├── 2022吴恩达机器学习笔记.md ├── README.md ├── assets ├── 155ab9e777fc478bbbbc1d69c3b740d6.png ├── 1a03f34c700c4da5800202f69208acc1.png ├── 1acd90e41ab9410c87858b6e7f0096a8.png ├── 370a076a19674e74a26ba6129b28f03b.png ├── 37cafdb5d6a44e49afa753bb32511f11.png ├── 4276973bf59840308b366ee1118c190f.png ├── 4f42bb586827c532200fdf93d83c4d3.jpg ├── 526bc0e47ea748ce962c56d7a4ffe948.png ├── 55dcc376be8e40a6b1b8cf2a1b8f6806.png ├── 55f495cdce81400894d49d6596b4b558.png ├── 5e196e68393b4d0bb3a6bc9f8bccfcc0.png ├── 60d3076afc284861a13ab3a94a7eb483.png ├── 668d47a6d2da4e278776538a8b3b876a.png ├── 67460cc8af7b4849851817ba2d0bb88f.png ├── 6FADB9BACC588371DBED7B85C216BD5F.jpg ├── 780ed8fb4328435aaee4f703f2bf50ab.png ├── 7e711d90b9d94f2fb1b8c8c8c77db0bb.png ├── 882c2999d986496fbe76cb24913278f0.png ├── 9394a22f77ce4c8eb11fb53edbea3b3e.png ├── bd9ae92971254af4a96304cd1315143e.png ├── bf90f26fba95429bbb33d4740b000c9b.png ├── bili_v_d_1669797954142.gif ├── bili_v_d_1669797991515.gif ├── c244ad6a9c4c4da0a0361e659c05a523.png ├── cd133f90f05749bf845c1189c2d16eac.png ├── e0130f4c7d4c43758fc9027664e38886.png ├── edd6a50d03ad47eb9dc17cd9e70e9df1.png ├── edee2f7bcc79448fbf32413ce9fe1171.png ├── eed429a4ba5f4cffbcadf83e67503b0a.png ├── f203314bdf2b48cfbfb629363091f214.png ├── f557b1d5e1c44b49a6823de802c9eabd.png ├── f82506afb35243c4ab7c4b65e613e31b.png ├── image-20221123142827819.png ├── image-20221123143120306.png ├── image-20221123143905555.png ├── image-20221123144755359.png ├── image-20221123161437526.png ├── image-20221123161819918.png ├── image-20221123164301647.png ├── image-20221123171839182.png ├── image-20221123172122015.png ├── image-20221123172324201.png ├── image-20221123172612693.png ├── image-20221123173023832.png ├── image-20221123173225852.png ├── image-20221123201741188.png ├── image-20221123203133742.png ├── image-20221123203205812.png ├── image-20221123203356992.png ├── image-20221123203902787.png ├── image-20221123204434599.png ├── image-20221123204602412.png ├── image-20221123204659930.png ├── image-20221123204723148.png ├── image-20221123205109848.png ├── image-20221123205337862.png ├── image-20221123205845738.png ├── image-20221123210239600.png ├── image-20221123210655127.png ├── image-20221124163019560.png ├── image-20221124163226331.png ├── image-20221124163351938.png ├── image-20221124163801674.png ├── image-20221124163954440.png ├── image-20221124164625125.png ├── image-20221124165359209.png ├── image-20221124165810603.png ├── image-20221124165833409.png ├── image-20221124165922558.png ├── image-20221124170005112.png ├── image-20221124170740687.png ├── image-20221124171128156.png ├── image-20221124173730072.png ├── image-20221124175437504.png ├── image-20221124204410338.png ├── image-20221124204620190.png ├── image-20221124204849263.png ├── image-20221124210005155.png ├── image-20221124210034389.png ├── image-20221124210605477.png ├── image-20221124212739237.png ├── image-20221124213514027.png ├── image-20221124213728482.png ├── image-20221124213848958.png ├── image-20221125104950489.png ├── image-20221125105115176.png ├── image-20221125111439017.png ├── image-20221125174004001.png ├── image-20221125174015379.png ├── image-20221125174032883.png ├── image-20221125174347366.png ├── image-20221125174446897.png ├── image-20221125174741397.png ├── image-20221125174946983.png ├── image-20221125175151677.png ├── image-20221125175320869.png ├── image-20221125180040332.png ├── image-20221125180405372.png ├── image-20221125180629231.png ├── image-20221125180714793.png ├── image-20221125180944730.png ├── image-20221125181403220.png ├── image-20221125182248590.png ├── image-20221125182306924.png ├── image-20221126135716626.png ├── image-20221126135834563.png ├── image-20221126140043746.png ├── image-20221126140421300.png ├── image-20221126141026095.png ├── image-20221126141057247.png ├── image-20221126141335411.png ├── image-20221126141433579.png ├── image-20221126141623723.png ├── image-20221126142330811.png ├── image-20221126142632734.png ├── image-20221126143014351.png ├── image-20221126143028260.png ├── image-20221126143117788.png ├── image-20221126150509239.png ├── image-20221126150744743.png ├── image-20221126151011590.png ├── image-20221126151118262.png ├── image-20221126152525147.png ├── image-20221126152545587.png ├── image-20221126152804101.png ├── image-20221126153213153.png ├── image-20221126153223952.png ├── image-20221126153254504.png ├── image-20221126153817325.png ├── image-20221126154035350.png ├── image-20221126154213907.png ├── image-20221126155255248.png ├── image-20221126155415332.png ├── image-20221126155648808.png ├── image-20221126160548039.png ├── image-20221126161108371.png ├── image-20221126161808516.png ├── image-20221126161928839.png ├── image-20221126161936289.png ├── image-20221126162643104.png ├── image-20221126170505427.png ├── image-20221126171542714.png ├── image-20221126171944549.png ├── image-20221126172133997.png ├── image-20221126183557103.png ├── image-20221126183926985.png ├── image-20221126190058163.png ├── image-20221126190412100.png ├── image-20221126190941872.png ├── image-20221126191109917.png ├── image-20221126193230962.png ├── image-20221126193734282.png ├── image-20221126194614902.png ├── image-20221126195212239.png ├── image-20221126195514969.png ├── image-20221126201422170.png ├── image-20221127100107817.png ├── image-20221127100251025.png ├── image-20221127100640505.png ├── image-20221127100907476.png ├── image-20221127101005469.png ├── image-20221127101056061.png ├── image-20221127101328629.png ├── image-20221127101714911.png ├── image-20221127101903558.png ├── image-20221127102210756.png ├── image-20221127102256519.png ├── image-20221127103035206.png ├── image-20221127110400750.png ├── image-20221127110821574.png ├── image-20221127113627875.png ├── image-20221127113846549.png ├── image-20221127114116507.png ├── image-20221127114437950.png ├── image-20221127114805773.png ├── image-20221127115002492.png ├── image-20221127115027603.png ├── image-20221127115309322.png ├── image-20221127115637450.png ├── image-20221127141808233.png ├── image-20221127141937129.png ├── image-20221127142026418.png ├── image-20221127142428981.png ├── image-20221127144251009.png ├── image-20221127145121736.png ├── image-20221127145201143.png ├── image-20221127145418967.png ├── image-20221127145453175.png ├── image-20221127145706933.png ├── image-20221127150016450.png ├── image-20221127150045873.png ├── image-20221127150205492.png ├── image-20221127150336692.png ├── image-20221127150532421.png ├── image-20221127150915807.png ├── image-20221127151108310.png ├── image-20221127151204235.png ├── image-20221127151236355.png ├── image-20221127151826619.png ├── image-20221127151845390.png ├── image-20221127151904437.png ├── image-20221127152011166.png ├── image-20221127154846243.png ├── image-20221127155135512.png ├── image-20221127155244945.png ├── image-20221127155802244.png ├── image-20221127160133252.png ├── image-20221127160232682.png ├── image-20221127161043605.png ├── image-20221127161326504.png ├── image-20221127161628104.png ├── image-20221127161847576.png ├── image-20221127164044984.png ├── image-20221127164113562.png ├── image-20221127170034648.png ├── image-20221127170509317.png ├── image-20221127170748973.png ├── image-20221127170814514.png ├── image-20221127171547474.png ├── image-20221127172506550.png ├── image-20221127173819931.png ├── image-20221127202013714.png ├── image-20221127202455009.png ├── image-20221127202553694.png ├── image-20221127202808229.png ├── image-20221127203006737.png ├── image-20221127203617102.png ├── image-20221127203916623.png ├── image-20221127204011502.png ├── image-20221127204529176.png ├── image-20221127204723210.png ├── image-20221127205036489.png ├── image-20221127205131497.png ├── image-20221127205141994.png ├── image-20221127205756711.png ├── image-20221127205814128.png ├── image-20221127205900240.png ├── image-20221127210106763.png ├── image-20221127210138017.png ├── image-20221127210304529.png ├── image-20221127210410268.png ├── image-20221127210623750.png ├── image-20221129200441728.png ├── image-20221129200807554.png ├── image-20221129201001367.png ├── image-20221129201343593.png ├── image-20221129201426113.png ├── image-20221129202243775.png ├── image-20221129202453387.png ├── image-20221129202538516.png ├── image-20221129202643683.png ├── image-20221129203131793.png ├── image-20221129203430066.png ├── image-20221129204239021.png ├── image-20221129205957561.png ├── image-20221129210605883.png ├── image-20221130163246924.png ├── image-20221130163622351.png ├── image-20221130163715903.png ├── image-20221130165212008.png ├── image-20221130165402633.png ├── image-20221130170034169.png ├── image-20221130173551384.png ├── image-20221130174226135.png ├── image-20221130185426523.png ├── image-20221130191616051.png ├── image-20221130192109443.png ├── image-20221130192318237.png ├── image-20221130193655320.png ├── image-20221130193713311.png ├── image-20221130193934215.png ├── image-20221130193947212.png ├── image-20221130194415595.png ├── image-20221130194511048.png ├── image-20221130194717558.png ├── image-20221130195025091.png ├── image-20221130195532338.png ├── image-20221130195948849.png ├── image-20221130200331218.png ├── image-20221130200603942.png ├── image-20221130201211151.png ├── image-20221130201407343.png ├── image-20221130201745798.png ├── image-20221130201750256.png ├── image-20221130201857506.png ├── image-20221130202749015.png ├── image-20221130203413900.png ├── image-20221130203900551.png ├── image-20221130204336833.png ├── image-20221130204443310.png ├── image-20221130204529467.png ├── image-20221130205219774.png ├── image-20221201202019878.png ├── image-20221201202140665.png ├── image-20221201202152579.png ├── image-20221201202441313.png ├── image-20221201202802696.png ├── image-20221201202928656.png ├── image-20221201203052983.png ├── image-20221201203132804.png ├── image-20221203192732240.png ├── image-20221203192858865.png ├── image-20221203193345304.png ├── image-20221205142717519.png ├── image-20221205143316219.png ├── image-20221205143552202.png ├── image-20221205200430134.png ├── image-20221205200550334.png ├── image-20221205200740389.png ├── image-20221205201045215.png ├── image-20221205201615208.png ├── image-20221205201739720.png ├── image-20221205202556729.png ├── image-20221205202910402.png ├── image-20221205203238737.png ├── image-20221205203455505.png ├── image-20221205203837988.png ├── image-20221205204054731.png ├── image-20221205204229313.png ├── image-20221205205800427.png ├── image-20221205205847401.png ├── image-20221206201045245.png ├── image-20221206201117927.png ├── image-20221206201229355.png ├── image-20221206201306005.png ├── image-20221206201429307.png ├── image-20221206201935169.png ├── image-20221206203620118.png ├── image-20221206203636844.png ├── image-20221206204044884.png ├── image-20221206204330398.png ├── image-20221206230201357.png ├── image-20221206231201557.png ├── image-20221206231716648.png ├── image-20221206231826276.png ├── image-20221206231837999.png ├── image-20221206231853396.png ├── image-20221206231945809.png ├── image-20221206232325331.png ├── image-20221206232634231.png ├── image-20221206232650159.png ├── image-20221206232716657.png ├── image-20221206233008822.png ├── image-20221207165212038.png ├── image-20221207170107758.png ├── image-20221207170431771.png ├── image-20221207170533222.png ├── image-20221207171329206.png ├── image-20221207171844072.png ├── image-20221207172818993.png ├── image-20221207172953875.png ├── image-20221207173047826.png ├── image-20221207173240383.png ├── image-20221207174458279.png ├── image-20221207174502747.png ├── image-20221207174812848.png ├── image-20221207174940631.png ├── image-20221207175108098.png ├── image-20221207175128902.png ├── image-20221207175220805.png ├── image-20221207175727949.png ├── image-20221207184315543.png ├── image-20221207184946510.png ├── image-20221207185641719.png ├── image-20221207185939437.png ├── image-20221207190820446.png ├── image-20221207191257656.png ├── image-20221207191511776.png ├── image-20221207191702914.png ├── image-20221207192050152.png ├── image-20221207192414971.png ├── image-20221207193246987.png ├── image-20221207193648889.png ├── image-20221207200220852.png ├── image-20221207200253593.png ├── image-20221207200539607.png ├── image-20221207200804451.png ├── image-20221207201522753.png ├── image-20221207201848353.png ├── image-20221207202205187.png ├── image-20221207202518351.png ├── image-20221207213129607.png ├── image-20221207213433623.png ├── image-20221207213614403.png ├── image-20221207213725419.png ├── image-20221207213743641.png ├── image-20221207213807107.png ├── image-20221207213953775.png ├── image-20221207215955027.png ├── image-20221208162344126.png ├── image-20221208162447238.png ├── image-20221208162459566.png ├── image-20221208162602764.png ├── image-20221208162638190.png ├── image-20221208162734790.png ├── image-20221208162833674.png ├── image-20221208162911592.png ├── image-20221208163001969.png ├── image-20221208163234671.png ├── image-20221208164001163.png ├── image-20221208164936139.png ├── image-20221208165439822.png ├── image-20221208165502474.png ├── image-20221208165929351.png ├── image-20221208170006904.png ├── image-20221208170408034.png ├── image-20221208170616279.png ├── image-20221208174124830.png ├── image-20221208174148165.png ├── image-20221208174457349.png ├── image-20221208174532761.png ├── image-20221208190715351.png ├── image-20221208191015464.png ├── image-20221208191425339.png ├── image-20221208191738900.png ├── image-20221208192403794.png ├── image-20221208192422711.png ├── image-20221208192437759.png ├── image-20221208192713025.png ├── image-20221208193309434.png ├── image-20221208193445448.png ├── image-20221208193545013.png ├── image-20221208193927019.png ├── image-20221208194012810.png ├── image-20221208194139272.png ├── image-20221208194248880.png ├── image-20221208194351806.png ├── image-20221208194449982.png ├── image-20221208194705199.png ├── image-20221208194902589.png ├── image-20221208195025279.png ├── image-20221208195138808.png ├── image-20221208195639875.png ├── image-20221208200431372.png ├── image-20221208200931046.png ├── image-20221208202336821.png ├── image-20221208202927871.png ├── image-20221208203055519.png ├── image-20221208203118504.png ├── image-20221208203128724.png ├── image-20221208203139567.png ├── image-20221208203226373.png ├── image-20221208204055892.png ├── image-20221208204109310.png ├── image-20221208204246583.png ├── image-20221208204455921.png ├── image-20221208204623696.png ├── image-20221208205247235.png ├── image-20221208210655902.png ├── image-20221208210853659.png ├── image-20221208210856440.png ├── image-20221208210915462.png ├── image-20221208211000842.png ├── image-20221208211038480.png ├── image-20221208211051894.png ├── image-20221208211206978.png └── image-20221208211457647.png ├── code └── Linear-regression.mlx ├── 第一章-前言与线性回归.md ├── 第七章-决策树与随机森林.md ├── 第三章-逻辑回归和正则化.md ├── 第九章-推荐系统(协同与内容过滤).md ├── 第二章-多元线性回归与特征工程.md ├── 第五章-神经网络实现(激活函数应用).md ├── 第八章-聚类算法与异常检测.md ├── 第六章-误差分析与模型改进.md ├── 第十章-强化学习与算法改进.md └── 第四章-神经网络与前向传播.md /README.md: -------------------------------------------------------------------------------- 1 | # 2022吴恩达机器学习笔记 2 | 3 | 汇总:[2022吴恩达机器学习笔记](./2022吴恩达机器学习笔记.md) 4 | 5 | **目录** 6 | 7 | ___ 8 | 9 | [第一章-前言与线性回归](./第一章-前言与线性回归.md) 10 | 11 | **前言** 12 | 13 | **机器学习的定义** 14 | 15 | **监督学习** 16 | 17 | - 回归问题-regression problem 18 | 19 | - 分类问题-classification problem 20 | 21 | **无监督学习** 22 | 23 | - 两者的区别 24 | 25 | **线性回归-linear regression** 26 | 27 | - 前言-线性回归的介绍 28 | 29 | - Cost Function(代价函数) 30 | 31 | - 梯度下降-Gradient descent algorithm 32 | 33 | - 算法的实现 34 | 35 | - 算法实现 36 | 37 | [第二章-多元线性回归与特征工程](./第二章-多元线性回归与特征工程.md) 38 | 39 | **多特征向量(入门)-Multiple features** 40 | 41 | **多元线性回归-Multiple linear regression** 42 | 43 | - 矢量处理-向量运算 44 | 45 | - 多元线性回归的梯度下降-Gradient descent for multiple linear regression 46 | 47 | **有关特征值与参数调节工程** 48 | 49 | - 特征放缩-Feature scaling 50 | 51 | - 检验收敛性-Check the convergence 52 | 53 | - - 怎么看收敛性 54 | 55 | - - 如何选取$\alpha$ 56 | 57 | - 特征工程-Feature Engineering 58 | 59 | **多项式回归-Polynomial Regression** 60 | 61 | [第三章-逻辑回归和正则化](./第三章-逻辑回归和正则化.md) 62 | 63 | **逻辑回归-Logistic regression** 64 | 65 | - 决策边界 66 | 67 | - 逻辑回归的代价函数-Cost function for logistic regression 68 | 69 | - 逻辑回归的代价函数 70 | 71 | **欠拟合与过拟合-underfitting and overfitting** 72 | 73 | - 欠拟合与过拟合的介绍 74 | 75 | - 线性回归的正则化 76 | 77 | **逻辑回归的正则化** 78 | 79 | [第四章-神经网络与前向传播](./第四章-神经网络与前向传播.md) 80 | 81 | **开篇** 82 | 83 | **神经网络-Neural Networks** 84 | 85 | - 神经网络介绍 86 | 87 | - 需求预测-Demand Prediction 88 | 89 | - Example:视觉处理-Face recognition 90 | 91 | - 神经网络层-Neural network layer 92 | 93 | - 更加复杂的神经网络 94 | 95 | **推理-Inferencing** 96 | 97 | - 向前传播(手写识别)-forward propagation 98 | 99 | - 代码部分-Inferencing in code 100 | 101 | - Tensorflow 中的数据 102 | 103 | **构造一个神经网络** 104 | 105 | - 调用库写函数 106 | 107 | - 单层中的前向传播-Forward prop in a single layer 108 | 109 | **AGI猜想-Is there a path to AGI** 110 | 111 | **向量化求解-矩阵部分** 112 | 113 | **神经网络向量化实现** 114 | 115 | [第五章-神经网络实现(激活函数应用)](./第五章-神经网络实现(激活函数应用).md) 116 | 117 | **训练神经网络** 118 | 119 | - 模型代码介绍 120 | 121 | - 训练细节 122 | 123 | **激活函数** 124 | 125 | - 之前讲过的一些激活函数 126 | 127 | - 激活函数的选择 128 | 129 | - 激活函数的重要性 130 | 131 | **多类问题-Multiclass Problem** 132 | 133 | - 多类问题介绍 134 | 135 | - Softmax激活函数 136 | 137 | - softmax与神经网络 138 | 139 | - softmax改进代码 140 | 141 | **多标签分类问题-Multi-label classification** 142 | 143 | **进阶优化算法** 144 | 145 | **小拓展** 146 | 147 | [第六章-误差分析与模型改进](./第六章-误差分析与模型改进.md) 148 | 149 | **前言** 150 | 151 | **模型评估-ebaluating model** 152 | 153 | - 应用到线性回归 154 | 155 | - 应用到分类问题 156 | 157 | **模型选择与交叉验证** 158 | 159 | - 选择方法与交叉验证 160 | 161 | **模型参数选择** 162 | 163 | - 诊断方差偏差 164 | 165 | - 正则化参数 166 | 167 | **误差的分析** 168 | 169 | - 搭建性能-Baseline(基线) 170 | 171 | - 学习曲线-Learning curves 172 | 173 | - 误差与方差的分析(下一步该改进什么) 174 | 175 | **神经网络与误差偏差** 176 | 177 | **机器学习的迭代循环** 178 | 179 | **如何高效的改进模型** 180 | 181 | - 误差分析-error analysis 182 | 183 | - 数据添加-adding data 184 | 185 | - 迁移学习-transfer learing 186 | 187 | **构造系统的全流程** 188 | 189 | **公平,偏见,伦理-fairness,bias,ethics** 190 | 191 | **选修-数据倾斜与优化方法** 192 | 193 | - 数据倾斜介绍 194 | 195 | - 权衡精度与召回率 196 | 197 | [第七章-决策树与随机森林](./第七章-决策树与随机森林.md) 198 | 199 | **决策树** 200 | 201 | - 猫猫分类案例-可爱捏 202 | 203 | - 学习过程-learning process 204 | 205 | - 熵的引入 206 | 207 | - 选择拆分信息增益 208 | 209 | - 整合 210 | 211 | **分类特征** 212 | 213 | - 独热-one hot 214 | 215 | - 连续值的特征 216 | 217 | **推广** 218 | 219 | - 回归树-regression trees 220 | 221 | - 集成树-tree ensembles 222 | 223 | - 有放回抽样-sampling with replacement 224 | 225 | - 随机森林法 226 | 227 | - XGBoost-eXtreme Gradient Boosting 228 | 229 | **什么时候用决策树** 230 | 231 | [第八章-聚类算法与异常检测](./第八章-聚类算法与异常检测.md) 232 | 233 | **前言** 234 | 235 | **聚类-clustering** 236 | 237 | - 聚类的介绍 238 | 239 | **k-means均值聚类算法** 240 | 241 | - k-means代码实现 242 | 243 | - 代价函数-distortion function 244 | 245 | - k-means 初始化 246 | 247 | - 集群数量的选择 248 | 249 | **异常检测-Anomaly detection** 250 | 251 | - 异常检测介绍 252 | 253 | - 高斯正态分布-Gaussian distribution 254 | 255 | - 异常检测算法 256 | 257 | - 异常检测的设计与评估 258 | 259 | **选择技巧** 260 | 261 | - 监督学习vs异常检测 262 | 263 | - 特征的选择 264 | 265 | [第九章-推荐系统(协同与内容过滤)](./第九章-推荐系统(协同与内容过滤).md) 266 | 267 | **前言** 268 | 269 | **基于协同的过滤算法-collaborative filtering algorthm** 270 | 271 | - 推荐系统的代价函数 272 | 273 | - 协同过滤算法-Collaborative Filtering algorithm 274 | 275 | - 二值标签-binary labels 276 | 277 | **推荐系统的实现** 278 | 279 | - 行的归一化 280 | 281 | - tf实现协同过滤 282 | 283 | - 找到相似商品 284 | 285 | **基于内容的过滤算法-content-based filtering algorthm** 286 | 287 | - 内容过滤vs协同过滤 288 | 289 | - 深度学习实现内容过滤 290 | 291 | - 从大目录中推荐 292 | 293 | - tf中实现内容过滤 294 | 295 | **社会伦理问题** 296 | 297 | [第十章-强化学习与算法改进](./第十章-强化学习与算法改进.md) 298 | 299 | **前言-什么是强化学习** 300 | 301 | **强化学习** 302 | 303 | - 案例:Mars rover example 304 | 305 | - 强化学习中的回报-Return 306 | 307 | - 强化学习中的策略 308 | 309 | - 复习关键概念-马尔可夫决策过程MDP 310 | 311 | **模型中的递归** 312 | 313 | - 状态值函数-State action value function 314 | 315 | - 案例:State-action value function example 316 | 317 | - 贝尔曼方程-Bellman Equation 318 | 319 | - 随机马尔可夫过程 320 | 321 | **连续状态空间** 322 | 323 | - 应用案例 324 | 325 | - 案例-登陆月球 326 | 327 | - 案例介绍 328 | 329 | - 状态值函数 330 | 331 | - 改进算法:神经网络架构 332 | 333 | - 改进算法:$\epsilon$贪婪策略 334 | 335 | - 改进算法:Mini-batch and soft update 336 | 337 | **强化学习现状** 338 | 339 | **完结撒花** 340 | 341 | **附录-代码理解** 342 | -------------------------------------------------------------------------------- /assets/155ab9e777fc478bbbbc1d69c3b740d6.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/155ab9e777fc478bbbbc1d69c3b740d6.png -------------------------------------------------------------------------------- /assets/1a03f34c700c4da5800202f69208acc1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/1a03f34c700c4da5800202f69208acc1.png -------------------------------------------------------------------------------- /assets/1acd90e41ab9410c87858b6e7f0096a8.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/1acd90e41ab9410c87858b6e7f0096a8.png -------------------------------------------------------------------------------- /assets/370a076a19674e74a26ba6129b28f03b.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/370a076a19674e74a26ba6129b28f03b.png -------------------------------------------------------------------------------- /assets/37cafdb5d6a44e49afa753bb32511f11.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/37cafdb5d6a44e49afa753bb32511f11.png -------------------------------------------------------------------------------- /assets/4276973bf59840308b366ee1118c190f.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/4276973bf59840308b366ee1118c190f.png -------------------------------------------------------------------------------- /assets/4f42bb586827c532200fdf93d83c4d3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/4f42bb586827c532200fdf93d83c4d3.jpg -------------------------------------------------------------------------------- /assets/526bc0e47ea748ce962c56d7a4ffe948.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/526bc0e47ea748ce962c56d7a4ffe948.png -------------------------------------------------------------------------------- /assets/55dcc376be8e40a6b1b8cf2a1b8f6806.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/55dcc376be8e40a6b1b8cf2a1b8f6806.png -------------------------------------------------------------------------------- /assets/55f495cdce81400894d49d6596b4b558.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/55f495cdce81400894d49d6596b4b558.png -------------------------------------------------------------------------------- /assets/5e196e68393b4d0bb3a6bc9f8bccfcc0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/5e196e68393b4d0bb3a6bc9f8bccfcc0.png -------------------------------------------------------------------------------- /assets/60d3076afc284861a13ab3a94a7eb483.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/60d3076afc284861a13ab3a94a7eb483.png -------------------------------------------------------------------------------- /assets/668d47a6d2da4e278776538a8b3b876a.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/668d47a6d2da4e278776538a8b3b876a.png -------------------------------------------------------------------------------- /assets/67460cc8af7b4849851817ba2d0bb88f.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/67460cc8af7b4849851817ba2d0bb88f.png -------------------------------------------------------------------------------- /assets/6FADB9BACC588371DBED7B85C216BD5F.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/6FADB9BACC588371DBED7B85C216BD5F.jpg -------------------------------------------------------------------------------- /assets/780ed8fb4328435aaee4f703f2bf50ab.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/780ed8fb4328435aaee4f703f2bf50ab.png -------------------------------------------------------------------------------- /assets/7e711d90b9d94f2fb1b8c8c8c77db0bb.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/7e711d90b9d94f2fb1b8c8c8c77db0bb.png -------------------------------------------------------------------------------- /assets/882c2999d986496fbe76cb24913278f0.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/882c2999d986496fbe76cb24913278f0.png -------------------------------------------------------------------------------- /assets/9394a22f77ce4c8eb11fb53edbea3b3e.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/9394a22f77ce4c8eb11fb53edbea3b3e.png -------------------------------------------------------------------------------- /assets/bd9ae92971254af4a96304cd1315143e.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/bd9ae92971254af4a96304cd1315143e.png -------------------------------------------------------------------------------- /assets/bf90f26fba95429bbb33d4740b000c9b.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/bf90f26fba95429bbb33d4740b000c9b.png -------------------------------------------------------------------------------- /assets/bili_v_d_1669797954142.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/bili_v_d_1669797954142.gif -------------------------------------------------------------------------------- /assets/bili_v_d_1669797991515.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/bili_v_d_1669797991515.gif -------------------------------------------------------------------------------- /assets/c244ad6a9c4c4da0a0361e659c05a523.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/c244ad6a9c4c4da0a0361e659c05a523.png -------------------------------------------------------------------------------- /assets/cd133f90f05749bf845c1189c2d16eac.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/cd133f90f05749bf845c1189c2d16eac.png -------------------------------------------------------------------------------- /assets/e0130f4c7d4c43758fc9027664e38886.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/e0130f4c7d4c43758fc9027664e38886.png -------------------------------------------------------------------------------- /assets/edd6a50d03ad47eb9dc17cd9e70e9df1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/edd6a50d03ad47eb9dc17cd9e70e9df1.png -------------------------------------------------------------------------------- /assets/edee2f7bcc79448fbf32413ce9fe1171.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/edee2f7bcc79448fbf32413ce9fe1171.png -------------------------------------------------------------------------------- /assets/eed429a4ba5f4cffbcadf83e67503b0a.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/eed429a4ba5f4cffbcadf83e67503b0a.png -------------------------------------------------------------------------------- /assets/f203314bdf2b48cfbfb629363091f214.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/f203314bdf2b48cfbfb629363091f214.png -------------------------------------------------------------------------------- /assets/f557b1d5e1c44b49a6823de802c9eabd.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/f557b1d5e1c44b49a6823de802c9eabd.png -------------------------------------------------------------------------------- /assets/f82506afb35243c4ab7c4b65e613e31b.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/f82506afb35243c4ab7c4b65e613e31b.png -------------------------------------------------------------------------------- /assets/image-20221123142827819.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123142827819.png -------------------------------------------------------------------------------- /assets/image-20221123143120306.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123143120306.png -------------------------------------------------------------------------------- /assets/image-20221123143905555.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123143905555.png -------------------------------------------------------------------------------- /assets/image-20221123144755359.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123144755359.png -------------------------------------------------------------------------------- /assets/image-20221123161437526.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123161437526.png -------------------------------------------------------------------------------- /assets/image-20221123161819918.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123161819918.png -------------------------------------------------------------------------------- /assets/image-20221123164301647.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123164301647.png -------------------------------------------------------------------------------- /assets/image-20221123171839182.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123171839182.png -------------------------------------------------------------------------------- /assets/image-20221123172122015.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123172122015.png -------------------------------------------------------------------------------- /assets/image-20221123172324201.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123172324201.png -------------------------------------------------------------------------------- /assets/image-20221123172612693.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123172612693.png -------------------------------------------------------------------------------- /assets/image-20221123173023832.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123173023832.png -------------------------------------------------------------------------------- /assets/image-20221123173225852.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123173225852.png -------------------------------------------------------------------------------- /assets/image-20221123201741188.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123201741188.png -------------------------------------------------------------------------------- /assets/image-20221123203133742.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123203133742.png -------------------------------------------------------------------------------- /assets/image-20221123203205812.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123203205812.png -------------------------------------------------------------------------------- /assets/image-20221123203356992.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123203356992.png -------------------------------------------------------------------------------- /assets/image-20221123203902787.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123203902787.png -------------------------------------------------------------------------------- /assets/image-20221123204434599.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123204434599.png -------------------------------------------------------------------------------- /assets/image-20221123204602412.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123204602412.png -------------------------------------------------------------------------------- /assets/image-20221123204659930.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123204659930.png -------------------------------------------------------------------------------- /assets/image-20221123204723148.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123204723148.png -------------------------------------------------------------------------------- /assets/image-20221123205109848.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123205109848.png -------------------------------------------------------------------------------- /assets/image-20221123205337862.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123205337862.png -------------------------------------------------------------------------------- /assets/image-20221123205845738.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123205845738.png -------------------------------------------------------------------------------- /assets/image-20221123210239600.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123210239600.png -------------------------------------------------------------------------------- /assets/image-20221123210655127.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221123210655127.png -------------------------------------------------------------------------------- /assets/image-20221124163019560.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124163019560.png -------------------------------------------------------------------------------- /assets/image-20221124163226331.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124163226331.png -------------------------------------------------------------------------------- /assets/image-20221124163351938.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124163351938.png -------------------------------------------------------------------------------- /assets/image-20221124163801674.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124163801674.png -------------------------------------------------------------------------------- /assets/image-20221124163954440.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124163954440.png -------------------------------------------------------------------------------- /assets/image-20221124164625125.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124164625125.png -------------------------------------------------------------------------------- /assets/image-20221124165359209.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124165359209.png -------------------------------------------------------------------------------- /assets/image-20221124165810603.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124165810603.png -------------------------------------------------------------------------------- /assets/image-20221124165833409.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124165833409.png -------------------------------------------------------------------------------- /assets/image-20221124165922558.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124165922558.png -------------------------------------------------------------------------------- /assets/image-20221124170005112.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124170005112.png -------------------------------------------------------------------------------- /assets/image-20221124170740687.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124170740687.png -------------------------------------------------------------------------------- /assets/image-20221124171128156.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124171128156.png -------------------------------------------------------------------------------- /assets/image-20221124173730072.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124173730072.png -------------------------------------------------------------------------------- /assets/image-20221124175437504.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124175437504.png -------------------------------------------------------------------------------- /assets/image-20221124204410338.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124204410338.png -------------------------------------------------------------------------------- /assets/image-20221124204620190.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124204620190.png -------------------------------------------------------------------------------- /assets/image-20221124204849263.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124204849263.png -------------------------------------------------------------------------------- /assets/image-20221124210005155.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124210005155.png -------------------------------------------------------------------------------- /assets/image-20221124210034389.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124210034389.png -------------------------------------------------------------------------------- /assets/image-20221124210605477.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124210605477.png -------------------------------------------------------------------------------- /assets/image-20221124212739237.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124212739237.png -------------------------------------------------------------------------------- /assets/image-20221124213514027.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124213514027.png -------------------------------------------------------------------------------- /assets/image-20221124213728482.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124213728482.png -------------------------------------------------------------------------------- /assets/image-20221124213848958.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221124213848958.png -------------------------------------------------------------------------------- /assets/image-20221125104950489.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125104950489.png -------------------------------------------------------------------------------- /assets/image-20221125105115176.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125105115176.png -------------------------------------------------------------------------------- /assets/image-20221125111439017.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125111439017.png -------------------------------------------------------------------------------- /assets/image-20221125174004001.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174004001.png -------------------------------------------------------------------------------- /assets/image-20221125174015379.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174015379.png -------------------------------------------------------------------------------- /assets/image-20221125174032883.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174032883.png -------------------------------------------------------------------------------- /assets/image-20221125174347366.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174347366.png -------------------------------------------------------------------------------- /assets/image-20221125174446897.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174446897.png -------------------------------------------------------------------------------- /assets/image-20221125174741397.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174741397.png -------------------------------------------------------------------------------- /assets/image-20221125174946983.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125174946983.png -------------------------------------------------------------------------------- /assets/image-20221125175151677.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125175151677.png -------------------------------------------------------------------------------- /assets/image-20221125175320869.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125175320869.png -------------------------------------------------------------------------------- /assets/image-20221125180040332.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125180040332.png -------------------------------------------------------------------------------- /assets/image-20221125180405372.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125180405372.png -------------------------------------------------------------------------------- /assets/image-20221125180629231.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125180629231.png -------------------------------------------------------------------------------- /assets/image-20221125180714793.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125180714793.png -------------------------------------------------------------------------------- /assets/image-20221125180944730.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125180944730.png -------------------------------------------------------------------------------- /assets/image-20221125181403220.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125181403220.png -------------------------------------------------------------------------------- /assets/image-20221125182248590.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125182248590.png -------------------------------------------------------------------------------- /assets/image-20221125182306924.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221125182306924.png -------------------------------------------------------------------------------- /assets/image-20221126135716626.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126135716626.png -------------------------------------------------------------------------------- /assets/image-20221126135834563.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126135834563.png -------------------------------------------------------------------------------- /assets/image-20221126140043746.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126140043746.png -------------------------------------------------------------------------------- /assets/image-20221126140421300.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126140421300.png -------------------------------------------------------------------------------- /assets/image-20221126141026095.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126141026095.png -------------------------------------------------------------------------------- /assets/image-20221126141057247.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126141057247.png -------------------------------------------------------------------------------- /assets/image-20221126141335411.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126141335411.png -------------------------------------------------------------------------------- /assets/image-20221126141433579.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126141433579.png -------------------------------------------------------------------------------- /assets/image-20221126141623723.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126141623723.png -------------------------------------------------------------------------------- /assets/image-20221126142330811.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126142330811.png -------------------------------------------------------------------------------- /assets/image-20221126142632734.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126142632734.png -------------------------------------------------------------------------------- /assets/image-20221126143014351.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126143014351.png -------------------------------------------------------------------------------- /assets/image-20221126143028260.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126143028260.png -------------------------------------------------------------------------------- /assets/image-20221126143117788.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126143117788.png -------------------------------------------------------------------------------- /assets/image-20221126150509239.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126150509239.png -------------------------------------------------------------------------------- /assets/image-20221126150744743.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126150744743.png -------------------------------------------------------------------------------- /assets/image-20221126151011590.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126151011590.png -------------------------------------------------------------------------------- /assets/image-20221126151118262.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126151118262.png -------------------------------------------------------------------------------- /assets/image-20221126152525147.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126152525147.png -------------------------------------------------------------------------------- /assets/image-20221126152545587.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126152545587.png -------------------------------------------------------------------------------- /assets/image-20221126152804101.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126152804101.png -------------------------------------------------------------------------------- /assets/image-20221126153213153.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126153213153.png -------------------------------------------------------------------------------- /assets/image-20221126153223952.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126153223952.png -------------------------------------------------------------------------------- /assets/image-20221126153254504.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126153254504.png -------------------------------------------------------------------------------- /assets/image-20221126153817325.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126153817325.png -------------------------------------------------------------------------------- /assets/image-20221126154035350.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126154035350.png -------------------------------------------------------------------------------- /assets/image-20221126154213907.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126154213907.png -------------------------------------------------------------------------------- /assets/image-20221126155255248.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126155255248.png -------------------------------------------------------------------------------- /assets/image-20221126155415332.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126155415332.png -------------------------------------------------------------------------------- /assets/image-20221126155648808.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126155648808.png -------------------------------------------------------------------------------- /assets/image-20221126160548039.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126160548039.png -------------------------------------------------------------------------------- /assets/image-20221126161108371.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126161108371.png -------------------------------------------------------------------------------- /assets/image-20221126161808516.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126161808516.png -------------------------------------------------------------------------------- /assets/image-20221126161928839.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126161928839.png -------------------------------------------------------------------------------- /assets/image-20221126161936289.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126161936289.png -------------------------------------------------------------------------------- /assets/image-20221126162643104.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126162643104.png -------------------------------------------------------------------------------- /assets/image-20221126170505427.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126170505427.png -------------------------------------------------------------------------------- /assets/image-20221126171542714.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126171542714.png -------------------------------------------------------------------------------- /assets/image-20221126171944549.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126171944549.png -------------------------------------------------------------------------------- /assets/image-20221126172133997.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126172133997.png -------------------------------------------------------------------------------- /assets/image-20221126183557103.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126183557103.png -------------------------------------------------------------------------------- /assets/image-20221126183926985.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126183926985.png -------------------------------------------------------------------------------- /assets/image-20221126190058163.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126190058163.png -------------------------------------------------------------------------------- /assets/image-20221126190412100.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126190412100.png -------------------------------------------------------------------------------- /assets/image-20221126190941872.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126190941872.png -------------------------------------------------------------------------------- /assets/image-20221126191109917.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126191109917.png -------------------------------------------------------------------------------- /assets/image-20221126193230962.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126193230962.png -------------------------------------------------------------------------------- /assets/image-20221126193734282.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126193734282.png -------------------------------------------------------------------------------- /assets/image-20221126194614902.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126194614902.png -------------------------------------------------------------------------------- /assets/image-20221126195212239.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126195212239.png -------------------------------------------------------------------------------- /assets/image-20221126195514969.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126195514969.png -------------------------------------------------------------------------------- /assets/image-20221126201422170.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221126201422170.png -------------------------------------------------------------------------------- /assets/image-20221127100107817.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127100107817.png -------------------------------------------------------------------------------- /assets/image-20221127100251025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127100251025.png -------------------------------------------------------------------------------- /assets/image-20221127100640505.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127100640505.png -------------------------------------------------------------------------------- /assets/image-20221127100907476.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127100907476.png -------------------------------------------------------------------------------- /assets/image-20221127101005469.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127101005469.png -------------------------------------------------------------------------------- /assets/image-20221127101056061.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127101056061.png -------------------------------------------------------------------------------- /assets/image-20221127101328629.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127101328629.png -------------------------------------------------------------------------------- /assets/image-20221127101714911.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127101714911.png -------------------------------------------------------------------------------- /assets/image-20221127101903558.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127101903558.png -------------------------------------------------------------------------------- /assets/image-20221127102210756.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127102210756.png -------------------------------------------------------------------------------- /assets/image-20221127102256519.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127102256519.png -------------------------------------------------------------------------------- /assets/image-20221127103035206.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127103035206.png -------------------------------------------------------------------------------- /assets/image-20221127110400750.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127110400750.png -------------------------------------------------------------------------------- /assets/image-20221127110821574.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127110821574.png -------------------------------------------------------------------------------- /assets/image-20221127113627875.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127113627875.png -------------------------------------------------------------------------------- /assets/image-20221127113846549.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127113846549.png -------------------------------------------------------------------------------- /assets/image-20221127114116507.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127114116507.png -------------------------------------------------------------------------------- /assets/image-20221127114437950.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127114437950.png -------------------------------------------------------------------------------- /assets/image-20221127114805773.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127114805773.png -------------------------------------------------------------------------------- /assets/image-20221127115002492.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127115002492.png -------------------------------------------------------------------------------- /assets/image-20221127115027603.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127115027603.png -------------------------------------------------------------------------------- /assets/image-20221127115309322.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127115309322.png -------------------------------------------------------------------------------- /assets/image-20221127115637450.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127115637450.png -------------------------------------------------------------------------------- /assets/image-20221127141808233.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127141808233.png -------------------------------------------------------------------------------- /assets/image-20221127141937129.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127141937129.png -------------------------------------------------------------------------------- /assets/image-20221127142026418.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127142026418.png -------------------------------------------------------------------------------- /assets/image-20221127142428981.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127142428981.png -------------------------------------------------------------------------------- /assets/image-20221127144251009.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127144251009.png -------------------------------------------------------------------------------- /assets/image-20221127145121736.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127145121736.png -------------------------------------------------------------------------------- /assets/image-20221127145201143.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127145201143.png -------------------------------------------------------------------------------- /assets/image-20221127145418967.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127145418967.png -------------------------------------------------------------------------------- /assets/image-20221127145453175.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127145453175.png -------------------------------------------------------------------------------- /assets/image-20221127145706933.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127145706933.png -------------------------------------------------------------------------------- /assets/image-20221127150016450.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150016450.png -------------------------------------------------------------------------------- /assets/image-20221127150045873.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150045873.png -------------------------------------------------------------------------------- /assets/image-20221127150205492.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150205492.png -------------------------------------------------------------------------------- /assets/image-20221127150336692.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150336692.png -------------------------------------------------------------------------------- /assets/image-20221127150532421.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150532421.png -------------------------------------------------------------------------------- /assets/image-20221127150915807.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127150915807.png -------------------------------------------------------------------------------- /assets/image-20221127151108310.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151108310.png -------------------------------------------------------------------------------- /assets/image-20221127151204235.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151204235.png -------------------------------------------------------------------------------- /assets/image-20221127151236355.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151236355.png -------------------------------------------------------------------------------- /assets/image-20221127151826619.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151826619.png -------------------------------------------------------------------------------- /assets/image-20221127151845390.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151845390.png -------------------------------------------------------------------------------- /assets/image-20221127151904437.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127151904437.png -------------------------------------------------------------------------------- /assets/image-20221127152011166.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127152011166.png -------------------------------------------------------------------------------- /assets/image-20221127154846243.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127154846243.png -------------------------------------------------------------------------------- /assets/image-20221127155135512.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127155135512.png -------------------------------------------------------------------------------- /assets/image-20221127155244945.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127155244945.png -------------------------------------------------------------------------------- /assets/image-20221127155802244.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127155802244.png -------------------------------------------------------------------------------- /assets/image-20221127160133252.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127160133252.png -------------------------------------------------------------------------------- /assets/image-20221127160232682.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127160232682.png -------------------------------------------------------------------------------- /assets/image-20221127161043605.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127161043605.png -------------------------------------------------------------------------------- /assets/image-20221127161326504.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127161326504.png -------------------------------------------------------------------------------- /assets/image-20221127161628104.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127161628104.png -------------------------------------------------------------------------------- /assets/image-20221127161847576.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127161847576.png -------------------------------------------------------------------------------- /assets/image-20221127164044984.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127164044984.png -------------------------------------------------------------------------------- /assets/image-20221127164113562.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127164113562.png -------------------------------------------------------------------------------- /assets/image-20221127170034648.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127170034648.png -------------------------------------------------------------------------------- /assets/image-20221127170509317.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127170509317.png -------------------------------------------------------------------------------- /assets/image-20221127170748973.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127170748973.png -------------------------------------------------------------------------------- /assets/image-20221127170814514.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127170814514.png -------------------------------------------------------------------------------- /assets/image-20221127171547474.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127171547474.png -------------------------------------------------------------------------------- /assets/image-20221127172506550.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127172506550.png -------------------------------------------------------------------------------- /assets/image-20221127173819931.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127173819931.png -------------------------------------------------------------------------------- /assets/image-20221127202013714.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127202013714.png -------------------------------------------------------------------------------- /assets/image-20221127202455009.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127202455009.png -------------------------------------------------------------------------------- /assets/image-20221127202553694.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127202553694.png -------------------------------------------------------------------------------- /assets/image-20221127202808229.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127202808229.png -------------------------------------------------------------------------------- /assets/image-20221127203006737.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127203006737.png -------------------------------------------------------------------------------- /assets/image-20221127203617102.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127203617102.png -------------------------------------------------------------------------------- /assets/image-20221127203916623.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127203916623.png -------------------------------------------------------------------------------- /assets/image-20221127204011502.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127204011502.png -------------------------------------------------------------------------------- /assets/image-20221127204529176.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127204529176.png -------------------------------------------------------------------------------- /assets/image-20221127204723210.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127204723210.png -------------------------------------------------------------------------------- /assets/image-20221127205036489.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205036489.png -------------------------------------------------------------------------------- /assets/image-20221127205131497.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205131497.png -------------------------------------------------------------------------------- /assets/image-20221127205141994.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205141994.png -------------------------------------------------------------------------------- /assets/image-20221127205756711.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205756711.png -------------------------------------------------------------------------------- /assets/image-20221127205814128.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205814128.png -------------------------------------------------------------------------------- /assets/image-20221127205900240.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127205900240.png -------------------------------------------------------------------------------- /assets/image-20221127210106763.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127210106763.png -------------------------------------------------------------------------------- /assets/image-20221127210138017.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127210138017.png -------------------------------------------------------------------------------- /assets/image-20221127210304529.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127210304529.png -------------------------------------------------------------------------------- /assets/image-20221127210410268.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127210410268.png -------------------------------------------------------------------------------- /assets/image-20221127210623750.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221127210623750.png -------------------------------------------------------------------------------- /assets/image-20221129200441728.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129200441728.png -------------------------------------------------------------------------------- /assets/image-20221129200807554.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129200807554.png -------------------------------------------------------------------------------- /assets/image-20221129201001367.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129201001367.png -------------------------------------------------------------------------------- /assets/image-20221129201343593.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129201343593.png -------------------------------------------------------------------------------- /assets/image-20221129201426113.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129201426113.png -------------------------------------------------------------------------------- /assets/image-20221129202243775.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129202243775.png -------------------------------------------------------------------------------- /assets/image-20221129202453387.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129202453387.png -------------------------------------------------------------------------------- /assets/image-20221129202538516.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129202538516.png -------------------------------------------------------------------------------- /assets/image-20221129202643683.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129202643683.png -------------------------------------------------------------------------------- /assets/image-20221129203131793.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129203131793.png -------------------------------------------------------------------------------- /assets/image-20221129203430066.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129203430066.png -------------------------------------------------------------------------------- /assets/image-20221129204239021.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129204239021.png -------------------------------------------------------------------------------- /assets/image-20221129205957561.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129205957561.png -------------------------------------------------------------------------------- /assets/image-20221129210605883.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221129210605883.png -------------------------------------------------------------------------------- /assets/image-20221130163246924.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130163246924.png -------------------------------------------------------------------------------- /assets/image-20221130163622351.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130163622351.png -------------------------------------------------------------------------------- /assets/image-20221130163715903.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130163715903.png -------------------------------------------------------------------------------- /assets/image-20221130165212008.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130165212008.png -------------------------------------------------------------------------------- /assets/image-20221130165402633.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130165402633.png -------------------------------------------------------------------------------- /assets/image-20221130170034169.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130170034169.png -------------------------------------------------------------------------------- /assets/image-20221130173551384.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130173551384.png -------------------------------------------------------------------------------- /assets/image-20221130174226135.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130174226135.png -------------------------------------------------------------------------------- /assets/image-20221130185426523.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130185426523.png -------------------------------------------------------------------------------- /assets/image-20221130191616051.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130191616051.png -------------------------------------------------------------------------------- /assets/image-20221130192109443.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130192109443.png -------------------------------------------------------------------------------- /assets/image-20221130192318237.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130192318237.png -------------------------------------------------------------------------------- /assets/image-20221130193655320.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130193655320.png -------------------------------------------------------------------------------- /assets/image-20221130193713311.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130193713311.png -------------------------------------------------------------------------------- /assets/image-20221130193934215.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130193934215.png -------------------------------------------------------------------------------- /assets/image-20221130193947212.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130193947212.png -------------------------------------------------------------------------------- /assets/image-20221130194415595.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130194415595.png -------------------------------------------------------------------------------- /assets/image-20221130194511048.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130194511048.png -------------------------------------------------------------------------------- /assets/image-20221130194717558.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130194717558.png -------------------------------------------------------------------------------- /assets/image-20221130195025091.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130195025091.png -------------------------------------------------------------------------------- /assets/image-20221130195532338.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130195532338.png -------------------------------------------------------------------------------- /assets/image-20221130195948849.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130195948849.png -------------------------------------------------------------------------------- /assets/image-20221130200331218.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130200331218.png -------------------------------------------------------------------------------- /assets/image-20221130200603942.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130200603942.png -------------------------------------------------------------------------------- /assets/image-20221130201211151.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130201211151.png -------------------------------------------------------------------------------- /assets/image-20221130201407343.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130201407343.png -------------------------------------------------------------------------------- /assets/image-20221130201745798.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130201745798.png -------------------------------------------------------------------------------- /assets/image-20221130201750256.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130201750256.png -------------------------------------------------------------------------------- /assets/image-20221130201857506.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130201857506.png -------------------------------------------------------------------------------- /assets/image-20221130202749015.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130202749015.png -------------------------------------------------------------------------------- /assets/image-20221130203413900.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130203413900.png -------------------------------------------------------------------------------- /assets/image-20221130203900551.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130203900551.png -------------------------------------------------------------------------------- /assets/image-20221130204336833.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130204336833.png -------------------------------------------------------------------------------- /assets/image-20221130204443310.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130204443310.png -------------------------------------------------------------------------------- /assets/image-20221130204529467.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130204529467.png -------------------------------------------------------------------------------- /assets/image-20221130205219774.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221130205219774.png -------------------------------------------------------------------------------- /assets/image-20221201202019878.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202019878.png -------------------------------------------------------------------------------- /assets/image-20221201202140665.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202140665.png -------------------------------------------------------------------------------- /assets/image-20221201202152579.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202152579.png -------------------------------------------------------------------------------- /assets/image-20221201202441313.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202441313.png -------------------------------------------------------------------------------- /assets/image-20221201202802696.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202802696.png -------------------------------------------------------------------------------- /assets/image-20221201202928656.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201202928656.png -------------------------------------------------------------------------------- /assets/image-20221201203052983.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201203052983.png -------------------------------------------------------------------------------- /assets/image-20221201203132804.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221201203132804.png -------------------------------------------------------------------------------- /assets/image-20221203192732240.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221203192732240.png -------------------------------------------------------------------------------- /assets/image-20221203192858865.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221203192858865.png -------------------------------------------------------------------------------- /assets/image-20221203193345304.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221203193345304.png -------------------------------------------------------------------------------- /assets/image-20221205142717519.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205142717519.png -------------------------------------------------------------------------------- /assets/image-20221205143316219.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205143316219.png -------------------------------------------------------------------------------- /assets/image-20221205143552202.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205143552202.png -------------------------------------------------------------------------------- /assets/image-20221205200430134.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205200430134.png -------------------------------------------------------------------------------- /assets/image-20221205200550334.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205200550334.png -------------------------------------------------------------------------------- /assets/image-20221205200740389.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205200740389.png -------------------------------------------------------------------------------- /assets/image-20221205201045215.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205201045215.png -------------------------------------------------------------------------------- /assets/image-20221205201615208.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205201615208.png -------------------------------------------------------------------------------- /assets/image-20221205201739720.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205201739720.png -------------------------------------------------------------------------------- /assets/image-20221205202556729.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205202556729.png -------------------------------------------------------------------------------- /assets/image-20221205202910402.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205202910402.png -------------------------------------------------------------------------------- /assets/image-20221205203238737.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205203238737.png -------------------------------------------------------------------------------- /assets/image-20221205203455505.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205203455505.png -------------------------------------------------------------------------------- /assets/image-20221205203837988.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205203837988.png -------------------------------------------------------------------------------- /assets/image-20221205204054731.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205204054731.png -------------------------------------------------------------------------------- /assets/image-20221205204229313.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205204229313.png -------------------------------------------------------------------------------- /assets/image-20221205205800427.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205205800427.png -------------------------------------------------------------------------------- /assets/image-20221205205847401.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221205205847401.png -------------------------------------------------------------------------------- /assets/image-20221206201045245.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201045245.png -------------------------------------------------------------------------------- /assets/image-20221206201117927.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201117927.png -------------------------------------------------------------------------------- /assets/image-20221206201229355.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201229355.png -------------------------------------------------------------------------------- /assets/image-20221206201306005.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201306005.png -------------------------------------------------------------------------------- /assets/image-20221206201429307.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201429307.png -------------------------------------------------------------------------------- /assets/image-20221206201935169.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206201935169.png -------------------------------------------------------------------------------- /assets/image-20221206203620118.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206203620118.png -------------------------------------------------------------------------------- /assets/image-20221206203636844.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206203636844.png -------------------------------------------------------------------------------- /assets/image-20221206204044884.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206204044884.png -------------------------------------------------------------------------------- /assets/image-20221206204330398.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206204330398.png -------------------------------------------------------------------------------- /assets/image-20221206230201357.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206230201357.png -------------------------------------------------------------------------------- /assets/image-20221206231201557.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231201557.png -------------------------------------------------------------------------------- /assets/image-20221206231716648.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231716648.png -------------------------------------------------------------------------------- /assets/image-20221206231826276.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231826276.png -------------------------------------------------------------------------------- /assets/image-20221206231837999.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231837999.png -------------------------------------------------------------------------------- /assets/image-20221206231853396.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231853396.png -------------------------------------------------------------------------------- /assets/image-20221206231945809.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206231945809.png -------------------------------------------------------------------------------- /assets/image-20221206232325331.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206232325331.png -------------------------------------------------------------------------------- /assets/image-20221206232634231.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206232634231.png -------------------------------------------------------------------------------- /assets/image-20221206232650159.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206232650159.png -------------------------------------------------------------------------------- /assets/image-20221206232716657.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206232716657.png -------------------------------------------------------------------------------- /assets/image-20221206233008822.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221206233008822.png -------------------------------------------------------------------------------- /assets/image-20221207165212038.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207165212038.png -------------------------------------------------------------------------------- /assets/image-20221207170107758.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207170107758.png -------------------------------------------------------------------------------- /assets/image-20221207170431771.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207170431771.png -------------------------------------------------------------------------------- /assets/image-20221207170533222.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207170533222.png -------------------------------------------------------------------------------- /assets/image-20221207171329206.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207171329206.png -------------------------------------------------------------------------------- /assets/image-20221207171844072.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207171844072.png -------------------------------------------------------------------------------- /assets/image-20221207172818993.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207172818993.png -------------------------------------------------------------------------------- /assets/image-20221207172953875.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207172953875.png -------------------------------------------------------------------------------- /assets/image-20221207173047826.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207173047826.png -------------------------------------------------------------------------------- /assets/image-20221207173240383.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207173240383.png -------------------------------------------------------------------------------- /assets/image-20221207174458279.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207174458279.png -------------------------------------------------------------------------------- /assets/image-20221207174502747.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207174502747.png -------------------------------------------------------------------------------- /assets/image-20221207174812848.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207174812848.png -------------------------------------------------------------------------------- /assets/image-20221207174940631.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207174940631.png -------------------------------------------------------------------------------- /assets/image-20221207175108098.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207175108098.png -------------------------------------------------------------------------------- /assets/image-20221207175128902.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207175128902.png -------------------------------------------------------------------------------- /assets/image-20221207175220805.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207175220805.png -------------------------------------------------------------------------------- /assets/image-20221207175727949.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207175727949.png -------------------------------------------------------------------------------- /assets/image-20221207184315543.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207184315543.png -------------------------------------------------------------------------------- /assets/image-20221207184946510.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207184946510.png -------------------------------------------------------------------------------- /assets/image-20221207185641719.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207185641719.png -------------------------------------------------------------------------------- /assets/image-20221207185939437.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207185939437.png -------------------------------------------------------------------------------- /assets/image-20221207190820446.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207190820446.png -------------------------------------------------------------------------------- /assets/image-20221207191257656.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207191257656.png -------------------------------------------------------------------------------- /assets/image-20221207191511776.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207191511776.png -------------------------------------------------------------------------------- /assets/image-20221207191702914.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207191702914.png -------------------------------------------------------------------------------- /assets/image-20221207192050152.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207192050152.png -------------------------------------------------------------------------------- /assets/image-20221207192414971.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207192414971.png -------------------------------------------------------------------------------- /assets/image-20221207193246987.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207193246987.png -------------------------------------------------------------------------------- /assets/image-20221207193648889.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207193648889.png -------------------------------------------------------------------------------- /assets/image-20221207200220852.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207200220852.png -------------------------------------------------------------------------------- /assets/image-20221207200253593.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207200253593.png -------------------------------------------------------------------------------- /assets/image-20221207200539607.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207200539607.png -------------------------------------------------------------------------------- /assets/image-20221207200804451.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207200804451.png -------------------------------------------------------------------------------- /assets/image-20221207201522753.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207201522753.png -------------------------------------------------------------------------------- /assets/image-20221207201848353.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207201848353.png -------------------------------------------------------------------------------- /assets/image-20221207202205187.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207202205187.png -------------------------------------------------------------------------------- /assets/image-20221207202518351.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207202518351.png -------------------------------------------------------------------------------- /assets/image-20221207213129607.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213129607.png -------------------------------------------------------------------------------- /assets/image-20221207213433623.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213433623.png -------------------------------------------------------------------------------- /assets/image-20221207213614403.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213614403.png -------------------------------------------------------------------------------- /assets/image-20221207213725419.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213725419.png -------------------------------------------------------------------------------- /assets/image-20221207213743641.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213743641.png -------------------------------------------------------------------------------- /assets/image-20221207213807107.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213807107.png -------------------------------------------------------------------------------- /assets/image-20221207213953775.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207213953775.png -------------------------------------------------------------------------------- /assets/image-20221207215955027.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221207215955027.png -------------------------------------------------------------------------------- /assets/image-20221208162344126.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162344126.png -------------------------------------------------------------------------------- /assets/image-20221208162447238.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162447238.png -------------------------------------------------------------------------------- /assets/image-20221208162459566.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162459566.png -------------------------------------------------------------------------------- /assets/image-20221208162602764.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162602764.png -------------------------------------------------------------------------------- /assets/image-20221208162638190.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162638190.png -------------------------------------------------------------------------------- /assets/image-20221208162734790.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162734790.png -------------------------------------------------------------------------------- /assets/image-20221208162833674.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162833674.png -------------------------------------------------------------------------------- /assets/image-20221208162911592.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208162911592.png -------------------------------------------------------------------------------- /assets/image-20221208163001969.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208163001969.png -------------------------------------------------------------------------------- /assets/image-20221208163234671.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208163234671.png -------------------------------------------------------------------------------- /assets/image-20221208164001163.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208164001163.png -------------------------------------------------------------------------------- /assets/image-20221208164936139.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208164936139.png -------------------------------------------------------------------------------- /assets/image-20221208165439822.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208165439822.png -------------------------------------------------------------------------------- /assets/image-20221208165502474.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208165502474.png -------------------------------------------------------------------------------- /assets/image-20221208165929351.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208165929351.png -------------------------------------------------------------------------------- /assets/image-20221208170006904.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208170006904.png -------------------------------------------------------------------------------- /assets/image-20221208170408034.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208170408034.png -------------------------------------------------------------------------------- /assets/image-20221208170616279.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208170616279.png -------------------------------------------------------------------------------- /assets/image-20221208174124830.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208174124830.png -------------------------------------------------------------------------------- /assets/image-20221208174148165.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208174148165.png -------------------------------------------------------------------------------- /assets/image-20221208174457349.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208174457349.png -------------------------------------------------------------------------------- /assets/image-20221208174532761.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208174532761.png -------------------------------------------------------------------------------- /assets/image-20221208190715351.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208190715351.png -------------------------------------------------------------------------------- /assets/image-20221208191015464.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208191015464.png -------------------------------------------------------------------------------- /assets/image-20221208191425339.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208191425339.png -------------------------------------------------------------------------------- /assets/image-20221208191738900.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208191738900.png -------------------------------------------------------------------------------- /assets/image-20221208192403794.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208192403794.png -------------------------------------------------------------------------------- /assets/image-20221208192422711.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208192422711.png -------------------------------------------------------------------------------- /assets/image-20221208192437759.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208192437759.png -------------------------------------------------------------------------------- /assets/image-20221208192713025.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208192713025.png -------------------------------------------------------------------------------- /assets/image-20221208193309434.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208193309434.png -------------------------------------------------------------------------------- /assets/image-20221208193445448.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208193445448.png -------------------------------------------------------------------------------- /assets/image-20221208193545013.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208193545013.png -------------------------------------------------------------------------------- /assets/image-20221208193927019.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208193927019.png -------------------------------------------------------------------------------- /assets/image-20221208194012810.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194012810.png -------------------------------------------------------------------------------- /assets/image-20221208194139272.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194139272.png -------------------------------------------------------------------------------- /assets/image-20221208194248880.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194248880.png -------------------------------------------------------------------------------- /assets/image-20221208194351806.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194351806.png -------------------------------------------------------------------------------- /assets/image-20221208194449982.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194449982.png -------------------------------------------------------------------------------- /assets/image-20221208194705199.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194705199.png -------------------------------------------------------------------------------- /assets/image-20221208194902589.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208194902589.png -------------------------------------------------------------------------------- /assets/image-20221208195025279.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208195025279.png -------------------------------------------------------------------------------- /assets/image-20221208195138808.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208195138808.png -------------------------------------------------------------------------------- /assets/image-20221208195639875.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208195639875.png -------------------------------------------------------------------------------- /assets/image-20221208200431372.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208200431372.png -------------------------------------------------------------------------------- /assets/image-20221208200931046.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208200931046.png -------------------------------------------------------------------------------- /assets/image-20221208202336821.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208202336821.png -------------------------------------------------------------------------------- /assets/image-20221208202927871.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208202927871.png -------------------------------------------------------------------------------- /assets/image-20221208203055519.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208203055519.png -------------------------------------------------------------------------------- /assets/image-20221208203118504.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208203118504.png -------------------------------------------------------------------------------- /assets/image-20221208203128724.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208203128724.png -------------------------------------------------------------------------------- /assets/image-20221208203139567.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208203139567.png -------------------------------------------------------------------------------- /assets/image-20221208203226373.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208203226373.png -------------------------------------------------------------------------------- /assets/image-20221208204055892.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208204055892.png -------------------------------------------------------------------------------- /assets/image-20221208204109310.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208204109310.png -------------------------------------------------------------------------------- /assets/image-20221208204246583.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208204246583.png -------------------------------------------------------------------------------- /assets/image-20221208204455921.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208204455921.png -------------------------------------------------------------------------------- /assets/image-20221208204623696.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208204623696.png -------------------------------------------------------------------------------- /assets/image-20221208205247235.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208205247235.png -------------------------------------------------------------------------------- /assets/image-20221208210655902.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208210655902.png -------------------------------------------------------------------------------- /assets/image-20221208210853659.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208210853659.png -------------------------------------------------------------------------------- /assets/image-20221208210856440.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208210856440.png -------------------------------------------------------------------------------- /assets/image-20221208210915462.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208210915462.png -------------------------------------------------------------------------------- /assets/image-20221208211000842.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208211000842.png -------------------------------------------------------------------------------- /assets/image-20221208211038480.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208211038480.png -------------------------------------------------------------------------------- /assets/image-20221208211051894.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208211051894.png -------------------------------------------------------------------------------- /assets/image-20221208211206978.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208211206978.png -------------------------------------------------------------------------------- /assets/image-20221208211457647.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/assets/image-20221208211457647.png -------------------------------------------------------------------------------- /code/Linear-regression.mlx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/fjqfengjianqi/2022-Machine-Learning/77d25138415532355071a3216c3b6eafae8d55b6/code/Linear-regression.mlx -------------------------------------------------------------------------------- /第一章-前言与线性回归.md: -------------------------------------------------------------------------------- 1 | # WEEK 1 2 | 3 | [TOC] 4 | 5 | # 前言 6 | 7 | 吴佬星战迷(全视频出现了三次) 8 | 9 | ![image-20221208211206978](./assets/image-20221208211206978.png) 10 | 11 | 谷歌的搜索,邮件的过滤,都是机器学习。最想要的就是用机器模拟人的思维。 12 | 13 | > 没有明确编码的机器解决问题的方法,让机器自己去学习Artifical General Inteligence New capability 14 | 15 | - **人工手写代码**:数据挖掘,医学记录,工程 16 | - **无法写代码**:自然语言处理,手写识别 17 | - **推荐系统**:各种推广与学习 18 | 19 | > 下面是吴佬的百宝袋 20 | 21 | image-20221208211457647image-20221130201750256image-20221208162459566image-20221208193927019image-20221208194248880 22 | 23 | # 机器学习的定义 24 | 25 | ![7e711d90b9d94f2fb1b8c8c8c77db0bb](./assets/7e711d90b9d94f2fb1b8c8c8c77db0bb.png) 26 | 27 | ![c244ad6a9c4c4da0a0361e659c05a523](./assets/c244ad6a9c4c4da0a0361e659c05a523.png) 28 | 29 | - **T**指机器所能帮助人解决的问题 30 | - **P**指做到的程度(性能参数) 31 | - **E**是指人们的输入实践 32 | 33 | ![5e196e68393b4d0bb3a6bc9f8bccfcc0](./assets/5e196e68393b4d0bb3a6bc9f8bccfcc0.png) 34 | 35 | > 算法部分:监督学习与无监督学习 其他:推荐算法,信息检索 36 | 37 | # 监督学习 38 | 39 | ![1a03f34c700c4da5800202f69208acc1](./assets/1a03f34c700c4da5800202f69208acc1.png) 40 | 41 | > 比如一个估值问题,用直线与曲线,给他我们的定义与数据,让机器去找到合适的解 42 | 43 | ![668d47a6d2da4e278776538a8b3b876a](./assets/668d47a6d2da4e278776538a8b3b876a.png) 44 | 45 | ## 回归问题-regression problem 46 | 47 | ![eed429a4ba5f4cffbcadf83e67503b0a](./assets/eed429a4ba5f4cffbcadf83e67503b0a.png) 48 | 49 | 也叫做回归问题,用正确的数据推测预测的数据。从无限的数据中找到合适的那一个。 50 | 51 | ## 分类问题-classification problem 52 | 53 | ![f557b1d5e1c44b49a6823de802c9eabd](./assets/f557b1d5e1c44b49a6823de802c9eabd.png) 54 | 55 | 分类问题,**01分类**,还有更多种分类,不一定是具体数值,可能是判断是猫是狗还是。。。 56 | 57 | ![cd133f90f05749bf845c1189c2d16eac](./assets/cd133f90f05749bf845c1189c2d16eac.png) 58 | 59 | 另一种表达方式 60 | 61 | ![9394a22f77ce4c8eb11fb53edbea3b3e](./assets/9394a22f77ce4c8eb11fb53edbea3b3e.png) 62 | 63 | kmeans分类问题(maybe,多轴就要涉及到多个特征甚至无穷特征,计算机如何存储——**向量机**。 11/13/2022 20:26 64 | 65 | # 无监督学习 66 | 67 | ![780ed8fb4328435aaee4f703f2bf50ab](./assets/780ed8fb4328435aaee4f703f2bf50ab.png) 68 | 69 | 聚类-**Custering**,不再给出问题的具体分类信息,让机器自己去分类 70 | 71 | ![370a076a19674e74a26ba6129b28f03b](./assets/370a076a19674e74a26ba6129b28f03b.png) 72 | 73 | ![e0130f4c7d4c43758fc9027664e38886](./assets/e0130f4c7d4c43758fc9027664e38886.png) 74 | 75 | 算法识别叠加声音,分离音频 76 | 77 | ![f203314bdf2b48cfbfb629363091f214](./assets/f203314bdf2b48cfbfb629363091f214.png) 78 | 79 | ## 两者的区别 80 | 81 | ![edee2f7bcc79448fbf32413ce9fe1171](./assets/edee2f7bcc79448fbf32413ce9fe1171.png) 82 | 83 | # 线性回归-linear regression 84 | 85 | ## 前言-线性回归的介绍 86 | 87 | ab8f843009e24a338b31d366b289b3e8.png 88 | 89 | image-20221123142827819 90 | 91 | **hypothesis function-假设函数** 92 | 93 | image-202211231431203065b4196e408931f258761dc559f11b80a.png 94 | 95 | **linear regression-线性回归**(with one variable)下图为多种情况下的回归直线 96 | 97 | ![image-20221123143905555](./assets/image-20221123143905555.png) 98 | 99 | ## Cost Function(代价函数) 100 | 101 | > 注意,这个函数是指的残差平均值与代价函数参数的关系 102 | 103 | ![image-20221123144755359](./assets/image-20221123144755359.png) 104 | 105 | univariate linear regression(单变量线性回归) 106 | $$ 107 | h_{\theta}(x) = \theta_{0} + \theta_{1}x\\ 108 | 后面改版的\quad f_{w,b}(x) = wx+b 109 | $$ 110 | 111 | 线性回归目标(parameters-参数) 112 | $$ 113 | min \frac{1}{2m}\sum_{i = 1}^m (f_{w,b}(x^{(i)}) - y^{(i)} )^2 114 | $$ 115 | 116 | ![3ee467ef6c8ca8175c5e613ab1be5932.png](./assets/edd6a50d03ad47eb9dc17cd9e70e9df1.png) 117 | 118 | > 至于为什么要除以2m,可以把这个min函数视为一个二元函数f(o1,o2),所以在求最小时要求偏导求极值点,会产生2,所以除以2以消去。至于除以m,就是求的平均数。 119 | 120 | **training set**训练集 121 | 122 | ![0fc4764ef9657fc60dde6afb59806424.png](./assets/882c2999d986496fbe76cb24913278f0.png) 123 | 124 | 训练集为(1,1)(2,2)(3,3)这三个点 125 | 126 | ![1640faa8710b804c6db281d8fe30af58.png](./assets/37cafdb5d6a44e49afa753bb32511f11.png) 127 | 128 | ![669ca76f29ba3fea66647770f597518a.png](./assets/4276973bf59840308b366ee1118c190f.png) 129 | 130 | ![732febc24fad75824556ad3e9ce6ba97.png](./assets/bd9ae92971254af4a96304cd1315143e.png) 131 | 132 | > 最小二乘法实际上就是用偏导数为0推导出来的极值点 133 | 134 | **contour plots** or **contor figures**等高线图,更加直观的表示三维图像(二维变量下的代价函数)。 135 | 136 | image-20221123161437526 137 | 138 | image-20221123161819918 139 | 140 | ![0221d92852b5975259a82131bac22ead.png](./assets/55f495cdce81400894d49d6596b4b558.png) 141 | 142 | > 怎么设计来找到自动的计算程序,以及多维难以可视化的数据集。 143 | 144 | ## 梯度下降-Gradient descent algorithm 145 | 146 | 二元的线性回归最终都会是碗状结构。 147 | 148 | c5c24615f475f6c06bb5878ddf3d2c87.png 149 | 150 | 8251084b3656b5d6b84e9940101a2d72.png 151 | 152 | 梯度下降,实际上就是环顾一周,找到一个下降速度最快的方向——little baby step 153 | 154 | ![2f3a5700096d038fd31f3d199ad6aaf5.png](./assets/bf90f26fba95429bbb33d4740b000c9b.png) 155 | 156 | :=代表赋值,一个很好的计算机与数学的区分方式。 157 | 158 | image-20221123164301647 159 | 160 | **注意**要同时更新两个参数 161 | 162 | ![605ef743bebb0f541c36490754ad2275.png](./assets/f82506afb35243c4ab7c4b65e613e31b.png) 163 | 164 | $\alpha$记作是**learning rate 学习速率** 165 | 166 | 对于怎样理解这个梯度下降算法,可以用仅一个参数的情况分析。 167 | b2f978363e65b48f5801ed1482b8ea2e.png 168 | 169 | - 在左侧,导数小于0,$\theta$会变大 170 | - 在左侧,导数大于0,$\theta$会变小 171 | - 实际上就是在向最小值点靠近(derivative-导数) 172 | 173 | fa57c2c0060374785cbdd509c05f7004.png 174 | 而对于$\alpha$的取值,过小会**变慢**,过大会**发散**(变化大小还与导数大小-斜率有关)在数值计算方法中,指出了$\alpha$也可以随着迭代发生变化(最后一步应该是0) 175 | 176 | image-20221123171839182 177 | 178 | 所以说,降到了最低点之后就不在下降了 179 | 180 | image-20221123172122015 181 | 182 | ## 算法的实现 183 | 184 | image-20221123172324201 185 | $$ 186 | 实际上就是\frac{d}{dw}J(w,b) = 2\times J(w,b) \times \frac{J(w,b)}{w} 187 | $$ 188 | image-20221123172612693 189 | 190 | 二元线性回归中只有一个极小值(全局最小)**convex function**(凸函数) 191 | 192 | image-20221123173023832 193 | 194 | ![image-20221123173225852](./assets/image-20221123173225852.png) 195 | 196 | ## 算法实现 197 | 198 | 自己实现以下算法 199 | 200 | ```matlab 201 | 生成一个随机的训练集 202 | clc;clear;clf; 203 | train_set = 10*rand(1000,2); 204 | x0 = train_set(:,1); 205 | y0 = train_set(:,2); 206 | scatter(x0,y0) 207 | 208 | 首先绘制一下迭代等高线图 209 | n = 100; 210 | k = linspace(0.01,0.03,n); 211 | b = linspace(5,7,n); 212 | [kk,bb]=meshgrid(k,b); 213 | z = 0; 214 | for i = 1:length(x0) 215 | z = z + ( kk.*x0(i)+bb-y0(i)*ones(n,n) ).^2; 216 | end 217 | z = z/2/length(x0); 218 | min(min(z)) 219 | contour(kk,bb,z); 220 | 221 | 然后我们试验一下梯度下降方法 222 | %给出初始值 223 | k = 0;%初始值随便改 224 | b = 0;%初始值随便改 225 | a = 0.04;%换称0.1就发散了,乐 226 | figure 227 | contour(kk,bb,z) 228 | hold on 229 | for i = 1:1000 230 | k1 = 0; 231 | k2 = 0; 232 | for j = 1:length(x0) 233 | k1 = k1 + ( k*x0(j) + b - y0(j) ) * x0(j); 234 | end 235 | for j = 1:length(x0) 236 | k2 = k2 + ( k*x0(j) + b - y0(j) ); 237 | end 238 | plot(k,b,'o') 239 | k = k - a * k1 / length(x0); 240 | b = b - a * k2 / length(x0); 241 | end 242 | 243 | 看看是否收敛 244 | hold off 245 | k = 0;%初始值随便改 246 | b = 0;%初始值随便改 247 | a = 0.04;%换称0.1就发散了,乐 248 | n = 100000; 249 | x00 = linspace(0,10,100); 250 | kk = zeros(1,n); 251 | bb = zeros(1,n); 252 | for i = 1:n 253 | k1 = 0; 254 | k2 = 0; 255 | for j = 1:length(x0) 256 | k1 = k1 + ( k*x0(j) + b - y0(j) ) * x0(j); 257 | end 258 | for j = 1:length(x0) 259 | k2 = k2 + ( k*x0(j) + b - y0(j) ); 260 | end 261 | k = k - a * k1 / length(x0); 262 | b = b - a * k2 / length(x0); 263 | kk(i) = k; 264 | bb(i) = b; 265 | end 266 | xx = 1:n; 267 | z = 0; 268 | for i = 1:length(x0) 269 | z = z + ( kk(n)*x0(i)+bb(n)-y0(i) )^2; 270 | end 271 | z = z/2/length(x0) 272 | plot(xx,kk,xx,bb) 273 | %到后面就收敛了,不过迭代次数有点儿多 274 | 275 | ``` 276 | 277 | 其实在自己实现算法的过程中,发现了其实最难的**初始点**与**学习速率**的挑选,很容易就会发散 -------------------------------------------------------------------------------- /第七章-决策树与随机森林.md: -------------------------------------------------------------------------------- 1 | # WEEK 7 2 | 3 | [TOC] 4 | 5 | # 决策树 6 | 7 | ## 猫猫分类案例-可爱捏 8 | 9 | ![image-20221130163246924](./assets/image-20221130163246924.png) 10 | 11 | 跟绿萝一样,根在上面,叶子在下面 12 | 13 | **root node**-根部节点,**decision nodes**-决策节点,**leaf nodes**-叶节点 14 | 15 | ![image-20221130163622351](./assets/image-20221130163622351.png) 16 | 17 | ![image-20221130163715903](./assets/image-20221130163715903.png) 18 | 19 | ## 学习过程-learning process 20 | 21 | 22 | 23 | 先按耳朵形状分类 24 | 25 | ![bili_v_d_1669797991515](./assets/bili_v_d_1669797991515.gif) 26 | 27 | 然后按照脸型分类 28 | 29 | ![bili_v_d_1669797954142](./assets/bili_v_d_1669797954142.gif) 30 | 31 | 当样本足够纯(全是猫or全不是猫)时,添加叶节点 32 | 33 | ![image-20221130165212008](./assets/image-20221130165212008.png) 34 | 35 | 1. 怎么确定用什么特征来划分![image-20221130165402633](./assets/image-20221130165402633.png) 36 | 2. 何时停止分类(很纯的时候or有限制深度or纯度增加太小时or精度达到时)![image-20221130170034169](./assets/image-20221130170034169.png) 37 | 38 | ## 熵的引入 39 | 40 | entropy-熵,数值越大越不纯 41 | 42 | ![image-20221130173551384](./assets/image-20221130173551384.png) 43 | $$ 44 | 显然,p_{a}=1-p_{1-a} 45 | $$ 46 | ![image-20221130174226135](./assets/image-20221130174226135.png) 47 | 48 | 实际上之前的那个代价函数就是交叉熵,算是这个的一种 49 | 50 | ## 选择拆分信息增益 51 | 52 | ![image-20221130185426523](./assets/image-20221130185426523.png) 53 | 54 | 我们比较希望出现小的,因为越接近0,他的内容就越纯(全是猫,或全是狗)我们就可以给他添加叶节点了。我们可以看熵的变化-**information gain**,下一层熵的值用加权平均计算。 55 | 56 | ![image-20221130191616051](./assets/image-20221130191616051.png) 57 | 58 | 下降多的表现更好 59 | 60 | ![image-20221130192109443](./assets/image-20221130192109443.png) 61 | 62 | ## 整合 63 | 64 | ![image-20221130192318237](./assets/image-20221130192318237.png) 65 | 66 | 从左到右依次加入leaf node-叶节点 67 | 68 | ![image-20221130193713311](./assets/image-20221130193713311.png) 69 | 70 | ![image-20221130193655320](./assets/image-20221130193655320.png) 71 | 72 | **recursive algorithm**-递归算法-不断地建立小的决策树 73 | 74 | ![image-20221130193947212](./assets/image-20221130193947212.png) 75 | 76 | 有很多方法来决定何时停止,实际上也有很多的开源库可以利用。 77 | 78 | # 分类特征 79 | 80 | ## 独热-one hot 81 | 82 | > 上述我们的那些都是二元值,而我们下面用的是多元的编码 83 | 84 | ![image-20221130194415595](./assets/image-20221130194415595.png) 85 | 86 | 二进制的表达方式(实际计算时就是按照1.0划分) 87 | 88 | ![image-20221130194511048](./assets/image-20221130194511048.png) 89 | 90 | **one-hot encoding**-独热编码,这样就可以取更多的离散特征值 91 | 92 | ![image-20221130194717558](./assets/image-20221130194717558.png) 93 | 94 | ## 连续值的特征 95 | 96 | ![image-20221130195025091](./assets/image-20221130195025091.png) 97 | 98 | 选择信息增益最好的那一个中间值 99 | 100 | ![image-20221130195532338](./assets/image-20221130195532338.png) 101 | 102 | # 推广 103 | 104 | ## 回归树-regression trees 105 | 106 | 图中是求的平均值 107 | 108 | ![image-20221130195948849](./assets/image-20221130195948849.png) 109 | 110 | (此时就不考虑熵的变化,而是要考虑减少方差了)计算加权方差 111 | 112 | ![image-20221130200603942](./assets/image-20221130200603942.png) 113 | 114 | ## 集成树-tree ensembles 115 | 116 | > 单个的树对信息的敏感性很高 117 | 118 | ![image-20221130201211151](./assets/image-20221130201211151.png) 119 | 120 | 这样的话,整体的树就不会对某个数据过于敏感 121 | 122 | ![image-20221130201407343](./assets/image-20221130201407343.png) 123 | 124 | ## 有放回抽样-sampling with replacement 125 | 126 | replacement-放回 127 | 128 | ![image-20221130201750256](./assets/image-20221130201750256.png) 129 | 130 | ![image-20221130201745798](./assets/image-20221130201745798.png) 131 | 132 | ![image-20221130201857506](./assets/image-20221130201857506.png) 133 | 134 | ## 随机森林法 135 | 136 | > 非常强大的一种树模型, 137 | 138 | ![image-20221130202749015](./assets/image-20221130202749015.png) 139 | 140 | 最后让这些树群进行投票,往往更加有效,相对于单个树来说(其实就是为了快而增大训练量) 141 | 142 | 为了让树与树之间差异较大(要是都一样那也没意思)所以特征选择一般是n个的元素个数为k的子集,然后以这k个特征来训练(k一般取$\sqrt{n}$) 143 | 144 | ![image-20221130203413900](./assets/image-20221130203413900.png) 145 | 146 | ## XGBoost-eXtreme Gradient Boosting 147 | 148 | > 决策树集成方法-XGBoost 149 | 150 | ![image-20221130203900551](./assets/image-20221130203900551.png) 151 | 152 | 更多的选择让之前决策错误的例子(多样性训练集)-这样就像可以练习,每次都练习自己不熟悉的部分 153 | 154 | ![image-20221130204336833](./assets/image-20221130204336833.png) 155 | 156 | 下面介绍这个开源的算法的优点 157 | 158 | ![image-20221130204443310](./assets/image-20221130204443310.png) 159 | 160 | ![image-20221130204529467](./assets/image-20221130204529467.png) 161 | 162 | # 什么时候用决策树 163 | 164 | > 表格数据(不建议用在图像,音频上) 165 | 166 | ![image-20221130205219774](./assets/image-20221130205219774.png) 167 | 168 | 神经网络中更多的调用连续函数,更加方便梯度下降训练 169 | 170 | -------------------------------------------------------------------------------- /第三章-逻辑回归和正则化.md: -------------------------------------------------------------------------------- 1 | # WEEK 3 2 | 3 | [TOC] 4 | 5 | # 逻辑回归-Logistic regression 6 | 7 | > 对于模型的输出-“y的值”,只对2元分类问题的中间过渡部分起作用,其他的具体形状之类的还是要用其他函数构成复合函数 8 | 9 | **binary classification**-二元分类问题(class与category对等,即都代表了表示的结果类型) 10 | 11 | 逻辑回归指用0.1逻辑值表示输出(是,否;对,错;这边,那边。。。) 12 | 13 | image-20221124173730072 14 | 15 | 在分类的问题中,线性模型的线性性质会影响一定的判断。(添加了一个误差较大的值之后线性模型变化较大) 16 | 17 | ![image-20221124175437504](./assets/image-20221124175437504.png) 18 | 19 | **sigmoid(logistic)function**-激活函数 20 | 21 | ![image-20221124204410338](./assets/image-20221124204410338.png) 22 | 23 | ![image-20221124204620190](./assets/image-20221124204620190.png) 24 | 25 | 考虑到概率问题 26 | 27 | ![image-20221124204849263](./assets/image-20221124204849263.png) 28 | 29 | ## 决策边界 30 | 31 | ![image-20221124210034389](./assets/image-20221124210034389.png) 32 | 33 | ![image-20221124210005155](./assets/image-20221124210005155.png) 34 | 35 | 逻辑函数都是带入到这个g函数中,这是我们预测的边界。[深度学习笔记:如何理解激活函数?(附常用激活函数)-知乎](https://zhuanlan.zhihu.com/p/364620596) 36 | 37 | ![image-20221124210605477](./assets/image-20221124210605477.png) 38 | 39 | ## 逻辑回归的代价函数-Cost function for logistic regression 40 | 41 | 以前的平方差公式并不是一个很好的评估公式 42 | 43 | ![image-20221124212739237](./assets/image-20221124212739237.png) 44 | 45 | 因为有0.1所以会有一些急剧的变化,此时不好取极小值,有很多局部极小值。 46 | 47 | ## 逻辑回归的代价函数 48 | 49 | ![image-20221124213514027](./assets/image-20221124213514027.png) 50 | 51 | ![image-20221124213728482](./assets/image-20221124213728482.png) 52 | 53 | ![image-20221124213848958](./assets/image-20221124213848958.png) 54 | 55 | ==最后会是一个**凸函数**(证明)== 56 | 57 | 以及为什么要用这个函数作为代价函数[损失函数:交叉熵详解 - 知乎](https://zhuanlan.zhihu.com/p/115277553) 58 | 59 | > 总的来说就是信息熵,使得你的成本预算与实际价值成正比,上面是相当于交叉熵的形式,之不过取0.1的时候有一个项分别被删去了,交叉熵就表现出了你这个模型与实际模型之间的分布差异 60 | 61 | 例如,假设0和01都是码字,那么我们就不清楚编码字符串0100111的第一个码字是什么,因为可能是0,也可能是01。 我们想要的属性是,任何码字都不应该是另一个码字的前缀。 这称为**前缀属性**,遵守该属性的编码称为**前缀编码**。(信息传输的过程中会一起发送) 62 | 63 | ![image-20221125104950489](./assets/image-20221125104950489.png) 64 | 65 | ![image-20221125105115176](./assets/image-20221125105115176.png) 66 | 67 | 实际上就是极大似然估计的形式表达(使得两个分布相同概率最大的参数选取)**极大似然函数** 68 | 69 | ![image-20221125111439017](./assets/image-20221125111439017.png) 70 | 71 | 逻辑回归的梯度下降, 72 | $$ 73 | 关于导数的推导过程:\\ 74 | J(\vec w,b) &= -\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}ln(f_{\vec w,b}(\vec x^{(i)})) + (1-y^{(i)})ln(1-f_{\vec w,b}(\vec x^{(i)}))]\\ 75 | & = -\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}ln(\frac{1}{1+e^{-(\vec wx+b)}}) + (1-y^{(i)})ln(\frac{e^{-(\vec wx+b)}}{1+e^{-(\vec wx+b)}})]\\ 76 | &= \frac{1}{m} \sum_{i=1}^{m}[y^{(i)}ln(1+e^{-(\vec wx+b)}) + (1-y^{(i)})ln({e^{\vec wx+b}}+1)]\\ 77 | \frac{\partial J(\vec w,b)}{\partial w_j}&=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{\partial ln({1+e^{-(\vec wx+b)}})}{\partial w_j}+ (1-y^{(i)})\frac{\partial ln(e^{\vec wx+b}+1)}{\partial w_j}]\\ 78 | &=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{-x_j^{(i)}e^{-(\vec wx+b)}}{1+e^{-(\vec wx+b)}}+ (1-y^{(i)})\frac{x_j^{(i)}e^{\vec wx+b}}{1+e^{\vec wx+b}}]\\ 79 | &=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{-x_j^{(i)}}{1+e^{\vec wx+b}}+ (1-y^{(i)})\frac{x_j^{(i)}e^{\vec wx+b}}{1+e^{\vec wx+b}}]\\ 80 | &=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{-1}{1+e^{\vec wx+b}}+ (1-y^{(i)})\frac{e^{\vec wx+b}}{1+e^{\vec wx+b}}]x_j^{(i)}\\ 81 | &=\frac{1}{m} \sum_{i=1}^{m}[\frac{e^{\vec wx+b}}{1+e^{\vec wx+b}}+y^{(i)}\frac{-1-e^{\vec wx+b}}{1+e^{\vec wx+b}}]x_j^{(i)}\\ 82 | &=\frac{1}{m} \sum_{i=1}^{m}[\frac{e^{\vec wx+b}}{1+e^{\vec wx+b}}-y^{(i)}]x_j^{(i)}\\ 83 | &=\frac{1}{m} \sum_{i=1}^{m}[\frac{1}{1+e^{-(\vec wx+b)}}-y^{(i)}]x_j^{(i)}\\ 84 | &=\frac{1}{m} \sum_{i=1}^{m}[f_{\vec w,b}(\vec x^{(i)})-y^{(i)}]x_j^{(i)}\\ 85 | \frac{\partial J(\vec w,b)}{\partial b}&=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{\partial ln({1+e^{-(\vec wx+b)}})}{\partial b}+ (1-y^{(i)})\frac{\partial ln(e^{\vec wx+b}+1)}{\partial b}]\\ 86 | &=\frac{1}{m} \sum_{i=1}^{m}[y^{(i)}\frac{-e^{-(\vec wx+b)}}{1+e^{-(\vec wx+b)}}+ (1-y^{(i)})\frac{e^{\vec wx+b}}{1+e^{\vec wx+b}}]\\ 87 | &=\frac{1}{m} \sum_{i=1}^{m}[f_{\vec w,b}(\vec x^{(i)})-y^{(i)}]\\ 88 | 二阶导数下凸的证明:\\ 89 | \frac{\partial^2 J(\vec w,b)}{\partial w_j^2}&=\frac{\partial \frac{1}{m} \sum_{i=1}^{m}[f_{\vec w,b}(\vec x^{(i)})-y^{(i)}]x_j^{(i)}}{\partial w_j}\\ 90 | &=\frac{1}{m} \sum_{i=1}^{m}\frac{x_j^2e^{-(\vec wx+b)}}{(1+e^{-(\vec wx+b)})^2}>0\\ 91 | $$ 92 | 93 | scikit-learn函数 94 | 95 | # 欠拟合与过拟合-underfitting and overfitting 96 | 97 | ## 欠拟合与过拟合的介绍 98 | 99 | > 无端瞎想:龙格现象 100 | 101 | **regularization**正则化来解决过拟合问题 102 | 103 | - **high-bias**-这里指欠拟合(强偏差)(性别种族特征嘎嘎) 104 | 105 | image-20221125174032883 106 | 107 | - **generalization**-泛化(我们最希望的一个) 108 | 109 | image-20221125174347366 110 | 111 | - **overfitting**-过拟合 or **high variance**-高方差 112 | 113 | image-20221125174004001 114 | 115 | image-20221125174446897 116 | 117 | ![image-20221125174741397](./assets/image-20221125174741397.png) 118 | 119 | ## 解决过拟合问题(三种方法) 120 | 121 | 1. **增加样本数据**![image-20221125174946983](./assets/image-20221125174946983.png) 122 | 2. **特征选择**(减少特征数量/训练集维数)![image-20221125175151677](./assets/image-20221125175151677.png) 123 | 3. **正则化-regularization**(不是把系数变成0,而是变成尽量小)![image-20221125175320869](./assets/image-20221125175320869.png) 124 | 125 | > 对b的正则化影响不大,不建议对其进行改动 126 | 127 | # 带正则化的代价函数-Cost function with regularization 128 | 129 | ## 代价函数的改进 130 | 131 | 这里是代入计算了,比方说x取10,就有1000w_3,这里只是表示x取得很大时w惩戒系数比较大。 132 | 133 | ![image-20221125180040332](./assets/image-20221125180040332.png) 134 | 135 | 可以惩戒所有的特征(都给他变小) 136 | 137 | ![image-20221125180405372](./assets/image-20221125180405372.png) 138 | 139 | 两个权衡取最小,至于怎么取$\lambda$ 140 | 141 | ![image-20221125180714793](./assets/image-20221125180714793.png) 142 | 143 | ## 线性回归的正则化 144 | 145 | 梯度下降法的变化 146 | 147 | ![image-20221125180944730](./assets/image-20221125180944730.png) 148 | 149 | 进阶技巧 150 | 151 | ![image-20221125181403220](./assets/image-20221125181403220.png) 152 | 153 | 实际上**前面的系数**说明了每次得带w都会变小一些,**后面的**是寻找最低点的迭代 154 | 155 | # 逻辑回归的正则化 156 | 157 | ![image-20221125182248590](./assets/image-20221125182248590.png) 158 | 159 | ![image-20221125182306924](./assets/image-20221125182306924.png) 160 | -------------------------------------------------------------------------------- /第九章-推荐系统(协同与内容过滤).md: -------------------------------------------------------------------------------- 1 | # WEEK 9 2 | 3 | [TOC] 4 | 5 | # 前言 6 | 7 | 什么是推荐系统? 8 | 9 | > r表示打分与否,y表示打的分 10 | 11 | ![image-20221207165212038](./assets/image-20221207165212038.png) 12 | 13 | # 基于协同的过滤算法-collaborative filtering algorthm 14 | 15 | ## 推荐系统的代价函数 16 | 17 | > $w^{(j)}$跟$b^{(j)}$指的是第j个人的观影参数系统,$x^{(i)}$表示第i个电影的特征值 18 | 19 | ![image-20221207170107758](./assets/image-20221207170107758.png) 20 | 21 | > 最后那个是防止过拟合的正则化 22 | 23 | ![image-20221207170431771](./assets/image-20221207170431771.png) 24 | 25 | 实际上消去$m^{(j)}$这一常数并不会影响太多,所以底下都去掉了,可能感觉上求和的权重不一样了,但是$w^{(i)}b^{(i)}$与$w^{(j)}b^{(j)}$之间是相互独立的,也就是说这个$m^{(j)}$权重只是影响$w^{(j)}b^{(j)}$,不会影响其他的,所以可以去掉(只是==并行计算==而已) 26 | 27 | ![image-20221207170533222](./assets/image-20221207170533222.png) 28 | 29 | 对所有用户来求(可以用到矩阵的运算) 30 | 31 | ## 协同过滤算法-Collaborative Filtering algorithm 32 | 33 | > 当这些特征值未知时 34 | 35 | ![image-20221207171329206](./assets/image-20221207171329206.png) 36 | 37 | 实际上很像用$w$去估计$x$了,实际上就是解方程,但是要考虑最小二乘解 38 | 39 | > 用x去估计w,b就是看一个人对不同电影的评价 40 | > 41 | > 用w,b去估计x则是看所有人对一部电影的评价 42 | 43 | ![image-20221207171844072](./assets/image-20221207171844072.png) 44 | 45 | > 两者对比与总和,即同时优化wb与x 46 | 47 | ![image-20221207172818993](./assets/image-20221207172818993.png) 48 | 49 | ![image-20221207172953875](./assets/image-20221207172953875.png) 50 | 51 | - 梯度下降法 52 | 53 | ![image-20221207173240383](./assets/image-20221207173240383.png) 54 | 55 | 实际上是在处理时利用了横纵上特征的关系来构造的一个关系式,更加符合逻辑 56 | 57 | ## 二值标签-binary labels 58 | 59 | > 一般是喜欢或者不喜欢 60 | 61 | image-20221207174458279![image-20221207174502747](./assets/image-20221207174502747.png) 62 | 63 | ![image-20221207174812848](./assets/image-20221207174812848.png) 64 | 65 | ![image-20221207174940631](./assets/image-20221207174940631.png) 66 | 67 | ![image-20221207175108098](./assets/image-20221207175108098.png) 68 | 69 | 熟悉的交叉熵函数(01规划常用的) 70 | 71 | ![image-20221207175128902](./assets/image-20221207175128902.png) 72 | 73 | ![image-20221207175220805](./assets/image-20221207175220805.png) 74 | 75 | # 推荐系统的实现 76 | 77 | ## 行的归一化 78 | 79 | > 由于正则化,Eve的参数将会全是0,这并不符合预期 80 | 81 | ![image-20221207175727949](./assets/image-20221207175727949.png) 82 | 83 | ![image-20221207184315543](./assets/image-20221207184315543.png) 84 | 85 | > 加了一个平均值,实际上就是把大家伙的口味给他,且只对Eve有效,因为其他人的wb不是0 86 | 87 | 归一化列表示这个新电影是否展示出来,其实没那么重要,而归一化行可以看出来这个电影的评价是怎样的 88 | 89 | ## tf实现协同过滤 90 | 91 | Tensorflow可以直接帮你计算微积分与导数 92 | 93 | ![image-20221207184946510](./assets/image-20221207184946510.png) 94 | 95 | ![image-20221207185641719](./assets/image-20221207185641719.png) 96 | 97 | 这里中间部分是自己构造了一个$costJ$函数 98 | 99 | ![image-20221207185939437](./assets/image-20221207185939437.png) 100 | 101 | zip的添加是为了把参数打包成组,更容易调用查阅 102 | 103 | > 不用之前的方式实际上是因为之前的方法更多是用来拟合,而非此处差异化表现的连接,主要还是Tensorflow更加高效 104 | 105 | ## 找到相似商品 106 | 107 | > 吴佬是个星战迷呀,课上两次出现星战了 108 | 109 | ![image-20221207190820446](./assets/image-20221207190820446.png) 110 | 111 | 实际上就是根据特征$x^{(i)}$来判断是否相似 112 | 113 | ![image-20221207191257656](./assets/image-20221207191257656.png) 114 | 115 | ![image-20221207191511776](./assets/image-20221207191511776.png) 116 | 117 | > 很少的人评估时,我们如何推荐?如何用上更多的用户个人信息进行分析? 118 | > 119 | > image-20221207191702914 120 | 121 | # 基于内容的过滤算法-content-based filtering algorthm 122 | 123 | ## 内容过滤vs协同过滤 124 | 125 | 更加个性化的推荐(实际上像是不仅仅是对movie打分,还有更多层的运算) 126 | 127 | ![image-20221207192050152](./assets/image-20221207192050152.png) 128 | 129 | > - 协同过滤:就是跟你差不多的人都喜欢玩原神,我们就给你推荐原神 130 | > - 内容过滤:就是你也喜欢原神类型的游戏,但是更喜欢主机游戏,我们就给你推塞尔达 131 | 132 | ![image-20221207192414971](./assets/image-20221207192414971.png) 133 | 134 | > review:one-hot是[one-hot-coding](第七章-决策树与随机森林.md)一种编码方式 135 | 136 | ![image-20221207193246987](./assets/image-20221207193246987.png) 137 | 138 | u-user,m-movie 139 | 140 | ![image-20221207193648889](./assets/image-20221207193648889.png) 141 | 142 | In short:我有一堆人的喜好特征,一堆电影的特点,怎么match最佳(与之前的光看打分算是升级版),下面就是怎么算$v_uv_m$ 143 | 144 | ## 深度学习实现内容过滤 145 | 146 | ![image-20221207200253593](./assets/image-20221207200253593.png) 147 | 148 | 多参数输入的神经网络 149 | 150 | ![image-20221207200539607](./assets/image-20221207200539607.png) 151 | 152 | > 这里的实际上就是之前的附近的推荐值 153 | 154 | ![image-20221207200804451](./assets/image-20221207200804451.png) 155 | 156 | 可以预先进行计算,求出来最适合的点,而不是先让客户打分然后再计算 157 | 158 | ## 从大目录中推荐 159 | 160 | ![image-20221207201522753](./assets/image-20221207201522753.png) 161 | 162 | **genre**-种类,类型 163 | 164 | - Step 1-**Retrieval**-检索 165 | 166 | ![image-20221207201848353](./assets/image-20221207201848353.png) 167 | 168 | - Step 2-**Ranking**-排名 169 | 170 | > 用模型仅对检索后的电影进行排名(减少不必要的工作量),而且只计算$v_u$即可 171 | 172 | ![image-20221207202205187](./assets/image-20221207202205187.png) 173 | 174 | > 这样做可以让算法跑得更快,更好,但是如果加大数据量,那么还是可以冒险一试 175 | 176 | ![image-20221207202518351](./assets/image-20221207202518351.png) 177 | 178 | ## tf中实现内容过滤 179 | 180 | - 前两行用来建立模型-relu激活函数-**max(0,x)** 181 | - (==x==)第三行计算$v_u$并归一化(2范数为1) 182 | - 第四行计算$v_m$并归一化(2范数为1) 183 | - 然后取点积输出output(==y==) 184 | 185 | ![image-20221207215955027](./assets/image-20221207215955027.png) 186 | 187 | # 社会伦理问题 188 | 189 | > 科技的目的是让大家生活的更好 190 | 191 | ![image-20221207213433623](./assets/image-20221207213433623.png) 192 | 193 | ![image-20221207213743641](./assets/image-20221207213743641.png) 194 | 195 | **良性循环** 196 | 197 | image-20221207213614403 198 | 199 | **恶性循环** 200 | 201 | image-20221207213725419 202 | 203 | 剥削性业务的存在:**exploitative**-剥削 204 | 205 | ![image-20221207213807107](./assets/image-20221207213807107.png) 206 | 207 | ![image-20221207213953775](./assets/image-20221207213953775.png) 208 | 209 | 希望更加透明:**transparent**-透明度,**amplify**-放大,**conspiracy**-阴谋论,**toxicity**-毒性作用 210 | 211 | **amelioration**-改进,**welfare**-福利 212 | -------------------------------------------------------------------------------- /第二章-多元线性回归与特征工程.md: -------------------------------------------------------------------------------- 1 | # WEEK 2 2 | 3 | image-20221123201741188 4 | 5 | 6 | 7 | [TOC] 8 | 9 | # 多特征向量(入门)-Multiple features 10 | 11 | **vector**-向量 12 | 13 | image-20221123203205812 14 | 15 | 当我们考虑多个影响时,可以想象下面的这个形式来表述 16 | 17 | image-20221123203356992 18 | 19 | **dot product**-点乘 20 | 21 | image-20221123203902787 22 | 23 | # 多元线性回归-Multiple linear regression 24 | 25 | ## 矢量处理-向量运算 26 | 27 | **vectorization**-矢量化,可以更容易处理你的数据 28 | 29 | > Python的索引是从零开始的 30 | 31 | - 手动计算点乘image-20221123204434599 32 | 33 | - 循环写法计算求和image-20221123204602412 34 | - 向量的点乘image-20221123204659930 35 | 36 | image-20221123204723148 37 | 38 | 向量化可以更加方便运算与阅读,而且计算机的向量化是并行计算(硬件),相比于之前的会快很多。 39 | 40 | image-20221123205109848 41 | 42 | ![image-20221123205337862](./assets/image-20221123205337862.png) 43 | 44 | **向量化处理数据**-为了后续改善多元回归梯度下降 45 | 46 | ## 多元线性回归的梯度下降-Gradient descent for multiple linear regression 47 | 48 | number-b,b不是向量,是个数。 49 | 50 | image-20221123205845738 51 | $$ 52 | 对w求导\quad \frac{d}{dw_1}J(\vec w,b) = x_1^{(i)}\quad其余项都是常数项 53 | $$ 54 | ![image-20221123210239600](./assets/image-20221123210239600.png) 55 | 56 | > **Normal equation** 57 | > 58 | > [详解正规方程(Normal Equation) - 知乎 ](https://zhuanlan.zhihu.com/p/60719445) 59 | > 60 | > (用到了很多的矩阵求导公式,可以用来检测结果) 61 | > 62 | > 优点: 63 | > 64 | > - 无需迭代 65 | > 66 | > 缺点: 67 | > 68 | > - 只能在多元线性回归中用到 69 | > 70 | > - 如果数据量过大,会很慢 71 | > 72 | > image-20221123210655127 73 | 74 | # 有关特征值与参数调节工程 75 | 76 | ## 特征放缩-Feature scaling 77 | 78 | > 有的参数或者训练数据差异很大 79 | 80 | image-20221124163019560 81 | 82 | 如何合理的取值(大小关系上) 83 | 84 | image-20221124163226331 85 | 86 | image-20221124163351938 87 | 88 | 缩放后更加精确美观的标出我们的取值范围区域 89 | 90 | - 训练向量集的归一化-**Mean normalization**image-20221124163801674 91 | - Z-score 标准化**Z-score normalization**image-20221124163954440 92 | 93 | 尽量使得所有的变量所属区间长度相近,特征放缩可以使梯度下降更快 94 | 95 | image-20221124164625125 96 | 97 | ## 检验收敛性-Check the convergence 98 | 99 | ### 怎么看收敛性 100 | 101 | 一般都是要单减,否则说明有bug或者$\alpha$选的不好 102 | 103 | image-20221124165359209 104 | 105 | > 自动算法像是规定一个误差,减少基本趋于0时跳出。 106 | 107 | ### 如何选取$\alpha$ 108 | 109 | ![image-20221124165833409](./assets/image-20221124165833409.png) 110 | 111 | 多带入一些$\alpha$的值进行测试(调参) 112 | 113 | image-20221124170005112 114 | 115 | ## 特征工程-Feature Engineering 116 | 117 | image-20221124170740687 118 | 119 | 用知识构造一个新的特征(变量)能够反映更多的特性,还可以使得整体更加拟合。 120 | 121 | # 多项式回归-Polynomial Regression 122 | 123 | image-20221124171128156 124 | 125 | 此时,特征放缩-**feature scaling**尤为重要。那么该如何选,以后的课程会分析各种情况下的优缺点。 126 | 127 | -------------------------------------------------------------------------------- /第五章-神经网络实现(激活函数应用).md: -------------------------------------------------------------------------------- 1 | # WEEK 5 2 | 3 | [TOC] 4 | 5 | # 训练神经网络 6 | 7 | ## 模型代码介绍 8 | 9 | **SparseCategoricalCrossentropy**-稀疏分类交叉熵 10 | 11 | ![image-20221126194614902](./assets/image-20221126194614902.png) 12 | 13 | - Step 1 构造模型 14 | - Step 2 定义代价函数-compile(编译) 15 | - Step 3 拟合函数 16 | 17 | ## 训练细节 18 | 19 | **specify**-指定,列入 20 | 21 | ![image-20221126195212239](./assets/image-20221126195212239.png) 22 | 23 | 下面详细介绍神经网络的细节:**BinaryCrossentropy**-二元交叉熵函数 24 | 25 | ![image-20221126195514969](./assets/image-20221126195514969.png) 26 | 27 | 可以调用[不同的损失函数](https://zhuanlan.zhihu.com/p/44216830)such as **MeanSquaredError**-平方差 28 | 29 | 实际上要求偏导时在函数中都帮你做到了。 30 | 31 | 32 | 33 | (大佬们的库) 34 | 35 | # 激活函数 36 | 37 | ## 之前讲过的一些激活函数 38 | 39 | 把很多很多的0.1函数写进整个模型:就像神经元一样。 40 | 41 | ReLU函数-**Rectified Linear Unit**(矫正线性函数) 42 | 43 | image-20221127100107817 44 | 45 | image-20221127100251025 46 | 47 | ## 激活函数的选择 48 | 49 | - 二元分类问题-**Sigmoid** 50 | - 回归问题-**Linear activation functions**线性激活函数 51 | - 非负回归问题-**ReLU** 52 | 53 | ![image-20221127100640505](./assets/image-20221127100640505.png) 54 | 55 | 往往**Sigmoid**会使得梯度下降变慢 56 | 57 | ![image-20221127101005469](./assets/image-20221127101005469.png) 58 | 59 | ![image-20221127101056061](./assets/image-20221127101056061.png) 60 | 61 | 每年都会有新的激活函数提出 62 | 63 | ## 激活函数的重要性 64 | 65 | > 就是不要老去用线性回归,本末倒置了 66 | 67 | ![image-20221127101328629](./assets/image-20221127101328629.png) 68 | 69 | 像这样化成两层去线性回归,还不如直接用一个线性回归。 70 | 71 | ![image-20221127101714911](./assets/image-20221127101714911.png) 72 | 73 | 每层中都用线性回归,最后用sigmoid的话,结果出来跟逻辑回归没区别 74 | 75 | ![image-20221127101903558](./assets/image-20221127101903558.png) 76 | 77 | # 多类问题-Multiclass Problem 78 | 79 | ## 多类问题介绍 80 | 81 | ![image-20221127102210756](./assets/image-20221127102210756.png) 82 | 83 | ![image-20221127102256519](./assets/image-20221127102256519.png) 84 | 85 | > 个人想法:把后三类分成一类,然后一步一步二分类(比较慢) 86 | 87 | ## Softmax激活函数 88 | 89 | **embelish**-美化(泛化,推广) 90 | 91 | ![image-20221127103035206](./assets/image-20221127103035206.png) 92 | 93 | n=2的时候 94 | $$ 95 | a_1 = \frac{e^{z_1}}{e^{z_1}+e^{z_2}} = \frac{1}{e^{z_1-z_2}+1}\\ 96 | a_2 = \frac{e^{z_2}}{e^{z_1}+e^{z_2}} = \frac{1}{e^{z_2-z_1}+1} 97 | $$ 98 | 所以参数会有些不一样(因为之前是$z$后面的是$z_1-z_2$,所以$z = z_1-z_2$,参数上也会发生相对的变动。 99 | 100 | ![image-20221127110400750](./assets/image-20221127110400750.png) 101 | 102 | 4f42bb586827c532200fdf93d83c4d3 103 | 104 | 是等价的,但是数值上不一定是一样的,用ln函数只要是加大惩罚力度,让$a_j$达到接近1的情况(其实另一个会趋近于oo,主要还是加快迭代速度),以使得代价函数最小。 105 | 106 | ![image-20221127110821574](./assets/image-20221127110821574.png) 107 | 108 | ## softmax与神经网络 109 | 110 | 特有属性,比喻要把所有的z计算出来才可以算a 111 | 112 | ![image-20221127113627875](./assets/image-20221127113627875.png) 113 | 114 | **SparseCategoricalCrossentropy**-稀疏类 115 | 116 | ![image-20221127113846549](./assets/image-20221127113846549.png) 117 | 118 | ## softmax改进代码 119 | 120 | > 怎么更加精确的计算 121 | 122 | ![image-20221127114116507](./assets/image-20221127114116507.png) 123 | 124 | 表明直接的表达式会更加的精确 125 | 126 | ![image-20221127114437950](./assets/image-20221127114437950.png)把z记为中间量而不是a 127 | 128 | ![image-20221127114805773](./assets/image-20221127114805773.png) 129 | 130 | ![image-20221127115002492](./assets/image-20221127115002492.png) 131 | 132 | 对之前的逻辑回归问题 133 | 134 | ![image-20221127115027603](./assets/image-20221127115027603.png) 135 | 136 | # 多标签分类问题-Multi-label classification 137 | 138 | **pedestrain**-行人 139 | 140 | ![image-20221127115309322](./assets/image-20221127115309322.png) 141 | 142 | ![image-20221127115637450](./assets/image-20221127115637450.png) 143 | 144 | - **多类型**与**多标签**的差异 145 | - 多类型输出的是每一种值的可能性(0.1,0.2,0.7) 146 | 147 | - 多标签输出的是每一个的取值(0,1,0) 148 | 149 | # 进阶优化算法 150 | 151 | 之前的是一个固定的learning rate,现在,我们可以找到一个更加自动化的算法**Adam** 152 | 153 | ![image-20221127141808233](./assets/image-20221127141808233.png) 154 | 155 | **Adaptive Moment estimation**算法 156 | 157 | ![image-20221127141937129](./assets/image-20221127141937129.png) 158 | 159 | ![image-20221127142026418](./assets/image-20221127142026418.png) 160 | 161 | **Robust**-健壮(容错更高) 162 | 163 | # 小拓展 164 | 165 | **dense layer type**-连接层(后一项数据由前一项给出) 166 | 167 | ![image-20221127142428981](./assets/image-20221127142428981.png) 168 | 169 | 卷积层-**convolutional layer**,卷积神经网络-**CNN**(convolutional neural network) 170 | 171 | ![image-20221127144251009](./assets/image-20221127144251009.png) 172 | 173 | 目前一些其他的前沿模型:**Transformer**,**LSTM**(长短期记忆网络),**attention**(注意力模型) 174 | 175 | 176 | 177 | -------------------------------------------------------------------------------- /第八章-聚类算法与异常检测.md: -------------------------------------------------------------------------------- 1 | # WEEK 8 2 | 3 | [TOC] 4 | 5 | # 前言 6 | 7 | 无监督学习:聚类,异常检测anomaly detection 8 | 9 | 推荐系统-商业,广告 10 | 11 | 强化学习:电子游戏 12 | 13 | ![image-20221201202019878](./assets/image-20221201202019878.png) 14 | 15 | # 聚类-clustering 16 | 17 | ## 聚类的介绍 18 | 19 | 非监督学习的一种,之前也提过,但是不给y的标签了,让机器自己分类 20 | 21 | image-20221201202140665image-20221201202152579 22 | 23 | 让机器自己寻找结构,可以将其分成簇-**clusters** 24 | 25 | ![image-20221201202441313](./assets/image-20221201202441313.png) 26 | 27 | 宇宙中的星系 28 | 29 | # k-means均值聚类算法 30 | 31 | 找到簇质心-**cluster centroids** 32 | 33 | **Step0**.随机找两个点-簇质心 34 | 35 | **Step1**.历遍所有点,按照距离远近的划分为两个簇![image-20221201202802696](./assets/image-20221201202802696.png) 36 | 37 | **Step2**.移动簇质心,然后重复**Step1** 38 | 39 | ![image-20221201202928656](./assets/image-20221201202928656.png) 40 | 41 | ![image-20221201203052983](./assets/image-20221201203052983.png) 42 | 43 | 然后再依次重复下去 44 | 45 | ![image-20221201203132804](./assets/image-20221201203132804.png) 46 | 47 | 最后到稳定收敛就可以了 48 | 49 | 实际上就是每个簇应该有一个质心,只不过是通过这种方式来从外围步步迭代到质心 50 | 51 | ## k-means代码实现 52 | 53 | 质心的维数与数据集每个数据的维数相同,k个就代表你刚开始放了k个质心点 54 | 55 | - Step 1 56 | 57 | $$ 58 | 这里就是要找离x^{(i)}最近的k值(u_k点),min_k{||x^{(i)}-u_k||},这里是二范数(距离空间的距离) 59 | $$ 60 | 61 | - Step 2 62 | 63 | 计算质心位置 64 | 65 | ![image-20221203192858865](./assets/image-20221203192858865.png) 66 | 67 | > 边界情况:如果出现0个点距离近,那么可以去掉这个点,k=k-1,或者直接再随机分点 68 | 69 | 其实只要不是同一个点,就会自动分成两个簇(不然全在垂直平分线上) 70 | 71 | ![image-20221203193345304](./assets/image-20221203193345304.png) 72 | 73 | > 即使区分不那么明显,也可以起到一定的价值作用 74 | 75 | ## 代价函数-distortion function 76 | 77 | ![image-20221205142717519](./assets/image-20221205142717519.png) 78 | 79 | **distortion**-失真or畸变,**index**-返回值函数 80 | 81 | ![image-20221205143316219](./assets/image-20221205143316219.png) 82 | 83 | > 中间那一项算的是中点(质心)(余弦定理) 84 | 85 | ![image-20221205143552202](./assets/image-20221205143552202.png) 86 | 87 | > 至于这里为什么要找质心,我们可以稍微一想 88 | 89 | $$ 90 | 我们假设簇中心坐标为p_0 = (x_1,x_2,x_3,\dots ,x_n)\\ 91 | 假设所有的样本点为\{p_m = (x_1^{(m)},x_2^{(m)},x_3^{(m)},\dots,x_n^{(m)})\}\\ 92 | 那么求最短距离就是min \sum_{i=1}^m||p_0 - p_i||^2\\ 93 | 展开来,就有\sum_{i=1}^m||p_0 - p_i||^2 = \sum_{i=1}^m[(x_1-x_1^{(i)})^2+(x_2-x_2^{(i)})^2+(x_3-x_3^{(i)})^2+\dots+(x_n-x_n^{(i)})^2]\\ 94 | =\sum_{i=1}^m(x_1-x_1^{(i)})^2+\sum_{i=1}^m(x_2-x_2^{(i)})^2+\sum_{i=1}^m(x_3-x_3^{(i)})^2+\dots+\sum_{i=1}^m(x_n-x_n^{(i)})^2\\ 95 | 从这里也可以看出来,其实不过多少维的数据集,x_i与x_j之间都是相互独立的(都是整体的一个基向量)整体的最小值即研究\\ 96 | \sum_{k=1}^m(x-x_k)^2的最小值(一维直线上的点平方和最小)\\ 97 | 记函数为f(x) = \sum_{k=1}^m(x-x_k)^2 = mx^2-2\sum_{k=1}^mx_kx+\sum_{k=1}^mx_k^2\\ 98 | 可见,是一个二次函数,开口向上,最小值为x = \frac{\sum_{k=1}^mx_k}{m}时,即质心位置 99 | $$ 100 | 101 | ## k-means 初始化 102 | 103 | 可以直接挑某几个点作为初始迭代点 104 | 105 | ![image-20221205200430134](./assets/image-20221205200430134.png) 106 | 107 | 但有时会导致局部最优值 108 | 109 | ![image-20221205200550334](./assets/image-20221205200550334.png) 110 | 111 | 最佳的还是从上述的题目中挑出来代价函数J最小的情况 112 | 113 | ![image-20221205200740389](./assets/image-20221205200740389.png) 114 | 115 | ![image-20221205201045215](./assets/image-20221205201045215.png) 116 | 117 | 方法就是初始化的所有尝试中选择J最小的先 118 | 119 | ## 集群数量的选择 120 | 121 | > 因为是无监督学习,所以没法给出一个很具体的正确答案方向,即没法告知优化方向 122 | 123 | 选择k值的一种方法-**肘部法则**-**elbow method** 124 | 125 | ![image-20221205201615208](./assets/image-20221205201615208.png) 126 | 127 | ![image-20221205201739720](./assets/image-20221205201739720.png) 128 | 129 | > 很多时候也是看实际上的利用价值,以及图像的压缩 130 | 131 | # 异常检测-Anomaly detection 132 | 133 | ## 异常检测介绍 134 | 135 | > 异常检测通过观察正常事件的未标记数据集,从而学会检测异常或者在异常事件发生时告知 136 | 137 | 测试集是否与训练集相似?(有点儿像数理统计) 138 | 139 | ![image-20221205202556729](./assets/image-20221205202556729.png) 140 | 141 | 很像假设检验-接受H0与拒绝H0 142 | 143 | ![image-20221205202910402](./assets/image-20221205202910402.png) 144 | 145 | ![image-20221205203238737](./assets/image-20221205203238737.png) 146 | 147 | ## 高斯正态分布-Gaussian distribution 148 | 149 | > 也叫**bell shaped distribution**(钟型分布) 150 | 151 | ![image-20221205203837988](./assets/image-20221205203837988.png) 152 | 153 | ![image-20221205204054731](./assets/image-20221205204054731.png) 154 | 155 | 实际上要是只考虑单个的正态分布信息,怎么综合考量成了一个问题 156 | 157 | ![image-20221205204229313](./assets/image-20221205204229313.png) 158 | 159 | 上式实际上是极大似然估计,统计学多用无偏估计image-20221205205800427 160 | 161 | ![image-20221205205847401](./assets/image-20221205205847401.png) 162 | 163 | 嘎嘎,远古课件限时返厂 164 | 165 | ## 异常检测算法 166 | 167 | > 基于事件的独立性,我们可以得到向量的概率值为基向量概率乘积 168 | 169 | ![image-20221206201045245](./assets/image-20221206201045245.png) 170 | 171 | 嘎嘎,数学知识普及:image-20221206201117927 172 | 173 | ![image-20221206201229355](./assets/image-20221206201229355.png) 174 | 175 | ![image-20221206201306005](./assets/image-20221206201306005.png) 176 | 177 | ![image-20221206201429307](./assets/image-20221206201429307.png) 178 | 179 | 概率过小就是异常现象,即小概率事件 180 | 181 | > 这里实际上是假设各个特征独立,所以直接相乘就是分布函数,但是一般会是多元正态分布 182 | 183 | ![image-20221206201935169](./assets/image-20221206201935169.png) 184 | 185 | ## 异常检测的设计与评估 186 | 187 | ![image-20221206203636844](./assets/image-20221206203636844.png) 188 | 189 | 实际上之事告诉了一个划分标准,并没有告诉数据集里哪些坏哪些好 190 | 191 | ![image-20221206204044884](./assets/image-20221206204044884.png) 192 | 193 | ![image-20221206204330398](./assets/image-20221206204330398.png) 194 | 195 | 数据倾斜是如何改正修改 196 | 197 | > 实际上这里已经很想0.1分类监督学习了 198 | 199 | # 选择技巧 200 | 201 | ## 监督学习vs异常检测 202 | 203 | - 监督学习:数据错的跟对的都很多 204 | - 异常检测:数据大部分都很正常 205 | 206 | ![image-20221206230201357](./assets/image-20221206230201357.png) 207 | 208 | > 例子:Fraud-金融诈骗:有很多的方法,每年每月都有很多新的诈骗形式,异常检测就可以找到与之前不同的异类。Spam-垃圾邮件:但是监督学习是学习之前的不好的案例,然后接着找不好的。In short:异常检测能检测出新错误(新情况),监督学习是根据之前的给你分类(只是搬运工)。 209 | 210 | **一个关注过去,一个着眼未来** 211 | 212 | ![image-20221206231201557](./assets/image-20221206231201557.png) 213 | 214 | ## 特征的选择 215 | 216 | > 异常检测肯定得好好选,要不然有一个不是高斯分布,会影响整个的分布 217 | 218 | 尝试去转化一些特征的分布(数据的预处理) 219 | 220 | ![image-20221206231716648](./assets/image-20221206231716648.png) 221 | 222 | ![image-20221206231826276](./assets/image-20221206231826276.png) 223 | 224 | image-20221206231837999image-20221206231853396image-20221206231945809 225 | 226 | 上面是几种不同的转换(有的ln会出现0,我们+0.000001**加小值**即可) 227 | 228 | 记得对cv与test数据集也转换 229 | 230 | ![image-20221206232325331](./assets/image-20221206232325331.png) 231 | 232 | 出现一些判断错误时,可以单看同一概率下其余数据的具体特征,添加或者删除某些不正常的点 233 | 234 | ![image-20221206232634231](./assets/image-20221206232634231.png) 235 | 236 | ![image-20221206232650159](./assets/image-20221206232650159.png) 237 | 238 | ![image-20221206232716657](./assets/image-20221206232716657.png) 239 | 240 | 如果正常是大-大,小-小,那么可以建立一个新的特征是二者的比-就会出现异常值 241 | 242 | ![image-20221206233008822](./assets/image-20221206233008822.png) 243 | -------------------------------------------------------------------------------- /第六章-误差分析与模型改进.md: -------------------------------------------------------------------------------- 1 | # WEEK 6 2 | 3 | [TOC] 4 | 5 | # 前言 6 | 7 | ![image-20221127145121736](./assets/image-20221127145121736.png) 8 | 9 | **fruitful**-卓有成效的 10 | 11 | ![image-20221127145201143](./assets/image-20221127145201143.png) 12 | 13 | **diagnostics**-诊断学 14 | 15 | # 模型评估-ebaluating model 16 | 17 | ## 应用到线性回归 18 | 19 | ![image-20221127145453175](./assets/image-20221127145453175.png) 20 | 21 | 如果只是绘制,那么4维数据就画不出来了;划分训练集,一部分训练,一部分检验。 22 | 23 | ![image-20221127145706933](./assets/image-20221127145706933.png) 24 | 25 | 三七分或者二八分 26 | 27 | ![image-20221127150016450](./assets/image-20221127150016450.png) 28 | 29 | ![image-20221127150045873](./assets/image-20221127150045873.png) 30 | 31 | ## 应用到分类问题 32 | 33 | ![image-20221127150205492](./assets/image-20221127150205492.png) 34 | 35 | ![image-20221127150336692](./assets/image-20221127150336692.png) 36 | 37 | 被错误分类了,就记为1,所以J的数值代表了分类错误的数据个数。 38 | 39 | # 模型选择与交叉验证 40 | 41 | ## 选择方法与交叉验证 42 | 43 | ![image-20221127150532421](./assets/image-20221127150532421.png) 44 | 45 | ![image-20221127150915807](./assets/image-20221127150915807.png) 46 | 47 | 这样其实有一些推广后的误差,不是很合适。下面介绍一下怎么筛选更加科学。 48 | 49 | **cross validation**-交叉训练集,用来检验准确性,其他称呼:image-20221127151204235 50 | 51 | ![image-20221127151108310](./assets/image-20221127151108310.png) 52 | 53 | ![image-20221127151236355](./assets/image-20221127151236355.png) 54 | 55 | ![image-20221127151845390](./assets/image-20221127151845390.png) 56 | 57 | ![image-20221127151904437](./assets/image-20221127151904437.png) 58 | 59 | 也可以用到神经网络上(不同的层数,不同的单元) 60 | 61 | ![image-20221127152011166](./assets/image-20221127152011166.png) 62 | 63 | [本初ben](https://www.zhihu.com/question/265443164/answer/2417856431) 64 | 65 | - **训练集** 66 | 67 | **参与训练**,模型从训练集中学习经验,从而不断减小训练误差。这个最容易理解,一般没什么疑惑。 68 | 69 | - **验证集** 70 | 71 | **不参与训练**,用于在训练过程中检验模型的状态,收敛情况。验证集通常用于调整超参数,根据几组模型验证集上的表现决定哪组超参数拥有最好的性能。 72 | 73 | 同时验证集在训练过程中还可以用来监控模型是否发生过拟合,一般来说验证集表现稳定后,若继续训练,训练集表现还会继续上升,但是验证集会出现不升反降的情况,这样一般就发生了[过拟合](https://www.zhihu.com/search?q=过拟合&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra={"sourceType"%3A"answer"%2C"sourceId"%3A2417856431})。所以验证集也用来判断何时停止训练。 74 | 75 | - **测试集** 76 | 77 | **不参与训练**,用于在训练结束后对模型进行测试,评估其[泛化能力](https://www.zhihu.com/search?q=泛化能力&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra={"sourceType"%3A"answer"%2C"sourceId"%3A2417856431})。在之前模型使用**验证集**确定了**超参数**,使用**训练集**调整了**可训练参数**,最后使用一个从没有见过的数据集来判断这个模型的好坏。 **需要十分注意的是:测试集仅用于最终评价模型的好坏,在测试集上得到的指标可以用来和别人训练的模型做对比,或者用来向别人报告你的模型效果如何。切记千万不能根据模型在测试集上的指标调整模型超参数(这是验证集应该干的事情),这会导致模型对测试集过拟合,使得[测试集](https://www.zhihu.com/search?q=测试集&search_source=Entity&hybrid_search_source=Entity&hybrid_search_extra={"sourceType"%3A"answer"%2C"sourceId"%3A2417856431})失去其测试效果的客观性和准确性。** 78 | 79 | # 模型参数选择 80 | 81 | ## 诊断方差偏差 82 | 83 | 从这里就只考虑train跟cv两个数据集了,text数据集只是用来做展示(输出)用的,不参与状态检验,只是用来评估 84 | 85 | 单个变量比较直观,**bias**-偏差,**variance**-方差 86 | 87 | ![image-20221127155244945](./assets/image-20221127155244945.png) 88 | 89 | 可以画出不同模型下的偏差与方差的图像 90 | 91 | ![image-20221127155802244](./assets/image-20221127155802244.png) 92 | 93 | 94 | 95 | ![image-20221127160232682](./assets/image-20221127160232682.png) 96 | 97 | 两者同时发生:那就太惨了 98 | 99 | - 高偏差-high bias:训练集训练的不够拟合 100 | - 高方差-high variance:cv集比训练集表现得还差 101 | 102 | ## 正则化参数 103 | 104 | $\lambda$大会把w的值压低,越不尊重实际的训练值(Jtrain会变大) 105 | 106 | ![image-20221127161043605](./assets/image-20221127161043605.png) 107 | 108 | ![image-20221127161326504](./assets/image-20221127161326504.png) 109 | 110 | ![image-20221127161847576](./assets/image-20221127161847576.png) 111 | 112 | 看着是对称的(方差看Jcv,偏差看Jtrain) 113 | 114 | - ==左侧==的**左边**是$\lambda$比较小,过拟合,方差大,偏差小,**右边**是$\lambda$比较大,欠拟合,方差大,偏差大 115 | 116 | - ==右侧==是**左边**次数低,欠拟合,方差大,偏差大,**右边**是次数高,过拟合,方差大,偏差小 117 | 118 | # 误差的分析 119 | 120 | ## 搭建性能-Baseline(基线) 121 | 122 | 例子:语音识别:尽管看着他的方差,误差都挺大的,实际上人类自己识别也很难 123 | 124 | image-20221127164044984 125 | 126 | ![image-20221127164113562](./assets/image-20221127164113562.png) 127 | 128 | ![image-20221127170034648](./assets/image-20221127170034648.png) 129 | 130 | 要建立个性化的性能基准 131 | 132 | ## 学习曲线-Learning curves 133 | 134 | 三个点确定一个二次方程(三个未知数) 135 | 136 | ![image-20221127170509317](./assets/image-20221127170509317.png) 137 | 138 | - **high-bias** 139 | 140 | ![image-20221127170814514](./assets/image-20221127170814514.png) 141 | 142 | > 因为是$J_{train}$跟$J_{cv}$取得平均值,所以不会取余无穷(无穷的1取平均最后也是1),而且大于最小值,小于最大值(最大值与最小值有限)故这个平均值有界 143 | 144 | - **high-variance** 145 | 146 | 误差低到不切实际 147 | 148 | ![image-20221127171547474](./assets/image-20221127171547474.png) 149 | 150 | 实际上最好的情况是三者相等,模型最接近人类(一味的扩大训练集,花费很很高) 151 | 152 | ## 误差与方差的分析(下一步该改进什么) 153 | 154 | > 考虑的多了之后,有足够的信息去评估,就不会出现欠拟合情况(high bias) 155 | 156 | ![image-20221127172506550](./assets/image-20221127172506550.png) 157 | 158 | - 扩大训练集-让拟合想过更好,更符合现实,对于high bias问题作用不大,但是能使得high variance更加拟合 159 | - 减少特征向量-模型不会过于复杂(不会过拟合)对于high variance更小,但是对于high bias甚至可能从过拟合变成欠拟合 160 | - 增加特征向量-模型变复杂,像过拟合过度所以对high bias有效,high variance作用小 161 | - 增加次数项-相当于增加特征向量 162 | - 减小$\lambda$-w的占比更小,自由发挥,趋向于过拟合,治疗high bias的问题 163 | - 增大$\lambda$-w的占比变大,会压制w,趋向于欠拟合,治疗high variance的问题 164 | 165 | > 主要是看趋向于欠拟合还是过拟合,==欠拟合(high bias)==,==过拟合(high variance)== 166 | 167 | - **high variance**:1,增加训练集;2,简化模型:减少特征向量or增大$\lambda$;这样就很难拟合复杂曲线。 168 | - **high bias**:复杂模型:增加特征向量or减小$\lambda$ 169 | 170 | ![image-20221127173819931](./assets/image-20221127173819931.png) 171 | 172 | # 神经网络与误差偏差 173 | 174 | **tradeoff**-权衡 175 | 176 | ![image-20221127202013714](./assets/image-20221127202013714.png) 177 | 178 | 首先进行模型扩张,起码要比人强 179 | 180 | ![image-20221127202553694](./assets/image-20221127202553694.png) 181 | 182 | > 误差大了就扩大网络,方差大了就增多数据 183 | 184 | 只要正则化选择的正确,就不会出现过拟合导致方差增大,==大的网络往往更好== 185 | 186 | ![image-20221127202808229](./assets/image-20221127202808229.png) 187 | 188 | ![image-20221127203006737](./assets/image-20221127203006737.png) 189 | 190 | **非正则化**与**正则化**的模型 191 | 192 | # 机器学习的迭代循环 193 | 194 | ![image-20221127203617102](./assets/image-20221127203617102.png) 195 | 196 | ![image-20221127203916623](./assets/image-20221127203916623.png) 197 | 198 | ![image-20221127204011502](./assets/image-20221127204011502.png) 199 | 200 | 蜜罐计划-**Honeypot** 201 | 202 | 蜜罐的定义(from 百度) 203 | 204 | 首先我们要弄清楚一台蜜罐和一台没有任何防范措施的计算机的区别,虽然这两者都有可能被入侵破坏,但是本质却完全不同,蜜罐是网络管理员经过周密布置而设下的“黑匣子”,看似漏洞百出却尽在掌握之中,它收集的入侵数据十分有价值;而后者,根本就是送给入侵者的礼物,即使被入侵也不一定查得到痕迹……因此,蜜罐的定义是:“蜜罐是一个安全资源,它的价值在于被探测、攻击和损害。” 205 | 206 | 设计蜜罐的初衷就是让黑客入侵,借此收集证据,同时隐藏真实的服务器地址,因此我们要求一台合格的蜜罐拥有这些功能:发现攻击、产生警告、强大的记录能力、欺骗、协助调查。另外一个功能由管理员去完成,那就是在必要时候根据蜜罐收集的证据来起诉入侵者。 207 | 208 | # 如何高效的改进模型 209 | 210 | ## 误差分析-error analysis 211 | 212 | 有的很多错误分类的数据,自己看一遍然后分析其中的问题所在 213 | 214 | ![image-20221127204723210](./assets/image-20221127204723210.png) 215 | 216 | 指出模型实际上应该朝着什么方向发展才更好(再怎么优化恶意拼写,也只能解决3%的问题) 217 | 218 | **pharma**-药品 219 | 220 | ![image-20221127205036489](./assets/image-20221127205036489.png) 221 | 222 | ![image-20221127205131497](./assets/image-20221127205131497.png) 223 | 224 | ![image-20221127205141994](./assets/image-20221127205141994.png) 225 | 226 | **error analysis**的重要性 227 | 228 | ## 数据添加-adding data 229 | 230 | > 专项的添加需要的数据,比一味的添加各种数据更加有效,怎么寻找方法来改进代码 231 | 232 | **数据增强**-Data augmentation:用已有的例子去构造新例子 233 | 234 | ![image-20221127205756711](./assets/image-20221127205756711.png) 235 | 236 | ![image-20221127205814128](./assets/image-20221127205814128.png) 237 | 238 | 构造丰富的数据库,让机器学习的更加稳健 239 | 240 | ![image-20221127205900240](./assets/image-20221127205900240.png) 241 | 242 | 音频的叠加与加噪,用来训练 243 | 244 | ![image-20221127210106763](./assets/image-20221127210106763.png) 245 | 246 | ![image-20221127210138017](./assets/image-20221127210138017.png) 247 | 248 | 有一些处理,比如说噪点之类的,平时生活中遇不到,所以就不做这些处理 249 | 250 | **OCR**算法 251 | 252 | ![image-20221127210304529](./assets/image-20221127210304529.png) 253 | 254 | ![image-20221127210410268](./assets/image-20221127210410268.png) 255 | 256 | 右侧是自己做的数据集,说明完全可以自己去生成数据集以减少处理数据花费的时间 257 | 258 | ![image-20221127210623750](./assets/image-20221127210623750.png) 259 | 260 | 有的专注于改进代码,有的算法已经够好了,就要在数据上下功夫 261 | 262 | ## 迁移学习-transfer learing 263 | 264 | > 把其他的数据用到自己的身上(但是要相近,比如识别猫的用来识别狗)就像兽医给人看病 265 | 266 | option1适合小的网络,opinton适合所有的(小的用1比较好),**Fine tuning**-微调 267 | 268 | ![image-20221129200441728](./assets/image-20221129200441728.png) 269 | 270 | 就像识别人之前,可以先训练去学习识别其他东西(这里相同的类型指不要用图像识别去识别语音) 271 | 272 | ![image-20221129200807554](./assets/image-20221129200807554.png) 273 | 274 | 微调就可以用少量的数据集去训练 275 | 276 | ![image-20221129201001367](./assets/image-20221129201001367.png) 277 | 278 | 主要是大家可以用来互相交流,用那些训练过的大型网络 279 | 280 | # 构造系统的全流程 281 | 282 | ![image-20221129201426113](./assets/image-20221129201426113.png) 283 | 284 | - 确定计划 285 | - 收集数据 286 | - 模型训练(再看看还要什么数据) 287 | - 发布(维护,更新) 288 | 289 | **inference server**-推断服务器,**monitoring**-监控系统(统计什么时候训练不好以方便观察改进) 290 | 291 | ![image-20221129202243775](./assets/image-20221129202243775.png) 292 | 293 | **opera**-维护,运作 294 | 295 | # 公平,偏见,伦理-fairness,bias,ethics 296 | 297 | ![image-20221129202453387](./assets/image-20221129202453387.png) 298 | 299 | ![image-20221129202538516](./assets/image-20221129202538516.png) 300 | 301 | ![image-20221129202643683](./assets/image-20221129202643683.png) 302 | 303 | 要对社会有积极影响,不要为了钱而损害社会 304 | 305 | **diverse**-多元化(种族,性别,信仰等等,这里指团体的) 306 | 307 | **audit**-检查,审计,大学生旁听 308 | 309 | ![image-20221129203131793](./assets/image-20221129203131793.png) 310 | 311 | # 选修-数据倾斜与优化方法 312 | 313 | ## 数据倾斜介绍 314 | 315 | 数据并非55开,错误数据很少时 316 | 317 | ![image-20221129203430066](./assets/image-20221129203430066.png) 318 | 319 | 如果是一个很罕见的症状,正确率99.5%或者说错误率0.5%,也说明误差最小的不一定是最准的 320 | 321 | **precision**-精确率(你识别的这些阳性,有多少是真阳的),**recall**-召回率(所有的阳性里,真正识别出来的是多少) 322 | 323 | ![image-20221129204239021](./assets/image-20221129204239021.png) 324 | 325 | 如果只是print(y=0)那么矩阵是[0 0;1 99],此处假设100个人里1个阳性,那么precision是0/0(无定义or不存在精度),recall是0 326 | 327 | ## 权衡精度与召回率 328 | 329 | 精度-==找的对==,召回率-==找的全==,实际上喜欢两个都高 330 | 331 | 阈值提高(更自信才预测)-[小 小;大 大]精度提高(更值得相信),但是召回率变小(看公式) 332 | 333 | 阈值降低(都来治病)-[大 大;小 小]精度降低,召回率变大 334 | 335 | **threshold**-门槛,阈值 336 | 337 | ![image-20221129205957561](./assets/image-20221129205957561.png) 338 | 339 | ==推导过程== 340 | $$ 341 | &pre = \frac{tru}{tru + fal pos}\\ 342 | &rec = \frac{tru}{tru + fal neg}\\ 343 | 阈值提高:&tru小,falpos小,falneg大,truneg大\\ 344 | &pre = \frac{1}{1+\frac{falpos}{tru}}\\ 345 | &falpos = a - x,tru = b - x,\frac{falpos}{tru}=\frac{a-x}{b-x} = 1+\frac{a-b}{b-x}\\ 346 | &一般来说,a 14 | 15 | 我们如何编程来让他自己飞行,让他倒飞 16 | 17 | ![image-20221208162602764](./assets/image-20221208162602764.png) 18 | 19 | **state x** to **action y** 20 | 21 | 有点儿像训狗(奖惩机制)-**reward function**-奖励函数 22 | 23 | ![image-20221208162833674](./assets/image-20221208162833674.png) 24 | 25 | image-20221208162911592 26 | 27 | ![image-20221208163001969](./assets/image-20221208163001969.png) 28 | 29 | ![image-20221208163234671](./assets/image-20221208163234671.png) 30 | 31 | 无监督学习,只要给他一个奖惩函数,让他自己学习 32 | 33 | # 强化学习 34 | 35 | ## 案例:Mars rover example 36 | 37 | **Mars rover**-火星漫游者,**terminal state**-最终状态 38 | 39 | - s-state,a-action,R-reward,s'-next state 40 | 41 | ![image-20221208164001163](./assets/image-20221208164001163.png) 42 | 43 | ## 强化学习中的回报-Return 44 | 45 | 快速少回报vs慢速多回报 折扣因子-$\gamma$ 46 | 47 | ![image-20221208164936139](./assets/image-20221208164936139.png) 48 | 49 | 可以理解成货币的时间价值(利息) 50 | 51 | ![image-20221208165439822](./assets/image-20221208165439822.png) 52 | 53 | 可以对比,取**max**,得到最终方案 54 | 55 | ![image-20221208165502474](./assets/image-20221208165502474.png) 56 | 57 | 实际上是在把副作用推到未来,越发展乘的次数越高,越不值钱 58 | 59 | ## 强化学习中的策略 60 | 61 | ![image-20221208165929351](./assets/image-20221208165929351.png) 62 | 63 | ![image-20221208170006904](./assets/image-20221208170006904.png) 64 | 65 | ## 复习关键概念-马尔可夫决策过程MDP 66 | 67 | ![image-20221208170408034](./assets/image-20221208170408034.png) 68 | 69 | > **Markov Decision Process**-马尔可夫决策过程 70 | > 71 | > 未来只取决于目前的状态,只与位置有关,与过程无关 72 | 73 | ![image-20221208170616279](./assets/image-20221208170616279.png) 74 | 75 | # 模型中的递归 76 | 77 | ## 状态值函数-State action value function 78 | 79 | 如何看**optimal behave**-最佳决策(如果知道最佳了,那还求Q?)实际上是个包含循环的定义 80 | 81 | Q实际上是action完了之后,你能拿到的最多的奖励(还是会按奖励最多的方案走) 82 | 83 | ![image-20221208174148165](./assets/image-20221208174148165.png) 84 | 85 | 下面是Q的值,我们要让Q达到最大化 86 | $$ 87 | max_a{Q(s,a)} 88 | $$ 89 | ![image-20221208174457349](./assets/image-20221208174457349.png) 90 | 91 | 只要我们可以计算Q就可以了image-20221208174532761最优Q函数 92 | 93 | ## 案例:State-action value function example 94 | 95 | ![image-20221208190715351](./assets/image-20221208190715351.png) 96 | 97 | 这里提供给你可以自己实验,那个因子越大实际上就是机器人越有耐心,越可以花更多时间去接受更大的奖励。 98 | 99 | ![image-20221208191015464](./assets/image-20221208191015464.png) 100 | 101 | ## 贝尔曼方程-Bellman Equation 102 | 103 | > 我们怎么计算Q,就要用到贝塞尔方程 104 | 105 | 下面是符号定义(递推公式) 106 | 107 | ![image-20221208191425339](./assets/image-20221208191425339.png) 108 | 109 | 实际上二维平面下区别不大,这是在为之后的多情况考虑,需要一个状态转移公式 110 | 111 | ![image-20221208191738900](./assets/image-20221208191738900.png) 112 | 113 | immediate rewaed-即时奖励-R,迭代中maxQ那一步实际上算是 114 | $$ 115 | R_1+rR_2+r^2R_3+\dots+r^{n-1}R_n \rightarrow rR_1+r^2R_2+r^3R_3+\dots+r^nR_n 116 | $$ 117 | 换做不同的因子也是这样(==递归==) 118 | 119 | ![image-20221208192437759](./assets/image-20221208192437759.png) 120 | 121 | ![image-20221208192422711](./assets/image-20221208192422711.png) 122 | 123 | ![image-20221208192713025](./assets/image-20221208192713025.png) 124 | 125 | ## 随机马尔可夫过程 126 | 127 | 运动方向具有概率,停时,等等,概率论都回来了。 128 | 129 | 即访问过程随机,可以想象成来回蹦 130 | 131 | 图上第二次是4到3又失误回到了4 132 | 133 | > 当问题不明确时,都会变成随机,我们可以加大数量级求平均,实际上就是数学期望。 134 | 135 | ![image-20221208193309434](./assets/image-20221208193309434.png) 136 | 137 | 你3向左可能是2,也可能是4,所以加上一个随机处理 138 | 139 | ![image-20221208193445448](./assets/image-20221208193445448.png) 140 | 141 | 0.1的可能走错方向(滑落) 142 | 143 | ![image-20221208193545013](./assets/image-20221208193545013.png) 144 | 145 | 控制程度越低(出错概率越大),期望数值就会越小。 146 | 147 | # 连续状态空间 148 | 149 | ## 应用案例 150 | 151 | > 推广到连续状态空间 152 | 153 | ![image-20221208194012810](./assets/image-20221208194012810.png) 154 | 155 | image-20221208193927019![image-20221208194139272](./assets/image-20221208194139272.png)image-20221208194248880 156 | 157 | 如果是汽车,可能要考虑x,y,角度,速度,角速度等等,状态可能是个向量表示 158 | 159 | 如果是直升机image-20221208194449982,三维空间的坐标与运动速度 160 | 161 | ![image-20221208194351806](./assets/image-20221208194351806.png) 162 | 163 | ## 案例-登陆月球 164 | 165 | ## 案例介绍 166 | 167 | 左右与下的引擎可以启动 168 | 169 | ![image-20221208194902589](./assets/image-20221208194902589.png) 170 | 171 | 不断决定喷射力度以最终落到目标位置 172 | 173 | 给他四个action-nothing left right mian 174 | 175 | l,r表示左,右脚是否着地(0.1) 176 | 177 | ![image-20221208195025279](./assets/image-20221208195025279.png) 178 | 179 | 后两个是每次启动引擎会扣分(费油) 180 | 181 | ![image-20221208195138808](./assets/image-20221208195138808.png) 182 | 183 | 通过神经网络与深度学习就可以实现了 184 | 185 | ## 状态值函数 186 | 187 | 四个action用[1 0 0 0]四个数字符控制。计算四个Q然后选最大的 188 | 189 | ![image-20221208195639875](./assets/image-20221208195639875.png)如果是神经网络,我们需要大量的x,y数据训练集 190 | 191 | 可以采取随机动作,我们获得大量的样本 192 | $$ 193 | max_{a'}Q(s'^{(1)},a')实际上就是全局搜索\\ 194 | 看有没有合适的(s^{(j)},a^{(j)})=(s'^{(i)},a'^{(i)})\\ 195 | 或者去逼近,Q实际上也可以用上一些相对应的表达式比如\\ 196 | Q_{w,b}(s,a)=ws+a+b之类的 197 | $$ 198 | 然后后续的计算实际上就是递归到停止时刻,至于Q是个啥 199 | 200 | ![image-20221208200431372](./assets/image-20221208200431372.png) 201 | 202 | 这里的Q实际上就是一个映射,没有具体的模型 203 | 204 | **DQN方法**-DQ网络(Deel learning for Q) 205 | 206 | 深度学习是一种特殊的机器学习,实际上就是多层 嵌套的机器学习 207 | 208 | ![image-20221208200931046](./assets/image-20221208200931046.png) 209 | 210 | 这里对Q的处理也会像之前一样有一定的迭代处理,相当于一步一步迭代 211 | 212 | ## 改进算法:神经网络架构 213 | 214 | 同时输出四个Q值(向量方法) 215 | 216 | ![image-20221208202336821](./assets/image-20221208202336821.png) 217 | 218 | 使得算法更加有效 219 | 220 | ## 改进算法:$\epsilon$贪婪策略 221 | 222 | **$\epsilon$ greedy policy**-$\epsilon$贪婪策略 223 | 224 | 也要尝试其他的可能性与动作(因为随机初始化,会导致所有的情况一直降低,但是有时还是有用的),所以加个出现误差的小概率。 225 | 226 | **exploration step**-探索步骤,**exploitation step**-剥削步骤 227 | 228 | ![image-20221208202927871](./assets/image-20221208202927871.png) 229 | 230 | ![image-20221208203055519](./assets/image-20221208203055519.png) 231 | 232 | ![image-20221208203118504](./assets/image-20221208203118504.png) 233 | 234 | ![image-20221208203128724](./assets/image-20221208203128724.png) 235 | 236 | ![image-20221208203139567](./assets/image-20221208203139567.png) 237 | 238 | 贪心实际上是95%的那一部分指的是贪心(还就那个从狂野逐步收敛) 239 | 240 | ![image-20221208203226373](./assets/image-20221208203226373.png) 241 | 242 | ## 改进算法:Mini-batch and soft update 243 | 244 | Mini-batch:可以加快算法 245 | 246 | Soft update:更好收敛 247 | 248 | > 每次梯度下降,可以不必计算那么多数据,可以每次循环选择一个小的数据量,依次往后循环完 249 | 250 | ![image-20221208204055892](./assets/image-20221208204055892.png) 251 | 252 | ![image-20221208204109310](./assets/image-20221208204109310.png) 253 | 254 | 关于合理性,实际上就是一步一步去精细化 255 | 256 | ![image-20221208204246583](./assets/image-20221208204246583.png) 257 | 258 | ![image-20221208204455921](./assets/image-20221208204455921.png) 259 | 260 | 实际上没之前迭代的精细,但是更快乐(中间可能出现不好的样本使得其偏离路径) 261 | 262 | ![image-20221208204623696](./assets/image-20221208204623696.png) 263 | 264 | 因为训练好了之后的Q就可以用到之后的数据里了,更方便更快了,但是可能一个不好的Q覆盖一个好的Q,soft update就可以改善这一点 265 | 266 | ![image-20221208205247235](./assets/image-20221208205247235.png) 267 | 268 | > 只是改一点点,可以降低错误带来的影响 269 | 270 | # 强化学习现状 271 | 272 | 大肆宣传:大部分都是在模拟现实中,但是实际上非常有挑战 273 | 274 | ![image-20221208210655902](./assets/image-20221208210655902.png) 275 | 276 | # 完结撒花 277 | 278 | **SUMMARY** 279 | 280 | ![image-20221208210853659](./assets/image-20221208210853659.png) 281 | 282 | ![image-20221208210915462](./assets/image-20221208210915462.png) 283 | 284 | ![image-20221208211000842](./assets/image-20221208211000842.png) 285 | 286 | ![image-20221208211038480](./assets/image-20221208211038480.png) 287 | 288 | ![image-20221208211051894](./assets/image-20221208211051894.png) 289 | 290 | THE END 291 | 292 | # 附录-代码理解 293 | 294 | > 代码是copy的,用来了解了解 295 | 296 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 297 | % 机器人如何从五个房间中的任意一个走出来? 298 | % 中南大学 自动化学院 智能控制与优化决策课题组 299 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 300 | % Q学习算法 301 | % function Q = Reinforcement_Learning(R,gamma) 302 | clear all 303 | clc; 304 | format short %显示4位小数 305 | format compact %压缩空格 306 | 307 | % 输入: R and gamma 308 | % R:即时奖励矩阵; 行、列表示状态 309 | % -1 = 表示无效值 310 | R = [-1,-1,-1,-1,0, -1; 311 | -1,-1,-1,0,-1, 100; 312 | -1,-1,-1,0,-1, -1; 313 | -1, 0, 0,-1,0, -1; 314 | 0,-1,-1,0,-1, 100; 315 | -1,0, -1,-1,0, 100]; 316 | gamma = 0.80; % 学习参数 317 | 318 | N = size(R,1); % R的行数,所有状态的个数,一行代表一个状态的所有信息 319 | Q = zeros(size(R)); % 初始化Q矩阵,其行数和列数和R一样。Q初始全是0 320 | Q1 = ones(size(R))*inf; % 前一次比较对象,判定收敛,Q初始全是无穷大 321 | count = 0; % 计数器 322 | for episode = 0:50000 323 | % 产生随机初始状态 324 | state = ceil(N*rand); %产生1-N之间的随机数 325 | % 从当前状态出发,选择一个行动 326 | x = find(R(state,:)>=0); % 所有可能行动,R(state,:)代表R的第state行,find(R(state,:)>=0)代表R的第state行里面大于0的数的列位置集合,是个行向量, 327 | %上一句代码理解成找出当前状态可以向那些状态转移 328 | if ~isempty(x) %如果有可以转移的 329 | x1= x((ceil(length(x)*rand))); % 随机选择一个行动,理解成随机向一个状态转移,x1代表第几行(即为第几个状态) 330 | end 331 | 332 | qMax = max(Q,[],2); %返回矩阵中每行的最大值,是一个列向量,大小是Q的行数,每行最大值物理含义是这个状态下的最好奖励(最好出路) 333 | Q(state,x1) = R(state,x1) + gamma*qMax(x1); % 转移规则。qMax(x1)代表x1这个状态下的最好奖励 334 | 335 | % 判定是否收敛 其实就是前后两个Q矩阵的差很小就认为是收敛了 336 | if sum(sum(abs(Q1-Q)))<0.0001 && sum(sum(Q>0)) %sum(sum(Q>0))代表Q大于0的数的个数,sum(sum(abs(Q1-Q)))代表Q1与Q对应位置相减绝对值之和 337 | if count > 1000 %且学习了超过1千次 338 | disp(strcat('强化学习的总次数: ',num2str(episode))); 339 | break %跳出for循环 340 | else %没有学习了超过1千次 341 | count = count+1; 342 | end 343 | else %不收敛,差距很大 344 | Q1 = Q; %把最新的一个Q作为比较对象,覆盖掉原来的 345 | count = 0; 346 | end 347 | end%归一化 348 | Qmax = max(max(Q));%max(max(Q))代表Q里面最大的元素,max(Q)代表每一列最大的元素 349 | if Qmax >0 350 | Q = 100*Q/Qmax; 351 | end 352 | Q' 353 | 354 | > qMax = max(Q,[],2); %返回矩阵中每行的最大值,是一个列向量,大小是Q的行数,每行最大值物理含义是这个状态下的最好奖励(最好出路) 355 | > Q(state,x1) = R(state,x1) + gamma*qMax(x1); % 转移规则。qMax(x1)代表x1这个状态下的最好奖励 356 | 357 | 实际上就是我们刚开始就假设所有状态点的Q,然后一步步更新,刚开始全是0,那么就直接全是R 358 | -------------------------------------------------------------------------------- /第四章-神经网络与前向传播.md: -------------------------------------------------------------------------------- 1 | # WEEK 4 2 | 3 | 4 | 5 | [TOC] 6 | 7 | # 开篇 8 | 9 | **Neural Networks**-神经网络 10 | 11 | **inference**-推理 12 | 13 | # 神经网络-Neural Networks 14 | 15 | > 超级简化的人类大脑 16 | 17 | ## 神经网络介绍 18 | 19 | ![image-20221126135716626](./assets/image-20221126135716626.png) 20 | 21 | NLP-自然语言处理 22 | 23 | ![image-20221126135834563](./assets/image-20221126135834563.png) 24 | 25 | **axon**-轴突,**dendrites**-树突 26 | 27 | image-20221126140043746 28 | 29 | 大脑是如何工作的尤为重要,出发点是生物原理,但是更重要的还是工程原理,我们怎么有效的工作。利用神经网络可以利用更多的数据。 30 | 31 | image-20221126140421300 32 | 33 | ## 需求预测-Demand Prediction 34 | 35 | **activation**-激活,**neuron**-神经元,**awarenss**-知名度 36 | 37 | 用神经元输出估价的概率 38 | 39 | image-20221126141335411 40 | 41 | image-20221126141433579 42 | 43 | 实际上下一层可以读取上一层的所有数据,每层输入一个数据,输出一个数据 44 | 45 | ![image-20221126141623723](./assets/image-20221126141623723.png) 46 | 47 | **input layer** 输入层(layer0)-**hidden layer** 隐藏层(layer1)-**output layer **输出层(layer2) 48 | 49 | > 输入层一般不记,故上述的只是一个==2层网络== 50 | 51 | 神经网络不用我们自己处理数据特征,可以借助网络自己生成合理的权重。 52 | 53 | ![image-20221126142330811](./assets/image-20221126142330811.png) 54 | 55 | **architecture**-结构,:D 56 | 57 | ## Example:视觉处理-Face recognition 58 | 59 | image-20221126142632734 60 | 61 | 第一层:找各种直线;第二层:检测脸部部位;第三层:组成人脸;实际上是从小到大的区域范围搜索(不过都是机器自己学习) 62 | 63 | ![image-20221126143014351](./assets/image-20221126143014351.png) 64 | 65 | 不仅仅是人脸,这套系统会自动小范围到大范围找到合适的分类(比如对汽车) 66 | 67 | ![image-20221126143117788](./assets/image-20221126143117788.png) 68 | 69 | ## 神经网络层-Neural network layer 70 | 71 | 1. 第一步,计算layber1 72 | 73 | ![image-20221126150744743](./assets/image-20221126150744743.png) 74 | 75 | 【i】的数据输入到【i+1】 76 | 77 | 2. 第二步,计算layber2 78 | 79 | ![image-20221126151011590](./assets/image-20221126151011590.png) 80 | 81 | 3. 第三步,对结果进行判断 82 | 83 | ![image-20221126151118262](./assets/image-20221126151118262.png) 84 | 85 | ## 更加复杂的神经网络 86 | 87 | ![image-20221126152545587](./assets/image-20221126152545587.png) 88 | 89 | 信息输出与传递的方程(第一层就是$a^{[0]}$) 90 | 91 | ![image-20221126152804101](./assets/image-20221126152804101.png) 92 | 93 | # 推理-Inferencing 94 | 95 | ## 向前传播(手写识别)-forward propagation 96 | 97 | ![image-20221126153213153](./assets/image-20221126153213153.png) 98 | 99 | image-20221126153223952image-20221126153254504 100 | 101 | forward propagation-向前传播,传播激活信号 102 | 103 | ## 代码部分-Inferencing in code 104 | 105 | - 咖啡豆问题-coffee roasting 106 | 107 | ![image-20221126153817325](./assets/image-20221126153817325.png) 108 | 109 | ![image-20221126154035350](./assets/image-20221126154035350.png) 110 | 111 | 要加载各个参数以及库的提取应用。 112 | 113 | - 手写识别问题 114 | 115 | ![image-20221126154213907](./assets/image-20221126154213907.png) 116 | 117 | ## Tensorflow 中的数据 118 | 119 | numpy中的矩阵数据表达: 120 | 121 | ![image-20221126155415332](./assets/image-20221126155415332.png) 122 | 123 | **row**-行,**column**-列 124 | 125 | ![image-20221126155648808](./assets/image-20221126155648808.png) 126 | 127 | 最后一个只是表达一组数据;**tensor**-张量,用来储存数据。张量可以视为高维矩阵的储存方式(用长方体储存数据) 128 | 129 | ![image-20221126160548039](./assets/image-20221126160548039.png) 130 | 131 | > 这里最后一行应该是弄错了,应该只是转了一下格式 132 | 133 | ![image-20221126161108371](./assets/image-20221126161108371.png) 134 | 135 | # 构造一个神经网络 136 | 137 | ## 调用库写函数 138 | 139 | model中sequential用来给layer排序。然后输入数据去训练 140 | 141 | ![image-20221126161808516](./assets/image-20221126161808516.png) 142 | 143 | ![image-20221126161928839](./assets/image-20221126161928839.png) 144 | 145 | 一遍一遍的驯化这个函数 146 | 147 | ![image-20221126161936289](./assets/image-20221126161936289.png) 148 | 149 | 这就体现了库的方便,但是还是要实际上理解库中的东西,要了解算法怎么工作的。 150 | 151 | ## 单层中的前向传播-Forward prop in a single layer 152 | 153 | ![image-20221126162643104](./assets/image-20221126162643104.png) 154 | 155 | > 这里是先算的下面再算的上面,==w2_1中应该是三维向量==,可以改成([-7,8,9]) 156 | 157 | **实现方法**-Tensorflow算是一种张量计算的架构 158 | 159 | 定义函数,输入上一层参数,系数阵,得到下一层参数。 160 | 161 | ![image-20221126170505427](./assets/image-20221126170505427.png) 162 | 163 | > 实际上这里应该用矩阵(向量)相乘更好-a_in乘W+b 164 | > 165 | > 会根据代价函数一步一步往前修改参数(反向传播) 166 | 167 | - **前向传播(Forward Propagation)**前向传播就是从input,经过一层层的layer,不断计算每一层的z和a,最后得到输出y^ 的过程,计算出了y^,就可以根据它和真实值y的差别来计算损失(loss)。 168 | - **反向传播(Backward Propagation)**反向传播就是根据损失函数L(y^,y)来反方向地计算每一层的z、a、w、b的偏导数(梯度),从而更新参数。 169 | 170 | # AGI猜想-Is there a path to AGI 171 | 172 | **ANI**-Artificial General Intelligence-强人工智能,**AGI**-Artificial Narrow Intelligence-弱人工智能 173 | 174 | ![image-20221126171542714](./assets/image-20221126171542714.png) 175 | 176 | 我们想的可能越多的neuron,就能模拟人脑,但是还是太简单,未能达到模拟人脑的程度。 177 | 178 | "one learning algorithm" hypothesis-简单算法猜想 179 | 180 | 听觉的切断把视觉输入,会自动接受视觉(就像有一个算法,我们的算法“大脑”接收数据并生成结果) 181 | 182 | ![image-20221126171944549](./assets/image-20221126171944549.png) 183 | 184 | ![image-20221126172133997](./assets/image-20221126172133997.png) 185 | 186 | 生物具有惊人的适应性,那么能够复制这些算法吗。 187 | 188 | # 向量化求解-矩阵部分 189 | 190 | - 向量化的成就铸就了今天的深度学习 191 | 192 | ![image-20221126183557103](./assets/image-20221126183557103.png) 193 | 194 | 看是否大于0.5取得0,1所以最后输出的都是0.1 195 | 196 | - **dot product**-点积(点乘),**transpose**-转置 197 | 198 | ![image-20221126183926985](./assets/image-20221126183926985.png) 199 | 200 | ![image-20221126190058163](./assets/image-20221126190058163.png) 201 | 202 | image-20221126190412100 203 | 204 | image-20221126190941872 205 | 206 | ![image-20221126191109917](./assets/image-20221126191109917.png) 207 | 208 | 向量化复杂,但是很值 209 | 210 | # 神经网络向量化实现 211 | 212 | image-20221126193230962 213 | 214 | ![image-20221126193734282](./assets/image-20221126193734282.png) 215 | 216 | 直接用矩阵乘积进行传播。 217 | 218 | --------------------------------------------------------------------------------