
283 | "source": []
284 | }
285 | ],
286 | "metadata": {
287 | "kernelspec": {
288 | "display_name": "Python 3",
289 | "language": "python",
290 | "name": "python3"
291 | },
292 | "language_info": {
293 | "codemirror_mode": {
294 | "name": "ipython",
295 | "version": 3
296 | },
297 | "file_extension": ".py",
298 | "mimetype": "text/x-python",
299 | "name": "python",
300 | "nbconvert_exporter": "python",
301 | "pygments_lexer": "ipython3",
302 | "version": "3.7.3"
303 | }
304 | },
305 | "nbformat": 4,
306 | "nbformat_minor": 1
307 | }
308 |
--------------------------------------------------------------------------------
/notebooks/01_02_Intro_DataScience_Pandas.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Pandas \n",
8 | "\n",
9 | "Pandas (acrónimo para Panel Data) es un módulo orientado a la manipulación y limpieza de estructuras de datos.\n",
10 | "\n",
11 | "Se suele utilizar en conjunto a otros módulos como numpy , scipy y matplotlib para el análisis de datos.\n",
12 | "\n",
13 | "### ¿Por qué pandas ?\n",
14 | "\n",
15 | "1. Es una colección de funciones y algoritmos que implementan las principales convenciones sobre el análisis de datos.\n",
16 | "\n",
17 | "2. Permite importar distintos archivos de datos con procedimientos robustos permiten centrar al investigador en lo substancial y no en procesar archivos.\n",
18 | "3. Genera un objeto DataFrame con una estructura de matriz (Filas y Columnas) que resulta intuitiva para desarrollar el análisis orientado en variables y segmentado por casos.\n",
19 | "4. Presenta una amplia gama de funciones y procedimientos comunes generadas en los objetos.\n",
20 | "\n",
21 | "\n",
22 | "\n",
23 | "## Importando archivos con pandas\n",
24 | "\n",
25 | "Usualmente trabajaremos con datos en un formato de texto plano, llámese csv o xlsx .\n",
26 | "\n",
27 | "Ahora generaremos nuestra primera interacción con pandas :\n",
28 | "\n",
29 | "* La convención indica que pandas se abrevia de forma pd .\n"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": 1,
35 | "metadata": {},
36 | "outputs": [],
37 | "source": [
38 | "import pandas as pd"
39 | ]
40 | },
41 | {
42 | "cell_type": "markdown",
43 | "metadata": {},
44 | "source": [
45 | "* Dentro de nuestro directorio de trabajo encontraremos el archivo alumnos.csv .\n",
46 | "* Un archivo csv (comma separated value) presenta el nombre de los atributos en la primera fila. Después de ella, le siguen las observaciones ingresadas.\n",
47 | "\n",
48 | "* Cada observación está separada mediante comas (de ahí el nombre archivo separado por comas).\n"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 2,
54 | "metadata": {},
55 | "outputs": [
56 | {
57 | "name": "stdout",
58 | "output_type": "stream",
59 | "text": [
60 | "nombre,altura,peso,edad,sexo\n",
61 | "Hugo,1.67,60,23,h\n",
62 | "Paco,1.73,83,25,h\n",
63 | "Luis,1.62,70,28,h\n",
64 | "Diana,1.58,58,21,m\n",
65 | "Francisco,1.86,98,28,h\n",
66 | "Felipe,1.79,100,26,h\n",
67 | "Jacinta,1.69,62,20,m\n",
68 | "Bernardo,1.6,83,31,h\n",
69 | "Marisol,1.6,56,30,m\n"
70 | ]
71 | }
72 | ],
73 | "source": [
74 | "# solicitemos las primeras filas del archivo alumnos (desde bash)\n",
75 | "!head alumnos.csv"
76 | ]
77 | },
78 | {
79 | "cell_type": "markdown",
80 | "metadata": {},
81 | "source": [
82 | "Para ingresar éste archivo a nuestro notebook, utilizaremos la función read_csv de pandas.\n",
83 | "\n",
84 | "## Digresión: ¿Cómo llamar funciones dentro de un módulo?\n",
85 | "\n",
86 | "Para llamar una función y/u objeto específico dentro de nuestro módulo importado, utilizamos la siguiente sintáxis:\n",
87 | "\n",
88 | "$$ modulo.funcion $$\n",
89 | "\n",
90 | "Vamos a generar un objeto llamado df (contracción de dataframe) mediante read_csv"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": 3,
96 | "metadata": {},
97 | "outputs": [],
98 | "source": [
99 | "df = pd.read_csv('alumnos.csv')"
100 | ]
101 | },
102 | {
103 | "cell_type": "markdown",
104 | "metadata": {},
105 | "source": [
106 | "Si todo resulta bien, podemos ver las primeras 5 observaciones de nuestro nuevo objeto con df.head().\n"
107 | ]
108 | },
109 | {
110 | "cell_type": "code",
111 | "execution_count": 4,
112 | "metadata": {},
113 | "outputs": [
114 | {
115 | "data": {
116 | "text/html": [
117 | "\n",
118 | "\n",
131 | "
\n",
132 | " \n",
133 | " \n",
134 | " \n",
135 | " nombre \n",
136 | " altura \n",
137 | " peso \n",
138 | " edad \n",
139 | " sexo \n",
140 | " \n",
141 | " \n",
142 | " \n",
143 | " \n",
144 | " 0 \n",
145 | " Hugo \n",
146 | " 1.67 \n",
147 | " 60 \n",
148 | " 23 \n",
149 | " h \n",
150 | " \n",
151 | " \n",
152 | " 1 \n",
153 | " Paco \n",
154 | " 1.73 \n",
155 | " 83 \n",
156 | " 25 \n",
157 | " h \n",
158 | " \n",
159 | " \n",
160 | " 2 \n",
161 | " Luis \n",
162 | " 1.62 \n",
163 | " 70 \n",
164 | " 28 \n",
165 | " h \n",
166 | " \n",
167 | " \n",
168 | " 3 \n",
169 | " Diana \n",
170 | " 1.58 \n",
171 | " 58 \n",
172 | " 21 \n",
173 | " m \n",
174 | " \n",
175 | " \n",
176 | " 4 \n",
177 | " Francisco \n",
178 | " 1.86 \n",
179 | " 98 \n",
180 | " 28 \n",
181 | " h \n",
182 | " \n",
183 | " \n",
184 | "
\n",
185 | "
"
186 | ],
187 | "text/plain": [
188 | " nombre altura peso edad sexo\n",
189 | "0 Hugo 1.67 60 23 h\n",
190 | "1 Paco 1.73 83 25 h\n",
191 | "2 Luis 1.62 70 28 h\n",
192 | "3 Diana 1.58 58 21 m\n",
193 | "4 Francisco 1.86 98 28 h"
194 | ]
195 | },
196 | "execution_count": 4,
197 | "metadata": {},
198 | "output_type": "execute_result"
199 | }
200 | ],
201 | "source": [
202 | "df.head()"
203 | ]
204 | },
205 | {
206 | "cell_type": "markdown",
207 | "metadata": {},
208 | "source": [
209 | "Los resultados son idénticos que el archivo alumnos.csv , con la salvedad que están mejor presentados.\n",
210 | "\n",
211 | "El resultado de head es la representación en filas y columnas.\n",
212 | "\n",
213 | "Hay algunas salvedades a destacar:\n",
214 | "\n",
215 | " 1. En Python, los índices comienzan en 0.\n",
216 | " 2. La primera columna de nuestra tabla corresponde a la posición de la fila respecto al DataFrame. Esta información nos facilitará segmentación de archivos.\n",
217 | "\n",
218 | "\n",
219 | "## DataFrame\n",
220 | "\n",
221 | "El objeto df que creamos recientemente es un objeto DataFrame, una de las estructuras elementales de pandas .\n",
222 | "\n",
223 | "Un objeto DataFrame representa una tabla rectangular de datos compuestas por filas (observaciones registradas en el archivo) y una serie de columnas (atributos medibles que pueden ser integer, float, string, boolean, etc...).\n",
224 | "\n",
225 | "Las observaciones registradas son insertadas en bloques bidimensionales que responden a la notación de matrices.\n",
226 | "\n",
227 | "Podemos inspeccionar las dimensiones de la tabla mediante .shape. Éste nos informará de la cantidad de filas y columnas.\n"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "execution_count": 5,
233 | "metadata": {},
234 | "outputs": [
235 | {
236 | "data": {
237 | "text/plain": [
238 | "(21, 5)"
239 | ]
240 | },
241 | "execution_count": 5,
242 | "metadata": {},
243 | "output_type": "execute_result"
244 | }
245 | ],
246 | "source": [
247 | "df.shape"
248 | ]
249 | },
250 | {
251 | "cell_type": "markdown",
252 | "metadata": {},
253 | "source": [
254 | "Esta tabla es manipulable y segmentable. Imaginemos que ahora desamos extraer sólo las primeras 3 observaciones de nuestra tabla. La operación se realiza de la siguiente manera"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 7,
260 | "metadata": {},
261 | "outputs": [
262 | {
263 | "data": {
264 | "text/html": [
265 | "\n",
266 | "\n",
279 | "
\n",
280 | " \n",
281 | " \n",
282 | " \n",
283 | " nombre \n",
284 | " altura \n",
285 | " peso \n",
286 | " edad \n",
287 | " sexo \n",
288 | " \n",
289 | " \n",
290 | " \n",
291 | " \n",
292 | " 0 \n",
293 | " Hugo \n",
294 | " 1.67 \n",
295 | " 60 \n",
296 | " 23 \n",
297 | " h \n",
298 | " \n",
299 | " \n",
300 | " 1 \n",
301 | " Paco \n",
302 | " 1.73 \n",
303 | " 83 \n",
304 | " 25 \n",
305 | " h \n",
306 | " \n",
307 | " \n",
308 | " 2 \n",
309 | " Luis \n",
310 | " 1.62 \n",
311 | " 70 \n",
312 | " 28 \n",
313 | " h \n",
314 | " \n",
315 | " \n",
316 | "
\n",
317 | "
"
318 | ],
319 | "text/plain": [
320 | " nombre altura peso edad sexo\n",
321 | "0 Hugo 1.67 60 23 h\n",
322 | "1 Paco 1.73 83 25 h\n",
323 | "2 Luis 1.62 70 28 h"
324 | ]
325 | },
326 | "execution_count": 7,
327 | "metadata": {},
328 | "output_type": "execute_result"
329 | }
330 | ],
331 | "source": [
332 | "df[:3]"
333 | ]
334 | },
335 | {
336 | "cell_type": "markdown",
337 | "metadata": {},
338 | "source": [
339 | "Python interpretó esta instrucción como \"dentro de la tabla df , muéstrame las observaciones hasta la 5\".\n",
340 | "\n",
341 | "Eso se generó dentro de los brackets [] , donde pasamos un operador: que se llama slice y permite instruír hasta dónde se puede cortar un elemento.\n",
342 | "\n",
343 | "En el caso anterior utilizamos slice para generar una submuestra hasta cierta condición (que se evalúa por el índice de la tabla; la primera columna).\n",
344 | "\n",
345 | "¿Qué pasa si deseamos generar una segmentación desde un valor en específico? Utilizamos la siguiente sintáxis:"
346 | ]
347 | },
348 | {
349 | "cell_type": "code",
350 | "execution_count": 8,
351 | "metadata": {},
352 | "outputs": [
353 | {
354 | "data": {
355 | "text/html": [
356 | "\n",
357 | "\n",
370 | "
\n",
371 | " \n",
372 | " \n",
373 | " \n",
374 | " nombre \n",
375 | " altura \n",
376 | " peso \n",
377 | " edad \n",
378 | " sexo \n",
379 | " \n",
380 | " \n",
381 | " \n",
382 | " \n",
383 | " 13 \n",
384 | " Diego \n",
385 | " 1.62 \n",
386 | " 78 \n",
387 | " 23 \n",
388 | " h \n",
389 | " \n",
390 | " \n",
391 | " 14 \n",
392 | " Gonzalo \n",
393 | " 1.58 \n",
394 | " 67 \n",
395 | " 22 \n",
396 | " h \n",
397 | " \n",
398 | " \n",
399 | " 15 \n",
400 | " Alejandra \n",
401 | " 1.86 \n",
402 | " 74 \n",
403 | " 21 \n",
404 | " m \n",
405 | " \n",
406 | " \n",
407 | " 16 \n",
408 | " Fernando \n",
409 | " 1.79 \n",
410 | " 93 \n",
411 | " 27 \n",
412 | " h \n",
413 | " \n",
414 | " \n",
415 | " 17 \n",
416 | " Carolina \n",
417 | " 1.60 \n",
418 | " 63 \n",
419 | " 28 \n",
420 | " m \n",
421 | " \n",
422 | " \n",
423 | " 18 \n",
424 | " Vicente \n",
425 | " 1.98 \n",
426 | " 102 \n",
427 | " 31 \n",
428 | " h \n",
429 | " \n",
430 | " \n",
431 | " 19 \n",
432 | " Benjamín \n",
433 | " 1.72 \n",
434 | " 78 \n",
435 | " 36 \n",
436 | " h \n",
437 | " \n",
438 | " \n",
439 | " 20 \n",
440 | " Gloria \n",
441 | " 1.58 \n",
442 | " 65 \n",
443 | " 23 \n",
444 | " m \n",
445 | " \n",
446 | " \n",
447 | "
\n",
448 | "
"
449 | ],
450 | "text/plain": [
451 | " nombre altura peso edad sexo\n",
452 | "13 Diego 1.62 78 23 h\n",
453 | "14 Gonzalo 1.58 67 22 h\n",
454 | "15 Alejandra 1.86 74 21 m\n",
455 | "16 Fernando 1.79 93 27 h\n",
456 | "17 Carolina 1.60 63 28 m\n",
457 | "18 Vicente 1.98 102 31 h\n",
458 | "19 Benjamín 1.72 78 36 h\n",
459 | "20 Gloria 1.58 65 23 m"
460 | ]
461 | },
462 | "execution_count": 8,
463 | "metadata": {},
464 | "output_type": "execute_result"
465 | }
466 | ],
467 | "source": [
468 | "df[13:]"
469 | ]
470 | },
471 | {
472 | "cell_type": "markdown",
473 | "metadata": {},
474 | "source": [
475 | "Acá instruímos a la tabla que entregue los resultados desde la fila 13 hasta el final de las observaciones.\n",
476 | "\n",
477 | "¿Y si queremos seleccionar entre dos valores? Utilizamos la siguiente sintáxis:"
478 | ]
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": 9,
483 | "metadata": {},
484 | "outputs": [
485 | {
486 | "data": {
487 | "text/html": [
488 | "\n",
489 | "\n",
502 | "
\n",
503 | " \n",
504 | " \n",
505 | " \n",
506 | " nombre \n",
507 | " altura \n",
508 | " peso \n",
509 | " edad \n",
510 | " sexo \n",
511 | " \n",
512 | " \n",
513 | " \n",
514 | " \n",
515 | " 3 \n",
516 | " Diana \n",
517 | " 1.58 \n",
518 | " 58 \n",
519 | " 21 \n",
520 | " m \n",
521 | " \n",
522 | " \n",
523 | " 4 \n",
524 | " Francisco \n",
525 | " 1.86 \n",
526 | " 98 \n",
527 | " 28 \n",
528 | " h \n",
529 | " \n",
530 | " \n",
531 | " 5 \n",
532 | " Felipe \n",
533 | " 1.79 \n",
534 | " 100 \n",
535 | " 26 \n",
536 | " h \n",
537 | " \n",
538 | " \n",
539 | " 6 \n",
540 | " Jacinta \n",
541 | " 1.69 \n",
542 | " 62 \n",
543 | " 20 \n",
544 | " m \n",
545 | " \n",
546 | " \n",
547 | " 7 \n",
548 | " Bernardo \n",
549 | " 1.60 \n",
550 | " 83 \n",
551 | " 31 \n",
552 | " h \n",
553 | " \n",
554 | " \n",
555 | " 8 \n",
556 | " Marisol \n",
557 | " 1.60 \n",
558 | " 56 \n",
559 | " 30 \n",
560 | " m \n",
561 | " \n",
562 | " \n",
563 | " 9 \n",
564 | " Facundo \n",
565 | " 1.98 \n",
566 | " 112 \n",
567 | " 36 \n",
568 | " h \n",
569 | " \n",
570 | " \n",
571 | " 10 \n",
572 | " Trinidad \n",
573 | " 1.72 \n",
574 | " 72 \n",
575 | " 21 \n",
576 | " m \n",
577 | " \n",
578 | " \n",
579 | " 11 \n",
580 | " Camila \n",
581 | " 1.63 \n",
582 | " 57 \n",
583 | " 26 \n",
584 | " m \n",
585 | " \n",
586 | " \n",
587 | " 12 \n",
588 | " Macarena \n",
589 | " 1.73 \n",
590 | " 68 \n",
591 | " 27 \n",
592 | " m \n",
593 | " \n",
594 | " \n",
595 | "
\n",
596 | "
"
597 | ],
598 | "text/plain": [
599 | " nombre altura peso edad sexo\n",
600 | "3 Diana 1.58 58 21 m\n",
601 | "4 Francisco 1.86 98 28 h\n",
602 | "5 Felipe 1.79 100 26 h\n",
603 | "6 Jacinta 1.69 62 20 m\n",
604 | "7 Bernardo 1.60 83 31 h\n",
605 | "8 Marisol 1.60 56 30 m\n",
606 | "9 Facundo 1.98 112 36 h\n",
607 | "10 Trinidad 1.72 72 21 m\n",
608 | "11 Camila 1.63 57 26 m\n",
609 | "12 Macarena 1.73 68 27 m"
610 | ]
611 | },
612 | "execution_count": 9,
613 | "metadata": {},
614 | "output_type": "execute_result"
615 | }
616 | ],
617 | "source": [
618 | "df[3:13]"
619 | ]
620 | },
621 | {
622 | "cell_type": "markdown",
623 | "metadata": {},
624 | "source": [
625 | "## Series\n",
626 | "Las segmentaciones realizadas anteriormiente fueron orientadas a las filas de una tabla. Esto también se puede realizar a las columnas de la tabla.\n",
627 | "\n",
628 | "Para ello utilizamos una forma similar. Lo que vamos a separar la columna peso.\n"
629 | ]
630 | },
631 | {
632 | "cell_type": "code",
633 | "execution_count": 12,
634 | "metadata": {},
635 | "outputs": [
636 | {
637 | "data": {
638 | "text/plain": [
639 | "0 60\n",
640 | "1 83\n",
641 | "2 70\n",
642 | "3 58\n",
643 | "4 98\n",
644 | "5 100\n",
645 | "6 62\n",
646 | "7 83\n",
647 | "8 56\n",
648 | "9 112\n",
649 | "10 72\n",
650 | "11 57\n",
651 | "12 68\n",
652 | "13 78\n",
653 | "14 67\n",
654 | "15 74\n",
655 | "16 93\n",
656 | "17 63\n",
657 | "18 102\n",
658 | "19 78\n",
659 | "20 65\n",
660 | "Name: peso, dtype: int64"
661 | ]
662 | },
663 | "execution_count": 12,
664 | "metadata": {},
665 | "output_type": "execute_result"
666 | }
667 | ],
668 | "source": [
669 | "df['peso']"
670 | ]
671 | },
672 | {
673 | "cell_type": "markdown",
674 | "metadata": {},
675 | "source": [
676 | "Entre los brackets pasamos el nombre exacto de la columna que deseamos analizar. Ya que trabajaremos con ésta columna, guardémosla en un nuevo objeto"
677 | ]
678 | },
679 | {
680 | "cell_type": "code",
681 | "execution_count": 13,
682 | "metadata": {},
683 | "outputs": [
684 | {
685 | "data": {
686 | "text/plain": [
687 | "pandas.core.series.Series"
688 | ]
689 | },
690 | "execution_count": 13,
691 | "metadata": {},
692 | "output_type": "execute_result"
693 | }
694 | ],
695 | "source": [
696 | "peso = df['peso']\n",
697 | "type(peso)\n"
698 | ]
699 | },
700 | {
701 | "cell_type": "markdown",
702 | "metadata": {},
703 | "source": [
704 | "Cuando separamos ésta columna y preguntamos por su tipo, Python nos entrega que es un objeto pandas.core.series.Series , este elemento que separamos se conoce como Series.\n",
705 | "\n",
706 | "En pandas , las series son listas unidimensionales que contienen una secuencia de valores.\n",
707 | "\n",
708 | "Todo objeto pd.Series tiene asociado una lista de etiquetas de datos denominada index. De manera similar a su comportamiento en DataFrame , nos permite realizar segmentaciones.\n"
709 | ]
710 | },
711 | {
712 | "cell_type": "code",
713 | "execution_count": 14,
714 | "metadata": {},
715 | "outputs": [
716 | {
717 | "data": {
718 | "text/plain": [
719 | "15 74\n",
720 | "16 93\n",
721 | "17 63\n",
722 | "18 102\n",
723 | "19 78\n",
724 | "20 65\n",
725 | "Name: peso, dtype: int64"
726 | ]
727 | },
728 | "execution_count": 14,
729 | "metadata": {},
730 | "output_type": "execute_result"
731 | }
732 | ],
733 | "source": [
734 | "peso[15:]"
735 | ]
736 | },
737 | {
738 | "cell_type": "code",
739 | "execution_count": null,
740 | "metadata": {},
741 | "outputs": [],
742 | "source": []
743 | }
744 | ],
745 | "metadata": {
746 | "kernelspec": {
747 | "display_name": "Python 3",
748 | "language": "python",
749 | "name": "python3"
750 | },
751 | "language_info": {
752 | "codemirror_mode": {
753 | "name": "ipython",
754 | "version": 3
755 | },
756 | "file_extension": ".py",
757 | "mimetype": "text/x-python",
758 | "name": "python",
759 | "nbconvert_exporter": "python",
760 | "pygments_lexer": "ipython3",
761 | "version": "3.7.3"
762 | }
763 | },
764 | "nbformat": 4,
765 | "nbformat_minor": 2
766 | }
767 |
--------------------------------------------------------------------------------
/notebooks/01_03_Introduccion a Data Science_Proceso y repaso.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "[](https://colab.research.google.com/github/efviodo/idatha-data-science-course/blob/master/notebooks/02%20-%20DS%20-%20Introduccion%20a%20Data%20Science%20-%20Python.ipynb)"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | " "
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "# Introducción a la Ciencia de Datos"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "## Objetivos\n",
29 | "\n",
30 | "- Conocer conceptos básicos de Data Sience\n",
31 | "- Entender qué problemas se resuelven en Data Sience\n",
32 | "- Introducir una metodología de trabajo para Data Science"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {},
38 | "source": [
39 | " \n",
40 | "## Índice\n",
41 | "[Inicio ▲](#Indice)\n",
42 | "\n",
43 | "1. [Data Science](#Data-Sience)\n",
44 | "1. [Data Scientist](#Data-Scientist)\n",
45 | "1. [Conceptos Básicos](#Conceptos-basicos)\n",
46 | "1. [Aplicaciones de Data Science](#Aplicaciones-Data-Science)\n",
47 | "1. [Metodologias](#Metodologias)\n",
48 | " 1. [Modelo CRISP-DM](#Modelo-CRISP-DM)\n",
49 | " 1. [Comprensión del Negocio](#Comprension-Negocio)\n",
50 | " 1. [Comprensión de los Datos](#Comprension-Datos)\n",
51 | " 1. [Preparación de los Datos](#Preparacion-Datos)\n",
52 | " 1. [Evaluación](#Evaluacion)\n",
53 | " 1. [Despliegue](#Despliegue)\n",
54 | "1. [Herramientas](#Herramientas)\n",
55 | "1. [Bibliografía](#Bibliografia)"
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {},
61 | "source": [
62 | " \n",
63 | "## Data Sience\n",
64 | "[Inicio ▲](#Indice)\n",
65 | "\n",
66 | "La ciencia de datos es un campo interdisciplinario que involucra métodos científicos, procesos y sistemas para extraer conocimiento o alcanzar un mejor entendimiento de datos en sus diferentes formas (estructurados y no estructurados). Para ello se basa en algunos campos del análisis de datos como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.\n",
67 | "\n",
68 | "En otras palabras, puede imaginarse como un área de conocimiento que se basa en otras áreas ya desarrolladas, como la Minería de Datos, Análisis Estadístico y utiliza técnicas de Aprendizaje Automático y BigData para descubrir nueva información.\n",
69 | "\n",
70 | " \n",
71 | "\n",
72 | ""
73 | ]
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "metadata": {},
78 | "source": [
79 | "___"
80 | ]
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | " \n",
87 | "## Data Scientist\n",
88 | "[Inicio ▲](#Indice)\n",
89 | "\n",
90 | "El Data Scientist o Científico de Datos, es una persona capaz de analizar e interpretar datos complejos, así como utilizar tecnicas de estadística y aprendizaje automático para comprender mejor estos datos y extraer conslusiones que permitan resolver un problema de la realidad.\n",
91 | "\n",
92 | "Combina una sólida formación teórica y práctica en las materias fundamentales asociadas al análisis avanzado de datos: pensamiento analítico, comprensión de problemas de la realidad, estadística, programación, tratamiento de bases de datos, trabajo con algoritmos y comunicación efectiva, preparado para encarar problemas de la realidad y convertirlos en soluciones utilizando datos. \n",
93 | "\n",
94 | "Es muy común colcoar a un data scientist en la intersección de las siguientes áreas de conocimento: (i) Ciencias de la Computación, (ii) Matemáticas y Estadística y (iii) Conocimiento de un dominio específico\n",
95 | "\n",
96 | ""
97 | ]
98 | },
99 | {
100 | "cell_type": "markdown",
101 | "metadata": {},
102 | "source": [
103 | " \n",
104 | "## Conceptos Básicos\n",
105 | "[Inicio ▲](#Indice)\n",
106 | "\n",
107 | "\n",
108 | "### Modelo \n",
109 | "Representación matemática de un proceso del mundo real; un modelo predictivo pronostica el resultado del futuro basado en comportamientos del pasado.\n",
110 | "\n",
111 | "*Ejemplo*: Modelo de probabilidad de fuga de clientes.\n",
112 | "\n",
113 | "### Algoritmo \n",
114 | "Conjunto ordenado de operaciones sistemáticas que permite hacer un cálculo y hallar la solución a un problema.\n",
115 | "\n",
116 | "*Ejemplo*: Algoritmo de ordenamiento [QuickSort](https://es.wikipedia.org/wiki/Quicksort).\n",
117 | "\n",
118 | "### Entrenamiento\n",
119 | "El proceso de crear un modelo a partir de los datos de entrenamiento. Los datos alimentan un algoritmo de entrenamiento que aprende la representación del problema y produce un modelo. Comúnmente llamado “aprendizaje”.\n",
120 | "\n",
121 | "### Regresión\n",
122 | "Método de predicción cuyo resultado es un número real (un valor que representa una cantidad en una recta). Por ejemplo: predecir la temperatura de un motor o la ganancia de una empresa.\n",
123 | "\n",
124 | "### Clasificación\n",
125 | "Método de predicción que asigna una categoría predefinida a cada dato de entrada, por ejemplo, categoría de cliente según sus compras.\n",
126 | "\n",
127 | "### Target \n",
128 | "En estadística se le llama variable dependiente. Es la salida del modelo o la variable que se quiere predecir.\n",
129 | "\n",
130 | "### Conjunto de Entrenamiento \n",
131 | "Comunmente llamado *Training dataset*, se utiliza para encontrar relaciones potencialmente predictivas que serán utilizadas para crear un modelo. También puede encontrarse como *Corpus de entrenamiento*.\n",
132 | "\n",
133 | "### Conjunto de Verificación\n",
134 | "Comunmente llamado *Test dataset*, es un conjunto de datos diferente al de entrenamiento, pero con la misma estructura. Se utiliza para evaluar la performance de los modelos predictivos. También puede encontrarse como *Corpus de pruebas*.\n",
135 | "\n",
136 | "### Feature \n",
137 | "También conocida como variable independiente o variable predictora, una feature es una cantidad observable, utilizada por un modelo predictivo. También se puede hacer ingeniería de features, creando nuevas variables a partir de la combinación de las mismas, pudiendo agregar información."
138 | ]
139 | },
140 | {
141 | "cell_type": "markdown",
142 | "metadata": {},
143 | "source": [
144 | " \n",
145 | "## Aplicaciónes de Data Science\n",
146 | "[Inicio ▲](#Indice)\n",
147 | "\n",
148 | "Ejemplos más comúnes:\n",
149 | "- Mantenimiento predictivo\n",
150 | "- Análisis de sentimiento\n",
151 | "- Detección de intereses\n",
152 | "- Segmentación de clientes\n",
153 | "- Riesgo de fuga\n",
154 | "- Detección de spam\n",
155 | "- Predicción de demanda\n",
156 | "- Detección de fraude\n",
157 | "\n",
158 | "### Ejemplos de aplicación por industria y vertical\n",
159 | "\n",
160 | " \n",
161 | "\n",
162 | ""
163 | ]
164 | },
165 | {
166 | "cell_type": "markdown",
167 | "metadata": {},
168 | "source": [
169 | " \n",
170 | "## Metodologías\n",
171 | "[Inicio ▲](#Indice)\n",
172 | "\n",
173 | "### Motivación\n",
174 | "Necesito contar con una metodología o marco de trabajo que me permita sistematizar ciertas etapas como recolectar datos, limpiarlos, generar un modelo predictivo y determinar acciones. Un proceso estándar que traduzca un problema de la vida real en tareas abordables por un equipo de cientificos de datos.\n",
175 | "\n",
176 | "### Alternativas\n",
177 | "\n",
178 | "Existen varias propuestas de modelos o marcos de trabajo, que ayudan a un cientifico de datos a abordar un problema de forma ordenada. En este taller vamos a trabajar con un modelo bastante conocido, que se llama CRISP-DM y es bien conocido por ser uno de los modelos más adoptados para problemas en Minería de Datos.\n",
179 | "\n",
180 | "Cabe destcar, que existen otros modelos e incluso algunas empresas tecnológicas muy fuertes como Facebook y Uber, implementaron sus propias herramientas o plataformas para data science, basadas en sus propios modelos de trabajo.\n",
181 | "\n",
182 | "- [Microsoft TDSP](https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/), es una metodología o flujo de rabajo alternativa.\n",
183 | "- [FBLearner Flow](https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/), es una plataforma de Machine Learning de Facebook.\n",
184 | "\n",
185 | "\n",
186 | "Queda a cargo del lector profundizar en cualquiera de las alternativas propuestas o buscar nuevas."
187 | ]
188 | },
189 | {
190 | "cell_type": "markdown",
191 | "metadata": {},
192 | "source": [
193 | " \n",
194 | "### Modelo CRISP-DM\n",
195 | "[Inicio ▲](#Indice)\n",
196 | "\n",
197 | "\n",
198 | "CRISP-DM es la sigla para *CRoss Industry Standard Process for Data Mining* (algo así como *Proceso Estándar Multi Industria para Minería de Datos*). Es un modelo de proceso, propuesto inicialmente para proyectos de minería de datos y que puede ser adaptado para proyectos en ciencia de datos. El proceso es independiente del sector de la industira del cual proviene el problema que queremos resolver o de las tecnologías utilizadas. \n",
199 | "\n",
200 | "Fue presentado por primera vez en el año 2000, a través del trabajo *[CRISP-DM: Towards a standard process model for data mining](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.5133&rep=rep1&type=pdf)* [1]. En caso de estar interesado en el trabajo podes encontrar la cita en la sección de Biblografía.\n",
201 | "\n",
202 | " \n",
203 | "\n",
204 | " \n",
205 | "\n",
206 | "En este taller veremos solamente las primeras tres fases del modelo, quedando fuera de alcance las otras tres.\n",
207 | "\n",
208 | " \n",
209 | "#### Fases del modelo CRISP-DM\n",
210 | "\n",
211 | "El modelo CRISP-DM se divide en 6 fases o etapas, que inicialmente en un proyecto de ciencia de datos se ejecutan en un orden determinado. Luego el proceso puede retro-alimentarse, volviendo a la etapa inicial o cualquier etapa intermedia, formando un circulo de retroalimentación.\n",
212 | "\n",
213 | " \n",
214 | "#### I. Comprensión del negocio\n",
215 | "\n",
216 | "Comprensión de los objetivos y requisitos del proyecto desde una perspectiva empresarial, y luego convertir este conocimiento en una definición del problema de minería de datos, y un plan preliminar diseñado para alcanzar los objetivos.\n",
217 | "\n",
218 | "Etapas:\n",
219 | "\n",
220 | "- Determinar objetivos empresariales.\n",
221 | "- Analizar la situación actual.\n",
222 | "- Determinar objetivos de minería de datos.\n",
223 | "- Planificación con duración, recursos y riesgos.\n",
224 | "\n",
225 | " \n",
226 | "#### II. Comprensión de los datos\n",
227 | "\n",
228 | "Recolección inicial de datos y procesos con actividades con el objetivo de familiarizarse con los mismos, identificar problemas en la calidad de los datos, descubrir primeros insights en los datos, o detectar subconjuntos de datos para formular hipótesis sobre datos ocultos. Hay un vinculo muy cercano entre las etapas de *Comprensión del negocio* y *Comprensión de los datos*\n",
229 | "\n",
230 | "Etapas:\n",
231 | "\n",
232 | "- Recopilar datos disponibles\n",
233 | "- Explorar y describir los datos con tablas y gráficos.\n",
234 | "- Verificar calidad de los datos.\n",
235 | "\n",
236 | " \n",
237 | "#### III. Preparación de datos\n",
238 | "\n",
239 | "Actividades para construir el conjunto de datos de entrenamiento. Estas tareas son ejecutadas en múltiples oportunidades y sin orden. Las tareas incluyen selección y transformación de tablas, registros y atributos, y limpieza de datos para las herramientas de modelado.\n",
240 | "\n",
241 | "Etapas:\n",
242 | "- Selección de subconjunto de datos.\n",
243 | "- Limpieza de datos.\n",
244 | "- Creación de nuevos atributos (ingeniería de atributos).\n",
245 | "- Fusión y agregado de conjuntos y registros.\n",
246 | "- Verificación de formato de datos para el modelado.\n",
247 | "- División en conjuntos de datos de prueba y entrenamiento.\n",
248 | "\n",
249 | " \n",
250 | "#### IV. Modelado\n",
251 | "\n",
252 | "Se seleccionan y aplican varias técnicas de modelado y se calibran los parámetros para mejorar los resultados. Hay varias técnicas que tienen requerimientos específicos sobre la forma de los datos, por lo que puede ser necesario volver a la fase de preparación de datos.\n",
253 | "\n",
254 | " \n",
255 | "#### V. Evaluación\n",
256 | "\n",
257 | "Evaluación del modelo (o modelos) construidos, que parecen tener gran calidad desde una perspectiva del análisis de datos.\n",
258 | "\n",
259 | " \n",
260 | "#### VI. Despliegue\n",
261 | "\n",
262 | "Esta fase depende de los requerimientos, pudiendo ser simple como la generación de un reporte o compleja como la implementación de un proceso de explotación de información que atraviese a toda la organización."
263 | ]
264 | },
265 | {
266 | "cell_type": "markdown",
267 | "metadata": {},
268 | "source": [
269 | " \n",
270 | "## Herramientas\n",
271 | "[Inicio ▲](#Indice)\n",
272 | "\n",
273 | "### Jupyter Notebooks\n",
274 | "- Proyecto open-source basado en IPython.\n",
275 | "- **Entorno interactivo** para la ejecución de código:\n",
276 | " - Versionado de notebooks\n",
277 | " - Celda como unidad de trabajo con un único formato (tipo de celda)\n",
278 | " - Edición (cortar, copiar, pegar), merge, split y desplazamiento de celdas\n",
279 | " - Visualización de celdas de diferentes tipos\n",
280 | " - Inserción de celdas arriba y abajo (shortcut: 'A' para insertar arriba y 'B' abajo)\n",
281 | " - Manejo de visualización de resultado (esconder, permitir scroll y borrar)\n",
282 | " - Administración del Kernel (interrupción, reinicio, cambio)\n",
283 | "- Puede mostrar:\n",
284 | " - `Código`\n",
285 | " - Gráficas generadas a partir de código\n",
286 | " - Texto enriqucido\n",
287 | " - Expresiones matemáticas: $e^x=\\sum_{i=0}^\\infty \\frac{1}{i!}x^i$\n",
288 | " - Dibujos y *rich media* (HTML, LaTeX, PNG, SVG, etc.)\n",
289 | "- **Lenguajes soportados**: Python, R, Scala y muchos más (ver [lista de kernels soportados](https://github.com/jupyter/jupyter/wiki/Jupyter-kernels)).\n",
290 | "\n",
291 | "### Lenguaje R\n",
292 | "- Lenguaje de programación con fuerte foco en el análisis estadístico.\n",
293 | "- Ofrece una amplia variedad de herramientas y librerias para trabajar con datos\n",
294 | "\n",
295 | " - **dplyr**: Libreria **R** para manipular data frames de forma simple: ```select```, ```filter```, etc. [https://dplyr.tidyverse.org/](https://dplyr.tidyverse.org/)\n",
296 | "\n",
297 | " - Herramientas para data profiling: [DataExplorer](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html), [HMisc](https://cran.r-project.org/web/packages/Hmisc/index.html), entre otros.\n",
298 | " - Herramientas para data visualization: [ggplot2](https://ggplot2.tidyverse.org/)\n",
299 | " \n",
300 | "### Lenguaje Python\n",
301 | "- Es otro de los lenguajes de programación elegido por la comunidad de data scientists.\n",
302 | "- Interpretado, de fácil aprendizaje y muy ligero.\n",
303 | "- Tiene una oferta de herramientas muy buena para data scientists:\n",
304 | " - [Pandas](https://pandas.pydata.org/): Librería para manipulación de data frames.\n",
305 | " - [Scikit-Learn](https://scikit-learn.org/stable/): Librería para mineria y análisis de datos, implementa algorítmos para los problemas clásicos de Machine Learning: Classification, Regression, Clustering.\n",
306 | " - Herramientas para data visualization: [matplotlib](https://matplotlib.org/), [seaborn](https://seaborn.pydata.org/), [bokeh](https://bokeh.pydata.org/en/latest/).\n",
307 | " - Librerías para profiling de datos: [Pandas Profiling](https://pypi.org/project/pandas-profiling/)\n",
308 | " - Libreraías matemáticas: [NumPy](http://www.numpy.org/), [SciPy](https://www.scipy.org/), "
309 | ]
310 | },
311 | {
312 | "cell_type": "markdown",
313 | "metadata": {},
314 | "source": [
315 | " \n",
316 | "## Bibliografía\n",
317 | "[Inicio ▲](#Indice)\n",
318 | "\n",
319 | "\n",
320 | " Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (pp. 29-39). Citeseer.\n",
321 | " \n",
322 | " "
323 | ]
324 | }
325 | ],
326 | "metadata": {
327 | "kernelspec": {
328 | "display_name": "Python 3",
329 | "language": "python",
330 | "name": "python3"
331 | },
332 | "language_info": {
333 | "codemirror_mode": {
334 | "name": "ipython",
335 | "version": 3
336 | },
337 | "file_extension": ".py",
338 | "mimetype": "text/x-python",
339 | "name": "python",
340 | "nbconvert_exporter": "python",
341 | "pygments_lexer": "ipython3",
342 | "version": "3.7.3"
343 | }
344 | },
345 | "nbformat": 4,
346 | "nbformat_minor": 2
347 | }
348 |
--------------------------------------------------------------------------------