├── .github
├── dependabot.yml
└── workflows
│ ├── ci.yml
│ ├── deploy-docs.yml
│ └── zizmor.yml
├── .gitignore
├── LICENSE
├── README.md
├── docs
├── developer.md
├── general-usage.md
├── images
│ └── logo.png
├── index.md
└── requirements-docs.txt
├── mkdocs.yml
├── pyproject.toml
├── requirements-dev.txt
├── requirements.txt
├── setup.py
├── technical
├── __init__.py
├── bouncyhouse.py
├── candles.py
├── consensus
│ ├── __init__.py
│ ├── consensus.py
│ ├── movingaverage.py
│ ├── oscillator.py
│ └── summary.py
├── indicator_helpers.py
├── indicators
│ ├── __init__.py
│ ├── cycle_indicators.py
│ ├── indicators.py
│ ├── momentum.py
│ ├── overlap_studies.py
│ ├── price_transform.py
│ ├── volatility.py
│ └── volume_indicators.py
├── pivots_points.py
├── qtpylib.py
├── trendline.py
├── util.py
└── vendor
│ ├── __init__.py
│ └── qtpylib
│ ├── __init__.py
│ └── indicators.py
└── tests
├── __init__.py
├── __snapshots__
└── test_indicators_generic.ambr
├── conftest.py
├── exchange
└── __init__.py
├── image
├── __init__.py
└── test_get_coin_in_image.py
├── test_indicator_helpers.py
├── test_indicators.py
├── test_indicators_generic.py
├── test_util.py
└── testdata
└── UNITTEST_BTC-1m.json
/.github/dependabot.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 | updates:
3 | - package-ecosystem: pip
4 | directory: "/"
5 | schedule:
6 | interval: weekly
7 | open-pull-requests-limit: 10
8 | groups:
9 | types:
10 | patterns:
11 | - "types-*"
12 | pytest:
13 | patterns:
14 | - "pytest*"
15 |
16 | - package-ecosystem: "github-actions"
17 | directory: "/"
18 | schedule:
19 | interval: "weekly"
20 | open-pull-requests-limit: 10
21 |
--------------------------------------------------------------------------------
/.github/workflows/ci.yml:
--------------------------------------------------------------------------------
1 | name: Technical CI
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 | - ci/*
8 | tags:
9 | release:
10 | types: [published]
11 | pull_request:
12 | schedule:
13 | - cron: '0 5 * * 4'
14 |
15 |
16 | concurrency:
17 | group: "${{ github.workflow }}-${{ github.ref }}-${{ github.event_name }}"
18 | cancel-in-progress: true
19 |
20 | permissions:
21 | contents: read
22 |
23 | jobs:
24 | test:
25 |
26 | runs-on: ${{ matrix.os }}
27 | strategy:
28 | matrix:
29 | os: [ "ubuntu-22.04", "ubuntu-24.04", "macos-13", "macos-14", "macos-15" ]
30 | python-version: ["3.10", "3.11", "3.12", "3.13"]
31 | exclude:
32 | - os: macos-13
33 | python-version: "3.13"
34 |
35 | steps:
36 | - uses: actions/checkout@v4
37 | with:
38 | persist-credentials: false
39 |
40 | - name: Set up Python
41 | uses: actions/setup-python@v5.1.1
42 | with:
43 | python-version: ${{ matrix.python-version }}
44 |
45 | - name: Cache_dependencies
46 | uses: actions/cache@v4
47 | id: cache
48 | with:
49 | path: ~/dependencies/
50 | key: ${{ matrix.os }}-dependencies
51 |
52 | - name: pip cache (linux)
53 | uses: actions/cache@v4
54 | if: startsWith(matrix.os, 'ubuntu')
55 | with:
56 | path: ~/.cache/pip
57 | key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
58 |
59 | - name: pip cache (macOS)
60 | uses: actions/cache@v4
61 | if: startsWith(matrix.os, 'macOS')
62 | with:
63 | path: ~/Library/Caches/pip
64 | key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
65 |
66 | - name: TA binary *nix
67 | if: steps.cache.outputs.cache-hit != 'true'
68 | run: |
69 | wget https://github.com/freqtrade/freqtrade/raw/develop/build_helpers/ta-lib-0.4.0-src.tar.gz
70 | tar zxvf ta-lib-0.4.0-src.tar.gz
71 | cd ta-lib
72 | ./configure --prefix ${HOME}/dependencies/
73 | make
74 | which sudo && sudo make install || make bigip_software_install
75 | cd ..
76 | rm -rf ta-lib/
77 |
78 | - name: Installation - *nix
79 | run: |
80 | python -m pip install --upgrade pip
81 | export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
82 | export TA_LIBRARY_PATH=${HOME}/dependencies/lib
83 | export TA_INCLUDE_PATH=${HOME}/dependencies/include
84 | pip install -r requirements-dev.txt
85 | pip install -e .
86 |
87 | - name: Tests
88 | run: |
89 | pytest --random-order --cov=technical --cov-config=.coveragerc
90 |
91 | - name: Run Ruff
92 | run: |
93 | ruff check --output-format=github .
94 |
95 | - name: Run Ruff format check
96 | run: |
97 | ruff format --check
98 |
99 | - name: Run Codespell
100 | run: |
101 | codespell
102 |
103 | - name: Sort imports (isort)
104 | run: |
105 | isort --check .
106 |
107 | - name: Discord notification
108 | uses: rjstone/discord-webhook-notify@1399c1b2d57cc05894d506d2cfdc33c5f012b993 #v1.1.1
109 | if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
110 | with:
111 | severity: error
112 | details: Technical CI failed on ${{ matrix.os }}
113 | webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
114 |
115 |
116 | test_windows:
117 |
118 | runs-on: ${{ matrix.os }}
119 | strategy:
120 | matrix:
121 | os: [ windows-latest ]
122 | python-version: ["3.10", "3.11", "3.12", "3.13"]
123 |
124 | steps:
125 | - uses: actions/checkout@v4
126 | with:
127 | persist-credentials: false
128 |
129 | - name: Set up Python
130 | uses: actions/setup-python@v5.1.1
131 | with:
132 | python-version: ${{ matrix.python-version }}
133 |
134 | - name: Pip cache (Windows)
135 | uses: actions/cache@v4
136 | if: startsWith(runner.os, 'Windows')
137 | with:
138 | path: ~\AppData\Local\pip\Cache
139 | key: ${{ matrix.os }}-${{ matrix.python-version }}-pip
140 |
141 | - uses: actions/checkout@v4
142 | with:
143 | persist-credentials: false
144 | repository: freqtrade/freqtrade
145 | path: './freqtrade_tmp'
146 |
147 | - name: Installation (uses freqtrade dependencies)
148 | run: |
149 | cp -r ./freqtrade_tmp/build_helpers .
150 |
151 | ./build_helpers/install_windows.ps1
152 |
153 | - name: Tests
154 | run: |
155 | pytest --random-order --cov=technical --cov-config=.coveragerc tests
156 |
157 | - name: Run Ruff
158 | run: |
159 | ruff check --output-format=github technical tests
160 |
161 | - name: Discord notification
162 | uses: rjstone/discord-webhook-notify@1399c1b2d57cc05894d506d2cfdc33c5f012b993 #v1.1.1
163 | if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
164 | with:
165 | severity: error
166 | details: Technical CI failed on ${{ matrix.os }}
167 | webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
168 |
169 | # Notify on discord only once - when CI completes (and after deploy) in case it's successfull
170 | notify-complete:
171 | needs: [ test, test_windows ]
172 | runs-on: ubuntu-latest
173 | # Discord notification can't handle schedule events
174 | if: (github.event_name != 'schedule')
175 | steps:
176 | - name: Check user permission
177 | id: check
178 | uses: scherermichael-oss/action-has-permission@136e061bfe093832d87f090dd768e14e27a740d3 # 1.0.6
179 | with:
180 | required-permission: write
181 | env:
182 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
183 |
184 | - name: Discord notification
185 | uses: rjstone/discord-webhook-notify@1399c1b2d57cc05894d506d2cfdc33c5f012b993 #v1.1.1
186 | if: always() && steps.check.outputs.has-permission && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
187 | with:
188 | severity: info
189 | details: Technical CI
190 | webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
191 |
192 | build:
193 | needs: [ test, test_windows ]
194 | runs-on: ubuntu-22.04
195 | steps:
196 | - uses: actions/checkout@v4
197 | with:
198 | persist-credentials: false
199 |
200 | - name: Set up Python
201 | uses: actions/setup-python@v5.1.1
202 | with:
203 | python-version: 3.11
204 |
205 | - name: Extract branch name
206 | id: extract-branch
207 | run: |
208 | echo "GITHUB_REF='${GITHUB_REF}'"
209 | echo "branch=${GITHUB_REF##*/}" >> "$GITHUB_OUTPUT"
210 |
211 | - name: Build distribution
212 | run: |
213 | pip install -U build
214 | python -m build --sdist --wheel
215 |
216 | - name: Upload artifacts 📦
217 | uses: actions/upload-artifact@v4
218 | with:
219 | name: technical
220 | path: |
221 | dist
222 | retention-days: 10
223 |
224 | deploy-test-pypi:
225 | if: (github.event_name == 'release') && github.repository == 'freqtrade/technical'
226 | needs: [ build ]
227 | runs-on: ubuntu-22.04
228 | environment:
229 | name: pypi-test
230 | url: https://test.pypi.org/p/technical
231 | permissions:
232 | id-token: write
233 |
234 | steps:
235 |
236 | - name: Download artifact 📦
237 | uses: actions/download-artifact@v4
238 | with:
239 | name: technical
240 | path: dist
241 | merge-multiple: true
242 |
243 | - name: Publish to PyPI (Test)
244 | uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc # v1.12.4
245 | if: (github.event_name == 'release')
246 | with:
247 | repository-url: https://test.pypi.org/legacy/
248 |
249 | deploy-pypi:
250 | if: (github.event_name == 'release') && github.repository == 'freqtrade/technical'
251 | needs: [ build ]
252 | runs-on: ubuntu-22.04
253 | environment:
254 | name: pypi
255 | url: https://pypi.org/p/technical
256 | permissions:
257 | id-token: write
258 |
259 | steps:
260 |
261 | - name: Download artifact 📦
262 | uses: actions/download-artifact@v4
263 | with:
264 | name: technical
265 | path: dist
266 | merge-multiple: true
267 |
268 | - name: Publish to PyPI
269 | uses: pypa/gh-action-pypi-publish@76f52bc884231f62b9a034ebfe128415bbaabdfc # v1.12.4
270 |
271 | - name: Discord notification
272 | uses: rjstone/discord-webhook-notify@1399c1b2d57cc05894d506d2cfdc33c5f012b993 #v1.1.1
273 | if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
274 | with:
275 | severity: info
276 | details: Technical CI Deploy
277 | webhookUrl: ${{ secrets.DISCORD_WEBHOOK }}
278 |
--------------------------------------------------------------------------------
/.github/workflows/deploy-docs.yml:
--------------------------------------------------------------------------------
1 | name: Build Documentation
2 |
3 | on:
4 | push:
5 | branches:
6 | - main
7 | release:
8 | types: [published]
9 |
10 |
11 | # disable permissions for all of the available permissions
12 | permissions: {}
13 |
14 |
15 | jobs:
16 | build-docs:
17 | permissions:
18 | contents: write # for mike to push
19 | name: Deploy Docs through mike
20 | runs-on: ubuntu-latest
21 | steps:
22 | - uses: actions/checkout@v4
23 | with:
24 | persist-credentials: true
25 |
26 | - name: Set up Python
27 | uses: actions/setup-python@v5
28 | with:
29 | python-version: '3.12'
30 |
31 | - name: Install dependencies
32 | run: |
33 | python -m pip install --upgrade pip
34 | pip install -r docs/requirements-docs.txt
35 |
36 | - name: Fetch gh-pages branch
37 | run: |
38 | git fetch origin gh-pages --depth=1
39 |
40 | - name: Configure Git user
41 | run: |
42 | git config --local user.email "github-actions[bot]@users.noreply.github.com"
43 | git config --local user.name "github-actions[bot]"
44 |
45 | - name: Build and push Mike
46 | if: ${{ github.event_name == 'push' }}
47 | run: |
48 | mike deploy ${REF_NAME} latest --push --update-aliases
49 | env:
50 | REF_NAME: ${{ github.ref_name }}
51 |
52 | - name: Build and push Mike - Release
53 | if: ${{ github.event_name == 'release' }}
54 | run: |
55 | mike deploy ${REF_NAME} stable --push --update-aliases
56 | env:
57 | REF_NAME: ${{ github.ref_name }}
58 |
59 | - name: Show mike versions
60 | run: |
61 | mike list
62 |
63 |
--------------------------------------------------------------------------------
/.github/workflows/zizmor.yml:
--------------------------------------------------------------------------------
1 | name: GitHub Actions Security Analysis with zizmor 🌈
2 |
3 | on:
4 | push:
5 | branches:
6 | - "main"
7 | - "ci/*"
8 | pull_request:
9 | branches:
10 | - main
11 |
12 | jobs:
13 | zizmor:
14 | name: zizmor latest via PyPI
15 | runs-on: ubuntu-latest
16 | permissions:
17 | security-events: write
18 | contents: read # only needed for private repos
19 | actions: read # only needed for private repos
20 | steps:
21 | - name: Checkout repository
22 | uses: actions/checkout@v4
23 | with:
24 | persist-credentials: false
25 |
26 | - name: Install the latest version of uv
27 | uses: astral-sh/setup-uv@f0ec1fc3b38f5e7cd731bb6ce540c5af426746bb # v6.1.0
28 |
29 | - name: Run zizmor 🌈
30 | run: uvx zizmor --format=sarif . > results.sarif
31 | env:
32 | GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
33 |
34 | - name: Upload SARIF file
35 | uses: github/codeql-action/upload-sarif@v3
36 | with:
37 | sarif_file: results.sarif
38 | category: zizmor
39 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 | MANIFEST
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 | .pytest_cache/
49 |
50 | # Translations
51 | *.mo
52 | *.pot
53 |
54 | # Django stuff:
55 | *.log
56 | local_settings.py
57 | db.sqlite3
58 |
59 | # Flask stuff:
60 | instance/
61 | .webassets-cache
62 |
63 | # Scrapy stuff:
64 | .scrapy
65 |
66 | # Sphinx documentation
67 | docs/_build/
68 |
69 | # PyBuilder
70 | target/
71 |
72 | # Jupyter Notebook
73 | .ipynb_checkpoints
74 |
75 | # pyenv
76 | .python-version
77 |
78 | # celery beat schedule file
79 | celerybeat-schedule
80 |
81 | # SageMath parsed files
82 | *.sage.py
83 |
84 | # Environments
85 | .env
86 | .venv
87 | env
88 | env/
89 | venv/
90 | ENV/
91 | env.bak/
92 | venv.bak/
93 |
94 | # Spyder project settings
95 | .spyderproject
96 | .spyproject
97 |
98 | # Rope project settings
99 | .ropeproject
100 |
101 | # mkdocs documentation
102 | /site
103 |
104 | # mypy
105 | .mypy_cache/
106 |
107 | # IDE Specific
108 | .vscode
109 | .idea
110 |
111 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Technical
2 |
3 | 
4 | 
5 | [](https://pypi.org/project/technical/)
6 | [](https://github.com/astral-sh/ruff)
7 |
8 | Technical is a companion project for Freqtrade.
9 | It includes technical indicators, as well as helpful utilities (e.g. timeframe resampling) aimed to assist in strategy development for Freqtrade.
10 |
11 | ## What does it do for you
12 |
13 | Technical provides easy to use indicators, collected from all over github, as well as custom methods.
14 | Over time we plan to provide a simple API wrapper around TA-Lib, PyTi and others, as we find them. So you have one place, to find 100s of indicators.
15 |
16 | ### Custom indicators
17 |
18 | * Consensus - an indicator which is based on a consensus model, across several indicators
19 | you can easily customize these. It is based on the [TradingView](https://www.tradingview.com/symbols/BTCUSD/technicals/)
20 | buy/sell graph. - MovingAverage Consensus - Oscillator Consensus - Summary Consensus
21 | * [vfi](https://www.tradingview.com/script/MhlDpfdS-Volume-Flow-Indicator-LazyBear/) - a modified version of On-Balance Volume (OBV) created by Markos Katsanos that gives better interpretation of current market trend.
22 | * [mmar](https://www.tradingview.com/script/1JKqmEKy-Madrid-Moving-Average-Ribbon/) - an indicator that uses multiple MAs of different length to categorize the market trend into 4 different categories
23 | * [madrid_sqz](https://www.tradingview.com/script/9bUUSzM3-Madrid-Trend-Squeeze/) - an indicator that uses multiple MAs to categorize the market trend into 6 different categories and to spot a squeeze
24 | * [stc](https://www.investopedia.com/articles/forex/10/schaff-trend-cycle-indicator.asp)
25 | * [ichimoku cloud](http://stockcharts.com/school/doku.php?id=chart_school:trading_strategies:ichimoku_cloud)
26 | * [volume weighted moving average](https://trendspider.com/learning-center/what-is-the-volume-weighted-moving-average-vwma/) - a variation of the Simple Moving Average (SMA) that taking into account both price and volume
27 | * [laguerre](https://www.tradingview.com/script/iUl3zTql-Ehlers-Laguerre-Relative-Strength-Index-CC/) - an indicator developed by John Ehlers as a way to minimize both the noise and lag of the regular RSI
28 | * [vpci](https://www.tradingview.com/script/lmTqKOsa-Indicator-Volume-Price-Confirmation-Indicator-VPCI/)
29 | * [trendlines](https://en.wikipedia.org/wiki/Trend_line_(technical_analysis)) - 2 different algorithms to calculate trendlines
30 | * [fibonacci_retracements](https://www.investopedia.com/terms/f/fibonacciretracement.asp) - an indicator showing the fibonacci level which each candle exceeds
31 | * [pivots points](https://www.tradingview.com/support/solutions/43000521824-pivot-points-standard/)
32 | * [TKE Indicator](https://www.tradingview.com/script/Pcbvo0zG/) - Arithmetical mean of 7 oscilators
33 | * [Volume Weighted MACD](https://www.tradingview.com/script/wVe6AfGA) - Volume Weighted MACD indicator
34 | * [RMI](https://www.marketvolume.com/technicalanalysis/relativemomentumindex.asp) - Relative Momentum indicator
35 | * [VIDYA](https://www.tradingview.com/script/64ynXU2e/) - Variable Index Dynamic Average
36 | * [MADR](https://www.tradingview.com/script/25KCgL9H/) - Moving Average Deviation Rate
37 | * [SSL](https://www.tradingview.com/script/xzIoaIJC-SSL-channel/) - SSL Channel
38 | * [PMAX](https://www.tradingview.com/script/sU9molfV/) - PMAX indicator
39 | * [ALMA](https://www.tradingview.com/pine-script-reference/v5/#fun_ta.alma) - Arnaud Legoux Moving Average
40 |
41 | ### Utilities
42 |
43 | * resample - easily resample your dataframe to a larger interval
44 | * merge - merge your resampled dataframe into your original dataframe, so you can build triggers on more than 1 interval!
45 |
46 | ### Wrapped Indicators
47 |
48 | The following indicators are available and have been 'wrapped' to be used on a dataframe with the standard open/close/high/low/volume columns:
49 |
50 | * [chaikin_money_flow](https://www.tradingview.com/wiki/Chaikin_Money_Flow_(CMF)) - Chaikin Money Flow, requires dataframe and period
51 | * [accumulation_distribution](https://www.investopedia.com/terms/a/accumulationdistribution.asp) - requires a dataframe
52 | * osc - requires a dataframe and the periods
53 | * [atr](https://www.investopedia.com/terms/a/atr.asp) - dataframe, period, field
54 | * [atr_percent](https://www.investopedia.com/terms/a/atr.asp) - dataframe, period, field
55 | * [bollinger_bands](https://www.investopedia.com/terms/b/bollingerbands.asp) - dataframe, period, stdv, field, prefix
56 | * [cmo](https://www.investopedia.com/terms/c/chandemomentumoscillator.asp) - dataframe, period, field
57 | * [cci](https://www.investopedia.com/terms/c/commoditychannelindex.asp) - dataframe, period
58 | * [williams percent](https://www.investopedia.com/terms/w/williamsr.asp)
59 | * momentum oscillator
60 | * [hull moving average](https://www.fidelity.com/learning-center/trading-investing/technical-analysis/technical-indicator-guide/hull-moving-average)
61 | * ultimate oscillator
62 | * [sma](https://www.investopedia.com/terms/s/sma.asp)
63 | * [ema](https://www.investopedia.com/terms/e/ema.asp)
64 | * [tema](https://www.investopedia.com/terms/t/triple-exponential-moving-average.asp)
65 |
66 | We will try to add more and more wrappers as we get to it, but please be patient or help out with PR's! It's super easy, but also super boring work.
67 |
68 | ### Usage
69 |
70 | to use the library, please install it with pip
71 |
72 | ```bash
73 | pip install technical
74 | ```
75 |
76 | To get the latest version, install directly from github:
77 |
78 | ```bash
79 | pip install git+https://github.com/freqtrade/technical
80 | ```
81 |
82 | and then import the required packages
83 |
84 | ```python
85 | from technical.indicators import accumulation_distribution, ...
86 | from technical.util import resample_to_interval, resampled_merge
87 |
88 | # Assuming 1h dataframe -resampling to 4h:
89 | dataframe_long = resample_to_interval(dataframe, 240) # 240 = 4 * 60 = 4h
90 |
91 | dataframe_long['rsi'] = ta.RSI(dataframe_long)
92 | # Combine the 2 dataframes
93 | dataframe = resampled_merge(dataframe, dataframe_long, fill_na=True)
94 |
95 | """
96 | The resulting dataframe will have 5 resampled columns in addition to the regular columns,
97 | following the template resample__.
98 | So in the above example:
99 | ['resample_240_open', 'resample_240_high', 'resample_240_low','resample_240_close', 'resample_240_rsi']
100 | """
101 |
102 | ```
103 |
104 | ### Contributions
105 |
106 | We will happily add your custom indicators to this repo!
107 | Just clone this repository and implement your favorite indicator to use with Freqtrade and create a Pull Request.
108 |
109 | Please run both `ruff check .` and `ruff format .` before creating a PR to avoid unnecessary failures in CI.
110 |
111 | Have fun!
112 |
--------------------------------------------------------------------------------
/docs/developer.md:
--------------------------------------------------------------------------------
1 | # Developer documentation
2 |
3 | This page is intended for developers of the `technical` library, people who want to contribute to the `technical` codebase or documentation, or people who want to understand the source code of the application they're running.
4 |
5 | All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/technical/issues) on [GitHub](https://github.com/freqtrade/technical).
6 | For generic questions, please use the [discord server](https://discord.gg/p7nuUNVfP7), where you can ask questions.
7 |
8 | ## Releases
9 |
10 | Bump the `__version__` naming in `technical/__init__.py` and create a new release on github with a matching tag.
11 |
12 | !!! Note
13 | Version numbers must follow allowed versions from PEP0440 to avoid failures pushing to pypi.
14 |
15 | ### Pypi
16 |
17 | Pypi releases happen automatically on a new release through github actions.
18 |
--------------------------------------------------------------------------------
/docs/general-usage.md:
--------------------------------------------------------------------------------
1 | # General Usage
2 |
3 | After installation, technical can be imported and used in your code.
4 |
5 | We recommend to import freqtrade.indicators as ftt to avoid conflicts with other libraries, and to help determining where indicator calculations came from.
6 |
7 | ```python
8 | import technical.indicators as ftt
9 |
10 | # The indicator calculations can now be used as follows:
11 |
12 | dataframe['cmf'] = ftt.chaikin_money_flow(dataframe)
13 | ```
14 |
15 | ## Indicator functions
16 |
17 | All built in indicators are designed to work with a pandas DataFrame as provided by freqtrade, containing the standard columns: open, high, low, close and volume.
18 | This dataframe should be provided as the first argument to the indicator function.
19 | Depending on the indicator, additional parameters may be required.
20 |
21 | ### Return type
22 |
23 | Depending on the indicator, the return type may be a pandas Series, a tuple of pandas Series, or a pandas DataFrame.
24 |
25 | ## Resample to interval
26 |
27 | The helper methods `resample_to_interval` and `resampled_merge` are used to resample a dataframe to a higher timeframe and merge the resampled dataframe back into the original dataframe.
28 | This is an alternative approach to using informative pairs and reduces the amount of data needed from the exchange (you don't need to download 4h candles in the below example).
29 |
30 | ```python
31 | from pandas import DataFrame
32 | from technical.util import resample_to_interval, resampled_merge
33 | import technical.indicators as ftt
34 |
35 | timeframe = '1h'
36 |
37 | def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
38 |
39 | # Resampling to 4h:
40 | dataframe_long = resample_to_interval(dataframe, 240) # 240 = 4 * 60 = 4h
41 |
42 | dataframe_long['cmf'] = ftt.chaikin_money_flow(dataframe_long)
43 | # Combine the 2 dataframes
44 | dataframe = resampled_merge(dataframe, dataframe_long, fill_na=True)
45 |
46 |
47 | # The resulting dataframe will have 5 resampled columns in addition to the regular columns,
48 | # following the template resample__.
49 | # So in the above example, the column names would be:
50 | # ['resample_240_open', 'resample_240_high', 'resample_240_low','resample_240_close', 'resample_240_cmf']
51 |
52 | return dataframe
53 | ```
54 |
--------------------------------------------------------------------------------
/docs/images/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/docs/images/logo.png
--------------------------------------------------------------------------------
/docs/index.md:
--------------------------------------------------------------------------------
1 | # Technical
2 |
3 | 
4 | 
5 | [](https://pypi.org/project/technical/)
6 | [](https://github.com/astral-sh/ruff)
7 |
8 | Technical is a companion project for Freqtrade.
9 | It includes technical indicators, as well as helpful utilities (e.g. timeframe resampling) aimed to assist in strategy development for Freqtrade.
10 |
11 | ## What does it do for you
12 |
13 | Technical provides easy to use indicators, collected from all over github, as well as custom methods.
14 | Over time we plan to provide a simple API wrapper around TA-Lib, PyTi and others, as we find them. So you have one place, to find 100s of indicators.
15 |
16 | ### Custom indicators
17 |
18 | * Consensus - an indicator which is based on a consensus model, across several indicators
19 | you can easily customize these. It is based on the [TradingView](https://www.tradingview.com/symbols/BTCUSD/technicals/)
20 | buy/sell graph. - MovingAverage Consensus - Oscillator Consensus - Summary Consensus
21 | * [vfi](https://www.tradingview.com/script/MhlDpfdS-Volume-Flow-Indicator-LazyBear/) - a modified version of On-Balance Volume (OBV) created by Markos Katsanos that gives better interpretation of current market trend.
22 | * [mmar](https://www.tradingview.com/script/1JKqmEKy-Madrid-Moving-Average-Ribbon/) - an indicator that uses multiple MAs of different length to categorize the market trend into 4 different categories
23 | * [madrid_sqz](https://www.tradingview.com/script/9bUUSzM3-Madrid-Trend-Squeeze/) - an indicator that uses multiple MAs to categorize the market trend into 6 different categories and to spot a squeeze
24 | * [stc](https://www.investopedia.com/articles/forex/10/schaff-trend-cycle-indicator.asp)
25 | * [ichimoku cloud](http://stockcharts.com/school/doku.php?id=chart_school:trading_strategies:ichimoku_cloud)
26 | * [volume weighted moving average](https://trendspider.com/learning-center/what-is-the-volume-weighted-moving-average-vwma/) - a variation of the Simple Moving Average (SMA) that taking into account both price and volume
27 | * [laguerre](https://www.tradingview.com/script/iUl3zTql-Ehlers-Laguerre-Relative-Strength-Index-CC/) - an indicator developed by John Ehlers as a way to minimize both the noise and lag of the regular RSI
28 | * [vpci](https://www.tradingview.com/script/lmTqKOsa-Indicator-Volume-Price-Confirmation-Indicator-VPCI/)
29 | * [trendlines](https://en.wikipedia.org/wiki/Trend_line_(technical_analysis)) - 2 different algorithms to calculate trendlines
30 | * [fibonacci_retracements](https://www.investopedia.com/terms/f/fibonacciretracement.asp) - an indicator showing the fibonacci level which each candle exceeds
31 | * [pivots points](https://www.tradingview.com/support/solutions/43000521824-pivot-points-standard/)
32 | * [TKE Indicator](https://www.tradingview.com/script/Pcbvo0zG/) - Arithmetical mean of 7 oscilators
33 | * [Volume Weighted MACD](https://www.tradingview.com/script/wVe6AfGA) - Volume Weighted MACD indicator
34 | * [RMI](https://www.marketvolume.com/technicalanalysis/relativemomentumindex.asp) - Relative Momentum indicator
35 | * [VIDYA](https://www.tradingview.com/script/64ynXU2e/) - Variable Index Dynamic Average
36 | * [MADR](https://www.tradingview.com/script/25KCgL9H/) - Moving Average Deviation Rate
37 | * [SSL](https://www.tradingview.com/script/xzIoaIJC-SSL-channel/) - SSL Channel
38 | * [PMAX](https://www.tradingview.com/script/sU9molfV/) - PMAX indicator
39 | * [ALMA](https://www.tradingview.com/pine-script-reference/v5/#fun_ta.alma) - Arnaud Legoux Moving Average
40 |
41 | ### Utilities
42 |
43 | * resample - easily resample your dataframe to a larger interval
44 | * merge - merge your resampled dataframe into your original dataframe, so you can build triggers on more than 1 interval!
45 |
46 | ### Wrapped Indicators
47 |
48 | The following indicators are available and have been 'wrapped' to be used on a dataframe with the standard open/close/high/low/volume columns:
49 |
50 | * [chaikin_money_flow](https://www.tradingview.com/wiki/Chaikin_Money_Flow_(CMF)) - Chaikin Money Flow, requires dataframe and period
51 | * [accumulation_distribution](https://www.investopedia.com/terms/a/accumulationdistribution.asp) - requires a dataframe
52 | * osc - requires a dataframe and the periods
53 | * [atr](https://www.investopedia.com/terms/a/atr.asp) - dataframe, period, field
54 | * [atr_percent](https://www.investopedia.com/terms/a/atr.asp) - dataframe, period, field
55 | * [bollinger_bands](https://www.investopedia.com/terms/b/bollingerbands.asp) - dataframe, period, stdv, field, prefix
56 | * [cmo](https://www.investopedia.com/terms/c/chandemomentumoscillator.asp) - dataframe, period, field
57 | * [cci](https://www.investopedia.com/terms/c/commoditychannelindex.asp) - dataframe, period
58 | * williams percent
59 | * momentum oscillator
60 | * hull moving average
61 | * ultimate oscillator
62 | * sma
63 | * ema
64 | * tema
65 |
66 | We will try to add more and more wrappers as we get to it, but please be patient or help out with PR's! It's super easy, but also super boring work.
67 |
68 | ### Usage
69 |
70 | to use the library, please install it with pip
71 |
72 | ```bash
73 | pip install technical
74 | ```
75 |
76 | To get the latest version, install directly from github:
77 |
78 | ```bash
79 | pip install git+https://github.com/freqtrade/technical
80 | ```
81 |
82 | and then import the required packages
83 |
84 | ```python
85 | from technical.indicators import accumulation_distribution, ...
86 | from technical.util import resample_to_interval, resampled_merge
87 |
88 | # Assuming 1h dataframe -resampling to 4h:
89 | dataframe_long = resample_to_interval(dataframe, 240) # 240 = 4 * 60 = 4h
90 |
91 | dataframe_long['rsi'] = ta.RSI(dataframe_long)
92 | # Combine the 2 dataframes
93 | dataframe = resampled_merge(dataframe, dataframe_long, fill_na=True)
94 |
95 | """
96 | The resulting dataframe will have 5 resampled columns in addition to the regular columns,
97 | following the template resample__.
98 | So in the above example:
99 | ['resample_240_open', 'resample_240_high', 'resample_240_low','resample_240_close', 'resample_240_rsi']
100 | """
101 |
102 | ```
103 |
104 | ### Contributions
105 |
106 | We will happily add your custom indicators to this repo!
107 | Just clone this repository and implement your favorite indicator to use with Freqtrade and create a Pull Request.
108 |
109 | Have fun!
110 |
--------------------------------------------------------------------------------
/docs/requirements-docs.txt:
--------------------------------------------------------------------------------
1 | markdown==3.8
2 | mkdocs==1.6.1
3 | mkdocs-material==9.6.14
4 | mdx_truly_sane_lists==1.3
5 | pymdown-extensions==10.15
6 | jinja2==3.1.6
7 | mike==2.1.3
8 |
--------------------------------------------------------------------------------
/mkdocs.yml:
--------------------------------------------------------------------------------
1 | site_name: Technical
2 | site_url: !ENV [READTHEDOCS_CANONICAL_URL, 'https://technical.freqtrade.io/']
3 | site_description: Technical is a companion library for Freqtrade, providing a collection of technical analysis indicators and utilities.
4 | repo_url: https://github.com/freqtrade/technical
5 | edit_uri: edit/main/docs/
6 | use_directory_urls: True
7 | nav:
8 | - Home: index.md
9 | - General usage: general-usage.md
10 | - Contributors Guide: developer.md
11 |
12 | theme:
13 | name: material
14 | logo: "images/logo.png"
15 | favicon: "images/logo.png"
16 | # custom_dir: "docs/overrides"
17 | features:
18 | - content.code.annotate
19 | - search.share
20 | - content.code.copy
21 | - navigation.top
22 | - navigation.footer
23 | palette:
24 | - scheme: default
25 | primary: "blue grey"
26 | accent: "tear"
27 | toggle:
28 | icon: material/toggle-switch-off-outline
29 | name: Switch to dark mode
30 | - scheme: slate
31 | primary: "blue grey"
32 | accent: "tear"
33 | toggle:
34 | icon: material/toggle-switch
35 | name: Switch to light mode
36 | markdown_extensions:
37 | - attr_list
38 | - admonition
39 | - footnotes
40 | - codehilite:
41 | guess_lang: false
42 | - toc:
43 | permalink: true
44 | - pymdownx.arithmatex:
45 | generic: true
46 | - pymdownx.details
47 | - pymdownx.inlinehilite
48 | - pymdownx.magiclink
49 | - pymdownx.pathconverter
50 | - pymdownx.smartsymbols
51 | - pymdownx.snippets:
52 | base_path: docs
53 | check_paths: true
54 | - pymdownx.superfences
55 | - pymdownx.tabbed:
56 | alternate_style: true
57 | - pymdownx.tasklist:
58 | custom_checkbox: true
59 | - pymdownx.tilde
60 | - mdx_truly_sane_lists
61 |
62 | extra:
63 | version:
64 | provider: mike
65 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["setuptools >= 46.4.0", "wheel"]
3 | build-backend = "setuptools.build_meta"
4 |
5 | [project]
6 | name = "technical"
7 | dynamic = ["version"]
8 | authors = [
9 | {name = "Freqtrade Team"},
10 | {name = "Freqtrade Team", email = "freqtrade@protonmail.com"},
11 | ]
12 | description = "Technical Indicators for Financial Analysis"
13 | readme = "README.md"
14 | requires-python = ">=3.10"
15 | license = {text = "GPLv3"}
16 | classifiers = [
17 | "Programming Language :: Python :: 3",
18 | "Programming Language :: Python :: 3.10",
19 | "Programming Language :: Python :: 3.11",
20 | "Programming Language :: Python :: 3.12",
21 | "Programming Language :: Python :: 3.13",
22 | "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
23 | "Topic :: Office/Business :: Financial :: Investment",
24 | "Intended Audience :: Science/Research",
25 | ]
26 |
27 | dependencies = [
28 | "TA-lib",
29 | "pandas",
30 | ]
31 | [project.optional-dependencies]
32 | tests = [
33 | "pytest",
34 | "pytest-cov",
35 | "pytest-mock",
36 | "pytest-random-order"
37 | ]
38 |
39 |
40 | [project.urls]
41 | Homepage = "https://github.com/freqtrade/technical"
42 | "Bug Tracker" = "https://github.com/freqtrade/technical/issues"
43 |
44 | [tool.setuptools]
45 | include-package-data = false
46 | zip-safe = false
47 |
48 | [tool.setuptools.packages.find]
49 | where = [ "." ]
50 | exclude = [
51 | "tests*",
52 | ]
53 |
54 | [tool.setuptools.dynamic]
55 | version = {attr = "technical.__version__"}
56 |
57 | [tool.black]
58 | line-length = 100
59 | exclude = '''
60 | (
61 | /(
62 | \.eggs # exclude a few common directories in the
63 | | \.git # root of the project
64 | | \.hg
65 | | \.mypy_cache
66 | | \.tox
67 | | \.venv
68 | | _build
69 | | buck-out
70 | | build
71 | | dist
72 | )/
73 | # Exclude vendor directory
74 | | vendor
75 | )
76 | '''
77 |
78 | [tool.isort]
79 | line_length = 100
80 |
81 |
82 | [tool.ruff]
83 | line-length = 100
84 |
85 | [tool.ruff.lint]
86 | extend-select = [
87 | "TID", # flake8-tidy-imports
88 | # "EXE", # flake8-executable
89 | "YTT", # flake8-2020
90 | # "DTZ", # flake8-datetimez
91 | # "RSE", # flake8-raise
92 | # "TCH", # flake8-type-checking
93 | # "PTH", # flake8-use-pathlib
94 | "NPY", # numpy
95 | ]
96 |
97 |
98 | [tool.flake8]
99 | max-line-length = 100
100 | extend-ignore = "E203"
101 |
102 |
103 | [tool.codespell]
104 | ignore-words-list = "vave"
105 |
--------------------------------------------------------------------------------
/requirements-dev.txt:
--------------------------------------------------------------------------------
1 | -r requirements.txt
2 |
3 | pytest==8.4.0
4 | pytest-cov==6.1.1
5 | pytest-mock==3.14.1
6 | pytest-random-order==1.1.1
7 | # Pytest snapshots
8 | syrupy==4.9.1
9 |
10 | ruff==0.11.13
11 | isort==6.0.1
12 | codespell==2.4.1
13 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | TA-Lib==0.5.5
2 | pandas==2.3.0
3 | numpy==2.2.6
4 | # matplotlib
5 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup()
4 |
--------------------------------------------------------------------------------
/technical/__init__.py:
--------------------------------------------------------------------------------
1 | __version__ = "1.5.1"
2 |
--------------------------------------------------------------------------------
/technical/bouncyhouse.py:
--------------------------------------------------------------------------------
1 | """
2 | helper file for calculating touches and bounces of or under supports and resistances
3 | """
4 |
5 | import numpy as np
6 | from pandas import DataFrame
7 |
8 |
9 | def _touch(high, low, level, open, close):
10 | """
11 | was the given level touched
12 | :param high:
13 | :param low:
14 | :param level:
15 | :return:
16 | """
17 | if high > level and low < level:
18 | if open >= close:
19 | return -1
20 | else:
21 | return 1
22 | else:
23 | return 0
24 |
25 |
26 | def _bounce(open, close, level, previous_touch):
27 | """
28 | did we bounce above the given level
29 | :param open:
30 | :param close:
31 | :param level:
32 | :param previous_touch
33 | :return:
34 | """
35 |
36 | if previous_touch == 1 and open > level and close > level:
37 | return 1
38 | elif previous_touch == 1 and open < level and close < level:
39 | return -1
40 | else:
41 | return 0
42 |
43 |
44 | def bounce(dataframe: DataFrame, level):
45 | """
46 |
47 | :param dataframe:
48 | :param level:
49 | :return:
50 | 1 if it bounces up
51 | 0 if no bounce
52 | -1 if it bounces below
53 | """
54 |
55 | from scipy.ndimage.interpolation import shift
56 |
57 | open = dataframe["open"]
58 | close = dataframe["close"]
59 | touch = shift(touches(dataframe, level), 1, cval=np.nan)
60 |
61 | return np.vectorize(_bounce)(open, close, level, touch)
62 |
63 |
64 | def touches(dataframe: DataFrame, level):
65 | """
66 | :param dataframe: our incoming dataframe
67 | :param level: where do we want to calculate the touches
68 | returns all the touches of the dataframe on the given level
69 |
70 | :returns
71 | 1 if it touches and closes above
72 | 0 if it doesn't touch
73 | -1 if it touches and closes below
74 | """
75 |
76 | open = dataframe["open"]
77 | close = dataframe["close"]
78 | high = dataframe["high"]
79 | low = dataframe["low"]
80 |
81 | return np.vectorize(_touch)(high, low, level, open, close)
82 |
--------------------------------------------------------------------------------
/technical/candles.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import pandas as pd
3 | from scipy.ndimage import shift
4 |
5 |
6 | def heikinashi(bars):
7 | """
8 | Heikin Ashi calculation: https://school.stockcharts.com/doku.php?id=chart_analysis:heikin_ashi
9 |
10 | ha_open calculation based on: https://stackoverflow.com/a/55110393
11 | ha_open = [ calculate first record ][ append remaining records with list comprehension method ]
12 | list comprehension method is significantly faster as a for loop
13 |
14 | result:
15 | ha_open[0] = (bars.open[0] + bars.close[0]) / 2
16 | ha_open[1] = (ha_open[0] + ha_close[0]) / 2
17 | ...
18 | ha_open[last] = ha_open[len(bars)-1] + ha_close[len(bars)-1]) / 2
19 | """
20 |
21 | bars = bars.copy()
22 |
23 | bars.loc[:, "ha_close"] = bars.loc[:, ["open", "high", "low", "close"]].mean(axis=1)
24 |
25 | ha_open = [(bars.open[0] + bars.close[0]) / 2]
26 | [ha_open.append((ha_open[x] + bars.ha_close[x]) / 2) for x in range(0, len(bars) - 1)]
27 | bars["ha_open"] = ha_open
28 |
29 | bars.loc[:, "ha_high"] = bars.loc[:, ["high", "ha_open", "ha_close"]].max(axis=1)
30 | bars.loc[:, "ha_low"] = bars.loc[:, ["low", "ha_open", "ha_close"]].min(axis=1)
31 |
32 | result = pd.DataFrame(
33 | index=bars.index,
34 | data={
35 | "open": bars["ha_open"],
36 | "high": bars["ha_high"],
37 | "low": bars["ha_low"],
38 | "close": bars["ha_close"],
39 | },
40 | )
41 |
42 | # useful little helpers
43 | result["flat_bottom"] = np.vectorize(_flat_bottom)(
44 | result["close"], result["low"], result["open"], result["high"]
45 | )
46 | result["flat_top"] = np.vectorize(_flat_top)(
47 | result["close"], result["low"], result["open"], result["high"]
48 | )
49 | result["small_body"] = np.vectorize(_small_body)(
50 | result["close"], result["low"], result["open"], result["high"]
51 | )
52 | result["candle"] = np.vectorize(_candle_type)(result["open"], result["close"])
53 | result["reversal"] = np.vectorize(_reversal)(
54 | result["candle"], shift(result["candle"], 1, cval=np.nan)
55 | )
56 |
57 | result["lower_wick"] = np.vectorize(_wick_length)(
58 | result["close"], result["low"], result["open"], result["high"], False
59 | )
60 | result["upper_wick"] = np.vectorize(_wick_length)(
61 | result["close"], result["low"], result["open"], result["high"], True
62 | )
63 | return result
64 |
65 |
66 | def _reversal(current, prior):
67 | """
68 | do we observe a reversal
69 | :param current:
70 | :param prior:
71 | :return:
72 | 1 if red to green
73 | 0 if none
74 | -1 if green to red
75 | """
76 | if current == 1 and prior == -1:
77 | return 1
78 | elif current == -1 and prior == 1:
79 | return -1
80 | else:
81 | return 0
82 |
83 |
84 | def _candle_type(open, close):
85 | """
86 |
87 | :param open:
88 | :param close:
89 | :return: 1 on green, -1 on red
90 | """
91 | if open < close:
92 | return 1
93 | else:
94 | return -1
95 |
96 |
97 | def _wick_length(close, low, open, high, upper):
98 | """
99 | :param close:
100 | :param low:
101 | :param open:
102 | :param high:
103 | :return:
104 |
105 | """
106 |
107 | if close > open:
108 | top_wick = high - close
109 | bottom_wick = open - low
110 |
111 | else:
112 | top_wick = high - open
113 | bottom_wick = close - low
114 |
115 | if upper:
116 | return top_wick
117 | else:
118 | return bottom_wick
119 |
120 |
121 | def _small_body(close, low, open, high):
122 | """
123 | do we have a small body in relation to the wicks
124 | :param close:
125 | :param low:
126 | :param open:
127 | :param high:
128 | :return:
129 | 0 if no
130 | 1 if yes (wicks are longer than body)
131 |
132 | """
133 | size = abs(close - open)
134 |
135 | if close > open:
136 | top_wick = high - close
137 | bottom_wick = open - low
138 |
139 | else:
140 | top_wick = high - open
141 | bottom_wick = close - low
142 |
143 | wick_size = top_wick + bottom_wick
144 |
145 | if wick_size > size:
146 | return 1
147 | else:
148 | return 0
149 |
150 |
151 | def _flat_top(close, low, open, high):
152 | """
153 | do we have a flat top
154 |
155 | :param close:
156 | :param low:
157 | :param open:
158 | :param high:
159 | :return: 1 if flat and green candle
160 | 0 if no flat top
161 | -1 of flat top and red candle
162 |
163 | """
164 | if high == close:
165 | return 1
166 | elif high == open:
167 | return -1
168 | else:
169 | return 0
170 |
171 |
172 | def _flat_bottom(close, low, open, high):
173 | """
174 | do we have a flat bottom
175 | :param close:
176 | :param low:
177 | :param open:
178 | :param high:
179 | :return:
180 | 1 flat and green
181 | -1 flat and red
182 | 0 not flat
183 | """
184 | if open == low:
185 | return 1
186 | elif close == low:
187 | return -1
188 | else:
189 | return 0
190 |
191 |
192 | def _body_size(open, close):
193 | return abs(open - close)
194 |
195 |
196 | def doji(dataframe, exact=False):
197 | """
198 | computes the dojis (near by default) or absolute
199 | :param dataframe:
200 | :param exact:
201 | :return:
202 | """
203 | if exact:
204 | result = dataframe["open"] == dataframe["close"]
205 | else:
206 | result = (dataframe["open"] - dataframe["close"]).abs() <= (
207 | (dataframe["high"] - dataframe["close"]) * 0.1
208 | )
209 |
210 | return result.apply(lambda x: 1 if x else 0)
211 |
--------------------------------------------------------------------------------
/technical/consensus/__init__.py:
--------------------------------------------------------------------------------
1 | from technical.consensus.consensus import Consensus # noqa: F401
2 | from technical.consensus.movingaverage import MovingAverageConsensus # noqa: F401
3 | from technical.consensus.oscillator import OscillatorConsensus # noqa: F401
4 |
--------------------------------------------------------------------------------
/technical/consensus/consensus.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import talib.abstract as ta
3 |
4 | from technical.qtpylib import crossed_above
5 |
6 |
7 | class Consensus:
8 | """
9 | This file provides you with the consensus indicator and all associated helper methods.
10 |
11 | The idea is based on the concept that, if you have one indicator telling you to buy
12 | things are great.
13 | If 100 indicators are telling you to buy at the same time, things are better.
14 |
15 | If we can now have an easily understandable score, things should be perfect.
16 |
17 | Configuration:
18 |
19 | Each of the utility methods utilizes the default parameters as based in the literature.
20 | Assuming that these are the signals, most trades will use.
21 |
22 | Usage:
23 |
24 | 1.
25 |
26 | from technical.consensus import Consensus
27 |
28 | c = Consensus(dataframe)
29 |
30 | 2.
31 |
32 | call the indicators you would like to have evaluated in your consensus model
33 | with optional parameters. Like the impact
34 |
35 | c.evaluate_rsi()
36 |
37 | 3. call the score method. This will basically compute 2 scores for you, which can be easily
38 | plotted
39 |
40 | c.score()
41 |
42 | if you like to apply some smoothing, you can call
43 |
44 | c.score(smooth=3)
45 |
46 | for example.
47 |
48 |
49 | """
50 |
51 | def __init__(self, dataframe: pd.DataFrame):
52 | """
53 | initializes the consensus object.
54 | :param dataframe: dataframe to evaluate
55 | """
56 | self.dataframe = dataframe.copy()
57 | self.buy_weights = 0
58 | self.sell_weights = 0
59 |
60 | def _weights(self, impact_buy, impact_sell):
61 | """
62 | helper method to compute total count of utilized indicators and their weights
63 | :param impact_buy:
64 | :param impact_sell:
65 | :return:
66 | """
67 | self.buy_weights = self.buy_weights + impact_buy
68 | self.sell_weights = self.sell_weights + impact_sell
69 |
70 | def score(self, prefix="consensus", smooth=None):
71 | """
72 | this computes the consensus score, which should always be between 0 and 100
73 | :param prefix:
74 | :param smooth: Allows to specify an integer for a smoothing interval
75 | :return:
76 | """
77 | dataframe = self.dataframe
78 | scores = dataframe.filter(regex="^(buy|sell)_.*").fillna(0)
79 |
80 | # computes a score between 0 and 100. The closer to 100 the more agreement
81 | dataframe.loc[:, f"{prefix}_score_sell"] = (
82 | scores.filter(regex="^(sell)_.*").sum(axis=1) / self.sell_weights * 100
83 | )
84 | dataframe.loc[:, f"{prefix}_score_buy"] = (
85 | scores.filter(regex="^(buy)_.*").sum(axis=1) / self.buy_weights * 100
86 | )
87 |
88 | if smooth is not None:
89 | dataframe[f"{prefix}_score_buy"] = (
90 | dataframe[f"{prefix}_score_buy"].rolling(smooth).mean()
91 | )
92 | dataframe[f"{prefix}_score_sell"] = (
93 | dataframe[f"{prefix}_score_sell"].rolling(smooth).mean()
94 | )
95 |
96 | return {
97 | "sell": dataframe[f"{prefix}_score_sell"],
98 | "buy": dataframe[f"{prefix}_score_buy"],
99 | "buy_agreement": scores.filter(regex="^(buy)_.*").sum(axis=1),
100 | "sell_agreement": scores.filter(regex="^(sell)_.*").sum(axis=1),
101 | "buy_disagreement": scores.filter(regex="^(buy)_.*").count(axis=1)
102 | - scores.filter(regex="^(buy)_.*").sum(axis=1),
103 | "sell_disagreement": scores.filter(regex="^(sell)_.*").count(axis=1)
104 | - scores.filter(regex="^(sell)_.*").sum(axis=1),
105 | }
106 |
107 | def evaluate_rsi(self, period=14, prefix="rsi", impact_buy=1, impact_sell=1):
108 | """
109 | evaluates a s
110 | :param dataframe:
111 | :param period:
112 | :param prefix:
113 | :return:
114 | """
115 | self._weights(impact_buy, impact_sell)
116 |
117 | name = f"{prefix}_{period}"
118 | dataframe = self.dataframe
119 | dataframe[name] = ta.RSI(dataframe, timeperiod=period)
120 |
121 | dataframe.loc[(dataframe[name] < 30), f"buy_{name}"] = 1 * impact_buy
122 |
123 | dataframe.loc[(dataframe[name] > 70), f"sell_{name}"] = 1 * impact_sell
124 |
125 | def evaluate_stoch(self, prefix="stoch", impact_buy=1, impact_sell=1):
126 | """
127 | evaluates the stochastic fast
128 | :param dataframe:
129 | :param prefix:
130 | :return:
131 | """
132 | name = f"{prefix}"
133 | self._weights(impact_buy, impact_sell)
134 | dataframe = self.dataframe
135 | stoch_fast = ta.STOCHF(dataframe, 5, 3, 0, 3, 0)
136 |
137 | dataframe[f"{name}_fastd"] = stoch_fast["fastd"]
138 | dataframe[f"{name}_fastk"] = stoch_fast["fastk"]
139 |
140 | dataframe.loc[(dataframe[f"{name}_fastk"] < 20), f"buy_{name}"] = 1 * impact_buy
141 |
142 | dataframe.loc[(dataframe[f"{name}_fastk"] > 80), f"sell_{name}"] = 1 * impact_sell
143 |
144 | def evaluate_stoch_rsi(
145 | self, period=14, smoothd=3, smoothk=3, prefix="stoch_rsi", impact_buy=1, impact_sell=1
146 | ):
147 | """
148 | evaluates the stochastic rsi fast (TradingView version)
149 | :param dataframe:
150 | :param period:
151 | :param prefix:
152 | :return:
153 | """
154 |
155 | name = f"{prefix}_{period}"
156 | self._weights(impact_buy, impact_sell)
157 | dataframe = self.dataframe
158 |
159 | # We don't use the talib.STOCHRSI library because it seems
160 | # like the results are not identical to Trading View's version
161 | dataframe[f"rsi_{period}"] = ta.RSI(dataframe, timeperiod=period)
162 | stochrsi = (
163 | dataframe[f"rsi_{period}"] - dataframe[f"rsi_{period}"].rolling(period).min()
164 | ) / (
165 | dataframe[f"rsi_{period}"].rolling(period).max()
166 | - dataframe[f"rsi_{period}"].rolling(period).min()
167 | )
168 |
169 | dataframe[f"{name}_fastk"] = stochrsi.rolling(smoothk).mean() * 100
170 | # The fastd below is not used
171 | dataframe[f"{name}_fastd"] = dataframe[f"{name}_fastk"].rolling(smoothd).mean()
172 |
173 | dataframe.loc[(dataframe[f"{name}_fastk"] < 20), f"buy_{name}"] = 1 * impact_buy
174 |
175 | dataframe.loc[(dataframe[f"{name}_fastk"] > 80), f"sell_{name}"] = 1 * impact_sell
176 |
177 | def evaluate_macd_cross_over(self, prefix="macd_crossover", impact_buy=2, impact_sell=2):
178 | """
179 | evaluates the MACD if we should buy or sale based on a crossover
180 | :param dataframe:
181 | :param prefix:
182 | :return:
183 | """
184 |
185 | self._weights(impact_buy, impact_sell)
186 | dataframe = self.dataframe
187 | macd = ta.MACD(dataframe)
188 | dataframe["macd"] = macd["macd"]
189 | dataframe["macdsignal"] = macd["macdsignal"]
190 | dataframe["macdhist"] = macd["macdhist"]
191 |
192 | dataframe.loc[
193 | (crossed_above(dataframe["macdsignal"], dataframe["macd"])), f"sell_{prefix}"
194 | ] = 1 * impact_sell
195 |
196 | dataframe.loc[
197 | (crossed_above(dataframe["macd"], dataframe["macdsignal"])), f"buy_{prefix}"
198 | ] = 1 * impact_buy
199 |
200 | return dataframe
201 |
202 | def evaluate_macd(self, prefix="macd", impact_buy=1, impact_sell=1):
203 | """
204 | evaluates the MACD if we should buy or sale
205 | :param dataframe:
206 | :param prefix:
207 | :return:
208 | """
209 |
210 | self._weights(impact_buy, impact_sell)
211 | dataframe = self.dataframe
212 | macd = ta.MACD(dataframe)
213 | dataframe["macd"] = macd["macd"]
214 | dataframe["macdsignal"] = macd["macdsignal"]
215 | dataframe["macdhist"] = macd["macdhist"]
216 |
217 | # macd < macds & macd < 0 == sell
218 | dataframe.loc[
219 | ((dataframe["macd"] < dataframe["macdsignal"]) & (dataframe["macd"] < 0)),
220 | f"sell_{prefix}",
221 | ] = impact_sell
222 |
223 | # macd > macds & macd > 0 == buy
224 | dataframe.loc[
225 | ((dataframe["macd"] > dataframe["macdsignal"]) & (dataframe["macd"] > 0)),
226 | f"buy_{prefix}",
227 | ] = impact_buy
228 |
229 | return dataframe
230 |
231 | def evaluate_hull(self, period=9, field="close", prefix="hull", impact_buy=1, impact_sell=1):
232 | """
233 | evaluates a hull moving average
234 | :param dataframe:
235 | :param period:
236 | :param prefix:
237 | :return:
238 | """
239 | from technical.indicators import hull_moving_average
240 |
241 | self._weights(impact_buy, impact_sell)
242 | dataframe = self.dataframe
243 | name = f"{prefix}_{field}_{period}"
244 | dataframe[name] = hull_moving_average(dataframe, period, field)
245 |
246 | dataframe.loc[(dataframe[name] > dataframe[field]), f"buy_{name}"] = 1 * impact_buy
247 |
248 | dataframe.loc[(dataframe[name] < dataframe[field]), f"sell_{name}"] = 1 * impact_sell
249 |
250 | def evaluate_vwma(self, period=9, prefix="vwma", impact_buy=1, impact_sell=1):
251 | """
252 | evaluates a volume weighted moving average
253 | :param dataframe:
254 | :param period:
255 | :param prefix:
256 | :return:
257 | """
258 | from technical.indicators import vwma
259 |
260 | self._weights(impact_buy, impact_sell)
261 | dataframe = self.dataframe
262 | name = f"{prefix}_{period}"
263 | dataframe[name] = vwma(dataframe, period)
264 |
265 | dataframe.loc[(dataframe[name] > dataframe["close"]), f"buy_{name}"] = 1 * impact_buy
266 |
267 | dataframe.loc[(dataframe[name] < dataframe["close"]), f"sell_{name}"] = 1 * impact_sell
268 |
269 | def evaluate_tema(self, period, field="close", prefix="tema", impact_buy=1, impact_sell=1):
270 | """
271 | evaluates a tema moving average
272 | :param dataframe:
273 | :param period:
274 | :param prefix:
275 | :return:
276 | """
277 | self._weights(impact_buy, impact_sell)
278 | dataframe = self.dataframe
279 | name = f"{prefix}_{field}_{period}"
280 | dataframe[name] = ta.TEMA(dataframe, timeperiod=period, field=field)
281 |
282 | dataframe.loc[(dataframe[name] < dataframe[field]), f"buy_{name}"] = 1 * impact_buy
283 |
284 | dataframe.loc[(dataframe[name] > dataframe[field]), f"sell_{name}"] = 1 * impact_sell
285 |
286 | def evaluate_ema(self, period, field="close", prefix="ema", impact_buy=1, impact_sell=1):
287 | """
288 | evaluates a sma moving average
289 | :param dataframe:
290 | :param period:
291 | :param prefix:
292 | :return:
293 | """
294 | self._weights(impact_buy, impact_sell)
295 | dataframe = self.dataframe
296 | name = f"{prefix}_{field}_{period}"
297 | dataframe[name] = ta.EMA(dataframe, timeperiod=period, field=field)
298 |
299 | dataframe.loc[(dataframe[name] < dataframe[field]), f"buy_{name}"] = 1 * impact_buy
300 |
301 | dataframe.loc[(dataframe[name] > dataframe[field]), f"sell_{name}"] = 1 * impact_sell
302 |
303 | def evaluate_sma(self, period, field="close", prefix="sma", impact_buy=1, impact_sell=1):
304 | """
305 | evaluates a sma moving average
306 | :param dataframe:
307 | :param period:
308 | :param prefix:
309 | :return:
310 | """
311 | self._weights(impact_buy, impact_sell)
312 | name = f"{prefix}_{field}_{period}"
313 | dataframe = self.dataframe
314 | dataframe[name] = ta.SMA(dataframe, timeperiod=period, field=field)
315 |
316 | dataframe.loc[(dataframe[name] < dataframe[field]), f"buy_{name}"] = 1 * impact_buy
317 |
318 | dataframe.loc[(dataframe[name] > dataframe[field]), f"sell_{name}"] = 1 * impact_sell
319 |
320 | def evaluate_laguerre(self, prefix="lag", impact_buy=1, impact_sell=1):
321 | """
322 | evaluates the laguerre
323 | :param dataframe:
324 | :param period:
325 | :param prefix:
326 | :return:
327 | """
328 | from technical.indicators import laguerre
329 |
330 | self._weights(impact_buy, impact_sell)
331 | dataframe = self.dataframe
332 | name = f"{prefix}"
333 | dataframe[name] = laguerre(dataframe)
334 |
335 | dataframe.loc[(dataframe[name] < 0.1), f"buy_{name}"] = 1 * impact_buy
336 |
337 | dataframe.loc[(dataframe[name] > 0.9), f"sell_{name}"] = 1 * impact_sell
338 |
339 | def evaluate_osc(self, period=12, prefix="osc", impact_buy=1, impact_sell=1):
340 | """
341 | evaluates the osc
342 | :param dataframe:
343 | :param period:
344 | :param prefix:
345 | :return:
346 | """
347 | from technical.indicators import osc
348 |
349 | self._weights(impact_buy, impact_sell)
350 | dataframe = self.dataframe
351 | name = f"{prefix}_{period}"
352 | dataframe[name] = osc(dataframe, period)
353 |
354 | dataframe.loc[(dataframe[name] < 0.3), f"buy_{name}"] = 1 * impact_buy
355 |
356 | dataframe.loc[(dataframe[name] > 0.8), f"sell_{name}"] = 1 * impact_sell
357 |
358 | def evaluate_cmf(self, period=12, prefix="cmf", impact_buy=1, impact_sell=1):
359 | """
360 | evaluates the cmf
361 | :param dataframe:
362 | :param period:
363 | :param prefix:
364 | :return:
365 | """
366 | from technical.indicators import cmf
367 |
368 | self._weights(impact_buy, impact_sell)
369 | dataframe = self.dataframe
370 | name = f"{prefix}_{period}"
371 | dataframe[name] = cmf(dataframe, period)
372 |
373 | dataframe.loc[(dataframe[name] > 0.5), f"buy_{name}"] = 1 * impact_buy
374 |
375 | dataframe.loc[(dataframe[name] < -0.5), f"sell_{name}"] = 1 * impact_sell
376 |
377 | def evaluate_cci(
378 | self, period=20, prefix="cci", impact_buy=1, impact_sell=1, sell_signal=100, buy_signal=-100
379 | ):
380 | """
381 | evaluates the cci
382 | :param dataframe:
383 | :param period:
384 | :param prefix:
385 | :return:
386 | """
387 |
388 | self._weights(impact_buy, impact_sell)
389 | dataframe = self.dataframe
390 | name = f"{prefix}_{period}"
391 | dataframe[name] = ta.CCI(dataframe, timeperiod=period)
392 |
393 | dataframe.loc[(dataframe[name] < buy_signal), f"buy_{name}"] = 1 * impact_buy
394 |
395 | dataframe.loc[(dataframe[name] > sell_signal), f"sell_{name}"] = 1 * impact_sell
396 |
397 | def evaluate_consensus(
398 | self,
399 | consensus,
400 | prefix,
401 | smooth=0,
402 | buy_score=80,
403 | sell_score=80,
404 | impact_buy=1,
405 | impact_sell=1,
406 | average=False,
407 | ):
408 | """
409 | evaluates another consensus indicator
410 | and integrates it into this indicator
411 | :param dataframe:
412 | :param period:
413 | :param prefix:
414 | :param average: should an average based approach be used or the total computed weight
415 | :return:
416 | """
417 |
418 | if average:
419 | self._weights(impact_buy, impact_sell)
420 | else:
421 | self._weights(consensus.buy_weights, consensus.sell_weights)
422 |
423 | dataframe = self.dataframe
424 | name = f"{prefix}_"
425 |
426 | result = {}
427 | if smooth > 0:
428 | result = consensus.score(smooth=smooth)
429 | else:
430 | result = consensus.score()
431 |
432 | dataframe[f"{name}_buy"] = result["buy"]
433 | dataframe[f"{name}_sell"] = result["sell"]
434 |
435 | if average:
436 | dataframe.loc[(dataframe[f"{name}_buy"] > buy_score), f"buy_{name}"] = 1 * impact_buy
437 |
438 | dataframe.loc[(dataframe[f"{name}_sell"] >= sell_score), f"sell_{name}"] = (
439 | 1 * impact_sell
440 | )
441 | else:
442 | dataframe.loc[(dataframe[f"{name}_buy"] > buy_score), f"buy_{name}"] = (
443 | consensus.buy_weights * impact_buy
444 | )
445 |
446 | dataframe.loc[(dataframe[f"{name}_sell"] >= sell_score), f"sell_{name}"] = (
447 | consensus.sell_weights * impact_sell
448 | )
449 |
450 | def evaluate_cmo(self, period=20, prefix="cmo", impact_buy=1, impact_sell=1):
451 | """
452 | evaluates the cmo
453 | :param dataframe:
454 | :param period:
455 | :param prefix:
456 | :return:
457 | """
458 | self._weights(impact_buy, impact_sell)
459 | dataframe = self.dataframe
460 | name = f"{prefix}_{period}"
461 | dataframe[name] = ta.CMO(dataframe, timeperiod=period)
462 |
463 | dataframe.loc[(dataframe[name] < -50), f"buy_{name}"] = 1 * impact_buy
464 |
465 | dataframe.loc[(dataframe[name] > 50), f"sell_{name}"] = 1 * impact_sell
466 |
467 | def evaluate_ichimoku(self, prefix="ichimoku", impact_buy=1, impact_sell=1):
468 | """
469 | evaluates the ichimoku
470 | :param dataframe:
471 | :param period:
472 | :param prefix:
473 | :return:
474 | """
475 | from technical.indicators import ichimoku
476 |
477 | self._weights(impact_buy, impact_sell)
478 | dataframe = self.dataframe
479 | name = f"{prefix}"
480 | ichimoku = ichimoku(dataframe)
481 |
482 | dataframe[f"{name}_tenkan_sen"] = ichimoku["tenkan_sen"]
483 | dataframe[f"{name}_kijun_sen"] = ichimoku["kijun_sen"]
484 | dataframe[f"{name}_senkou_span_a"] = ichimoku["senkou_span_a"]
485 | dataframe[f"{name}_senkou_span_b"] = ichimoku["senkou_span_b"]
486 | dataframe[f"{name}_chikou_span"] = ichimoku["chikou_span"]
487 |
488 | # price is above the cloud
489 | dataframe.loc[
490 | (
491 | (dataframe[f"{name}_senkou_span_a"] > dataframe["open"])
492 | & (dataframe[f"{name}_senkou_span_b"] > dataframe["open"])
493 | ),
494 | f"buy_{name}",
495 | ] = impact_buy
496 |
497 | # price is below the cloud
498 | dataframe.loc[
499 | (
500 | (dataframe[f"{name}_senkou_span_a"] < dataframe["open"])
501 | & (dataframe[f"{name}_senkou_span_b"] < dataframe["open"])
502 | ),
503 | f"sell_{name}",
504 | ] = impact_sell
505 |
506 | def evaluate_ultimate_oscilator(self, prefix="uo", impact_buy=1, impact_sell=1):
507 | """
508 | evaluates the ultimate_oscilator
509 | :param dataframe:
510 | :param period:
511 | :param prefix:
512 | :return:
513 | """
514 | self._weights(impact_buy, impact_sell)
515 | dataframe = self.dataframe
516 | name = f"{prefix}"
517 | dataframe[name] = ta.ULTOSC(dataframe)
518 |
519 | dataframe.loc[(dataframe[name] < 30), f"buy_{name}"] = 1 * impact_buy
520 |
521 | dataframe.loc[(dataframe[name] > 70), f"sell_{name}"] = 1 * impact_sell
522 |
523 | def evaluate_williams(self, prefix="williams", impact_buy=1, impact_sell=1):
524 | """
525 | evaluates the williams
526 | :param dataframe:
527 | :param period:
528 | :param prefix:
529 | :return:
530 | """
531 | from technical.indicators import williams_percent
532 |
533 | self._weights(impact_buy, impact_sell)
534 | dataframe = self.dataframe
535 | name = f"{prefix}"
536 | dataframe[name] = williams_percent(dataframe)
537 |
538 | dataframe.loc[(dataframe[name] < -80), f"buy_{name}"] = 1 * impact_buy
539 |
540 | dataframe.loc[(dataframe[name] > -20), f"sell_{name}"] = 1 * impact_sell
541 |
542 | def evaluate_momentum(self, period=20, prefix="momentum", impact_buy=1, impact_sell=1):
543 | """
544 | evaluates the momentum
545 | :param dataframe:
546 | :param period:
547 | :param prefix:
548 | :return:
549 | """
550 |
551 | self._weights(impact_buy, impact_sell)
552 | dataframe = self.dataframe
553 | name = f"{prefix}_{period}"
554 | dataframe[name] = ta.MOM(dataframe, timeperiod=period)
555 |
556 | dataframe.loc[(dataframe[name] > 100), f"buy_{name}"] = 1 * impact_buy
557 |
558 | dataframe.loc[(dataframe[name] < 100), f"sell_{name}"] = 1 * impact_sell
559 |
560 | def evaluate_adx(
561 | self, period=14, prefix="adx", trend_line=25, use_di=True, impact_buy=1, impact_sell=1
562 | ):
563 | """
564 | evaluates the adx (optionally use plus_di and minus_di to detect buy or sell)
565 | :param dataframe:
566 | :param period:
567 | :param prefix:
568 | :param trend_line: The ADX value at which we consider that a trend is present (Default: 25)
569 | :param use_di: Enable/disable the usage of plus_di and minus_di (Default: Enabled)
570 | :return:
571 | """
572 |
573 | self._weights(impact_buy, impact_sell)
574 | dataframe = self.dataframe
575 | name = f"{prefix}_{period}"
576 | dataframe[name] = ta.ADX(dataframe, timeperiod=period)
577 |
578 | # We can use PLUS_DI and MINUS_DI to be able to detect if we should buy or sell
579 | # See https://www.investopedia.com/articles/trading/07/adx-trend-indicator.asp
580 | if use_di:
581 | dataframe[f"{name}_plus_di"] = ta.PLUS_DI(dataframe, timeperiod=period)
582 | dataframe[f"{name}_minus_di"] = ta.MINUS_DI(dataframe, timeperiod=period)
583 |
584 | dataframe.loc[
585 | (
586 | (dataframe[name] > trend_line)
587 | & (dataframe[f"{name}_plus_di"] > dataframe[f"{name}_minus_di"])
588 | ),
589 | f"buy_{name}",
590 | ] = 1 * impact_buy
591 |
592 | dataframe.loc[
593 | (
594 | (dataframe[name] > trend_line)
595 | & (dataframe[f"{name}_plus_di"] < dataframe[f"{name}_minus_di"])
596 | ),
597 | f"sell_{name}",
598 | ] = 1 * impact_sell
599 | else:
600 | dataframe.loc[(dataframe[name] > trend_line), f"buy_{name}"] = 1 * impact_buy
601 |
602 | dataframe.loc[(dataframe[name] > trend_line), f"sell_{name}"] = 1 * impact_sell
603 |
604 | def evaluate_ao(self, prefix="ao", impact_buy=1, impact_sell=1):
605 | """
606 | evaluates the ao (Awesome Oscillator)
607 | :param dataframe:
608 | :param prefix:
609 | :return:
610 | """
611 | from technical.qtpylib import awesome_oscillator
612 |
613 | self._weights(impact_buy, impact_sell)
614 | dataframe = self.dataframe
615 | name = f"{prefix}"
616 | dataframe[name] = awesome_oscillator(dataframe)
617 |
618 | dataframe.loc[(dataframe[name] > (dataframe[name].shift(1) + 0.05)), f"buy_{name}"] = (
619 | 1 * impact_buy
620 | )
621 |
622 | dataframe.loc[(dataframe[name] < (dataframe[name].shift(1) - 0.05)), f"sell_{name}"] = (
623 | 1 * impact_sell
624 | )
625 |
626 | def evaluate_bbp(self, period=13, prefix="bbp", impact_buy=1, impact_sell=1):
627 | """
628 | evaluates the bbp (Bears Bulls Power)
629 | :param dataframe:
630 | :param period:
631 | :param prefix:
632 | :return:
633 | """
634 |
635 | self._weights(impact_buy, impact_sell)
636 | dataframe = self.dataframe
637 | name = f"{prefix}_{period}"
638 |
639 | # Bears/Bulls Power is using EMA
640 | dataframe[f"{name}_ema"] = ta.EMA(dataframe, timeperiod=period)
641 | dataframe[f"{name}_bulls"] = dataframe["high"] - dataframe[f"{name}_ema"]
642 | dataframe[f"{name}_bears"] = dataframe["low"] - dataframe[f"{name}_ema"]
643 |
644 | dataframe.loc[
645 | (
646 | (dataframe[f"{name}_ema"] > dataframe[f"{name}_ema"].shift(1))
647 | & (dataframe[f"{name}_bulls"] > dataframe[f"{name}_bulls"].shift(1))
648 | ),
649 | f"buy_{name}",
650 | ] = 1 * impact_buy
651 |
652 | dataframe.loc[
653 | (
654 | (dataframe[f"{name}_ema"] < dataframe[f"{name}_ema"].shift(1))
655 | & (dataframe[f"{name}_bears"] > dataframe[f"{name}_bears"].shift(1))
656 | ),
657 | f"sell_{name}",
658 | ] = 1 * impact_sell
659 |
--------------------------------------------------------------------------------
/technical/consensus/movingaverage.py:
--------------------------------------------------------------------------------
1 | from technical.consensus.consensus import Consensus
2 |
3 |
4 | class MovingAverageConsensus(Consensus):
5 | """
6 | This provides the consensus MovingAverage based indicators. It's configuration
7 | is identical with the configuration seen here
8 |
9 | https://www.tradingview.com/symbols/BTCUSD/technicals/
10 | """
11 |
12 | def __init__(self, dataframe):
13 | super().__init__(dataframe)
14 |
15 | self.evaluate_sma(period=10)
16 | self.evaluate_sma(period=20)
17 | self.evaluate_sma(period=30)
18 | self.evaluate_sma(period=50)
19 | self.evaluate_sma(period=100)
20 | self.evaluate_sma(period=200)
21 |
22 | self.evaluate_ema(period=10)
23 | self.evaluate_ema(period=20)
24 | self.evaluate_ema(period=30)
25 | self.evaluate_ema(period=50)
26 | self.evaluate_ema(period=100)
27 | self.evaluate_ema(period=200)
28 | self.evaluate_ichimoku()
29 | self.evaluate_hull()
30 | self.evaluate_vwma(period=20)
31 |
--------------------------------------------------------------------------------
/technical/consensus/oscillator.py:
--------------------------------------------------------------------------------
1 | from technical.consensus.consensus import Consensus
2 |
3 |
4 | class OscillatorConsensus(Consensus):
5 | """
6 | consensus based indicator, based on several oscillators. Rule of thumb for entry should be
7 | that buy is larger than sell line.
8 | """
9 |
10 | def __init__(self, dataframe):
11 | super().__init__(dataframe)
12 | self.evaluate_rsi(period=14)
13 | self.evaluate_stoch()
14 | self.evaluate_cci(period=20)
15 | self.evaluate_adx()
16 | # awesome osc
17 | self.evaluate_macd()
18 | self.evaluate_momentum(period=10)
19 | # stoch rsi
20 | self.evaluate_williams()
21 | # bull bear
22 | self.evaluate_ultimate_oscilator()
23 |
--------------------------------------------------------------------------------
/technical/consensus/summary.py:
--------------------------------------------------------------------------------
1 | from technical.consensus.consensus import Consensus
2 | from technical.consensus.movingaverage import MovingAverageConsensus
3 | from technical.consensus.oscillator import OscillatorConsensus
4 |
5 |
6 | class SummaryConsensus(Consensus):
7 | """
8 | an overall consensus of the trading view based configurations
9 | and it's basically a binary operation (on/off switch), meaning it needs
10 | to be combined with a couple of other indicators to avoid false buys.
11 |
12 | """
13 |
14 | def __init__(self, dataframe):
15 | super().__init__(dataframe)
16 | self.evaluate_consensus(OscillatorConsensus(dataframe), "osc", average=False)
17 | self.evaluate_consensus(
18 | MovingAverageConsensus(dataframe), "moving_average_consensus", average=False
19 | )
20 |
--------------------------------------------------------------------------------
/technical/indicator_helpers.py:
--------------------------------------------------------------------------------
1 | from math import cos, exp, pi, sqrt
2 |
3 | import numpy as np
4 | import talib as ta
5 | from pandas import Series
6 |
7 |
8 | def went_up(series: Series) -> bool:
9 | return series > series.shift(1)
10 |
11 |
12 | def went_down(series: Series) -> bool:
13 | return series < series.shift(1)
14 |
15 |
16 | def ehlers_super_smoother(series: Series, smoothing: float = 6) -> Series:
17 | magic = pi * sqrt(2) / smoothing
18 | a1 = exp(-magic)
19 | coeff2 = 2 * a1 * cos(magic)
20 | coeff3 = -a1 * a1
21 | coeff1 = (1 - coeff2 - coeff3) / 2
22 |
23 | filtered = series.copy()
24 |
25 | for i in range(2, len(series)):
26 | filtered.iloc[i] = (
27 | coeff1 * (series.iloc[i] + series.iloc[i - 1])
28 | + coeff2 * filtered.iloc[i - 1]
29 | + coeff3 * filtered.iloc[i - 2]
30 | )
31 |
32 | return filtered
33 |
34 |
35 | def fishers_inverse(series: Series, smoothing: float = 0) -> np.ndarray:
36 | """
37 | Does a smoothed fishers inverse transformation.
38 | Can be used with any oscillator that goes from 0 to 100 like RSI or MFI
39 | """
40 | v1 = 0.1 * (series - 50)
41 | if smoothing > 0:
42 | v2 = ta.WMA(v1.values, timeperiod=smoothing)
43 | else:
44 | v2 = v1
45 | return (np.exp(2 * v2) - 1) / (np.exp(2 * v2) + 1)
46 |
--------------------------------------------------------------------------------
/technical/indicators/__init__.py:
--------------------------------------------------------------------------------
1 | # flake8: noqa: F401 F403
2 | from .cycle_indicators import *
3 | from .indicators import *
4 | from .momentum import *
5 | from .overlap_studies import *
6 | from .price_transform import *
7 | from .volatility import *
8 | from .volume_indicators import *
9 |
--------------------------------------------------------------------------------
/technical/indicators/cycle_indicators.py:
--------------------------------------------------------------------------------
1 | """
2 | Cycle indicators
3 | """
4 |
5 | ########################################
6 | #
7 | # Cycle Indicator Functions
8 | #
9 |
10 | # HT_DCPERIOD Hilbert Transform - Dominant Cycle Period
11 | # HT_DCPHASE Hilbert Transform - Dominant Cycle Phase
12 | # HT_PHASOR Hilbert Transform - Phasor Components
13 | # HT_SINE Hilbert Transform - SineWave
14 | # HT_TRENDMODE Hilbert Transform - Trend vs Cycle Mode
15 |
--------------------------------------------------------------------------------
/technical/indicators/indicators.py:
--------------------------------------------------------------------------------
1 | """
2 | This file contains a collection of common indicators,
3 | which are based on third party or custom libraries
4 | """
5 |
6 | import math
7 |
8 | import numpy as np
9 | from numpy import ndarray
10 | from pandas import DataFrame, Series
11 |
12 | from .overlap_studies import sma, vwma
13 |
14 | ########################################
15 | #
16 | # Pattern Recognition Functions
17 | # Statistic Functions
18 | # Math Transform Functions
19 | # Math Operator Functions
20 | #
21 |
22 |
23 | ########################################
24 | #
25 | # Ichimoku Cloud
26 | #
27 | def ichimoku(
28 | dataframe, conversion_line_period=9, base_line_periods=26, laggin_span=52, displacement=26
29 | ):
30 | """
31 | Ichimoku cloud indicator
32 | Note: Do not use chikou_span for backtesting.
33 | It looks into the future, is not printed by most charting platforms.
34 | It is only useful for visual analysis
35 |
36 | Usage:
37 | ichi = ichimoku(dataframe)
38 | dataframe['tenkan_sen'] = ichi['tenkan_sen']
39 | dataframe['kijun_sen'] = ichi['kijun_sen']
40 | dataframe['senkou_span_a'] = ichi['senkou_span_a']
41 | dataframe['senkou_span_b'] = ichi['senkou_span_b']
42 | dataframe['cloud_green'] = ichi['cloud_green']
43 | dataframe['cloud_red'] = ichi['cloud_red']
44 |
45 | :param dataframe: Dataframe containing OHLCV data
46 | :param conversion_line_period: Conversion line Period (defaults to 9)
47 | :param base_line_periods: Base line Periods (defaults to 26)
48 | :param laggin_span: Lagging span period
49 | :param displacement: Displacement (shift) - defaults to 26
50 | :return: Dict containing the following keys:
51 | tenkan_sen, kijun_sen, senkou_span_a, senkou_span_b, leading_senkou_span_a,
52 | leading_senkou_span_b, chikou_span, cloud_green, cloud_red
53 | """
54 |
55 | tenkan_sen = (
56 | dataframe["high"].rolling(window=conversion_line_period).max()
57 | + dataframe["low"].rolling(window=conversion_line_period).min()
58 | ) / 2
59 |
60 | kijun_sen = (
61 | dataframe["high"].rolling(window=base_line_periods).max()
62 | + dataframe["low"].rolling(window=base_line_periods).min()
63 | ) / 2
64 |
65 | leading_senkou_span_a = (tenkan_sen + kijun_sen) / 2
66 |
67 | leading_senkou_span_b = (
68 | dataframe["high"].rolling(window=laggin_span).max()
69 | + dataframe["low"].rolling(window=laggin_span).min()
70 | ) / 2
71 |
72 | senkou_span_a = leading_senkou_span_a.shift(displacement - 1)
73 |
74 | senkou_span_b = leading_senkou_span_b.shift(displacement - 1)
75 |
76 | chikou_span = dataframe["close"].shift(-displacement + 1)
77 |
78 | cloud_green = senkou_span_a > senkou_span_b
79 | cloud_red = senkou_span_b > senkou_span_a
80 |
81 | return {
82 | "tenkan_sen": tenkan_sen,
83 | "kijun_sen": kijun_sen,
84 | "senkou_span_a": senkou_span_a,
85 | "senkou_span_b": senkou_span_b,
86 | "leading_senkou_span_a": leading_senkou_span_a,
87 | "leading_senkou_span_b": leading_senkou_span_b,
88 | "chikou_span": chikou_span,
89 | "cloud_green": cloud_green,
90 | "cloud_red": cloud_red,
91 | }
92 |
93 |
94 | ########################################
95 | #
96 | # Laguerre RSI
97 | #
98 | def laguerre(dataframe, gamma=0.75, smooth=1, debug=False) -> Series:
99 | """
100 | laguerre RSI
101 | Author Creslin
102 | Original Author: John Ehlers 1979
103 |
104 | :param dataframe: df
105 | :param gamma: Between 0 and 1, default 0.75
106 | :param smooth: 1 is off. Valid values over 1 are alook back smooth for an ema
107 | :param debug: Bool, prints to console
108 | :return: Laguerre RSI:values 0 to +1
109 | """
110 | """
111 | Laguerra RSI
112 | How to trade lrsi: (TL, DR) buy on the flat 0, sell on the drop from top,
113 | not when touch the top
114 | http://systemtradersuccess.com/testing-laguerre-rsi/
115 |
116 | http://www.davenewberg.com/Trading/TS_Code/Ehlers_Indicators/Laguerre_RSI.html
117 | """
118 |
119 | df = dataframe
120 | g = gamma
121 | smooth = smooth
122 | debug = debug
123 | if debug:
124 | from pandas import set_option
125 |
126 | set_option("display.max_rows", 2000)
127 | set_option("display.max_columns", 8)
128 |
129 | """
130 | Vectorised pandas or numpy calculations are not used
131 | in Laguerre as L0 is self referencing.
132 | Therefore we use an intertuples loop as next best option.
133 | """
134 | lrsi_l = []
135 | L0, L1, L2, L3 = 0.0, 0.0, 0.0, 0.0
136 | for row in df.itertuples(index=True, name="lrsi"):
137 | """
138 | Original Pine Logic Block1
139 | p = close
140 | L0 = ((1 - g)*p)+(g*nz(L0[1]))
141 | L1 = (-g*L0)+nz(L0[1])+(g*nz(L1[1]))
142 | L2 = (-g*L1)+nz(L1[1])+(g*nz(L2[1]))
143 | L3 = (-g*L2)+nz(L2[1])+(g*nz(L3[1]))
144 | """
145 | # Feed back loop
146 | L0_1, L1_1, L2_1, L3_1 = L0, L1, L2, L3
147 |
148 | L0 = (1 - g) * row.close + g * L0_1
149 | L1 = -g * L0 + L0_1 + g * L1_1
150 | L2 = -g * L1 + L1_1 + g * L2_1
151 | L3 = -g * L2 + L2_1 + g * L3_1
152 |
153 | """ Original Pinescript Block 2
154 | cu=(L0 > L1? L0 - L1: 0) + (L1 > L2? L1 - L2: 0) + (L2 > L3? L2 - L3: 0)
155 | cd=(L0 < L1? L1 - L0: 0) + (L1 < L2? L2 - L1: 0) + (L2 < L3? L3 - L2: 0)
156 | """
157 | cu = 0.0
158 | cd = 0.0
159 | if L0 >= L1:
160 | cu = L0 - L1
161 | else:
162 | cd = L1 - L0
163 |
164 | if L1 >= L2:
165 | cu = cu + L1 - L2
166 | else:
167 | cd = cd + L2 - L1
168 |
169 | if L2 >= L3:
170 | cu = cu + L2 - L3
171 | else:
172 | cd = cd + L3 - L2
173 |
174 | """Original Pinescript Block 3
175 | lrsi=ema((cu+cd==0? -1: cu+cd)==-1? 0: (cu/(cu+cd==0? -1: cu+cd)), smooth)
176 | """
177 | if (cu + cd) != 0:
178 | lrsi_l.append(cu / (cu + cd))
179 | else:
180 | lrsi_l.append(0)
181 |
182 | return Series(lrsi_l)
183 |
184 |
185 | ########################################
186 | #
187 | # Madrid Functions
188 | #
189 | def mmar(dataframe, matype="EMA", src="close", debug=False): # noqa: C901
190 | """
191 | Madrid Moving Average Ribbon
192 |
193 | Returns: MMAR
194 | """
195 | """
196 | Author(Freqtrade): Creslinux
197 | Original Author(TrdingView): "Madrid"
198 |
199 | Pinescript from TV Source Code and Description
200 | //
201 | // Madrid : 17/OCT/2014 22:51M: Moving Average Ribbon : 2.0 : MMAR
202 | // http://madridjourneyonws.blogspot.com/
203 | //
204 | // This plots a moving average ribbon, either exponential or standard.
205 | // This study is best viewed with a dark background. It provides an easy
206 | // and fast way to determine the trend direction and possible reversals.
207 | //
208 | // Lime : Uptrend. Long trading
209 | // Green : Reentry (buy the dip) or downtrend reversal warning
210 | // Red : Downtrend. Short trading
211 | // Maroon : Short Reentry (sell the peak) or uptrend reversal warning
212 | //
213 | // To best determine if this is a reentry point or a trend reversal
214 | // the MMARB (Madrid Moving Average Ribbon Bar) study is used.
215 | // This is the bar located at the bottom. This bar signals when a
216 | // current trend reentry is found (partially filled with opposite dark color)
217 | // or when a trend reversal is ahead (completely filled with opposite dark color).
218 | //
219 |
220 | study(title="Madrid Moving Average Ribbon", shorttitle="MMAR", overlay=true)
221 | exponential = input(true, title="Exponential MA")
222 |
223 | src = close
224 |
225 | ma05 = exponential ? ema(src, 05) : sma(src, 05)
226 | ma10 = exponential ? ema(src, 10) : sma(src, 10)
227 | ma15 = exponential ? ema(src, 15) : sma(src, 15)
228 | ma20 = exponential ? ema(src, 20) : sma(src, 20)
229 | ma25 = exponential ? ema(src, 25) : sma(src, 25)
230 | ma30 = exponential ? ema(src, 30) : sma(src, 30)
231 | ma35 = exponential ? ema(src, 35) : sma(src, 35)
232 | ma40 = exponential ? ema(src, 40) : sma(src, 40)
233 | ma45 = exponential ? ema(src, 45) : sma(src, 45)
234 | ma50 = exponential ? ema(src, 50) : sma(src, 50)
235 | ma55 = exponential ? ema(src, 55) : sma(src, 55)
236 | ma60 = exponential ? ema(src, 60) : sma(src, 60)
237 | ma65 = exponential ? ema(src, 65) : sma(src, 65)
238 | ma70 = exponential ? ema(src, 70) : sma(src, 70)
239 | ma75 = exponential ? ema(src, 75) : sma(src, 75)
240 | ma80 = exponential ? ema(src, 80) : sma(src, 80)
241 | ma85 = exponential ? ema(src, 85) : sma(src, 85)
242 | ma90 = exponential ? ema(src, 90) : sma(src, 90)
243 | ma100 = exponential ? ema(src, 100) : sma(src, 100)
244 |
245 | leadMAColor = change(ma05)>=0 and ma05>ma100 ? lime
246 | : change(ma05)<0 and ma05>ma100 ? maroon
247 | : change(ma05)<=0 and ma05=0 and ma05
251 | change(ma)>=0 and ma05>maRef ? lime
252 | : change(ma)<0 and ma05>maRef ? maroon
253 | : change(ma)<=0 and ma05=0 and ma05=0 and ma05>ma100 ? lime +2
318 | : change(ma05)<0 and ma05>ma100 ? maroon -1
319 | : change(ma05)<=0 and ma05=0 and ma05= 0 and (x["ma05"] > x["ma100"]):
326 | # Lime: Uptrend.Long trading
327 | x["leadMA"] = "lime"
328 | return x["leadMA"]
329 | elif (x["ma05"] - x["ma05l"]) < 0 and (x["ma05"] > x["ma100"]):
330 | # Maroon : Short Reentry (sell the peak) or uptrend reversal warning
331 | x["leadMA"] = "maroon"
332 | return x["leadMA"]
333 | elif (x["ma05"] - x["ma05l"]) <= 0 and (x["ma05"] < x["ma100"]):
334 | # Red : Downtrend. Short trading
335 | x["leadMA"] = "red"
336 | return x["leadMA"]
337 | elif (x["ma05"] - x["ma05l"]) >= 0 and (x["ma05"] < x["ma100"]):
338 | # Green: Reentry(buy the dip) or downtrend reversal warning
339 | x["leadMA"] = "green"
340 | return x["leadMA"]
341 | else:
342 | # If its great it means not enough ticker data for lookback
343 | x["leadMA"] = "grey"
344 | return x["leadMA"]
345 |
346 | df["leadMA"] = df.apply(leadMAc, axis=1)
347 |
348 | """ Logic for MAs
349 | : change(ma)>=0 and ma>ma100 ? lime
350 | : change(ma)<0 and ma>ma100 ? maroon
351 | : change(ma)<=0 and ma=0 and ma= 0 and (x[ma] > x["ma100"]):
361 | # Lime: Uptrend.Long trading
362 | x[col_label] = "lime"
363 | return x[col_label]
364 | elif (x[ma] - x[col_label_1]) < 0 and (x[ma] > x["ma100"]):
365 | # Maroon : Short Reentry (sell the peak) or uptrend reversal warning
366 | x[col_label] = "maroon"
367 | return x[col_label]
368 |
369 | elif (x[ma] - x[col_label_1]) <= 0 and (x[ma] < x["ma100"]):
370 | # Red : Downtrend. Short trading
371 | x[col_label] = "red"
372 | return x[col_label]
373 |
374 | elif (x[ma] - x[col_label_1]) >= 0 and (x[ma] < x["ma100"]):
375 | # Green: Reentry(buy the dip) or downtrend reversal warning
376 | x[col_label] = "green"
377 | return x[col_label]
378 | else:
379 | # If its great it means not enough ticker data for lookback
380 | x[col_label] = "grey"
381 | return x[col_label]
382 |
383 | df["ma10_c"] = df.apply(maColor, ma="ma10", axis=1)
384 | df["ma20_c"] = df.apply(maColor, ma="ma20", axis=1)
385 | df["ma30_c"] = df.apply(maColor, ma="ma30", axis=1)
386 | df["ma40_c"] = df.apply(maColor, ma="ma40", axis=1)
387 | df["ma50_c"] = df.apply(maColor, ma="ma50", axis=1)
388 | df["ma60_c"] = df.apply(maColor, ma="ma60", axis=1)
389 | df["ma70_c"] = df.apply(maColor, ma="ma70", axis=1)
390 | df["ma80_c"] = df.apply(maColor, ma="ma80", axis=1)
391 | df["ma90_c"] = df.apply(maColor, ma="ma90", axis=1)
392 |
393 | if debug:
394 | from pandas import set_option
395 |
396 | set_option("display.max_rows", 10)
397 | print(
398 | df[
399 | [
400 | "date",
401 | "ma05",
402 | "ma05l",
403 | "leadMA",
404 | "ma10",
405 | "ma10l",
406 | "ma10_c",
407 | # "ma20", "ma20l", "ma20_c",
408 | # "ma30", "ma30l", "ma30_c",
409 | # "ma40", "ma40l", "ma40_c",
410 | # "ma50", "ma50l", "ma50_c",
411 | # "ma60", "ma60l", "ma60_c",
412 | # "ma70", "ma70l", "ma70_c",
413 | # "ma80", "ma80l", "ma80_c",
414 | "ma90",
415 | "ma90l",
416 | "ma90_c",
417 | "ma100",
418 | ]
419 | ].tail(200)
420 | )
421 |
422 | print(
423 | df[
424 | [
425 | "date",
426 | "close",
427 | "leadMA",
428 | "ma10_c",
429 | "ma20_c",
430 | "ma30_c",
431 | "ma40_c",
432 | "ma50_c",
433 | "ma60_c",
434 | "ma70_c",
435 | "ma80_c",
436 | "ma90_c",
437 | ]
438 | ].tail(684)
439 | )
440 |
441 | return (
442 | df["leadMA"],
443 | df["ma10_c"],
444 | df["ma20_c"],
445 | df["ma30_c"],
446 | df["ma40_c"],
447 | df["ma50_c"],
448 | df["ma60_c"],
449 | df["ma70_c"],
450 | df["ma80_c"],
451 | df["ma90_c"],
452 | )
453 |
454 |
455 | def madrid_sqz(datafame, length=34, src="close", ref=13, sqzLen=5):
456 | """
457 | Squeeze Madrid Indicator
458 |
459 | Author: Creslinux
460 | Original Author: Madrid - Tradingview
461 | https://www.tradingview.com/script/9bUUSzM3-Madrid-Trend-Squeeze/
462 |
463 | :param datafame:
464 | :param length: min 14 - default 34
465 | :param src: default close
466 | :param ref: default 13
467 | :param sqzLen: default 5
468 | :return: df['sqz_cma_c'], df['sqz_rma_c'], df['sqz_sma_c']
469 |
470 |
471 | There are seven colors used for the study
472 |
473 | Green : Uptrend in general
474 | Lime : Spots the current uptrend leg
475 | Aqua : The maximum profitability of the leg in a long trade
476 | The Squeeze happens when Green+Lime+Aqua are aligned (the larger the values the better)
477 |
478 | Maroon : Downtrend in general
479 | Red : Spots the current downtrend leg
480 | Fuchsia: The maximum profitability of the leg in a short trade
481 | The Squeeze happens when Maroon+Red+Fuchsia are aligned (the larger the values the better)
482 |
483 | Yellow : The trend has come to a pause and it is either a reversal warning or a continuation.
484 | These are the entry, re-entry or closing position points.
485 | """
486 |
487 | """
488 | Original Pinescript source code
489 |
490 | ma = ema(src, len)
491 | closema = close - ma
492 | refma = ema(src, ref) - ma
493 | sqzma = ema(src, sqzLen) - ma
494 |
495 | hline(0)
496 | plotcandle(0, closema, 0, closema, color=closema >= 0?aqua: fuchsia)
497 | plotcandle(0, sqzma, 0, sqzma, color=sqzma >= 0?lime: red)
498 | plotcandle(0, refma, 0, refma, color=(refma >= 0 and closema < refma) or (
499 | refma < 0 and closema > refma) ? yellow: refma >= 0 ? green: maroon)
500 | """
501 | import talib as ta
502 |
503 | len = length
504 | src = src
505 | ref = ref
506 | sqzLen = sqzLen
507 | df = datafame
508 | ema = ta.EMA
509 |
510 | """ Original code logic
511 | ma = ema(src, len)
512 | closema = close - ma
513 | refma = ema(src, ref) - ma
514 | sqzma = ema(src, sqzLen) - ma
515 | """
516 | df["sqz_ma"] = ema(df[src], len)
517 | df["sqz_cma"] = df["close"] - df["sqz_ma"]
518 | df["sqz_rma"] = ema(df[src], ref) - df["sqz_ma"]
519 | df["sqz_sma"] = ema(df[src], sqzLen) - df["sqz_ma"]
520 |
521 | """ Original code logic
522 | plotcandle(0, closema, 0, closema, color=closema >= 0?aqua: fuchsia)
523 | plotcandle(0, sqzma, 0, sqzma, color=sqzma >= 0?lime: red)
524 |
525 | plotcandle(0, refma, 0, refma, color=
526 | (refma >= 0 and closema < refma) or (refma < 0 and closema > refma) ? yellow:
527 | refma >= 0 ? green: maroon)
528 | """
529 |
530 | # print(df[['sqz_cma', 'sqz_rma', 'sqz_sma']])
531 |
532 | def sqz_cma_c(x):
533 | if x["sqz_cma"] >= 0:
534 | x["sqz_cma_c"] = "aqua"
535 | return x["sqz_cma_c"]
536 | else:
537 | x["sqz_cma_c"] = "fuchsia"
538 | return x["sqz_cma_c"]
539 |
540 | df["sqz_cma_c"] = df.apply(sqz_cma_c, axis=1)
541 |
542 | def sqz_sma_c(x):
543 | if x["sqz_sma"] >= 0:
544 | x["sqz_sma_c"] = "lime"
545 | return x["sqz_sma_c"]
546 | else:
547 | x["sqz_sma_c"] = "red"
548 | return x["sqz_sma_c"]
549 |
550 | df["sqz_sma_c"] = df.apply(sqz_sma_c, axis=1)
551 |
552 | def sqz_rma_c(x):
553 | if x["sqz_rma"] >= 0 and x["sqz_cma"] < x["sqz_rma"]:
554 | x["sqz_rma_c"] = "yellow"
555 | return x["sqz_rma_c"]
556 | elif x["sqz_rma"] < 0 and x["sqz_cma"] > x["sqz_rma"]:
557 | x["sqz_rma_c"] = "yellow"
558 | return x["sqz_rma_c"]
559 | elif x["sqz_rma"] >= 0:
560 | x["sqz_rma_c"] = "green"
561 | return x["sqz_rma_c"]
562 | else:
563 | x["sqz_rma_c"] = "maroon"
564 | return x["sqz_rma_c"]
565 |
566 | df["sqz_rma_c"] = df.apply(sqz_rma_c, axis=1)
567 |
568 | # print(df[['sqz_cma_c', 'sqz_rma_c', 'sqz_sma_c']])
569 | return df["sqz_cma_c"], df["sqz_rma_c"], df["sqz_sma_c"]
570 |
571 |
572 | ########################################
573 | #
574 | # Other Indicator Functions / Unsorted
575 | #
576 | def osc(dataframe, periods=14) -> ndarray:
577 | """
578 | 1. Calculating DM (i).
579 | If HIGH (i) > HIGH (i - 1), DM (i) = HIGH (i) - HIGH (i - 1), otherwise DM (i) = 0.
580 | 2. Calculating DMn (i).
581 | If LOW (i) < LOW (i - 1), DMn (i) = LOW (i - 1) - LOW (i), otherwise DMn (i) = 0.
582 | 3. Calculating value of OSC:
583 | OSC (i) = SMA (DM, N) / (SMA (DM, N) + SMA (DMn, N)).
584 |
585 | :param dataframe:
586 | :param periods:
587 | :return:
588 | """
589 | df = dataframe
590 | df["DM"] = (df["high"] - df["high"].shift()).apply(lambda x: max(x, 0))
591 | df["DMn"] = (df["low"].shift() - df["low"]).apply(lambda x: max(x, 0))
592 | return Series.rolling_mean(df.DM, periods) / (
593 | Series.rolling_mean(df.DM, periods) + Series.rolling_mean(df.DMn, periods)
594 | )
595 |
596 |
597 | def vfi(dataframe, length=130, coef=0.2, vcoef=2.5, signalLength=5, smoothVFI=False):
598 | """
599 | Volume Flow Indicator conversion
600 |
601 | Author: creslinux, June 2018 - Python
602 | Original Author: Chris Moody, TradingView - Pinescript
603 | To return vfi, vfima and histogram
604 |
605 | A simplified interpretation of the VFI is:
606 | * Values above zero indicate a bullish state and the crossing of the zero line is the trigger
607 | or buy signal.
608 | * The strongest signal with all money flow indicators is of course divergence.
609 | * A crossover of vfi > vfima is uptrend
610 | * A crossunder of vfima > vfi is downtrend
611 | * smoothVFI can be set to smooth for a cleaner plot to ease false signals
612 | * histogram can be used against self -1 to check if upward or downward momentum
613 |
614 |
615 | Call from strategy to populate vfi, vfima, vfi_hist into dataframe
616 |
617 | Example how to call:
618 | # Volume Flow Index: Add VFI, VFIMA, Histogram to DF
619 | dataframe['vfi'], dataframe['vfima'], dataframe['vfi_hist'] = \
620 | vfi(dataframe, length=130, coef=0.2, vcoef=2.5, signalLength=5, smoothVFI=False)
621 |
622 | :param dataframe:
623 | :param length: - VFI Length - 130 default
624 | :param coef: - price coef - 0.2 default
625 | :param vcoef: - volume coef - 2.5 default
626 | :param signalLength: - 5 default
627 | :param smoothVFI: bool - False default
628 | :return: vfi, vfima, vfi_hist
629 | """
630 |
631 | """"
632 | Original Pinescript
633 | From: https://www.tradingview.com/script/MhlDpfdS-Volume-Flow-Indicator-LazyBear/
634 |
635 | length = input(130, title="VFI length")
636 | coef = input(0.2)
637 | vcoef = input(2.5, title="Max. vol. cutoff")
638 | signalLength=input(5)
639 | smoothVFI=input(false, type=bool)
640 |
641 | #### Conversion summary to python
642 | - ma(x,y) => smoothVFI ? sma(x,y) : x // Added as smoothVFI test on vfi
643 |
644 | - typical = hlc3 // Added to DF as HLC
645 | - inter = log(typical) - log(typical[1]) // Added to DF as inter
646 | - vinter = stdev(inter, 30) // Added to DF as vinter
647 | - cutoff = coef * vinter * close // Added to DF as cutoff
648 | - vave = sma(volume, length)[1] // Added to DF as vave
649 | - vmax = vave * vcoef // Added to Df as vmax
650 | - vc = iff(volume < vmax, volume, vmax) // Added np.where test, result in DF as vc
651 | - mf = typical - typical[1] // Added into DF as mf - typical is hlc3
652 | - vcp = iff(mf > cutoff, vc, iff(mf < -cutoff, -vc, 0)) // added in def vcp, in DF as vcp
653 |
654 | - vfi = ma(sum(vcp, length) / vave, 3) // Added as DF vfi.
655 | Will sma vfi 3 if smoothVFI flag set
656 | - vfima = ema(vfi, signalLength) // added to DF as vfima
657 | - d = vfi-vfima // Added to df as histogram
658 |
659 | ### Pinscript plotout - nothing to do here for freqtrade.
660 | plot(0, color=gray, style=3)
661 | showHisto=input(false, type=bool)
662 | plot(showHisto ? d : na, style=histogram, color=gray, linewidth=3, transp=50)
663 | plot( vfima , title="EMA of vfi", color=orange)
664 | plot( vfi, title="vfi", color=green,linewidth=2)
665 | """
666 |
667 | import talib as ta
668 | from numpy import where
669 |
670 | length = length
671 | coef = coef
672 | vcoef = vcoef
673 | signalLength = signalLength
674 | smoothVFI = smoothVFI
675 | df = dataframe
676 | # Add hlc3 and populate inter to the dataframe
677 | df["hlc"] = ((df["high"] + df["low"] + df["close"]) / 3).astype(float)
678 | df["inter"] = df["hlc"].map(math.log) - df["hlc"].shift(+1).map(math.log)
679 | df["vinter"] = df["inter"].rolling(30).std(ddof=0)
680 | df["cutoff"] = coef * df["vinter"] * df["close"]
681 | # Vave is to be calculated on volume of the past bar
682 | df["vave"] = ta.SMA(df["volume"].shift(+1), timeperiod=length)
683 | df["vmax"] = df["vave"] * vcoef
684 | df["vc"] = where((df["volume"] < df["vmax"]), df["volume"], df["vmax"])
685 | df["mf"] = df["hlc"] - df["hlc"].shift(+1)
686 |
687 | # more logic for vcp, so create a def and df.apply it
688 | def vcp(x):
689 | if x["mf"] > x["cutoff"]:
690 | return x["vc"]
691 | elif x["mf"] < -(x["cutoff"]):
692 | return -(x["vc"])
693 | else:
694 | return 0
695 |
696 | df["vcp"] = df.apply(vcp, axis=1)
697 | # vfi has a smooth option passed over def call, sma if set
698 | df["vfi"] = (df["vcp"].rolling(length).sum()) / df["vave"]
699 | if smoothVFI is True:
700 | df["vfi"] = ta.SMA(df["vfi"], timeperiod=3)
701 | df["vfima"] = ta.EMA(df["vfi"], signalLength)
702 | df["vfi_hist"] = df["vfi"] - df["vfima"]
703 |
704 | # clean up columns used vfi calculation but not needed for strategy
705 | df.drop("hlc", axis=1, inplace=True)
706 | df.drop("inter", axis=1, inplace=True)
707 | df.drop("vinter", axis=1, inplace=True)
708 | df.drop("cutoff", axis=1, inplace=True)
709 | df.drop("vave", axis=1, inplace=True)
710 | df.drop("vmax", axis=1, inplace=True)
711 | df.drop("vc", axis=1, inplace=True)
712 | df.drop("mf", axis=1, inplace=True)
713 | df.drop("vcp", axis=1, inplace=True)
714 |
715 | return df["vfi"], df["vfima"], df["vfi_hist"]
716 |
717 |
718 | def stc(dataframe, fast=23, slow=50, length=10):
719 | # First, the 23-period and the 50-period EMA and the MACD values are calculated:
720 | # EMA1 = EMA (Close, Short Length);
721 | # EMA2 = EMA (Close, Long Length);
722 | # MACD = EMA1 – EMA2.
723 | # Second, the 10-period Stochastic from the MACD values is calculated:
724 | # %K (MACD) = %KV (MACD, 10);
725 | # %D (MACD) = %DV (MACD, 10);
726 | # Schaff = 100 x (MACD – %K (MACD)) / (%D (MACD) – %K (MACD))
727 |
728 | import talib.abstract as ta
729 |
730 | MACD = ta.EMA(dataframe, timeperiod=fast) - ta.EMA(dataframe, timeperiod=slow)
731 | STOK = (
732 | (MACD - MACD.rolling(window=length).min())
733 | / (MACD.rolling(window=length).max() - MACD.rolling(window=length).min())
734 | ) * 100
735 | STOD = STOK.rolling(window=length).mean()
736 | dataframe["stc"] = 100 * (MACD - (STOK * MACD)) / ((STOD * MACD) - (STOK * MACD))
737 |
738 | return dataframe["stc"]
739 |
740 |
741 | def vpcii(dataframe, period_short=5, period_long=20, hist=8, hist_long=30):
742 | """
743 | improved version of the vpcii
744 |
745 |
746 | :param dataframe:
747 | :param period_short:
748 | :param period_long:
749 | :param hist:
750 | :return:
751 | """
752 |
753 | dataframe = dataframe.copy()
754 | dataframe["vpci"] = vpci(dataframe, period_short, period_long)
755 | dataframe["vpcis"] = dataframe["vpci"].rolling(hist).mean()
756 | dataframe["vpci_hist"] = (dataframe["vpci"] - dataframe["vpcis"]).pct_change()
757 |
758 | return dataframe["vpci_hist"].abs()
759 |
760 |
761 | def vpci(dataframe, period_short=5, period_long=20):
762 | """
763 | volume confirming indicator as seen here
764 |
765 | https://www.tradingview.com/script/lmTqKOsa-Indicator-Volume-Price-Confirmation-Indicator-VPCI/
766 |
767 |
768 | should be used with bollinger bands, for deccision making
769 | :param dataframe:
770 | :param period_long:
771 | :param period_short:
772 | :return:
773 | """
774 |
775 | vpc = vwma(dataframe, period_long) - sma(dataframe, period_long)
776 | vpr = vwma(dataframe, period_short) / sma(dataframe, period_short)
777 | vm = sma(dataframe, period_short, field="volume") / sma(dataframe, period_long, field="volume")
778 |
779 | vpci = vpc * vpr * vm
780 |
781 | return vpci
782 |
783 |
784 | def fibonacci_retracements(df, field="close") -> DataFrame:
785 | # Common Fibonacci replacement thresholds:
786 | # 1.0, sqrt(F_n / F_{n+1}), F_n / F_{n+1}, 0.5, F_n / F_{n+2}, F_n / F_{n+3}, 0.0
787 | thresholds = [1.0, 0.786, 0.618, 0.5, 0.382, 0.236, 0.0]
788 |
789 | window_min, window_max = df[field].min(), df[field].max()
790 | # fib_levels = [window_min + t * (window_max - window_min) for t in thresholds]
791 |
792 | # Scale data to match to thresholds
793 | # Can be returned instead if one is looking at the movement between levels
794 | data = (df[field] - window_min) / (window_max - window_min)
795 |
796 | # Otherwise, we return a step indicator showing the fibonacci level
797 | # which each candle exceeds
798 | return data.apply(lambda x: max(t for t in thresholds if x >= t))
799 |
800 |
801 | def return_on_investment(dataframe, decimals=2) -> DataFrame:
802 | """
803 | Simple ROI indicator.
804 |
805 | :param dataframe:
806 | :param decimals:
807 | :return:
808 | """
809 |
810 | close = np.array(dataframe["close"])
811 | buy = np.array(dataframe["buy"])
812 | buy_idx = np.where(buy == 1)[0]
813 | roi = np.zeros(len(close))
814 | if len(buy_idx) > 0:
815 | # get chunks starting with a buy signal
816 | # everything before the first buy signal is discarded
817 | buy_chunks = np.split(close, buy_idx)[1:]
818 | for idx, chunk in zip(buy_idx, buy_chunks):
819 | # round ROI to avoid float accuracy problems
820 | chunk_roi = np.round(100.0 * (chunk / chunk[0] - 1.0), decimals)
821 | roi[idx : idx + len(chunk)] = chunk_roi
822 |
823 | dataframe["roi"] = roi
824 |
825 | return dataframe
826 |
827 |
828 | def td_sequential(dataframe):
829 | """
830 | TD Sequential
831 | Author(Freqtrade): MichealReed
832 | Original Author: Tom Demark
833 |
834 |
835 | :param dataframe: dataframe
836 | :return: Dataframe with additional column TD_count
837 | content: TD Sequential:values -9 to +9
838 | """
839 |
840 | # Copy DF
841 | df = dataframe.copy()
842 |
843 | condv = df["volume"] > 0
844 | cond1 = df["close"] > df["close"].shift(4)
845 | cond2 = df["close"] < df["close"].shift(4)
846 |
847 | df["cond_tdb_a"] = (df.groupby(((cond1)[condv]).cumsum()).cumcount() % 10 == 0).cumsum()
848 | df["cond_tds_a"] = (df.groupby(((cond2)[condv]).cumsum()).cumcount() % 10 == 0).cumsum()
849 | df["cond_tdb_b"] = (df.groupby(((cond1)[condv]).cumsum()).cumcount() % 10 != 0).cumsum()
850 | df["cond_tds_b"] = (df.groupby(((cond2)[condv]).cumsum()).cumcount() % 10 != 0).cumsum()
851 |
852 | df["tdb_a"] = df.groupby(df["cond_tdb_a"]).cumcount()
853 | df["tds_a"] = df.groupby(df["cond_tds_a"]).cumcount()
854 |
855 | df["tdb_b"] = df.groupby(df["cond_tdb_b"]).cumcount()
856 | df["tds_b"] = df.groupby(df["cond_tds_b"]).cumcount()
857 |
858 | df["tdc"] = df["tds_a"] - df["tdb_a"]
859 | df["tdc"] = df.apply((lambda x: x["tdb_b"] % 9 if x["tdb_b"] > 9 else x["tdc"]), axis=1)
860 | df["tdc"] = df.apply((lambda x: (x["tds_b"] % 9) * -1 if x["tds_b"] > 9 else x["tdc"]), axis=1)
861 | dataframe.loc[:, "TD_count"] = df["tdc"]
862 | return dataframe
863 |
864 |
865 | def TKE(dataframe, *, length=14, emaperiod=5):
866 | """
867 | Source: https://www.tradingview.com/script/Pcbvo0zG/
868 | Author: Dr Yasar ERDINC
869 |
870 | The calculation is simple:
871 | TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
872 | Buy signal: when TKE crosses above 20 value
873 | Oversold region: under 20 value
874 | Overbought region: over 80 value
875 |
876 | Another usage of TKE is with its EMA ,
877 | the default value is defined as 5 bars of EMA of the TKE line,
878 | Go long: when TKE crosses above EMALine
879 | Go short: when TKE crosses below EMALine
880 |
881 | Usage:
882 | `dataframe['TKE'], dataframe['TKEema'] = TKE1(dataframe)`
883 | """
884 | import talib.abstract as ta
885 |
886 | df = dataframe.copy()
887 | # TKE=(RSI+STOCHASTIC+ULTIMATE OSCILLATOR+MFI+WIILIAMS %R+MOMENTUM+CCI)/7
888 | df["rsi"] = ta.RSI(df, timeperiod=length)
889 | df["stoch"] = (
890 | 100
891 | * (df["close"] - df["low"].rolling(window=length).min())
892 | / (df["high"].rolling(window=length).max() - df["low"].rolling(window=length).min())
893 | )
894 |
895 | df["ultosc"] = ta.ULTOSC(df, timeperiod1=7, timeperiod2=14, timeperiod3=28)
896 | df["mfi"] = ta.MFI(df, timeperiod=length)
897 | df["willr"] = ta.WILLR(df, timeperiod=length)
898 | df["mom"] = ta.ROCR100(df, timeperiod=length)
899 | df["cci"] = ta.CCI(df, timeperiod=length)
900 | df["TKE"] = df[["rsi", "stoch", "ultosc", "mfi", "willr", "mom", "cci"]].mean(axis="columns")
901 | df["TKEema"] = ta.EMA(df["TKE"], timeperiod=emaperiod)
902 | return df["TKE"], df["TKEema"]
903 |
904 |
905 | def vwmacd(dataframe, *, fastperiod=12, slowperiod=26, signalperiod=9):
906 | """
907 | Volume Weighted MACD
908 | Author: KIVANC @fr3762 on twitter
909 | Developer: Buff Dormeier @BuffDormeierWFA on twitter
910 | Source: https://www.tradingview.com/script/wVe6AfGA
911 |
912 | study("VOLUME WEIGHTED MACD V2", shorttitle="VWMACDV2")
913 | fastperiod = input(12,title="fastperiod",type=integer,minval=1,maxval=500)
914 | slowperiod = input(26,title="slowperiod",type=integer,minval=1,maxval=500)
915 | signalperiod = input(9,title="signalperiod",type=integer,minval=1,maxval=500)
916 | fastMA = ema(volume*close, fastperiod)/ema(volume, fastperiod)
917 | slowMA = ema(volume*close, slowperiod)/ema(volume, slowperiod)
918 | vwmacd = fastMA - slowMA
919 | signal = ema(vwmacd, signalperiod)
920 | hist= vwmacd - signal
921 | plot(vwmacd, color=blue, linewidth=2)
922 | plot(signal, color=red, linewidth=2)
923 | plot(hist, color=green, linewidth=4, style=histogram)
924 | plot(0, color=black)
925 |
926 | Usage:
927 | vwmacd = vwmacd(dataframe)
928 | dataframe['vwmacd'] = vwmacd['vwmacd']
929 | dataframe['vwmacdsignal'] = vwmacd['signal']
930 | dataframe['vwmacdhist'] = vwmacd['hist']
931 | # simplified:
932 | dataframe = vwmacd(dataframe)
933 | :returns: dataframe with new columns for vwmacd, signal and hist
934 |
935 | """
936 |
937 | import talib.abstract as ta
938 |
939 | dataframe["fastMA"] = ta.EMA(dataframe["volume"] * dataframe["close"], fastperiod) / ta.EMA(
940 | dataframe["volume"], fastperiod
941 | )
942 | dataframe["slowMA"] = ta.EMA(dataframe["volume"] * dataframe["close"], slowperiod) / ta.EMA(
943 | dataframe["volume"], slowperiod
944 | )
945 | dataframe["vwmacd"] = dataframe["fastMA"] - dataframe["slowMA"]
946 | dataframe["signal"] = ta.EMA(dataframe["vwmacd"], signalperiod)
947 | dataframe["hist"] = dataframe["vwmacd"] - dataframe["signal"]
948 | dataframe = dataframe.drop(["fastMA", "slowMA"], axis=1)
949 | return dataframe
950 |
951 |
952 | def RMI(dataframe, *, length=20, mom=5):
953 | """
954 | Source: https://www.marketvolume.com/technicalanalysis/relativemomentumindex.asp
955 | length: Length of EMA
956 | mom: Momentum
957 |
958 | Usage:
959 | dataframe['RMI'] = RMI(dataframe)
960 |
961 | """
962 | import talib.abstract as ta
963 |
964 | df = dataframe.copy()
965 | df["maxup"] = (df["close"] - df["close"].shift(mom)).clip(lower=0).fillna(0)
966 | df["maxdown"] = (df["close"].shift(mom) - df["close"]).clip(lower=0).fillna(0)
967 |
968 | df["emaInc"] = ta.EMA(df, price="maxup", timeperiod=length)
969 | df["emaDec"] = ta.EMA(df, price="maxdown", timeperiod=length)
970 |
971 | df["RMI"] = np.where(df["emaDec"] == 0, 0, 100 - 100 / (1 + df["emaInc"] / df["emaDec"]))
972 | return df["RMI"]
973 |
974 |
975 | def VIDYA(dataframe, length=9, select=True):
976 | """
977 | Source: https://www.tradingview.com/script/64ynXU2e/
978 | Author: Tushar Chande
979 | Pinescript Author: KivancOzbilgic
980 |
981 | Variable Index Dynamic Average VIDYA
982 |
983 | To achieve the goals, the indicator filters out the market fluctuations (noises)
984 | by averaging the price values of the periods, over which it is calculated.
985 | In the process, some extra value (weight) is added to the average prices,
986 | as it is done during calculations of all weighted indicators, such as EMA , LWMA, and SMMA.
987 | But during the VIDYA indicator's calculation, every period's price
988 | receives a weight increment adapted to the current market's volatility .
989 |
990 | select: True = CMO, False= StdDev as volatility index
991 | usage:
992 | dataframe['VIDYA'] = VIDYA(dataframe)
993 | """
994 | df = dataframe.copy()
995 | alpha = 2 / (length + 1)
996 | df["momm"] = df["close"].diff()
997 | df["m1"] = np.where(df["momm"] >= 0, df["momm"], 0.0)
998 | df["m2"] = np.where(df["momm"] >= 0, 0.0, -df["momm"])
999 |
1000 | df["sm1"] = df["m1"].rolling(length).sum()
1001 | df["sm2"] = df["m2"].rolling(length).sum()
1002 |
1003 | df["chandeMO"] = 100 * (df["sm1"] - df["sm2"]) / (df["sm1"] + df["sm2"])
1004 | if select:
1005 | df["k"] = abs(df["chandeMO"]) / 100
1006 | else:
1007 | df["k"] = df["close"].rolling(length).std()
1008 |
1009 | cols = ["momm", "m1", "m2", "sm1", "sm2", "chandeMO", "k"]
1010 | df.loc[:, cols] = df.loc[:, cols].fillna(0.0)
1011 |
1012 | df["VIDYA"] = 0.0
1013 | for i in range(length, len(df)):
1014 | df["VIDYA"].iat[i] = (
1015 | alpha * df["k"].iat[i] * df["close"].iat[i]
1016 | + (1 - alpha * df["k"].iat[i]) * df["VIDYA"].iat[i - 1]
1017 | )
1018 |
1019 | return df["VIDYA"]
1020 |
1021 |
1022 | def MADR(dataframe, length=21, stds_dist=2, matype="sma"):
1023 | """
1024 | Moving Average Deviation Rate, similar to bollinger bands
1025 | Source: https://tradingview.com/script/25KCgL9H/
1026 | Author: tarantula3535
1027 |
1028 | Moving average deviation rate
1029 |
1030 | Simple moving average deviation rate and standard deviation.
1031 |
1032 | The bollinger band is momentum value standard deviation.
1033 | But the bollinger band is not normal distribution to close price.
1034 | Moving average deviation rate is normal distribution.
1035 |
1036 | This indicator will define upper and lower bounds based of stds-σ standard deviation of rate column.
1037 | If it exceeds stds-σ, it is a trading opportunity.
1038 |
1039 | """
1040 |
1041 | import talib.abstract as ta
1042 |
1043 | df = dataframe.copy()
1044 | """ tradingview's code
1045 | _maPeriod = input(21, title="Moving average period")
1046 |
1047 | //deviation rate
1048 | _sma = sma(close, _maPeriod)
1049 | _rate = close / _sma * 100 - 100
1050 |
1051 | //deviation rate std
1052 | _stdCenter = sma(_rate, _maPeriod * 2)
1053 | _std = stdev(_rate, _maPeriod * 2)
1054 | _plusDev = _stdCenter + _std * 2
1055 | _minusDev = _stdCenter - _std * 2
1056 | """
1057 |
1058 | if matype.lower() == "sma":
1059 | ma_close = ta.SMA(df, timeperiod=length)
1060 | elif matype.lower() == "ema":
1061 | ma_close = ta.EMA(df, timeperiod=length)
1062 | else:
1063 | ma_close = ta.SMA(df, timeperiod=length)
1064 |
1065 | df["rate"] = ((df["close"] / ma_close) * 100) - 100
1066 |
1067 | if matype.lower() == "sma":
1068 | df["stdcenter"] = ta.SMA(df.rate, timeperiod=(length * stds_dist))
1069 | elif matype.lower() == "ema":
1070 | df["stdcenter"] = ta.EMA(df.rate, timeperiod=(length * stds_dist))
1071 | else:
1072 | df["stdcenter"] = ta.SMA(df.rate, timeperiod=(length * stds_dist))
1073 |
1074 | std = ta.STDDEV(df.rate, timeperiod=(length * stds_dist))
1075 | df["plusdev"] = df["stdcenter"] + (std * stds_dist)
1076 | df["minusdev"] = df["stdcenter"] - (std * stds_dist)
1077 | # return stdcenter , plusdev , minusdev, rate
1078 | return df
1079 |
1080 |
1081 | def SSLChannels(dataframe, length=10, mode="sma"):
1082 | """
1083 | Source: https://www.tradingview.com/script/xzIoaIJC-SSL-channel/
1084 | Author: xmatthias
1085 | Pinescript Author: ErwinBeckers
1086 |
1087 | SSL Channels.
1088 | Average over highs and lows form a channel - lines "flip" when close crosses
1089 | either of the 2 lines.
1090 | Trading ideas:
1091 | * Channel cross
1092 | * as confirmation based on up > down for long
1093 |
1094 | Usage:
1095 | dataframe['sslDown'], dataframe['sslUp'] = SSLChannels(dataframe, 10)
1096 | """
1097 | import talib.abstract as ta
1098 |
1099 | mode_lower = mode.lower()
1100 |
1101 | if mode_lower not in ("sma", "ema"):
1102 | raise ValueError(f"Mode {mode} not supported yet")
1103 |
1104 | df = dataframe.copy()
1105 |
1106 | if mode_lower == "sma":
1107 | ma_high = df["high"].rolling(length).mean()
1108 | ma_low = df["low"].rolling(length).mean()
1109 | elif mode_lower == "ema":
1110 | ma_high = ta.EMA(df["high"], length)
1111 | ma_low = ta.EMA(df["low"], length)
1112 |
1113 | df["hlv"] = np.where(df["close"] > ma_high, 1, np.where(df["close"] < ma_low, -1, np.nan))
1114 | df["hlv"] = df["hlv"].ffill()
1115 |
1116 | df["sslDown"] = np.where(df["hlv"] < 0, ma_high, ma_low)
1117 | df["sslUp"] = np.where(df["hlv"] < 0, ma_low, ma_high)
1118 |
1119 | return df["sslDown"], df["sslUp"]
1120 |
1121 |
1122 | def PMAX(dataframe, period=10, multiplier=3, length=12, MAtype=1, src=1): # noqa: C901
1123 | """
1124 | Function to compute PMAX
1125 | Source: https://www.tradingview.com/script/sU9molfV/
1126 | Pinescript Author: KivancOzbilgic
1127 |
1128 | Args :
1129 | df : Pandas DataFrame with the columns ['date', 'open', 'high', 'low', 'close', 'volume']
1130 | period : Integer indicates the period of computation in terms of number of candles
1131 | multiplier : Integer indicates value to multiply the ATR
1132 | length: moving averages length
1133 | MAtype: type of the moving average
1134 |
1135 | Returns :
1136 | df : Pandas DataFrame with new columns added for
1137 | ATR (ATR_$period)
1138 | PMAX (pm_$period_$multiplier_$length_$Matypeint)
1139 | PMAX Direction (pmX_$period_$multiplier_$length_$Matypeint)
1140 | """
1141 | import talib.abstract as ta
1142 |
1143 | df = dataframe.copy()
1144 | mavalue = "MA_" + str(MAtype) + "_" + str(length)
1145 | atr = "ATR_" + str(period)
1146 | df[atr] = ta.ATR(df, timeperiod=period)
1147 | pm = "pm_" + str(period) + "_" + str(multiplier) + "_" + str(length) + "_" + str(MAtype)
1148 | pmx = "pmX_" + str(period) + "_" + str(multiplier) + "_" + str(length) + "_" + str(MAtype)
1149 | # MAtype==1 --> EMA
1150 | # MAtype==2 --> DEMA
1151 | # MAtype==3 --> T3
1152 | # MAtype==4 --> SMA
1153 | # MAtype==5 --> VIDYA
1154 | # MAtype==6 --> TEMA
1155 | # MAtype==7 --> WMA
1156 | # MAtype==8 --> VWMA
1157 | if src == 1:
1158 | masrc = df["close"]
1159 | elif src == 2:
1160 | masrc = (df["high"] + df["low"]) / 2
1161 | elif src == 3:
1162 | masrc = (df["high"] + df["low"] + df["close"] + df["open"]) / 4
1163 | if MAtype == 1:
1164 | df[mavalue] = ta.EMA(masrc, timeperiod=length)
1165 | elif MAtype in (2, 9):
1166 | # Compatibility for ZEMA (https://github.com/freqtrade/technical/pull/356 for details)
1167 | df[mavalue] = ta.DEMA(masrc, timeperiod=length)
1168 | elif MAtype == 3:
1169 | df[mavalue] = ta.T3(masrc, timeperiod=length)
1170 | elif MAtype == 4:
1171 | df[mavalue] = ta.SMA(masrc, timeperiod=length)
1172 | elif MAtype == 5:
1173 | df[mavalue] = VIDYA(df, length=length)
1174 | elif MAtype == 6:
1175 | df[mavalue] = ta.TEMA(masrc, timeperiod=length)
1176 | elif MAtype == 7:
1177 | df[mavalue] = ta.WMA(df, timeperiod=length)
1178 | elif MAtype == 8:
1179 | df[mavalue] = vwma(df, length)
1180 | else:
1181 | raise ValueError(f"MAtype {MAtype} not supported.")
1182 | # Compute basic upper and lower bands
1183 | df["basic_ub"] = df[mavalue] + (multiplier * df[atr])
1184 | df["basic_lb"] = df[mavalue] - (multiplier * df[atr])
1185 | # Compute final upper and lower bands
1186 | df["final_ub"] = 0.00
1187 | df["final_lb"] = 0.00
1188 | for i in range(period, len(df)):
1189 | df["final_ub"].iat[i] = (
1190 | df["basic_ub"].iat[i]
1191 | if (
1192 | df["basic_ub"].iat[i] < df["final_ub"].iat[i - 1]
1193 | or df[mavalue].iat[i - 1] > df["final_ub"].iat[i - 1]
1194 | )
1195 | else df["final_ub"].iat[i - 1]
1196 | )
1197 | df["final_lb"].iat[i] = (
1198 | df["basic_lb"].iat[i]
1199 | if (
1200 | df["basic_lb"].iat[i] > df["final_lb"].iat[i - 1]
1201 | or df[mavalue].iat[i - 1] < df["final_lb"].iat[i - 1]
1202 | )
1203 | else df["final_lb"].iat[i - 1]
1204 | )
1205 |
1206 | # Set the Pmax value
1207 | df[pm] = 0.00
1208 | for i in range(period, len(df)):
1209 | df[pm].iat[i] = (
1210 | df["final_ub"].iat[i]
1211 | if (
1212 | df[pm].iat[i - 1] == df["final_ub"].iat[i - 1]
1213 | and df[mavalue].iat[i] <= df["final_ub"].iat[i]
1214 | )
1215 | else (
1216 | df["final_lb"].iat[i]
1217 | if (
1218 | df[pm].iat[i - 1] == df["final_ub"].iat[i - 1]
1219 | and df[mavalue].iat[i] > df["final_ub"].iat[i]
1220 | )
1221 | else (
1222 | df["final_lb"].iat[i]
1223 | if (
1224 | df[pm].iat[i - 1] == df["final_lb"].iat[i - 1]
1225 | and df[mavalue].iat[i] >= df["final_lb"].iat[i]
1226 | )
1227 | else (
1228 | df["final_ub"].iat[i]
1229 | if (
1230 | df[pm].iat[i - 1] == df["final_lb"].iat[i - 1]
1231 | and df[mavalue].iat[i] < df["final_lb"].iat[i]
1232 | )
1233 | else 0.00
1234 | )
1235 | )
1236 | )
1237 | )
1238 |
1239 | # Mark the trend direction up/down
1240 | df[pmx] = np.where(
1241 | df[pm] > 0.00,
1242 | np.where(df[mavalue] < df[pm], "down", "up"),
1243 | "nan",
1244 | )
1245 | # Remove basic and final bands from the columns
1246 | df.drop(["basic_ub", "basic_lb", "final_ub", "final_lb", mavalue], inplace=True, axis=1)
1247 |
1248 | cols = [pm, pmx, atr]
1249 | df.loc[:, cols] = df.loc[:, cols].fillna(0.0)
1250 |
1251 | return df
1252 |
1253 |
1254 | def tv_wma(dataframe: DataFrame, length: int = 9, field="close") -> Series:
1255 | """
1256 | Source: Tradingview "Moving Average Weighted"
1257 | Pinescript Author: Unknown
1258 |
1259 | Args :
1260 | dataframe : Pandas Dataframe
1261 | length : WMA length
1262 | field : Field to use for the calculation
1263 |
1264 | Returns :
1265 | series : Pandas Series
1266 | """
1267 |
1268 | if isinstance(dataframe, Series):
1269 | data = dataframe
1270 | else:
1271 | data = dataframe[field]
1272 |
1273 | norm = 0
1274 | sum = 0
1275 |
1276 | for i in range(1, length - 1):
1277 | weight = (length - i) * length
1278 | norm = norm + weight
1279 | sum = sum + data.shift(i) * weight
1280 |
1281 | tv_wma = sum / norm if (norm != 0) else 0
1282 | return tv_wma
1283 |
1284 |
1285 | def tv_hma(dataframe: DataFrame, length: int = 9, field="close") -> Series:
1286 | """
1287 | Source: Tradingview "Hull Moving Average"
1288 | Pinescript Author: Unknown
1289 |
1290 | Args :
1291 | dataframe : Pandas Dataframe
1292 | length : HMA length
1293 | field : Field to use for the calculation
1294 |
1295 | Returns :
1296 | series : Pandas Series
1297 | """
1298 |
1299 | if isinstance(dataframe, Series):
1300 | data = dataframe
1301 | else:
1302 | data = dataframe[field]
1303 |
1304 | h = 2 * tv_wma(data, math.floor(length / 2)) - tv_wma(data, length)
1305 |
1306 | tv_hma = tv_wma(h, math.floor(math.sqrt(length)))
1307 |
1308 | return tv_hma
1309 |
1310 |
1311 | def tv_alma(
1312 | dataframe: DataFrame, length: int = 8, offset: int = 0, sigma: int = 0, field="close"
1313 | ) -> Series:
1314 | """
1315 | Source: Tradingview "Arnaud Legoux Moving Average"
1316 | Links: https://www.tradingview.com/pine-script-reference/v5/#fun_ta.alma
1317 | https://www.tradingview.com/support/solutions/43000594683/
1318 | Pinescript Author: Arnaud Legoux and Dimitrios Douzis-Loukas
1319 | Description: Gaussian distribution that is shifted with
1320 | a calculated offset in order for
1321 | the average to be biased towards
1322 | more recent days, instead of more
1323 | evenly centered on the window.
1324 |
1325 | Args :
1326 | dataframe : Pandas Dataframe
1327 | length : ALMA windowframe
1328 | offset : Shift
1329 | sigma : Gaussian Smoothing
1330 | field : Field to use for the calculation
1331 |
1332 | Returns :
1333 | series : Series of ALMA values
1334 | """
1335 |
1336 | """ This is simple computation way, just for reference """
1337 | # sigma = sigma or 1e-10
1338 | # m = offset * (length - 1)
1339 | # s = length / sigma
1340 | # norm = 0.0
1341 | # sum = 0.0
1342 | # for i in range(length - 1):
1343 | # weight = np.exp(-1 * np.power(i - m, 2) / (2 * np.power(s, 2)))
1344 | # norm += weight
1345 | # sum += dataframe[field].shift(length - i - 1) * weight
1346 | # return sum / norm
1347 |
1348 | """ Vectorized method """
1349 | sigma = sigma or 1e-10
1350 |
1351 | m = offset * (length - 1)
1352 | s = length / sigma
1353 |
1354 | indices = np.arange(length)
1355 | weights = np.exp(-np.power(indices - m, 2) / (2 * np.power(s, 2)))
1356 | weights /= weights.sum() # Normalize the weights
1357 |
1358 | alma = np.convolve(dataframe[field], weights[::-1], mode="valid")
1359 | return Series(np.pad(alma, (length - 1, 0), mode="constant", constant_values=np.nan))
1360 |
1361 |
1362 | def tv_trama(dataframe: DataFrame, length: int = 99, field="close") -> Series:
1363 | """
1364 | Name : Tradingview "Trend Regularity Adaptive Moving Average"
1365 | Pinescript Author : LuxAlgo
1366 | Link :
1367 | tradingview.com/script/p8wGCPi6-Trend-Regularity-Adaptive-Moving-Average-LuxAlgo/
1368 |
1369 | Args :
1370 | dataframe : Pandas Dataframe
1371 | length : Period of the indicator
1372 | field : Field to use for the calculation
1373 |
1374 | Returns :
1375 | series : 'TRAMA' values
1376 | """
1377 |
1378 | import talib.abstract as ta
1379 |
1380 | df_len = len(dataframe)
1381 |
1382 | hh = ta.MAX(dataframe["high"], length)
1383 | ll = ta.MIN(dataframe["low"], length)
1384 | hh_or_ll = np.where(np.diff(hh) > 0, 1, 0) + np.where(np.diff(ll) < 0, 1, 0)
1385 |
1386 | tc = np.zeros(df_len)
1387 | tc[:-1] = np.nan_to_num(ta.SMA(hh_or_ll.astype(float), length) ** 2)
1388 |
1389 | ama = np.zeros(df_len)
1390 | ama[0] = dataframe[field].iloc[0]
1391 | for i in range(1, df_len):
1392 | ama[i] = ama[i - 1] + tc[i - 1] * (dataframe[field].iloc[i] - ama[i - 1])
1393 |
1394 | return Series(ama)
1395 |
--------------------------------------------------------------------------------
/technical/indicators/momentum.py:
--------------------------------------------------------------------------------
1 | """
2 | Momentum indicators
3 | """
4 |
5 | ########################################
6 | #
7 | # Momentum Indicator Functions
8 | #
9 |
10 | # ADX Average Directional Movement Index
11 | # ADXR Average Directional Movement Index Rating
12 | # APO Absolute Price Oscillator
13 | # AROON Aroon
14 | # AROONOSC Aroon Oscillator
15 | # BOP Balance Of Power
16 |
17 | # CCI Commodity Channel Index
18 |
19 | # CMO Chande Momentum Oscillator
20 |
21 | # DX Directional Movement Index
22 | # MACD Moving Average Convergence/Divergence
23 | # MACDEXT MACD with controllable MA type
24 | # MACDFIX Moving Average Convergence/Divergence Fix 12/26
25 | # MFI Money Flow Index
26 | # MINUS_DI Minus Directional Indicator
27 | # MINUS_DM Minus Directional Movement
28 |
29 | # MOM Momentum
30 |
31 | # PLUS_DI Plus Directional Indicator
32 | # PLUS_DM Plus Directional Movement
33 | # PPO Percentage Price Oscillator
34 | # ROC Rate of change : ((price/prevPrice)-1)*100
35 | # ROCP Rate of change Percentage: (price-prevPrice)/prevPrice
36 | # ROCR Rate of change ratio: (price/prevPrice)
37 | # ROCR100 Rate of change ratio 100 scale: (price/prevPrice)*100
38 | # RSI Relative Strength Index
39 | # STOCH Stochastic
40 | # STOCHF Stochastic Fast
41 | # STOCHRSI Stochastic Relative Strength Index
42 | # TRIX 1-day Rate-Of-Change (ROC) of a Triple Smooth EMA
43 |
44 | # ULTOSC Ultimate Oscillator
45 |
46 |
47 | # WILLR Williams' %R
48 | def williams_percent(dataframe, period=14):
49 | highest_high = dataframe["high"].rolling(period).max()
50 | lowest_low = dataframe["low"].rolling(period).min()
51 | wr = (highest_high - dataframe["close"]) / (highest_high - lowest_low) * -100
52 | return wr
53 |
--------------------------------------------------------------------------------
/technical/indicators/overlap_studies.py:
--------------------------------------------------------------------------------
1 | """
2 | Overlap studies
3 | """
4 |
5 | import talib.abstract as ta
6 | from numpy import ndarray
7 | from pandas import DataFrame, Series
8 |
9 | ########################################
10 | #
11 | # Overlap Studies Functions
12 | #
13 |
14 |
15 | # BBANDS Bollinger Bands
16 | def bollinger_bands(
17 | dataframe: DataFrame,
18 | period: int = 21,
19 | stdv: int = 2,
20 | field: str = "close",
21 | colum_prefix: str = "bb",
22 | ma_type: str = "sma",
23 | ) -> DataFrame:
24 | """
25 | Bollinger bands, using Moving Average.
26 | Copying original dataframe and returns dataframe with the following 3 columns
27 | _lower, _middle, and _upper,
28 | """
29 |
30 | df = dataframe.copy()
31 |
32 | if ma_type.lower() == "sma":
33 | ma = ta.SMA(df[field], period)
34 | elif ma_type.lower() == "ema":
35 | ma = ta.EMA(df[field], period)
36 | elif ma_type.lower() == "dema":
37 | ma = ta.DEMA(df[field], period)
38 | elif ma_type.lower() == "tema":
39 | ma = ta.TEMA(df[field], period)
40 | else:
41 | ma = ta.SMA(df[field], period)
42 |
43 | std = df[field].rolling(period).std()
44 | upper = ma + (std * stdv)
45 | lower = ma - (std * stdv)
46 |
47 | df[f"{colum_prefix}_lower"] = lower
48 | df[f"{colum_prefix}_middle"] = ma
49 | df[f"{colum_prefix}_upper"] = upper
50 |
51 | return df
52 |
53 |
54 | # DEMA Double Exponential Moving Average
55 | def dema(dataframe, period, field="close"):
56 | import talib.abstract as ta
57 |
58 | return ta.DEMA(dataframe, timeperiod=period, price=field)
59 |
60 |
61 | def zema(dataframe, period, field="close"):
62 | """
63 | Compatibility alias for Zema
64 | https://github.com/freqtrade/technical/pull/356 for details.
65 | Please migrate to dema instead.
66 | Raises a Future warning - will be removed in a future version.
67 | """
68 | import warnings
69 |
70 | warnings.warn("zema is deprecated, use dema instead", FutureWarning)
71 |
72 | return dema(dataframe, period, field)
73 |
74 |
75 | # EMA Exponential Moving Average
76 | def ema(dataframe: DataFrame, period: int, field="close") -> Series:
77 | """
78 | Wrapper around talib ema (using the abstract interface)
79 | """
80 | import talib.abstract as ta
81 |
82 | return ta.EMA(dataframe, timeperiod=period, price=field)
83 |
84 |
85 | # HT_TRENDLINE Hilbert Transform - Instantaneous Trendline
86 | # KAMA Kaufman Adaptive Moving Average
87 | # MA Moving average
88 | # MAMA MESA Adaptive Moving Average
89 | # MAVP Moving average with variable period
90 | # MIDPOINT MidPoint over period
91 | # MIDPRICE Midpoint Price over period
92 | # SAR Parabolic SAR
93 | # SAREXT Parabolic SAR - Extended
94 |
95 |
96 | # SMA Simple Moving Average
97 | def sma(dataframe, period, field="close"):
98 | import talib.abstract as ta
99 |
100 | return ta.SMA(dataframe, timeperiod=period, price=field)
101 |
102 |
103 | # T3 Triple Exponential Moving Average (T3)
104 |
105 |
106 | # TEMA Triple Exponential Moving Average
107 | def tema(dataframe, period, field="close"):
108 | import talib.abstract as ta
109 |
110 | return ta.TEMA(dataframe, timeperiod=period, price=field)
111 |
112 |
113 | # TRIMA Triangular Moving Average
114 | # WMA Weighted Moving Average
115 |
116 |
117 | # Other Overlap Studies Functions
118 | def hull_moving_average(dataframe, period, field="close") -> ndarray:
119 | # TODO: Remove this helper method, it's a 1:1 call to qtpylib's HMA.
120 | from technical.qtpylib import hma
121 |
122 | return hma(dataframe[field], period)
123 |
124 |
125 | def vwma(df, window, price="close"):
126 | return (df[price] * df["volume"]).rolling(window).sum() / df.volume.rolling(window).sum()
127 |
--------------------------------------------------------------------------------
/technical/indicators/price_transform.py:
--------------------------------------------------------------------------------
1 | """
2 | Cycle indicators
3 | """
4 |
5 | ########################################
6 | #
7 | # Price Transform Functions
8 | #
9 |
10 | # AVGPRICE Average Price
11 | # MEDPRICE Median Price
12 | # TYPPRICE Typical Price
13 | # WCLPRICE Weighted Close Price
14 |
--------------------------------------------------------------------------------
/technical/indicators/volatility.py:
--------------------------------------------------------------------------------
1 | """
2 | Volatility indicator functions
3 | """
4 |
5 | import numpy as np
6 | import pandas as pd
7 | from numpy import ndarray
8 |
9 | from technical.vendor.qtpylib.indicators import atr # noqa: F401
10 |
11 | ########################################
12 | #
13 | # Volatility Indicator Functions
14 | #
15 |
16 | ########################################
17 | #
18 | # ATR Average True Range
19 | # Imported from qtpylib, which is a fast implementation.
20 |
21 |
22 | def atr_percent(dataframe, period: int = 14) -> ndarray:
23 | """
24 |
25 | :param dataframe: Dataframe containing candle data
26 | :param period: Period to use for ATR calculation (defaults to 14)
27 | :return: Series containing ATR_percent calculation
28 | """
29 | return (atr(dataframe, period) / dataframe["close"]) * 100
30 |
31 |
32 | # NATR Normalized Average True Range
33 | # TRANGE True Range
34 |
35 | ########################################
36 |
37 |
38 | def chopiness(dataframe, period: int = 14):
39 | """
40 | Choppiness index
41 | theory https://www.tradingview.com/scripts/choppinessindex/
42 | slightly adapted from
43 | https://medium.com/codex/detecting-ranging-and-trending-markets-with-choppiness-index-in-python-1942e6450b58
44 |
45 | :param dataframe: Dataframe containing candle data
46 | :param period: Period to use for chopiness calculation (defaults to 14)
47 | :return: Series containing chopiness calculation :values 0 to +100
48 | """
49 |
50 | tr1 = dataframe["high"] - dataframe["low"]
51 | tr2 = abs(dataframe["high"] - dataframe["close"].shift(1))
52 | tr3 = abs(dataframe["low"] - dataframe["close"].shift(1))
53 |
54 | tr = pd.concat([tr1, tr2, tr3], axis=1, join="inner").dropna().max(axis=1)
55 | atr = tr.rolling(1).mean()
56 | highh = dataframe["high"].rolling(period).max()
57 | lowl = dataframe["low"].rolling(period).min()
58 | ci = 100 * np.log10((atr.rolling(period).sum()) / (highh - lowl)) / np.log10(period)
59 | return ci
60 |
--------------------------------------------------------------------------------
/technical/indicators/volume_indicators.py:
--------------------------------------------------------------------------------
1 | """
2 | Volume indicators
3 | """
4 |
5 | ########################################
6 | #
7 | # Volume Indicator Functions
8 | #
9 |
10 | # AD Chaikin A/D Line
11 |
12 | # ADOSC Chaikin A/D Oscillator
13 | # OBV On Balance Volume
14 |
15 |
16 | # Other Volume Indicator Functions
17 | def chaikin_money_flow(dataframe, period=21):
18 | mfm = (dataframe["close"] - dataframe["low"]) - (dataframe["high"] - dataframe["close"]) / (
19 | dataframe["high"] - dataframe["low"]
20 | )
21 | mfv = mfm * dataframe["volume"]
22 | cmf = mfv.rolling(period).sum() / dataframe["volume"].rolling(period).sum()
23 | return cmf
24 |
25 |
26 | cmf = chaikin_money_flow
27 |
--------------------------------------------------------------------------------
/technical/pivots_points.py:
--------------------------------------------------------------------------------
1 | import freqtrade.vendor.qtpylib.indicators as qtpylib
2 | import pandas as pd
3 |
4 | """
5 | Indicators for Freqtrade
6 | author@: Gerald Lonlas
7 | """
8 |
9 |
10 | def pivots_points(dataframe: pd.DataFrame, timeperiod=30, levels=3) -> pd.DataFrame:
11 | """
12 | Pivots Points
13 |
14 | https://www.tradingview.com/support/solutions/43000521824-pivot-points-standard/
15 |
16 | Formula:
17 | Pivot = (Previous High + Previous Low + Previous Close)/3
18 |
19 | Resistance #1 = (2 x Pivot) - Previous Low
20 | Support #1 = (2 x Pivot) - Previous High
21 |
22 | Resistance #2 = (Pivot - Support #1) + Resistance #1
23 | Support #2 = Pivot - (Resistance #1 - Support #1)
24 |
25 | Resistance #3 = (Pivot - Support #2) + Resistance #2
26 | Support #3 = Pivot - (Resistance #2 - Support #2)
27 | ...
28 |
29 | :param dataframe:
30 | :param timeperiod: Period to compare (in ticker)
31 | :param levels: Num of support/resistance desired
32 | :return: dataframe
33 | """
34 |
35 | data = {}
36 |
37 | low = qtpylib.rolling_mean(
38 | series=pd.Series(index=dataframe.index, data=dataframe["low"]), window=timeperiod
39 | )
40 |
41 | high = qtpylib.rolling_mean(
42 | series=pd.Series(index=dataframe.index, data=dataframe["high"]), window=timeperiod
43 | )
44 |
45 | # Pivot
46 | data["pivot"] = qtpylib.rolling_mean(series=qtpylib.typical_price(dataframe), window=timeperiod)
47 |
48 | # Resistance #1
49 | data["r1"] = (2 * data["pivot"]) - low
50 |
51 | # Resistance #2
52 | data["s1"] = (2 * data["pivot"]) - high
53 |
54 | # Calculate Resistances and Supports >1
55 | for i in range(2, levels + 1):
56 | prev_support = data["s" + str(i - 1)]
57 | prev_resistance = data["r" + str(i - 1)]
58 |
59 | # Resistance
60 | data["r" + str(i)] = (data["pivot"] - prev_support) + prev_resistance
61 |
62 | # Support
63 | data["s" + str(i)] = data["pivot"] - (prev_resistance - prev_support)
64 |
65 | return pd.DataFrame(index=dataframe.index, data=data)
66 |
--------------------------------------------------------------------------------
/technical/qtpylib.py:
--------------------------------------------------------------------------------
1 | # Import here for easy access
2 | # Keep the original file in vendor to make the origin clear
3 | from technical.vendor.qtpylib.indicators import * # noqa
4 |
--------------------------------------------------------------------------------
/technical/trendline.py:
--------------------------------------------------------------------------------
1 | """
2 | defines trendline based indicator logic
3 | based on
4 | https://github.com/dysonance/Trendy
5 | """
6 |
7 |
8 | def gentrends(dataframe, field="close", window=1 / 3.0, charts=False):
9 | """
10 | Returns a Pandas dataframe with support and resistance lines.
11 |
12 | :param dataframe: incoming data matrix
13 | :param field: for which column would you like to generate the trendline
14 | :param window: How long the trendlines should be. If window < 1, then it
15 | will be taken as a percentage of the size of the data
16 | :param charts: Boolean value saying whether to print chart to screen
17 | """
18 |
19 | x = dataframe[field]
20 |
21 | import numpy as np
22 | import pandas as pd
23 |
24 | x = np.array(x)
25 |
26 | if window < 1:
27 | window = int(window * len(x))
28 |
29 | max1 = np.where(x == max(x))[0][0] # find the index of the abs max
30 | min1 = np.where(x == min(x))[0][0] # find the index of the abs min
31 |
32 | # First the max
33 | if max1 + window >= len(x):
34 | max2 = max(x[0 : (max1 - window)])
35 | else:
36 | max2 = max(x[(max1 + window) :])
37 |
38 | # Now the min
39 | if min1 - window <= 0:
40 | min2 = min(x[(min1 + window) :])
41 | else:
42 | min2 = min(x[0 : (min1 - window)])
43 |
44 | # Now find the indices of the secondary extrema
45 | max2 = np.where(x == max2)[0][0] # find the index of the 2nd max
46 | min2 = np.where(x == min2)[0][0] # find the index of the 2nd min
47 |
48 | # Create & extend the lines
49 | maxslope = (x[max1] - x[max2]) / (max1 - max2) # slope between max points
50 | minslope = (x[min1] - x[min2]) / (min1 - min2) # slope between min points
51 | a_max = x[max1] - (maxslope * max1) # y-intercept for max trendline
52 | a_min = x[min1] - (minslope * min1) # y-intercept for min trendline
53 | b_max = x[max1] + (maxslope * (len(x) - max1)) # extend to last data pt
54 | b_min = x[min1] + (minslope * (len(x) - min1)) # extend to last data point
55 | maxline = np.linspace(a_max, b_max, len(x)) # Y values between max's
56 | minline = np.linspace(a_min, b_min, len(x)) # Y values between min's
57 |
58 | # OUTPUT
59 | trends = np.transpose(np.array((x, maxline, minline)))
60 | trends = pd.DataFrame(
61 | trends, index=np.arange(0, len(x)), columns=["Data", "Max Line", "Min Line"]
62 | )
63 |
64 | if charts:
65 | from matplotlib.pyplot import close, grid, plot, savefig
66 |
67 | plot(trends)
68 | grid()
69 |
70 | if isinstance(charts, str):
71 | savefig(f"{charts}.png")
72 | else:
73 | savefig(f"{x[0]}_{x[len(x) - 1]}.png")
74 | close()
75 |
76 | return trends
77 |
78 |
79 | def segtrends(dataframe, field="close", segments=2, charts=False):
80 | """
81 | Turn minitrends to iterative process more easily adaptable to
82 | implementation in simple trading systems; allows backtesting functionality.
83 |
84 | :param dataframe: incoming data matrix
85 | :param field: for which column would you like to generate the trendline
86 | :param segments: Number of Trend line segments to generate
87 | :param charts: Boolean value saying whether to print chart to screen
88 | """
89 |
90 | x = dataframe[field]
91 | import numpy as np
92 |
93 | y = np.array(x)
94 |
95 | # Implement trendlines
96 | segments = int(segments)
97 | maxima = np.ones(segments)
98 | minima = np.ones(segments)
99 | segsize = int(len(y) / segments)
100 | for i in range(1, segments + 1):
101 | ind2 = i * segsize
102 | ind1 = ind2 - segsize
103 | maxima[i - 1] = max(y[ind1:ind2])
104 | minima[i - 1] = min(y[ind1:ind2])
105 |
106 | # Find the indexes of these maxima in the data
107 | x_maxima = np.ones(segments)
108 | x_minima = np.ones(segments)
109 | for i in range(0, segments):
110 | x_maxima[i] = np.where(y == maxima[i])[0][0]
111 | x_minima[i] = np.where(y == minima[i])[0][0]
112 |
113 | if charts:
114 | import matplotlib.pyplot as plt
115 |
116 | plt.plot(y)
117 | plt.grid(True)
118 |
119 | for i in range(0, segments - 1):
120 | maxslope = (maxima[i + 1] - maxima[i]) / (x_maxima[i + 1] - x_maxima[i])
121 | a_max = maxima[i] - (maxslope * x_maxima[i])
122 | b_max = maxima[i] + (maxslope * (len(y) - x_maxima[i]))
123 | maxline = np.linspace(a_max, b_max, len(y))
124 |
125 | minslope = (minima[i + 1] - minima[i]) / (x_minima[i + 1] - x_minima[i])
126 | a_min = minima[i] - (minslope * x_minima[i])
127 | b_min = minima[i] + (minslope * (len(y) - x_minima[i]))
128 | minline = np.linspace(a_min, b_min, len(y))
129 |
130 | if charts:
131 | plt.plot(maxline, "g")
132 | plt.plot(minline, "r")
133 |
134 | if charts:
135 | plt.show()
136 |
137 | import pandas as pd
138 |
139 | # OUTPUT
140 | # return x_maxima, maxima, x_minima, minima
141 | trends = np.transpose(np.array((x, maxline, minline)))
142 | trends = pd.DataFrame(
143 | trends, index=np.arange(0, len(x)), columns=["Data", "Max Line", "Min Line"]
144 | )
145 | return trends
146 |
--------------------------------------------------------------------------------
/technical/util.py:
--------------------------------------------------------------------------------
1 | """
2 | defines utility functions to be used
3 | """
4 |
5 | from pandas import DataFrame, DatetimeIndex, merge, to_datetime, to_timedelta
6 |
7 | TICKER_INTERVAL_MINUTES = {
8 | "1m": 1,
9 | "5m": 5,
10 | "15m": 15,
11 | "30m": 30,
12 | "1h": 60,
13 | "60m": 60,
14 | "2h": 120,
15 | "4h": 240,
16 | "6h": 360,
17 | "12h": 720,
18 | "1d": 1440,
19 | "1w": 10080,
20 | }
21 |
22 |
23 | def ticker_history_to_dataframe(ticker: list) -> DataFrame:
24 | """
25 | builds a dataframe based on the given ticker history
26 |
27 | :param ticker: See exchange.get_ticker_history
28 | :return: DataFrame
29 | """
30 | cols = ["date", "open", "high", "low", "close", "volume"]
31 | frame = DataFrame(ticker, columns=cols)
32 |
33 | frame["date"] = to_datetime(frame["date"], unit="ms", utc=True)
34 |
35 | # group by index and aggregate results to eliminate duplicate ticks
36 | frame = frame.groupby(by="date", as_index=False, sort=True).agg(
37 | {
38 | "open": "first",
39 | "high": "max",
40 | "low": "min",
41 | "close": "last",
42 | "volume": "max",
43 | }
44 | )
45 | frame.drop(frame.tail(1).index, inplace=True) # eliminate partial candle
46 | return frame
47 |
48 |
49 | def resample_to_interval(dataframe: DataFrame, interval):
50 | """
51 | Resamples the given dataframe to the desired interval.
52 | Please be aware you need to use resampled_merge to merge to another dataframe to
53 | avoid lookahead bias
54 |
55 | :param dataframe: dataframe containing close/high/low/open/volume
56 | :param interval: to which ticker value in minutes would you like to resample it
57 | :return:
58 | """
59 | if isinstance(interval, str):
60 | interval = TICKER_INTERVAL_MINUTES[interval]
61 |
62 | df = dataframe.copy()
63 | df = df.set_index(DatetimeIndex(df["date"]))
64 | ohlc_dict = {"open": "first", "high": "max", "low": "min", "close": "last", "volume": "sum"}
65 | # Resample to "left" border as dates are candle open dates
66 | df = df.resample(str(interval) + "min", label="left").agg(ohlc_dict).dropna()
67 | df.reset_index(inplace=True)
68 |
69 | return df
70 |
71 |
72 | def resampled_merge(original: DataFrame, resampled: DataFrame, fill_na=True):
73 | """
74 | Merges a resampled dataset back into the original data set.
75 | Resampled candle will match OHLC only if full timespan is available in original dataframe.
76 |
77 | :param original: the original non resampled dataset
78 | :param resampled: the resampled dataset
79 | :return: the merged dataset
80 | """
81 |
82 | original_int = compute_interval(original)
83 | resampled_int = compute_interval(resampled)
84 |
85 | if original_int < resampled_int:
86 | # Subtract "small" timeframe so merging is not delayed by 1 small candle.
87 | # Detailed explanation in https://github.com/freqtrade/freqtrade/issues/4073
88 | resampled["date_merge"] = (
89 | resampled["date"] + to_timedelta(resampled_int, "m") - to_timedelta(original_int, "m")
90 | )
91 | else:
92 | raise ValueError(
93 | "Tried to merge a faster timeframe to a slower timeframe. Upsampling is not possible."
94 | )
95 |
96 | # rename all the columns to the correct interval
97 | resampled.columns = [f"resample_{resampled_int}_{col}" for col in resampled.columns]
98 |
99 | dataframe = merge(
100 | original,
101 | resampled,
102 | how="left",
103 | left_on="date",
104 | right_on=f"resample_{resampled_int}_date_merge",
105 | )
106 | dataframe = dataframe.drop(f"resample_{resampled_int}_date_merge", axis=1)
107 |
108 | if fill_na:
109 | dataframe = dataframe.ffill()
110 |
111 | return dataframe
112 |
113 |
114 | def compute_interval(dataframe: DataFrame, exchange_interval=False):
115 | """
116 | Calculates the interval of the given dataframe for us
117 | :param dataframe:
118 | :param exchange_interval: should we convert the result to an exchange interval or just a number
119 | :return:
120 | """
121 | res_interval = int((dataframe["date"] - dataframe["date"].shift()).min().total_seconds() // 60)
122 |
123 | if exchange_interval:
124 | # convert to our allowed ticker values
125 | converted = list(TICKER_INTERVAL_MINUTES.keys())[
126 | list(TICKER_INTERVAL_MINUTES.values()).index(res_interval)
127 | ]
128 | if len(converted) > 0:
129 | return converted
130 | else:
131 | raise Exception(
132 | f"sorry, your interval of {res_interval} is not "
133 | f"supported in {TICKER_INTERVAL_MINUTES}"
134 | )
135 |
136 | return res_interval
137 |
--------------------------------------------------------------------------------
/technical/vendor/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/technical/vendor/__init__.py
--------------------------------------------------------------------------------
/technical/vendor/qtpylib/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/technical/vendor/qtpylib/__init__.py
--------------------------------------------------------------------------------
/technical/vendor/qtpylib/indicators.py:
--------------------------------------------------------------------------------
1 | # QTPyLib: Quantitative Trading Python Library
2 | # https://github.com/ranaroussi/qtpylib
3 | #
4 | # Copyright 2016-2018 Ran Aroussi
5 | #
6 | # Licensed under the Apache License, Version 2.0 (the "License");
7 | # you may not use this file except in compliance with the License.
8 | # You may obtain a copy of the License at
9 | #
10 | # http://www.apache.org/licenses/LICENSE-2.0
11 | #
12 | # Unless required by applicable law or agreed to in writing, software
13 | # distributed under the License is distributed on an "AS IS" BASIS,
14 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 | # See the License for the specific language governing permissions and
16 | # limitations under the License.
17 | #
18 |
19 | import warnings
20 | from datetime import datetime, timedelta
21 |
22 | import numpy as np
23 | import pandas as pd
24 | from pandas.core.base import PandasObject
25 |
26 | # =============================================
27 | warnings.simplefilter(action="ignore", category=RuntimeWarning)
28 |
29 | # =============================================
30 |
31 |
32 | def numpy_rolling_window(data, window):
33 | shape = data.shape[:-1] + (data.shape[-1] - window + 1, window)
34 | strides = data.strides + (data.strides[-1],)
35 | return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
36 |
37 |
38 | def numpy_rolling_series(func):
39 | def func_wrapper(data, window, as_source=False):
40 | series = data.values if isinstance(data, pd.Series) else data
41 |
42 | new_series = np.empty(len(series)) * np.nan
43 | calculated = func(series, window)
44 | new_series[-len(calculated) :] = calculated
45 |
46 | if as_source and isinstance(data, pd.Series):
47 | return pd.Series(index=data.index, data=new_series)
48 |
49 | return new_series
50 |
51 | return func_wrapper
52 |
53 |
54 | @numpy_rolling_series
55 | def numpy_rolling_mean(data, window, as_source=False):
56 | return np.mean(numpy_rolling_window(data, window), axis=-1)
57 |
58 |
59 | @numpy_rolling_series
60 | def numpy_rolling_std(data, window, as_source=False):
61 | return np.std(numpy_rolling_window(data, window), axis=-1, ddof=1)
62 |
63 |
64 | # ---------------------------------------------
65 |
66 |
67 | def session(df, start="17:00", end="16:00"):
68 | """remove previous globex day from df"""
69 | if df.empty:
70 | return df
71 |
72 | # get start/end/now as decimals
73 | int_start = list(map(int, start.split(":")))
74 | int_start = (int_start[0] + int_start[1] - 1 / 100) - 0.0001
75 | int_end = list(map(int, end.split(":")))
76 | int_end = int_end[0] + int_end[1] / 100
77 | int_now = df[-1:].index.hour[0] + (df[:1].index.minute[0]) / 100
78 |
79 | # same-dat session?
80 | is_same_day = int_end > int_start
81 |
82 | # set pointers
83 | curr = prev = df[-1:].index[0].strftime("%Y-%m-%d")
84 |
85 | # globex/forex session
86 | if not is_same_day:
87 | prev = (datetime.strptime(curr, "%Y-%m-%d") - timedelta(1)).strftime("%Y-%m-%d")
88 |
89 | # slice
90 | if int_now >= int_start:
91 | df = df[df.index >= curr + " " + start]
92 | else:
93 | df = df[df.index >= prev + " " + start]
94 |
95 | return df.copy()
96 |
97 |
98 | # ---------------------------------------------
99 |
100 |
101 | def heikinashi(bars):
102 | bars = bars.copy()
103 | bars["ha_close"] = (bars["open"] + bars["high"] + bars["low"] + bars["close"]) / 4
104 |
105 | # ha open
106 | bars.at[0, "ha_open"] = (bars.at[0, "open"] + bars.at[0, "close"]) / 2
107 | for i in range(1, len(bars)):
108 | bars.at[i, "ha_open"] = (bars.at[i - 1, "ha_open"] + bars.at[i - 1, "ha_close"]) / 2
109 |
110 | bars["ha_high"] = bars.loc[:, ["high", "ha_open", "ha_close"]].max(axis=1)
111 | bars["ha_low"] = bars.loc[:, ["low", "ha_open", "ha_close"]].min(axis=1)
112 |
113 | return pd.DataFrame(
114 | index=bars.index,
115 | data={
116 | "open": bars["ha_open"],
117 | "high": bars["ha_high"],
118 | "low": bars["ha_low"],
119 | "close": bars["ha_close"],
120 | },
121 | )
122 |
123 |
124 | # ---------------------------------------------
125 |
126 |
127 | def tdi(series, rsi_lookback=13, rsi_smooth_len=2, rsi_signal_len=7, bb_lookback=34, bb_std=1.6185):
128 | rsi_data = rsi(series, rsi_lookback)
129 | rsi_smooth = sma(rsi_data, rsi_smooth_len)
130 | rsi_signal = sma(rsi_data, rsi_signal_len)
131 |
132 | bb_series = bollinger_bands(rsi_data, bb_lookback, bb_std)
133 |
134 | return pd.DataFrame(
135 | index=series.index,
136 | data={
137 | "rsi": rsi_data,
138 | "rsi_signal": rsi_signal,
139 | "rsi_smooth": rsi_smooth,
140 | "rsi_bb_upper": bb_series["upper"],
141 | "rsi_bb_lower": bb_series["lower"],
142 | "rsi_bb_mid": bb_series["mid"],
143 | },
144 | )
145 |
146 |
147 | # ---------------------------------------------
148 |
149 |
150 | def awesome_oscillator(df, weighted=False, fast=5, slow=34):
151 | midprice = (df["high"] + df["low"]) / 2
152 |
153 | if weighted:
154 | ao = (midprice.ewm(fast).mean() - midprice.ewm(slow).mean()).values
155 | else:
156 | ao = numpy_rolling_mean(midprice, fast) - numpy_rolling_mean(midprice, slow)
157 |
158 | return pd.Series(index=df.index, data=ao)
159 |
160 |
161 | # ---------------------------------------------
162 |
163 |
164 | def nans(length=1):
165 | mtx = np.empty(length)
166 | mtx[:] = np.nan
167 | return mtx
168 |
169 |
170 | # ---------------------------------------------
171 |
172 |
173 | def typical_price(bars):
174 | res = (bars["high"] + bars["low"] + bars["close"]) / 3.0
175 | return pd.Series(index=bars.index, data=res)
176 |
177 |
178 | # ---------------------------------------------
179 |
180 |
181 | def mid_price(bars):
182 | res = (bars["high"] + bars["low"]) / 2.0
183 | return pd.Series(index=bars.index, data=res)
184 |
185 |
186 | # ---------------------------------------------
187 |
188 |
189 | def ibs(bars):
190 | """Internal bar strength"""
191 | res = np.round((bars["close"] - bars["low"]) / (bars["high"] - bars["low"]), 2)
192 | return pd.Series(index=bars.index, data=res)
193 |
194 |
195 | # ---------------------------------------------
196 |
197 |
198 | def true_range(bars):
199 | return pd.DataFrame(
200 | {
201 | "hl": bars["high"] - bars["low"],
202 | "hc": abs(bars["high"] - bars["close"].shift(1)),
203 | "lc": abs(bars["low"] - bars["close"].shift(1)),
204 | }
205 | ).max(axis=1)
206 |
207 |
208 | # ---------------------------------------------
209 |
210 |
211 | def atr(bars, window=14, exp=False):
212 | tr = true_range(bars)
213 |
214 | if exp:
215 | res = rolling_weighted_mean(tr, window)
216 | else:
217 | res = rolling_mean(tr, window)
218 |
219 | return pd.Series(res)
220 |
221 |
222 | # ---------------------------------------------
223 |
224 |
225 | def crossed(series1, series2, direction=None):
226 | if isinstance(series1, np.ndarray):
227 | series1 = pd.Series(series1)
228 |
229 | if isinstance(series2, (float, int, np.ndarray, np.integer, np.floating)):
230 | series2 = pd.Series(index=series1.index, data=series2)
231 |
232 | if direction is None or direction == "above":
233 | above = pd.Series((series1 > series2) & (series1.shift(1) <= series2.shift(1)))
234 |
235 | if direction is None or direction == "below":
236 | below = pd.Series((series1 < series2) & (series1.shift(1) >= series2.shift(1)))
237 |
238 | if direction is None:
239 | return above | below
240 |
241 | return above if direction == "above" else below
242 |
243 |
244 | def crossed_above(series1, series2):
245 | return crossed(series1, series2, "above")
246 |
247 |
248 | def crossed_below(series1, series2):
249 | return crossed(series1, series2, "below")
250 |
251 |
252 | # ---------------------------------------------
253 |
254 |
255 | def rolling_std(series, window=200, min_periods=None):
256 | min_periods = window if min_periods is None else min_periods
257 | if min_periods == window and len(series) > window:
258 | return numpy_rolling_std(series, window, True)
259 | else:
260 | try:
261 | return series.rolling(window=window, min_periods=min_periods).std()
262 | except Exception as e: # noqa: F841
263 | return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
264 |
265 |
266 | # ---------------------------------------------
267 |
268 |
269 | def rolling_mean(series, window=200, min_periods=None):
270 | min_periods = window if min_periods is None else min_periods
271 | if min_periods == window and len(series) > window:
272 | return numpy_rolling_mean(series, window, True)
273 | else:
274 | try:
275 | return series.rolling(window=window, min_periods=min_periods).mean()
276 | except Exception as e: # noqa: F841
277 | return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
278 |
279 |
280 | # ---------------------------------------------
281 |
282 |
283 | def rolling_min(series, window=14, min_periods=None):
284 | min_periods = window if min_periods is None else min_periods
285 | try:
286 | return series.rolling(window=window, min_periods=min_periods).min()
287 | except Exception as e: # noqa: F841
288 | return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
289 |
290 |
291 | # ---------------------------------------------
292 |
293 |
294 | def rolling_max(series, window=14, min_periods=None):
295 | min_periods = window if min_periods is None else min_periods
296 | try:
297 | return series.rolling(window=window, min_periods=min_periods).max()
298 | except Exception as e: # noqa: F841
299 | return pd.Series(series).rolling(window=window, min_periods=min_periods).max()
300 |
301 |
302 | # ---------------------------------------------
303 |
304 |
305 | def rolling_weighted_mean(series, window=200, min_periods=None):
306 | min_periods = window if min_periods is None else min_periods
307 | try:
308 | return series.ewm(span=window, min_periods=min_periods).mean()
309 | except Exception as e: # noqa: F841
310 | return pd.ewma(series, span=window, min_periods=min_periods)
311 |
312 |
313 | # ---------------------------------------------
314 |
315 |
316 | def hull_moving_average(series, window=200, min_periods=None):
317 | min_periods = window if min_periods is None else min_periods
318 | ma = (2 * rolling_weighted_mean(series, window / 2, min_periods)) - rolling_weighted_mean(
319 | series, window, min_periods
320 | )
321 | return rolling_weighted_mean(ma, np.sqrt(window), min_periods)
322 |
323 |
324 | # ---------------------------------------------
325 |
326 |
327 | def sma(series, window=200, min_periods=None):
328 | return rolling_mean(series, window=window, min_periods=min_periods)
329 |
330 |
331 | # ---------------------------------------------
332 |
333 |
334 | def wma(series, window=200, min_periods=None):
335 | return rolling_weighted_mean(series, window=window, min_periods=min_periods)
336 |
337 |
338 | # ---------------------------------------------
339 |
340 |
341 | def hma(series, window=200, min_periods=None):
342 | return hull_moving_average(series, window=window, min_periods=min_periods)
343 |
344 |
345 | # ---------------------------------------------
346 |
347 |
348 | def vwap(bars):
349 | """
350 | calculate vwap of entire time series
351 | (input can be pandas series or numpy array)
352 | bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
353 | """
354 | raise ValueError(
355 | "using `qtpylib.vwap` facilitates lookahead bias. Please use "
356 | "`qtpylib.rolling_vwap` instead, which calculates vwap in a rolling manner."
357 | )
358 | # typical = ((bars['high'] + bars['low'] + bars['close']) / 3).values
359 | # volume = bars['volume'].values
360 |
361 | # return pd.Series(index=bars.index,
362 | # data=np.cumsum(volume * typical) / np.cumsum(volume))
363 |
364 |
365 | # ---------------------------------------------
366 |
367 |
368 | def rolling_vwap(bars, window=200, min_periods=None):
369 | """
370 | calculate vwap using moving window
371 | (input can be pandas series or numpy array)
372 | bars are usually mid [ (h+l)/2 ] or typical [ (h+l+c)/3 ]
373 | """
374 | min_periods = window if min_periods is None else min_periods
375 |
376 | typical = (bars["high"] + bars["low"] + bars["close"]) / 3
377 | volume = bars["volume"]
378 |
379 | left = (volume * typical).rolling(window=window, min_periods=min_periods).sum()
380 | right = volume.rolling(window=window, min_periods=min_periods).sum()
381 |
382 | return (
383 | pd.Series(index=bars.index, data=(left / right))
384 | .replace([np.inf, -np.inf], float("NaN"))
385 | .ffill()
386 | )
387 |
388 |
389 | # ---------------------------------------------
390 |
391 |
392 | def rsi(series, window=14):
393 | """
394 | compute the n period relative strength indicator
395 | """
396 |
397 | # 100-(100/relative_strength)
398 | deltas = np.diff(series)
399 | seed = deltas[: window + 1]
400 |
401 | # default values
402 | ups = seed[seed > 0].sum() / window
403 | downs = -seed[seed < 0].sum() / window
404 | rsival = np.zeros_like(series)
405 | rsival[:window] = 100.0 - 100.0 / (1.0 + ups / downs)
406 |
407 | # period values
408 | for i in range(window, len(series)):
409 | delta = deltas[i - 1]
410 | if delta > 0:
411 | upval = delta
412 | downval = 0
413 | else:
414 | upval = 0
415 | downval = -delta
416 |
417 | ups = (ups * (window - 1) + upval) / window
418 | downs = (downs * (window - 1.0) + downval) / window
419 | rsival[i] = 100.0 - 100.0 / (1.0 + ups / downs)
420 |
421 | # return rsival
422 | return pd.Series(index=series.index, data=rsival)
423 |
424 |
425 | # ---------------------------------------------
426 |
427 |
428 | def macd(series, fast=3, slow=10, smooth=16):
429 | """
430 | compute the MACD (Moving Average Convergence/Divergence)
431 | using a fast and slow exponential moving avg'
432 | return value is emaslow, emafast, macd which are len(x) arrays
433 | """
434 | macd_line = rolling_weighted_mean(series, window=fast) - rolling_weighted_mean(
435 | series, window=slow
436 | )
437 | signal = rolling_weighted_mean(macd_line, window=smooth)
438 | histogram = macd_line - signal
439 | # return macd_line, signal, histogram
440 | return pd.DataFrame(
441 | index=series.index,
442 | data={"macd": macd_line.values, "signal": signal.values, "histogram": histogram.values},
443 | )
444 |
445 |
446 | # ---------------------------------------------
447 |
448 |
449 | def bollinger_bands(series, window=20, stds=2):
450 | ma = rolling_mean(series, window=window, min_periods=1)
451 | std = rolling_std(series, window=window, min_periods=1)
452 | upper = ma + std * stds
453 | lower = ma - std * stds
454 |
455 | return pd.DataFrame(index=series.index, data={"upper": upper, "mid": ma, "lower": lower})
456 |
457 |
458 | # ---------------------------------------------
459 |
460 |
461 | def weighted_bollinger_bands(series, window=20, stds=2):
462 | ema = rolling_weighted_mean(series, window=window)
463 | std = rolling_std(series, window=window)
464 | upper = ema + std * stds
465 | lower = ema - std * stds
466 |
467 | return pd.DataFrame(
468 | index=series.index, data={"upper": upper.values, "mid": ema.values, "lower": lower.values}
469 | )
470 |
471 |
472 | # ---------------------------------------------
473 |
474 |
475 | def returns(series):
476 | try:
477 | res = (series / series.shift(1) - 1).replace([np.inf, -np.inf], float("NaN"))
478 | except Exception as e: # noqa: F841
479 | res = nans(len(series))
480 |
481 | return pd.Series(index=series.index, data=res)
482 |
483 |
484 | # ---------------------------------------------
485 |
486 |
487 | def log_returns(series):
488 | try:
489 | res = np.log(series / series.shift(1)).replace([np.inf, -np.inf], float("NaN"))
490 | except Exception as e: # noqa: F841
491 | res = nans(len(series))
492 |
493 | return pd.Series(index=series.index, data=res)
494 |
495 |
496 | # ---------------------------------------------
497 |
498 |
499 | def implied_volatility(series, window=252):
500 | try:
501 | logret = np.log(series / series.shift(1)).replace([np.inf, -np.inf], float("NaN"))
502 | res = numpy_rolling_std(logret, window) * np.sqrt(window)
503 | except Exception as e: # noqa: F841
504 | res = nans(len(series))
505 |
506 | return pd.Series(index=series.index, data=res)
507 |
508 |
509 | # ---------------------------------------------
510 |
511 |
512 | def keltner_channel(bars, window=14, atrs=2):
513 | typical_mean = rolling_mean(typical_price(bars), window)
514 | atrval = atr(bars, window) * atrs
515 |
516 | upper = typical_mean + atrval
517 | lower = typical_mean - atrval
518 |
519 | return pd.DataFrame(
520 | index=bars.index,
521 | data={"upper": upper.values, "mid": typical_mean.values, "lower": lower.values},
522 | )
523 |
524 |
525 | # ---------------------------------------------
526 |
527 |
528 | def roc(series, window=14):
529 | """
530 | compute rate of change
531 | """
532 | res = (series - series.shift(window)) / series.shift(window)
533 | return pd.Series(index=series.index, data=res)
534 |
535 |
536 | # ---------------------------------------------
537 |
538 |
539 | def cci(series, window=14):
540 | """
541 | compute commodity channel index
542 | """
543 | price = typical_price(series)
544 | typical_mean = rolling_mean(price, window)
545 | res = (price - typical_mean) / (0.015 * np.std(typical_mean))
546 | return pd.Series(index=series.index, data=res)
547 |
548 |
549 | # ---------------------------------------------
550 |
551 |
552 | def stoch(df, window=14, d=3, k=3, fast=False):
553 | """
554 | compute the n period relative strength indicator
555 | http://excelta.blogspot.co.il/2013/09/stochastic-oscillator-technical.html
556 | """
557 |
558 | my_df = pd.DataFrame(index=df.index)
559 |
560 | my_df["rolling_max"] = df["high"].rolling(window).max()
561 | my_df["rolling_min"] = df["low"].rolling(window).min()
562 |
563 | my_df["fast_k"] = (
564 | 100 * (df["close"] - my_df["rolling_min"]) / (my_df["rolling_max"] - my_df["rolling_min"])
565 | )
566 | my_df["fast_d"] = my_df["fast_k"].rolling(d).mean()
567 |
568 | if fast:
569 | return my_df.loc[:, ["fast_k", "fast_d"]]
570 |
571 | my_df["slow_k"] = my_df["fast_k"].rolling(k).mean()
572 | my_df["slow_d"] = my_df["slow_k"].rolling(d).mean()
573 |
574 | return my_df.loc[:, ["slow_k", "slow_d"]]
575 |
576 |
577 | # ---------------------------------------------
578 |
579 |
580 | def zlma(series, window=20, min_periods=None, kind="ema"):
581 | """
582 | John Ehlers' Zero lag (exponential) moving average
583 | https://en.wikipedia.org/wiki/Zero_lag_exponential_moving_average
584 | """
585 | min_periods = window if min_periods is None else min_periods
586 |
587 | lag = (window - 1) // 2
588 | series = 2 * series - series.shift(lag)
589 | if kind in ["ewm", "ema"]:
590 | return wma(series, lag, min_periods)
591 | elif kind == "hma":
592 | return hma(series, lag, min_periods)
593 | return sma(series, lag, min_periods)
594 |
595 |
596 | def zlema(series, window, min_periods=None):
597 | return zlma(series, window, min_periods, kind="ema")
598 |
599 |
600 | def zlsma(series, window, min_periods=None):
601 | return zlma(series, window, min_periods, kind="sma")
602 |
603 |
604 | def zlhma(series, window, min_periods=None):
605 | return zlma(series, window, min_periods, kind="hma")
606 |
607 |
608 | # ---------------------------------------------
609 |
610 |
611 | def zscore(bars, window=20, stds=1, col="close"):
612 | """get zscore of price"""
613 | std = numpy_rolling_std(bars[col], window)
614 | mean = numpy_rolling_mean(bars[col], window)
615 | return (bars[col] - mean) / (std * stds)
616 |
617 |
618 | # ---------------------------------------------
619 |
620 |
621 | def pvt(bars):
622 | """Price Volume Trend"""
623 | trend = ((bars["close"] - bars["close"].shift(1)) / bars["close"].shift(1)) * bars["volume"]
624 | return trend.cumsum()
625 |
626 |
627 | def chopiness(bars, window=14):
628 | atrsum = true_range(bars).rolling(window).sum()
629 | highs = bars["high"].rolling(window).max()
630 | lows = bars["low"].rolling(window).min()
631 | return 100 * np.log10(atrsum / (highs - lows)) / np.log10(window)
632 |
633 |
634 | # =============================================
635 |
636 |
637 | PandasObject.session = session
638 | PandasObject.atr = atr
639 | PandasObject.bollinger_bands = bollinger_bands
640 | PandasObject.cci = cci
641 | PandasObject.crossed = crossed
642 | PandasObject.crossed_above = crossed_above
643 | PandasObject.crossed_below = crossed_below
644 | PandasObject.heikinashi = heikinashi
645 | PandasObject.hull_moving_average = hull_moving_average
646 | PandasObject.ibs = ibs
647 | PandasObject.implied_volatility = implied_volatility
648 | PandasObject.keltner_channel = keltner_channel
649 | PandasObject.log_returns = log_returns
650 | PandasObject.macd = macd
651 | PandasObject.returns = returns
652 | PandasObject.roc = roc
653 | PandasObject.rolling_max = rolling_max
654 | PandasObject.rolling_min = rolling_min
655 | PandasObject.rolling_mean = rolling_mean
656 | PandasObject.rolling_std = rolling_std
657 | PandasObject.rsi = rsi
658 | PandasObject.stoch = stoch
659 | PandasObject.zscore = zscore
660 | PandasObject.pvt = pvt
661 | PandasObject.chopiness = chopiness
662 | PandasObject.tdi = tdi
663 | PandasObject.true_range = true_range
664 | PandasObject.mid_price = mid_price
665 | PandasObject.typical_price = typical_price
666 | PandasObject.vwap = vwap
667 | PandasObject.rolling_vwap = rolling_vwap
668 | PandasObject.weighted_bollinger_bands = weighted_bollinger_bands
669 | PandasObject.rolling_weighted_mean = rolling_weighted_mean
670 |
671 | PandasObject.sma = sma
672 | PandasObject.wma = wma
673 | PandasObject.ema = wma
674 | PandasObject.hma = hma
675 |
676 | PandasObject.zlsma = zlsma
677 | PandasObject.zlwma = zlema
678 | PandasObject.zlema = zlema
679 | PandasObject.zlhma = zlhma
680 | PandasObject.zlma = zlma
681 |
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/tests/__init__.py
--------------------------------------------------------------------------------
/tests/conftest.py:
--------------------------------------------------------------------------------
1 | # pragma pylint: disable=missing-docstring
2 | import json
3 | import logging
4 |
5 | import pytest
6 | from pandas import DataFrame
7 |
8 | from technical.util import ticker_history_to_dataframe
9 |
10 | logging.getLogger("").setLevel(logging.INFO)
11 |
12 |
13 | @pytest.fixture(scope="class")
14 | def testdata_1m_btc() -> DataFrame:
15 | with open("tests/testdata/UNITTEST_BTC-1m.json") as data_file:
16 | return ticker_history_to_dataframe(json.load(data_file))
17 |
--------------------------------------------------------------------------------
/tests/exchange/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/tests/exchange/__init__.py
--------------------------------------------------------------------------------
/tests/image/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/tests/image/__init__.py
--------------------------------------------------------------------------------
/tests/image/test_get_coin_in_image.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/freqtrade/technical/57958bb059d4a798132f42605064b33163d46ae7/tests/image/test_get_coin_in_image.py
--------------------------------------------------------------------------------
/tests/test_indicator_helpers.py:
--------------------------------------------------------------------------------
1 | # pragma pylint: disable=missing-docstring
2 |
3 | import pandas as pd
4 |
5 | from technical.indicator_helpers import went_down, went_up
6 |
7 |
8 | def test_went_up():
9 | series = pd.Series([1, 2, 3, 1])
10 | assert went_up(series).equals(pd.Series([False, True, True, False]))
11 |
12 |
13 | def test_went_down():
14 | series = pd.Series([1, 2, 3, 1])
15 | assert went_down(series).equals(pd.Series([False, False, False, True]))
16 |
--------------------------------------------------------------------------------
/tests/test_indicators.py:
--------------------------------------------------------------------------------
1 | import numpy
2 |
3 |
4 | def test_atr(testdata_1m_btc):
5 | from technical.indicators import atr
6 |
7 | result = testdata_1m_btc
8 | result["atr"] = atr(testdata_1m_btc, 14)
9 |
10 | result = result.tail(10)
11 |
12 | assert result["atr"].all() > 0
13 |
14 |
15 | def test_atr_percent(testdata_1m_btc):
16 | from technical.indicators import atr_percent
17 |
18 | result = testdata_1m_btc
19 | result["atr"] = atr_percent(testdata_1m_btc, 14)
20 |
21 | result = result.tail(10)
22 |
23 | assert result["atr"].all() > 0
24 |
25 |
26 | def test_bollinger_bands(testdata_1m_btc):
27 | from technical.indicators import bollinger_bands
28 |
29 | result = bollinger_bands(testdata_1m_btc)
30 |
31 | result = result.tail(10)
32 |
33 | assert result["bb_lower"].all() > 0
34 | assert result["bb_middle"].all() > 0
35 | assert result["bb_upper"].all() > 0
36 |
37 |
38 | def test_chaikin_money_flow(testdata_1m_btc):
39 | from technical.indicators import chaikin_money_flow, cmf
40 |
41 | assert cmf is chaikin_money_flow
42 |
43 | result = chaikin_money_flow(testdata_1m_btc, 14)
44 |
45 | # drop nan, they are expected, based on the period
46 | result = result[~numpy.isnan(result)]
47 |
48 | assert result.min() >= -1
49 | assert result.max() <= 1
50 |
51 |
52 | def test_fibonacci_retracements(testdata_1m_btc):
53 | from technical.indicators import fibonacci_retracements
54 |
55 | result = fibonacci_retracements(testdata_1m_btc)
56 |
57 | assert result.min() < 1.0e-8
58 | assert result.max() > 1.0 - 1.0e-8
59 |
60 |
61 | def test_return_on_investment():
62 | from pandas import DataFrame
63 |
64 | from technical.indicators import return_on_investment
65 |
66 | close = numpy.array([100, 200, 300, 400, 500, 600])
67 | buys = numpy.array([[0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 1], [1, 0, 1, 0, 1, 0]])
68 | rois = numpy.array(
69 | [
70 | [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
71 | [0.0, 0.0, 50.0, 0.0, 25.0, 0.0],
72 | [0.0, 100.0, 0.0, 33.33, 0.0, 20.0],
73 | ]
74 | )
75 |
76 | for buy, roi in zip(buys, rois):
77 | dataframe = DataFrame()
78 | dataframe["close"] = close
79 | dataframe["buy"] = buy
80 |
81 | dataframe = return_on_investment(dataframe, decimals=2)
82 | assert (dataframe["roi"] >= 0).all()
83 | assert (dataframe.loc[dataframe["buy"] == 1, "roi"] == 0).all()
84 | assert numpy.allclose(numpy.array(dataframe["roi"]), roi)
85 |
--------------------------------------------------------------------------------
/tests/test_indicators_generic.py:
--------------------------------------------------------------------------------
1 | import pytest
2 | from pandas import DataFrame, Series
3 |
4 | import technical.indicators as ti
5 |
6 |
7 | @pytest.mark.parametrize(
8 | "function,args,responsetype,new_column_names",
9 | [
10 | (ti.atr_percent, [], "series", None),
11 | (ti.atr, [], "series", None),
12 | (ti.bollinger_bands, [], "df", ["bb_lower", "bb_middle", "bb_upper"]),
13 | (ti.chaikin_money_flow, [], "series", None),
14 | (ti.MADR, [], "df", ["rate", "plusdev", "minusdev", "stdcenter"]),
15 | (ti.PMAX, [], "df", ["ATR_10", "pm_10_3_12_1", "pmX_10_3_12_1"]),
16 | (ti.RMI, [], "series", None),
17 | (ti.SSLChannels, [], "tuple", None),
18 | (ti.TKE, [], "tuple", None),
19 | (ti.VIDYA, [], "series", None),
20 | (ti.atr_percent, [], "series", None),
21 | (ti.chaikin_money_flow, [], "series", None),
22 | (ti.chopiness, [], "series", None),
23 | (ti.cmf, [], "series", None),
24 | (ti.ema, [10], "series", None),
25 | (ti.fibonacci_retracements, [], "series", None),
26 | (ti.hull_moving_average, [10], "series", None),
27 | (ti.ichimoku, [], "dict", None),
28 | (ti.laguerre, [], "series", None),
29 | (ti.madrid_sqz, [], "tuple", None),
30 | (ti.mmar, [], "tuple", None),
31 | (ti.osc, [], "series", None),
32 | # (ti.return_on_investment, [], 'series', None),
33 | (ti.sma, [10], "series", None),
34 | # (ti.stc, [], "series", None), # disabled for slightly different results on ARM
35 | (ti.td_sequential, [], "df", ["TD_count"]),
36 | (ti.dema, [10], "series", None),
37 | (ti.tema, [10], "series", None),
38 | (ti.tv_hma, [10], "series", None),
39 | (ti.tv_wma, [10], "series", None),
40 | (ti.tv_alma, [], "series", None),
41 | (ti.vfi, [], "tuple", None),
42 | (ti.vpci, [], "series", None),
43 | (ti.vpcii, [], "series", None),
44 | (ti.vwma, [10], "series", None),
45 | (ti.vwmacd, [], "df", ["vwmacd", "signal", "hist"]),
46 | (ti.williams_percent, [], "series", None),
47 | ],
48 | )
49 | def test_indicators_generic_interface(
50 | function, args, responsetype, new_column_names, testdata_1m_btc, snapshot
51 | ):
52 | assert 13680 == len(testdata_1m_btc)
53 | # Ensure all builtin indicators have the same interface
54 | input_df = testdata_1m_btc.iloc[-1000:].copy()
55 | res = function(input_df, *args)
56 |
57 | final_result = None
58 | if responsetype == "tuple":
59 | assert isinstance(res, tuple)
60 | assert len(res[0]) == 1000
61 | assert len(res[1]) == 1000
62 | final_result = input_df
63 | for i, x in enumerate(res):
64 | final_result.loc[:, f"{function.__name__}_{i}"] = x
65 |
66 | elif responsetype == "dict":
67 | assert isinstance(res, dict)
68 | assert len(res["tenkan_sen"]) == 1000
69 | final_result = input_df
70 |
71 | for k, v in res.items():
72 | final_result.loc[:, f"{function.__name__}_{k}"] = v
73 | elif responsetype == "series":
74 | assert isinstance(res, Series)
75 | assert len(res) == 1000
76 | final_result = input_df
77 | final_result.loc[:, function.__name__] = res
78 | elif responsetype == "df":
79 | # Result is dataframe
80 | assert isinstance(res, DataFrame)
81 | assert len(res) == 1000
82 | final_result = res
83 | if len(new_column_names) > 0:
84 | assert len(res.columns) == len(new_column_names) + 6
85 | default_columns = ["date", "open", "high", "low", "close", "volume"]
86 | cols = set(res.columns)
87 | assert cols == set(new_column_names + default_columns)
88 | # assert set()
89 | assert all([x in res.columns for x in new_column_names])
90 | else:
91 | assert False
92 |
93 | # Ensure full output is serialized
94 | # can probably be removed once https://github.com/syrupy-project/syrupy/issues/887
95 | # is implemented
96 | assert isinstance(final_result, DataFrame)
97 | assert len(final_result) == 1000
98 | csv_string = final_result.to_csv(index=False, float_format="%.10f")
99 | assert snapshot == csv_string
100 |
--------------------------------------------------------------------------------
/tests/test_util.py:
--------------------------------------------------------------------------------
1 | import json
2 |
3 | import pandas as pd
4 |
5 | from technical.indicators import chaikin_money_flow
6 | from technical.util import resample_to_interval, resampled_merge, ticker_history_to_dataframe
7 |
8 |
9 | def test_ticker_to_dataframe():
10 | with open("tests/testdata/UNITTEST_BTC-1m.json") as data_file:
11 | data = ticker_history_to_dataframe(json.load(data_file))
12 | assert len(data) > 0
13 |
14 |
15 | def test_resample_to_interval(testdata_1m_btc):
16 | result = resample_to_interval(testdata_1m_btc, 5)
17 |
18 | # should be roughly a factor 5
19 | assert len(testdata_1m_btc) / len(result) > 4.5
20 | assert len(testdata_1m_btc) / len(result) < 5.5
21 |
22 |
23 | def test_resampled_merge(testdata_1m_btc):
24 | resampled = resample_to_interval(testdata_1m_btc, 5)
25 |
26 | merged = resampled_merge(testdata_1m_btc, resampled)
27 |
28 | assert len(merged) == len(testdata_1m_btc)
29 | assert "resample_5_open" in merged
30 | assert "resample_5_close" in merged
31 | assert "resample_5_low" in merged
32 | assert "resample_5_high" in merged
33 |
34 | assert "resample_5_date" in merged
35 | assert "resample_5_volume" in merged
36 | # Verify the assignment goes to the correct candle
37 | # If resampling to 5m, then the resampled value needs to be on the 5m candle.
38 | date = pd.to_datetime("2017-11-14 22:45:00", utc=True)
39 | assert merged.loc[merged["date"] == "2017-11-14 22:48:00", "resample_5_date"].iloc[0] != date
40 | # The 5m candle for 22:45 is available at 22:50,
41 | # when both :49 1m and :45 5m candles close
42 | assert merged.loc[merged["date"] == "2017-11-14 22:49:00", "resample_5_date"].iloc[0] == date
43 | assert merged.loc[merged["date"] == "2017-11-14 22:50:00", "resample_5_date"].iloc[0] == date
44 | assert merged.loc[merged["date"] == "2017-11-14 22:51:00", "resample_5_date"].iloc[0] == date
45 | assert merged.loc[merged["date"] == "2017-11-14 22:52:00", "resample_5_date"].iloc[0] == date
46 | assert merged.loc[merged["date"] == "2017-11-14 22:53:00", "resample_5_date"].iloc[0] == date
47 | # The 5m candle for 22:50 is available at 22:54,
48 | # when both :54 1m and :50 5m candles close
49 | date = pd.to_datetime("2017-11-14 22:50:00", utc=True)
50 | assert merged.loc[merged["date"] == "2017-11-14 22:54:00", "resample_5_date"].iloc[0] == date
51 | assert merged.loc[merged["date"] == "2017-11-14 22:55:00", "resample_5_date"].iloc[0] == date
52 | assert merged.loc[merged["date"] == "2017-11-14 22:56:00", "resample_5_date"].iloc[0] == date
53 | assert merged.loc[merged["date"] == "2017-11-14 22:57:00", "resample_5_date"].iloc[0] == date
54 | assert merged.loc[merged["date"] == "2017-11-14 22:58:00", "resample_5_date"].iloc[0] == date
55 |
56 |
57 | def test_resampled_merge_contains_indicator(testdata_1m_btc):
58 | resampled = resample_to_interval(testdata_1m_btc, 5)
59 | resampled["cmf"] = chaikin_money_flow(resampled, 5)
60 | merged = resampled_merge(testdata_1m_btc, resampled)
61 |
62 | print(merged)
63 | assert "resample_5_cmf" in merged
64 |
--------------------------------------------------------------------------------