├── Baby_Health.ipynb
└── README.md
/Baby_Health.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "Baby Health.ipynb",
7 | "provenance": []
8 | },
9 | "kernelspec": {
10 | "name": "python3",
11 | "display_name": "Python 3"
12 | },
13 | "language_info": {
14 | "name": "python"
15 | }
16 | },
17 | "cells": [
18 | {
19 | "cell_type": "code",
20 | "execution_count": 68,
21 | "metadata": {
22 | "colab": {
23 | "base_uri": "https://localhost:8080/"
24 | },
25 | "id": "088NgMejWyOm",
26 | "outputId": "381c7642-f59a-433a-a166-ed25cf4df0d0"
27 | },
28 | "outputs": [
29 | {
30 | "output_type": "stream",
31 | "name": "stdout",
32 | "text": [
33 | "Mounted at /content/drive\n"
34 | ]
35 | }
36 | ],
37 | "source": [
38 | "#add your code \n",
39 | "from google.colab import drive\n",
40 | "\n",
41 | "drive.mount('/content/drive')"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "source": [
47 | "import pandas as pd\n",
48 | "df = pd.read_csv('/content/dataset1.csv')"
49 | ],
50 | "metadata": {
51 | "id": "uhqhmK4rokxH"
52 | },
53 | "execution_count": 69,
54 | "outputs": []
55 | },
56 | {
57 | "cell_type": "code",
58 | "source": [
59 | "df.head()"
60 | ],
61 | "metadata": {
62 | "colab": {
63 | "base_uri": "https://localhost:8080/",
64 | "height": 287
65 | },
66 | "id": "Rgq3ksewo7Gk",
67 | "outputId": "644d2937-bdee-461e-f116-3bb60ac1df6b"
68 | },
69 | "execution_count": 70,
70 | "outputs": [
71 | {
72 | "output_type": "execute_result",
73 | "data": {
74 | "text/html": [
75 | "\n",
76 | "
\n",
77 | "
\n",
78 | "
\n",
79 | "\n",
92 | "
\n",
93 | " \n",
94 | " \n",
95 | " | \n",
96 | " baseline value | \n",
97 | " accelerations | \n",
98 | " fetal_movement | \n",
99 | " uterine_contractions | \n",
100 | " light_decelerations | \n",
101 | " severe_decelerations | \n",
102 | " prolongued_decelerations | \n",
103 | " abnormal_short_term_variability | \n",
104 | " mean_value_of_short_term_variability | \n",
105 | " percentage_of_time_with_abnormal_long_term_variability | \n",
106 | " mean_value_of_long_term_variability | \n",
107 | " histogram_width | \n",
108 | " histogram_min | \n",
109 | " histogram_max | \n",
110 | " histogram_number_of_peaks | \n",
111 | " histogram_number_of_zeroes | \n",
112 | " histogram_mode | \n",
113 | " histogram_mean | \n",
114 | " histogram_median | \n",
115 | " histogram_variance | \n",
116 | " histogram_tendency | \n",
117 | " fetal_health | \n",
118 | "
\n",
119 | " \n",
120 | " \n",
121 | " \n",
122 | " 0 | \n",
123 | " 120.0 | \n",
124 | " 0.000 | \n",
125 | " 0.0 | \n",
126 | " 0.000 | \n",
127 | " 0.000 | \n",
128 | " 0.0 | \n",
129 | " 0.0 | \n",
130 | " 73.0 | \n",
131 | " 0.5 | \n",
132 | " 43.0 | \n",
133 | " 2.4 | \n",
134 | " 64.0 | \n",
135 | " 62.0 | \n",
136 | " 126.0 | \n",
137 | " 2.0 | \n",
138 | " 0.0 | \n",
139 | " 120.0 | \n",
140 | " 137.0 | \n",
141 | " 121.0 | \n",
142 | " 73.0 | \n",
143 | " 1.0 | \n",
144 | " 2.0 | \n",
145 | "
\n",
146 | " \n",
147 | " 1 | \n",
148 | " 132.0 | \n",
149 | " 0.006 | \n",
150 | " 0.0 | \n",
151 | " 0.006 | \n",
152 | " 0.003 | \n",
153 | " 0.0 | \n",
154 | " 0.0 | \n",
155 | " 17.0 | \n",
156 | " 2.1 | \n",
157 | " 0.0 | \n",
158 | " 10.4 | \n",
159 | " 130.0 | \n",
160 | " 68.0 | \n",
161 | " 198.0 | \n",
162 | " 6.0 | \n",
163 | " 1.0 | \n",
164 | " 141.0 | \n",
165 | " 136.0 | \n",
166 | " 140.0 | \n",
167 | " 12.0 | \n",
168 | " 0.0 | \n",
169 | " 1.0 | \n",
170 | "
\n",
171 | " \n",
172 | " 2 | \n",
173 | " 133.0 | \n",
174 | " 0.003 | \n",
175 | " 0.0 | \n",
176 | " 0.008 | \n",
177 | " 0.003 | \n",
178 | " 0.0 | \n",
179 | " 0.0 | \n",
180 | " 16.0 | \n",
181 | " 2.1 | \n",
182 | " 0.0 | \n",
183 | " 13.4 | \n",
184 | " 130.0 | \n",
185 | " 68.0 | \n",
186 | " 198.0 | \n",
187 | " 5.0 | \n",
188 | " 1.0 | \n",
189 | " 141.0 | \n",
190 | " 135.0 | \n",
191 | " 138.0 | \n",
192 | " 13.0 | \n",
193 | " 0.0 | \n",
194 | " 1.0 | \n",
195 | "
\n",
196 | " \n",
197 | " 3 | \n",
198 | " 134.0 | \n",
199 | " 0.003 | \n",
200 | " 0.0 | \n",
201 | " 0.008 | \n",
202 | " 0.003 | \n",
203 | " 0.0 | \n",
204 | " 0.0 | \n",
205 | " 16.0 | \n",
206 | " 2.4 | \n",
207 | " 0.0 | \n",
208 | " 23.0 | \n",
209 | " 117.0 | \n",
210 | " 53.0 | \n",
211 | " 170.0 | \n",
212 | " 11.0 | \n",
213 | " 0.0 | \n",
214 | " 137.0 | \n",
215 | " 134.0 | \n",
216 | " 137.0 | \n",
217 | " 13.0 | \n",
218 | " 1.0 | \n",
219 | " 1.0 | \n",
220 | "
\n",
221 | " \n",
222 | " 4 | \n",
223 | " 132.0 | \n",
224 | " 0.007 | \n",
225 | " 0.0 | \n",
226 | " 0.008 | \n",
227 | " 0.000 | \n",
228 | " 0.0 | \n",
229 | " 0.0 | \n",
230 | " 16.0 | \n",
231 | " 2.4 | \n",
232 | " 0.0 | \n",
233 | " 19.9 | \n",
234 | " 117.0 | \n",
235 | " 53.0 | \n",
236 | " 170.0 | \n",
237 | " 9.0 | \n",
238 | " 0.0 | \n",
239 | " 137.0 | \n",
240 | " 136.0 | \n",
241 | " 138.0 | \n",
242 | " 11.0 | \n",
243 | " 1.0 | \n",
244 | " 1.0 | \n",
245 | "
\n",
246 | " \n",
247 | "
\n",
248 | "
\n",
249 | "
\n",
259 | " \n",
260 | " \n",
297 | "\n",
298 | " \n",
322 | "
\n",
323 | "
\n",
324 | " "
325 | ],
326 | "text/plain": [
327 | " baseline value accelerations ... histogram_tendency fetal_health\n",
328 | "0 120.0 0.000 ... 1.0 2.0\n",
329 | "1 132.0 0.006 ... 0.0 1.0\n",
330 | "2 133.0 0.003 ... 0.0 1.0\n",
331 | "3 134.0 0.003 ... 1.0 1.0\n",
332 | "4 132.0 0.007 ... 1.0 1.0\n",
333 | "\n",
334 | "[5 rows x 22 columns]"
335 | ]
336 | },
337 | "metadata": {},
338 | "execution_count": 70
339 | }
340 | ]
341 | },
342 | {
343 | "cell_type": "code",
344 | "source": [
345 | "y = pd.get_dummies(df['fetal_health']).values"
346 | ],
347 | "metadata": {
348 | "id": "RwDNE7otbgdl"
349 | },
350 | "execution_count": 101,
351 | "outputs": []
352 | },
353 | {
354 | "cell_type": "code",
355 | "source": [
356 | "y"
357 | ],
358 | "metadata": {
359 | "colab": {
360 | "base_uri": "https://localhost:8080/"
361 | },
362 | "id": "7ZcbuB9cbo75",
363 | "outputId": "d76b9164-f8e9-4441-c646-f87d0639bea5"
364 | },
365 | "execution_count": 109,
366 | "outputs": [
367 | {
368 | "output_type": "execute_result",
369 | "data": {
370 | "text/plain": [
371 | "array([[0, 1, 0],\n",
372 | " [1, 0, 0],\n",
373 | " [1, 0, 0],\n",
374 | " ...,\n",
375 | " [0, 1, 0],\n",
376 | " [0, 1, 0],\n",
377 | " [1, 0, 0]], dtype=uint8)"
378 | ]
379 | },
380 | "metadata": {},
381 | "execution_count": 109
382 | }
383 | ]
384 | },
385 | {
386 | "cell_type": "code",
387 | "source": [
388 | "from sklearn.model_selection import train_test_split\n",
389 | "X_train, X_test, Y_train, Y_test = train_test_split(df.iloc[:,df.columns != 'fetal_health'],y,test_size=.2)"
390 | ],
391 | "metadata": {
392 | "id": "ilGvN7YlTRqQ"
393 | },
394 | "execution_count": 102,
395 | "outputs": []
396 | },
397 | {
398 | "cell_type": "code",
399 | "source": [
400 | "from sklearn.preprocessing import StandardScaler\n",
401 | "sc = StandardScaler()\n",
402 | "X_train = sc.fit_transform(X_train)\n",
403 | "X_test = sc.transform(X_test)"
404 | ],
405 | "metadata": {
406 | "id": "gZgXP1UDTyq2"
407 | },
408 | "execution_count": 103,
409 | "outputs": []
410 | },
411 | {
412 | "cell_type": "code",
413 | "source": [
414 | "import numpy as np\n",
415 | "X_train = np.array(X_train)\n",
416 | "X_test = np.array(X_test)\n",
417 | "Y_train=np.array(Y_train)\n",
418 | "Y_test=np.array(Y_test)\n",
419 | "\n",
420 | "X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))\n",
421 | "X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))\n",
422 | "Y_train = np.reshape(Y_train, (Y_train.shape[0], 1, Y_train.shape[1]))\n",
423 | "Y_test = np.reshape(Y_test, (Y_test.shape[0], 1, Y_test.shape[1]))"
424 | ],
425 | "metadata": {
426 | "id": "cs13q-g8ZTNR"
427 | },
428 | "execution_count": 104,
429 | "outputs": []
430 | },
431 | {
432 | "cell_type": "code",
433 | "source": [
434 | "from keras.models import Sequential\n",
435 | "from keras.layers import Dense, Conv1D, MaxPooling1D, Dropout\n",
436 | "\n",
437 | "model = Sequential()\n",
438 | "model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))\n",
439 | "model.add(MaxPooling1D(pool_size=1))\n",
440 | "model.add(Conv1D(16,kernel_initializer = 'uniform', activation='relu', kernel_size=1))\n",
441 | "model.add(MaxPooling1D(pool_size=1))\n",
442 | "model.add(Dense(10,kernel_initializer = 'uniform', activation='relu'))\n",
443 | "model.add(Dropout(0.2, input_shape=(10,)))\n",
444 | "model.add(Dense(3, kernel_initializer = 'uniform',activation='sigmoid'))"
445 | ],
446 | "metadata": {
447 | "id": "tL-9kqo-VaJ0"
448 | },
449 | "execution_count": 106,
450 | "outputs": []
451 | },
452 | {
453 | "cell_type": "code",
454 | "source": [
455 | "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])"
456 | ],
457 | "metadata": {
458 | "id": "-4nsK39EXDd3"
459 | },
460 | "execution_count": 107,
461 | "outputs": []
462 | },
463 | {
464 | "cell_type": "code",
465 | "source": [
466 | "model.fit(X_train, Y_train, epochs=6, batch_size=32)"
467 | ],
468 | "metadata": {
469 | "colab": {
470 | "base_uri": "https://localhost:8080/"
471 | },
472 | "id": "9nVbKaSXXSr2",
473 | "outputId": "2d86d140-272b-405e-d5e9-fc2a2ad69601"
474 | },
475 | "execution_count": 108,
476 | "outputs": [
477 | {
478 | "output_type": "stream",
479 | "name": "stdout",
480 | "text": [
481 | "Epoch 1/6\n",
482 | "54/54 [==============================] - 2s 5ms/step - loss: 1.0408 - accuracy: 0.7712\n",
483 | "Epoch 2/6\n",
484 | "54/54 [==============================] - 0s 4ms/step - loss: 0.6398 - accuracy: 0.7788\n",
485 | "Epoch 3/6\n",
486 | "54/54 [==============================] - 0s 4ms/step - loss: 0.4669 - accuracy: 0.7788\n",
487 | "Epoch 4/6\n",
488 | "54/54 [==============================] - 0s 4ms/step - loss: 0.4081 - accuracy: 0.7794\n",
489 | "Epoch 5/6\n",
490 | "54/54 [==============================] - 0s 4ms/step - loss: 0.3842 - accuracy: 0.8188\n",
491 | "Epoch 6/6\n",
492 | "54/54 [==============================] - 0s 4ms/step - loss: 0.3616 - accuracy: 0.8406\n"
493 | ]
494 | },
495 | {
496 | "output_type": "execute_result",
497 | "data": {
498 | "text/plain": [
499 | ""
500 | ]
501 | },
502 | "metadata": {},
503 | "execution_count": 108
504 | }
505 | ]
506 | },
507 | {
508 | "cell_type": "code",
509 | "source": [
510 | "# evaluate the keras model\n",
511 | "_, accuracy = model.evaluate(X_train, Y_train)\n",
512 | "print('Accuracy: %.2f' % (accuracy*100))"
513 | ],
514 | "metadata": {
515 | "colab": {
516 | "base_uri": "https://localhost:8080/"
517 | },
518 | "id": "E9cRoBsGcUc-",
519 | "outputId": "0bc2d656-d737-4e56-d797-81a8d40326f0"
520 | },
521 | "execution_count": 112,
522 | "outputs": [
523 | {
524 | "output_type": "stream",
525 | "name": "stdout",
526 | "text": [
527 | "54/54 [==============================] - 1s 2ms/step - loss: 0.2551 - accuracy: 0.8512\n",
528 | "Accuracy: 85.12\n"
529 | ]
530 | }
531 | ]
532 | }
533 | ]
534 | }
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | #### Baby Health - Data Science
2 | - Convolution Layer
3 | - Dense Layer
4 | - Neural Network
5 | - Overfitting
6 | - Epochs
7 | - Batch
8 |
--------------------------------------------------------------------------------