├── Decision_tree
└── information_gain.ipynb
├── Iceberg_Detection
├── add_iceberg.R
├── icebergPresent.jpg
└── lookForIceberg.py
├── Logistic_Regression
└── logistic_regression.py
├── Price Prediction with Machine Learning methods.pdf
├── README.md
├── Rebuild_orderbook
├── data process.py
├── dataProcess0412.py
├── merge.py
├── processData.r
├── readData.py
└── takeLagBookValue.r
├── SVM
└── SVM.R
├── Sample_data
└── sample_ES_DATA_20150917.txt
└── Visualization
├── AttributeVisulization.R
├── AttributesVisualization.py
├── PriceAndPredictionPlot.R
├── Rplot.pdf
├── iceberg.png
├── presentation.png
├── visualizeIceberg.r
└── visualizeSpread.R
/Decision_tree/information_gain.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 73,
6 | "metadata": {
7 | "collapsed": false
8 | },
9 | "outputs": [],
10 | "source": [
11 | "from math import log\n",
12 | "def calcShannonEnt(dataSet):\n",
13 | " numEntries = len(dataSet)\n",
14 | " labelCounts = {}\n",
15 | " for featVec in dataSet:\n",
16 | " currentLabel = featVec[-1]\n",
17 | " #print(featVec[-1])\n",
18 | " if currentLabel not in labelCounts.keys():\n",
19 | " labelCounts[currentLabel] = 0\n",
20 | " labelCounts[currentLabel] += 1\n",
21 | "\n",
22 | " shannonEnt = 0.0\n",
23 | " for key in labelCounts:\n",
24 | " #print(labelCounts[key],numEntries)\n",
25 | " prob = float(labelCounts[key])/numEntries\n",
26 | " shannonEnt -= prob * log(prob,2)\n",
27 | " return shannonEnt"
28 | ]
29 | },
30 | {
31 | "cell_type": "code",
32 | "execution_count": 74,
33 | "metadata": {
34 | "collapsed": false
35 | },
36 | "outputs": [],
37 | "source": [
38 | "def createDataSet():\n",
39 | " dataSet = [[1, 1, 'yes'],\n",
40 | " [1, 1, 'yes'],\n",
41 | " [1, 0, 'no'],\n",
42 | " [0, 1, 'no'],\n",
43 | " [0, 1, 'no']]\n",
44 | " labels = ['no surfacing','flippers']\n",
45 | " return dataSet, labels"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 75,
51 | "metadata": {
52 | "collapsed": false
53 | },
54 | "outputs": [
55 | {
56 | "data": {
57 | "text/plain": [
58 | "0.9709505944546686"
59 | ]
60 | },
61 | "execution_count": 75,
62 | "metadata": {},
63 | "output_type": "execute_result"
64 | }
65 | ],
66 | "source": [
67 | "myDat,labels=createDataSet()\n",
68 | "calcShannonEnt(myDat)"
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": 76,
74 | "metadata": {
75 | "collapsed": false
76 | },
77 | "outputs": [],
78 | "source": [
79 | "def splitDataSet(dataSet, axis, value):\n",
80 | " retDataSet = []\n",
81 | " for featVec in dataSet:\n",
82 | " if featVec[axis] == value:# append all the features except axis\n",
83 | " reducedFeatVec = featVec[:axis]\n",
84 | " reducedFeatVec.extend(featVec[axis+1:])\n",
85 | " retDataSet.append(reducedFeatVec)\n",
86 | " return retDataSet"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 77,
92 | "metadata": {
93 | "collapsed": false
94 | },
95 | "outputs": [
96 | {
97 | "data": {
98 | "text/plain": [
99 | "[[1, 'no'], [1, 'no']]"
100 | ]
101 | },
102 | "execution_count": 77,
103 | "metadata": {},
104 | "output_type": "execute_result"
105 | }
106 | ],
107 | "source": [
108 | "splitDataSet(myDat,0,0)"
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "execution_count": 80,
114 | "metadata": {
115 | "collapsed": false
116 | },
117 | "outputs": [],
118 | "source": [
119 | "def chooseBestFeatureToSplit(dataSet):\n",
120 | " numFeatures = len(dataSet[0]) - 1\n",
121 | " baseEntropy = calcShannonEnt(dataSet)\n",
122 | " bestInfoGain = 0.0; bestFeature = -1\n",
123 | " for i in range(numFeatures):\n",
124 | " featList = [example[i] for example in dataSet]\n",
125 | " #create a set to store unique values\n",
126 | " uniqueVals = set(featList)\n",
127 | " newEntropy = 0.0\n",
128 | " for value in uniqueVals:\n",
129 | " subDataSet = splitDataSet(dataSet, i, value)\n",
130 | " prob = len(subDataSet)/float(len(dataSet))\n",
131 | " newEntropy += prob * calcShannonEnt(subDataSet)\n",
132 | " infoGain = baseEntropy - newEntropy\n",
133 | " if (infoGain > bestInfoGain):\n",
134 | " bestInfoGain = infoGain \n",
135 | " bestFeature = i \n",
136 | " return bestFeature"
137 | ]
138 | },
139 | {
140 | "cell_type": "code",
141 | "execution_count": 81,
142 | "metadata": {
143 | "collapsed": false
144 | },
145 | "outputs": [
146 | {
147 | "name": "stdout",
148 | "output_type": "stream",
149 | "text": [
150 | "[1, 1, 1, 0, 0]\n",
151 | "[1, 1, 0, 1, 1]\n"
152 | ]
153 | },
154 | {
155 | "data": {
156 | "text/plain": [
157 | "0"
158 | ]
159 | },
160 | "execution_count": 81,
161 | "metadata": {},
162 | "output_type": "execute_result"
163 | }
164 | ],
165 | "source": [
166 | "chooseBestFeatureToSplit(myDat)"
167 | ]
168 | },
169 | {
170 | "cell_type": "code",
171 | "execution_count": null,
172 | "metadata": {
173 | "collapsed": true
174 | },
175 | "outputs": [],
176 | "source": []
177 | }
178 | ],
179 | "metadata": {
180 | "kernelspec": {
181 | "display_name": "Python 3",
182 | "language": "python",
183 | "name": "python3"
184 | },
185 | "language_info": {
186 | "codemirror_mode": {
187 | "name": "ipython",
188 | "version": 3
189 | },
190 | "file_extension": ".py",
191 | "mimetype": "text/x-python",
192 | "name": "python",
193 | "nbconvert_exporter": "python",
194 | "pygments_lexer": "ipython3",
195 | "version": "3.5.1"
196 | }
197 | },
198 | "nbformat": 4,
199 | "nbformat_minor": 0
200 | }
201 |
--------------------------------------------------------------------------------
/Iceberg_Detection/add_iceberg.R:
--------------------------------------------------------------------------------
1 | data=read.csv('~/Dropbox/CME practicum/Apr 22nd/Data/with1BookRec.txt')
2 | iceberg=read.csv('~/Desktop/python/iceberg.txt')
3 | iceberg=iceberg[iceberg$type!='in the spread',]
4 | n = length(iceberg[,1])
5 | for(i in 1:n){
6 |
7 | if(iceberg$buy.sell)
8 | data$book1.best.ask.size[data$time.5.n==iceberg$time[i]] = iceberg$volume[i]+
9 | data$book1.best.ask.size[data$time.5.n==iceberg$time[i]]
10 | else
11 | data$book1.best.bid.size[data$time.5.n==iceberg$time[i]] = iceberg$volume[i]+
12 | data$book1.best.bid.size[data$time.5.n==iceberg$time[i]]
13 |
14 | }
--------------------------------------------------------------------------------
/Iceberg_Detection/icebergPresent.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fushuyue/Ml_HFT/23145c9173c2dc358f0d2da8a15e1b84ca50f153/Iceberg_Detection/icebergPresent.jpg
--------------------------------------------------------------------------------
/Iceberg_Detection/lookForIceberg.py:
--------------------------------------------------------------------------------
1 | import matplotlib as mpl
2 | import matplotlib.pyplot as plt
3 | import pandas as pd
4 | iceberg = []
5 | dictionary = {}
6 | tradep = [] # temporary storage of trade price
7 | tradev = [] # temporary storage of trade volume
8 | a = [0,0,0,0] # initialize
9 | iceberg_flag = 0
10 | flag=0
11 |
12 | with open('/Users/fushuyue/Desktop/python/ESZ5_20150917.txt') as input_file:
13 | for line in input_file:
14 |
15 | # trade data structure: 0 time 1 name; 2 quantity; 3 price; 4 volume; 5 flag
16 | # keep track of the type of last update
17 | if a[1] == 'TRADEREC':
18 | flag = True
19 | else:
20 | flag = False
21 |
22 | # read data line by line
23 | a = line.strip().split(',')
24 |
25 | if a[1] == 'TRADEREC':
26 |
27 | date_temp1 = a[0][0:2]+a[0][3:5]+a[0][6:8]+a[0][9:12]
28 |
29 | if float(a[3]) > bid1:
30 | # buy order
31 | aggressor = 1
32 | levelOneAsk = [ask1, ask1_size]
33 | else:
34 | # sell order
35 | aggressor= 0
36 | levelOneBid = [bid1, bid1_size]
37 |
38 | # buy order when big price appear first, there is iceberg order
39 | # the opposite for sell order
40 | if len(tradep) != 0:
41 | if aggressor:
42 | if float(a[3]) < tradep[-1]:
43 | # iceberg.append([date_temp, a[3]])
44 | iceberg_flag = 1
45 | iceberg_price = float(a[3])
46 | iceberg_time = date_temp1
47 | else:
48 | if float(a[3]) > tradep[-1]:
49 | iceberg_flag = 1
50 | iceberg_price = float(a[3])
51 | iceberg_time = date_temp1
52 |
53 | tradep.append(float(a[3]))
54 | tradev.append(float(a[2]))
55 |
56 | # one trade may have different price so
57 | # store trade price and volume in a dictionary
58 | # use trade price as key, trade volume as value
59 |
60 | if float(a[3]) not in dictionary.keys():
61 | dictionary[float(a[3])] = float(a[2])
62 | else:
63 | dictionary[float(a[3])] += float(a[2])
64 |
65 |
66 | if a[1] == 'BOOK10DEEPREC':
67 | temp = [int(k) for k in a[2:62]]
68 | date_temp = a[0][0:2]+a[0][3:5]+a[0][6:8]+a[0][9:12]
69 |
70 | ask_size = temp[32:60:3]
71 | ask_price = temp[30:58:3]
72 | bid_size = temp[0:28:3]
73 | bid_price = temp[2:30:3]
74 | bid1=temp[29]
75 | ask1=temp[30]
76 | ask1_size = ask_size[0]
77 | bid1_size = bid_size[-1]
78 |
79 | # if this is the book updates right after a trade happens
80 | if flag:
81 |
82 | # if the trade price is in the spread, means there's iceberg order in the spread
83 | # cannot figure out the whole iceberg order size
84 | if aggressor:
85 | if levelOneAsk[0] not in dictionary.keys():
86 | iceberg.append([date_temp1, min(dictionary.keys()), dictionary[min(dictionary.keys())], levelOneAsk[1], aggressor, 'in the spread'])
87 | continue
88 | else:
89 | if levelOneBid[0] not in dictionary.keys():
90 | iceberg.append([date_temp1, max(dictionary.keys()), dictionary[max(dictionary.keys())], levelOneBid[1], aggressor, 'in the spread'])
91 | continue
92 |
93 | # if we already know there is iceberg order
94 | if iceberg_flag:
95 | if aggressor:
96 | # there's different price and larger price happens first
97 | if dictionary[iceberg_price] < levelOneAsk[1]:
98 | # if the displayed level one has not been fully executed
99 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneAsk[1], aggressor, 'part,need check'])
100 | else:
101 | if levelOneAsk[0] == ask1:
102 | # if the displayed level one has not been fully executed, but refreshed
103 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneAsk[1], aggressor, 'part'])
104 | else:
105 | # not refreshed, still needs to check next updates
106 | # if next bookupdates shows level one been refreshed, then needs to check for if bid level moves
107 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneAsk[1], aggressor, 'whole'])
108 | else:
109 | if dictionary[iceberg_price] < levelOneBid[1]:
110 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneBid[1], aggressor, 'part'])
111 | else:
112 | if levelOneBid[0] == bid1:
113 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneBid[1], aggressor, 'part'])
114 | else:
115 | iceberg.append([iceberg_time, iceberg_price, dictionary[iceberg_price], levelOneBid[1], aggressor, 'whole'])
116 |
117 | # if in a buy order, volume is larger than best ask size, we know there is iceberg
118 | else:
119 | if aggressor:
120 | if dictionary[levelOneAsk[0]] > levelOneAsk[1]:
121 | # if level one moves
122 | if levelOneAsk[0] != ask1:
123 | iceberg.append([date_temp1, levelOneAsk[0], dictionary[levelOneAsk[0]], levelOneAsk[1], aggressor, 'whole'])
124 | else:
125 | iceberg.append([date_temp1, levelOneAsk[0], dictionary[levelOneAsk[0]], levelOneAsk[1], aggressor, 'part'])
126 |
127 | else:
128 | if dictionary[levelOneBid[0]] > levelOneBid[1]:
129 | if levelOneBid[0] != bid1:
130 | iceberg.append([date_temp1, levelOneBid[0], dictionary[levelOneBid[0]], levelOneBid[1], aggressor, 'whole'])
131 | else:
132 | iceberg.append([date_temp1, levelOneBid[0], dictionary[levelOneBid[0]], levelOneBid[1], aggressor, 'part'])
133 |
134 | # empty the variable
135 | iceberg_flag = 0
136 | tradep = []
137 | tradev = []
138 | dictionary = {}
139 |
140 |
141 |
142 |
143 | df = pd.DataFrame(iceberg, columns = ['time', 'price', 'volume', 'displayed size', 'buy/sell', 'type'])
144 |
145 | df.to_csv('/Users/fushuyue/Desktop/iceberg.txt',index=False)
146 |
147 |
--------------------------------------------------------------------------------
/Logistic_Regression/logistic_regression.py:
--------------------------------------------------------------------------------
1 | from numpy import *
2 |
3 |
4 |
5 |
6 | def getcomb():
7 | import scipy.special as sp
8 | fr = open('/Users/shengdongliu/Downloads/0401.txt')
9 | for line in fr.readlines():
10 | lineArr = line.strip().split()
11 | totalcolumn=len(lineArr)-2
12 | break
13 | number=sp.comb(totalcolumn,2,exact=False)
14 | return number
15 |
16 | def settwofactor(number):
17 | import itertools
18 | a=list(itertools.combinations('abcdefghijklmno',2))
19 | col1=ord(str(a[number][0]))-97
20 | col2=ord(str(a[number][1]))-97
21 | #col3=ord(str(a[number][2]))-97
22 | return col1,col2
23 |
24 | def readheader():
25 | import csv
26 | with open('/Users/shengdongliu/Downloads/data-2.csv', 'rb') as inputfile:
27 | reader = csv.reader(inputfile)
28 | head= list(reader)
29 |
30 | return head[0][1:16]
31 |
32 |
33 | def loadDataSet(col1,col2):
34 | dataMat = []; labelMat = []
35 | fr = open('/Users/shengdongliu/Downloads/eminicsv.txt')
36 | for line in fr.readlines():
37 | lineArr = line.strip().split('\t')
38 | # dataMat.append([1.0,float(lineArr[0]),float(lineArr[1]),float(lineArr[2]),float(lineArr[3]),float(lineArr[4])])
39 | dataMat.append([1.0,float(lineArr[col1]),float(lineArr[col2])])
40 | #,float(lineArr[col3])])
41 | labelMat.append(int(lineArr[15]))
42 | return dataMat,labelMat
43 |
44 | def sigmoid(inX):
45 | return 1.0/(1+exp(-inX))
46 |
47 | def gradAscent(dataMatIn, classLabels):
48 | dataMatrix = mat(dataMatIn) #convert to NumPy matrix
49 | labelMat = mat(classLabels).transpose() #convert to NumPy matrix
50 | m,n = shape(dataMatrix)
51 | alpha = 0.01
52 | maxCycles = 150
53 | weights = ones((n,1))
54 | for k in range(maxCycles): #heavy on matrix operations
55 | h = sigmoid(dataMatrix*weights) #matrix mult
56 | error = (labelMat - h) #vector subtraction
57 | weights = weights+alpha * dataMatrix.transpose()* error #matrix mult
58 | return weights
59 |
60 | def plotBestFit(col1,col2):
61 |
62 | import matplotlib.pyplot as plt
63 | from mpl_toolkits.mplot3d import Axes3D
64 | # weights=wei.getA()
65 | dataMat,labelMat=loadDataSet(col1,col2)
66 | dataArr = array(dataMat)
67 | #print dataArr
68 | #weights=gradAscent(dataArr,labelMat)
69 | # w0=weights[0]
70 | # w1=weights[1]
71 | # w2=weights[2]
72 |
73 | n = shape(dataArr)[0]
74 | # print n
75 | xcord1 = []; ycord1 = [];zcord1=[]
76 |
77 | xcord2 = []; ycord2 = [];zcord2=[]
78 | for i in range(n):
79 | if int(labelMat[i])== 1:
80 | xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
81 | #zcord1.append(dataArr[i,3])
82 | else:
83 | xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
84 | #zcord2.append(dataArr[i,3])
85 | #print xcord1
86 | fig = plt.figure()
87 | ax = fig.add_subplot(111)
88 | #,projection='3D')
89 | ax.scatter(xcord1, ycord1,s=30, c='red', marker='s')
90 |
91 | ax.scatter(xcord2, ycord2, s=30, c='green')
92 | #x = arange(-30,50, 0.11)
93 | #print weights.item(0)
94 | #y = (-weights.item(0)-weights.item(1)*x)/weights.item(2)
95 | # print y
96 | # print x
97 | #ax.plot(x, y)
98 | #axes = plt.gca()
99 | # axes.set_xlim([-1,0.5])
100 | #axes.set_ylim([-0.5,1])
101 | #axes.set_ylim([0.5,1.5])
102 | name=readheader()
103 | #print name
104 | #print name
105 | str1='emini_'+str(name[col1])
106 | str2='emini_'+str(name[col2])
107 | str1=str1.replace(".", "_")
108 | str2=str2.replace(".", "_")
109 | plt.xlabel(str1); plt.ylabel(str2);
110 | #plt.show()
111 | s=str1+'-'+str2
112 | plt.savefig(s+'.pdf')
113 |
114 |
115 | def stocGradAscent0(dataMatrix, classLabels):
116 | m,n = shape(dataMatrix)
117 | alpha = 0.01
118 | weights = ones((n,1)) #initialize to all ones
119 | for i in range(m):
120 | h = sigmoid(sum(dataMatrix[i]*weights))
121 | error = classLabels[i] - h
122 | weights = weights + alpha * error * dataMatrix[i]
123 | return weights
124 |
125 | def stocGradAscent1(dataMatrix, classLabels, numIter=150):
126 | m,n = shape(dataMatrix)
127 | weights = ones(n) #initialize to all ones
128 | for j in range(numIter):
129 | dataIndex = range(m)
130 | for i in range(m):
131 | alpha = 4/(1.0+j+i)+0.001 #apha decreases with iteration, does not
132 | randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
133 | h = sigmoid(sum(dataMatrix[randIndex]*weights))
134 | error = classLabels[randIndex] - h
135 | weights = weights + alpha * error * dataMatrix[randIndex]
136 | del(dataIndex[randIndex])
137 | return weights
138 |
139 | def classifyVector(inX, weights):
140 | prob = sigmoid(sum(inX*weights))
141 | if prob > 0.5: return 1.0
142 | else: return 0.0
143 |
144 | def Test():
145 | import csv
146 | frTrain = open('/Users/shengdongliu/Downloads/eminitrain.txt'); frTest = open('/Users/shengdongliu/Downloads/eminitest.txt')
147 | #print 1
148 | #frTrain = open('Training.txt'); frTest = open('Test.txt')
149 | column=15
150 | trainingSet = []; trainingLabels = []
151 | for line in frTrain.readlines():
152 | #print 2
153 |
154 | currLine = line.strip().split('\t')
155 | lineArr =[]
156 | for i in range(column):
157 | lineArr.append(float(currLine[i]))
158 | #print 3
159 | trainingSet.append(lineArr)
160 | trainingLabels.append(float(currLine[column]))
161 | trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 100)
162 | #print 4
163 | errorCount = 0; numTestVec = 0.0
164 | upcount=0.0;downcount=0.0;
165 | totalup=0.0;totaldown=0.0;
166 | predict=[]
167 | for line in frTest.readlines():
168 | numTestVec += 1.0
169 | if int(currLine[column])==1:
170 | totalup+=1
171 | if int(currLine[column])==0:
172 | totaldown+=1
173 | currLine = line.strip().split('\t')
174 | lineArr =[]
175 | for i in range(column):
176 | lineArr.append(float(currLine[i]))
177 |
178 | if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[column]):
179 | errorCount += 1
180 | if int(currLine[column])==1:
181 | upcount+=1
182 | if int(currLine[column])==0:
183 | downcount+=1
184 |
185 | predict.append(int(classifyVector(array(lineArr), trainWeights)))
186 |
187 | errorRate = (float(errorCount)/numTestVec)
188 | up_correct_Rate = 1-(float(upcount)/totalup)
189 | down_correct_Rate=1-(float(downcount)/totaldown)
190 |
191 | file = open("/Users/shengdongliu/Downloads/towu.txt", "w")
192 | for n in range(len(predict)) :
193 | file.write(str(predict[n]))
194 | file.write("\n")
195 | errorRate=1-errorRate
196 | print "correct rate is: %f" %errorRate
197 | print "correct up rate: %f" %up_correct_Rate
198 | print "correct down rate: %f" %down_correct_Rate
199 |
200 | return errorRate
201 |
202 | def multiTest():
203 | numTests = 10; errorSum=0.0
204 | for k in range(numTests):
205 | errorSum += Test()
206 | print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))
207 | #csvtotxt()
208 | Test()
209 | #multiTest()
210 |
211 | #readheader()
212 | # for n in range(int(getcomb())):
213 | # col1,col2=settwofactor(n)
214 | # plotBestFit(col1,col2)
215 | #
216 | #
217 |
--------------------------------------------------------------------------------
/Price Prediction with Machine Learning methods.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fushuyue/Ml_HFT/23145c9173c2dc358f0d2da8a15e1b84ca50f153/Price Prediction with Machine Learning methods.pdf
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ## Price Prediction with Machine Learning Models
2 | This project proposed a machine learning (Logistic Regreesion and SVM) framework to predict price movement in a high frequency environment and build trading strategy based on this prediction.
3 |
4 | ###The project has three main parts:
5 | #####Part 1: Data processing and visualization
6 | - Data for this project is the limit order book of E-mini S&P500 future. A sample data is in sample_data folder.
7 | - Training set is created at every trade entry with attributes calculate from previous book entry.
8 | - Target value is the directional movement of next trade price.
9 | - 'ggplot' package is used for visualization
10 |
11 | #####Part 2: Model training and testing
12 | - Logistic Regression with nearly 78% accuracy
13 | - Support Vector Machines with nearly 87% accuracy
14 |
15 | #####Part 3: Iceberg Detection
16 | - Introduce the basic idea of iceberg order detection algorithm
17 | - Found more than 11,000 iceberg orders within one day
18 |
19 |
20 | ---
21 | >
22 | Shuyue Fu
23 | MSFE candidate at University of Illinois at Urbana-Champaign
24 | My Resume:[Shuyue Fu](https://github.com/fushuyue/Financial_Computing/raw/master/MyResume/MyResume.pdf)
25 | My Linkedln:[Linkedln](https://www.linkedin.com/in/shuyuefu)
26 | My Email:sfu11@illinois.edu
27 |
--------------------------------------------------------------------------------
/Rebuild_orderbook/data process.py:
--------------------------------------------------------------------------------
1 | import matplotlib as mpl
2 | import matplotlib.pyplot as plt
3 | import pandas as pd
4 |
5 | data = []
6 | tradep = [] # temporary storage of trade price
7 | tradev = [] # temporary storage of trade volume
8 | order = [] # storage for order data
9 | date = [] # storage for date
10 | date1 = []
11 | price = [] # storage for price
12 | lots = [] # storage for lots of every order
13 | trade = []
14 | a = [0,0,0,0] # initialize
15 |
16 | def weighted_mean(x,y):
17 | temp = [x[i]*y[i] for i in range(len(x))]
18 | return sum(temp)/float((sum(y)))
19 |
20 | flag=0
21 |
22 | with open('/Users/fushuyue/Dropbox/CME practicum/CMEdata/ESZ5_20150917.txt') as input_file:
23 | for line in input_file:
24 | if a[1] == 'TRADEREC':
25 | flag = True
26 | # trade data structure: 0 time 1 name; 2 quantity; 3 price; 4 volume; 5 flag
27 | elif a[1] == 'BOOK10DEEPREC':
28 | flag = False
29 | elif a[1] == 'IMPLIEDBOOKREC':
30 | continue
31 | # read data line by line
32 | a = line.strip().split(',')
33 | #if a[0] == '00:01:04.531':
34 | # break
35 |
36 | if a[1] == 'TRADEREC':
37 | # store trade price and volume
38 | tradep.append(float(a[3]))
39 | tradev.append(float(a[2]))
40 |
41 | if a[1] == 'BOOK10DEEPREC':
42 | temp = [int(k) for k in a[2:62]]
43 | date_temp = a[0][0:2]+a[0][3:5]+a[0][6:8]+a[0][9:12]
44 |
45 | ask_size = temp[32:44:3]
46 | ask_price = temp[30:42:3]
47 | bid_size = temp[15:28:3]
48 | bid_price = temp[17:30:3]
49 |
50 | average_ask_p = weighted_mean(ask_price, ask_size)
51 | average_bid_p = weighted_mean(bid_price, bid_size)
52 | spread = temp[30]-temp[29]
53 |
54 | volume_imbalance = sum(bid_size) - sum(ask_size)
55 | normalized_imbalance = volume_imbalance/(float(sum(bid_size) + sum(ask_size)))
56 | mid_price = (ask_price[-1]*ask_size[-1]+bid_price[0]*bid_size[0])/float(ask_size[-1]+bid_size[0])
57 |
58 | weighted_price = (average_ask_p*sum(ask_size)+average_bid_p*sum(bid_size))/float(sum(bid_size)+sum(ask_size))
59 | # 0=date; 1=bid price; 2=ask price;3=mid point; 4=spread; 5=imba; 6=normailize imba; 7=weighted price; 8=type;
60 |
61 | if flag:
62 | temp1=sum(tradev)
63 | lots.append(temp1)
64 | temp2=weighted_mean(tradep,tradev)
65 | order.append([date_temp, round(average_bid_p,5), round(average_ask_p,5),volume_imbalance, round(weighted_price,5),'trade',temp2 ])
66 | tradep = []
67 | tradev = []
68 | trade.append([date_temp,temp1,temp2])
69 |
70 | else:
71 | order.append([date_temp, round(average_bid_p,5), round(average_ask_p,5),volume_imbalance, round(weighted_price,5),'submit/cancel','NA'])
72 | print('finish reading')
73 |
74 | dtrade = pd.DataFrame(trade, columns=['date', 'volume', 'price'])
75 | dorder = pd.DataFrame(order, columns=['date', 'bid price', 'ask price', 'imba', 'weighted price', 'type', 'trade price'])
76 | '''
77 | plt.plot(dtrade['price'])
78 | plt.ylim(198100,199000)
79 | plt.show()
80 | '''
81 |
82 | plt.hist(lots,bins=10,normed=1)
83 | plt.show()
84 |
85 | print('finish plot')
86 |
87 | dorder.to_csv('OrderWholeDay.txt')
88 | dtrade.to_csv('TradeWholeDay.txt')
89 |
90 | '''
91 | output=open("order.txt", "w")
92 | for i in range(len(order)):
93 | for k in range(len(order[i])):
94 | output.write(str(order[i][k]))
95 | if k != len(order[i])-1:
96 | output.write(",")
97 | output.write("\n")
98 | output.close()
99 |
100 |
101 |
102 | output1=open("trade.txt", "w")
103 | for i in range(len(trade)):
104 | for k in range(len(trade[i])):
105 | output1.write(str(trade[i][k]))
106 | output1.write(",")
107 | output1.write("\n")
108 | output1.close()
109 | '''
110 |
111 |
--------------------------------------------------------------------------------
/Rebuild_orderbook/dataProcess0412.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | '''
3 | df = pd.read_csv("/Users/fushuyue/Dropbox/CME practicum/Apr 15th/Data/esOrderWholeDay.txt")
4 | df = df.iloc[::-1]
5 | df.to_table('/Users/fushuyue/Desktop/inverse.txt')
6 | mydata = []
7 | numberBeforeTrade = 5
8 | nrow = df.shape[0]
9 | ncol = df.shape[1]
10 |
11 | for i in df.index:
12 | if df.ix[i,0] == 'trade':
13 | mydata.append(df.ix[i,:])
14 | for j in range(numberBeforeTrade):
15 | if df.ix[i+1,0] != 'trade':
16 | mydata[-1]=mydata[-1]+df.ix[i,:]
17 | else:
18 | mydata[-1]=mydata[-1]+[]
19 |
20 | '''
21 | mydata = []
22 | numberBeforeTrade = 5
23 | flag = 0
24 | count = 0
25 | with open("/Users/fushuyue/Desktop/python/inverse.txt") as input_file:
26 | for line in input_file:
27 | a = line.strip().split(',')
28 | if flag:
29 | if a[1] == 'submit/cancel':
30 | mydata[-1] = mydata[-1] + a[3:11]
31 | count += 1
32 | else:
33 | mydata[-1] = mydata[-1] + [0]*(8*(numberBeforeTrade-count))
34 | count = 0
35 | flag = 0
36 | if count == numberBeforeTrade:
37 | flag = 0
38 | count = 0
39 |
40 | if a[1] == 'trade':
41 | mydata.append(a[1:])
42 | flag = 1
43 |
44 | # if a[2] == '235836949':
45 | # break
46 |
47 | header = ['type','time','best ask','best bid','average bid price','average ask price','ask size','bid size'\
48 | ,'imbalance','weighted price','buy/sell','trade volume','trade price','best ask1','best bid1','average bid price1','average ask price1','ask size1','bid size1'\
49 | ,'imbalance1','weighted price1','best ask2','best bid2','average bid price2','average ask price2','ask size2','bid size2'\
50 | ,'imbalance2','weighted price2','best ask3','best bid3','average bid price3','average ask price3','ask size3','bid size3'\
51 | ,'imbalance3','weighted price3','best ask4','best bid4','average bid price4','average ask price4','ask size4','bid size4'\
52 | ,'imbalance4','weighted price4','best ask5','best bid5','average bid price5','average ask price5','ask size5','bid size5'\
53 | ,'imbalance5','weighted price5']
54 |
55 | header3 = ['type','time','best ask','best bid','average bid price','average ask price','ask size','bid size'\
56 | ,'imbalance','weighted price','buy/sell','trade volume','trade price','best ask1','best bid1','average bid price1','average ask price1','ask size1','bid size1'\
57 | ,'imbalance1','weighted price1','best ask2','best bid2','average bid price2','average ask price2','ask size2','bid size2'\
58 | ,'imbalance2','weighted price2','best ask3','best bid3','average bid price3','average ask price3','ask size3','bid size3'\
59 | ,'imbalance3','weighted price3']
60 |
61 | header1 = ['type','time','best ask','best bid','average bid price','average ask price','ask size','bid size'\
62 | ,'imbalance','weighted price','buy/sell','trade volume','trade price','best ask1','best bid1','average bid price1','average ask price1','ask size1','bid size1'\
63 | ,'imbalance1','weighted price1']
64 |
65 |
66 | df = pd.DataFrame(mydata,columns=header)
67 | df = df.ix[::-1]
68 |
69 | df.to_csv("keke1.txt")
70 |
--------------------------------------------------------------------------------
/Rebuild_orderbook/merge.py:
--------------------------------------------------------------------------------
1 | order = []
2 | trade = []
3 | date2 = []
4 | date1 = []
5 |
6 |
7 | with open('order.txt') as input_file:
8 | for line in input_file:
9 | a = line.strip().split(',')
10 | if a[8]=='trade':
11 | order.append(a)
12 |
13 | with open('processed_trade.txt') as input_file:
14 | for line in input_file:
15 | trade.append(line.strip().split(','))
16 |
17 | m = len(order)
18 | n = len(trade)
19 |
20 | print(m)
21 | print(n)
22 |
23 |
24 |
25 | '''
26 | i = 0
27 | for j in range(m):
28 | # if already gone through every trade data, keep the price unchanged
29 | if i >= n-1:
30 | for k in range(j, m):
31 | order[k].append(trade[i][1])
32 | order[k].append(0)
33 | break
34 | # match every trade with order data; if matched, goto next trade
35 | if order[j][0] >= trade[i][0]:
36 | order[j].append(trade[i][1])
37 | order[j].append(trade[i][2])
38 | i += 1
39 | # if not match, keep the price unchange
40 | else:
41 | order[j].append(trade[i-1][1])
42 | order[j].append(0)
43 |
44 |
45 |
46 | print(i)
47 | print(n)
48 |
49 | output1=open("test.txt", "w")
50 | for i in range(len(order)):
51 | for k in range(len(order[i])):
52 | output1.write(str(order[i][k]))
53 | output1.write(",")
54 | output1.write("\n")
55 | output1.close()
56 | '''
--------------------------------------------------------------------------------
/Rebuild_orderbook/processData.r:
--------------------------------------------------------------------------------
1 | data=read.csv("/Users/fushuyue/Desktop/clOrderWholeDay.txt",header=T,sep=',')
2 | n=length(data[,1])
3 | # price change from 1 to n-1
4 | pchange=data$trade.price[-1]-data$trade.price[-n]
5 | pchange=pchange[-1]
6 | # attri change from 2 to n
7 | attrichange=data[2:n,3:8]-data[1:(n-1),3:8]
8 | attrichange=attrichange[1:(length(attrichange[,1])-1),]
9 | imba=data$imba[2:(n-1)]
10 | vol=data$trade.volume[2:(n-1)]
11 | a=cbind(attrichange[,1:4],attrichange[,6],imba,vol,pchange)
12 | colnames(a)[1:5]=c('bid.price.change', 'ask.price.change', 'imba.change', 'weighted.price.change','vol.change')
13 | a$pchange=ifelse(a$pchange>0,1,ifelse(a$pchange<0,-1,0))
14 | n=length(a[,1])
15 | b=cbind(a[1:(n-4),6:7],a[2:(n-3),6:7],a[3:(n-2),6:7],a[4:(n-1),6:7],a[5:n,])
16 | colnames(b)[1:8]=c('imba.lag4', 'vol.lag4', 'imba.lag3', 'vol.lag3', 'imba.lag2', 'vol.lag2', 'imba.lag1', 'vol.lag1')
17 | write.csv(b,"keke.csv")
--------------------------------------------------------------------------------
/Rebuild_orderbook/readData.py:
--------------------------------------------------------------------------------
1 | import matplotlib as mpl
2 | import matplotlib.pyplot as plt
3 | import pandas as pd
4 |
5 | data = []
6 | tradep = [] # temporary storage of trade price
7 | tradev = [] # temporary storage of trade volume
8 | order = [] # storage for order data
9 | date = [] # storage for date
10 | date1 = []
11 | price = [] # storage for price
12 | lots = [] # storage for lots of every order
13 | trade = []
14 | a = [0,0,0,0] # initialize
15 |
16 | def weighted_mean(x,y):
17 | temp = [x[i]*y[i] for i in range(len(x))]
18 | return sum(temp)/float((sum(y)))
19 |
20 | flag=0
21 |
22 | with open('/Users/fushuyue/Dropbox/CME practicum/CMEdata/ESZ5_20150917.txt') as input_file:
23 | for line in input_file:
24 | if a[1] == 'TRADEREC':
25 | flag = True
26 | # trade data structure: 0 time 1 name; 2 quantity; 3 price; 4 volume; 5 flag
27 | elif a[1] == 'BOOK10DEEPREC':
28 | flag = False
29 | # read data line by line
30 | a = line.strip().split(',')
31 | if a[1] == 'IMPLIEDBOOKREC':
32 | continue
33 |
34 | #if a[0] == '00:02:00.834':
35 | # break
36 |
37 | if a[1] == 'TRADEREC':
38 | # store trade price and volume
39 | tradep.append(float(a[3]))
40 | tradev.append(float(a[2]))
41 |
42 | if tradep[-1]>bid1:
43 | aggressor= 1
44 | else:
45 | aggressor= 0
46 |
47 | if a[1] == 'BOOK10DEEPREC':
48 | temp = [int(k) for k in a[2:62]]
49 | date_temp = a[0][0:2]+a[0][3:5]+a[0][6:8]+a[0][9:12]
50 |
51 | ask_size = temp[32:60:3]
52 | ask_price = temp[30:58:3]
53 | bid_size = temp[0:28:3]
54 | bid_price = temp[2:30:3]
55 | bid1=temp[29]
56 | ask1=temp[30]
57 | average_ask_p = weighted_mean(ask_price, ask_size)
58 | average_bid_p = weighted_mean(bid_price, bid_size)
59 | spread = temp[30]-temp[29]
60 |
61 | volume_imbalance = sum(bid_size) - sum(ask_size)
62 | normalized_imbalance = volume_imbalance/(float(sum(bid_size) + sum(ask_size)))
63 | mid_price = (ask_price[-1]*ask_size[-1]+bid_price[0]*bid_size[0])/float(ask_size[-1]+bid_size[0])
64 |
65 | weighted_price = (average_ask_p*sum(ask_size)+average_bid_p*sum(bid_size))/float(sum(bid_size)+sum(ask_size))
66 | # 0=date; 1=bid price; 2=ask price;3=mid point; 4=spread; 5=imba; 6=normailize imba; 7=weighted price; 8=type;
67 |
68 | if flag:
69 | temp1=sum(tradev)
70 | lots.append(temp1)
71 | temp2=weighted_mean(tradep,tradev)
72 |
73 | # aggressor type, 1=buy side aggressor; 0=sell side aggressor
74 |
75 | order.append(['trade',date_temp, round(average_bid_p,5), round(average_ask_p,5),volume_imbalance, round(weighted_price,5),aggressor,temp1,temp2 ])
76 | tradep = []
77 | tradev = []
78 | trade.append([date_temp,temp1,aggressor,temp2])
79 | #else:
80 | # order.append(['submit/cancel',date_temp, round(average_bid_p,5), round(average_ask_p,5),volume_imbalance, round(weighted_price,5),'NA','NA','NA'])
81 |
82 | print('finish reading')
83 |
84 | dtrade = pd.DataFrame(trade, columns=['time', 'volume', 'direction','price'])
85 | dorder = pd.DataFrame(order, columns=['type','time', 'bid price', 'ask price', 'imba', 'weighted price', 'buy/sell','trade volume','trade price'])
86 |
87 |
88 |
89 | '''
90 | plt.plot(dtrade['price'])
91 | plt.ylim(198100,199000)
92 | plt.show()
93 |
94 |
95 | plt.hist(lots,bins=10,normed=1)
96 | plt.show()
97 |
98 | print('finish plot')
99 | '''
100 |
101 | dorder.to_csv('esOrderWholeDay.txt',index=False)
102 | dtrade.to_csv('esTradeWholeDay.txt',index=False)
103 |
104 | '''
105 | output=open("order.txt", "w")
106 | for i in range(len(order)):
107 | for k in range(len(order[i])):
108 | output.write(str(order[i][k]))
109 | if k != len(order[i])-1:
110 | output.write(",")
111 | output.write("\n")
112 | output.close()
113 |
114 | output1=open("trade.txt", "w")
115 | for i in range(len(trade)):
116 | for k in range(len(trade[i])):
117 | output1.write(str(trade[i][k]))
118 | output1.write(",")
119 | output1.write("\n")
120 | output1.close()
121 | '''
122 |
123 |
--------------------------------------------------------------------------------
/Rebuild_orderbook/takeLagBookValue.r:
--------------------------------------------------------------------------------
1 | data=read.csv("/Users/fushuyue/Desktop/clOrderWholeDay.txt",header=T,sep=',')
2 | ncol=length(data[1,])-1
3 | data=data[,2:(ncol+1)]
4 | n=length(data[,1])
5 | # price change from 1 to n-1
6 | pchange=data$trade.price[-1]-data$trade.price[-n]
7 | pchange=pchange[-1]
8 |
9 | direction=data$buy.sell
10 | direction[direction==0]=-1
11 | nd=length(direction)
12 | for(i in 2:nd){
13 | if(direction[i]*direction[i-1]>0)
14 | direction[i]=direction[i-1]+direction[i]
15 | }
16 | data$buy.sell=direction
17 |
18 |
19 | # trade attri change from 2 to n
20 | attrichange=data[2:n,5:14]-data[1:(n-1),5:14]
21 | attrichange=attrichange[1:(length(attrichange[,1])-1),]
22 | imba=data$imbalance[2:(n-1)]
23 | direction=data$buy.sell[2:(n-1)]
24 | vol=data$trade.volume[2:(n-1)]
25 | volchange=attrichange[,10]
26 | bestask=data$best.ask[2:(n-1)]
27 | bestbid=data$best.bid[2:(n-1)]
28 | asksize=data$ask.size[2:(n-1)]
29 | bidsize=data$bid.size[2:(n-1)]
30 | bestasksize=data$best.ask.size[2:(n-1)]
31 | bestbidsize=data$best.bid.size[2:(n-1)]
32 | time=data$time[2:(n-1)]
33 | a=cbind(asksize,bidsize,bestasksize,bestbidsize,imba,vol,volchange,direction,pchange,data$trade.price[2:(n-1)])
34 | a=data.frame(attrichange[,1:8],a)
35 | colnames(a)[1:18]=c('trade.best.ask.size.change', 'trade.best.bid.size.change','trade.bid.price.change',
36 | 'trade.ask.price.change', 'trade.ask.size.change', 'trade.bid.size.change',
37 | 'trade.imba.change', 'trade.weighted.price.change','ask.size','bid.size','best.ask.size','best.bid.size',
38 | 'imba','vol','vol.change','direction','pchange','trade.price')
39 |
40 | a$pchange=ifelse(a$pchange>0,1,ifelse(a$pchange<0,-1,0))
41 | n=length(a[,1])
42 | b=cbind(time[5:n],a[2:(n-3),11:14],a[3:(n-2),11:14],a[4:(n-1),11:14],a[5:n,])
43 | colnames(b)[2:13]=c('bestasksize.lag3','bestbidsize.lag3','imba.lag3', 'vol.lag3',
44 | 'bestasksize.lag2','bestbidsize.lag2','imba.lag2', 'vol.lag2',
45 | 'bestasksize.lag1','bestbidsize.lag1','imba.lag1', 'vol.lag1')
46 | #write.csv(b,"~/Desktop/withoutBookRec.txt")
47 |
48 | n=length(data[,1])
49 | lag1=data[2:(n-1),18:25]
50 | diff1=data[2:(n-1),5:12]-lag1
51 | diff1=cbind(diff1,lag1[,1:2],lag1[,5:7])
52 | colnames(diff1)=c('book1.best.ask.size.change', 'book1.best.bid.size.change','book1.bid.price.change', 'book1.ask.price.change',
53 | 'book1.ask.size.change', 'book1.bid.size.change','book1.imba.change', 'book1.weighted.price.change',
54 | 'book1.best.ask.size', 'book1.best.bid.size','book1.ask.size','book1.bid.size','book1.imbalance')
55 |
56 | dflag1=cbind(diff1[5:length(a[,1]),],b)
57 | write.csv(dflag1,"~/Desktop/with1BookRec.txt")
58 |
59 | lag2=data[2:(n-1),28:35]
60 | diff2=lag1-lag2
61 | diff2=cbind(diff2,lag2[,1:2],lag2[,5:7])
62 | colnames(diff2)=c('book2.best.ask.size.change', 'book2.best.bid.size.change','book2.bid.price.change', 'book2.ask.price.change',
63 | 'book2.ask.size.change', 'book2.bid.size.change','book2.imba.change', 'book2.weighted.price.change',
64 | 'book2.best.ask.size', 'book2.best.bid.size','book2.ask.size','book2.bid.size','book2.imbalance')
65 |
66 | lag3=data[2:(n-1),38:45]
67 | diff3=lag2-lag3
68 | diff3=cbind(diff3,lag3[,1:2],lag3[,5:7])
69 | colnames(diff3)=c('book3.best.ask.size.change', 'book3.best.bid.size.change','book3.bid.price.change', 'book3.ask.price.change',
70 | 'book3.ask.size.change', 'book3.bid.size.change','book3.imba.change', 'book3.weighted.price.change',
71 | 'book3.best.ask.size', 'book3.best.bid.size','book3.ask.size','book3.bid.size','book3.imbalance')
72 |
73 | dflag3=cbind(diff3[5:length(a[,1]),],diff2[5:length(a[,1]),],dflag1)
74 | write.csv(dflag3,"~/Desktop/with3BookRec.txt")
75 |
76 | lag4=data[2:(n-1),40:45]
77 | diff4=lag3-lag4
78 | diff4=cbind(diff4,lag4[,3:5])
79 | colnames(diff4)=c('book4.bid.price.change', 'book4.ask.price.change', 'book4.ask.size.change', 'book4.bid.size.change',
80 | 'book4.imba.change', 'book4.weighted.price.change','book4.ask.size','book4.bid.size','book4.imbalance')
81 |
82 | lag5=data[2:(n-1),48:53]
83 | diff5=lag4-lag5
84 | diff5=cbind(diff5,lag5[,3:5])
85 | colnames(diff5)=c('book5.bid.price.change', 'book5.ask.price.change', 'book5.ask.size.change', 'book5.bid.size.change',
86 | 'book5.imba.change', 'book5.weighted.price.change','book5.ask.size','book5.bid.size','book5.imbalance')
87 |
88 |
89 | dflag5=cbind(diff5[5:length(a[,1]),],diff4[5:length(a[,1]),],dflag3)
90 |
91 | write.csv(dflag5,"~/Desktop/with5BookRec.txt")
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
--------------------------------------------------------------------------------
/SVM/SVM.R:
--------------------------------------------------------------------------------
1 | setwd("/Users/Peng/Desktop/")
2 | data <-read.table("result.txt",header=T)
3 | data$mid_price_indicator. <-as.numeric(data$mid_price_indicator.)
4 | data$bid.ask_spread_size. <-as.numeric(data$bid.ask_spread_size.)
5 | data$price_indicator <-as.numeric(data$price_indicator)
6 | n <-nrow(data)*.8
7 | x <-data[1:n,1:2]
8 | y <-data[1:n,3]
9 | g=y[y!=0]
10 | f=x[y!=0,]
11 | model <-svm(f,g)
12 | training <-data[(n+1):nrow(data),1:2]
13 | z <-data[(n+1):nrow(data),3]
14 | t=training[z!=0,]
15 | z=z[z!=0]
16 | pred <-predict(model,training)
17 | u=ifelse(pred>0,1,-1)
18 | table(u,z)
--------------------------------------------------------------------------------
/Sample_data/sample_ES_DATA_20150917.txt:
--------------------------------------------------------------------------------
1 | 00:00:00.413,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,64,36,198425,142,31,198450,67,36,198475,83,30,198500,28,22,198525,7,4,198550,198575,12,17,198600,26,43,198625,26,35,198650,37,51,198675,33,54,198700,37,111,198725,25,49,198750,30,86,198775,32,82,198800,42,263
2 | 00:00:00.413,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,64,36,198425,142,31,198450,67,36,198475,83,30,198500,28,22,198525,7,4,198550,198575,12,17,198600,26,43,198625,25,34,198650,37,51,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
3 | 00:00:00.432,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,30,198500,28,22,198525,7,4,198550,198575,12,17,198600,26,43,198625,25,34,198650,37,51,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
4 | 00:00:00.481,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,30,198500,28,22,198525,7,4,198550,198575,12,17,198600,25,41,198625,25,34,198650,37,51,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
5 | 00:00:00.512,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,7,4,198550,198575,12,17,198600,25,41,198625,25,34,198650,37,51,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
6 | 00:00:00.932,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,9,5,198550,198575,12,17,198600,25,41,198625,25,34,198650,37,51,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
7 | 00:00:01.048,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,9,5,198550,198575,12,17,198600,25,41,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
8 | 00:00:05.731,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,11,6,198550,198575,12,17,198600,25,41,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
9 | 00:00:05.732,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,11,6,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
10 | 00:00:05.741,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,68,37,198475,83,30,198500,28,22,198525,12,7,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
11 | 00:00:05.775,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,30,198500,28,22,198525,12,7,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
12 | 00:00:05.828,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,12,7,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
13 | 00:00:06.940,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,13,8,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
14 | 00:00:06.940,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,14,9,198550,198575,12,17,198600,24,40,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
15 | 00:00:06.940,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,14,9,198550,198575,12,17,198600,23,39,198625,25,34,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
16 | 00:00:06.940,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
17 | 00:00:07.708,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,85,32,198500,28,22,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
18 | 00:00:07.834,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,31,198500,28,22,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
19 | 00:00:08.166,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,30,23,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
20 | 00:00:10.055,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,143,32,198450,66,35,198475,83,31,198500,30,23,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
21 | 00:00:11.218,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,30,23,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
22 | 00:00:13.359,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,14,9,198550,198575,12,17,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
23 | 00:00:13.923,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,14,9,198550,198575,11,16,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
24 | 00:00:13.927,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,14,9,198550,198575,10,14,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
25 | 00:00:14.087,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,15,10,198550,198575,10,14,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
26 | 00:00:14.585,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,15,10,198550,198575,11,15,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
27 | 00:00:16.222,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,16,11,198550,198575,11,15,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
28 | 00:00:17.143,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,16,11,198550,198575,10,13,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
29 | 00:00:17.144,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,83,31,198500,33,24,198525,17,12,198550,198575,10,13,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
30 | 00:00:17.144,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,17,12,198550,198575,10,13,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
31 | 00:00:17.244,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,17,12,198550,198575,9,11,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
32 | 00:00:17.584,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,17,12,198550,198575,8,10,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
33 | 00:00:18.146,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,17,12,198550,198575,7,9,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
34 | 00:00:19.194,BOOK10DEEPREC,47,28,198325,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,117,13,198550,198575,7,9,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263
35 | 00:00:19.195,TRADEREC,1,198575,25133,7
36 | 00:00:19.195,TRADEREC,1,198575,25134,7
37 | 00:00:19.195,TRADEREC,2,198575,25136,7
38 | 00:00:19.195,TRADEREC,1,198575,25137,7
39 | 00:00:19.195,TRADEREC,1,198575,25138,7
40 | 00:00:19.195,TRADEREC,1,198575,25139,7
41 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,117,13,198550,1,1,198575,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
42 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,118,14,198550,1,1,198575,198600,22,38,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
43 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,118,14,198550,1,1,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
44 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,118,14,198550,3,2,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
45 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,119,15,198550,3,2,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
46 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,120,16,198550,3,2,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
47 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,120,16,198550,4,3,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
48 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,121,17,198550,4,3,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
49 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,122,18,198550,4,3,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
50 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,123,19,198550,4,3,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
51 | 00:00:19.195,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,123,19,198550,6,4,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
52 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,124,20,198550,6,4,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
53 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,63,35,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,124,20,198550,7,5,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
54 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,124,20,198550,7,5,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,27,76
55 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,142,31,198450,67,36,198475,84,32,198500,33,24,198525,124,20,198550,7,5,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
56 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,7,5,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
57 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,8,6,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
58 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,10,7,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
59 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,11,8,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
60 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,12,9,198575,198600,21,37,198625,24,30,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
61 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,12,9,198575,198600,21,37,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
62 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,124,20,198550,12,9,198575,198600,20,36,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
63 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,67,36,198475,84,32,198500,34,25,198525,125,21,198550,12,9,198575,198600,20,36,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
64 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,125,21,198550,12,9,198575,198600,20,36,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
65 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,125,21,198550,11,8,198575,198600,20,36,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
66 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,125,21,198550,11,8,198575,198600,19,35,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
67 | 00:00:19.196,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,125,21,198550,11,8,198575,198600,18,34,198625,23,26,198650,37,52,198675,33,54,198700,38,113,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
68 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,125,21,198550,11,8,198575,198600,18,34,198625,23,26,198650,37,52,198675,32,53,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
69 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,34,25,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,37,52,198675,32,53,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
70 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,37,52,198675,32,53,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
71 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,37,52,198675,31,48,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
72 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,37,51,198675,31,48,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
73 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,36,49,198675,31,48,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
74 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,23,26,198650,35,48,198675,31,48,198700,39,114,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
75 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,17,33,198625,22,25,198650,35,48,198675,30,46,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
76 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,16,32,198625,22,25,198650,35,48,198675,30,46,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
77 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,141,30,198450,68,37,198475,84,32,198500,37,25,198525,127,23,198550,11,8,198575,198600,15,29,198625,22,25,198650,35,48,198675,30,46,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
78 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,37,25,198525,127,23,198550,11,8,198575,198600,15,29,198625,21,23,198650,35,48,198675,30,46,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
79 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,37,25,198525,127,23,198550,11,8,198575,198600,15,29,198625,21,23,198650,35,48,198675,29,41,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
80 | 00:00:19.197,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,37,25,198525,127,23,198550,11,8,198575,198600,15,29,198625,21,23,198650,36,52,198675,29,41,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
81 | 00:00:19.198,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,37,25,198525,127,23,198550,11,8,198575,198600,14,28,198625,21,23,198650,36,52,198675,29,41,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
82 | 00:00:19.198,BOOK10DEEPREC,59,33,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,14,28,198625,21,23,198650,36,52,198675,29,41,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
83 | 00:00:19.199,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,14,28,198625,21,23,198650,36,52,198675,29,41,198700,40,116,198725,25,49,198750,30,86,198775,32,82,198800,42,263,198825,28,78
84 | 00:00:19.199,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,14,28,198625,21,23,198650,36,52,198675,29,41,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
85 | 00:00:19.199,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,14,28,198625,21,23,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
86 | 00:00:19.199,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,11,8,198575,198600,14,28,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
87 | 00:00:19.200,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,126,22,198550,12,9,198575,198600,14,28,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
88 | 00:00:19.200,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,14,28,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
89 | 00:00:19.201,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
90 | 00:00:19.201,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,14,28,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
91 | 00:00:19.202,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
92 | 00:00:19.202,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,14,28,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
93 | 00:00:19.203,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,26,52,198750,30,86,198775,32,82,198800,42,263,198825,28,78
94 | 00:00:19.203,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
95 | 00:00:19.203,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,11,8,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
96 | 00:00:19.205,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
97 | 00:00:19.205,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,16,35,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
98 | 00:00:19.206,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
99 | 00:00:19.206,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,16,36,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
100 | 00:00:19.208,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,20,22,198650,36,50,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
101 | 00:00:19.219,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,84,32,198500,38,26,198525,129,23,198550,12,9,198575,198600,15,29,198625,19,21,198650,37,51,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
102 | 00:00:19.219,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,15,29,198625,19,21,198650,37,51,198675,28,39,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
103 | 00:00:19.219,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,15,29,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
104 | 00:00:19.223,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,16,33,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
105 | 00:00:19.229,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,15,29,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
106 | 00:00:19.230,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,69,38,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
107 | 00:00:19.666,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,68,37,198475,83,31,198500,39,27,198525,129,23,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
108 | 00:00:21.304,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,84,32,198500,39,27,198525,129,23,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,40,116,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
109 | 00:00:21.328,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,84,32,198500,39,27,198525,129,23,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
110 | 00:00:21.329,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,84,32,198500,37,26,198525,131,24,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
111 | 00:00:21.335,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,68,37,198475,83,31,198500,37,26,198525,131,24,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
112 | 00:00:21.336,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,84,32,198500,37,26,198525,131,24,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
113 | 00:00:21.344,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,84,32,198500,36,25,198525,132,25,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
114 | 00:00:21.345,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,29,44,198700,39,115,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
115 | 00:00:21.345,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,12,9,198575,198600,14,28,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
116 | 00:00:21.505,TRADEREC,1,198575,25140,7
117 | 00:00:21.505,TRADEREC,2,198575,25142,7
118 | 00:00:21.505,TRADEREC,2,198575,25144,7
119 | 00:00:21.505,TRADEREC,1,198575,25145,7
120 | 00:00:21.505,TRADEREC,1,198575,25146,7
121 | 00:00:21.505,TRADEREC,2,198575,25148,7
122 | 00:00:21.505,TRADEREC,1,198575,25149,7
123 | 00:00:21.505,TRADEREC,1,198575,25150,7
124 | 00:00:21.505,TRADEREC,1,198575,25151,7
125 | 00:00:21.505,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,198575,1,6,198600,14,28,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
126 | 00:00:21.506,TRADEREC,1,198575,25152,7
127 | 00:00:21.506,TRADEREC,1,198575,25153,7
128 | 00:00:21.506,TRADEREC,3,198575,25156,7
129 | 00:00:21.506,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,198575,1,1,198600,15,29,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
130 | 00:00:21.506,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,198575,1,1,198600,19,33,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
131 | 00:00:21.506,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,132,25,198550,198575,1,1,198600,21,35,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
132 | 00:00:21.506,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,41,26,198525,134,26,198550,198575,1,1,198600,21,35,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
133 | 00:00:21.506,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,79,31,198500,39,26,198525,132,25,198550,198575,1,1,198600,21,35,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263
134 | 00:00:21.506,TRADEREC,1,198575,25157,7
135 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,75,30,198500,39,26,198525,132,25,198550,5,1,198575,198600,21,35,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
136 | 00:00:21.507,TRADEREC,1,198575,25158,7
137 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,75,30,198500,39,26,198525,132,25,198550,4,1,198575,198600,21,35,198625,19,21,198650,36,46,198675,28,39,198700,40,120,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
138 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,67,36,198475,75,30,198500,39,26,198525,132,25,198550,8,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
139 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,66,35,198475,75,30,198500,39,26,198525,132,25,198550,8,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
140 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,66,35,198475,75,30,198500,39,26,198525,129,24,198550,8,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
141 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,66,35,198475,75,30,198500,39,26,198525,128,23,198550,8,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
142 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,140,29,198450,66,35,198475,75,30,198500,39,26,198525,124,21,198550,8,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
143 | 00:00:21.507,TRADEREC,1,198575,25159,7
144 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,124,21,198550,4,3,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
145 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,124,21,198550,6,4,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
146 | 00:00:21.507,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,124,21,198550,7,5,198575,198600,21,35,198625,20,25,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
147 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,124,21,198550,7,5,198575,198600,21,35,198625,19,21,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
148 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,125,22,198550,7,5,198575,198600,21,35,198625,19,21,198650,36,46,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
149 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,125,22,198550,7,5,198575,198600,21,35,198625,19,21,198650,36,46,198675,30,46,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
150 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,125,22,198550,7,5,198575,198600,21,35,198625,19,21,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
151 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,123,21,198550,9,6,198575,198600,21,35,198625,19,21,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
152 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,123,21,198550,9,6,198575,198600,22,38,198625,19,21,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
153 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,39,26,198525,123,21,198550,9,6,198575,198600,21,37,198625,19,21,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
154 | 00:00:21.508,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,39,26,198525,127,22,198550,9,6,198575,198600,21,37,198625,19,21,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
155 | 00:00:21.509,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,39,26,198525,127,22,198550,9,6,198575,198600,21,37,198625,20,23,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
156 | 00:00:21.509,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,38,25,198525,128,23,198550,9,6,198575,198600,21,37,198625,20,23,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
157 | 00:00:21.509,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,38,25,198525,128,23,198550,9,6,198575,198600,20,36,198625,20,23,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
158 | 00:00:21.509,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,38,25,198525,128,23,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
159 | 00:00:21.509,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,71,29,198500,38,25,198525,128,23,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
160 | 00:00:21.540,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,76,30,198500,34,25,198525,127,22,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
161 | 00:00:21.581,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,76,30,198500,38,26,198525,127,22,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
162 | 00:00:21.581,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,127,22,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
163 | 00:00:22.007,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,126,21,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
164 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,9,6,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
165 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,8,5,198575,198600,18,34,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
166 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,8,5,198575,198600,19,35,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
167 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,6,4,198575,198600,19,35,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
168 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,5,3,198575,198600,19,35,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
169 | 00:00:23.019,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,3,2,198575,198600,19,35,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
170 | 00:00:23.020,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,2,1,198575,198600,19,35,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
171 | 00:00:23.020,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,2,1,198575,198600,20,36,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
172 | 00:00:23.020,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,26,20,198550,2,1,198575,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
173 | 00:00:23.020,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,76,30,198500,38,26,198525,28,21,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
174 | 00:00:23.020,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,67,36,198475,81,31,198500,34,25,198525,28,21,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
175 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,72,37,198475,81,31,198500,34,25,198525,28,21,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
176 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,71,36,198475,76,30,198500,34,25,198525,28,21,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
177 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,71,36,198475,76,30,198500,33,24,198525,29,22,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
178 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,29,22,198550,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
179 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,30,23,198550,198575,1,3,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
180 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,31,24,198550,198575,1,3,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
181 | 00:00:23.021,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,32,25,198550,198575,1,3,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
182 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,32,25,198550,198575,2,4,198600,21,37,198625,20,23,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
183 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,32,25,198550,198575,2,4,198600,21,37,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
184 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,80,31,198500,33,24,198525,31,24,198550,198575,2,4,198600,22,38,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
185 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,80,31,198500,32,23,198525,31,24,198550,198575,2,4,198600,23,40,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
186 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,80,31,198500,32,23,198525,31,24,198550,198575,3,5,198600,24,41,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
187 | 00:00:23.022,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,80,31,198500,33,24,198525,29,22,198550,198575,3,5,198600,24,41,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
188 | 00:00:23.023,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,80,31,198500,33,24,198525,29,22,198550,198575,3,5,198600,25,42,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
189 | 00:00:23.024,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,29,22,198550,198575,3,5,198600,25,42,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
190 | 00:00:23.024,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198575,3,5,198600,25,42,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
191 | 00:00:23.030,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198575,3,5,198600,25,42,198625,21,27,198650,36,46,198675,31,49,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
192 | 00:00:23.052,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198575,3,5,198600,25,42,198625,21,27,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263
193 | 00:00:23.085,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198575,2,2,198600,25,42,198625,21,27,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263
194 | 00:00:23.085,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198575,1,1,198600,25,42,198625,21,27,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263
195 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198600,25,42,198625,21,27,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
196 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,34,22,198550,198600,25,42,198625,20,23,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
197 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,25,42,198625,20,23,198650,36,46,198675,32,54,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
198 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,25,42,198625,20,23,198650,35,44,198675,31,52,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
199 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,25,42,198625,20,23,198650,35,44,198675,30,49,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
200 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,25,42,198625,20,23,198650,34,43,198675,30,49,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
201 | 00:00:23.086,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,25,42,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
202 | 00:00:23.087,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,75,30,198500,33,24,198525,35,23,198550,198600,24,41,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
203 | 00:00:23.088,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,35,23,198550,198600,24,41,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
204 | 00:00:23.088,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,36,24,198550,198600,24,41,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
205 | 00:00:23.089,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,36,24,198550,198600,23,40,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
206 | 00:00:23.090,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,37,25,198550,198600,23,40,198625,20,23,198650,34,43,198675,29,44,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
207 | 00:00:23.114,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,37,25,198550,198600,23,40,198625,20,23,198650,34,43,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
208 | 00:00:23.310,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,37,25,198550,198600,23,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
209 | 00:00:23.381,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,75,30,198500,35,25,198525,37,25,198550,198600,24,41,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
210 | 00:00:23.476,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,35,25,198525,37,25,198550,198600,24,41,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
211 | 00:00:23.522,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,35,25,198525,37,25,198550,198600,23,39,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
212 | 00:00:23.533,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,37,25,198550,198600,23,39,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
213 | 00:00:24.115,TRADEREC,1,198550,25160,7
214 | 00:00:24.115,TRADEREC,3,198550,25163,7
215 | 00:00:24.115,TRADEREC,1,198550,25164,7
216 | 00:00:24.115,TRADEREC,2,198550,25166,7
217 | 00:00:24.115,TRADEREC,1,198550,25167,7
218 | 00:00:24.115,TRADEREC,1,198550,25168,7
219 | 00:00:24.115,TRADEREC,1,198550,25169,7
220 | 00:00:24.115,TRADEREC,1,198550,25170,7
221 | 00:00:24.115,TRADEREC,1,198550,25171,7
222 | 00:00:24.115,TRADEREC,1,198550,25172,7
223 | 00:00:24.115,TRADEREC,1,198550,25173,7
224 | 00:00:24.115,TRADEREC,1,198550,25174,7
225 | 00:00:24.115,TRADEREC,1,198550,25175,7
226 | 00:00:24.115,TRADEREC,1,198550,25176,7
227 | 00:00:24.115,TRADEREC,1,198550,25177,7
228 | 00:00:24.115,TRADEREC,1,198550,25178,7
229 | 00:00:24.115,TRADEREC,1,198550,25179,7
230 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,19,10,198550,198600,23,39,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
231 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,18,9,198550,198575,1,1,198600,23,39,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
232 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,3,10,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
233 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,4,12,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
234 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,5,13,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
235 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,6,14,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
236 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,7,15,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
237 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,74,29,198500,36,26,198525,17,8,198550,198575,8,16,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
238 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,36,26,198525,17,8,198550,198575,8,16,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
239 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,35,26,198525,17,8,198550,198575,8,16,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
240 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,35,26,198525,17,8,198550,198575,9,17,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
241 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,9,17,198600,24,40,198625,20,23,198650,35,47,198675,28,39,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
242 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,9,17,198600,24,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
243 | 00:00:24.115,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,9,17,198600,24,40,198625,21,24,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
244 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,9,17,198600,26,42,198625,21,24,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
245 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,10,18,198600,26,42,198625,21,24,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
246 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,17,8,198550,198575,11,19,198600,26,42,198625,21,24,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
247 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,16,7,198550,198575,11,19,198600,26,42,198625,21,24,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
248 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,16,7,198550,198575,11,19,198600,26,42,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
249 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,139,28,198450,66,35,198475,70,28,198500,34,25,198525,15,6,198550,198575,11,19,198600,26,42,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
250 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,70,28,198500,34,25,198525,15,6,198550,198575,11,19,198600,26,42,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
251 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,70,28,198500,34,25,198525,17,7,198550,198575,11,19,198600,26,42,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
252 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,141,29,198450,66,35,198475,70,28,198500,34,25,198525,16,6,198550,198575,11,19,198600,27,43,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
253 | 00:00:24.116,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,65,34,198475,70,28,198500,34,25,198525,16,6,198550,198575,11,19,198600,27,43,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
254 | 00:00:24.117,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,16,6,198550,198575,11,19,198600,27,43,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
255 | 00:00:24.119,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,16,6,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
256 | 00:00:24.119,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,15,5,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
257 | 00:00:24.125,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,9,4,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
258 | 00:00:24.126,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,9,4,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
259 | 00:00:24.130,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,7,3,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,29,41,198700,42,122,198725,25,51,198750,31,87,198775,32,82,198800,42,263
260 | 00:00:24.141,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,7,3,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
261 | 00:00:24.181,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,73,28,198500,34,25,198525,7,3,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
262 | 00:00:24.448,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,73,28,198500,34,25,198525,3,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
263 | 00:00:24.450,TRADEREC,2,198550,25181,7
264 | 00:00:24.450,TRADEREC,1,198550,25182,7
265 | 00:00:24.450,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,73,28,198500,34,25,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
266 | 00:00:24.450,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,142,30,198450,66,35,198475,69,27,198500,34,25,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
267 | 00:00:24.450,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,142,30,198450,66,35,198475,68,26,198500,34,25,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
268 | 00:00:24.451,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,68,26,198500,34,25,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
269 | 00:00:24.451,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,34,25,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
270 | 00:00:24.451,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,35,26,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
271 | 00:00:24.451,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,36,27,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
272 | 00:00:24.451,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,38,28,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
273 | 00:00:24.452,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,40,29,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
274 | 00:00:24.452,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,42,30,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
275 | 00:00:24.453,BOOK10DEEPREC,87,36,198300,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,48,31,198525,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
276 | 00:00:24.457,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,48,31,198525,4,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
277 | 00:00:24.457,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,48,31,198525,5,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
278 | 00:00:24.458,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,68,26,198500,48,31,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
279 | 00:00:24.501,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,136,28,198450,62,34,198475,72,27,198500,48,31,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
280 | 00:00:24.502,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,48,31,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
281 | 00:00:24.619,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,47,30,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
282 | 00:00:25.025,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,47,30,198525,5,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
283 | 00:00:25.277,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,47,30,198525,5,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
284 | 00:00:25.481,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,47,30,198525,7,3,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
285 | 00:00:25.496,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,47,30,198525,5,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
286 | 00:00:25.497,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,46,30,198525,5,2,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
287 | 00:00:26.210,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,46,30,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
288 | 00:00:26.400,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,45,29,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
289 | 00:00:27.043,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,72,27,198500,45,29,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
290 | 00:00:27.044,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,71,26,198500,45,29,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
291 | 00:00:27.045,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,71,26,198500,44,29,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
292 | 00:00:27.049,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,71,26,198500,44,29,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
293 | 00:00:27.075,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,43,28,198525,1,1,198550,198575,12,20,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
294 | 00:00:27.075,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,43,28,198525,1,1,198550,198575,12,20,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
295 | 00:00:29.072,TRADEREC,1,198575,25183,7
296 | 00:00:29.072,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,64,35,198425,137,29,198450,62,34,198475,72,27,198500,43,28,198525,1,1,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
297 | 00:00:29.868,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,43,28,198525,1,1,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
298 | 00:00:29.868,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,73,28,198500,43,28,198525,3,2,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
299 | 00:00:29.868,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,137,29,198450,62,34,198475,74,29,198500,43,28,198525,3,2,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
300 | 00:00:29.870,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,43,28,198525,3,2,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
301 | 00:00:29.878,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,43,28,198525,7,3,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,26,52,198750,30,86,198775,32,82,198800,42,263
302 | 00:00:29.884,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,43,28,198525,7,3,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
303 | 00:00:29.894,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,44,29,198525,7,3,198550,198575,11,19,198600,28,45,198625,23,29,198650,34,46,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
304 | 00:00:29.894,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,44,29,198525,7,3,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
305 | 00:00:29.970,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,42,28,198525,7,3,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
306 | 00:00:31.524,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,42,28,198525,9,4,198550,198575,11,19,198600,28,45,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
307 | 00:00:31.525,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,42,28,198525,9,4,198550,198575,11,19,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
308 | 00:00:31.527,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,15,5,198550,198575,11,19,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
309 | 00:00:31.528,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,20,6,198550,198575,11,19,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
310 | 00:00:31.528,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,20,6,198550,198575,10,11,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
311 | 00:00:31.528,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,21,7,198550,198575,10,11,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
312 | 00:00:31.528,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,22,8,198550,198575,10,11,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
313 | 00:00:31.529,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,24,10,198550,198575,10,11,198600,27,44,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
314 | 00:00:31.529,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,24,10,198550,198575,10,11,198600,26,43,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
315 | 00:00:31.529,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,24,10,198550,198575,10,11,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
316 | 00:00:31.529,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,24,10,198550,198575,9,10,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
317 | 00:00:31.529,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,25,11,198550,198575,9,10,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263
318 | 00:00:31.530,TRADEREC,1,198575,25184,7
319 | 00:00:31.530,TRADEREC,2,198575,25186,7
320 | 00:00:31.530,TRADEREC,1,198575,25187,7
321 | 00:00:31.530,TRADEREC,1,198575,25188,7
322 | 00:00:31.530,TRADEREC,1,198575,25189,7
323 | 00:00:31.530,TRADEREC,1,198575,25190,7
324 | 00:00:31.530,TRADEREC,1,198575,25191,7
325 | 00:00:31.530,TRADEREC,1,198575,25192,7
326 | 00:00:31.530,TRADEREC,1,198575,25193,7
327 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,27,13,198550,9,1,198575,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
328 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,28,14,198550,9,1,198575,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
329 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,29,15,198550,9,1,198575,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
330 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,30,16,198550,9,1,198575,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
331 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,31,17,198550,9,1,198575,198600,25,42,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
332 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,32,18,198550,9,1,198575,198600,24,41,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
333 | 00:00:31.530,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,9,1,198575,198600,24,41,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
334 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,9,1,198575,198600,23,40,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
335 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,11,2,198575,198600,23,40,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
336 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,12,3,198575,198600,23,40,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
337 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,12,3,198575,198600,22,39,198625,22,28,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
338 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,36,27,198525,33,19,198550,3,2,198575,198600,22,39,198625,21,24,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
339 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,73,28,198500,37,28,198525,32,18,198550,3,2,198575,198600,22,39,198625,21,24,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
340 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,62,34,198475,74,29,198500,37,28,198525,32,18,198550,3,2,198575,198600,22,39,198625,21,24,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
341 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,62,34,198475,74,29,198500,41,29,198525,32,18,198550,3,2,198575,198600,22,39,198625,21,24,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
342 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,62,34,198475,74,29,198500,41,29,198525,32,18,198550,3,2,198575,198600,22,39,198625,20,23,198650,35,47,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
343 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,62,34,198475,74,29,198500,41,29,198525,32,18,198550,3,2,198575,198600,22,39,198625,20,23,198650,34,43,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
344 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,62,34,198475,74,29,198500,40,28,198525,33,19,198550,3,2,198575,198600,22,39,198625,20,23,198650,34,43,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
345 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,40,28,198525,31,18,198550,5,3,198575,198600,22,39,198625,20,23,198650,34,43,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
346 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,40,28,198525,32,19,198550,5,3,198575,198600,22,39,198625,20,23,198650,34,43,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
347 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,40,28,198525,33,20,198550,5,3,198575,198600,21,38,198625,20,23,198650,34,43,198675,30,46,198700,41,117,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
348 | 00:00:31.531,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,40,28,198525,33,20,198550,5,3,198575,198600,21,38,198625,20,23,198650,34,43,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
349 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,41,29,198525,33,20,198550,5,3,198575,198600,21,38,198625,20,23,198650,34,43,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
350 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,39,28,198525,35,21,198550,5,3,198575,198600,21,38,198625,20,23,198650,34,43,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
351 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,39,28,198525,35,21,198550,5,3,198575,198600,21,38,198625,20,23,198650,34,42,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
352 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,39,28,198525,35,21,198550,3,2,198575,198600,21,38,198625,20,23,198650,34,42,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
353 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,37,26,198525,36,22,198550,3,2,198575,198600,21,38,198625,20,23,198650,34,42,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
354 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,134,27,198450,63,35,198475,74,29,198500,38,27,198525,36,22,198550,3,2,198575,198600,21,38,198625,20,23,198650,34,42,198675,30,46,198700,40,116,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
355 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,134,27,198450,63,35,198475,74,29,198500,37,26,198525,36,22,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
356 | 00:00:31.532,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,134,27,198450,63,35,198475,74,29,198500,38,27,198525,35,21,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
357 | 00:00:31.534,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,134,27,198450,63,35,198475,74,29,198500,37,26,198525,35,21,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
358 | 00:00:31.534,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,25,198525,35,21,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
359 | 00:00:31.536,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,38,26,198525,33,20,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
360 | 00:00:31.542,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,37,25,198525,34,21,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
361 | 00:00:31.560,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,30,46,198700,40,116,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
362 | 00:00:31.560,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,3,2,198575,198600,21,38,198625,20,23,198650,33,41,198675,29,41,198700,41,121,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
363 | 00:00:31.561,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,3,2,198575,198600,23,40,198625,20,23,198650,33,41,198675,29,41,198700,41,121,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
364 | 00:00:31.581,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,3,2,198575,198600,23,40,198625,20,23,198650,34,45,198675,29,41,198700,41,121,198725,27,54,198750,31,87,198775,32,82,198800,42,263,198825,28,78
365 | 00:00:31.582,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,3,2,198575,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
366 | 00:00:31.594,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,35,22,198550,2,1,198575,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
367 | 00:00:31.594,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,36,24,198525,37,23,198550,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
368 | 00:00:31.594,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,63,35,198475,74,29,198500,32,23,198525,37,23,198550,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
369 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,68,36,198475,70,28,198500,32,23,198525,37,23,198550,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
370 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,32,23,198525,37,23,198550,198600,23,40,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
371 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,32,23,198525,37,23,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
372 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,32,23,198525,38,24,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
373 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,32,23,198525,39,25,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
374 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,32,23,198525,40,26,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
375 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,33,24,198525,39,25,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
376 | 00:00:31.595,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,33,24,198525,41,26,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
377 | 00:00:31.598,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,33,24,198525,40,26,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
378 | 00:00:31.600,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,33,24,198525,39,25,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
379 | 00:00:31.751,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,31,23,198525,41,26,198550,198600,24,41,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
380 | 00:00:32.028,BOOK10DEEPREC,47,28,198325,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,31,23,198525,41,26,198550,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
381 | 00:00:34.167,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,31,23,198525,41,26,198550,1,1,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
382 | 00:00:34.167,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,31,23,198525,39,25,198550,3,2,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
383 | 00:00:34.167,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,35,24,198525,39,25,198550,3,2,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
384 | 00:00:34.167,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,66,36,198475,74,29,198500,35,24,198525,39,25,198550,4,3,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
385 | 00:00:34.167,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,68,37,198475,74,29,198500,35,24,198525,40,26,198550,4,3,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
386 | 00:00:34.667,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,68,37,198475,74,29,198500,35,24,198525,39,25,198550,4,3,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
387 | 00:00:34.740,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,62,34,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,4,3,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
388 | 00:00:34.877,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,4,3,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
389 | 00:00:35.779,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,23,39,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
390 | 00:00:35.779,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,22,38,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
391 | 00:00:36.720,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
392 | 00:00:36.720,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,39,24,198525,40,26,198550,5,4,198575,198600,20,36,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
393 | 00:00:36.785,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,20,36,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
394 | 00:00:37.145,BOOK10DEEPREC,56,32,198350,42,26,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
395 | 00:00:37.577,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,63,35,198425,136,28,198450,68,37,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
396 | 00:00:39.220,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,63,35,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
397 | 00:00:39.491,BOOK10DEEPREC,56,32,198350,41,25,198375,73,40,198400,63,35,198425,136,28,198450,98,38,198475,69,28,198500,41,26,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
398 | 00:00:40.827,BOOK10DEEPREC,56,32,198350,41,25,198375,73,40,198400,63,35,198425,137,29,198450,98,38,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
399 | 00:00:43.219,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,63,35,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,39,25,198550,5,4,198575,198600,21,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
400 | 00:00:43.357,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,63,35,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,5,4,198575,198600,20,34,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
401 | 00:00:44.654,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,5,4,198575,198600,20,34,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
402 | 00:00:45.620,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,5,4,198575,198600,20,34,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
403 | 00:00:45.683,TRADEREC,1,198575,25194,7
404 | 00:00:45.683,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,4,3,198575,198600,20,34,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
405 | 00:00:47.090,TRADEREC,2,198575,25196,7
406 | 00:00:47.090,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,2,2,198575,198600,20,34,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
407 | 00:00:47.091,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,2,2,198575,198600,22,36,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
408 | 00:00:47.091,BOOK10DEEPREC,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,40,25,198525,42,26,198550,2,2,198575,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
409 | 00:00:47.094,TRADEREC,1,198575,25197,7
410 | 00:00:47.094,TRADEREC,1,198575,25198,7
411 | 00:00:47.094,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,41,25,198525,40,25,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
412 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,41,25,198525,39,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,25,51,198750,31,87,198775,32,82,198800,42,263,198825,28,78
413 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,41,25,198525,39,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
414 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,98,38,198475,69,28,198500,39,24,198525,41,25,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
415 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,97,38,198475,69,28,198500,39,24,198525,41,25,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
416 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,97,38,198475,65,27,198500,35,23,198525,41,25,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
417 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,97,38,198475,65,27,198500,35,23,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
418 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,97,38,198475,65,27,198500,34,22,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
419 | 00:00:47.095,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,65,27,198500,34,22,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,29,41,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
420 | 00:00:47.101,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,65,27,198500,34,22,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,30,46,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
421 | 00:00:47.101,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,65,27,198500,34,22,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
422 | 00:00:47.101,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,65,27,198500,34,22,198525,37,23,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
423 | 00:00:47.116,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,65,27,198500,35,23,198525,36,22,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
424 | 00:00:47.116,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,70,28,198500,30,22,198525,36,22,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
425 | 00:00:47.146,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,74,29,198500,30,22,198525,36,22,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
426 | 00:00:47.591,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,74,41,198400,66,36,198425,136,28,198450,95,38,198475,74,29,198500,31,23,198525,36,22,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
427 | 00:00:47.866,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,95,38,198475,74,29,198500,31,23,198525,36,22,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
428 | 00:00:52.578,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,95,38,198475,74,29,198500,31,23,198525,37,23,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
429 | 00:00:52.607,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,95,38,198475,74,29,198500,30,22,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
430 | 00:00:52.607,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,95,38,198475,69,28,198500,35,23,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
431 | 00:00:59.231,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,31,51,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
432 | 00:01:02.091,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,38,24,198550,198600,23,37,198625,20,23,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263,198825,28,78
433 | 00:01:04.525,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,38,24,198550,198575,1,1,198600,23,37,198625,20,23,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
434 | 00:01:04.525,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,38,24,198550,198575,2,2,198600,23,37,198625,20,23,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
435 | 00:01:04.526,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,37,23,198550,198575,2,2,198600,24,39,198625,20,23,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
436 | 00:01:04.526,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,37,23,198550,198575,2,2,198600,24,39,198625,21,27,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
437 | 00:01:04.526,BOOK10DEEPREC,44,27,198325,56,32,198350,41,25,198375,71,40,198400,66,36,198425,136,28,198450,105,39,198475,69,28,198500,35,23,198525,35,21,198550,198575,2,2,198600,24,39,198625,21,27,198650,35,47,198675,32,52,198700,41,121,198725,26,52,198750,31,87,198775,32,82,198800,42,263
438 |
--------------------------------------------------------------------------------
/Visualization/AttributeVisulization.R:
--------------------------------------------------------------------------------
1 | data = read.csv('~/Dropbox/CME practicum/Apr 22nd/Data/with1BookRec.txt')
2 | library('ggplot2')
3 | df = data[data$pchange != 0, ]
4 | df$pchange = ifelse(df$pchange < 0, 'down', 'up')
5 | ask = ggplot(data = df[1:1000,], aes(x = trade.best.ask.size.change, fill = factor(pchange))) +
6 | geom_histogram(alpha = 0.5, position = 'identity',bins = 50) +
7 | scale_fill_discrete(name='price change')+xlim(c(-100,100))+ylim(c(0,50))+guides(fill=FALSE) +
8 | ggtitle('histogram of best ask size change between trades') +
9 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
10 |
11 | bid = ggplot(data = df[1:1000,], aes(x = trade.best.bid.size.change, fill = factor(pchange))) +
12 | geom_histogram(alpha = 0.5, position = 'identity',bins = 50) +
13 | scale_fill_discrete(name='price change')+xlim(c(-100,100))+ylim(c(0,50))+guides(fill=FALSE) +
14 | ggtitle('histogram of best bid size change between trades') +
15 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
16 |
17 | askbidPoint = ggplot(data = df[1:150,], aes(x = trade.best.bid.size.change, y = trade.best.ask.size.change,
18 | colour = factor(pchange))) + geom_point() + scale_colour_discrete(name='price change') +
19 | xlim(c(-40,40))+ylim(c(-50,50))
20 |
21 | imba = ggplot(data = df[1:10000,], aes(x = trade.imba.change, fill = factor(pchange))) +
22 | geom_histogram(alpha = 0.5, position = 'identity',bins = 100) +
23 | scale_fill_discrete(name='price change')+ylim(c(0,60))+xlim(c(-400,400)) + guides(fill=FALSE) +
24 | ggtitle('histogram of imbalance change between trades') +
25 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
26 |
27 | imbaChange = ggplot(data = df[1:10000,], aes(x = book1.imba.change, fill = factor(pchange))) +
28 | geom_histogram(alpha = 0.5, position = 'identity',bins = 100) +
29 | scale_fill_discrete(name='price change')+guides(fill=FALSE)+ylim(c(0,60))+xlim(c(-400,400)) +
30 | ggtitle('histogram of imbalance change between books') +
31 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
32 |
33 | imbaPoint = ggplot(data = df[1:500,], aes(x = trade.imba.change, y = book1.imba.change,
34 | colour = factor(pchange))) + geom_point() + scale_colour_discrete(name='price change') +
35 | xlim(c(-50,50))+ylim(c(-25,25))+ guides(fill=FALSE)
36 |
37 | volume = ggplot(data = df[1:500,], aes(x = vol.change, fill = factor(pchange))) +
38 | geom_histogram(alpha = 0.5, position = 'identity',bins = 70) +
39 | scale_fill_discrete(name='price change') +
40 | xlim(c(-30,30))+ylim(c(0,30)) +
41 | ggtitle('histogram of volume between trades') +
42 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
43 |
44 | direction = ggplot(data = df[1:500,], aes(x = direction, fill = factor(pchange))) +
45 | geom_histogram(alpha = 0.5, position = 'identity',bins = 70) +
46 | scale_fill_discrete(name='price change') +
47 | xlim(c(-30,30))+ylim(c(0,30)) + xlab('number of consecutive direction trades') +
48 | ggtitle('histogram of bnumber of consecutive direction trades') +
49 | theme(axis.title.x = element_text(colour="dark grey", size=10)) + ylab('')
50 |
51 | strangePoint = ggplot(data = df[1:500,], aes(x = direction, y = vol.change,
52 | colour = factor(pchange))) + geom_point() + scale_colour_discrete(name='price change') +
53 | xlim(c(-25,25))+ylim(c(-25,25))+ xlab('number of consecutive direction trades')
54 |
55 |
56 | multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
57 | library(grid)
58 |
59 | # Make a list from the ... arguments and plotlist
60 | plots <- c(list(...), plotlist)
61 |
62 | numPlots = length(plots)
63 |
64 | # If layout is NULL, then use 'cols' to determine layout
65 | if (is.null(layout)) {
66 | # Make the panel
67 | # ncol: Number of columns of plots
68 | # nrow: Number of rows needed, calculated from # of cols
69 | layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
70 | ncol = cols, nrow = ceiling(numPlots/cols))
71 | layout <- t(layout)
72 | }
73 |
74 | if (numPlots==1) {
75 | print(plots[[1]])
76 |
77 | } else {
78 | # Set up the page
79 | grid.newpage()
80 | pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
81 |
82 | # Make each plot, in the correct location
83 | for (i in 1:numPlots) {
84 | # Get the i,j matrix positions of the regions that contain this subplot
85 | matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
86 |
87 | print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
88 | layout.pos.col = matchidx$col))
89 | }
90 | }
91 | }
92 |
93 |
94 |
95 |
96 |
--------------------------------------------------------------------------------
/Visualization/AttributesVisualization.py:
--------------------------------------------------------------------------------
1 | def loadDataSet():
2 | dataMat = []; labelMat = []
3 | fr = open('testSet1.txt')
4 | for line in fr.readlines():
5 | lineArr = line.strip().split()
6 | # dataMat.append([1.0,float(lineArr[0]),float(lineArr[1]),float(lineArr[2]),float(lineArr[3]),float(lineArr[4])])
7 | dataMat.append([1.0,float(lineArr[2]),float(lineArr[4])])
8 | labelMat.append(int(lineArr[5]))
9 | return dataMat,labelMat
10 |
11 |
12 | def sguess():
13 | import matplotlib.pyplot as plt
14 | from mpl_toolkits.mplot3d import Axes3D
15 | import csv
16 | import numpy as np
17 | import matplotlib.pyplot as plt
18 | from matplotlib import style
19 | style.use("ggplot")
20 | from sklearn import svm
21 |
22 |
23 | dataMat = []; labelMat = []
24 | n=0
25 | X = []
26 | y= []
27 | with open('/Users/shengdongliu/Desktop/testSet3.csv') as inputfile:
28 | reader = csv.reader(inputfile)
29 | lineArr = list(reader)
30 | for n in range(len( lineArr)) :
31 |
32 | # fr = open('testSet2.txt')
33 | # for line in fr.readlines():
34 | print lineArr[n]
35 |
36 | # dataMat.append([1.0,float(lineArr[0]),float(lineArr[1]),float(lineArr[2]),float(lineArr[3]),float(lineArr[4])])
37 | X.append([float(lineArr[n][0]),float(lineArr[n][1]),float(lineArr[n][2])])
38 | y.append(int(lineArr[n][4]))
39 | n=n+1
40 | print n
41 |
42 | #dataMat,labelMat=loadDataSet()
43 | # x = [1, 5, 1.5, 8, 1, 9]
44 | # y = [2, 8, 1.8, 8, 0.6, 11]
45 |
46 | # plt.scatter(x,y)
47 | # plt.show()
48 |
49 | #X = np.array([[1,2],
50 | # [5,8],
51 | # [1.5,1.8],
52 | # [8,8],
53 | # [1,0.6],
54 | # [9,11]])
55 | #y = [0,1,0,1,0,1]
56 |
57 |
58 | #clf = svm.SVC(kernel='linear', C = 1.0)
59 | #clf.fit(X,y)
60 | # print(clf.predict([0.58,0.76]))
61 | # print(clf.predict([10.58,10.76]))
62 |
63 | #w = clf.coef_[0]
64 | #print(w)
65 |
66 | #a = -w[0] / w[1]
67 |
68 | xx = np.linspace(-12,12)
69 | #yy = a * xx - clf.intercept_[0] / w[1]
70 | fig = plt.figure()
71 | ax = fig.add_subplot(111, projection='3d')
72 | #h0 = plt.plot(xx, yy, 'k-', label="non weighted div")
73 | for k in range(n-1):
74 |
75 | if(int(y[k])==1):
76 | u=ax.scatter(X[k][0], X[k][1],X[k][2], c = 'red')
77 | elif(int(y[k]==0)):
78 | s=ax.scatter(X[k][0], X[k][1],X[k][2], c = 'grey')
79 | elif(int(y[k]==-1)):
80 | d=ax.scatter(X[k][0], X[k][1],X[k][2], c = 'green')
81 |
82 |
83 | ax.set_xlabel('diff_average_bid')
84 | ax.set_ylabel('diff_average_ask')
85 | ax.set_zlabel('diff_weighted_price')
86 | plt.legend((u, s, d),
87 | ('go up', 'same', 'go down'),
88 | scatterpoints=1,
89 | loc='upper left',
90 | ncol=3,
91 | fontsize=8)
92 | #plt.xlim(-12,12)
93 |
94 | #ax.plot(x, y, z, label='parametric curve')
95 |
96 | plt.show()
97 |
98 | #sguess()
99 | # import numpy as np
100 | # x,y= np.loadtxt('testSet-cp.txt', delimiter='\t')
101 | # print x
102 | # print y
103 | import numpy as np
104 | X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]])
105 | y = np.array([1, 1, 2, 2])
106 | from sklearn.svm import SVC
107 | clf = SVC()
108 | clf.fit(X, y)
109 |
110 |
111 | print(clf.predict([[-0.8, -1]]))
--------------------------------------------------------------------------------
/Visualization/PriceAndPredictionPlot.R:
--------------------------------------------------------------------------------
1 | multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
2 | library(grid)
3 |
4 | # Make a list from the ... arguments and plotlist
5 | plots <- c(list(...), plotlist)
6 |
7 | numPlots = length(plots)
8 |
9 | # If layout is NULL, then use 'cols' to determine layout
10 | if (is.null(layout)) {
11 | # Make the panel
12 | # ncol: Number of columns of plots
13 | # nrow: Number of rows needed, calculated from # of cols
14 | layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
15 | ncol = cols, nrow = ceiling(numPlots/cols))
16 | }
17 |
18 | if (numPlots==1) {
19 | print(plots[[1]])
20 |
21 | } else {
22 | # Set up the page
23 | grid.newpage()
24 | pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
25 |
26 | # Make each plot, in the correct location
27 | for (i in 1:numPlots) {
28 | # Get the i,j matrix positions of the regions that contain this subplot
29 | matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
30 |
31 | print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
32 | layout.pos.col = matchidx$col))
33 | }
34 | }
35 | }
36 |
37 |
38 |
39 |
40 | setwd('~/Dropbox/CME practicum/Data/Apr 15th/Data')
41 | tdata=read.csv("tradeDataForPlotting.txt")
42 | p=tdata$trade.price
43 | n=length(p)
44 | pchange=p[-1]-p[-n]
45 | p=ifelse(pchange>0,'up',ifelse(pchange<0,'down','stay'))
46 | direction=tdata$buy.sell
47 | direction[direction==0]=-1
48 | nd=length(direction)
49 | for(i in 2:nd){
50 | if(direction[i]*direction[i-1]>0)
51 | direction[i]=direction[i-1]+direction[i]
52 | }
53 | tdata$buy.sell=direction
54 | fu=tdata[tdata$p!='stay',]
55 | tdata=cbind(tdata[1:(n-1),],p)
56 | fu=tdata[tdata$p!='stay',]
57 | percent80=round(0.8*nrow(fu));
58 | test=fu[percent80:nrow(fu),]
59 |
60 |
61 | tdata=cbind(tdata[1:(n-1),],p)
62 | library(ggplot2)
63 | test=tdata[tdata$p!='stay',]
64 | n=length(tdata[,1])
65 | test=tdata[(n+1-11397):n,]
66 | qplot(test$trade.volume,data=test,geom="density",colour=p,xlim=c(0,15))
67 |
68 | data=read.csv("~/Dropbox/CME practicum/Apr 15th/Data/esOrderWholeDay.txt")
69 | trade=read.csv("~/Desktop/python/esTradeWholeDay.txt")
70 | data=cbind(data,0)
71 | colnames(data)[14]='movement'
72 | type=data$type
73 | data$movement[type=='trade']=trade$next.price.move
74 |
75 | # svm
76 | n <-nrow(df)*.8
77 | > x <-df[1:n,3:12]
78 | > y <-df[1:n,14]
79 | > g=y[y!=0]
80 | > g=as.factor(g)
81 | > f=x[y!=0,]
82 | > library('e1071')
83 | > model <-svm(f,g, kernel = "radial")
84 | training <-df[(n+1):nrow(df),3:12]
85 | > z <-df[(n+1):nrow(df),14]
86 | > t=training[z!=0,]
87 | > z=z[z!=0]
88 | > pred <-predict(model,t)
89 |
90 | training <-df[(n+1):nrow(df),1:13]
91 | z <-df[(n+1):nrow(df),14]
92 | t=training[z!=0,]
93 | fu1=data.frame(t,z,pred)
94 | accr=ifelse(fu1$z==fu1$pred,1,0)
95 | fu1=data.frame(fu1,accr)
96 | fu1=fu1[1:(length(fu1[,1])-1),]
97 |
98 | accr_rate=vector()
99 | accr_rate[1]=0
100 | for(i in 101:length(accr)){
101 | accr_rate[i-100]=sum(accr[i-100:i]/i)
102 | }
103 |
104 |
105 |
106 | vol=data$trade.volume[type=='trade']
107 | n=length(vol)
108 | vchange=vol[-1]-vol[-n]
109 | vchange=ifelse(vchange<0,'decrease',ifelse(vchange>0,'increase','stay'))
110 | data=cbind(data,0)
111 | colnames(data)[15]='vol.movement'
112 | vchange1=c(0,vchange)
113 | data$vol.movement[data$type=='trade']=vchange1
114 |
115 |
116 | fu=data[data$time>=1.437187e+08,]
117 | n=length(fu[,1])
118 | time=fu$time
119 | time=(time-time[1])/1000
120 | fu$time=time
121 |
122 | n=length(fu1[,1])
123 | time=fu1$time
124 | time=(time-time[1])/1000
125 | fu1$time=time
126 |
127 |
128 | #fu1=fu[fu$type=='trade',]
129 | #fu1$trade.price=ifelse(fu1$buy.sell==1,fu1$trade.price+200,fu1$trade.price-200)
130 | #fu$trade.price[fu$type=='trade']=fu1$trade.price
131 |
132 | fu=fu[fu$time>=25000,]
133 | fu1=fu1[fu1$time>=25000,]
134 | wrong=fu1[fu1$accr==0,]
135 | wrong$z[wrong$z==-1]='dark blue'
136 | wrong$z[wrong$z==1]='grey'
137 |
138 |
139 | right=fu1[fu1$accr==1,]
140 | right$z[right$z==-1]='dark blue'
141 | right$z[right$z==1]='grey'
142 |
143 | p=ggplot()+geom_line(data=fu,aes(x=time,y=best.ask+200,colour='ask'))+xlab('time')+ylab('price')
144 | p=p+geom_line(data=fu,aes(x=time,y=best.bid-200,colour='bid'))+xlab('time')+ylab('price')
145 | p=p+geom_line(data=fu,aes(x=time,y=trade.volume+197000,color='dark blue',alpha=0.6))
146 | p1=p+geom_point(x=wrong$time,y=wrong$trade.price,data=wrong,color=wrong$z)+labs(title="plot of wrong prediction")
147 | p2=p+geom_point(x=right$time,y=right$trade.price,data=right,color=right$z)+labs(title="plot of right prediction")
148 | p3=qplot(x=time,y=accr_rate*100,data=fu2,geom="line",ylim=c(60,100),main="Accuracy of prediction")
149 |
150 | multiplot(p1,p2,p3)
151 |
152 |
153 |
154 | #fu1$trade.price=ifelse(fu1$z==1,fu1$trade.price+200,fu1$trade.price-200)
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
--------------------------------------------------------------------------------
/Visualization/Rplot.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fushuyue/Ml_HFT/23145c9173c2dc358f0d2da8a15e1b84ca50f153/Visualization/Rplot.pdf
--------------------------------------------------------------------------------
/Visualization/iceberg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fushuyue/Ml_HFT/23145c9173c2dc358f0d2da8a15e1b84ca50f153/Visualization/iceberg.png
--------------------------------------------------------------------------------
/Visualization/presentation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/fushuyue/Ml_HFT/23145c9173c2dc358f0d2da8a15e1b84ca50f153/Visualization/presentation.png
--------------------------------------------------------------------------------
/Visualization/visualizeIceberg.r:
--------------------------------------------------------------------------------
1 | iceberg = read.csv('~/Desktop/python/iceberg.txt')
2 | data=read.csv('~/Dropbox/CME practicum/Apr 22nd/Data/with1BookRec.txt')
3 | fu = iceberg[iceberg$type!='in the spread',]
4 | library('ggplot2')
5 | p = ggplot() +
6 | geom_line(data = data, aes(x = time.5.n./10000000, y = trade.price),colour = 'tomato1')+xlab('time')
7 |
8 | q = ggplot() + geom_bar(data = data, aes(x = time.5.n./10000000,y=vol), stat ='identity',
9 | fill = 'grey28', alpha=0.8, width = 0.5)
10 | f = q + geom_bar(data = fu,aes(x = time/10000000, y=volume), stat = 'identity',
11 | fill = 'grey60', width = 0.5) + xlab('time') + ylab('order size')
12 |
13 | multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
14 | library(grid)
15 |
16 | # Make a list from the ... arguments and plotlist
17 | plots <- c(list(...), plotlist)
18 |
19 | numPlots = length(plots)
20 |
21 | # If layout is NULL, then use 'cols' to determine layout
22 | if (is.null(layout)) {
23 | # Make the panel
24 | # ncol: Number of columns of plots
25 | # nrow: Number of rows needed, calculated from # of cols
26 | layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
27 | ncol = cols, nrow = ceiling(numPlots/cols))
28 | }
29 |
30 | if (numPlots==1) {
31 | print(plots[[1]])
32 |
33 | } else {
34 | # Set up the page
35 | grid.newpage()
36 | pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
37 |
38 | # Make each plot, in the correct location
39 | for (i in 1:numPlots) {
40 | # Get the i,j matrix positions of the regions that contain this subplot
41 | matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
42 |
43 | print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
44 | layout.pos.col = matchidx$col))
45 | }
46 | }
47 | }
48 |
49 | multiplot(p,q)
--------------------------------------------------------------------------------
/Visualization/visualizeSpread.R:
--------------------------------------------------------------------------------
1 | setwd('~/Dropbox/CME practicum/Apr 22nd/SVM/testing set/')
2 | tdata=read.csv("with1_80_20_testing_data.csv")
3 | data=read.csv('~/Desktop/python/esOrderWholeDay.txt')
4 | time=tdata$time.5.n.
5 | Data=data[data$time>=time[1],]
6 |
7 | fu = tdata[30:100,]
8 | time = fu$time.5.n
9 | df = Data[Data$time <= time[71],]
10 | df = df[df$time>=time[1],]
11 | accr = ifelse(fu$real==fu$pred,'right','wrong')
12 | fu = cbind(fu,accr)
13 |
14 | fu$time.5.n = fu$time.5.n/1000
15 | df$time = df$time/1000
16 | fu$real1 = ifelse(fu$real1 == 1, 'firebrick1', 'green')
17 |
18 |
19 | p = ggplot()+geom_line(data = df,aes(x = time/10000,y = best.ask+30,colour = best.ask.size),size = 3)+
20 | xlab('time')+ylab('price')
21 |
22 | p = p+geom_line(data = df,aes(x = time/10000,y = best.bid-30,colour = best.bid.size), size = 3)
23 |
24 | p = p + scale_color_gradient(name = 'liquidity of \nask and bid',low = 'pink', high = 'red')
25 |
26 | fuup = fu[fu$real1 == 'firebrick1',]
27 | fudown = fu[fu$real1 == 'green',]
28 |
29 | p1 = p + geom_point(data = fuup,aes(x = time.5.n/10000, y = trade_price1, alpha = 0.8, shape = factor(accr)),colour = 'blue',size = 5)
30 | p1 = p1 + geom_point(data = fudown,aes(x = time.5.n/10000, y = trade_price1, alpha = 0.8, shape = factor(accr)),colour = 'black',size = 5)
31 | p1 = p1 + guides(alpha = F) + scale_shape_discrete(name = 'prediction outcome', solid = F) + guides(alpha=F)
32 |
33 | multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
34 | library(grid)
35 |
36 | # Make a list from the ... arguments and plotlist
37 | plots <- c(list(...), plotlist)
38 |
39 | numPlots = length(plots)
40 |
41 | # If layout is NULL, then use 'cols' to determine layout
42 | if (is.null(layout)) {
43 | # Make the panel
44 | # ncol: Number of columns of plots
45 | # nrow: Number of rows needed, calculated from # of cols
46 | layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
47 | ncol = cols, nrow = ceiling(numPlots/cols))
48 | }
49 |
50 | if (numPlots==1) {
51 | print(plots[[1]])
52 |
53 | } else {
54 | # Set up the page
55 | grid.newpage()
56 | pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
57 |
58 | # Make each plot, in the correct location
59 | for (i in 1:numPlots) {
60 | # Get the i,j matrix positions of the regions that contain this subplot
61 | matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
62 |
63 | print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
64 | layout.pos.col = matchidx$col))
65 | }
66 | }
67 | }
68 |
--------------------------------------------------------------------------------