├── floyd_requirements.txt
├── Dockerfile
├── app.py
├── .gitignore
├── README.md
├── data_helpers.py
├── eval.py
├── serve.py
├── text_cnn.py
├── train.py
├── cnn-train.py
└── LICENSE
/floyd_requirements.txt:
--------------------------------------------------------------------------------
1 | flask
2 |
--------------------------------------------------------------------------------
/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM tensorflow/tensorflow:0.11.0rc2
2 |
3 | MAINTAINER Floyd
4 |
5 | RUN pip install scikit-learn
6 |
--------------------------------------------------------------------------------
/app.py:
--------------------------------------------------------------------------------
1 | from flask import Flask
2 | from serve import main, setup
3 |
4 | app = Flask(__name__)
5 |
6 |
7 | @app.route("/")
8 | def evaluate(input):
9 | print("Received input: %s".format(input))
10 | return str(main([input]))
11 |
12 |
13 | if __name__ == "__main__":
14 | setup(checkpoint_dir="./runs/1486683971/checkpoints/")
15 | app.run(host="0.0.0.0")
16 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.npy
2 | runs/
3 |
4 | # Created by https://www.gitignore.io/api/python,ipythonnotebook
5 |
6 | ### Python ###
7 | # Byte-compiled / optimized / DLL files
8 | __pycache__/
9 | *.py[cod]
10 | *$py.class
11 |
12 | # C extensions
13 | *.so
14 |
15 | # Distribution / packaging
16 | .Python
17 | env/
18 | build/
19 | develop-eggs/
20 | dist/
21 | downloads/
22 | eggs/
23 | .eggs/
24 | lib/
25 | lib64/
26 | parts/
27 | sdist/
28 | var/
29 | *.egg-info/
30 | .installed.cfg
31 | *.egg
32 |
33 | # PyInstaller
34 | # Usually these files are written by a python script from a template
35 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
36 | *.manifest
37 | *.spec
38 |
39 | # Installer logs
40 | pip-log.txt
41 | pip-delete-this-directory.txt
42 |
43 | # Unit test / coverage reports
44 | htmlcov/
45 | .tox/
46 | .coverage
47 | .coverage.*
48 | .cache
49 | nosetests.xml
50 | coverage.xml
51 | *,cover
52 |
53 | # Translations
54 | *.mo
55 | *.pot
56 |
57 | # Django stuff:
58 | *.log
59 |
60 | # Sphinx documentation
61 | docs/_build/
62 |
63 | # PyBuilder
64 | target/
65 |
66 |
67 | ### IPythonNotebook ###
68 | # Temporary data
69 | .ipynb_checkpoints/
70 |
71 | .floydexpt
72 | .floydignore
73 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | **[This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post.](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/)**
2 |
3 | It is slightly simplified implementation of Kim's [Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1408.5882) paper in Tensorflow.
4 |
5 | ## Requirements
6 |
7 | - Python 3
8 | - Tensorflow > 0.8
9 | - Numpy
10 |
11 | ## Training
12 |
13 | Print parameters:
14 |
15 | ```bash
16 | ./train.py --help
17 | ```
18 |
19 | ```
20 | optional arguments:
21 | -h, --help show this help message and exit
22 | --embedding_dim EMBEDDING_DIM
23 | Dimensionality of character embedding (default: 128)
24 | --filter_sizes FILTER_SIZES
25 | Comma-separated filter sizes (default: '3,4,5')
26 | --num_filters NUM_FILTERS
27 | Number of filters per filter size (default: 128)
28 | --l2_reg_lambda L2_REG_LAMBDA
29 | L2 regularizaion lambda (default: 0.0)
30 | --dropout_keep_prob DROPOUT_KEEP_PROB
31 | Dropout keep probability (default: 0.5)
32 | --batch_size BATCH_SIZE
33 | Batch Size (default: 64)
34 | --num_epochs NUM_EPOCHS
35 | Number of training epochs (default: 100)
36 | --evaluate_every EVALUATE_EVERY
37 | Evaluate model on dev set after this many steps
38 | (default: 100)
39 | --checkpoint_every CHECKPOINT_EVERY
40 | Save model after this many steps (default: 100)
41 | --allow_soft_placement ALLOW_SOFT_PLACEMENT
42 | Allow device soft device placement
43 | --noallow_soft_placement
44 | --log_device_placement LOG_DEVICE_PLACEMENT
45 | Log placement of ops on devices
46 | --nolog_device_placement
47 |
48 | ```
49 |
50 | Train:
51 |
52 | ```bash
53 | ./train.py
54 | ```
55 |
56 | ## Evaluating
57 |
58 | ```bash
59 | ./eval.py --eval_train --checkpoint_dir="./runs/1459637919/checkpoints/"
60 | ```
61 |
62 | Replace the checkpoint dir with the output from the training. To use your own data, change the `eval.py` script to load your data.
63 |
64 |
65 | ## References
66 |
67 | - [Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1408.5882)
68 | - [A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification](http://arxiv.org/abs/1510.03820)
--------------------------------------------------------------------------------
/data_helpers.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import re
3 | import itertools
4 | from collections import Counter
5 |
6 |
7 | def clean_str(string):
8 | """
9 | Tokenization/string cleaning for all datasets except for SST.
10 | Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
11 | """
12 | string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
13 | string = re.sub(r"\'s", " \'s", string)
14 | string = re.sub(r"\'ve", " \'ve", string)
15 | string = re.sub(r"n\'t", " n\'t", string)
16 | string = re.sub(r"\'re", " \'re", string)
17 | string = re.sub(r"\'d", " \'d", string)
18 | string = re.sub(r"\'ll", " \'ll", string)
19 | string = re.sub(r",", " , ", string)
20 | string = re.sub(r"!", " ! ", string)
21 | string = re.sub(r"\(", " \( ", string)
22 | string = re.sub(r"\)", " \) ", string)
23 | string = re.sub(r"\?", " \? ", string)
24 | string = re.sub(r"\s{2,}", " ", string)
25 | return string.strip().lower()
26 |
27 |
28 | def load_data_and_labels():
29 | """
30 | Loads MR polarity data from files, splits the data into words and generates labels.
31 | Returns split sentences and labels.
32 | """
33 | # Load data from files
34 | positive_examples = list(open("./data/rt-polaritydata/rt-polarity.pos", "r").readlines())
35 | positive_examples = [s.strip() for s in positive_examples]
36 | negative_examples = list(open("./data/rt-polaritydata/rt-polarity.neg", "r").readlines())
37 | negative_examples = [s.strip() for s in negative_examples]
38 | # Split by words
39 | x_text = positive_examples + negative_examples
40 | x_text = [clean_str(sent) for sent in x_text]
41 | # Generate labels
42 | positive_labels = [[0, 1] for _ in positive_examples]
43 | negative_labels = [[1, 0] for _ in negative_examples]
44 | y = np.concatenate([positive_labels, negative_labels], 0)
45 | return [x_text, y]
46 |
47 |
48 | def batch_iter(data, batch_size, num_epochs, shuffle=True):
49 | """
50 | Generates a batch iterator for a dataset.
51 | """
52 | data = np.array(data)
53 | data_size = len(data)
54 | num_batches_per_epoch = int(len(data)/batch_size) + 1
55 | for epoch in range(num_epochs):
56 | # Shuffle the data at each epoch
57 | if shuffle:
58 | shuffle_indices = np.random.permutation(np.arange(data_size))
59 | shuffled_data = data[shuffle_indices]
60 | else:
61 | shuffled_data = data
62 | for batch_num in range(num_batches_per_epoch):
63 | start_index = batch_num * batch_size
64 | end_index = min((batch_num + 1) * batch_size, data_size)
65 | yield shuffled_data[start_index:end_index]
66 |
--------------------------------------------------------------------------------
/eval.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 |
3 | import tensorflow as tf
4 | import numpy as np
5 | import os
6 | import time
7 | import datetime
8 | import data_helpers
9 | from text_cnn import TextCNN
10 | from tensorflow.contrib import learn
11 |
12 | # Parameters
13 | # ==================================================
14 |
15 | # Eval Parameters
16 | tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
17 | tf.flags.DEFINE_string("checkpoint_dir", "", "Checkpoint directory from training run")
18 | tf.flags.DEFINE_boolean("eval_train", False, "Evaluate on all training data")
19 |
20 | # Misc Parameters
21 | tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
22 | tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
23 |
24 |
25 | FLAGS = tf.flags.FLAGS
26 | FLAGS._parse_flags()
27 | print("\nParameters:")
28 | for attr, value in sorted(FLAGS.__flags.items()):
29 | print("{}={}".format(attr.upper(), value))
30 | print("")
31 |
32 | # CHANGE THIS: Load data. Load your own data here
33 | if FLAGS.eval_train:
34 | x_raw, y_test = data_helpers.load_data_and_labels()
35 | y_test = np.argmax(y_test, axis=1)
36 | else:
37 | x_raw = ["a masterpiece four years in the making", "everything is off."]
38 | y_test = [1, 0]
39 |
40 | # Map data into vocabulary
41 | vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
42 | vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
43 | x_test = np.array(list(vocab_processor.transform(x_raw)))
44 |
45 | print("\nEvaluating...\n")
46 |
47 | # Evaluation
48 | # ==================================================
49 | checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
50 | graph = tf.Graph()
51 | with graph.as_default():
52 | session_conf = tf.ConfigProto(
53 | allow_soft_placement=FLAGS.allow_soft_placement,
54 | log_device_placement=FLAGS.log_device_placement)
55 | sess = tf.Session(config=session_conf)
56 | with sess.as_default():
57 | # Load the saved meta graph and restore variables
58 | saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
59 | saver.restore(sess, checkpoint_file)
60 |
61 | # Get the placeholders from the graph by name
62 | input_x = graph.get_operation_by_name("input_x").outputs[0]
63 | # input_y = graph.get_operation_by_name("input_y").outputs[0]
64 | dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
65 |
66 | # Tensors we want to evaluate
67 | predictions = graph.get_operation_by_name("output/predictions").outputs[0]
68 |
69 | # Generate batches for one epoch
70 | batches = data_helpers.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
71 |
72 | # Collect the predictions here
73 | all_predictions = []
74 |
75 | for x_test_batch in batches:
76 | batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
77 | all_predictions = np.concatenate([all_predictions, batch_predictions])
78 |
79 | # Print accuracy if y_test is defined
80 | if y_test is not None:
81 | correct_predictions = float(sum(all_predictions == y_test))
82 | print("Total number of test examples: {}".format(len(y_test)))
83 | print("Accuracy: {:g}".format(correct_predictions/float(len(y_test))))
84 |
--------------------------------------------------------------------------------
/serve.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 |
3 | import tensorflow as tf
4 | import numpy as np
5 | import os
6 | import data_helpers
7 | from tensorflow.contrib import learn
8 |
9 |
10 | def setup(checkpoint_dir=""):
11 | # Parameters
12 | # ==================================================
13 |
14 | # Data Parameters
15 | tf.flags.DEFINE_string("positive_data_file",
16 | "./data/rt-polaritydata/rt-polarity.pos",
17 | "Data source for the positive data.")
18 | tf.flags.DEFINE_string("negative_data_file",
19 | "./data/rt-polaritydata/rt-polarity.neg",
20 | "Data source for the positive data.")
21 |
22 | # Eval Parameters
23 | tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
24 | tf.flags.DEFINE_string("checkpoint_dir", checkpoint_dir, "Checkpoint directory from training run")
25 | tf.flags.DEFINE_boolean("eval_train", False, "Evaluate on all training data")
26 |
27 | # Misc Parameters
28 | tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
29 | tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
30 |
31 |
32 | def main(input_str):
33 | x_raw = input_str
34 |
35 | FLAGS = tf.flags.FLAGS
36 | FLAGS._parse_flags()
37 | print("\nParameters:")
38 | for attr, value in sorted(FLAGS.__flags.items()):
39 | print("{}={}".format(attr.upper(), value))
40 | print("")
41 |
42 | # Map data into vocabulary
43 | vocab_path = os.path.join(FLAGS.checkpoint_dir, "..", "vocab")
44 | vocab_processor = learn.preprocessing.VocabularyProcessor.restore(vocab_path)
45 | x_test = np.array(list(vocab_processor.transform(x_raw)))
46 |
47 | print("\nEvaluating...\n")
48 |
49 | # Evaluation
50 | # ==================================================
51 | checkpoint_file = tf.train.latest_checkpoint(FLAGS.checkpoint_dir)
52 | graph = tf.Graph()
53 | with graph.as_default():
54 | session_conf = tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement,
55 | log_device_placement=FLAGS.log_device_placement)
56 | sess = tf.Session(config=session_conf)
57 | with sess.as_default():
58 | # Load the saved meta graph and restore variables
59 | saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
60 | saver.restore(sess, checkpoint_file)
61 |
62 | # Get the placeholders from the graph by name
63 | input_x = graph.get_operation_by_name("input_x").outputs[0]
64 | # input_y = graph.get_operation_by_name("input_y").outputs[0]
65 | dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0]
66 |
67 | # Tensors we want to evaluate
68 | predictions = graph.get_operation_by_name("output/predictions").outputs[0]
69 |
70 | # Generate batches for one epoch
71 | batches = data_helpers.batch_iter(list(x_test), FLAGS.batch_size, 1, shuffle=False)
72 |
73 | # Collect the predictions here
74 | all_predictions = []
75 |
76 | for x_test_batch in batches:
77 | batch_predictions = sess.run(predictions, {input_x: x_test_batch, dropout_keep_prob: 1.0})
78 | all_predictions = np.concatenate([all_predictions, batch_predictions])
79 |
80 | # Save the evaluation to a csv
81 | predictions_human_readable = np.column_stack((np.array(x_raw), all_predictions))
82 | return predictions_human_readable
83 |
84 | if __name__ == "__main__":
85 | input_str = ["a masterpiece four years in the making", "everything is off."]
86 | setup()
87 | output = main(input_str)
88 | print(output)
89 |
--------------------------------------------------------------------------------
/text_cnn.py:
--------------------------------------------------------------------------------
1 | import tensorflow as tf
2 | import numpy as np
3 |
4 |
5 | class TextCNN(object):
6 | """
7 | A CNN for text classification.
8 | Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
9 | """
10 | def __init__(
11 | self, sequence_length, num_classes, vocab_size,
12 | embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
13 |
14 | # Placeholders for input, output and dropout
15 | self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
16 | self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
17 | self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")
18 |
19 | # Keeping track of l2 regularization loss (optional)
20 | l2_loss = tf.constant(0.0)
21 |
22 | # Embedding layer
23 | with tf.device('/cpu:0'), tf.name_scope("embedding"):
24 | W = tf.Variable(
25 | tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
26 | name="W")
27 | self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
28 | self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
29 |
30 | # Create a convolution + maxpool layer for each filter size
31 | pooled_outputs = []
32 | for i, filter_size in enumerate(filter_sizes):
33 | with tf.name_scope("conv-maxpool-%s" % filter_size):
34 | # Convolution Layer
35 | filter_shape = [filter_size, embedding_size, 1, num_filters]
36 | W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
37 | b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
38 | conv = tf.nn.conv2d(
39 | self.embedded_chars_expanded,
40 | W,
41 | strides=[1, 1, 1, 1],
42 | padding="VALID",
43 | name="conv")
44 | # Apply nonlinearity
45 | h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
46 | # Maxpooling over the outputs
47 | pooled = tf.nn.max_pool(
48 | h,
49 | ksize=[1, sequence_length - filter_size + 1, 1, 1],
50 | strides=[1, 1, 1, 1],
51 | padding='VALID',
52 | name="pool")
53 | pooled_outputs.append(pooled)
54 |
55 | # Combine all the pooled features
56 | num_filters_total = num_filters * len(filter_sizes)
57 | self.h_pool = tf.concat(3, pooled_outputs)
58 | self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
59 |
60 | # Add dropout
61 | with tf.name_scope("dropout"):
62 | self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
63 |
64 | # Final (unnormalized) scores and predictions
65 | with tf.name_scope("output"):
66 | W = tf.get_variable(
67 | "W",
68 | shape=[num_filters_total, num_classes],
69 | initializer=tf.contrib.layers.xavier_initializer())
70 | b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
71 | l2_loss += tf.nn.l2_loss(W)
72 | l2_loss += tf.nn.l2_loss(b)
73 | self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
74 | self.predictions = tf.argmax(self.scores, 1, name="predictions")
75 |
76 | # CalculateMean cross-entropy loss
77 | with tf.name_scope("loss"):
78 | losses = tf.nn.softmax_cross_entropy_with_logits(self.scores, self.input_y)
79 | self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
80 |
81 | # Accuracy
82 | with tf.name_scope("accuracy"):
83 | correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
84 | self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")
85 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | #! /usr/bin/env python
2 |
3 | import tensorflow as tf
4 | import numpy as np
5 | import os
6 | import time
7 | import datetime
8 | import data_helpers
9 | from text_cnn import TextCNN
10 | from tensorflow.contrib import learn
11 |
12 | # Parameters
13 | # ==================================================
14 |
15 | # Model Hyperparameters
16 | tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
17 | tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
18 | tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
19 | tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
20 | tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
21 |
22 | # Training parameters
23 | tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
24 | tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
25 | tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
26 | tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
27 | # Misc Parameters
28 | tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
29 | tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
30 |
31 | FLAGS = tf.flags.FLAGS
32 | FLAGS._parse_flags()
33 | print("\nParameters:")
34 | for attr, value in sorted(FLAGS.__flags.items()):
35 | print("{}={}".format(attr.upper(), value))
36 | print("")
37 |
38 |
39 | # Data Preparatopn
40 | # ==================================================
41 |
42 | # Load data
43 | print("Loading data...")
44 | x_text, y = data_helpers.load_data_and_labels()
45 |
46 | # Build vocabulary
47 | max_document_length = max([len(x.split(" ")) for x in x_text])
48 | vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
49 | x = np.array(list(vocab_processor.fit_transform(x_text)))
50 |
51 | # Randomly shuffle data
52 | np.random.seed(10)
53 | shuffle_indices = np.random.permutation(np.arange(len(y)))
54 | x_shuffled = x[shuffle_indices]
55 | y_shuffled = y[shuffle_indices]
56 |
57 | # Split train/test set
58 | # TODO: This is very crude, should use cross-validation
59 | x_train, x_dev = x_shuffled[:-1000], x_shuffled[-1000:]
60 | y_train, y_dev = y_shuffled[:-1000], y_shuffled[-1000:]
61 | print("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
62 | print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
63 |
64 |
65 | # Training
66 | # ==================================================
67 |
68 | with tf.Graph().as_default():
69 | session_conf = tf.ConfigProto(
70 | allow_soft_placement=FLAGS.allow_soft_placement,
71 | log_device_placement=FLAGS.log_device_placement)
72 | sess = tf.Session(config=session_conf)
73 | with sess.as_default():
74 | cnn = TextCNN(
75 | sequence_length=x_train.shape[1],
76 | num_classes=y_train.shape[1],
77 | vocab_size=len(vocab_processor.vocabulary_),
78 | embedding_size=FLAGS.embedding_dim,
79 | filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
80 | num_filters=FLAGS.num_filters,
81 | l2_reg_lambda=FLAGS.l2_reg_lambda)
82 |
83 | # Define Training procedure
84 | global_step = tf.Variable(0, name="global_step", trainable=False)
85 | optimizer = tf.train.AdamOptimizer(1e-3)
86 | grads_and_vars = optimizer.compute_gradients(cnn.loss)
87 | train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
88 |
89 | # Keep track of gradient values and sparsity (optional)
90 | grad_summaries = []
91 | for g, v in grads_and_vars:
92 | if g is not None:
93 | grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
94 | sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
95 | grad_summaries.append(grad_hist_summary)
96 | grad_summaries.append(sparsity_summary)
97 | grad_summaries_merged = tf.merge_summary(grad_summaries)
98 |
99 | # Output directory for models and summaries
100 | timestamp = str(int(time.time()))
101 | out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
102 | print("Writing to {}\n".format(out_dir))
103 |
104 | # Summaries for loss and accuracy
105 | loss_summary = tf.scalar_summary("loss", cnn.loss)
106 | acc_summary = tf.scalar_summary("accuracy", cnn.accuracy)
107 |
108 | # Train Summaries
109 | train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
110 | train_summary_dir = os.path.join(out_dir, "summaries", "train")
111 | train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
112 |
113 | # Dev summaries
114 | dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
115 | dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
116 | dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
117 |
118 | # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
119 | checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
120 | checkpoint_prefix = os.path.join(checkpoint_dir, "model")
121 | if not os.path.exists(checkpoint_dir):
122 | os.makedirs(checkpoint_dir)
123 | saver = tf.train.Saver(tf.all_variables())
124 |
125 | # Write vocabulary
126 | vocab_processor.save(os.path.join(out_dir, "vocab"))
127 |
128 | # Initialize all variables
129 | sess.run(tf.initialize_all_variables())
130 |
131 | def train_step(x_batch, y_batch):
132 | """
133 | A single training step
134 | """
135 | feed_dict = {
136 | cnn.input_x: x_batch,
137 | cnn.input_y: y_batch,
138 | cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
139 | }
140 | _, step, summaries, loss, accuracy = sess.run(
141 | [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
142 | feed_dict)
143 | time_str = datetime.datetime.now().isoformat()
144 | print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
145 | train_summary_writer.add_summary(summaries, step)
146 |
147 | def dev_step(x_batch, y_batch, writer=None):
148 | """
149 | Evaluates model on a dev set
150 | """
151 | feed_dict = {
152 | cnn.input_x: x_batch,
153 | cnn.input_y: y_batch,
154 | cnn.dropout_keep_prob: 1.0
155 | }
156 | step, summaries, loss, accuracy = sess.run(
157 | [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
158 | feed_dict)
159 | time_str = datetime.datetime.now().isoformat()
160 | print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
161 | if writer:
162 | writer.add_summary(summaries, step)
163 |
164 | # Generate batches
165 | batches = data_helpers.batch_iter(
166 | list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
167 | # Training loop. For each batch...
168 | for batch in batches:
169 | x_batch, y_batch = zip(*batch)
170 | train_step(x_batch, y_batch)
171 | current_step = tf.train.global_step(sess, global_step)
172 | if current_step % FLAGS.evaluate_every == 0:
173 | print("\nEvaluation:")
174 | dev_step(x_dev, y_dev, writer=dev_summary_writer)
175 | print("")
176 | if current_step % FLAGS.checkpoint_every == 0:
177 | path = saver.save(sess, checkpoint_prefix, global_step=current_step)
178 | print("Saved model checkpoint to {}\n".format(path))
179 |
--------------------------------------------------------------------------------
/cnn-train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import tensorflow as tf
3 | import numpy as np
4 | import os
5 | import time
6 | import datetime
7 | import data_helpers
8 | from text_cnn import TextCNN
9 | from tensorflow.contrib import learn
10 | from sklearn import preprocessing
11 |
12 | class ConsistenLabelBinarizer(preprocessing.LabelBinarizer):
13 | """
14 | Create a more consistent version of sklearn's LabelBinarizer
15 |
16 | LabelBinarizer returns different values for binary and multiclass cases
17 | See http://stackoverflow.com/questions/31947140/sklearn-labelbinarizer-returns-vector-when-there-are-2-classes
18 | Hence, if the labels are in [0,1], the LabelBinarizer will only
19 | return a single element array for transform, e.g. 0 -> [0] or 1-> [1]
20 | However, if the labels are in [0,1,2], it will return a 3-din array
21 | e.g. 0 -> [1 0 0], 2 -> [0 0 1]
22 |
23 | ConsistentLabelBinarizer fixes the behavior of the binary case to match
24 | multi-class
25 | """
26 | def transform(self, y):
27 | Y = super(ConsistenLabelBinarizer, self).transform(y)
28 | if self.y_type_ == 'binary':
29 | return np.hstack((Y, 1-Y))
30 | else:
31 | return Y
32 |
33 | def inverse_transform(self, Y, threshold=None):
34 | if self.y_type_ == 'binary':
35 | return super(ConsistenLabelBinarizer, self).inverse_transform(Y[:, 0], threshold)
36 | else:
37 | return super(ConsistenLabelBinarizer, self).inverse_transform(Y, threshold)
38 |
39 | def load_data(filepath, delimiter, label_classes=None):
40 | """
41 | Load the training/test data from the provided file
42 |
43 | Input schema expected: Label Word_Id_Vector
44 |
45 | - Converts the Label into a one-vs-all numpy array
46 | - Converts the Word_Id_Vector into numpy array
47 | """
48 | labels = []
49 | vectors = []
50 |
51 | print("Reading data from {}".format(filepath))
52 | with open(filepath, 'r') as f_train:
53 | for line in f_train:
54 | cols = line.split(delimiter)
55 |
56 | label_str = cols[0]
57 | labels.append(label_str)
58 |
59 | vector_str = cols[1]
60 | vector = map(int, vector_str.split(" "))
61 | vectors.append(vector)
62 | print("Read {} lines".format(len(labels)))
63 |
64 | # Get the label classes
65 | lb = ConsistenLabelBinarizer()
66 | if label_classes is None:
67 | lb.fit(labels)
68 | label_classes = lb.classes_
69 | else:
70 | lb.fit(label_classes)
71 |
72 | print("Label classes: {}".format(label_classes))
73 |
74 | # Transform the multi-class labels into one-vs-all numpy array
75 | labels = lb.transform(labels)
76 |
77 | # Transform the vectors into numpy arary
78 | vectors = np.asarray(vectors)
79 |
80 | return labels, vectors, label_classes
81 |
82 | def main():
83 | """
84 | Train a sentence classification CNN model
85 | """
86 |
87 | # Parse command line args
88 | # ==================================================
89 | parser = argparse.ArgumentParser(description='Train CNN model for text classification')
90 |
91 | parser.add_argument('-tr', '--train', required=True,
92 | help='Path to training data')
93 | parser.add_argument('-ev', '--eval', required=True,
94 | help='Path to evaluation data')
95 | parser.add_argument('-vs', '--vocab_size', required=True,
96 | help='Path to file containing vocab size')
97 | parser.add_argument('-d', '--delimiter', required=True, default='\t',
98 | help='Column delimiter between row and label')
99 | parser.add_argument('-o', '--output_dir', required=True,
100 | help='Path to output checkpoints dir')
101 | parser.add_argument('-os', '--summary_dir', required=True,
102 | help='Path to output summaries dir')
103 |
104 | args, unknown = parser.parse_known_args()
105 | # Unescape the delimiter
106 | args.delimiter = args.delimiter.decode('string_escape')
107 |
108 | # Convert args to dict
109 | vargs = vars(args)
110 |
111 | print("\nArguments:")
112 | for arg in vargs:
113 | print("{}={}".format(arg, getattr(args, arg)))
114 |
115 | # Parameters
116 | # ==================================================
117 |
118 | # Model Hyperparameters
119 | tf.flags.DEFINE_integer("embedding_dim", 128, "Dimensionality of character embedding (default: 128)")
120 | tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Comma-separated filter sizes (default: '3,4,5')")
121 | tf.flags.DEFINE_integer("num_filters", 128, "Number of filters per filter size (default: 128)")
122 | tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Dropout keep probability (default: 0.5)")
123 | tf.flags.DEFINE_float("l2_reg_lambda", 0.0, "L2 regularizaion lambda (default: 0.0)")
124 |
125 | # Training parameters
126 | tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)")
127 | tf.flags.DEFINE_integer("num_epochs", 200, "Number of training epochs (default: 200)")
128 | tf.flags.DEFINE_integer("evaluate_every", 100, "Evaluate model on dev set after this many steps (default: 100)")
129 | tf.flags.DEFINE_integer("checkpoint_every", 100, "Save model after this many steps (default: 100)")
130 | # Misc Parameters
131 | tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement")
132 | tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices")
133 |
134 | FLAGS = tf.flags.FLAGS
135 | FLAGS._parse_flags()
136 | print("\nParameters:")
137 | for attr, value in sorted(FLAGS.__flags.items()):
138 | print("{}={}".format(attr.upper(), value))
139 | print("")
140 |
141 | # Read and load input data
142 | # ==================================================
143 | print("Processing training data")
144 | y_train, x_train, label_classes = load_data(args.train, args.delimiter, label_classes=None)
145 | print("Processing evaluation data")
146 | y_dev, x_dev, dummy = load_data(args.eval, args.delimiter, label_classes=label_classes)
147 |
148 | # Get the vocab size
149 | with open(args.vocab_size, 'r') as f:
150 | vocab_size = int(f.readline())
151 |
152 | with tf.Graph().as_default():
153 | session_conf = tf.ConfigProto(
154 | allow_soft_placement=FLAGS.allow_soft_placement,
155 | log_device_placement=FLAGS.log_device_placement)
156 | sess = tf.Session(config=session_conf)
157 | with sess.as_default():
158 | cnn = TextCNN(
159 | sequence_length=x_train.shape[1],
160 | num_classes=y_train.shape[1],
161 | vocab_size=vocab_size,
162 | embedding_size=FLAGS.embedding_dim,
163 | filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
164 | num_filters=FLAGS.num_filters,
165 | l2_reg_lambda=FLAGS.l2_reg_lambda)
166 |
167 | # Define Training procedure
168 | global_step = tf.Variable(0, name="global_step", trainable=False)
169 | optimizer = tf.train.AdamOptimizer(1e-3)
170 | grads_and_vars = optimizer.compute_gradients(cnn.loss)
171 | train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
172 |
173 | # Keep track of gradient values and sparsity (optional)
174 | grad_summaries = []
175 | for g, v in grads_and_vars:
176 | if g is not None:
177 | grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
178 | sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
179 | grad_summaries.append(grad_hist_summary)
180 | grad_summaries.append(sparsity_summary)
181 | grad_summaries_merged = tf.merge_summary(grad_summaries)
182 |
183 | # Summaries for loss and accuracy
184 | loss_summary = tf.scalar_summary("loss", cnn.loss)
185 | acc_summary = tf.scalar_summary("accuracy", cnn.accuracy)
186 |
187 | # Train Summaries
188 | train_summary_op = tf.merge_summary([loss_summary, acc_summary, grad_summaries_merged])
189 | train_summary_dir = os.path.join(args.summary_dir, "train")
190 | train_summary_writer = tf.train.SummaryWriter(train_summary_dir, sess.graph)
191 |
192 | # Dev summaries
193 | dev_summary_op = tf.merge_summary([loss_summary, acc_summary])
194 | dev_summary_dir = os.path.join(args.summary_dir, "dev")
195 | dev_summary_writer = tf.train.SummaryWriter(dev_summary_dir, sess.graph)
196 |
197 | # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
198 | checkpoint_dir = args.output_dir
199 | checkpoint_prefix = os.path.join(checkpoint_dir, "model")
200 | if not os.path.exists(checkpoint_dir):
201 | os.makedirs(checkpoint_dir)
202 | saver = tf.train.Saver(tf.all_variables())
203 |
204 | # Initialize all variables
205 | sess.run(tf.initialize_all_variables())
206 |
207 | def train_step(x_batch, y_batch):
208 | """
209 | A single training step
210 | """
211 | feed_dict = {
212 | cnn.input_x: x_batch,
213 | cnn.input_y: y_batch,
214 | cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
215 | }
216 | _, step, summaries, loss, accuracy = sess.run(
217 | [train_op, global_step, train_summary_op, cnn.loss, cnn.accuracy],
218 | feed_dict)
219 | time_str = datetime.datetime.now().isoformat()
220 | print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
221 | train_summary_writer.add_summary(summaries, step)
222 |
223 | def dev_step(x_batch, y_batch, writer=None):
224 | """
225 | Evaluates model on a dev set
226 | """
227 | feed_dict = {
228 | cnn.input_x: x_batch,
229 | cnn.input_y: y_batch,
230 | cnn.dropout_keep_prob: 1.0
231 | }
232 | step, summaries, loss, accuracy = sess.run(
233 | [global_step, dev_summary_op, cnn.loss, cnn.accuracy],
234 | feed_dict)
235 | time_str = datetime.datetime.now().isoformat()
236 | print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
237 | if writer:
238 | writer.add_summary(summaries, step)
239 |
240 | # Generate batches
241 | batches = data_helpers.batch_iter(
242 | list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
243 | # Training loop. For each batch...
244 | for batch in batches:
245 | x_batch, y_batch = zip(*batch)
246 | train_step(x_batch, y_batch)
247 | current_step = tf.train.global_step(sess, global_step)
248 | if current_step % FLAGS.evaluate_every == 0:
249 | print("\nEvaluation:")
250 | dev_step(x_dev, y_dev, writer=dev_summary_writer)
251 | print("")
252 | if current_step % FLAGS.checkpoint_every == 0:
253 | path = saver.save(sess, checkpoint_prefix, global_step=current_step)
254 | print("Saved model checkpoint to {}\n".format(path))
255 |
256 | if __name__ == '__main__':
257 | main()
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright {yyyy} {name of copyright owner}
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------