├── Makefile ├── Makefile.config ├── README.md ├── data ├── ILSVRC2016 │ ├── README.md │ ├── create_data.sh │ ├── create_list.py │ ├── labelmap_ilsvrc_clsloc.prototxt │ └── labelmap_ilsvrc_det.prototxt ├── VOC0712 │ ├── coco_voc_map.txt │ ├── create_data.sh │ ├── create_list.sh │ ├── labelmap_voc.prototxt │ ├── test.txt │ ├── test_name_size.txt │ └── trainval.txt ├── cifar10 │ └── get_cifar10.sh ├── coco │ ├── LuaAPI │ │ ├── CocoApi.lua │ │ ├── MaskApi.lua │ │ ├── cocoDemo.lua │ │ ├── env.lua │ │ ├── init.lua │ │ └── rocks │ │ │ └── coco-scm-1.rockspec │ ├── MatlabAPI │ │ ├── CocoApi.m │ │ ├── CocoEval.m │ │ ├── CocoUtils.m │ │ ├── MaskApi.m │ │ ├── cocoDemo.m │ │ ├── evalDemo.m │ │ ├── gason.m │ │ └── private │ │ │ ├── gasonMex.cpp │ │ │ ├── gasonMex.mexa64 │ │ │ ├── gasonMex.mexmaci64 │ │ │ ├── getPrmDflt.m │ │ │ ├── maskApiMex.c │ │ │ ├── maskApiMex.mexa64 │ │ │ └── maskApiMex.mexmaci64 │ ├── PythonAPI │ │ ├── Makefile │ │ ├── pycocoDemo.ipynb │ │ ├── pycocoEvalDemo.ipynb │ │ ├── pycocotools │ │ │ ├── __init__.py │ │ │ ├── __init__.pyc │ │ │ ├── _mask.c │ │ │ ├── _mask.pyx │ │ │ ├── _mask.so │ │ │ ├── coco.py │ │ │ ├── coco.pyc │ │ │ ├── cocoeval.py │ │ │ ├── mask.py │ │ │ └── mask.pyc │ │ ├── scripts │ │ │ ├── batch_get_image_size.py │ │ │ ├── batch_split_annotation.py │ │ │ ├── get_image_size.py │ │ │ └── split_annotation.py │ │ └── setup.py │ ├── README.md │ ├── README.txt │ ├── common │ │ ├── gason.cpp │ │ ├── gason.h │ │ ├── maskApi.c │ │ └── maskApi.h │ ├── create_data.sh │ ├── create_list.py │ ├── labelmap_coco.prototxt │ ├── labels.txt │ ├── license.txt │ ├── minival.log │ ├── minival.txt │ ├── minival2014_name_size.txt │ ├── results │ │ ├── captions_val2014_fakecap_results.json │ │ ├── instances_val2014_fakebbox100_results.json │ │ ├── instances_val2014_fakesegm100_results.json │ │ ├── person_keypoints_val2014_fakekeypoints100_results.json │ │ └── val2014_fake_eval_res.txt │ ├── test-dev2015_name_size.txt │ ├── test.log │ ├── test.txt │ ├── testdev.log │ ├── testdev.txt │ ├── train.log │ └── train.txt ├── ilsvrc12 │ └── get_ilsvrc_aux.sh └── mnist │ └── get_mnist.sh ├── examples ├── .ipynb_checkpoints │ └── ssd-checkpoint.ipynb ├── 00-classification.ipynb ├── 01-learning-lenet.ipynb ├── 02-fine-tuning.ipynb ├── CMakeLists.txt ├── VOC0712 │ ├── VOC0712_test_lmdb │ └── VOC0712_trainval_lmdb ├── brewing-logreg.ipynb ├── cifar10 │ ├── cifar10_full.prototxt │ ├── cifar10_full_sigmoid_solver.prototxt │ ├── cifar10_full_sigmoid_solver_bn.prototxt │ ├── cifar10_full_sigmoid_train_test.prototxt │ ├── cifar10_full_sigmoid_train_test_bn.prototxt │ ├── cifar10_full_solver.prototxt │ ├── cifar10_full_solver_lr1.prototxt │ ├── cifar10_full_solver_lr2.prototxt │ ├── cifar10_full_train_test.prototxt │ ├── cifar10_quick.prototxt │ ├── cifar10_quick_solver.prototxt │ ├── cifar10_quick_solver_lr1.prototxt │ ├── cifar10_quick_train_test.prototxt │ ├── convert_cifar_data.cpp │ ├── create_cifar10.sh │ ├── readme.md │ ├── train_full.sh │ ├── train_full_sigmoid.sh │ ├── train_full_sigmoid_bn.sh │ └── train_quick.sh ├── coco │ ├── coco_minival_lmdb │ ├── coco_minival_lmdb1 │ ├── coco_test_lmdb │ ├── coco_testdev_lmdb │ └── coco_train_lmdb ├── convert_model.ipynb ├── cpp_classification │ ├── classification.cpp │ └── readme.md ├── detection.ipynb ├── feature_extraction │ ├── imagenet_val.prototxt │ └── readme.md ├── finetune_flickr_style │ ├── assemble_data.py │ ├── flickr_style.csv.gz │ ├── readme.md │ └── style_names.txt ├── finetune_pascal_detection │ ├── pascal_finetune_solver.prototxt │ └── pascal_finetune_trainval_test.prototxt ├── hdf5_classification │ ├── nonlinear_auto_test.prototxt │ ├── nonlinear_auto_train.prototxt │ ├── nonlinear_train_val.prototxt │ └── train_val.prototxt ├── imagenet │ ├── create_imagenet.sh │ ├── make_imagenet_mean.sh │ ├── readme.md │ ├── resume_training.sh │ └── train_caffenet.sh ├── images │ ├── cat gray.jpg │ ├── cat.jpg │ ├── cat_gray.jpg │ ├── cropped_panda.jpg │ └── fish-bike.jpg ├── inceptionv3.ipynb ├── mnist │ ├── convert_mnist_data.cpp │ ├── create_mnist.sh │ ├── lenet.prototxt │ ├── lenet_adadelta_solver.prototxt │ ├── lenet_auto_solver.prototxt │ ├── lenet_consolidated_solver.prototxt │ ├── lenet_multistep_solver.prototxt │ ├── lenet_solver.prototxt │ ├── lenet_solver_adam.prototxt │ ├── lenet_solver_rmsprop.prototxt │ ├── lenet_train_test.prototxt │ ├── mnist_autoencoder.prototxt │ ├── mnist_autoencoder_solver.prototxt │ ├── mnist_autoencoder_solver_adadelta.prototxt │ ├── mnist_autoencoder_solver_adagrad.prototxt │ ├── mnist_autoencoder_solver_nesterov.prototxt │ ├── readme.md │ ├── train_lenet.sh │ ├── train_lenet_adam.sh │ ├── train_lenet_consolidated.sh │ ├── train_lenet_docker.sh │ ├── train_lenet_rmsprop.sh │ ├── train_mnist_autoencoder.sh │ ├── train_mnist_autoencoder_adadelta.sh │ ├── train_mnist_autoencoder_adagrad.sh │ └── train_mnist_autoencoder_nesterov.sh ├── net_surgery.ipynb ├── net_surgery │ ├── bvlc_caffenet_full_conv.prototxt │ └── conv.prototxt ├── pascal-multilabel-with-datalayer.ipynb ├── pycaffe │ ├── caffenet.py │ ├── layers │ │ ├── pascal_multilabel_datalayers.py │ │ └── pyloss.py │ ├── linreg.prototxt │ └── tools.py ├── siamese │ ├── convert_mnist_siamese_data.cpp │ ├── create_mnist_siamese.sh │ ├── mnist_siamese.ipynb │ ├── mnist_siamese.prototxt │ ├── mnist_siamese_solver.prototxt │ ├── mnist_siamese_train_test.prototxt │ ├── readme.md │ └── train_mnist_siamese.sh ├── ssd.ipynb ├── ssd │ ├── plot_detections.py │ ├── score_ssd_coco.py │ ├── score_ssd_pascal.py │ ├── ssd_coco.py │ ├── ssd_coco_mask.py │ ├── ssd_detect.cpp │ ├── ssd_ilsvrc.py │ ├── ssd_pascal.py │ ├── ssd_pascal_orig.py │ ├── ssd_pascal_resnet.py │ ├── ssd_pascal_speed.py │ ├── ssd_pascal_video.py │ ├── ssd_pascal_webcam.py │ └── ssd_pascal_zf.py ├── ssd_detect.ipynb ├── videos │ └── ILSVRC2015_train_00755001.mp4 └── web_demo │ ├── app.py │ ├── exifutil.py │ ├── readme.md │ ├── requirements.txt │ └── templates │ └── index.html ├── include └── caffe │ ├── blob.hpp │ ├── caffe.hpp │ ├── common.hpp │ ├── data_reader.hpp │ ├── data_transformer.hpp │ ├── filler.hpp │ ├── internal_thread.hpp │ ├── layer.hpp │ ├── layer_factory.hpp │ ├── layers │ ├── absval_layer.hpp │ ├── accuracy_layer.hpp │ ├── annotated_data_layer.hpp │ ├── argmax_layer.hpp │ ├── base_conv_layer.hpp │ ├── base_data_layer.hpp │ ├── batch_norm_layer.hpp │ ├── batch_reindex_layer.hpp │ ├── bias_layer.hpp │ ├── bnll_layer.hpp │ ├── concat_layer.hpp │ ├── contrastive_loss_layer.hpp │ ├── conv_layer.hpp │ ├── crop_layer.hpp │ ├── cudnn_conv_layer.hpp │ ├── cudnn_lcn_layer.hpp │ ├── cudnn_lrn_layer.hpp │ ├── cudnn_pooling_layer.hpp │ ├── cudnn_relu_layer.hpp │ ├── cudnn_sigmoid_layer.hpp │ ├── cudnn_softmax_layer.hpp │ ├── cudnn_tanh_layer.hpp │ ├── data_layer.hpp │ ├── deconv_layer.hpp │ ├── detection_evaluate_layer.hpp │ ├── detection_output_layer.hpp │ ├── dropout_layer.hpp │ ├── dummy_data_layer.hpp │ ├── eltwise_layer.hpp │ ├── elu_layer.hpp │ ├── embed_layer.hpp │ ├── euclidean_loss_layer.hpp │ ├── exp_layer.hpp │ ├── filter_layer.hpp │ ├── flatten_layer.hpp │ ├── hdf5_data_layer.hpp │ ├── hdf5_output_layer.hpp │ ├── hinge_loss_layer.hpp │ ├── im2col_layer.hpp │ ├── image_data_layer.hpp │ ├── infogain_loss_layer.hpp │ ├── inner_product_layer.hpp │ ├── input_layer.hpp │ ├── log_layer.hpp │ ├── loss_layer.hpp │ ├── lrn_layer.hpp │ ├── lstm_layer.hpp │ ├── memory_data_layer.hpp │ ├── multibox_loss_layer.hpp │ ├── multinomial_logistic_loss_layer.hpp │ ├── mvn_layer.hpp │ ├── neuron_layer.hpp │ ├── normalize_layer.hpp │ ├── parameter_layer.hpp │ ├── permute_layer.hpp │ ├── pooling_layer.hpp │ ├── power_layer.hpp │ ├── prelu_layer.hpp │ ├── prior_box_layer.hpp │ ├── python_layer.hpp │ ├── recurrent_layer.hpp │ ├── reduction_layer.hpp │ ├── relu_layer.hpp │ ├── reshape_layer.hpp │ ├── rnn_layer.hpp │ ├── scale_layer.hpp │ ├── sigmoid_cross_entropy_loss_layer.hpp │ ├── sigmoid_layer.hpp │ ├── silence_layer.hpp │ ├── slice_layer.hpp │ ├── smooth_L1_loss_layer.hpp │ ├── softmax_layer.hpp │ ├── softmax_loss_layer.hpp │ ├── split_layer.hpp │ ├── spp_layer.hpp │ ├── tanh_layer.hpp │ ├── threshold_layer.hpp │ ├── tile_layer.hpp │ ├── video_data_layer.hpp │ └── window_data_layer.hpp │ ├── net.hpp │ ├── parallel.hpp │ ├── sgd_solvers.hpp │ ├── solver.hpp │ ├── solver_factory.hpp │ ├── syncedmem.hpp │ ├── test │ ├── test_caffe_main.hpp │ └── test_gradient_check_util.hpp │ └── util │ ├── .sampler.hpp.swp │ ├── bbox_util.hpp │ ├── benchmark.hpp │ ├── blocking_queue.hpp │ ├── cudnn.hpp │ ├── db.hpp │ ├── db_leveldb.hpp │ ├── db_lmdb.hpp │ ├── device_alternate.hpp │ ├── format.hpp │ ├── gpu_util.cuh │ ├── hdf5.hpp │ ├── im2col.hpp │ ├── im_transforms.hpp │ ├── insert_splits.hpp │ ├── io.hpp │ ├── math_functions.hpp │ ├── mkl_alternate.hpp │ ├── rng.hpp │ ├── sampler.hpp │ ├── sampler.hpp.save │ ├── sampler.hpp.save.1 │ ├── signal_handler.h │ └── upgrade_proto.hpp ├── jobs └── VGGNet │ ├── VOC0712 │ ├── SSD_300x300 │ │ ├── .train.prototxt.swp │ │ ├── VGG_VOC0712_SSD_300x300.log │ │ ├── VGG_VOC0712_SSD_300x300.sh │ │ ├── deploy.prototxt │ │ ├── solver.prototxt │ │ ├── ssd_pascal.py │ │ ├── test.prototxt │ │ └── train.prototxt │ ├── SSD_300x300_video │ │ ├── VGG_VOC0712_SSD_300x300.sh │ │ ├── ssd_pascal_video.py │ │ └── test.prototxt │ └── SSD_300x300_webcam │ │ ├── VGG_VOC0712_SSD_300x300.sh │ │ ├── ssd_pascal_webcam.py │ │ └── test.prototxt │ └── coco │ └── SSD_300x300 │ ├── .test.prototxt.swp │ ├── VGG_coco_SSD_300x300.log │ ├── VGG_coco_SSD_300x300.sh │ ├── deploy.prototxt │ ├── solver.prototxt │ ├── ssd_coco.py │ ├── ssd_coco_mask.py │ ├── test.prototxt │ └── train.prototxt ├── models ├── bvlc_alexnet │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_googlenet │ ├── deploy.prototxt │ ├── quick_solver.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_reference_caffenet │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── bvlc_reference_rcnn_ilsvrc13 │ ├── deploy.prototxt │ └── readme.md └── finetune_flickr_style │ ├── deploy.prototxt │ ├── readme.md │ ├── solver.prototxt │ └── train_val.prototxt ├── python ├── CMakeLists.txt ├── caffe │ ├── __init__.py │ ├── __init__.pyc │ ├── _caffe.cpp │ ├── classifier.py │ ├── classifier.pyc │ ├── coord_map.py │ ├── detector.py │ ├── detector.pyc │ ├── draw.py │ ├── imagenet │ │ └── ilsvrc_2012_mean.npy │ ├── io.py │ ├── io.pyc │ ├── model_libs.py │ ├── model_libs.pyc │ ├── net_spec.py │ ├── net_spec.pyc │ ├── pycaffe.py │ ├── pycaffe.pyc │ └── test │ │ ├── test_coord_map.py │ │ ├── test_io.py │ │ ├── test_layer_type_list.py │ │ ├── test_net.py │ │ ├── test_net_spec.py │ │ ├── test_python_layer.py │ │ ├── test_python_layer_with_param_str.py │ │ └── test_solver.py ├── classify.py ├── detect.py ├── draw_net.py └── requirements.txt ├── scripts ├── build_docs.sh ├── convert_inception_v3.py ├── copy_notebook.py ├── cpp_lint.py ├── create_annoset.py ├── deploy_docs.sh ├── download_model_binary.py ├── download_model_from_gist.sh ├── gather_examples.sh ├── travis │ ├── build.sh │ ├── configure-cmake.sh │ ├── configure-make.sh │ ├── configure.sh │ ├── defaults.sh │ ├── install-deps.sh │ ├── install-python-deps.sh │ ├── setup-venv.sh │ └── test.sh └── upload_model_to_gist.sh ├── src ├── caffe │ ├── CMakeLists.txt │ ├── blob.cpp │ ├── common.cpp │ ├── data_reader.cpp │ ├── data_transformer.cpp │ ├── internal_thread.cpp │ ├── layer.cpp │ ├── layer_factory.cpp │ ├── layers │ │ ├── absval_layer.cpp │ │ ├── absval_layer.cu │ │ ├── accuracy_layer.cpp │ │ ├── annotated_data_layer.cpp │ │ ├── annotated_data_layer.cpp~ │ │ ├── argmax_layer.cpp │ │ ├── base_conv_layer.cpp │ │ ├── base_data_layer.cpp │ │ ├── base_data_layer.cu │ │ ├── batch_norm_layer.cpp │ │ ├── batch_norm_layer.cu │ │ ├── batch_reindex_layer.cpp │ │ ├── batch_reindex_layer.cu │ │ ├── bias_layer.cpp │ │ ├── bias_layer.cu │ │ ├── bnll_layer.cpp │ │ ├── bnll_layer.cu │ │ ├── concat_layer.cpp │ │ ├── concat_layer.cu │ │ ├── contrastive_loss_layer.cpp │ │ ├── contrastive_loss_layer.cu │ │ ├── conv_layer.cpp │ │ ├── conv_layer.cu │ │ ├── crop_layer.cpp │ │ ├── crop_layer.cu │ │ ├── cudnn_conv_layer.cpp │ │ ├── cudnn_conv_layer.cu │ │ ├── cudnn_lcn_layer.cpp │ │ ├── cudnn_lcn_layer.cu │ │ ├── cudnn_lrn_layer.cpp │ │ ├── cudnn_lrn_layer.cu │ │ ├── cudnn_pooling_layer.cpp │ │ ├── cudnn_pooling_layer.cu │ │ ├── cudnn_relu_layer.cpp │ │ ├── cudnn_relu_layer.cu │ │ ├── cudnn_sigmoid_layer.cpp │ │ ├── cudnn_sigmoid_layer.cu │ │ ├── cudnn_softmax_layer.cpp │ │ ├── cudnn_softmax_layer.cu │ │ ├── cudnn_tanh_layer.cpp │ │ ├── cudnn_tanh_layer.cu │ │ ├── data_layer.cpp │ │ ├── deconv_layer.cpp │ │ ├── deconv_layer.cu │ │ ├── detection_evaluate_layer.cpp │ │ ├── detection_output_layer.cpp │ │ ├── detection_output_layer.cu │ │ ├── dropout_layer.cpp │ │ ├── dropout_layer.cu │ │ ├── dummy_data_layer.cpp │ │ ├── eltwise_layer.cpp │ │ ├── eltwise_layer.cu │ │ ├── elu_layer.cpp │ │ ├── elu_layer.cu │ │ ├── embed_layer.cpp │ │ ├── embed_layer.cu │ │ ├── euclidean_loss_layer.cpp │ │ ├── euclidean_loss_layer.cu │ │ ├── exp_layer.cpp │ │ ├── exp_layer.cu │ │ ├── filter_layer.cpp │ │ ├── filter_layer.cu │ │ ├── flatten_layer.cpp │ │ ├── hdf5_data_layer.cpp │ │ ├── hdf5_data_layer.cu │ │ ├── hdf5_output_layer.cpp │ │ ├── hdf5_output_layer.cu │ │ ├── hinge_loss_layer.cpp │ │ ├── im2col_layer.cpp │ │ ├── im2col_layer.cu │ │ ├── image_data_layer.cpp │ │ ├── infogain_loss_layer.cpp │ │ ├── inner_product_layer.cpp │ │ ├── inner_product_layer.cu │ │ ├── input_layer.cpp │ │ ├── log_layer.cpp │ │ ├── log_layer.cu │ │ ├── loss_layer.cpp │ │ ├── lrn_layer.cpp │ │ ├── lrn_layer.cu │ │ ├── lstm_layer.cpp │ │ ├── lstm_unit_layer.cpp │ │ ├── lstm_unit_layer.cu │ │ ├── memory_data_layer.cpp │ │ ├── multibox_loss_layer.cpp │ │ ├── multibox_loss_layer.cpp~ │ │ ├── multinomial_logistic_loss_layer.cpp │ │ ├── mvn_layer.cpp │ │ ├── mvn_layer.cu │ │ ├── neuron_layer.cpp │ │ ├── normalize_layer.cpp │ │ ├── normalize_layer.cu │ │ ├── parameter_layer.cpp │ │ ├── permute_layer.cpp │ │ ├── permute_layer.cu │ │ ├── pooling_layer.cpp │ │ ├── pooling_layer.cu │ │ ├── power_layer.cpp │ │ ├── power_layer.cu │ │ ├── prelu_layer.cpp │ │ ├── prelu_layer.cu │ │ ├── prior_box_layer.cpp │ │ ├── recurrent_layer.cpp │ │ ├── recurrent_layer.cu │ │ ├── reduction_layer.cpp │ │ ├── reduction_layer.cu │ │ ├── relu_layer.cpp │ │ ├── relu_layer.cu │ │ ├── reshape_layer.cpp │ │ ├── rnn_layer.cpp │ │ ├── scale_layer.cpp │ │ ├── scale_layer.cu │ │ ├── sigmoid_cross_entropy_loss_layer.cpp │ │ ├── sigmoid_cross_entropy_loss_layer.cu │ │ ├── sigmoid_layer.cpp │ │ ├── sigmoid_layer.cu │ │ ├── silence_layer.cpp │ │ ├── silence_layer.cu │ │ ├── slice_layer.cpp │ │ ├── slice_layer.cu │ │ ├── smooth_L1_loss_layer.cpp │ │ ├── smooth_L1_loss_layer.cu │ │ ├── softmax_layer.cpp │ │ ├── softmax_layer.cu │ │ ├── softmax_loss_layer.cpp │ │ ├── softmax_loss_layer.cu │ │ ├── split_layer.cpp │ │ ├── split_layer.cu │ │ ├── spp_layer.cpp │ │ ├── tanh_layer.cpp │ │ ├── tanh_layer.cu │ │ ├── threshold_layer.cpp │ │ ├── threshold_layer.cu │ │ ├── tile_layer.cpp │ │ ├── tile_layer.cu │ │ ├── video_data_layer.cpp │ │ └── window_data_layer.cpp │ ├── net.cpp │ ├── parallel.cpp │ ├── proto │ │ └── caffe.proto │ ├── solver.cpp │ ├── solvers │ │ ├── adadelta_solver.cpp │ │ ├── adadelta_solver.cu │ │ ├── adagrad_solver.cpp │ │ ├── adagrad_solver.cu │ │ ├── adam_solver.cpp │ │ ├── adam_solver.cu │ │ ├── nesterov_solver.cpp │ │ ├── nesterov_solver.cu │ │ ├── rmsprop_solver.cpp │ │ ├── rmsprop_solver.cu │ │ ├── sgd_solver.cpp │ │ └── sgd_solver.cu │ ├── syncedmem.cpp │ ├── test │ │ ├── CMakeLists.txt │ │ ├── test_accuracy_layer.cpp │ │ ├── test_annotated_data_layer.cpp │ │ ├── test_argmax_layer.cpp │ │ ├── test_batch_norm_layer.cpp │ │ ├── test_batch_reindex_layer.cpp │ │ ├── test_bbox_util.cpp │ │ ├── test_benchmark.cpp │ │ ├── test_bias_layer.cpp │ │ ├── test_blob.cpp │ │ ├── test_caffe_main.cpp │ │ ├── test_common.cpp │ │ ├── test_concat_layer.cpp │ │ ├── test_contrastive_loss_layer.cpp │ │ ├── test_convolution_layer.cpp │ │ ├── test_crop_layer.cpp │ │ ├── test_data │ │ │ ├── generate_sample_data.py │ │ │ ├── sample_data.h5 │ │ │ ├── sample_data_2_gzip.h5 │ │ │ ├── sample_data_list.txt │ │ │ ├── solver_data.h5 │ │ │ └── solver_data_list.txt │ │ ├── test_data_layer.cpp │ │ ├── test_data_transformer.cpp │ │ ├── test_db.cpp │ │ ├── test_deconvolution_layer.cpp │ │ ├── test_detection_evaluate_layer.cpp │ │ ├── test_detection_output_layer.cpp │ │ ├── test_dummy_data_layer.cpp │ │ ├── test_eltwise_layer.cpp │ │ ├── test_embed_layer.cpp │ │ ├── test_euclidean_loss_layer.cpp │ │ ├── test_filler.cpp │ │ ├── test_filter_layer.cpp │ │ ├── test_flatten_layer.cpp │ │ ├── test_gradient_based_solver.cpp │ │ ├── test_hdf5_output_layer.cpp │ │ ├── test_hdf5data_layer.cpp │ │ ├── test_hinge_loss_layer.cpp │ │ ├── test_im2col_kernel.cu │ │ ├── test_im2col_layer.cpp │ │ ├── test_im_transforms.cpp │ │ ├── test_image_data_layer.cpp │ │ ├── test_infogain_loss_layer.cpp │ │ ├── test_inner_product_layer.cpp │ │ ├── test_internal_thread.cpp │ │ ├── test_io.cpp │ │ ├── test_layer_factory.cpp │ │ ├── test_lrn_layer.cpp │ │ ├── test_lstm_layer.cpp │ │ ├── test_math_functions.cpp │ │ ├── test_maxpool_dropout_layers.cpp │ │ ├── test_memory_data_layer.cpp │ │ ├── test_multibox_loss_layer.cpp │ │ ├── test_multinomial_logistic_loss_layer.cpp │ │ ├── test_mvn_layer.cpp │ │ ├── test_net.cpp │ │ ├── test_neuron_layer.cpp │ │ ├── test_normalize_layer.cpp │ │ ├── test_permute_layer.cpp │ │ ├── test_platform.cpp │ │ ├── test_pooling_layer.cpp │ │ ├── test_power_layer.cpp │ │ ├── test_prior_box_layer.cpp │ │ ├── test_protobuf.cpp │ │ ├── test_random_number_generator.cpp │ │ ├── test_reduction_layer.cpp │ │ ├── test_reshape_layer.cpp │ │ ├── test_rnn_layer.cpp │ │ ├── test_scale_layer.cpp │ │ ├── test_sigmoid_cross_entropy_loss_layer.cpp │ │ ├── test_slice_layer.cpp │ │ ├── test_smooth_L1_loss_layer.cpp │ │ ├── test_softmax_layer.cpp │ │ ├── test_softmax_with_loss_layer.cpp │ │ ├── test_solver.cpp │ │ ├── test_solver_factory.cpp │ │ ├── test_split_layer.cpp │ │ ├── test_spp_layer.cpp │ │ ├── test_stochastic_pooling.cpp │ │ ├── test_syncedmem.cpp │ │ ├── test_tanh_layer.cpp │ │ ├── test_threshold_layer.cpp │ │ ├── test_tile_layer.cpp │ │ ├── test_upgrade_proto.cpp │ │ └── test_util_blas.cpp │ └── util │ │ ├── bbox_util.cpp │ │ ├── bbox_util.cu │ │ ├── benchmark.cpp │ │ ├── blocking_queue.cpp │ │ ├── cudnn.cpp │ │ ├── db.cpp │ │ ├── db_leveldb.cpp │ │ ├── db_lmdb.cpp │ │ ├── hdf5.cpp │ │ ├── im2col.cpp │ │ ├── im2col.cu │ │ ├── im_transforms.cpp │ │ ├── insert_splits.cpp │ │ ├── io.cpp │ │ ├── math_functions.cpp │ │ ├── math_functions.cu │ │ ├── sampler.cpp │ │ ├── signal_handler.cpp │ │ └── upgrade_proto.cpp └── gtest │ ├── CMakeLists.txt │ ├── gtest-all.cpp │ ├── gtest.h │ └── gtest_main.cc └── tools ├── .convert_annoset.cpp.swp ├── CMakeLists.txt ├── caffe.cpp ├── compute_image_mean.cpp ├── convert_annoset.cpp ├── convert_imageset.cpp ├── create_label_map.cpp ├── device_query.cpp ├── extra ├── extract_seconds.py ├── launch_resize_and_crop_images.sh ├── parse_log.py ├── parse_log.sh ├── plot_log.gnuplot.example ├── plot_training_log.py.example ├── resize_and_crop_images.py └── summarize.py ├── extract_features.cpp ├── finetune_net.cpp ├── get_image_size.cpp ├── net_speed_benchmark.cpp ├── test_net.cpp ├── train_net.cpp ├── upgrade_net_proto_binary.cpp ├── upgrade_net_proto_text.cpp └── upgrade_solver_proto_text.cpp /README.md: -------------------------------------------------------------------------------- 1 | # real-time-instance-segmentation 2 | This project target on Real Time Instance Segmentation by adding mask branch on Single Shot Detector. 3 | However, the results is very bad. 4 | I will turn on combining SSD with the recently proposed Watershed Instance Segmentation, Associative Embedding. 5 | 6 | Stay Tuned 7 | -------------------------------------------------------------------------------- /data/ILSVRC2016/README.md: -------------------------------------------------------------------------------- 1 | ### Preparation 2 | #### ILSVRC2016 3 | We encourage you to register [ILSVRC2016](http://image-net.org/challenges/LSVRC/2016) and download the DET dataset. By default, we assume the data is stored in `$HOME/data/ILSVRC` and will call it `$ILSVRC_ROOT`. 4 | 5 | #### ILSVRC2015 6 | If you choose to use ILSVRC2015 DET dataset, here are a few noticeable steps before running the following scripts: 7 | 8 | 1. There are a few problematic images. You can download the fixed ones [here](http://www.cs.unc.edu/~wliu/projects/SSD/ILSVRC2015_DET_fix.tar.gz). 9 | 10 | 2. You should download the [val1/val2 split](http://www.cs.unc.edu/~wliu/projects/SSD/ILSVRC2015_DET_val1_val2.tar.gz), courtesy of [Ross Girshick](http://people.eecs.berkeley.edu/~rbg), and put it in `$ILSVRC_ROOT/ImageSets/DET`. 11 | 12 | ### Remove an invalid file 13 | Find the invalid image file `Data/DET/val/ILSVRC2013_val_00004542.JPEG`, and remove it. 14 | 15 | ### Create the LMDB file. 16 | After you have downloaded the dataset, we can create the lmdb files. 17 | 18 | ```Shell 19 | cd $CAFFE_ROOT 20 | # Create the trainval1.txt, val2.txt, val2_name_size.txt, test.txt and test_name_size.txt in data/ILSVRC2016/ 21 | python data/ILSVRC2016/create_list.py 22 | # You can modify the parameters in create_data.sh if needed. 23 | # It will create lmdb files for trainval1, val2 and test with encoded original image: 24 | # - $HOME/data/ILSVRC/lmdb/DET/ILSVRC2016_trainval1_lmdb 25 | # - $HOME/data/ILSVRC/lmdb/DET/ILSVRC2016_val2_lmdb 26 | # - $HOME/data/ILSVRC/lmdb/DET/ILSVRC2016_test_lmdb 27 | # and make soft links at examples/ILSVRC2016/ 28 | ./data/ILSVRC2016/create_data.sh 29 | ``` 30 | -------------------------------------------------------------------------------- /data/ILSVRC2016/create_data.sh: -------------------------------------------------------------------------------- 1 | cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) 2 | root_dir=$cur_dir/../.. 3 | 4 | cd $root_dir 5 | 6 | redo=false 7 | data_root_dir="$HOME/data/ILSVRC" 8 | dataset_name="ILSVRC2016" 9 | mapfile="$root_dir/data/$dataset_name/labelmap_ilsvrc_det.prototxt" 10 | db="lmdb" 11 | min_dim=0 12 | max_dim=0 13 | width=0 14 | height=0 15 | 16 | extra_cmd="--encode-type=jpg --encoded" 17 | if $redo 18 | then 19 | extra_cmd="$extra_cmd --redo" 20 | fi 21 | 22 | for dataset in test 23 | do 24 | python $root_dir/scripts/create_annoset.py --anno-type="classification" --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$dataset".txt" $data_root_dir/$db/DET/$dataset_name"_"$dataset"_"$db examples/$dataset_name 2>&1 | tee $root_dir/data/$dataset_name/$dataset.log 25 | done 26 | 27 | for dataset in val2 trainval1 28 | do 29 | python $root_dir/scripts/create_annoset.py --anno-type="detection" --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$dataset".txt" $data_root_dir/$db/DET/$dataset_name"_"$dataset"_"$db examples/$dataset_name 2>&1 | tee $root_dir/data/$dataset_name/$dataset.log 30 | done 31 | -------------------------------------------------------------------------------- /data/VOC0712/coco_voc_map.txt: -------------------------------------------------------------------------------- 1 | 0,0,background 2 | 5,1,aeroplane 3 | 2,2,bicycle 4 | 15,3,bird 5 | 9,4,boat 6 | 40,5,bottle 7 | 6,6,bus 8 | 3,7,car 9 | 16,8,cat 10 | 57,9,chair 11 | 20,10,cow 12 | 61,11,diningtable 13 | 17,12,dog 14 | 18,13,horse 15 | 4,14,motorbike 16 | 1,15,person 17 | 59,16,pottedplant 18 | 19,17,sheep 19 | 58,18,sofa 20 | 7,19,train 21 | 63,20,tvmonitor 22 | -------------------------------------------------------------------------------- /data/VOC0712/create_data.sh: -------------------------------------------------------------------------------- 1 | cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) 2 | root_dir=$cur_dir/../.. 3 | 4 | cd $root_dir 5 | 6 | redo=1 7 | data_root_dir="/home/gaopeng/Desktop/data/VOCdevkit" 8 | dataset_name="VOC0712" 9 | mapfile="$root_dir/data/$dataset_name/labelmap_voc.prototxt" 10 | anno_type="detection" 11 | db="lmdb" 12 | min_dim=0 13 | max_dim=0 14 | width=0 15 | height=0 16 | 17 | extra_cmd="--encode-type=jpg --encoded" 18 | if [ $redo ] 19 | then 20 | extra_cmd="$extra_cmd --redo" 21 | fi 22 | for subset in test trainval 23 | do 24 | python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$dataset_name/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name 25 | done 26 | -------------------------------------------------------------------------------- /data/VOC0712/create_list.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | root_dir=/home/gaopeng/Desktop/data/VOCdevkit/ 4 | sub_dir=ImageSets/Main 5 | bash_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)" 6 | for dataset in trainval test 7 | do 8 | dst_file=$bash_dir/$dataset.txt 9 | if [ -f $dst_file ] 10 | then 11 | rm -f $dst_file 12 | fi 13 | for name in VOC2007 VOC2012 14 | do 15 | if [[ $dataset == "test" && $name == "VOC2012" ]] 16 | then 17 | continue 18 | fi 19 | echo "Create list for $name $dataset..." 20 | dataset_file=$root_dir/$name/$sub_dir/$dataset.txt 21 | 22 | img_file=$bash_dir/$dataset"_img.txt" 23 | cp $dataset_file $img_file 24 | sed -i "s/^/$name\/JPEGImages\//g" $img_file 25 | sed -i "s/$/.jpg/g" $img_file 26 | 27 | label_file=$bash_dir/$dataset"_label.txt" 28 | cp $dataset_file $label_file 29 | sed -i "s/^/$name\/Annotations\//g" $label_file 30 | sed -i "s/$/.xml/g" $label_file 31 | 32 | paste -d' ' $img_file $label_file >> $dst_file 33 | 34 | rm -f $label_file 35 | rm -f $img_file 36 | done 37 | 38 | # Generate image name and size infomation. 39 | if [ $dataset == "test" ] 40 | then 41 | $bash_dir/../../build/tools/get_image_size $root_dir $dst_file $bash_dir/$dataset"_name_size.txt" 42 | fi 43 | 44 | # Shuffle trainval file. 45 | if [ $dataset == "trainval" ] 46 | then 47 | rand_file=$dst_file.random 48 | cat $dst_file | perl -MList::Util=shuffle -e 'print shuffle();' > $rand_file 49 | mv $rand_file $dst_file 50 | fi 51 | done 52 | -------------------------------------------------------------------------------- /data/cifar10/get_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This scripts downloads the CIFAR10 (binary version) data and unzips it. 3 | 4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 5 | cd "$DIR" 6 | 7 | echo "Downloading..." 8 | 9 | wget --no-check-certificate http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz 10 | 11 | echo "Unzipping..." 12 | 13 | tar -xf cifar-10-binary.tar.gz && rm -f cifar-10-binary.tar.gz 14 | mv cifar-10-batches-bin/* . && rm -rf cifar-10-batches-bin 15 | 16 | # Creation is split out because leveldb sometimes causes segfault 17 | # and needs to be re-created. 18 | 19 | echo "Done." 20 | -------------------------------------------------------------------------------- /data/coco/LuaAPI/cocoDemo.lua: -------------------------------------------------------------------------------- 1 | -- Demo for the CocoApi (see CocoApi.lua) 2 | coco = require 'coco' 3 | image = require 'image' 4 | 5 | -- initialize COCO api (please specify dataType/annType below) 6 | annTypes = { 'instances', 'captions', 'person_keypoints' } 7 | dataType, annType = 'val2014', annTypes[1]; -- specify dataType/annType 8 | annFile = '../annotations/'..annType..'_'..dataType..'.json' 9 | cocoApi=coco.CocoApi(annFile) 10 | 11 | -- get all image ids, select one at random 12 | imgIds = cocoApi:getImgIds() 13 | imgId = imgIds[torch.random(imgIds:numel())] 14 | 15 | -- load image 16 | img = cocoApi:loadImgs(imgId)[1] 17 | I = image.load('../images/'..dataType..'/'..img.file_name,3) 18 | 19 | -- load and display instance annotations 20 | annIds = cocoApi:getAnnIds({imgId=imgId}) 21 | anns = cocoApi:loadAnns(annIds) 22 | J = cocoApi:showAnns(I,anns) 23 | image.save('RES_'..img.file_name,J:double()) 24 | -------------------------------------------------------------------------------- /data/coco/LuaAPI/env.lua: -------------------------------------------------------------------------------- 1 | --[[---------------------------------------------------------------------------- 2 | 3 | Common Objects in COntext (COCO) Toolbox. version 3.0 4 | Data, paper, and tutorials available at: http://mscoco.org/ 5 | Code written by Pedro O. Pinheiro and Piotr Dollar, 2016. 6 | Licensed under the Simplified BSD License [see coco/license.txt] 7 | 8 | ------------------------------------------------------------------------------]] 9 | 10 | local coco = {} 11 | return coco 12 | -------------------------------------------------------------------------------- /data/coco/LuaAPI/init.lua: -------------------------------------------------------------------------------- 1 | --[[---------------------------------------------------------------------------- 2 | 3 | Common Objects in COntext (COCO) Toolbox. version 3.0 4 | Data, paper, and tutorials available at: http://mscoco.org/ 5 | Code written by Pedro O. Pinheiro and Piotr Dollar, 2016. 6 | Licensed under the Simplified BSD License [see coco/license.txt] 7 | 8 | ------------------------------------------------------------------------------]] 9 | 10 | local coco = require 'coco.env' 11 | require 'coco.CocoApi' 12 | require 'coco.MaskApi' 13 | return coco 14 | -------------------------------------------------------------------------------- /data/coco/LuaAPI/rocks/coco-scm-1.rockspec: -------------------------------------------------------------------------------- 1 | package = "coco" 2 | version = "scm-1" 3 | 4 | source = { 5 | url = "git://github.com/pdollar/coco.git" 6 | } 7 | 8 | description = { 9 | summary = "Interface for accessing the Microsoft COCO dataset", 10 | detailed = "See http://mscoco.org/ for more details", 11 | homepage = "https://github.com/pdollar/coco", 12 | license = "Simplified BSD" 13 | } 14 | 15 | dependencies = { 16 | "lua >= 5.1", 17 | "torch >= 7.0", 18 | "lua-cjson" 19 | } 20 | 21 | build = { 22 | type = "builtin", 23 | modules = { 24 | ["coco.env"] = "LuaAPI/env.lua", 25 | ["coco.init"] = "LuaAPI/init.lua", 26 | ["coco.MaskApi"] = "LuaAPI/MaskApi.lua", 27 | ["coco.CocoApi"] = "LuaAPI/CocoApi.lua", 28 | libmaskapi = { 29 | sources = { "common/maskApi.c" }, 30 | incdirs = { "common/" } 31 | } 32 | } 33 | } 34 | 35 | -- luarocks make LuaAPI/rocks/coco-scm-1.rockspec 36 | -- https://github.com/pdollar/coco/raw/master/LuaAPI/rocks/coco-scm-1.rockspec 37 | -------------------------------------------------------------------------------- /data/coco/MatlabAPI/cocoDemo.m: -------------------------------------------------------------------------------- 1 | %% Demo for the CocoApi (see CocoApi.m) 2 | 3 | %% initialize COCO api (please specify dataType/annType below) 4 | annTypes = { 'instances', 'captions', 'person_keypoints' }; 5 | dataType='val2014'; annType=annTypes{1}; % specify dataType/annType 6 | annFile=sprintf('../annotations/%s_%s.json',annType,dataType); 7 | coco=CocoApi(annFile); 8 | 9 | %% display COCO categories and supercategories 10 | if( ~strcmp(annType,'captions') ) 11 | cats = coco.loadCats(coco.getCatIds()); 12 | nms={cats.name}; fprintf('COCO categories: '); 13 | fprintf('%s, ',nms{:}); fprintf('\n'); 14 | nms=unique({cats.supercategory}); fprintf('COCO supercategories: '); 15 | fprintf('%s, ',nms{:}); fprintf('\n'); 16 | end 17 | 18 | %% get all images containing given categories, select one at random 19 | catIds = coco.getCatIds('catNms',{'person','dog','skateboard'}); 20 | imgIds = coco.getImgIds('catIds',catIds); 21 | imgId = imgIds(randi(length(imgIds))); 22 | 23 | %% load and display image 24 | img = coco.loadImgs(imgId); 25 | I = imread(sprintf('../images/%s/%s',dataType,img.file_name)); 26 | figure(1); imagesc(I); axis('image'); set(gca,'XTick',[],'YTick',[]) 27 | 28 | %% load and display annotations 29 | annIds = coco.getAnnIds('imgIds',imgId,'catIds',catIds,'iscrowd',[]); 30 | anns = coco.loadAnns(annIds); coco.showAnns(anns); 31 | -------------------------------------------------------------------------------- /data/coco/MatlabAPI/private/gasonMex.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/MatlabAPI/private/gasonMex.mexa64 -------------------------------------------------------------------------------- /data/coco/MatlabAPI/private/gasonMex.mexmaci64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/MatlabAPI/private/gasonMex.mexmaci64 -------------------------------------------------------------------------------- /data/coco/MatlabAPI/private/maskApiMex.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/MatlabAPI/private/maskApiMex.mexa64 -------------------------------------------------------------------------------- /data/coco/MatlabAPI/private/maskApiMex.mexmaci64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/MatlabAPI/private/maskApiMex.mexmaci64 -------------------------------------------------------------------------------- /data/coco/PythonAPI/Makefile: -------------------------------------------------------------------------------- 1 | all: 2 | # install pycocotools locally 3 | python setup.py build_ext --inplace 4 | rm -rf build 5 | 6 | install: 7 | # install pycocotools to the Python site-packages 8 | python setup.py build_ext install 9 | rm -rf build -------------------------------------------------------------------------------- /data/coco/PythonAPI/pycocotools/__init__.py: -------------------------------------------------------------------------------- 1 | __author__ = 'tylin' 2 | -------------------------------------------------------------------------------- /data/coco/PythonAPI/pycocotools/__init__.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/PythonAPI/pycocotools/__init__.pyc -------------------------------------------------------------------------------- /data/coco/PythonAPI/pycocotools/_mask.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/PythonAPI/pycocotools/_mask.so -------------------------------------------------------------------------------- /data/coco/PythonAPI/pycocotools/coco.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/PythonAPI/pycocotools/coco.pyc -------------------------------------------------------------------------------- /data/coco/PythonAPI/pycocotools/mask.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/data/coco/PythonAPI/pycocotools/mask.pyc -------------------------------------------------------------------------------- /data/coco/PythonAPI/setup.py: -------------------------------------------------------------------------------- 1 | from distutils.core import setup 2 | from Cython.Build import cythonize 3 | from distutils.extension import Extension 4 | import numpy as np 5 | 6 | # To compile and install locally run "python setup.py build_ext --inplace" 7 | # To install library to Python site-packages run "python setup.py build_ext install" 8 | 9 | ext_modules = [ 10 | Extension( 11 | 'pycocotools._mask', 12 | sources=['../common/maskApi.c', 'pycocotools/_mask.pyx'], 13 | include_dirs = [np.get_include(), '../common'], 14 | extra_compile_args=['-Wno-cpp', '-Wno-unused-function', '-std=c99'], 15 | ) 16 | ] 17 | 18 | setup(name='pycocotools', 19 | packages=['pycocotools'], 20 | package_dir = {'pycocotools': 'pycocotools'}, 21 | version='2.0', 22 | ext_modules= 23 | cythonize(ext_modules) 24 | ) -------------------------------------------------------------------------------- /data/coco/README.md: -------------------------------------------------------------------------------- 1 | ### Preparation 2 | 1. Download Images and Annotations from [MSCOCO](http://mscoco.org/dataset/#download). By default, we assume the data is stored in `$HOME/data/coco` 3 | 4 | 2. Get the coco code. We will call the directory that you cloned coco into `$COCO_ROOT` 5 | ```Shell 6 | git clone https://github.com/weiliu89/coco.git 7 | cd coco 8 | git checkout dev 9 | ``` 10 | 11 | 3. Build the coco code. 12 | ```Shell 13 | cd PythonAPI 14 | python setup.py build_ext --inplace 15 | ``` 16 | 17 | 4. Split the annotation to many files per image and get the image size info. 18 | ```Shell 19 | # Check scripts/batch_split_annotation.py and change settings accordingly. 20 | python scripts/batch_split_annotation.py 21 | # Create the minival2014_name_size.txt and test-dev2015_name_size.txt in $CAFFE_ROOT/data/coco 22 | python scripts/batch_get_image_size.py 23 | ``` 24 | 25 | 5. Create the LMDB file. 26 | ```Shell 27 | cd $CAFFE_ROOT 28 | # Create the minival.txt, testdev.txt, test.txt, train.txt in data/coco/ 29 | python data/coco/create_list.py 30 | # You can modify the parameters in create_data.sh if needed. 31 | # It will create lmdb files for minival, testdev, test, and train with encoded original image: 32 | # - $HOME/data/coco/lmdb/coco_minival_lmdb 33 | # - $HOME/data/coco/lmdb/coco_testdev_lmdb 34 | # - $HOME/data/coco/lmdb/coco_test_lmdb 35 | # - $HOME/data/coco/lmdb/coco_train_lmdb 36 | # and make soft links at examples/coco/ 37 | ./data/coco/create_data.sh 38 | ``` 39 | -------------------------------------------------------------------------------- /data/coco/README.txt: -------------------------------------------------------------------------------- 1 | MS COCO API - http://mscoco.org/ 2 | 3 | Microsoft COCO is a large image dataset designed for object detection, segmentation, and caption generation. This package provides Matlab, Python, and Lua APIs that assists in loading, parsing, and visualizing the annotations in COCO. Please visit http://mscoco.org/ for more information on COCO, including for the data, paper, and tutorials. The exact format of the annotations is also described on the COCO website. The Matlab and Python APIs are complete, the Lua API provides only basic functionality. 4 | 5 | In addition to this API, please download both the COCO images and annotations in order to run the demos and use the API. Both are available on the project website. 6 | -Please download, unzip, and place the images in: coco/images/ 7 | -Please download and place the annotations in: coco/annotations/ 8 | For substantially more details on the API please see http://mscoco.org/dataset/#download. 9 | 10 | After downloading the images and annotations, run the Matlab, Python, or Lua demos for example usage. 11 | 12 | To install: 13 | -For Matlab, add coco/MatlabApi to the Matlab path (OSX/Linux binaries provided) 14 | -For Python, run "make" under coco/PythonAPI 15 | -For Lua, run “luarocks make LuaAPI/rocks/coco-scm-1.rockspec” under coco/ 16 | -------------------------------------------------------------------------------- /data/coco/create_data.sh: -------------------------------------------------------------------------------- 1 | cur_dir=$(cd $( dirname ${BASH_SOURCE[0]} ) && pwd ) 2 | root_dir=$cur_dir/../.. 3 | 4 | cd $root_dir 5 | 6 | redo=false 7 | data_root_dir="/home/gaopeng/Desktop/data" 8 | dataset_name="coco" 9 | mapfile="$root_dir/data/$dataset_name/labelmap_coco.prototxt" 10 | anno_type="detection" 11 | label_type="json" 12 | db="lmdb" 13 | min_dim=0 14 | max_dim=0 15 | width=0 16 | height=0 17 | extra_cmd="--encode-type=jpg --encoded" 18 | if $redo 19 | then 20 | extra_cmd="$extra_cmd --redo" 21 | fi 22 | for subset in minival testdev train test 23 | do 24 | python $root_dir/scripts/create_annoset.py --anno-type=$anno_type --label-type=$label_type --label-map-file=$mapfile --min-dim=$min_dim --max-dim=$max_dim --resize-width=$width --resize-height=$height --check-label $extra_cmd $data_root_dir $root_dir/data/$dataset_name/$subset.txt $data_root_dir/$db/$dataset_name"_"$subset"_"$db examples/$dataset_name 2>&1 | tee $root_dir/data/$dataset_name/$subset.log 25 | done 26 | -------------------------------------------------------------------------------- /data/coco/labels.txt: -------------------------------------------------------------------------------- 1 | 1,1,person 2 | 2,2,bicycle 3 | 3,3,car 4 | 4,4,motorcycle 5 | 5,5,airplane 6 | 6,6,bus 7 | 7,7,train 8 | 8,8,truck 9 | 9,9,boat 10 | 10,10,traffic light 11 | 11,11,fire hydrant 12 | 13,12,stop sign 13 | 14,13,parking meter 14 | 15,14,bench 15 | 16,15,bird 16 | 17,16,cat 17 | 18,17,dog 18 | 19,18,horse 19 | 20,19,sheep 20 | 21,20,cow 21 | 22,21,elephant 22 | 23,22,bear 23 | 24,23,zebra 24 | 25,24,giraffe 25 | 27,25,backpack 26 | 28,26,umbrella 27 | 31,27,handbag 28 | 32,28,tie 29 | 33,29,suitcase 30 | 34,30,frisbee 31 | 35,31,skis 32 | 36,32,snowboard 33 | 37,33,sports ball 34 | 38,34,kite 35 | 39,35,baseball bat 36 | 40,36,baseball glove 37 | 41,37,skateboard 38 | 42,38,surfboard 39 | 43,39,tennis racket 40 | 44,40,bottle 41 | 46,41,wine glass 42 | 47,42,cup 43 | 48,43,fork 44 | 49,44,knife 45 | 50,45,spoon 46 | 51,46,bowl 47 | 52,47,banana 48 | 53,48,apple 49 | 54,49,sandwich 50 | 55,50,orange 51 | 56,51,broccoli 52 | 57,52,carrot 53 | 58,53,hot dog 54 | 59,54,pizza 55 | 60,55,donut 56 | 61,56,cake 57 | 62,57,chair 58 | 63,58,couch 59 | 64,59,potted plant 60 | 65,60,bed 61 | 67,61,dining table 62 | 70,62,toilet 63 | 72,63,tv 64 | 73,64,laptop 65 | 74,65,mouse 66 | 75,66,remote 67 | 76,67,keyboard 68 | 77,68,cell phone 69 | 78,69,microwave 70 | 79,70,oven 71 | 80,71,toaster 72 | 81,72,sink 73 | 82,73,refrigerator 74 | 84,74,book 75 | 85,75,clock 76 | 86,76,vase 77 | 87,77,scissors 78 | 88,78,teddy bear 79 | 89,79,hair drier 80 | 90,80,toothbrush 81 | -------------------------------------------------------------------------------- /data/coco/license.txt: -------------------------------------------------------------------------------- 1 | Copyright (c) 2014, Piotr Dollar and Tsung-Yi Lin 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | 1. Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 2. Redistributions in binary form must reproduce the above copyright notice, 10 | this list of conditions and the following disclaimer in the documentation 11 | and/or other materials provided with the distribution. 12 | 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 | 24 | The views and conclusions contained in the software and documentation are those 25 | of the authors and should not be interpreted as representing official policies, 26 | either expressed or implied, of the FreeBSD Project. 27 | -------------------------------------------------------------------------------- /data/coco/minival.log: -------------------------------------------------------------------------------- 1 | I0427 14:18:08.697206 31093 convert_annoset.cpp:122] A total of 5000 images. 2 | I0427 14:18:08.697532 31093 db_lmdb.cpp:35] Opened lmdb /home/gaopeng/Desktop/data/lmdb/coco_minival_lmdb 3 | I0427 14:18:18.451546 31093 convert_annoset.cpp:196] Processed 1000 files. 4 | I0427 14:18:27.479744 31093 convert_annoset.cpp:196] Processed 2000 files. 5 | I0427 14:18:36.155006 31093 convert_annoset.cpp:196] Processed 3000 files. 6 | I0427 14:18:44.839983 31093 convert_annoset.cpp:196] Processed 4000 files. 7 | I0427 14:18:53.409073 31093 convert_annoset.cpp:196] Processed 5000 files. 8 | /home/gaopeng/Desktop/caffe/build/tools/convert_annoset --anno_type=detection --label_type=json --label_map_file=/home/gaopeng/Desktop/caffe/data/coco/../../data/coco/labelmap_coco.prototxt --check_label=True --min_dim=0 --max_dim=0 --resize_height=0 --resize_width=0 --backend=lmdb --shuffle=False --check_size=False --encode_type=jpg --encoded=True --gray=False /home/gaopeng/Desktop/data/ /home/gaopeng/Desktop/caffe/data/coco/../../data/coco/minival.txt /home/gaopeng/Desktop/data/lmdb/coco_minival_lmdb 9 | -------------------------------------------------------------------------------- /data/ilsvrc12/get_ilsvrc_aux.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # 3 | # N.B. This does not download the ilsvrcC12 data set, as it is gargantuan. 4 | # This script downloads the imagenet example auxiliary files including: 5 | # - the ilsvrc12 image mean, binaryproto 6 | # - synset ids and words 7 | # - Python pickle-format data of ImageNet graph structure and relative infogain 8 | # - the training splits with labels 9 | 10 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 11 | cd "$DIR" 12 | 13 | echo "Downloading..." 14 | 15 | wget -c http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz 16 | 17 | echo "Unzipping..." 18 | 19 | tar -xf caffe_ilsvrc12.tar.gz && rm -f caffe_ilsvrc12.tar.gz 20 | 21 | echo "Done." 22 | -------------------------------------------------------------------------------- /data/mnist/get_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This scripts downloads the mnist data and unzips it. 3 | 4 | DIR="$( cd "$(dirname "$0")" ; pwd -P )" 5 | cd "$DIR" 6 | 7 | echo "Downloading..." 8 | 9 | for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte 10 | do 11 | if [ ! -e $fname ]; then 12 | wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz 13 | gunzip ${fname}.gz 14 | fi 15 | done 16 | -------------------------------------------------------------------------------- /examples/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | file(GLOB_RECURSE examples_srcs "${PROJECT_SOURCE_DIR}/examples/*.cpp") 2 | 3 | foreach(source_file ${examples_srcs}) 4 | # get file name 5 | get_filename_component(name ${source_file} NAME_WE) 6 | 7 | # get folder name 8 | get_filename_component(path ${source_file} PATH) 9 | get_filename_component(folder ${path} NAME_WE) 10 | 11 | add_executable(${name} ${source_file}) 12 | target_link_libraries(${name} ${Caffe_LINK}) 13 | caffe_default_properties(${name}) 14 | 15 | # set back RUNTIME_OUTPUT_DIRECTORY 16 | set_target_properties(${name} PROPERTIES 17 | RUNTIME_OUTPUT_DIRECTORY "${PROJECT_BINARY_DIR}/examples/${folder}") 18 | 19 | caffe_set_solution_folder(${name} examples) 20 | 21 | # install 22 | install(TARGETS ${name} DESTINATION bin) 23 | 24 | if(UNIX OR APPLE) 25 | # Funny command to make tutorials work 26 | # TODO: remove in future as soon as naming is standartaized everywhere 27 | set(__outname ${PROJECT_BINARY_DIR}/examples/${folder}/${name}${Caffe_POSTFIX}) 28 | add_custom_command(TARGET ${name} POST_BUILD 29 | COMMAND ln -sf "${__outname}" "${__outname}.bin") 30 | endif() 31 | endforeach() 32 | -------------------------------------------------------------------------------- /examples/VOC0712/VOC0712_test_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb -------------------------------------------------------------------------------- /examples/VOC0712/VOC0712_trainval_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_sigmoid_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_sigmoid_train_test_bn.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 10 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | #weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "step" 18 | gamma: 1 19 | stepsize: 5000 20 | # Display every 100 iterations 21 | display: 100 22 | # The maximum number of iterations 23 | max_iter: 60000 24 | # snapshot intermediate results 25 | snapshot: 10000 26 | snapshot_prefix: "examples/cifar10_full_sigmoid_bn" 27 | # solver mode: CPU or GPU 28 | solver_mode: GPU 29 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 60000 22 | # snapshot intermediate results 23 | snapshot: 10000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.0001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 65000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_full_solver_lr2.prototxt: -------------------------------------------------------------------------------- 1 | # reduce learning rate after 120 epochs (60000 iters) by factor 0f 10 2 | # then another factor of 10 after 10 more epochs (5000 iters) 3 | 4 | # The train/test net protocol buffer definition 5 | net: "examples/cifar10/cifar10_full_train_test.prototxt" 6 | # test_iter specifies how many forward passes the test should carry out. 7 | # In the case of CIFAR10, we have test batch size 100 and 100 test iterations, 8 | # covering the full 10,000 testing images. 9 | test_iter: 100 10 | # Carry out testing every 1000 training iterations. 11 | test_interval: 1000 12 | # The base learning rate, momentum and the weight decay of the network. 13 | base_lr: 0.00001 14 | momentum: 0.9 15 | weight_decay: 0.004 16 | # The learning rate policy 17 | lr_policy: "fixed" 18 | # Display every 200 iterations 19 | display: 200 20 | # The maximum number of iterations 21 | max_iter: 70000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_format: HDF5 25 | snapshot_prefix: "examples/cifar10/cifar10_full" 26 | # solver mode: CPU or GPU 27 | solver_mode: GPU 28 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 4000 21 | # snapshot intermediate results 22 | snapshot: 4000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /examples/cifar10/cifar10_quick_solver_lr1.prototxt: -------------------------------------------------------------------------------- 1 | # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10 2 | 3 | # The train/test net protocol buffer definition 4 | net: "examples/cifar10/cifar10_quick_train_test.prototxt" 5 | # test_iter specifies how many forward passes the test should carry out. 6 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 7 | # covering the full 10,000 testing images. 8 | test_iter: 100 9 | # Carry out testing every 500 training iterations. 10 | test_interval: 500 11 | # The base learning rate, momentum and the weight decay of the network. 12 | base_lr: 0.0001 13 | momentum: 0.9 14 | weight_decay: 0.004 15 | # The learning rate policy 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 5000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_format: HDF5 24 | snapshot_prefix: "examples/cifar10/cifar10_quick" 25 | # solver mode: CPU or GPU 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /examples/cifar10/create_cifar10.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the cifar data into leveldb format. 3 | set -e 4 | 5 | EXAMPLE=examples/cifar10 6 | DATA=data/cifar10 7 | DBTYPE=lmdb 8 | 9 | echo "Creating $DBTYPE..." 10 | 11 | rm -rf $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/cifar10_test_$DBTYPE 12 | 13 | ./build/examples/cifar10/convert_cifar_data.bin $DATA $EXAMPLE $DBTYPE 14 | 15 | echo "Computing image mean..." 16 | 17 | ./build/tools/compute_image_mean -backend=$DBTYPE \ 18 | $EXAMPLE/cifar10_train_$DBTYPE $EXAMPLE/mean.binaryproto 19 | 20 | echo "Done." 21 | -------------------------------------------------------------------------------- /examples/cifar10/train_full.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_full_iter_60000.solverstate.h5 $@ 13 | 14 | # reduce learning rate by factor of 10 15 | $TOOLS/caffe train \ 16 | --solver=examples/cifar10/cifar10_full_solver_lr2.prototxt \ 17 | --snapshot=examples/cifar10/cifar10_full_iter_65000.solverstate.h5 $@ 18 | -------------------------------------------------------------------------------- /examples/cifar10/train_full_sigmoid.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /examples/cifar10/train_full_sigmoid_bn.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_full_sigmoid_solver_bn.prototxt $@ 8 | 9 | -------------------------------------------------------------------------------- /examples/cifar10/train_quick.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train \ 7 | --solver=examples/cifar10/cifar10_quick_solver.prototxt $@ 8 | 9 | # reduce learning rate by factor of 10 after 8 epochs 10 | $TOOLS/caffe train \ 11 | --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt \ 12 | --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate.h5 $@ 13 | -------------------------------------------------------------------------------- /examples/coco/coco_minival_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/lmdb/coco_minival_lmdb -------------------------------------------------------------------------------- /examples/coco/coco_minival_lmdb1: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/lmdb/coco_minival_lmdb -------------------------------------------------------------------------------- /examples/coco/coco_test_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/lmdb/coco_test_lmdb -------------------------------------------------------------------------------- /examples/coco/coco_testdev_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/lmdb/coco_testdev_lmdb -------------------------------------------------------------------------------- /examples/coco/coco_train_lmdb: -------------------------------------------------------------------------------- 1 | /home/gaopeng/Desktop/data/lmdb/coco_train_lmdb -------------------------------------------------------------------------------- /examples/finetune_flickr_style/flickr_style.csv.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/finetune_flickr_style/flickr_style.csv.gz -------------------------------------------------------------------------------- /examples/finetune_flickr_style/style_names.txt: -------------------------------------------------------------------------------- 1 | Detailed 2 | Pastel 3 | Melancholy 4 | Noir 5 | HDR 6 | Vintage 7 | Long Exposure 8 | Horror 9 | Sunny 10 | Bright 11 | Hazy 12 | Bokeh 13 | Serene 14 | Texture 15 | Ethereal 16 | Macro 17 | Depth of Field 18 | Geometric Composition 19 | Minimal 20 | Romantic 21 | -------------------------------------------------------------------------------- /examples/finetune_pascal_detection/pascal_finetune_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/finetune_pascal_detection/pascal_finetune_trainval_test.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | base_lr: 0.001 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 20000 8 | display: 20 9 | max_iter: 100000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "examples/finetune_pascal_detection/pascal_det_finetune" 14 | -------------------------------------------------------------------------------- /examples/hdf5_classification/nonlinear_auto_test.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/test.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /examples/hdf5_classification/nonlinear_auto_train.prototxt: -------------------------------------------------------------------------------- 1 | layer { 2 | name: "data" 3 | type: "HDF5Data" 4 | top: "data" 5 | top: "label" 6 | hdf5_data_param { 7 | source: "examples/hdf5_classification/data/train.txt" 8 | batch_size: 10 9 | } 10 | } 11 | layer { 12 | name: "ip1" 13 | type: "InnerProduct" 14 | bottom: "data" 15 | top: "ip1" 16 | inner_product_param { 17 | num_output: 40 18 | weight_filler { 19 | type: "xavier" 20 | } 21 | } 22 | } 23 | layer { 24 | name: "relu1" 25 | type: "ReLU" 26 | bottom: "ip1" 27 | top: "ip1" 28 | } 29 | layer { 30 | name: "ip2" 31 | type: "InnerProduct" 32 | bottom: "ip1" 33 | top: "ip2" 34 | inner_product_param { 35 | num_output: 2 36 | weight_filler { 37 | type: "xavier" 38 | } 39 | } 40 | } 41 | layer { 42 | name: "accuracy" 43 | type: "Accuracy" 44 | bottom: "ip2" 45 | bottom: "label" 46 | top: "accuracy" 47 | } 48 | layer { 49 | name: "loss" 50 | type: "SoftmaxWithLoss" 51 | bottom: "ip2" 52 | bottom: "label" 53 | top: "loss" 54 | } 55 | -------------------------------------------------------------------------------- /examples/hdf5_classification/train_val.prototxt: -------------------------------------------------------------------------------- 1 | name: "LogisticRegressionNet" 2 | layer { 3 | name: "data" 4 | type: "HDF5Data" 5 | top: "data" 6 | top: "label" 7 | include { 8 | phase: TRAIN 9 | } 10 | hdf5_data_param { 11 | source: "examples/hdf5_classification/data/train.txt" 12 | batch_size: 10 13 | } 14 | } 15 | layer { 16 | name: "data" 17 | type: "HDF5Data" 18 | top: "data" 19 | top: "label" 20 | include { 21 | phase: TEST 22 | } 23 | hdf5_data_param { 24 | source: "examples/hdf5_classification/data/test.txt" 25 | batch_size: 10 26 | } 27 | } 28 | layer { 29 | name: "fc1" 30 | type: "InnerProduct" 31 | bottom: "data" 32 | top: "fc1" 33 | param { 34 | lr_mult: 1 35 | decay_mult: 1 36 | } 37 | param { 38 | lr_mult: 2 39 | decay_mult: 0 40 | } 41 | inner_product_param { 42 | num_output: 2 43 | weight_filler { 44 | type: "xavier" 45 | } 46 | bias_filler { 47 | type: "constant" 48 | value: 0 49 | } 50 | } 51 | } 52 | layer { 53 | name: "loss" 54 | type: "SoftmaxWithLoss" 55 | bottom: "fc1" 56 | bottom: "label" 57 | top: "loss" 58 | } 59 | layer { 60 | name: "accuracy" 61 | type: "Accuracy" 62 | bottom: "fc1" 63 | bottom: "label" 64 | top: "accuracy" 65 | include { 66 | phase: TEST 67 | } 68 | } 69 | -------------------------------------------------------------------------------- /examples/imagenet/create_imagenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # Create the imagenet lmdb inputs 3 | # N.B. set the path to the imagenet train + val data dirs 4 | set -e 5 | 6 | EXAMPLE=examples/imagenet 7 | DATA=data/ilsvrc12 8 | TOOLS=build/tools 9 | 10 | TRAIN_DATA_ROOT=/path/to/imagenet/train/ 11 | VAL_DATA_ROOT=/path/to/imagenet/val/ 12 | 13 | # Set RESIZE=true to resize the images to 256x256. Leave as false if images have 14 | # already been resized using another tool. 15 | RESIZE=false 16 | if $RESIZE; then 17 | RESIZE_HEIGHT=256 18 | RESIZE_WIDTH=256 19 | else 20 | RESIZE_HEIGHT=0 21 | RESIZE_WIDTH=0 22 | fi 23 | 24 | if [ ! -d "$TRAIN_DATA_ROOT" ]; then 25 | echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT" 26 | echo "Set the TRAIN_DATA_ROOT variable in create_imagenet.sh to the path" \ 27 | "where the ImageNet training data is stored." 28 | exit 1 29 | fi 30 | 31 | if [ ! -d "$VAL_DATA_ROOT" ]; then 32 | echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT" 33 | echo "Set the VAL_DATA_ROOT variable in create_imagenet.sh to the path" \ 34 | "where the ImageNet validation data is stored." 35 | exit 1 36 | fi 37 | 38 | echo "Creating train lmdb..." 39 | 40 | GLOG_logtostderr=1 $TOOLS/convert_imageset \ 41 | --resize_height=$RESIZE_HEIGHT \ 42 | --resize_width=$RESIZE_WIDTH \ 43 | --shuffle \ 44 | $TRAIN_DATA_ROOT \ 45 | $DATA/train.txt \ 46 | $EXAMPLE/ilsvrc12_train_lmdb 47 | 48 | echo "Creating val lmdb..." 49 | 50 | GLOG_logtostderr=1 $TOOLS/convert_imageset \ 51 | --resize_height=$RESIZE_HEIGHT \ 52 | --resize_width=$RESIZE_WIDTH \ 53 | --shuffle \ 54 | $VAL_DATA_ROOT \ 55 | $DATA/val.txt \ 56 | $EXAMPLE/ilsvrc12_val_lmdb 57 | 58 | echo "Done." 59 | -------------------------------------------------------------------------------- /examples/imagenet/make_imagenet_mean.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # Compute the mean image from the imagenet training lmdb 3 | # N.B. this is available in data/ilsvrc12 4 | 5 | EXAMPLE=examples/imagenet 6 | DATA=data/ilsvrc12 7 | TOOLS=build/tools 8 | 9 | $TOOLS/compute_image_mean $EXAMPLE/ilsvrc12_train_lmdb \ 10 | $DATA/imagenet_mean.binaryproto 11 | 12 | echo "Done." 13 | -------------------------------------------------------------------------------- /examples/imagenet/resume_training.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt \ 6 | --snapshot=models/bvlc_reference_caffenet/caffenet_train_10000.solverstate.h5 \ 7 | $@ 8 | -------------------------------------------------------------------------------- /examples/imagenet/train_caffenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=models/bvlc_reference_caffenet/solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/images/cat gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/images/cat gray.jpg -------------------------------------------------------------------------------- /examples/images/cat.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/images/cat.jpg -------------------------------------------------------------------------------- /examples/images/cat_gray.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/images/cat_gray.jpg -------------------------------------------------------------------------------- /examples/images/cropped_panda.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/images/cropped_panda.jpg -------------------------------------------------------------------------------- /examples/images/fish-bike.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/images/fish-bike.jpg -------------------------------------------------------------------------------- /examples/mnist/create_mnist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into lmdb/leveldb format, 3 | # depending on the value assigned to $BACKEND. 4 | set -e 5 | 6 | EXAMPLE=examples/mnist 7 | DATA=data/mnist 8 | BUILD=build/examples/mnist 9 | 10 | BACKEND="lmdb" 11 | 12 | echo "Creating ${BACKEND}..." 13 | 14 | rm -rf $EXAMPLE/mnist_train_${BACKEND} 15 | rm -rf $EXAMPLE/mnist_test_${BACKEND} 16 | 17 | $BUILD/convert_mnist_data.bin $DATA/train-images-idx3-ubyte \ 18 | $DATA/train-labels-idx1-ubyte $EXAMPLE/mnist_train_${BACKEND} --backend=${BACKEND} 19 | $BUILD/convert_mnist_data.bin $DATA/t10k-images-idx3-ubyte \ 20 | $DATA/t10k-labels-idx1-ubyte $EXAMPLE/mnist_test_${BACKEND} --backend=${BACKEND} 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /examples/mnist/lenet_adadelta_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 1.0 11 | lr_policy: "fixed" 12 | momentum: 0.95 13 | weight_decay: 0.0005 14 | # Display every 100 iterations 15 | display: 100 16 | # The maximum number of iterations 17 | max_iter: 10000 18 | # snapshot intermediate results 19 | snapshot: 5000 20 | snapshot_prefix: "examples/mnist/lenet_adadelta" 21 | # solver mode: CPU or GPU 22 | solver_mode: GPU 23 | type: "AdaDelta" 24 | delta: 1e-6 25 | -------------------------------------------------------------------------------- /examples/mnist/lenet_auto_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | train_net: "mnist/lenet_auto_train.prototxt" 3 | test_net: "mnist/lenet_auto_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # The base learning rate, momentum and the weight decay of the network. 11 | base_lr: 0.01 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | # The learning rate policy 15 | lr_policy: "inv" 16 | gamma: 0.0001 17 | power: 0.75 18 | # Display every 100 iterations 19 | display: 100 20 | # The maximum number of iterations 21 | max_iter: 10000 22 | # snapshot intermediate results 23 | snapshot: 5000 24 | snapshot_prefix: "mnist/lenet" 25 | -------------------------------------------------------------------------------- /examples/mnist/lenet_multistep_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "multistep" 15 | gamma: 0.9 16 | stepvalue: 5000 17 | stepvalue: 7000 18 | stepvalue: 8000 19 | stepvalue: 9000 20 | stepvalue: 9500 21 | # Display every 100 iterations 22 | display: 100 23 | # The maximum number of iterations 24 | max_iter: 10000 25 | # snapshot intermediate results 26 | snapshot: 5000 27 | snapshot_prefix: "examples/mnist/lenet_multistep" 28 | # solver mode: CPU or GPU 29 | solver_mode: GPU 30 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver_adam.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | # this follows "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION" 3 | net: "examples/mnist/lenet_train_test.prototxt" 4 | # test_iter specifies how many forward passes the test should carry out. 5 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 6 | # covering the full 10,000 testing images. 7 | test_iter: 100 8 | # Carry out testing every 500 training iterations. 9 | test_interval: 500 10 | # All parameters are from the cited paper above 11 | base_lr: 0.001 12 | momentum: 0.9 13 | momentum2: 0.999 14 | # since Adam dynamically changes the learning rate, we set the base learning 15 | # rate to a fixed value 16 | lr_policy: "fixed" 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet" 24 | # solver mode: CPU or GPU 25 | type: "Adam" 26 | solver_mode: GPU 27 | -------------------------------------------------------------------------------- /examples/mnist/lenet_solver_rmsprop.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/mnist/lenet_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.0 12 | weight_decay: 0.0005 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 10000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/mnist/lenet_rmsprop" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | type: "RMSProp" 27 | rms_decay: 0.98 28 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder" 17 | momentum: 0.9 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_adadelta.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 1.0 9 | lr_policy: "fixed" 10 | momentum: 0.95 11 | delta: 1e-8 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adadelta_train" 17 | # solver mode: CPU or GPU 18 | solver_mode: GPU 19 | type: "AdaDelta" 20 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_adagrad.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "fixed" 10 | display: 100 11 | max_iter: 65000 12 | weight_decay: 0.0005 13 | snapshot: 10000 14 | snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" 15 | # solver mode: CPU or GPU 16 | solver_mode: GPU 17 | type: "AdaGrad" 18 | -------------------------------------------------------------------------------- /examples/mnist/mnist_autoencoder_solver_nesterov.prototxt: -------------------------------------------------------------------------------- 1 | net: "examples/mnist/mnist_autoencoder.prototxt" 2 | test_state: { stage: 'test-on-train' } 3 | test_iter: 500 4 | test_state: { stage: 'test-on-test' } 5 | test_iter: 100 6 | test_interval: 500 7 | test_compute_loss: true 8 | base_lr: 0.01 9 | lr_policy: "step" 10 | gamma: 0.1 11 | stepsize: 10000 12 | display: 100 13 | max_iter: 65000 14 | weight_decay: 0.0005 15 | snapshot: 10000 16 | snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" 17 | momentum: 0.95 18 | # solver mode: CPU or GPU 19 | solver_mode: GPU 20 | type: "Nesterov" 21 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver.prototxt $@ 5 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_adam.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train --solver=examples/mnist/lenet_solver_adam.prototxt $@ 5 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_consolidated.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_consolidated_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_lenet_rmsprop.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/lenet_solver_rmsprop.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_adadelta.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adadelta.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_adagrad.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_adagrad.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/mnist/train_mnist_autoencoder_nesterov.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | set -e 3 | 4 | ./build/tools/caffe train \ 5 | --solver=examples/mnist/mnist_autoencoder_solver_nesterov.prototxt $@ 6 | -------------------------------------------------------------------------------- /examples/net_surgery/conv.prototxt: -------------------------------------------------------------------------------- 1 | # Simple single-layer network to showcase editing model parameters. 2 | name: "convolution" 3 | layer { 4 | name: "data" 5 | type: "Input" 6 | top: "data" 7 | input_param { shape: { dim: 1 dim: 1 dim: 100 dim: 100 } } 8 | } 9 | layer { 10 | name: "conv" 11 | type: "Convolution" 12 | bottom: "data" 13 | top: "conv" 14 | convolution_param { 15 | num_output: 3 16 | kernel_size: 5 17 | stride: 1 18 | weight_filler { 19 | type: "gaussian" 20 | std: 0.01 21 | } 22 | bias_filler { 23 | type: "constant" 24 | value: 0 25 | } 26 | } 27 | } 28 | -------------------------------------------------------------------------------- /examples/pycaffe/layers/pyloss.py: -------------------------------------------------------------------------------- 1 | import caffe 2 | import numpy as np 3 | 4 | 5 | class EuclideanLossLayer(caffe.Layer): 6 | """ 7 | Compute the Euclidean Loss in the same manner as the C++ EuclideanLossLayer 8 | to demonstrate the class interface for developing layers in Python. 9 | """ 10 | 11 | def setup(self, bottom, top): 12 | # check input pair 13 | if len(bottom) != 2: 14 | raise Exception("Need two inputs to compute distance.") 15 | 16 | def reshape(self, bottom, top): 17 | # check input dimensions match 18 | if bottom[0].count != bottom[1].count: 19 | raise Exception("Inputs must have the same dimension.") 20 | # difference is shape of inputs 21 | self.diff = np.zeros_like(bottom[0].data, dtype=np.float32) 22 | # loss output is scalar 23 | top[0].reshape(1) 24 | 25 | def forward(self, bottom, top): 26 | self.diff[...] = bottom[0].data - bottom[1].data 27 | top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2. 28 | 29 | def backward(self, top, propagate_down, bottom): 30 | for i in range(2): 31 | if not propagate_down[i]: 32 | continue 33 | if i == 0: 34 | sign = 1 35 | else: 36 | sign = -1 37 | bottom[i].diff[...] = sign * self.diff / bottom[i].num 38 | -------------------------------------------------------------------------------- /examples/pycaffe/linreg.prototxt: -------------------------------------------------------------------------------- 1 | name: 'LinearRegressionExample' 2 | # define a simple network for linear regression on dummy data 3 | # that computes the loss by a PythonLayer. 4 | layer { 5 | type: 'DummyData' 6 | name: 'x' 7 | top: 'x' 8 | dummy_data_param { 9 | shape: { dim: 10 dim: 3 dim: 2 } 10 | data_filler: { type: 'gaussian' } 11 | } 12 | } 13 | layer { 14 | type: 'DummyData' 15 | name: 'y' 16 | top: 'y' 17 | dummy_data_param { 18 | shape: { dim: 10 dim: 3 dim: 2 } 19 | data_filler: { type: 'gaussian' } 20 | } 21 | } 22 | # include InnerProduct layers for parameters 23 | # so the net will need backward 24 | layer { 25 | type: 'InnerProduct' 26 | name: 'ipx' 27 | top: 'ipx' 28 | bottom: 'x' 29 | inner_product_param { 30 | num_output: 10 31 | weight_filler { type: 'xavier' } 32 | } 33 | } 34 | layer { 35 | type: 'InnerProduct' 36 | name: 'ipy' 37 | top: 'ipy' 38 | bottom: 'y' 39 | inner_product_param { 40 | num_output: 10 41 | weight_filler { type: 'xavier' } 42 | } 43 | } 44 | layer { 45 | type: 'Python' 46 | name: 'loss' 47 | top: 'loss' 48 | bottom: 'ipx' 49 | bottom: 'ipy' 50 | python_param { 51 | # the module name -- usually the filename -- that needs to be in $PYTHONPATH 52 | module: 'pyloss' 53 | # the layer name -- the class name in the module 54 | layer: 'EuclideanLossLayer' 55 | } 56 | # set loss weight so Caffe knows this is a loss layer. 57 | # since PythonLayer inherits directly from Layer, this isn't automatically 58 | # known to Caffe 59 | loss_weight: 1 60 | } 61 | -------------------------------------------------------------------------------- /examples/siamese/create_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | # This script converts the mnist data into leveldb format. 3 | set -e 4 | 5 | EXAMPLES=./build/examples/siamese 6 | DATA=./data/mnist 7 | 8 | echo "Creating leveldb..." 9 | 10 | rm -rf ./examples/siamese/mnist_siamese_train_leveldb 11 | rm -rf ./examples/siamese/mnist_siamese_test_leveldb 12 | 13 | $EXAMPLES/convert_mnist_siamese_data.bin \ 14 | $DATA/train-images-idx3-ubyte \ 15 | $DATA/train-labels-idx1-ubyte \ 16 | ./examples/siamese/mnist_siamese_train_leveldb 17 | $EXAMPLES/convert_mnist_siamese_data.bin \ 18 | $DATA/t10k-images-idx3-ubyte \ 19 | $DATA/t10k-labels-idx1-ubyte \ 20 | ./examples/siamese/mnist_siamese_test_leveldb 21 | 22 | echo "Done." 23 | -------------------------------------------------------------------------------- /examples/siamese/mnist_siamese_solver.prototxt: -------------------------------------------------------------------------------- 1 | # The train/test net protocol buffer definition 2 | net: "examples/siamese/mnist_siamese_train_test.prototxt" 3 | # test_iter specifies how many forward passes the test should carry out. 4 | # In the case of MNIST, we have test batch size 100 and 100 test iterations, 5 | # covering the full 10,000 testing images. 6 | test_iter: 100 7 | # Carry out testing every 500 training iterations. 8 | test_interval: 500 9 | # The base learning rate, momentum and the weight decay of the network. 10 | base_lr: 0.01 11 | momentum: 0.9 12 | weight_decay: 0.0000 13 | # The learning rate policy 14 | lr_policy: "inv" 15 | gamma: 0.0001 16 | power: 0.75 17 | # Display every 100 iterations 18 | display: 100 19 | # The maximum number of iterations 20 | max_iter: 50000 21 | # snapshot intermediate results 22 | snapshot: 5000 23 | snapshot_prefix: "examples/siamese/mnist_siamese" 24 | # solver mode: CPU or GPU 25 | solver_mode: GPU 26 | -------------------------------------------------------------------------------- /examples/siamese/train_mnist_siamese.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | set -e 3 | 4 | TOOLS=./build/tools 5 | 6 | $TOOLS/caffe train --solver=examples/siamese/mnist_siamese_solver.prototxt $@ 7 | -------------------------------------------------------------------------------- /examples/videos/ILSVRC2015_train_00755001.mp4: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/examples/videos/ILSVRC2015_train_00755001.mp4 -------------------------------------------------------------------------------- /examples/web_demo/exifutil.py: -------------------------------------------------------------------------------- 1 | """ 2 | This script handles the skimage exif problem. 3 | """ 4 | 5 | from PIL import Image 6 | import numpy as np 7 | 8 | ORIENTATIONS = { # used in apply_orientation 9 | 2: (Image.FLIP_LEFT_RIGHT,), 10 | 3: (Image.ROTATE_180,), 11 | 4: (Image.FLIP_TOP_BOTTOM,), 12 | 5: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_90), 13 | 6: (Image.ROTATE_270,), 14 | 7: (Image.FLIP_LEFT_RIGHT, Image.ROTATE_270), 15 | 8: (Image.ROTATE_90,) 16 | } 17 | 18 | 19 | def open_oriented_im(im_path): 20 | im = Image.open(im_path) 21 | if hasattr(im, '_getexif'): 22 | exif = im._getexif() 23 | if exif is not None and 274 in exif: 24 | orientation = exif[274] 25 | im = apply_orientation(im, orientation) 26 | img = np.asarray(im).astype(np.float32) / 255. 27 | if img.ndim == 2: 28 | img = img[:, :, np.newaxis] 29 | img = np.tile(img, (1, 1, 3)) 30 | elif img.shape[2] == 4: 31 | img = img[:, :, :3] 32 | return img 33 | 34 | 35 | def apply_orientation(im, orientation): 36 | if orientation in ORIENTATIONS: 37 | for method in ORIENTATIONS[orientation]: 38 | im = im.transpose(method) 39 | return im 40 | -------------------------------------------------------------------------------- /examples/web_demo/requirements.txt: -------------------------------------------------------------------------------- 1 | werkzeug 2 | flask 3 | tornado 4 | numpy 5 | pandas 6 | pillow 7 | pyyaml 8 | -------------------------------------------------------------------------------- /include/caffe/caffe.hpp: -------------------------------------------------------------------------------- 1 | // caffe.hpp is the header file that you need to include in your code. It wraps 2 | // all the internal caffe header files into one for simpler inclusion. 3 | 4 | #ifndef CAFFE_CAFFE_HPP_ 5 | #define CAFFE_CAFFE_HPP_ 6 | 7 | #include "caffe/blob.hpp" 8 | #include "caffe/common.hpp" 9 | #include "caffe/filler.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layer_factory.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/parallel.hpp" 14 | #include "caffe/proto/caffe.pb.h" 15 | #include "caffe/solver.hpp" 16 | #include "caffe/solver_factory.hpp" 17 | #include "caffe/util/benchmark.hpp" 18 | #include "caffe/util/io.hpp" 19 | #include "caffe/util/upgrade_proto.hpp" 20 | 21 | #endif // CAFFE_CAFFE_HPP_ 22 | -------------------------------------------------------------------------------- /include/caffe/internal_thread.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_INTERNAL_THREAD_HPP_ 2 | #define CAFFE_INTERNAL_THREAD_HPP_ 3 | 4 | #include "caffe/common.hpp" 5 | 6 | /** 7 | Forward declare boost::thread instead of including boost/thread.hpp 8 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. 9 | */ 10 | namespace boost { class thread; } 11 | 12 | namespace caffe { 13 | 14 | /** 15 | * Virtual class encapsulate boost::thread for use in base class 16 | * The child class will acquire the ability to run a single thread, 17 | * by reimplementing the virtual function InternalThreadEntry. 18 | */ 19 | class InternalThread { 20 | public: 21 | InternalThread() : thread_() {} 22 | virtual ~InternalThread(); 23 | 24 | /** 25 | * Caffe's thread local state will be initialized using the current 26 | * thread values, e.g. device id, solver index etc. The random seed 27 | * is initialized using caffe_rng_rand. 28 | */ 29 | void StartInternalThread(); 30 | 31 | /** Will not return until the internal thread has exited. */ 32 | void StopInternalThread(); 33 | 34 | bool is_started() const; 35 | 36 | protected: 37 | /* Implement this method in your subclass 38 | with the code you want your thread to run. */ 39 | virtual void InternalThreadEntry() {} 40 | 41 | /* Should be tested when running loops to exit when requested. */ 42 | bool must_stop(); 43 | 44 | private: 45 | void entry(int device, Caffe::Brew mode, int rand_seed, int solver_count, 46 | bool root_solver); 47 | 48 | shared_ptr thread_; 49 | }; 50 | 51 | } // namespace caffe 52 | 53 | #endif // CAFFE_INTERNAL_THREAD_HPP_ 54 | -------------------------------------------------------------------------------- /include/caffe/layers/annotated_data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_DATA_LAYER_HPP_ 2 | #define CAFFE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | #include "caffe/blob.hpp" 8 | #include "caffe/data_reader.hpp" 9 | #include "caffe/data_transformer.hpp" 10 | #include "caffe/internal_thread.hpp" 11 | #include "caffe/layer.hpp" 12 | #include "caffe/layers/base_data_layer.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | #include "caffe/util/db.hpp" 15 | 16 | namespace caffe { 17 | 18 | template 19 | class AnnotatedDataLayer : public BasePrefetchingDataLayer { 20 | public: 21 | explicit AnnotatedDataLayer(const LayerParameter& param); 22 | virtual ~AnnotatedDataLayer(); 23 | virtual void DataLayerSetUp(const vector*>& bottom, 24 | const vector*>& top); 25 | // AnnotatedDataLayer uses DataReader instead for sharing for parallelism 26 | virtual inline bool ShareInParallel() const { return false; } 27 | virtual inline const char* type() const { return "AnnotatedData"; } 28 | virtual inline int ExactNumBottomBlobs() const { return 0; } 29 | virtual inline int MinTopBlobs() const { return 1; } 30 | 31 | protected: 32 | virtual void load_batch(Batch* batch); 33 | 34 | DataReader reader_; 35 | bool has_anno_type_; 36 | AnnotatedDatum_AnnotationType anno_type_; 37 | vector batch_samplers_; 38 | string label_map_file_; 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_DATA_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_lcn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_LCN_LAYER_HPP_ 2 | #define CAFFE_CUDNN_LCN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/lrn_layer.hpp" 11 | #include "caffe/layers/power_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | template 17 | class CuDNNLCNLayer : public LRNLayer { 18 | public: 19 | explicit CuDNNLCNLayer(const LayerParameter& param) 20 | : LRNLayer(param), handles_setup_(false), tempDataSize(0), 21 | tempData1(NULL), tempData2(NULL) {} 22 | virtual void LayerSetUp(const vector*>& bottom, 23 | const vector*>& top); 24 | virtual void Reshape(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual ~CuDNNLCNLayer(); 27 | 28 | protected: 29 | virtual void Forward_gpu(const vector*>& bottom, 30 | const vector*>& top); 31 | virtual void Backward_gpu(const vector*>& top, 32 | const vector& propagate_down, const vector*>& bottom); 33 | 34 | bool handles_setup_; 35 | cudnnHandle_t handle_; 36 | cudnnLRNDescriptor_t norm_desc_; 37 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 38 | 39 | int size_, pre_pad_; 40 | Dtype alpha_, beta_, k_; 41 | 42 | size_t tempDataSize; 43 | void *tempData1, *tempData2; 44 | }; 45 | #endif 46 | 47 | } // namespace caffe 48 | 49 | #endif // CAFFE_CUDNN_LCN_LAYER_HPP_ 50 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_lrn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_LRN_LAYER_HPP_ 2 | #define CAFFE_CUDNN_LRN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/lrn_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | template 16 | class CuDNNLRNLayer : public LRNLayer { 17 | public: 18 | explicit CuDNNLRNLayer(const LayerParameter& param) 19 | : LRNLayer(param), handles_setup_(false) {} 20 | virtual void LayerSetUp(const vector*>& bottom, 21 | const vector*>& top); 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | virtual ~CuDNNLRNLayer(); 25 | 26 | protected: 27 | virtual void Forward_gpu(const vector*>& bottom, 28 | const vector*>& top); 29 | virtual void Backward_gpu(const vector*>& top, 30 | const vector& propagate_down, const vector*>& bottom); 31 | 32 | bool handles_setup_; 33 | cudnnHandle_t handle_; 34 | cudnnLRNDescriptor_t norm_desc_; 35 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 36 | 37 | int size_; 38 | Dtype alpha_, beta_, k_; 39 | }; 40 | #endif 41 | 42 | } // namespace caffe 43 | 44 | #endif // CAFFE_CUDNN_LRN_LAYER_HPP_ 45 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_pooling_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_POOLING_LAYER_HPP_ 2 | #define CAFFE_CUDNN_POOLING_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/pooling_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | /* 16 | * @brief cuDNN implementation of PoolingLayer. 17 | * Fallback to PoolingLayer for CPU mode. 18 | */ 19 | template 20 | class CuDNNPoolingLayer : public PoolingLayer { 21 | public: 22 | explicit CuDNNPoolingLayer(const LayerParameter& param) 23 | : PoolingLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNPoolingLayer(); 29 | // Currently, cuDNN does not support the extra top blob. 30 | virtual inline int MinTopBlobs() const { return -1; } 31 | virtual inline int ExactNumTopBlobs() const { return 1; } 32 | 33 | protected: 34 | virtual void Forward_gpu(const vector*>& bottom, 35 | const vector*>& top); 36 | virtual void Backward_gpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom); 38 | 39 | bool handles_setup_; 40 | cudnnHandle_t handle_; 41 | cudnnTensorDescriptor_t bottom_desc_, top_desc_; 42 | cudnnPoolingDescriptor_t pooling_desc_; 43 | cudnnPoolingMode_t mode_; 44 | }; 45 | #endif 46 | 47 | } // namespace caffe 48 | 49 | #endif // CAFFE_CUDNN_POOLING_LAYER_HPP_ 50 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_relu_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_RELU_LAYER_HPP_ 2 | #define CAFFE_CUDNN_RELU_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/relu_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of ReLULayer. 18 | */ 19 | template 20 | class CuDNNReLULayer : public ReLULayer { 21 | public: 22 | explicit CuDNNReLULayer(const LayerParameter& param) 23 | : ReLULayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNReLULayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_RELU_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_sigmoid_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/sigmoid_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of SigmoidLayer. 18 | */ 19 | template 20 | class CuDNNSigmoidLayer : public SigmoidLayer { 21 | public: 22 | explicit CuDNNSigmoidLayer(const LayerParameter& param) 23 | : SigmoidLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSigmoidLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_SIGMOID_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_softmax_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 2 | #define CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/softmax_layer.hpp" 11 | 12 | namespace caffe { 13 | 14 | #ifdef USE_CUDNN 15 | /** 16 | * @brief cuDNN implementation of SoftmaxLayer. 17 | * Fallback to SoftmaxLayer for CPU mode. 18 | */ 19 | template 20 | class CuDNNSoftmaxLayer : public SoftmaxLayer { 21 | public: 22 | explicit CuDNNSoftmaxLayer(const LayerParameter& param) 23 | : SoftmaxLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNSoftmaxLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | }; 41 | #endif 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_CUDNN_SOFTMAX_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /include/caffe/layers/cudnn_tanh_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_CUDNN_TANH_LAYER_HPP_ 2 | #define CAFFE_CUDNN_TANH_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/layers/neuron_layer.hpp" 11 | #include "caffe/layers/tanh_layer.hpp" 12 | 13 | namespace caffe { 14 | 15 | #ifdef USE_CUDNN 16 | /** 17 | * @brief CuDNN acceleration of TanHLayer. 18 | */ 19 | template 20 | class CuDNNTanHLayer : public TanHLayer { 21 | public: 22 | explicit CuDNNTanHLayer(const LayerParameter& param) 23 | : TanHLayer(param), handles_setup_(false) {} 24 | virtual void LayerSetUp(const vector*>& bottom, 25 | const vector*>& top); 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top); 28 | virtual ~CuDNNTanHLayer(); 29 | 30 | protected: 31 | virtual void Forward_gpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Backward_gpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | 36 | bool handles_setup_; 37 | cudnnHandle_t handle_; 38 | cudnnTensorDescriptor_t bottom_desc_; 39 | cudnnTensorDescriptor_t top_desc_; 40 | cudnnActivationDescriptor_t activ_desc_; 41 | }; 42 | #endif 43 | 44 | } // namespace caffe 45 | 46 | #endif // CAFFE_CUDNN_TANH_LAYER_HPP_ 47 | -------------------------------------------------------------------------------- /include/caffe/layers/data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_DATA_LAYER_HPP_ 2 | #define CAFFE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/data_reader.hpp" 8 | #include "caffe/data_transformer.hpp" 9 | #include "caffe/internal_thread.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layers/base_data_layer.hpp" 12 | #include "caffe/proto/caffe.pb.h" 13 | #include "caffe/util/db.hpp" 14 | 15 | namespace caffe { 16 | 17 | template 18 | class DataLayer : public BasePrefetchingDataLayer { 19 | public: 20 | explicit DataLayer(const LayerParameter& param); 21 | virtual ~DataLayer(); 22 | virtual void DataLayerSetUp(const vector*>& bottom, 23 | const vector*>& top); 24 | // DataLayer uses DataReader instead for sharing for parallelism 25 | virtual inline bool ShareInParallel() const { return false; } 26 | virtual inline const char* type() const { return "Data"; } 27 | virtual inline int ExactNumBottomBlobs() const { return 0; } 28 | virtual inline int MinTopBlobs() const { return 1; } 29 | virtual inline int MaxTopBlobs() const { return 2; } 30 | 31 | protected: 32 | virtual void load_batch(Batch* batch); 33 | 34 | DataReader reader_; 35 | }; 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_DATA_LAYER_HPP_ 40 | -------------------------------------------------------------------------------- /include/caffe/layers/image_data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_IMAGE_DATA_LAYER_HPP_ 2 | #define CAFFE_IMAGE_DATA_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | #include "caffe/blob.hpp" 9 | #include "caffe/data_transformer.hpp" 10 | #include "caffe/internal_thread.hpp" 11 | #include "caffe/layer.hpp" 12 | #include "caffe/layers/base_data_layer.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | 15 | namespace caffe { 16 | 17 | /** 18 | * @brief Provides data to the Net from image files. 19 | * 20 | * TODO(dox): thorough documentation for Forward and proto params. 21 | */ 22 | template 23 | class ImageDataLayer : public BasePrefetchingDataLayer { 24 | public: 25 | explicit ImageDataLayer(const LayerParameter& param) 26 | : BasePrefetchingDataLayer(param) {} 27 | virtual ~ImageDataLayer(); 28 | virtual void DataLayerSetUp(const vector*>& bottom, 29 | const vector*>& top); 30 | 31 | virtual inline const char* type() const { return "ImageData"; } 32 | virtual inline int ExactNumBottomBlobs() const { return 0; } 33 | virtual inline int ExactNumTopBlobs() const { return 2; } 34 | 35 | protected: 36 | shared_ptr prefetch_rng_; 37 | virtual void ShuffleImages(); 38 | virtual void load_batch(Batch* batch); 39 | 40 | vector > lines_; 41 | int lines_id_; 42 | }; 43 | 44 | 45 | } // namespace caffe 46 | 47 | #endif // CAFFE_IMAGE_DATA_LAYER_HPP_ 48 | -------------------------------------------------------------------------------- /include/caffe/layers/input_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_INPUT_LAYER_HPP_ 2 | #define CAFFE_INPUT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Provides data to the Net by assigning tops directly. 14 | * 15 | * This data layer is a container that merely holds the data assigned to it; 16 | * forward, backward, and reshape are all no-ops. 17 | */ 18 | template 19 | class InputLayer : public Layer { 20 | public: 21 | explicit InputLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void LayerSetUp(const vector*>& bottom, 24 | const vector*>& top); 25 | // Data layers should be shared by multiple solvers in parallel 26 | virtual inline bool ShareInParallel() const { return true; } 27 | // Data layers have no bottoms, so reshaping is trivial. 28 | virtual void Reshape(const vector*>& bottom, 29 | const vector*>& top) {} 30 | 31 | virtual inline const char* type() const { return "Input"; } 32 | virtual inline int ExactNumBottomBlobs() const { return 0; } 33 | virtual inline int MinTopBlobs() const { return 1; } 34 | 35 | protected: 36 | virtual void Forward_cpu(const vector*>& bottom, 37 | const vector*>& top) {} 38 | virtual void Backward_cpu(const vector*>& top, 39 | const vector& propagate_down, const vector*>& bottom) {} 40 | }; 41 | 42 | } // namespace caffe 43 | 44 | #endif // CAFFE_INPUT_LAYER_HPP_ 45 | -------------------------------------------------------------------------------- /include/caffe/layers/mvn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_MVN_LAYER_HPP_ 2 | #define CAFFE_MVN_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Normalizes the input to have 0-mean and/or unit (1) variance. 14 | * 15 | * TODO(dox): thorough documentation for Forward, Backward, and proto params. 16 | */ 17 | template 18 | class MVNLayer : public Layer { 19 | public: 20 | explicit MVNLayer(const LayerParameter& param) 21 | : Layer(param) {} 22 | virtual void Reshape(const vector*>& bottom, 23 | const vector*>& top); 24 | 25 | virtual inline const char* type() const { return "MVN"; } 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | 29 | protected: 30 | virtual void Forward_cpu(const vector*>& bottom, 31 | const vector*>& top); 32 | virtual void Forward_gpu(const vector*>& bottom, 33 | const vector*>& top); 34 | virtual void Backward_cpu(const vector*>& top, 35 | const vector& propagate_down, const vector*>& bottom); 36 | virtual void Backward_gpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom); 38 | 39 | Blob mean_, variance_, temp_; 40 | 41 | /// sum_multiplier is used to carry out sum using BLAS 42 | Blob sum_multiplier_; 43 | Dtype eps_; 44 | }; 45 | 46 | } // namespace caffe 47 | 48 | #endif // CAFFE_MVN_LAYER_HPP_ 49 | -------------------------------------------------------------------------------- /include/caffe/layers/neuron_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_NEURON_LAYER_HPP_ 2 | #define CAFFE_NEURON_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief An interface for layers that take one blob as input (@f$ x @f$) 14 | * and produce one equally-sized blob as output (@f$ y @f$), where 15 | * each element of the output depends only on the corresponding input 16 | * element. 17 | */ 18 | template 19 | class NeuronLayer : public Layer { 20 | public: 21 | explicit NeuronLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline int ExactNumBottomBlobs() const { return 1; } 27 | virtual inline int ExactNumTopBlobs() const { return 1; } 28 | }; 29 | 30 | } // namespace caffe 31 | 32 | #endif // CAFFE_NEURON_LAYER_HPP_ 33 | -------------------------------------------------------------------------------- /include/caffe/layers/parameter_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_PARAMETER_LAYER_HPP_ 2 | #define CAFFE_PARAMETER_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | class ParameterLayer : public Layer { 12 | public: 13 | explicit ParameterLayer(const LayerParameter& param) 14 | : Layer(param) {} 15 | virtual void LayerSetUp(const vector*>& bottom, 16 | const vector*>& top) { 17 | if (this->blobs_.size() > 0) { 18 | LOG(INFO) << "Skipping parameter initialization"; 19 | } else { 20 | this->blobs_.resize(1); 21 | this->blobs_[0].reset(new Blob()); 22 | this->blobs_[0]->Reshape(this->layer_param_.parameter_param().shape()); 23 | } 24 | top[0]->Reshape(this->layer_param_.parameter_param().shape()); 25 | } 26 | virtual void Reshape(const vector*>& bottom, 27 | const vector*>& top) { } 28 | virtual inline const char* type() const { return "Parameter"; } 29 | virtual inline int ExactNumBottomBlobs() const { return 0; } 30 | virtual inline int ExactNumTopBlobs() const { return 1; } 31 | 32 | protected: 33 | virtual void Forward_cpu(const vector*>& bottom, 34 | const vector*>& top) { 35 | top[0]->ShareData(*(this->blobs_[0])); 36 | top[0]->ShareDiff(*(this->blobs_[0])); 37 | } 38 | virtual void Backward_cpu(const vector*>& top, 39 | const vector& propagate_down, const vector*>& bottom) 40 | { } 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /include/caffe/layers/rnn_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNN_LAYER_HPP_ 2 | #define CAFFE_RNN_LAYER_HPP_ 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | #include "caffe/blob.hpp" 9 | #include "caffe/common.hpp" 10 | #include "caffe/layer.hpp" 11 | #include "caffe/layers/recurrent_layer.hpp" 12 | #include "caffe/net.hpp" 13 | #include "caffe/proto/caffe.pb.h" 14 | 15 | namespace caffe { 16 | 17 | template class RecurrentLayer; 18 | 19 | /** 20 | * @brief Processes time-varying inputs using a simple recurrent neural network 21 | * (RNN). Implemented as a network unrolling the RNN computation in time. 22 | * 23 | * Given time-varying inputs @f$ x_t @f$, computes hidden state @f$ 24 | * h_t := \tanh[ W_{hh} h_{t_1} + W_{xh} x_t + b_h ] 25 | * @f$, and outputs @f$ 26 | * o_t := \tanh[ W_{ho} h_t + b_o ] 27 | * @f$. 28 | */ 29 | template 30 | class RNNLayer : public RecurrentLayer { 31 | public: 32 | explicit RNNLayer(const LayerParameter& param) 33 | : RecurrentLayer(param) {} 34 | 35 | virtual inline const char* type() const { return "RNN"; } 36 | 37 | protected: 38 | virtual void FillUnrolledNet(NetParameter* net_param) const; 39 | virtual void RecurrentInputBlobNames(vector* names) const; 40 | virtual void RecurrentOutputBlobNames(vector* names) const; 41 | virtual void RecurrentInputShapes(vector* shapes) const; 42 | virtual void OutputBlobNames(vector* names) const; 43 | }; 44 | 45 | } // namespace caffe 46 | 47 | #endif // CAFFE_RNN_LAYER_HPP_ 48 | -------------------------------------------------------------------------------- /include/caffe/layers/silence_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_SILENCE_LAYER_HPP_ 2 | #define CAFFE_SILENCE_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Ignores bottom blobs while producing no top blobs. (This is useful 14 | * to suppress outputs during testing.) 15 | */ 16 | template 17 | class SilenceLayer : public Layer { 18 | public: 19 | explicit SilenceLayer(const LayerParameter& param) 20 | : Layer(param) {} 21 | virtual void Reshape(const vector*>& bottom, 22 | const vector*>& top) {} 23 | 24 | virtual inline const char* type() const { return "Silence"; } 25 | virtual inline int MinBottomBlobs() const { return 1; } 26 | virtual inline int ExactNumTopBlobs() const { return 0; } 27 | 28 | protected: 29 | virtual void Forward_cpu(const vector*>& bottom, 30 | const vector*>& top) {} 31 | // We can't define Forward_gpu here, since STUB_GPU will provide 32 | // its own definition for CPU_ONLY mode. 33 | virtual void Forward_gpu(const vector*>& bottom, 34 | const vector*>& top); 35 | virtual void Backward_cpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | virtual void Backward_gpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom); 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_SILENCE_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/layers/split_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_SPLIT_LAYER_HPP_ 2 | #define CAFFE_SPLIT_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Creates a "split" path in the network by copying the bottom Blob 14 | * into multiple top Blob%s to be used by multiple consuming layers. 15 | * 16 | * TODO(dox): thorough documentation for Forward, Backward, and proto params. 17 | */ 18 | template 19 | class SplitLayer : public Layer { 20 | public: 21 | explicit SplitLayer(const LayerParameter& param) 22 | : Layer(param) {} 23 | virtual void Reshape(const vector*>& bottom, 24 | const vector*>& top); 25 | 26 | virtual inline const char* type() const { return "Split"; } 27 | virtual inline int ExactNumBottomBlobs() const { return 1; } 28 | virtual inline int MinTopBlobs() const { return 1; } 29 | 30 | protected: 31 | virtual void Forward_cpu(const vector*>& bottom, 32 | const vector*>& top); 33 | virtual void Forward_gpu(const vector*>& bottom, 34 | const vector*>& top); 35 | virtual void Backward_cpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | virtual void Backward_gpu(const vector*>& top, 38 | const vector& propagate_down, const vector*>& bottom); 39 | 40 | int count_; 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_SPLIT_LAYER_HPP_ 46 | -------------------------------------------------------------------------------- /include/caffe/layers/tile_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_TILE_LAYER_HPP_ 2 | #define CAFFE_TILE_LAYER_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/blob.hpp" 7 | #include "caffe/layer.hpp" 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | namespace caffe { 11 | 12 | /** 13 | * @brief Copy a Blob along specified dimensions. 14 | */ 15 | template 16 | class TileLayer : public Layer { 17 | public: 18 | explicit TileLayer(const LayerParameter& param) 19 | : Layer(param) {} 20 | virtual void Reshape(const vector*>& bottom, 21 | const vector*>& top); 22 | 23 | virtual inline const char* type() const { return "Tile"; } 24 | virtual inline int ExactNumBottomBlobs() const { return 1; } 25 | virtual inline int ExactNumTopBlobs() const { return 1; } 26 | 27 | protected: 28 | virtual void Forward_cpu(const vector*>& bottom, 29 | const vector*>& top); 30 | virtual void Forward_gpu(const vector*>& bottom, 31 | const vector*>& top); 32 | 33 | virtual void Backward_cpu(const vector*>& top, 34 | const vector& propagate_down, const vector*>& bottom); 35 | virtual void Backward_gpu(const vector*>& top, 36 | const vector& propagate_down, const vector*>& bottom); 37 | 38 | unsigned int axis_, tiles_, outer_dim_, inner_dim_; 39 | }; 40 | 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_TILE_LAYER_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/layers/video_data_layer.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_VIDEO_DATA_LAYER_HPP_ 2 | #define CAFFE_VIDEO_DATA_LAYER_HPP_ 3 | 4 | #ifdef USE_OPENCV 5 | #if OPENCV_VERSION == 3 6 | #include 7 | #else 8 | #include 9 | #endif // OPENCV_VERSION == 3 10 | 11 | #include 12 | #include 13 | 14 | #include "caffe/blob.hpp" 15 | #include "caffe/data_transformer.hpp" 16 | #include "caffe/internal_thread.hpp" 17 | #include "caffe/layer.hpp" 18 | #include "caffe/layers/base_data_layer.hpp" 19 | #include "caffe/proto/caffe.pb.h" 20 | #include "caffe/util/db.hpp" 21 | 22 | namespace caffe { 23 | 24 | /** 25 | * @brief Provides data to the Net from webcam or video files. 26 | * 27 | * TODO(weiliu89): thorough documentation for Forward and proto params. 28 | */ 29 | template 30 | class VideoDataLayer : public BasePrefetchingDataLayer { 31 | public: 32 | explicit VideoDataLayer(const LayerParameter& param); 33 | virtual ~VideoDataLayer(); 34 | virtual void DataLayerSetUp(const vector*>& bottom, 35 | const vector*>& top); 36 | virtual inline bool ShareInParallel() const { return false; } 37 | virtual inline const char* type() const { return "VideoData"; } 38 | virtual inline int ExactNumBottomBlobs() const { return 0; } 39 | virtual inline int MinTopBlobs() const { return 1; } 40 | 41 | protected: 42 | virtual void load_batch(Batch* batch); 43 | 44 | VideoDataParameter_VideoType video_type_; 45 | cv::VideoCapture cap_; 46 | 47 | int skip_frames_; 48 | 49 | int total_frames_; 50 | int processed_frames_; 51 | vector top_shape_; 52 | }; 53 | 54 | } // namespace caffe 55 | #endif // USE_OPENCV 56 | 57 | #endif // CAFFE_VIDEO_DATA_LAYER_HPP_ 58 | -------------------------------------------------------------------------------- /include/caffe/util/.sampler.hpp.swp: -------------------------------------------------------------------------------- 1 | b0nano 2.4.2zAgaopenggaopeng-Lenovo-ideapad-Y700-15I/home/gaopeng/Desktop/caffe/include/caffe/util/sampler.hppU -------------------------------------------------------------------------------- /include/caffe/util/benchmark.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BENCHMARK_H_ 2 | #define CAFFE_UTIL_BENCHMARK_H_ 3 | 4 | #include 5 | 6 | #include "caffe/util/device_alternate.hpp" 7 | 8 | namespace caffe { 9 | 10 | class Timer { 11 | public: 12 | Timer(); 13 | virtual ~Timer(); 14 | virtual void Start(); 15 | virtual void Stop(); 16 | virtual float MilliSeconds(); 17 | virtual float MicroSeconds(); 18 | virtual float Seconds(); 19 | 20 | inline bool initted() { return initted_; } 21 | inline bool running() { return running_; } 22 | inline bool has_run_at_least_once() { return has_run_at_least_once_; } 23 | 24 | protected: 25 | void Init(); 26 | 27 | bool initted_; 28 | bool running_; 29 | bool has_run_at_least_once_; 30 | #ifndef CPU_ONLY 31 | cudaEvent_t start_gpu_; 32 | cudaEvent_t stop_gpu_; 33 | #endif 34 | boost::posix_time::ptime start_cpu_; 35 | boost::posix_time::ptime stop_cpu_; 36 | float elapsed_milliseconds_; 37 | float elapsed_microseconds_; 38 | }; 39 | 40 | class CPUTimer : public Timer { 41 | public: 42 | explicit CPUTimer(); 43 | virtual ~CPUTimer() {} 44 | virtual void Start(); 45 | virtual void Stop(); 46 | virtual float MilliSeconds(); 47 | virtual float MicroSeconds(); 48 | }; 49 | 50 | } // namespace caffe 51 | 52 | #endif // CAFFE_UTIL_BENCHMARK_H_ 53 | -------------------------------------------------------------------------------- /include/caffe/util/blocking_queue.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 2 | #define CAFFE_UTIL_BLOCKING_QUEUE_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | namespace caffe { 8 | 9 | template 10 | class BlockingQueue { 11 | public: 12 | explicit BlockingQueue(); 13 | 14 | void push(const T& t); 15 | 16 | bool try_pop(T* t); 17 | 18 | // This logs a message if the threads needs to be blocked 19 | // useful for detecting e.g. when data feeding is too slow 20 | T pop(const string& log_on_wait = ""); 21 | 22 | bool try_peek(T* t); 23 | 24 | // Return element without removing it 25 | T peek(); 26 | 27 | size_t size() const; 28 | 29 | protected: 30 | /** 31 | Move synchronization fields out instead of including boost/thread.hpp 32 | to avoid a boost/NVCC issues (#1009, #1010) on OSX. Also fails on 33 | Linux CUDA 7.0.18. 34 | */ 35 | class sync; 36 | 37 | std::queue queue_; 38 | shared_ptr sync_; 39 | 40 | DISABLE_COPY_AND_ASSIGN(BlockingQueue); 41 | }; 42 | 43 | } // namespace caffe 44 | 45 | #endif 46 | -------------------------------------------------------------------------------- /include/caffe/util/db.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_DB_HPP 2 | #define CAFFE_UTIL_DB_HPP 3 | 4 | #include 5 | 6 | #include "caffe/common.hpp" 7 | #include "caffe/proto/caffe.pb.h" 8 | 9 | namespace caffe { namespace db { 10 | 11 | enum Mode { READ, WRITE, NEW }; 12 | 13 | class Cursor { 14 | public: 15 | Cursor() { } 16 | virtual ~Cursor() { } 17 | virtual void SeekToFirst() = 0; 18 | virtual void Next() = 0; 19 | virtual string key() = 0; 20 | virtual string value() = 0; 21 | virtual bool valid() = 0; 22 | 23 | DISABLE_COPY_AND_ASSIGN(Cursor); 24 | }; 25 | 26 | class Transaction { 27 | public: 28 | Transaction() { } 29 | virtual ~Transaction() { } 30 | virtual void Put(const string& key, const string& value) = 0; 31 | virtual void Commit() = 0; 32 | 33 | DISABLE_COPY_AND_ASSIGN(Transaction); 34 | }; 35 | 36 | class DB { 37 | public: 38 | DB() { } 39 | virtual ~DB() { } 40 | virtual void Open(const string& source, Mode mode) = 0; 41 | virtual void Close() = 0; 42 | virtual Cursor* NewCursor() = 0; 43 | virtual Transaction* NewTransaction() = 0; 44 | 45 | DISABLE_COPY_AND_ASSIGN(DB); 46 | }; 47 | 48 | DB* GetDB(DataParameter::DB backend); 49 | DB* GetDB(const string& backend); 50 | 51 | } // namespace db 52 | } // namespace caffe 53 | 54 | #endif // CAFFE_UTIL_DB_HPP 55 | -------------------------------------------------------------------------------- /include/caffe/util/format.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_FORMAT_H_ 2 | #define CAFFE_UTIL_FORMAT_H_ 3 | 4 | #include // NOLINT(readability/streams) 5 | #include // NOLINT(readability/streams) 6 | #include 7 | 8 | namespace caffe { 9 | 10 | inline std::string format_int(int n, int numberOfLeadingZeros = 0 ) { 11 | std::ostringstream s; 12 | s << std::setw(numberOfLeadingZeros) << std::setfill('0') << n; 13 | return s.str(); 14 | } 15 | 16 | } 17 | 18 | #endif // CAFFE_UTIL_FORMAT_H_ 19 | -------------------------------------------------------------------------------- /include/caffe/util/gpu_util.cuh: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_GPU_UTIL_H_ 2 | #define CAFFE_UTIL_GPU_UTIL_H_ 3 | 4 | namespace caffe { 5 | 6 | template 7 | inline __device__ Dtype caffe_gpu_atomic_add(const Dtype val, Dtype* address); 8 | 9 | template <> 10 | inline __device__ 11 | float caffe_gpu_atomic_add(const float val, float* address) { 12 | return atomicAdd(address, val); 13 | } 14 | 15 | // double atomicAdd implementation taken from: 16 | // http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz3PVCpVsEG 17 | template <> 18 | inline __device__ 19 | double caffe_gpu_atomic_add(const double val, double* address) { 20 | unsigned long long int* address_as_ull = // NOLINT(runtime/int) 21 | // NOLINT_NEXT_LINE(runtime/int) 22 | reinterpret_cast(address); 23 | unsigned long long int old = *address_as_ull; // NOLINT(runtime/int) 24 | unsigned long long int assumed; // NOLINT(runtime/int) 25 | do { 26 | assumed = old; 27 | old = atomicCAS(address_as_ull, assumed, 28 | __double_as_longlong(val + __longlong_as_double(assumed))); 29 | } while (assumed != old); 30 | return __longlong_as_double(old); 31 | } 32 | 33 | } // namespace caffe 34 | 35 | #endif // CAFFE_UTIL_GPU_UTIL_H_ 36 | -------------------------------------------------------------------------------- /include/caffe/util/hdf5.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_HDF5_H_ 2 | #define CAFFE_UTIL_HDF5_H_ 3 | 4 | #include 5 | 6 | #include "hdf5.h" 7 | #include "hdf5_hl.h" 8 | 9 | #include "caffe/blob.hpp" 10 | 11 | namespace caffe { 12 | 13 | template 14 | void hdf5_load_nd_dataset_helper( 15 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 16 | Blob* blob); 17 | 18 | template 19 | void hdf5_load_nd_dataset( 20 | hid_t file_id, const char* dataset_name_, int min_dim, int max_dim, 21 | Blob* blob); 22 | 23 | template 24 | void hdf5_save_nd_dataset( 25 | const hid_t file_id, const string& dataset_name, const Blob& blob, 26 | bool write_diff = false); 27 | 28 | int hdf5_load_int(hid_t loc_id, const string& dataset_name); 29 | void hdf5_save_int(hid_t loc_id, const string& dataset_name, int i); 30 | 31 | template 32 | Dtype hdf5_load_float(hid_t loc_id, const string& dataset_name); 33 | template 34 | void hdf5_save_float(hid_t loc_id, const string& dataset_name, Dtype f); 35 | 36 | string hdf5_load_string(hid_t loc_id, const string& dataset_name); 37 | void hdf5_save_string(hid_t loc_id, const string& dataset_name, 38 | const string& s); 39 | 40 | int hdf5_get_num_links(hid_t loc_id); 41 | string hdf5_get_name_by_idx(hid_t loc_id, int idx); 42 | 43 | } // namespace caffe 44 | 45 | #endif // CAFFE_UTIL_HDF5_H_ 46 | -------------------------------------------------------------------------------- /include/caffe/util/insert_splits.hpp: -------------------------------------------------------------------------------- 1 | #ifndef _CAFFE_UTIL_INSERT_SPLITS_HPP_ 2 | #define _CAFFE_UTIL_INSERT_SPLITS_HPP_ 3 | 4 | #include 5 | 6 | #include "caffe/proto/caffe.pb.h" 7 | 8 | namespace caffe { 9 | 10 | // Copy NetParameters with SplitLayers added to replace any shared bottom 11 | // blobs with unique bottom blobs provided by the SplitLayer. 12 | void InsertSplits(const NetParameter& param, NetParameter* param_split); 13 | 14 | void ConfigureSplitLayer(const string& layer_name, const string& blob_name, 15 | const int blob_idx, const int split_count, const float loss_weight, 16 | LayerParameter* split_layer_param); 17 | 18 | string SplitLayerName(const string& layer_name, const string& blob_name, 19 | const int blob_idx); 20 | 21 | string SplitBlobName(const string& layer_name, const string& blob_name, 22 | const int blob_idx, const int split_idx); 23 | 24 | } // namespace caffe 25 | 26 | #endif // CAFFE_UTIL_INSERT_SPLITS_HPP_ 27 | -------------------------------------------------------------------------------- /include/caffe/util/rng.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_RNG_CPP_HPP_ 2 | #define CAFFE_RNG_CPP_HPP_ 3 | 4 | #include 5 | #include 6 | 7 | #include "boost/random/mersenne_twister.hpp" 8 | #include "boost/random/uniform_int.hpp" 9 | 10 | #include "caffe/common.hpp" 11 | 12 | namespace caffe { 13 | 14 | typedef boost::mt19937 rng_t; 15 | 16 | inline rng_t* caffe_rng() { 17 | return static_cast(Caffe::rng_stream().generator()); 18 | } 19 | 20 | // Fisher–Yates algorithm 21 | template 22 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end, 23 | RandomGenerator* gen) { 24 | typedef typename std::iterator_traits::difference_type 25 | difference_type; 26 | typedef typename boost::uniform_int dist_type; 27 | 28 | difference_type length = std::distance(begin, end); 29 | if (length <= 0) return; 30 | 31 | for (difference_type i = length - 1; i > 0; --i) { 32 | dist_type dist(0, i); 33 | std::iter_swap(begin + i, begin + dist(*gen)); 34 | } 35 | } 36 | 37 | template 38 | inline void shuffle(RandomAccessIterator begin, RandomAccessIterator end) { 39 | shuffle(begin, end, caffe_rng()); 40 | } 41 | } // namespace caffe 42 | 43 | #endif // CAFFE_RNG_HPP_ 44 | -------------------------------------------------------------------------------- /include/caffe/util/sampler.hpp: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_SAMPLER_H_ 2 | #define CAFFE_UTIL_SAMPLER_H_ 3 | 4 | #include 5 | 6 | #include "glog/logging.h" 7 | 8 | #include "caffe/caffe.hpp" 9 | 10 | namespace caffe { 11 | 12 | // Find all annotated NormalizedBBox. 13 | void GroupObjectBBoxes(const AnnotatedDatum& anno_datum, 14 | vector* object_bboxes); 15 | 16 | // Check if a sampled bbox satisfy the constraints with all object bboxes. 17 | bool SatisfySampleConstraint(const NormalizedBBox& sampled_bbox, 18 | const vector& object_bboxes, 19 | const SampleConstraint& sample_constraint); 20 | 21 | // Sample a NormalizedBBox given the specifictions. 22 | void SampleBBox(const Sampler& sampler, NormalizedBBox* sampled_bbox); 23 | 24 | // Generate samples from NormalizedBBox using the BatchSampler. 25 | void GenerateSamples(const NormalizedBBox& source_bbox, 26 | const vector& object_bboxes, 27 | const BatchSampler& batch_sampler, 28 | vector* sampled_bboxes); 29 | 30 | // Generate samples from AnnotatedDatum using the BatchSampler. 31 | // All sampled bboxes which satisfy the constraints defined in BatchSampler 32 | // is stored in sampled_bboxes. 33 | void GenerateBatchSamples(const AnnotatedDatum& anno_datum, 34 | const vector& batch_samplers, 35 | vector* sampled_bboxes); 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_UTIL_SAMPLER_H_ 40 | -------------------------------------------------------------------------------- /include/caffe/util/sampler.hpp.save: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_SAMPLER_H_ 2 | #define CAFFE_UTIL_SAMPLER_H_ 3 | 4 | #include 5 | [[ 6 | #include "glog/logging.h" 7 | 8 | #include "caffe/caffe.hpp" 9 | 10 | namespace caffe { 11 | 12 | // Find all annotated NormalizedBBox. 13 | void GroupObjectBBoxes(const AnnotatedDatum& anno_datum, 14 | vector* object_bboxes); 15 | 16 | // Check if a sampled bbox satisfy the constraints with all object bboxes. 17 | bool SatisfySampleConstraint(const NormalizedBBox& sampled_bbox, 18 | const vector& object_bboxes, 19 | const SampleConstraint& sample_constraint); 20 | 21 | // Sample a NormalizedBBox given the specifictions. 22 | -------------------------------------------------------------------------------- /include/caffe/util/sampler.hpp.save.1: -------------------------------------------------------------------------------- 1 | #ifndef CAFFE_UTIL_SAMPLER_H_ 2 | #define CAFFE_UTIL_SAMPLER_H_ 3 | 4 | #include 5 | [[ 6 | #include "glog/logging.h" 7 | 8 | #include "caffe/caffe.hpp" 9 | 10 | namespace caffe { 11 | 12 | // Find all annotated NormalizedBBox. 13 | void GroupObjectBBoxes(const AnnotatedDatum& anno_datum, 14 | vector* object_bboxes); 15 | 16 | // Check if a sampled bbox satisfy the constraints with all object bboxes. 17 | bool SatisfySampleConstraint(const NormalizedBBox& sampled_bbox, 18 | const vector& object_bboxes, 19 | const SampleConstraint& sample_constraint); 20 | 21 | // Sample a NormalizedBBox given the specifictions. 22 | void SampleBBox(const Sampler& sampler, NormalizedBBox* sampled_bbox); 23 | 24 | // Generate samples from NormalizedBBox using the BatchSampler. 25 | void GenerateSamples(const NormalizedBBox& source_bbox, 26 | const vector& object_bboxes, 27 | const BatchSampler& batch_sampler, 28 | vector* sampled_bboxes); 29 | 30 | // Generate samples from AnnotatedDatum using the BatchSampler. 31 | // All sampled bboxes which satisfy the constraints defined in BatchSampler 32 | // is stored in sampled_bboxes. 33 | void GenerateBatchSamples(const AnnotatedDatum& anno_datum, 34 | const vector& batch_samplers, 35 | vector* sampled_bboxes); 36 | 37 | } // namespace caffe 38 | 39 | #endif // CAFFE_UTIL_SAMPLER_H_ 40 | -------------------------------------------------------------------------------- /include/caffe/util/signal_handler.h: -------------------------------------------------------------------------------- 1 | #ifndef INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 2 | #define INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 3 | 4 | #include "caffe/proto/caffe.pb.h" 5 | #include "caffe/solver.hpp" 6 | 7 | namespace caffe { 8 | 9 | class SignalHandler { 10 | public: 11 | // Contructor. Specify what action to take when a signal is received. 12 | SignalHandler(SolverAction::Enum SIGINT_action, 13 | SolverAction::Enum SIGHUP_action); 14 | ~SignalHandler(); 15 | ActionCallback GetActionFunction(); 16 | private: 17 | SolverAction::Enum CheckForSignals() const; 18 | SolverAction::Enum SIGINT_action_; 19 | SolverAction::Enum SIGHUP_action_; 20 | }; 21 | 22 | } // namespace caffe 23 | 24 | #endif // INCLUDE_CAFFE_UTIL_SIGNAL_HANDLER_H_ 25 | -------------------------------------------------------------------------------- /jobs/VGGNet/VOC0712/SSD_300x300/.train.prototxt.swp: -------------------------------------------------------------------------------- 1 | b0nano 2.4.2t?gaopenggaopeng-Lenovo-ideapad-Y700-15Ijobs/VGGNet/VOC0712/SSD_300x300/train.prototxt -------------------------------------------------------------------------------- /jobs/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300.sh: -------------------------------------------------------------------------------- 1 | cd /home/gaopeng/Desktop/caffe 2 | ./build/tools/caffe train \ 3 | --solver="models/VGGNet/VOC0712/SSD_300x300/solver.prototxt" \ 4 | --weights="models/VGGNet/VGG_ILSVRC_16_layers_fc_reduced.caffemodel" \ 5 | --gpu 0 2>&1 | tee jobs/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300.log 6 | -------------------------------------------------------------------------------- /jobs/VGGNet/VOC0712/SSD_300x300/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/VGGNet/VOC0712/SSD_300x300/train.prototxt" 2 | test_net: "models/VGGNet/VOC0712/SSD_300x300/test.prototxt" 3 | test_iter: 619 4 | test_interval: 10000 5 | base_lr: 0.001 6 | display: 10 7 | max_iter: 120000 8 | lr_policy: "multistep" 9 | gamma: 0.1 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 80000 13 | snapshot_prefix: "models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300" 14 | solver_mode: GPU 15 | device_id: 0 16 | debug_info: false 17 | snapshot_after_train: true 18 | test_initialization: false 19 | average_loss: 10 20 | stepvalue: 80000 21 | stepvalue: 100000 22 | stepvalue: 120000 23 | iter_size: 1 24 | type: "SGD" 25 | eval_type: "detection" 26 | ap_version: "11point" 27 | 28 | -------------------------------------------------------------------------------- /jobs/VGGNet/VOC0712/SSD_300x300_video/VGG_VOC0712_SSD_300x300.sh: -------------------------------------------------------------------------------- 1 | cd /home/gaopeng/Desktop/caffe 2 | ./build/tools/caffe test \ 3 | --model="models/VGGNet/VOC0712/SSD_300x300_video/test.prototxt" \ 4 | --weights="models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel" \ 5 | --iterations="536870911" \ 6 | --gpu 0 7 | -------------------------------------------------------------------------------- /jobs/VGGNet/VOC0712/SSD_300x300_webcam/VGG_VOC0712_SSD_300x300.sh: -------------------------------------------------------------------------------- 1 | cd /home/gaopeng/Desktop/caffe 2 | ./build/tools/caffe test \ 3 | --model="models/VGGNet/VOC0712/SSD_300x300_webcam/test.prototxt" \ 4 | --weights="models/VGGNet/VOC0712/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_120000.caffemodel" \ 5 | --iterations="536870911" \ 6 | --gpu 0 7 | -------------------------------------------------------------------------------- /jobs/VGGNet/coco/SSD_300x300/.test.prototxt.swp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/jobs/VGGNet/coco/SSD_300x300/.test.prototxt.swp -------------------------------------------------------------------------------- /jobs/VGGNet/coco/SSD_300x300/VGG_coco_SSD_300x300.sh: -------------------------------------------------------------------------------- 1 | cd /home/gaopeng/Desktop/caffe 2 | ./build/tools/caffe train \ 3 | --solver="models/VGGNet/coco/SSD_300x300/solver.prototxt" \ 4 | --snapshot="models/VGGNet/coco/SSD_300x300/VGG_coco_SSD_300x300_iter_5.solverstate" \ 5 | --gpu 0 2>&1 | tee jobs/VGGNet/coco/SSD_300x300/VGG_coco_SSD_300x300.log 6 | -------------------------------------------------------------------------------- /jobs/VGGNet/coco/SSD_300x300/solver.prototxt: -------------------------------------------------------------------------------- 1 | train_net: "models/VGGNet/coco/SSD_300x300/train.prototxt" 2 | test_net: "models/VGGNet/coco/SSD_300x300/test.prototxt" 3 | test_iter: 625 4 | test_interval: 10000 5 | base_lr: 0.001 6 | display: 10 7 | max_iter: 400000 8 | lr_policy: "multistep" 9 | gamma: 0.1 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 40000 13 | snapshot_prefix: "models/VGGNet/coco/SSD_300x300/VGG_coco_SSD_300x300" 14 | solver_mode: GPU 15 | device_id: 0 16 | debug_info: false 17 | snapshot_after_train: true 18 | test_initialization: false 19 | average_loss: 10 20 | stepvalue: 280000 21 | stepvalue: 360000 22 | stepvalue: 400000 23 | iter_size: 8 24 | type: "SGD" 25 | eval_type: "detection" 26 | ap_version: "11point" 27 | 28 | -------------------------------------------------------------------------------- /models/bvlc_alexnet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC AlexNet Model 3 | caffemodel: bvlc_alexnet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel 5 | license: unrestricted 6 | sha1: 9116a64c0fbe4459d18f4bb6b56d647b63920377 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication. 11 | 12 | Differences: 13 | - not training with the relighting data-augmentation; 14 | - initializing non-zero biases to 0.1 instead of 1 (found necessary for training, as initialization to 1 gave flat loss). 15 | 16 | The bundled model is the iteration 360,000 snapshot. 17 | The best validation performance during training was iteration 358,000 with validation accuracy 57.258% and loss 1.83948. 18 | This model obtains a top-1 accuracy 57.1% and a top-5 accuracy 80.2% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) 20 | 21 | This model was trained by Evan Shelhamer @shelhamer 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /models/bvlc_alexnet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_alexnet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /models/bvlc_googlenet/quick_solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "poly" 9 | power: 0.5 10 | max_iter: 2400000 11 | momentum: 0.9 12 | weight_decay: 0.0002 13 | snapshot: 40000 14 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet_quick" 15 | solver_mode: GPU 16 | -------------------------------------------------------------------------------- /models/bvlc_googlenet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC GoogleNet Model 3 | caffemodel: bvlc_googlenet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_googlenet.caffemodel 5 | license: unrestricted 6 | sha1: 405fc5acd08a3bb12de8ee5e23a96bec22f08204 7 | caffe_commit: bc614d1bd91896e3faceaf40b23b72dab47d44f5 8 | --- 9 | 10 | This model is a replication of the model described in the [GoogleNet](http://arxiv.org/abs/1409.4842) publication. We would like to thank Christian Szegedy for all his help in the replication of GoogleNet model. 11 | 12 | Differences: 13 | - not training with the relighting data-augmentation; 14 | - not training with the scale or aspect-ratio data-augmentation; 15 | - uses "xavier" to initialize the weights instead of "gaussian"; 16 | - quick_solver.prototxt uses a different learning rate decay policy than the original solver.prototxt, that allows a much faster training (60 epochs vs 250 epochs); 17 | 18 | The bundled model is the iteration 2,400,000 snapshot (60 epochs) using quick_solver.prototxt 19 | 20 | This bundled model obtains a top-1 accuracy 68.7% (31.3% error) and a top-5 accuracy 88.9% (11.1% error) on the validation set, using just the center crop. 21 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy.) 22 | 23 | Timings for bvlc_googlenet with cuDNN using batch_size:128 on a K40c: 24 | - Average Forward pass: 562.841 ms. 25 | - Average Backward pass: 1123.84 ms. 26 | - Average Forward-Backward: 1688.8 ms. 27 | 28 | This model was trained by Sergio Guadarrama @sguada 29 | 30 | ## License 31 | 32 | This model is released for unrestricted use. 33 | -------------------------------------------------------------------------------- /models/bvlc_googlenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_googlenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 4000 4 | test_initialization: false 5 | display: 40 6 | average_loss: 40 7 | base_lr: 0.01 8 | lr_policy: "step" 9 | stepsize: 320000 10 | gamma: 0.96 11 | max_iter: 10000000 12 | momentum: 0.9 13 | weight_decay: 0.0002 14 | snapshot: 40000 15 | snapshot_prefix: "models/bvlc_googlenet/bvlc_googlenet" 16 | solver_mode: GPU 17 | -------------------------------------------------------------------------------- /models/bvlc_reference_caffenet/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC CaffeNet Model 3 | caffemodel: bvlc_reference_caffenet.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel 5 | license: unrestricted 6 | sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46 7 | caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 8 | --- 9 | 10 | This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html). 11 | It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: 12 | 13 | - not training with the relighting data-augmentation; 14 | - the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). 15 | 16 | This model is snapshot of iteration 310,000. 17 | The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328. 18 | This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop. 19 | (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) 20 | 21 | This model was trained by Jeff Donahue @jeffdonahue 22 | 23 | ## License 24 | 25 | This model is released for unrestricted use. 26 | -------------------------------------------------------------------------------- /models/bvlc_reference_caffenet/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/bvlc_reference_caffenet/train_val.prototxt" 2 | test_iter: 1000 3 | test_interval: 1000 4 | base_lr: 0.01 5 | lr_policy: "step" 6 | gamma: 0.1 7 | stepsize: 100000 8 | display: 20 9 | max_iter: 450000 10 | momentum: 0.9 11 | weight_decay: 0.0005 12 | snapshot: 10000 13 | snapshot_prefix: "models/bvlc_reference_caffenet/caffenet_train" 14 | solver_mode: GPU 15 | -------------------------------------------------------------------------------- /models/bvlc_reference_rcnn_ilsvrc13/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: BVLC Reference RCNN ILSVRC13 Model 3 | caffemodel: bvlc_reference_rcnn_ilsvrc13.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_rcnn_ilsvrc13.caffemodel 5 | license: unrestricted 6 | sha1: bdd8abb885819cba5e2fe1eb36235f2319477e64 7 | caffe_commit: a7e397abbda52c0b90323c23ab95bdeabee90a98 8 | --- 9 | 10 | The pure Caffe instantiation of the [R-CNN](https://github.com/rbgirshick/rcnn) model for ILSVRC13 detection. 11 | This model was made by transplanting the R-CNN SVM classifiers into a `fc-rcnn` classification layer, provided here as an off-the-shelf Caffe detector. 12 | Try the [detection example](http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/detection.ipynb) to see it in action. 13 | 14 | *N.B. For research purposes, make use of the official R-CNN package and not this example.* 15 | 16 | This model was trained by Ross Girshick @rbgirshick 17 | 18 | ## License 19 | 20 | This model is released for unrestricted use. 21 | -------------------------------------------------------------------------------- /models/finetune_flickr_style/readme.md: -------------------------------------------------------------------------------- 1 | --- 2 | name: Finetuning CaffeNet on Flickr Style 3 | caffemodel: finetune_flickr_style.caffemodel 4 | caffemodel_url: http://dl.caffe.berkeleyvision.org/finetune_flickr_style.caffemodel 5 | license: non-commercial 6 | sha1: b61b5cef7d771b53b0c488e78d35ccadc073e9cf 7 | caffe_commit: 737ea5e936821b5c69f9c3952d72693ae5843370 8 | gist_id: 034c6ac3865563b69e60 9 | --- 10 | 11 | This model is trained exactly as described in `docs/finetune_flickr_style/readme.md`, using all 80000 images. 12 | The final performance: 13 | 14 | I1017 07:36:17.370688 31333 solver.cpp:228] Iteration 100000, loss = 0.757952 15 | I1017 07:36:17.370730 31333 solver.cpp:247] Iteration 100000, Testing net (#0) 16 | I1017 07:36:34.248730 31333 solver.cpp:298] Test net output #0: accuracy = 0.3916 17 | 18 | This model was trained by Sergey Karayev @sergeyk 19 | 20 | ## License 21 | 22 | The Flickr Style dataset contains only URLs to images. 23 | Some of the images may have copyright. 24 | Training a category-recognition model for research/non-commercial use may constitute fair use of this data, but the result should not be used for commercial purposes. 25 | -------------------------------------------------------------------------------- /models/finetune_flickr_style/solver.prototxt: -------------------------------------------------------------------------------- 1 | net: "models/finetune_flickr_style/train_val.prototxt" 2 | test_iter: 100 3 | test_interval: 1000 4 | # lr for fine-tuning should be lower than when starting from scratch 5 | base_lr: 0.001 6 | lr_policy: "step" 7 | gamma: 0.1 8 | # stepsize should also be lower, as we're closer to being done 9 | stepsize: 20000 10 | display: 20 11 | max_iter: 100000 12 | momentum: 0.9 13 | weight_decay: 0.0005 14 | snapshot: 10000 15 | snapshot_prefix: "models/finetune_flickr_style/finetune_flickr_style" 16 | # uncomment the following to default to CPU mode solving 17 | # solver_mode: CPU 18 | -------------------------------------------------------------------------------- /python/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | if(NOT HAVE_PYTHON) 2 | message(STATUS "Python interface is disabled or not all required dependencies found. Building without it...") 3 | return() 4 | endif() 5 | 6 | include_directories(${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR} ${Boost_INCLUDE_DIRS}) 7 | file(GLOB_RECURSE python_srcs ${PROJECT_SOURCE_DIR}/python/*.cpp) 8 | 9 | add_library(pycaffe SHARED ${python_srcs}) 10 | target_link_libraries(pycaffe ${Caffe_LINK} ${PYTHON_LIBRARIES} ${Boost_LIBRARIES}) 11 | set_target_properties(pycaffe PROPERTIES PREFIX "" OUTPUT_NAME "_caffe") 12 | caffe_default_properties(pycaffe) 13 | 14 | if(UNIX OR APPLE) 15 | set(__linkname "${PROJECT_SOURCE_DIR}/python/caffe/_caffe.so") 16 | add_custom_command(TARGET pycaffe POST_BUILD 17 | COMMAND ln -sf $ "${__linkname}" 18 | COMMAND ${CMAKE_COMMAND} -E make_directory ${PROJECT_SOURCE_DIR}/python/caffe/proto 19 | COMMAND touch ${PROJECT_SOURCE_DIR}/python/caffe/proto/__init__.py 20 | COMMAND cp ${proto_gen_folder}/*.py ${PROJECT_SOURCE_DIR}/python/caffe/proto/ 21 | COMMENT "Creating symlink ${__linkname} -> ${PROJECT_BINARY_DIR}/lib/_caffe${Caffe_POSTFIX}.so") 22 | endif() 23 | 24 | # ---[ Install 25 | # scripts 26 | file(GLOB python_files *.py requirements.txt) 27 | install(FILES ${python_files} DESTINATION python) 28 | 29 | # module 30 | install(DIRECTORY caffe 31 | DESTINATION python 32 | FILES_MATCHING 33 | PATTERN "*.py" 34 | PATTERN "ilsvrc_2012_mean.npy" 35 | PATTERN "test" EXCLUDE 36 | ) 37 | 38 | # _caffe.so 39 | install(TARGETS pycaffe DESTINATION python/caffe) 40 | 41 | -------------------------------------------------------------------------------- /python/caffe/__init__.py: -------------------------------------------------------------------------------- 1 | from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver 2 | from ._caffe import set_mode_cpu, set_mode_gpu, set_device, Layer, get_solver, layer_type_list, set_random_seed 3 | from ._caffe import __version__ 4 | from .proto.caffe_pb2 import TRAIN, TEST 5 | from .classifier import Classifier 6 | from .detector import Detector 7 | from . import io 8 | from .net_spec import layers, params, NetSpec, to_proto 9 | -------------------------------------------------------------------------------- /python/caffe/__init__.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/__init__.pyc -------------------------------------------------------------------------------- /python/caffe/classifier.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/classifier.pyc -------------------------------------------------------------------------------- /python/caffe/detector.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/detector.pyc -------------------------------------------------------------------------------- /python/caffe/imagenet/ilsvrc_2012_mean.npy: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/imagenet/ilsvrc_2012_mean.npy -------------------------------------------------------------------------------- /python/caffe/io.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/io.pyc -------------------------------------------------------------------------------- /python/caffe/model_libs.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/model_libs.pyc -------------------------------------------------------------------------------- /python/caffe/net_spec.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/net_spec.pyc -------------------------------------------------------------------------------- /python/caffe/pycaffe.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/python/caffe/pycaffe.pyc -------------------------------------------------------------------------------- /python/caffe/test/test_layer_type_list.py: -------------------------------------------------------------------------------- 1 | import unittest 2 | 3 | import caffe 4 | 5 | class TestLayerTypeList(unittest.TestCase): 6 | 7 | def test_standard_types(self): 8 | #removing 'Data' from list 9 | for type_name in ['Data', 'Convolution', 'InnerProduct']: 10 | self.assertIn(type_name, caffe.layer_type_list(), 11 | '%s not in layer_type_list()' % type_name) 12 | -------------------------------------------------------------------------------- /python/requirements.txt: -------------------------------------------------------------------------------- 1 | Cython>=0.19.2 2 | numpy>=1.7.1 3 | scipy>=0.13.2 4 | scikit-image>=0.9.3 5 | matplotlib>=1.3.1 6 | ipython>=3.0.0 7 | h5py>=2.2.0 8 | leveldb>=0.191 9 | networkx>=1.8.1 10 | nose>=1.3.0 11 | pandas>=0.12.0 12 | python-dateutil>=1.4,<2 13 | protobuf>=2.5.0 14 | python-gflags>=2.0 15 | pyyaml>=3.10 16 | Pillow>=2.3.0 17 | six>=1.1.0 -------------------------------------------------------------------------------- /scripts/build_docs.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Build documentation for display in web browser. 3 | 4 | PORT=${1:-4000} 5 | 6 | echo "usage: build_docs.sh [port]" 7 | 8 | # Find the docs dir, no matter where the script is called 9 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 10 | cd $ROOT_DIR 11 | 12 | # Gather docs. 13 | scripts/gather_examples.sh 14 | 15 | # Generate developer docs. 16 | make docs 17 | 18 | # Display docs using web server. 19 | cd docs 20 | jekyll serve -w -s . -d _site --port=$PORT 21 | -------------------------------------------------------------------------------- /scripts/copy_notebook.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | """ 3 | Takes as arguments: 4 | 1. the path to a JSON file (such as an IPython notebook). 5 | 2. the path to output file 6 | 7 | If 'metadata' dict in the JSON file contains 'include_in_docs': true, 8 | then copies the file to output file, appending the 'metadata' property 9 | as YAML front-matter, adding the field 'category' with value 'notebook'. 10 | """ 11 | import os 12 | import sys 13 | import json 14 | 15 | filename = sys.argv[1] 16 | output_filename = sys.argv[2] 17 | content = json.load(open(filename)) 18 | 19 | if 'include_in_docs' in content['metadata'] and content['metadata']['include_in_docs']: 20 | yaml_frontmatter = ['---'] 21 | for key, val in content['metadata'].iteritems(): 22 | if key == 'example_name': 23 | key = 'title' 24 | if val == '': 25 | val = os.path.basename(filename) 26 | yaml_frontmatter.append('{}: {}'.format(key, val)) 27 | yaml_frontmatter += ['category: notebook'] 28 | yaml_frontmatter += ['original_path: ' + filename] 29 | 30 | with open(output_filename, 'w') as fo: 31 | fo.write('\n'.join(yaml_frontmatter + ['---']) + '\n') 32 | fo.write(open(filename).read()) 33 | -------------------------------------------------------------------------------- /scripts/download_model_from_gist.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env sh 2 | 3 | GIST=$1 4 | DIRNAME=${2:-./models} 5 | 6 | if [ -z $GIST ]; then 7 | echo "usage: download_model_from_gist.sh " 8 | exit 9 | fi 10 | 11 | GIST_DIR=$(echo $GIST | tr '/' '-') 12 | MODEL_DIR="$DIRNAME/$GIST_DIR" 13 | 14 | if [ -d $MODEL_DIR ]; then 15 | echo "$MODEL_DIR already exists! Please make sure you're not overwriting anything important!" 16 | exit 17 | fi 18 | 19 | echo "Downloading Caffe model info to $MODEL_DIR ..." 20 | mkdir -p $MODEL_DIR 21 | wget https://gist.github.com/$GIST/download -O $MODEL_DIR/gist.zip 22 | unzip -j $MODEL_DIR/gist.zip -d $MODEL_DIR 23 | rm $MODEL_DIR/gist.zip 24 | echo "Done" 25 | -------------------------------------------------------------------------------- /scripts/gather_examples.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # Assemble documentation for the project into one directory via symbolic links. 3 | 4 | # Find the docs dir, no matter where the script is called 5 | ROOT_DIR="$( cd "$(dirname "$0")"/.. ; pwd -P )" 6 | cd $ROOT_DIR 7 | 8 | # Gather docs from examples/**/readme.md 9 | GATHERED_DIR=docs/gathered 10 | rm -r $GATHERED_DIR 11 | mkdir $GATHERED_DIR 12 | for README_FILENAME in $(find examples -iname "readme.md"); do 13 | # Only use file if it is to be included in docs. 14 | if grep -Fxq "include_in_docs: true" $README_FILENAME; then 15 | # Make link to readme.md in docs/gathered/. 16 | # Since everything is called readme.md, rename it by its dirname. 17 | README_DIRNAME=`dirname $README_FILENAME` 18 | DOCS_FILENAME=$GATHERED_DIR/$README_DIRNAME.md 19 | mkdir -p `dirname $DOCS_FILENAME` 20 | ln -s $ROOT_DIR/$README_FILENAME $DOCS_FILENAME 21 | fi 22 | done 23 | 24 | # Gather docs from examples/*.ipynb and add YAML front-matter. 25 | for NOTEBOOK_FILENAME in $(find examples -depth -iname "*.ipynb"); do 26 | DOCS_FILENAME=$GATHERED_DIR/$NOTEBOOK_FILENAME 27 | mkdir -p `dirname $DOCS_FILENAME` 28 | python scripts/copy_notebook.py $NOTEBOOK_FILENAME $DOCS_FILENAME 29 | done 30 | -------------------------------------------------------------------------------- /scripts/travis/build.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # build the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | make --jobs $NUM_THREADS all test pycaffe warn 9 | else 10 | cd build 11 | make --jobs $NUM_THREADS all test.testbin 12 | fi 13 | make lint 14 | -------------------------------------------------------------------------------- /scripts/travis/configure-cmake.sh: -------------------------------------------------------------------------------- 1 | # CMake configuration 2 | 3 | mkdir -p build 4 | cd build 5 | 6 | ARGS="-DCMAKE_BUILD_TYPE=Release -DBLAS=Open" 7 | 8 | if $WITH_PYTHON3 ; then 9 | ARGS="$ARGS -Dpython_version=3" 10 | fi 11 | 12 | if $WITH_IO ; then 13 | ARGS="$ARGS -DUSE_OPENCV=On -DUSE_LMDB=On -DUSE_LEVELDB=On" 14 | else 15 | ARGS="$ARGS -DUSE_OPENCV=Off -DUSE_LMDB=Off -DUSE_LEVELDB=Off" 16 | fi 17 | 18 | if $WITH_CUDA ; then 19 | # Only build SM50 20 | ARGS="$ARGS -DCPU_ONLY=Off -DCUDA_ARCH_NAME=Manual -DCUDA_ARCH_BIN=\"50\" -DCUDA_ARCH_PTX=\"\"" 21 | else 22 | ARGS="$ARGS -DCPU_ONLY=On" 23 | fi 24 | 25 | if $WITH_CUDNN ; then 26 | ARGS="$ARGS -DUSE_CUDNN=On" 27 | else 28 | ARGS="$ARGS -DUSE_CUDNN=Off" 29 | fi 30 | 31 | cmake .. $ARGS 32 | 33 | -------------------------------------------------------------------------------- /scripts/travis/configure-make.sh: -------------------------------------------------------------------------------- 1 | # raw Makefile configuration 2 | 3 | LINE () { 4 | echo "$@" >> Makefile.config 5 | } 6 | 7 | cp Makefile.config.example Makefile.config 8 | 9 | LINE "BLAS := open" 10 | LINE "WITH_PYTHON_LAYER := 1" 11 | 12 | if $WITH_PYTHON3 ; then 13 | # TODO(lukeyeager) this path is currently disabled because of test errors like: 14 | # ImportError: dynamic module does not define init function (PyInit__caffe) 15 | LINE "PYTHON_LIBRARIES := python3.4m boost_python-py34" 16 | LINE "PYTHON_INCLUDE := /usr/include/python3.4 /usr/lib/python3/dist-packages/numpy/core/include" 17 | LINE "INCLUDE_DIRS := \$(INCLUDE_DIRS) \$(PYTHON_INCLUDE)" 18 | fi 19 | 20 | if ! $WITH_IO ; then 21 | LINE "USE_OPENCV := 0" 22 | LINE "USE_LEVELDB := 0" 23 | LINE "USE_LMDB := 0" 24 | fi 25 | 26 | if $WITH_CUDA ; then 27 | # Only build SM50 28 | LINE "CUDA_ARCH := -gencode arch=compute_50,code=sm_50" 29 | else 30 | LINE "CPU_ONLY := 1" 31 | fi 32 | 33 | if $WITH_CUDNN ; then 34 | LINE "USE_CUDNN := 1" 35 | fi 36 | 37 | -------------------------------------------------------------------------------- /scripts/travis/configure.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # configure the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if ! $WITH_CMAKE ; then 8 | source $BASEDIR/configure-make.sh 9 | else 10 | source $BASEDIR/configure-cmake.sh 11 | fi 12 | -------------------------------------------------------------------------------- /scripts/travis/defaults.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # set default environment variables 3 | 4 | set -e 5 | 6 | WITH_CMAKE=${WITH_CMAKE:-false} 7 | WITH_PYTHON3=${WITH_PYTHON3:-false} 8 | WITH_IO=${WITH_IO:-true} 9 | WITH_CUDA=${WITH_CUDA:-false} 10 | WITH_CUDNN=${WITH_CUDNN:-false} 11 | -------------------------------------------------------------------------------- /scripts/travis/install-python-deps.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # install extra Python dependencies 3 | # (must come after setup-venv) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | if ! $WITH_PYTHON3 ; then 9 | # Python2 10 | : 11 | else 12 | # Python3 13 | pip install --pre protobuf==3.0.0b3 14 | fi 15 | -------------------------------------------------------------------------------- /scripts/travis/setup-venv.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # setup a Python virtualenv 3 | # (must come after install-deps) 4 | 5 | BASEDIR=$(dirname $0) 6 | source $BASEDIR/defaults.sh 7 | 8 | VENV_DIR=${1:-~/venv} 9 | 10 | # setup our own virtualenv 11 | if $WITH_PYTHON3; then 12 | PYTHON_EXE='/usr/bin/python3' 13 | else 14 | PYTHON_EXE='/usr/bin/python2' 15 | fi 16 | 17 | # use --system-site-packages so that Python will use deb packages 18 | virtualenv $VENV_DIR -p $PYTHON_EXE --system-site-packages 19 | -------------------------------------------------------------------------------- /scripts/travis/test.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | # test the project 3 | 4 | BASEDIR=$(dirname $0) 5 | source $BASEDIR/defaults.sh 6 | 7 | if $WITH_CUDA ; then 8 | echo "Skipping tests for CUDA build" 9 | exit 0 10 | fi 11 | 12 | if ! $WITH_CMAKE ; then 13 | make runtest 14 | make pytest 15 | else 16 | cd build 17 | make runtest 18 | make pytest 19 | fi 20 | -------------------------------------------------------------------------------- /scripts/upload_model_to_gist.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | # Check for valid directory 4 | DIRNAME=$1 5 | if [ ! -f $DIRNAME/readme.md ]; then 6 | echo "usage: upload_model_to_gist.sh " 7 | echo " /readme.md must exist" 8 | fi 9 | cd $DIRNAME 10 | FILES=`find . -maxdepth 1 -type f ! -name "*.caffemodel*" | xargs echo` 11 | 12 | # Check for gist tool. 13 | gist -v >/dev/null 2>&1 || { echo >&2 "I require 'gist' but it's not installed. Do 'gem install gist'."; exit 1; } 14 | 15 | NAME=`sed -n 's/^name:[[:space:]]*//p' readme.md` 16 | if [ -z "$NAME" ]; then 17 | echo " /readme.md must contain name field in the front-matter." 18 | fi 19 | 20 | GIST=`sed -n 's/^gist_id:[[:space:]]*//p' readme.md` 21 | if [ -z "$GIST" ]; then 22 | echo "Uploading new Gist" 23 | gist -p -d "$NAME" $FILES 24 | else 25 | echo "Updating existing Gist, id $GIST" 26 | gist -u $GIST -d "$NAME" $FILES 27 | fi 28 | 29 | RESULT=$? 30 | if [ $RESULT -eq 0 ]; then 31 | echo "You've uploaded your model!" 32 | echo "Don't forget to add the gist_id field to your /readme.md now!" 33 | echo "Run the command again after you do that, to make sure the Gist id propagates." 34 | echo "" 35 | echo "And do share your model over at https://github.com/BVLC/caffe/wiki/Model-Zoo" 36 | else 37 | echo "Something went wrong!" 38 | fi 39 | -------------------------------------------------------------------------------- /src/caffe/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # generate protobuf sources 2 | file(GLOB proto_files proto/*.proto) 3 | caffe_protobuf_generate_cpp_py(${proto_gen_folder} proto_srcs proto_hdrs proto_python ${proto_files}) 4 | 5 | # include python files either to force generation 6 | add_library(proto STATIC ${proto_hdrs} ${proto_srcs} ${proto_python}) 7 | set(Caffe_LINKER_LIBS proto ${Caffe_LINKER_LIBS}) # note, crucial to prepend! 8 | caffe_default_properties(proto) 9 | 10 | # --[ Caffe library 11 | 12 | # creates 'test_srcs', 'srcs', 'test_cuda', 'cuda' lists 13 | caffe_pickup_caffe_sources(${PROJECT_SOURCE_DIR}) 14 | 15 | if(HAVE_CUDA) 16 | caffe_cuda_compile(cuda_objs ${cuda}) 17 | list(APPEND srcs ${cuda_objs} ${cuda}) 18 | endif() 19 | 20 | add_library(caffe ${srcs}) 21 | target_link_libraries(caffe proto ${Caffe_LINKER_LIBS}) 22 | caffe_default_properties(caffe) 23 | set_target_properties(caffe PROPERTIES 24 | VERSION ${CAFFE_TARGET_VERSION} 25 | SOVERSION ${CAFFE_TARGET_SOVERSION} 26 | ) 27 | 28 | # ---[ Tests 29 | add_subdirectory(test) 30 | 31 | # ---[ Install 32 | install(DIRECTORY ${Caffe_INCLUDE_DIR}/caffe DESTINATION include) 33 | install(FILES ${proto_hdrs} DESTINATION include/caffe/proto) 34 | install(TARGETS caffe proto EXPORT CaffeTargets DESTINATION lib) 35 | 36 | file(WRITE ${PROJECT_BINARY_DIR}/__init__.py) 37 | list(APPEND proto_python ${PROJECT_BINARY_DIR}/__init__.py) 38 | install(PROGRAMS ${proto_python} DESTINATION python/caffe/proto) 39 | 40 | 41 | -------------------------------------------------------------------------------- /src/caffe/layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include "caffe/layer.hpp" 3 | 4 | namespace caffe { 5 | 6 | template 7 | void Layer::InitMutex() { 8 | forward_mutex_.reset(new boost::mutex()); 9 | } 10 | 11 | template 12 | void Layer::Lock() { 13 | if (IsShared()) { 14 | forward_mutex_->lock(); 15 | } 16 | } 17 | 18 | template 19 | void Layer::Unlock() { 20 | if (IsShared()) { 21 | forward_mutex_->unlock(); 22 | } 23 | } 24 | 25 | INSTANTIATE_CLASS(Layer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/absval_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | NeuronLayer::LayerSetUp(bottom, top); 12 | CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " 13 | "allow in-place computation."; 14 | } 15 | 16 | template 17 | void AbsValLayer::Forward_cpu( 18 | const vector*>& bottom, const vector*>& top) { 19 | const int count = top[0]->count(); 20 | Dtype* top_data = top[0]->mutable_cpu_data(); 21 | caffe_abs(count, bottom[0]->cpu_data(), top_data); 22 | } 23 | 24 | template 25 | void AbsValLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, const vector*>& bottom) { 27 | const int count = top[0]->count(); 28 | const Dtype* top_diff = top[0]->cpu_diff(); 29 | if (propagate_down[0]) { 30 | const Dtype* bottom_data = bottom[0]->cpu_data(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | caffe_cpu_sign(count, bottom_data, bottom_diff); 33 | caffe_mul(count, bottom_diff, top_diff, bottom_diff); 34 | } 35 | } 36 | 37 | #ifdef CPU_ONLY 38 | STUB_GPU(AbsValLayer); 39 | #endif 40 | 41 | INSTANTIATE_CLASS(AbsValLayer); 42 | REGISTER_LAYER_CLASS(AbsVal); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/absval_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/absval_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void AbsValLayer::Forward_gpu( 10 | const vector*>& bottom, const vector*>& top) { 11 | const int count = top[0]->count(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | caffe_gpu_abs(count, bottom[0]->gpu_data(), top_data); 14 | } 15 | 16 | template 17 | void AbsValLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | const int count = top[0]->count(); 20 | const Dtype* top_diff = top[0]->gpu_diff(); 21 | if (propagate_down[0]) { 22 | const Dtype* bottom_data = bottom[0]->gpu_data(); 23 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 24 | caffe_gpu_sign(count, bottom_data, bottom_diff); 25 | caffe_gpu_mul(count, bottom_diff, top_diff, bottom_diff); 26 | } 27 | } 28 | 29 | INSTANTIATE_LAYER_GPU_FUNCS(AbsValLayer); 30 | 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /src/caffe/layers/base_data_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/base_data_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void BasePrefetchingDataLayer::Forward_gpu( 9 | const vector*>& bottom, const vector*>& top) { 10 | Batch* batch = prefetch_full_.pop("Data layer prefetch queue empty"); 11 | // Reshape to loaded data. 12 | top[0]->ReshapeLike(batch->data_); 13 | // Copy the data 14 | caffe_copy(batch->data_.count(), batch->data_.gpu_data(), 15 | top[0]->mutable_gpu_data()); 16 | if (this->output_labels_) { 17 | // Reshape to loaded labels. 18 | top[1]->ReshapeLike(batch->label_); 19 | // Copy the labels. 20 | caffe_copy(batch->label_.count(), batch->label_.gpu_data(), 21 | top[1]->mutable_gpu_data()); 22 | top[2]->ReshapeLike(batch->label_mask_); 23 | caffe_copy(batch->label_mask_.count(), batch->label_mask_.gpu_data(), 24 | top[2]->mutable_gpu_data()); 25 | } 26 | // Ensure the copy is synchronous wrt the host, so that the next batch isn't 27 | // copied in meanwhile. 28 | CUDA_CHECK(cudaStreamSynchronize(cudaStreamDefault)); 29 | prefetch_free_.push(batch); 30 | } 31 | 32 | INSTANTIATE_LAYER_GPU_FORWARD(BasePrefetchingDataLayer); 33 | 34 | } // namespace caffe 35 | -------------------------------------------------------------------------------- /src/caffe/layers/bnll_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/bnll_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | const float kBNLL_THRESHOLD = 50.; 9 | 10 | template 11 | void BNLLLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = bottom_data[i] > 0 ? 18 | bottom_data[i] + log(1. + exp(-bottom_data[i])) : 19 | log(1. + exp(bottom_data[i])); 20 | } 21 | } 22 | 23 | template 24 | void BNLLLayer::Backward_cpu(const vector*>& top, 25 | const vector& propagate_down, 26 | const vector*>& bottom) { 27 | if (propagate_down[0]) { 28 | const Dtype* bottom_data = bottom[0]->cpu_data(); 29 | const Dtype* top_diff = top[0]->cpu_diff(); 30 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 31 | const int count = bottom[0]->count(); 32 | Dtype expval; 33 | for (int i = 0; i < count; ++i) { 34 | expval = exp(std::min(bottom_data[i], Dtype(kBNLL_THRESHOLD))); 35 | bottom_diff[i] = top_diff[i] * expval / (expval + 1.); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(BNLLLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(BNLLLayer); 45 | REGISTER_LAYER_CLASS(BNLL); 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_lcn_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_lcn_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNLCNLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | 14 | CUDNN_CHECK(cudnnDivisiveNormalizationForward( 15 | handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, 16 | cudnn::dataType::one, 17 | bottom_desc_, bottom_data, 18 | NULL, // srcMeansData 19 | this->tempData1, this->tempData2, 20 | cudnn::dataType::zero, 21 | top_desc_, top_data) ); 22 | } 23 | 24 | template 25 | void CuDNNLCNLayer::Backward_gpu(const vector*>& top, 26 | const vector& propagate_down, const vector*>& bottom) { 27 | const Dtype* top_diff = top[0]->gpu_diff(); 28 | const Dtype* top_data = top[0]->gpu_data(); 29 | const Dtype* bottom_data = bottom[0]->gpu_data(); 30 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 31 | 32 | CUDNN_CHECK(cudnnDivisiveNormalizationBackward( 33 | handle_, norm_desc_, CUDNN_DIVNORM_PRECOMPUTED_MEANS, 34 | cudnn::dataType::one, 35 | bottom_desc_, bottom_data, 36 | NULL, top_diff, // NULL - srcMeansData 37 | this->tempData1, this->tempData2, 38 | cudnn::dataType::zero, 39 | bottom_desc_, bottom_diff, 40 | NULL) ); 41 | } 42 | 43 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLCNLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_lrn_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_lrn_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNLRNLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | 14 | CUDNN_CHECK(cudnnLRNCrossChannelForward( 15 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 16 | cudnn::dataType::one, 17 | bottom_desc_, bottom_data, 18 | cudnn::dataType::zero, 19 | top_desc_, top_data) ); 20 | } 21 | 22 | template 23 | void CuDNNLRNLayer::Backward_gpu(const vector*>& top, 24 | const vector& propagate_down, const vector*>& bottom) { 25 | const Dtype* top_diff = top[0]->gpu_diff(); 26 | const Dtype* top_data = top[0]->gpu_data(); 27 | const Dtype* bottom_data = bottom[0]->gpu_data(); 28 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 29 | 30 | CUDNN_CHECK(cudnnLRNCrossChannelBackward( 31 | handle_, norm_desc_, CUDNN_LRN_CROSS_CHANNEL_DIM1, 32 | cudnn::dataType::one, 33 | top_desc_, top_data, 34 | top_desc_, top_diff, 35 | bottom_desc_, bottom_data, 36 | cudnn::dataType::zero, 37 | bottom_desc_, bottom_diff) ); 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNLRNLayer); 41 | 42 | }; // namespace caffe 43 | 44 | #endif 45 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_pooling_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_pooling_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNPoolingLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | PoolingLayer::LayerSetUp(bottom, top); 12 | CUDNN_CHECK(cudnnCreate(&handle_)); 13 | cudnn::createTensor4dDesc(&bottom_desc_); 14 | cudnn::createTensor4dDesc(&top_desc_); 15 | cudnn::createPoolingDesc(&pooling_desc_, 16 | this->layer_param_.pooling_param().pool(), &mode_, 17 | this->kernel_h_, this->kernel_w_, this->pad_h_, this->pad_w_, 18 | this->stride_h_, this->stride_w_); 19 | handles_setup_ = true; 20 | } 21 | 22 | template 23 | void CuDNNPoolingLayer::Reshape(const vector*>& bottom, 24 | const vector*>& top) { 25 | PoolingLayer::Reshape(bottom, top); 26 | cudnn::setTensor4dDesc(&bottom_desc_, bottom[0]->num(), 27 | this->channels_, this->height_, this->width_); 28 | cudnn::setTensor4dDesc(&top_desc_, bottom[0]->num(), 29 | this->channels_, this->pooled_height_, this->pooled_width_); 30 | } 31 | 32 | template 33 | CuDNNPoolingLayer::~CuDNNPoolingLayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(bottom_desc_); 38 | cudnnDestroyTensorDescriptor(top_desc_); 39 | cudnnDestroyPoolingDescriptor(pooling_desc_); 40 | cudnnDestroy(handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNPoolingLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_pooling_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_pooling_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNPoolingLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->gpu_data(); 12 | Dtype* top_data = top[0]->mutable_gpu_data(); 13 | CUDNN_CHECK(cudnnPoolingForward(handle_, pooling_desc_, 14 | cudnn::dataType::one, 15 | bottom_desc_, bottom_data, 16 | cudnn::dataType::zero, 17 | top_desc_, top_data)); 18 | } 19 | 20 | template 21 | void CuDNNPoolingLayer::Backward_gpu(const vector*>& top, 22 | const vector& propagate_down, const vector*>& bottom) { 23 | if (!propagate_down[0]) { 24 | return; 25 | } 26 | const Dtype* top_diff = top[0]->gpu_diff(); 27 | const Dtype* top_data = top[0]->gpu_data(); 28 | const Dtype* bottom_data = bottom[0]->gpu_data(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | CUDNN_CHECK(cudnnPoolingBackward(handle_, pooling_desc_, 31 | cudnn::dataType::one, 32 | top_desc_, top_data, top_desc_, top_diff, 33 | bottom_desc_, bottom_data, 34 | cudnn::dataType::zero, 35 | bottom_desc_, bottom_diff)); 36 | } 37 | 38 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNPoolingLayer); 39 | 40 | } // namespace caffe 41 | #endif 42 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_relu_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_relu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNReLULayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | ReLULayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_RELU); 17 | handles_setup_ = true; 18 | } 19 | 20 | template 21 | void CuDNNReLULayer::Reshape(const vector*>& bottom, 22 | const vector*>& top) { 23 | ReLULayer::Reshape(bottom, top); 24 | const int N = bottom[0]->num(); 25 | const int K = bottom[0]->channels(); 26 | const int H = bottom[0]->height(); 27 | const int W = bottom[0]->width(); 28 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 29 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 30 | } 31 | 32 | template 33 | CuDNNReLULayer::~CuDNNReLULayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 38 | cudnnDestroyTensorDescriptor(this->top_desc_); 39 | cudnnDestroy(this->handle_); 40 | } 41 | 42 | INSTANTIATE_CLASS(CuDNNReLULayer); 43 | 44 | } // namespace caffe 45 | #endif 46 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_sigmoid_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_sigmoid_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNSigmoidLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | SigmoidLayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, 17 | CUDNN_ACTIVATION_SIGMOID); 18 | handles_setup_ = true; 19 | } 20 | 21 | template 22 | void CuDNNSigmoidLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | SigmoidLayer::Reshape(bottom, top); 25 | const int N = bottom[0]->num(); 26 | const int K = bottom[0]->channels(); 27 | const int H = bottom[0]->height(); 28 | const int W = bottom[0]->width(); 29 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 30 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 31 | } 32 | 33 | template 34 | CuDNNSigmoidLayer::~CuDNNSigmoidLayer() { 35 | // Check that handles have been setup before destroying. 36 | if (!handles_setup_) { return; } 37 | 38 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 39 | cudnnDestroyTensorDescriptor(this->top_desc_); 40 | cudnnDestroy(this->handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNSigmoidLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_softmax_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "thrust/device_vector.h" 5 | 6 | #include "caffe/layers/cudnn_softmax_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void CuDNNSoftmaxLayer::LayerSetUp(const vector*>& bottom, 12 | const vector*>& top) { 13 | SoftmaxLayer::LayerSetUp(bottom, top); 14 | // Initialize CUDNN. 15 | CUDNN_CHECK(cudnnCreate(&handle_)); 16 | cudnn::createTensor4dDesc(&bottom_desc_); 17 | cudnn::createTensor4dDesc(&top_desc_); 18 | handles_setup_ = true; 19 | } 20 | 21 | template 22 | void CuDNNSoftmaxLayer::Reshape(const vector*>& bottom, 23 | const vector*>& top) { 24 | SoftmaxLayer::Reshape(bottom, top); 25 | int N = this->outer_num_; 26 | int K = bottom[0]->shape(this->softmax_axis_); 27 | int H = this->inner_num_; 28 | int W = 1; 29 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 30 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 31 | } 32 | 33 | template 34 | CuDNNSoftmaxLayer::~CuDNNSoftmaxLayer() { 35 | // Check that handles have been setup before destroying. 36 | if (!handles_setup_) { return; } 37 | 38 | cudnnDestroyTensorDescriptor(bottom_desc_); 39 | cudnnDestroyTensorDescriptor(top_desc_); 40 | cudnnDestroy(handle_); 41 | } 42 | 43 | INSTANTIATE_CLASS(CuDNNSoftmaxLayer); 44 | 45 | } // namespace caffe 46 | #endif 47 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_softmax_layer.cu: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "thrust/device_vector.h" 5 | 6 | #include "caffe/layers/cudnn_softmax_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void CuDNNSoftmaxLayer::Forward_gpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->gpu_data(); 14 | Dtype* top_data = top[0]->mutable_gpu_data(); 15 | CUDNN_CHECK(cudnnSoftmaxForward(handle_, CUDNN_SOFTMAX_ACCURATE, 16 | CUDNN_SOFTMAX_MODE_CHANNEL, 17 | cudnn::dataType::one, 18 | bottom_desc_, bottom_data, 19 | cudnn::dataType::zero, 20 | top_desc_, top_data)); 21 | } 22 | 23 | template 24 | void CuDNNSoftmaxLayer::Backward_gpu(const vector*>& top, 25 | const vector& propagate_down, const vector*>& bottom) { 26 | if (propagate_down[0]) { 27 | const Dtype* top_data = top[0]->gpu_data(); 28 | const Dtype* top_diff = top[0]->gpu_diff(); 29 | const Dtype* bottom_data = bottom[0]->gpu_data(); 30 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 31 | 32 | CUDNN_CHECK(cudnnSoftmaxBackward(handle_, CUDNN_SOFTMAX_ACCURATE, 33 | CUDNN_SOFTMAX_MODE_CHANNEL, 34 | cudnn::dataType::one, 35 | top_desc_, top_data, top_desc_, top_diff, 36 | cudnn::dataType::zero, 37 | bottom_desc_, bottom_diff)); 38 | } 39 | } 40 | 41 | INSTANTIATE_LAYER_GPU_FUNCS(CuDNNSoftmaxLayer); 42 | 43 | } // namespace caffe 44 | #endif 45 | -------------------------------------------------------------------------------- /src/caffe/layers/cudnn_tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include 3 | 4 | #include "caffe/layers/cudnn_tanh_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void CuDNNTanHLayer::LayerSetUp(const vector*>& bottom, 10 | const vector*>& top) { 11 | TanHLayer::LayerSetUp(bottom, top); 12 | // initialize cuDNN 13 | CUDNN_CHECK(cudnnCreate(&handle_)); 14 | cudnn::createTensor4dDesc(&bottom_desc_); 15 | cudnn::createTensor4dDesc(&top_desc_); 16 | cudnn::createActivationDescriptor(&activ_desc_, CUDNN_ACTIVATION_TANH); 17 | handles_setup_ = true; 18 | } 19 | 20 | template 21 | void CuDNNTanHLayer::Reshape(const vector*>& bottom, 22 | const vector*>& top) { 23 | TanHLayer::Reshape(bottom, top); 24 | const int N = bottom[0]->num(); 25 | const int K = bottom[0]->channels(); 26 | const int H = bottom[0]->height(); 27 | const int W = bottom[0]->width(); 28 | cudnn::setTensor4dDesc(&bottom_desc_, N, K, H, W); 29 | cudnn::setTensor4dDesc(&top_desc_, N, K, H, W); 30 | } 31 | 32 | template 33 | CuDNNTanHLayer::~CuDNNTanHLayer() { 34 | // Check that handles have been setup before destroying. 35 | if (!handles_setup_) { return; } 36 | 37 | cudnnDestroyTensorDescriptor(this->bottom_desc_); 38 | cudnnDestroyTensorDescriptor(this->top_desc_); 39 | cudnnDestroy(this->handle_); 40 | } 41 | 42 | INSTANTIATE_CLASS(CuDNNTanHLayer); 43 | 44 | } // namespace caffe 45 | #endif 46 | -------------------------------------------------------------------------------- /src/caffe/layers/elu_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/elu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ELULayer::Forward_cpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->cpu_data(); 12 | Dtype* top_data = top[0]->mutable_cpu_data(); 13 | const int count = bottom[0]->count(); 14 | Dtype alpha = this->layer_param_.elu_param().alpha(); 15 | for (int i = 0; i < count; ++i) { 16 | top_data[i] = std::max(bottom_data[i], Dtype(0)) 17 | + alpha * (exp(std::min(bottom_data[i], Dtype(0))) - Dtype(1)); 18 | } 19 | } 20 | 21 | template 22 | void ELULayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* bottom_data = bottom[0]->cpu_data(); 27 | const Dtype* top_data = top[0]->cpu_data(); 28 | const Dtype* top_diff = top[0]->cpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 30 | const int count = bottom[0]->count(); 31 | Dtype alpha = this->layer_param_.elu_param().alpha(); 32 | for (int i = 0; i < count; ++i) { 33 | bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) 34 | + (alpha + top_data[i]) * (bottom_data[i] <= 0)); 35 | } 36 | } 37 | } 38 | 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(ELULayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(ELULayer); 45 | REGISTER_LAYER_CLASS(ELU); 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /src/caffe/layers/euclidean_loss_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/euclidean_loss_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void EuclideanLossLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | int count = bottom[0]->count(); 12 | caffe_gpu_sub( 13 | count, 14 | bottom[0]->gpu_data(), 15 | bottom[1]->gpu_data(), 16 | diff_.mutable_gpu_data()); 17 | Dtype dot; 18 | caffe_gpu_dot(count, diff_.gpu_data(), diff_.gpu_data(), &dot); 19 | Dtype loss = dot / bottom[0]->num() / Dtype(2); 20 | top[0]->mutable_cpu_data()[0] = loss; 21 | } 22 | 23 | template 24 | void EuclideanLossLayer::Backward_gpu(const vector*>& top, 25 | const vector& propagate_down, const vector*>& bottom) { 26 | for (int i = 0; i < 2; ++i) { 27 | if (propagate_down[i]) { 28 | const Dtype sign = (i == 0) ? 1 : -1; 29 | const Dtype alpha = sign * top[0]->cpu_diff()[0] / bottom[i]->num(); 30 | caffe_gpu_axpby( 31 | bottom[i]->count(), // count 32 | alpha, // alpha 33 | diff_.gpu_data(), // a 34 | Dtype(0), // beta 35 | bottom[i]->mutable_gpu_diff()); // b 36 | } 37 | } 38 | } 39 | 40 | INSTANTIATE_LAYER_GPU_FUNCS(EuclideanLossLayer); 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /src/caffe/layers/exp_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/exp_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ExpLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const int count = bottom[0]->count(); 12 | const Dtype* bottom_data = bottom[0]->gpu_data(); 13 | Dtype* top_data = top[0]->mutable_gpu_data(); 14 | if (inner_scale_ == Dtype(1)) { 15 | caffe_gpu_exp(count, bottom_data, top_data); 16 | } else { 17 | caffe_gpu_scale(count, inner_scale_, bottom_data, top_data); 18 | caffe_gpu_exp(count, top_data, top_data); 19 | } 20 | if (outer_scale_ != Dtype(1)) { 21 | caffe_gpu_scal(count, outer_scale_, top_data); 22 | } 23 | } 24 | 25 | template 26 | void ExpLayer::Backward_gpu(const vector*>& top, 27 | const vector& propagate_down, const vector*>& bottom) { 28 | if (!propagate_down[0]) { return; } 29 | const int count = bottom[0]->count(); 30 | const Dtype* top_data = top[0]->gpu_data(); 31 | const Dtype* top_diff = top[0]->gpu_diff(); 32 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 33 | caffe_gpu_mul(count, top_data, top_diff, bottom_diff); 34 | if (inner_scale_ != Dtype(1)) { 35 | caffe_gpu_scal(count, inner_scale_, bottom_diff); 36 | } 37 | } 38 | 39 | INSTANTIATE_LAYER_GPU_FUNCS(ExpLayer); 40 | 41 | 42 | } // namespace caffe 43 | -------------------------------------------------------------------------------- /src/caffe/layers/flatten_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/flatten_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void FlattenLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | CHECK_NE(top[0], bottom[0]) << this->type() << " Layer does not " 11 | "allow in-place computation."; 12 | const int start_axis = bottom[0]->CanonicalAxisIndex( 13 | this->layer_param_.flatten_param().axis()); 14 | const int end_axis = bottom[0]->CanonicalAxisIndex( 15 | this->layer_param_.flatten_param().end_axis()); 16 | vector top_shape; 17 | for (int i = 0; i < start_axis; ++i) { 18 | top_shape.push_back(bottom[0]->shape(i)); 19 | } 20 | const int flattened_dim = bottom[0]->count(start_axis, end_axis + 1); 21 | top_shape.push_back(flattened_dim); 22 | for (int i = end_axis + 1; i < bottom[0]->num_axes(); ++i) { 23 | top_shape.push_back(bottom[0]->shape(i)); 24 | } 25 | top[0]->Reshape(top_shape); 26 | CHECK_EQ(top[0]->count(), bottom[0]->count()); 27 | } 28 | 29 | template 30 | void FlattenLayer::Forward_cpu(const vector*>& bottom, 31 | const vector*>& top) { 32 | top[0]->ShareData(*bottom[0]); 33 | } 34 | 35 | template 36 | void FlattenLayer::Backward_cpu(const vector*>& top, 37 | const vector& propagate_down, const vector*>& bottom) { 38 | bottom[0]->ShareDiff(*top[0]); 39 | } 40 | 41 | INSTANTIATE_CLASS(FlattenLayer); 42 | REGISTER_LAYER_CLASS(Flatten); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/hdf5_output_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "hdf5.h" 4 | #include "hdf5_hl.h" 5 | 6 | #include "caffe/layers/hdf5_output_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void HDF5OutputLayer::Forward_gpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | CHECK_GE(bottom.size(), 2); 14 | CHECK_EQ(bottom[0]->num(), bottom[1]->num()); 15 | data_blob_.Reshape(bottom[0]->num(), bottom[0]->channels(), 16 | bottom[0]->height(), bottom[0]->width()); 17 | label_blob_.Reshape(bottom[1]->num(), bottom[1]->channels(), 18 | bottom[1]->height(), bottom[1]->width()); 19 | const int data_datum_dim = bottom[0]->count() / bottom[0]->num(); 20 | const int label_datum_dim = bottom[1]->count() / bottom[1]->num(); 21 | 22 | for (int i = 0; i < bottom[0]->num(); ++i) { 23 | caffe_copy(data_datum_dim, &bottom[0]->gpu_data()[i * data_datum_dim], 24 | &data_blob_.mutable_cpu_data()[i * data_datum_dim]); 25 | caffe_copy(label_datum_dim, &bottom[1]->gpu_data()[i * label_datum_dim], 26 | &label_blob_.mutable_cpu_data()[i * label_datum_dim]); 27 | } 28 | SaveBlobs(); 29 | } 30 | 31 | template 32 | void HDF5OutputLayer::Backward_gpu(const vector*>& top, 33 | const vector& propagate_down, const vector*>& bottom) { 34 | return; 35 | } 36 | 37 | INSTANTIATE_LAYER_GPU_FUNCS(HDF5OutputLayer); 38 | 39 | } // namespace caffe 40 | -------------------------------------------------------------------------------- /src/caffe/layers/input_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/input_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void InputLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | const int num_top = top.size(); 11 | const InputParameter& param = this->layer_param_.input_param(); 12 | const int num_shape = param.shape_size(); 13 | CHECK(num_shape == 0 || num_shape == 1 || num_shape == num_top) 14 | << "Must specify 'shape' once, once per top blob, or not at all: " 15 | << num_top << " tops vs. " << num_shape << " shapes."; 16 | if (num_shape > 0) { 17 | for (int i = 0; i < num_top; ++i) { 18 | const int shape_index = (param.shape_size() == 1) ? 0 : i; 19 | top[i]->Reshape(param.shape(shape_index)); 20 | } 21 | } 22 | } 23 | 24 | INSTANTIATE_CLASS(InputLayer); 25 | REGISTER_LAYER_CLASS(Input); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/neuron_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/neuron_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void NeuronLayer::Reshape(const vector*>& bottom, 9 | const vector*>& top) { 10 | top[0]->ReshapeLike(*bottom[0]); 11 | } 12 | 13 | INSTANTIATE_CLASS(NeuronLayer); 14 | 15 | } // namespace caffe 16 | -------------------------------------------------------------------------------- /src/caffe/layers/parameter_layer.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/layers/parameter_layer.hpp" 2 | 3 | namespace caffe { 4 | 5 | INSTANTIATE_CLASS(ParameterLayer); 6 | REGISTER_LAYER_CLASS(Parameter); 7 | 8 | } // namespace caffe 9 | -------------------------------------------------------------------------------- /src/caffe/layers/recurrent_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/blob.hpp" 4 | #include "caffe/common.hpp" 5 | #include "caffe/filler.hpp" 6 | #include "caffe/layer.hpp" 7 | #include "caffe/layers/recurrent_layer.hpp" 8 | #include "caffe/util/math_functions.hpp" 9 | 10 | namespace caffe { 11 | 12 | template 13 | void RecurrentLayer::Forward_gpu(const vector*>& bottom, 14 | const vector*>& top) { 15 | // Hacky fix for test time... reshare all the shared blobs. 16 | // TODO: somehow make this work non-hackily. 17 | if (this->phase_ == TEST) { 18 | unrolled_net_->ShareWeights(); 19 | } 20 | 21 | DCHECK_EQ(recur_input_blobs_.size(), recur_output_blobs_.size()); 22 | if (!expose_hidden_) { 23 | for (int i = 0; i < recur_input_blobs_.size(); ++i) { 24 | const int count = recur_input_blobs_[i]->count(); 25 | DCHECK_EQ(count, recur_output_blobs_[i]->count()); 26 | const Dtype* timestep_T_data = recur_output_blobs_[i]->gpu_data(); 27 | Dtype* timestep_0_data = recur_input_blobs_[i]->mutable_gpu_data(); 28 | caffe_copy(count, timestep_T_data, timestep_0_data); 29 | } 30 | } 31 | 32 | unrolled_net_->ForwardTo(last_layer_index_); 33 | 34 | if (expose_hidden_) { 35 | const int top_offset = output_blobs_.size(); 36 | for (int i = top_offset, j = 0; i < top.size(); ++i, ++j) { 37 | top[i]->ShareData(*recur_output_blobs_[j]); 38 | } 39 | } 40 | } 41 | 42 | INSTANTIATE_LAYER_GPU_FORWARD(RecurrentLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/relu_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/relu_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void ReLULayer::Forward_cpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | const Dtype* bottom_data = bottom[0]->cpu_data(); 12 | Dtype* top_data = top[0]->mutable_cpu_data(); 13 | const int count = bottom[0]->count(); 14 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 15 | for (int i = 0; i < count; ++i) { 16 | top_data[i] = std::max(bottom_data[i], Dtype(0)) 17 | + negative_slope * std::min(bottom_data[i], Dtype(0)); 18 | } 19 | } 20 | 21 | template 22 | void ReLULayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* bottom_data = bottom[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype negative_slope = this->layer_param_.relu_param().negative_slope(); 31 | for (int i = 0; i < count; ++i) { 32 | bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0) 33 | + negative_slope * (bottom_data[i] <= 0)); 34 | } 35 | } 36 | } 37 | 38 | 39 | #ifdef CPU_ONLY 40 | STUB_GPU(ReLULayer); 41 | #endif 42 | 43 | INSTANTIATE_CLASS(ReLULayer); 44 | 45 | } // namespace caffe 46 | -------------------------------------------------------------------------------- /src/caffe/layers/sigmoid_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "caffe/layers/sigmoid_layer.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | inline Dtype sigmoid(Dtype x) { 10 | return 1. / (1. + exp(-x)); 11 | } 12 | 13 | template 14 | void SigmoidLayer::Forward_cpu(const vector*>& bottom, 15 | const vector*>& top) { 16 | const Dtype* bottom_data = bottom[0]->cpu_data(); 17 | Dtype* top_data = top[0]->mutable_cpu_data(); 18 | const int count = bottom[0]->count(); 19 | for (int i = 0; i < count; ++i) { 20 | top_data[i] = sigmoid(bottom_data[i]); 21 | } 22 | } 23 | 24 | template 25 | void SigmoidLayer::Backward_cpu(const vector*>& top, 26 | const vector& propagate_down, 27 | const vector*>& bottom) { 28 | if (propagate_down[0]) { 29 | const Dtype* top_data = top[0]->cpu_data(); 30 | const Dtype* top_diff = top[0]->cpu_diff(); 31 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 32 | const int count = bottom[0]->count(); 33 | for (int i = 0; i < count; ++i) { 34 | const Dtype sigmoid_x = top_data[i]; 35 | bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x); 36 | } 37 | } 38 | } 39 | 40 | #ifdef CPU_ONLY 41 | STUB_GPU(SigmoidLayer); 42 | #endif 43 | 44 | INSTANTIATE_CLASS(SigmoidLayer); 45 | 46 | 47 | } // namespace caffe 48 | -------------------------------------------------------------------------------- /src/caffe/layers/silence_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Backward_cpu(const vector*>& top, 10 | const vector& propagate_down, const vector*>& bottom) { 11 | for (int i = 0; i < bottom.size(); ++i) { 12 | if (propagate_down[i]) { 13 | caffe_set(bottom[i]->count(), Dtype(0), 14 | bottom[i]->mutable_cpu_diff()); 15 | } 16 | } 17 | } 18 | 19 | #ifdef CPU_ONLY 20 | STUB_GPU(SilenceLayer); 21 | #endif 22 | 23 | INSTANTIATE_CLASS(SilenceLayer); 24 | REGISTER_LAYER_CLASS(Silence); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /src/caffe/layers/silence_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/silence_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SilenceLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | // Do nothing. 12 | } 13 | 14 | template 15 | void SilenceLayer::Backward_gpu(const vector*>& top, 16 | const vector& propagate_down, const vector*>& bottom) { 17 | for (int i = 0; i < bottom.size(); ++i) { 18 | if (propagate_down[i]) { 19 | caffe_gpu_set(bottom[i]->count(), Dtype(0), 20 | bottom[i]->mutable_gpu_diff()); 21 | } 22 | } 23 | } 24 | 25 | INSTANTIATE_LAYER_GPU_FUNCS(SilenceLayer); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/layers/split_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/split_layer.hpp" 4 | #include "caffe/util/math_functions.hpp" 5 | 6 | namespace caffe { 7 | 8 | template 9 | void SplitLayer::Forward_gpu(const vector*>& bottom, 10 | const vector*>& top) { 11 | for (int i = 0; i < top.size(); ++i) { 12 | top[i]->ShareData(*bottom[0]); 13 | } 14 | } 15 | 16 | template 17 | void SplitLayer::Backward_gpu(const vector*>& top, 18 | const vector& propagate_down, const vector*>& bottom) { 19 | if (!propagate_down[0]) { return; } 20 | if (top.size() == 1) { 21 | caffe_copy(count_, top[0]->gpu_diff(), bottom[0]->mutable_gpu_diff()); 22 | return; 23 | } 24 | caffe_gpu_add(count_, top[0]->gpu_diff(), top[1]->gpu_diff(), 25 | bottom[0]->mutable_gpu_diff()); 26 | // Add remaining top blob diffs. 27 | for (int i = 2; i < top.size(); ++i) { 28 | const Dtype* top_diff = top[i]->gpu_diff(); 29 | Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); 30 | caffe_gpu_axpy(count_, Dtype(1.), top_diff, bottom_diff); 31 | } 32 | } 33 | 34 | 35 | INSTANTIATE_LAYER_GPU_FUNCS(SplitLayer); 36 | 37 | } // namespace caffe 38 | -------------------------------------------------------------------------------- /src/caffe/layers/tanh_layer.cpp: -------------------------------------------------------------------------------- 1 | // TanH neuron activation function layer. 2 | // Adapted from ReLU layer code written by Yangqing Jia 3 | 4 | #include 5 | 6 | #include "caffe/layers/tanh_layer.hpp" 7 | 8 | namespace caffe { 9 | 10 | template 11 | void TanHLayer::Forward_cpu(const vector*>& bottom, 12 | const vector*>& top) { 13 | const Dtype* bottom_data = bottom[0]->cpu_data(); 14 | Dtype* top_data = top[0]->mutable_cpu_data(); 15 | const int count = bottom[0]->count(); 16 | for (int i = 0; i < count; ++i) { 17 | top_data[i] = tanh(bottom_data[i]); 18 | } 19 | } 20 | 21 | template 22 | void TanHLayer::Backward_cpu(const vector*>& top, 23 | const vector& propagate_down, 24 | const vector*>& bottom) { 25 | if (propagate_down[0]) { 26 | const Dtype* top_data = top[0]->cpu_data(); 27 | const Dtype* top_diff = top[0]->cpu_diff(); 28 | Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); 29 | const int count = bottom[0]->count(); 30 | Dtype tanhx; 31 | for (int i = 0; i < count; ++i) { 32 | tanhx = top_data[i]; 33 | bottom_diff[i] = top_diff[i] * (1 - tanhx * tanhx); 34 | } 35 | } 36 | } 37 | 38 | #ifdef CPU_ONLY 39 | STUB_GPU(TanHLayer); 40 | #endif 41 | 42 | INSTANTIATE_CLASS(TanHLayer); 43 | 44 | } // namespace caffe 45 | -------------------------------------------------------------------------------- /src/caffe/layers/threshold_layer.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | void ThresholdLayer::LayerSetUp(const vector*>& bottom, 9 | const vector*>& top) { 10 | NeuronLayer::LayerSetUp(bottom, top); 11 | threshold_ = this->layer_param_.threshold_param().threshold(); 12 | } 13 | 14 | template 15 | void ThresholdLayer::Forward_cpu(const vector*>& bottom, 16 | const vector*>& top) { 17 | const Dtype* bottom_data = bottom[0]->cpu_data(); 18 | Dtype* top_data = top[0]->mutable_cpu_data(); 19 | const int count = bottom[0]->count(); 20 | for (int i = 0; i < count; ++i) { 21 | top_data[i] = (bottom_data[i] > threshold_) ? Dtype(1) : Dtype(0); 22 | } 23 | } 24 | 25 | #ifdef CPU_ONLY 26 | STUB_GPU_FORWARD(ThresholdLayer, Forward); 27 | #endif 28 | 29 | INSTANTIATE_CLASS(ThresholdLayer); 30 | REGISTER_LAYER_CLASS(Threshold); 31 | 32 | } // namespace caffe 33 | -------------------------------------------------------------------------------- /src/caffe/layers/threshold_layer.cu: -------------------------------------------------------------------------------- 1 | #include 2 | 3 | #include "caffe/layers/threshold_layer.hpp" 4 | 5 | namespace caffe { 6 | 7 | template 8 | __global__ void ThresholdForward(const int n, const Dtype threshold, 9 | const Dtype* in, Dtype* out) { 10 | CUDA_KERNEL_LOOP(index, n) { 11 | out[index] = in[index] > threshold ? 1 : 0; 12 | } 13 | } 14 | 15 | template 16 | void ThresholdLayer::Forward_gpu(const vector*>& bottom, 17 | const vector*>& top) { 18 | const Dtype* bottom_data = bottom[0]->gpu_data(); 19 | Dtype* top_data = top[0]->mutable_gpu_data(); 20 | const int count = bottom[0]->count(); 21 | // NOLINT_NEXT_LINE(whitespace/operators) 22 | ThresholdForward<<>>( 23 | count, threshold_, bottom_data, top_data); 24 | CUDA_POST_KERNEL_CHECK; 25 | } 26 | 27 | 28 | INSTANTIATE_LAYER_GPU_FORWARD(ThresholdLayer); 29 | 30 | 31 | } // namespace caffe 32 | -------------------------------------------------------------------------------- /src/caffe/solvers/adadelta_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaDeltaUpdate(int N, Dtype* g, Dtype* h, Dtype* h2, 8 | Dtype momentum, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = momentum * h[i] + (1-momentum) * gi * gi; 12 | gi = gi * sqrt((h2[i] + delta) / (hi + delta)); 13 | h2[i] = momentum * h2[i] + (1-momentum) * gi * gi; 14 | g[i] = local_rate * gi; 15 | } 16 | } 17 | template 18 | void adadelta_update_gpu(int N, Dtype* g, Dtype* h, Dtype* h2, Dtype momentum, 19 | Dtype delta, Dtype local_rate) { 20 | AdaDeltaUpdate // NOLINT_NEXT_LINE(whitespace/operators) 21 | <<>>( 22 | N, g, h, h2, momentum, delta, local_rate); 23 | CUDA_POST_KERNEL_CHECK; 24 | } 25 | template void adadelta_update_gpu(int , float*, float*, float*, 26 | float, float, float); 27 | template void adadelta_update_gpu(int, double*, double*, double*, 28 | double, double, double); 29 | 30 | } // namespace caffe 31 | -------------------------------------------------------------------------------- /src/caffe/solvers/adagrad_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdaGradUpdate(int N, Dtype* g, Dtype* h, Dtype delta, 8 | Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = h[i] + gi*gi; 12 | g[i] = local_rate * gi / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void adagrad_update_gpu(int N, Dtype* g, Dtype* h, Dtype delta, 17 | Dtype local_rate) { 18 | AdaGradUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void adagrad_update_gpu(int, float*, float*, float, float); 24 | template void adagrad_update_gpu(int, double*, double*, double, double); 25 | 26 | } // namespace caffe 27 | -------------------------------------------------------------------------------- /src/caffe/solvers/adam_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void AdamUpdate(int N, Dtype* g, Dtype* m, Dtype* v, 8 | Dtype beta1, Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float mi = m[i] = m[i]*beta1 + gi*(1-beta1); 12 | float vi = v[i] = v[i]*beta2 + gi*gi*(1-beta2); 13 | g[i] = corrected_local_rate * mi / (sqrt(vi) + eps_hat); 14 | } 15 | } 16 | template 17 | void adam_update_gpu(int N, Dtype* g, Dtype* m, Dtype* v, Dtype beta1, 18 | Dtype beta2, Dtype eps_hat, Dtype corrected_local_rate) { 19 | AdamUpdate // NOLINT_NEXT_LINE(whitespace/operators) 20 | <<>>( 21 | N, g, m, v, beta1, beta2, eps_hat, corrected_local_rate); 22 | CUDA_POST_KERNEL_CHECK; 23 | } 24 | template void adam_update_gpu(int, float*, float*, float*, 25 | float, float, float, float); 26 | template void adam_update_gpu(int, double*, double*, double*, 27 | double, double, double, double); 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /src/caffe/solvers/nesterov_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void NesterovUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float hi = h[i]; 11 | float hi_new = h[i] = momentum * hi + local_rate * g[i]; 12 | g[i] = (1+momentum) * hi_new - momentum * hi; 13 | } 14 | } 15 | template 16 | void nesterov_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 17 | Dtype local_rate) { 18 | NesterovUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, momentum, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void nesterov_update_gpu(int, float*, float*, float, float); 24 | template void nesterov_update_gpu(int, double*, double*, double, 25 | double); 26 | 27 | } // namespace caffe 28 | -------------------------------------------------------------------------------- /src/caffe/solvers/rmsprop_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void RMSPropUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype rms_decay, Dtype delta, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | float gi = g[i]; 11 | float hi = h[i] = rms_decay*h[i] + (1-rms_decay)*gi*gi; 12 | g[i] = local_rate * g[i] / (sqrt(hi) + delta); 13 | } 14 | } 15 | template 16 | void rmsprop_update_gpu(int N, Dtype* g, Dtype* h, Dtype rms_decay, 17 | Dtype delta, Dtype local_rate) { 18 | RMSPropUpdate // NOLINT_NEXT_LINE(whitespace/operators) 19 | <<>>( 20 | N, g, h, rms_decay, delta, local_rate); 21 | CUDA_POST_KERNEL_CHECK; 22 | } 23 | template void rmsprop_update_gpu(int, float*, float*, float, float, 24 | float); 25 | template void rmsprop_update_gpu(int, double*, double*, double, double, 26 | double); 27 | 28 | } // namespace caffe 29 | -------------------------------------------------------------------------------- /src/caffe/solvers/sgd_solver.cu: -------------------------------------------------------------------------------- 1 | #include "caffe/util/math_functions.hpp" 2 | 3 | 4 | namespace caffe { 5 | 6 | template 7 | __global__ void SGDUpdate(int N, Dtype* g, Dtype* h, 8 | Dtype momentum, Dtype local_rate) { 9 | CUDA_KERNEL_LOOP(i, N) { 10 | g[i] = h[i] = momentum*h[i] + local_rate*g[i]; 11 | } 12 | } 13 | template 14 | void sgd_update_gpu(int N, Dtype* g, Dtype* h, Dtype momentum, 15 | Dtype local_rate) { 16 | SGDUpdate // NOLINT_NEXT_LINE(whitespace/operators) 17 | <<>>( 18 | N, g, h, momentum, local_rate); 19 | CUDA_POST_KERNEL_CHECK; 20 | } 21 | template void sgd_update_gpu(int, float*, float*, float, float); 22 | template void sgd_update_gpu(int, double*, double*, double, double); 23 | 24 | } // namespace caffe 25 | -------------------------------------------------------------------------------- /src/caffe/test/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # The option allows to include in build only selected test files and exclude all others 2 | # Usage example: 3 | # cmake -DBUILD_only_tests="common,net,blob,im2col_kernel" 4 | set(BUILD_only_tests "" CACHE STRING "Blank or comma-separated list of test files to build without 'test_' prefix and extention") 5 | caffe_leave_only_selected_tests(test_srcs ${BUILD_only_tests}) 6 | caffe_leave_only_selected_tests(test_cuda ${BUILD_only_tests}) 7 | 8 | # For 'make runtest' target we don't need to embed test data paths to 9 | # source files, because test target is executed in source directory 10 | # That's why the lines below are commented. TODO: remove them 11 | 12 | # definition needed to include CMake generated files 13 | #add_definitions(-DCMAKE_BUILD) 14 | 15 | # generates test_data/sample_data_list.txt.gen.cmake 16 | #caffe_configure_testdatafile(test_data/sample_data_list.txt) 17 | 18 | set(the_target test.testbin) 19 | set(test_args --gtest_shuffle) 20 | 21 | if(HAVE_CUDA) 22 | caffe_cuda_compile(test_cuda_objs ${test_cuda}) 23 | list(APPEND test_srcs ${test_cuda_objs} ${test_cuda}) 24 | else() 25 | list(APPEND test_args --gtest_filter="-*GPU*") 26 | endif() 27 | 28 | # ---[ Adding test target 29 | add_executable(${the_target} EXCLUDE_FROM_ALL ${test_srcs}) 30 | target_link_libraries(${the_target} gtest ${Caffe_LINK}) 31 | caffe_default_properties(${the_target}) 32 | caffe_set_runtime_directory(${the_target} "${PROJECT_BINARY_DIR}/test") 33 | 34 | # ---[ Adding runtest 35 | add_custom_target(runtest COMMAND ${the_target} ${test_args} 36 | WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}) 37 | -------------------------------------------------------------------------------- /src/caffe/test/test_caffe_main.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | #include "caffe/test/test_caffe_main.hpp" 3 | 4 | namespace caffe { 5 | #ifndef CPU_ONLY 6 | cudaDeviceProp CAFFE_TEST_CUDA_PROP; 7 | #endif 8 | } 9 | 10 | #ifndef CPU_ONLY 11 | using caffe::CAFFE_TEST_CUDA_PROP; 12 | #endif 13 | 14 | int main(int argc, char** argv) { 15 | ::testing::InitGoogleTest(&argc, argv); 16 | caffe::GlobalInit(&argc, &argv); 17 | #ifndef CPU_ONLY 18 | // Before starting testing, let's first print out a few cuda defice info. 19 | int device; 20 | cudaGetDeviceCount(&device); 21 | cout << "Cuda number of devices: " << device << endl; 22 | if (argc > 1) { 23 | // Use the given device 24 | device = atoi(argv[1]); 25 | cudaSetDevice(device); 26 | cout << "Setting to use device " << device << endl; 27 | } else if (CUDA_TEST_DEVICE >= 0) { 28 | // Use the device assigned in build configuration; but with a lower priority 29 | device = CUDA_TEST_DEVICE; 30 | } 31 | cudaGetDevice(&device); 32 | cout << "Current device id: " << device << endl; 33 | cudaGetDeviceProperties(&CAFFE_TEST_CUDA_PROP, device); 34 | cout << "Current device name: " << CAFFE_TEST_CUDA_PROP.name << endl; 35 | #endif 36 | // invoke the test. 37 | return RUN_ALL_TESTS(); 38 | } 39 | -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/src/caffe/test/test_data/sample_data.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data_2_gzip.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/src/caffe/test/test_data/sample_data_2_gzip.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/sample_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/sample_data.h5 2 | src/caffe/test/test_data/sample_data_2_gzip.h5 3 | -------------------------------------------------------------------------------- /src/caffe/test/test_data/solver_data.h5: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gaopeng-eugene/real-time-instance-segmentation/7a46a76ea30b5d98463eff4db0dfae8b1c7f0845/src/caffe/test/test_data/solver_data.h5 -------------------------------------------------------------------------------- /src/caffe/test/test_data/solver_data_list.txt: -------------------------------------------------------------------------------- 1 | src/caffe/test/test_data/solver_data.h5 2 | -------------------------------------------------------------------------------- /src/caffe/test/test_internal_thread.cpp: -------------------------------------------------------------------------------- 1 | #include "glog/logging.h" 2 | #include "gtest/gtest.h" 3 | 4 | #include "caffe/internal_thread.hpp" 5 | #include "caffe/util/math_functions.hpp" 6 | 7 | #include "caffe/test/test_caffe_main.hpp" 8 | 9 | namespace caffe { 10 | 11 | 12 | class InternalThreadTest : public ::testing::Test {}; 13 | 14 | TEST_F(InternalThreadTest, TestStartAndExit) { 15 | InternalThread thread; 16 | EXPECT_FALSE(thread.is_started()); 17 | thread.StartInternalThread(); 18 | EXPECT_TRUE(thread.is_started()); 19 | thread.StopInternalThread(); 20 | EXPECT_FALSE(thread.is_started()); 21 | } 22 | 23 | class TestThreadA : public InternalThread { 24 | void InternalThreadEntry() { 25 | EXPECT_EQ(4244559767, caffe_rng_rand()); 26 | } 27 | }; 28 | 29 | class TestThreadB : public InternalThread { 30 | void InternalThreadEntry() { 31 | EXPECT_EQ(1726478280, caffe_rng_rand()); 32 | } 33 | }; 34 | 35 | TEST_F(InternalThreadTest, TestRandomSeed) { 36 | TestThreadA t1; 37 | Caffe::set_random_seed(9658361); 38 | t1.StartInternalThread(); 39 | t1.StopInternalThread(); 40 | 41 | TestThreadA t2; 42 | Caffe::set_random_seed(9658361); 43 | t2.StartInternalThread(); 44 | t2.StopInternalThread(); 45 | 46 | TestThreadB t3; 47 | Caffe::set_random_seed(3435563); 48 | t3.StartInternalThread(); 49 | t3.StopInternalThread(); 50 | } 51 | 52 | } // namespace caffe 53 | 54 | -------------------------------------------------------------------------------- /src/caffe/test/test_layer_factory.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "boost/scoped_ptr.hpp" 5 | #include "gtest/gtest.h" 6 | 7 | #include "caffe/common.hpp" 8 | #include "caffe/layer.hpp" 9 | #include "caffe/layer_factory.hpp" 10 | #include "caffe/util/db.hpp" 11 | #include "caffe/util/io.hpp" 12 | 13 | #include "caffe/test/test_caffe_main.hpp" 14 | 15 | namespace caffe { 16 | 17 | template 18 | class LayerFactoryTest : public MultiDeviceTest {}; 19 | 20 | TYPED_TEST_CASE(LayerFactoryTest, TestDtypesAndDevices); 21 | 22 | TYPED_TEST(LayerFactoryTest, TestCreateLayer) { 23 | typedef typename TypeParam::Dtype Dtype; 24 | typename LayerRegistry::CreatorRegistry& registry = 25 | LayerRegistry::Registry(); 26 | shared_ptr > layer; 27 | for (typename LayerRegistry::CreatorRegistry::iterator iter = 28 | registry.begin(); iter != registry.end(); ++iter) { 29 | // Special case: PythonLayer is checked by pytest 30 | if (iter->first == "Python") { continue; } 31 | LayerParameter layer_param; 32 | // Data layers expect a DB 33 | if (iter->first == "Data" || iter->first == "AnnotatedData") { 34 | #ifdef USE_LEVELDB 35 | string tmp; 36 | MakeTempDir(&tmp); 37 | boost::scoped_ptr db(db::GetDB(DataParameter_DB_LEVELDB)); 38 | db->Open(tmp, db::NEW); 39 | db->Close(); 40 | layer_param.mutable_data_param()->set_source(tmp); 41 | #else 42 | continue; 43 | #endif // USE_LEVELDB 44 | } 45 | layer_param.set_type(iter->first); 46 | layer = LayerRegistry::CreateLayer(layer_param); 47 | EXPECT_EQ(iter->first, layer->type()); 48 | } 49 | } 50 | 51 | } // namespace caffe 52 | -------------------------------------------------------------------------------- /src/caffe/test/test_protobuf.cpp: -------------------------------------------------------------------------------- 1 | // This is simply a script that tries serializing protocol buffer in text 2 | // format. Nothing special here and no actual code is being tested. 3 | #include 4 | 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/proto/caffe.pb.h" 9 | 10 | #include "caffe/test/test_caffe_main.hpp" 11 | 12 | namespace caffe { 13 | 14 | class ProtoTest : public ::testing::Test {}; 15 | 16 | TEST_F(ProtoTest, TestSerialization) { 17 | LayerParameter param; 18 | param.set_name("test"); 19 | param.set_type("Test"); 20 | std::cout << "Printing in binary format." << std::endl; 21 | std::cout << param.SerializeAsString() << std::endl; 22 | std::cout << "Printing in text format." << std::endl; 23 | std::string str; 24 | google::protobuf::TextFormat::PrintToString(param, &str); 25 | std::cout << str << std::endl; 26 | EXPECT_TRUE(true); 27 | } 28 | 29 | } // namespace caffe 30 | -------------------------------------------------------------------------------- /src/caffe/test/test_solver_factory.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | #include "boost/scoped_ptr.hpp" 5 | #include "google/protobuf/text_format.h" 6 | #include "gtest/gtest.h" 7 | 8 | #include "caffe/common.hpp" 9 | #include "caffe/solver.hpp" 10 | #include "caffe/solver_factory.hpp" 11 | 12 | #include "caffe/test/test_caffe_main.hpp" 13 | 14 | namespace caffe { 15 | 16 | template 17 | class SolverFactoryTest : public MultiDeviceTest { 18 | protected: 19 | SolverParameter simple_solver_param() { 20 | const string solver_proto = 21 | "train_net_param { " 22 | " layer { " 23 | " name: 'data' type: 'DummyData' top: 'data' " 24 | " dummy_data_param { shape { dim: 1 } } " 25 | " } " 26 | "} "; 27 | SolverParameter solver_param; 28 | CHECK(google::protobuf::TextFormat::ParseFromString( 29 | solver_proto, &solver_param)); 30 | return solver_param; 31 | } 32 | }; 33 | 34 | TYPED_TEST_CASE(SolverFactoryTest, TestDtypesAndDevices); 35 | 36 | TYPED_TEST(SolverFactoryTest, TestCreateSolver) { 37 | typedef typename TypeParam::Dtype Dtype; 38 | typename SolverRegistry::CreatorRegistry& registry = 39 | SolverRegistry::Registry(); 40 | shared_ptr > solver; 41 | SolverParameter solver_param = this->simple_solver_param(); 42 | for (typename SolverRegistry::CreatorRegistry::iterator iter = 43 | registry.begin(); iter != registry.end(); ++iter) { 44 | solver_param.set_type(iter->first); 45 | solver.reset(SolverRegistry::CreateSolver(solver_param)); 46 | EXPECT_EQ(iter->first, solver->type()); 47 | } 48 | } 49 | 50 | } // namespace caffe 51 | -------------------------------------------------------------------------------- /src/caffe/util/cudnn.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_CUDNN 2 | #include "caffe/util/cudnn.hpp" 3 | 4 | namespace caffe { 5 | namespace cudnn { 6 | 7 | float dataType::oneval = 1.0; 8 | float dataType::zeroval = 0.0; 9 | const void* dataType::one = 10 | static_cast(&dataType::oneval); 11 | const void* dataType::zero = 12 | static_cast(&dataType::zeroval); 13 | 14 | double dataType::oneval = 1.0; 15 | double dataType::zeroval = 0.0; 16 | const void* dataType::one = 17 | static_cast(&dataType::oneval); 18 | const void* dataType::zero = 19 | static_cast(&dataType::zeroval); 20 | 21 | } // namespace cudnn 22 | } // namespace caffe 23 | #endif 24 | -------------------------------------------------------------------------------- /src/caffe/util/db.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/util/db.hpp" 2 | #include "caffe/util/db_leveldb.hpp" 3 | #include "caffe/util/db_lmdb.hpp" 4 | 5 | #include 6 | 7 | namespace caffe { namespace db { 8 | 9 | DB* GetDB(DataParameter::DB backend) { 10 | switch (backend) { 11 | #ifdef USE_LEVELDB 12 | case DataParameter_DB_LEVELDB: 13 | return new LevelDB(); 14 | #endif // USE_LEVELDB 15 | #ifdef USE_LMDB 16 | case DataParameter_DB_LMDB: 17 | return new LMDB(); 18 | #endif // USE_LMDB 19 | default: 20 | LOG(FATAL) << "Unknown database backend"; 21 | return NULL; 22 | } 23 | } 24 | 25 | DB* GetDB(const string& backend) { 26 | #ifdef USE_LEVELDB 27 | if (backend == "leveldb") { 28 | return new LevelDB(); 29 | } 30 | #endif // USE_LEVELDB 31 | #ifdef USE_LMDB 32 | if (backend == "lmdb") { 33 | return new LMDB(); 34 | } 35 | #endif // USE_LMDB 36 | LOG(FATAL) << "Unknown database backend"; 37 | return NULL; 38 | } 39 | 40 | } // namespace db 41 | } // namespace caffe 42 | -------------------------------------------------------------------------------- /src/caffe/util/db_leveldb.cpp: -------------------------------------------------------------------------------- 1 | #ifdef USE_LEVELDB 2 | #include "caffe/util/db_leveldb.hpp" 3 | 4 | #include 5 | 6 | namespace caffe { namespace db { 7 | 8 | void LevelDB::Open(const string& source, Mode mode) { 9 | leveldb::Options options; 10 | options.block_size = 65536; 11 | options.write_buffer_size = 268435456; 12 | options.max_open_files = 100; 13 | options.error_if_exists = mode == NEW; 14 | options.create_if_missing = mode != READ; 15 | leveldb::Status status = leveldb::DB::Open(options, source, &db_); 16 | CHECK(status.ok()) << "Failed to open leveldb " << source 17 | << std::endl << status.ToString(); 18 | LOG(INFO) << "Opened leveldb " << source; 19 | } 20 | 21 | } // namespace db 22 | } // namespace caffe 23 | #endif // USE_LEVELDB 24 | -------------------------------------------------------------------------------- /src/gtest/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | add_library(gtest STATIC EXCLUDE_FROM_ALL gtest.h gtest-all.cpp) 2 | caffe_default_properties(gtest) 3 | 4 | #add_library(gtest_main gtest_main.cc) 5 | #target_link_libraries(gtest_main gtest) 6 | -------------------------------------------------------------------------------- /tools/.convert_annoset.cpp.swp: -------------------------------------------------------------------------------- 1 | b0nano 2.4.2]Ugaopenggaopeng-Lenovo-ideapad-Y700-15Itools/convert_annoset.cpp -------------------------------------------------------------------------------- /tools/CMakeLists.txt: -------------------------------------------------------------------------------- 1 | # Collect source files 2 | file(GLOB_RECURSE srcs ${CMAKE_CURRENT_SOURCE_DIR}/*.cpp) 3 | 4 | # Build each source file independently 5 | foreach(source ${srcs}) 6 | get_filename_component(name ${source} NAME_WE) 7 | 8 | # caffe target already exits 9 | if(name MATCHES "caffe") 10 | set(name ${name}.bin) 11 | endif() 12 | 13 | # target 14 | add_executable(${name} ${source}) 15 | target_link_libraries(${name} ${Caffe_LINK}) 16 | caffe_default_properties(${name}) 17 | 18 | # set back RUNTIME_OUTPUT_DIRECTORY 19 | caffe_set_runtime_directory(${name} "${PROJECT_BINARY_DIR}/tools") 20 | caffe_set_solution_folder(${name} tools) 21 | 22 | # restore output name without suffix 23 | if(name MATCHES "caffe.bin") 24 | set_target_properties(${name} PROPERTIES OUTPUT_NAME caffe) 25 | endif() 26 | 27 | # Install 28 | install(TARGETS ${name} DESTINATION bin) 29 | endforeach(source) 30 | -------------------------------------------------------------------------------- /tools/device_query.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/common.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe device_query " 5 | "[--device_id=0] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /tools/extra/launch_resize_and_crop_images.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | #### https://github.com/Yangqing/mincepie/wiki/Launch-Your-Mapreducer 3 | 4 | # If you encounter error that the address already in use, kill the process. 5 | # 11235 is the port of server process 6 | # https://github.com/Yangqing/mincepie/blob/master/mincepie/mince.py 7 | # sudo netstat -ap | grep 11235 8 | # The last column of the output is PID/Program name 9 | # kill -9 PID 10 | # Second solution: 11 | # nmap localhost 12 | # fuser -k 11235/tcp 13 | # Or just wait a few seconds. 14 | 15 | ## Launch your Mapreduce locally 16 | # num_clients: number of processes 17 | # image_lib: OpenCV or PIL, case insensitive. The default value is the faster OpenCV. 18 | # input: the file containing one image path relative to input_folder each line 19 | # input_folder: where are the original images 20 | # output_folder: where to save the resized and cropped images 21 | ./resize_and_crop_images.py --num_clients=8 --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 22 | 23 | ## Launch your Mapreduce with MPI 24 | # mpirun -n 8 --launch=mpi resize_and_crop_images.py --image_lib=opencv --input=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images.txt --input_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train/ --output_folder=/home/user/Datasets/ImageNet/ILSVRC2010/ILSVRC2010_images_train_resized/ 25 | -------------------------------------------------------------------------------- /tools/finetune_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--weights=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /tools/net_speed_benchmark.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe time --model=... " 5 | "[--iterations=50] [--gpu] [--device_id=0]"; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /tools/test_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe test --model=... " 5 | "--weights=... instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /tools/train_net.cpp: -------------------------------------------------------------------------------- 1 | #include "caffe/caffe.hpp" 2 | 3 | int main(int argc, char** argv) { 4 | LOG(FATAL) << "Deprecated. Use caffe train --solver=... " 5 | "[--snapshot=...] instead."; 6 | return 0; 7 | } 8 | -------------------------------------------------------------------------------- /tools/upgrade_net_proto_binary.cpp: -------------------------------------------------------------------------------- 1 | // This is a script to upgrade "V0" network prototxts to the new format. 2 | // Usage: 3 | // upgrade_net_proto_binary v0_net_proto_file_in net_proto_file_out 4 | 5 | #include 6 | #include // NOLINT(readability/streams) 7 | #include // NOLINT(readability/streams) 8 | #include 9 | 10 | #include "caffe/caffe.hpp" 11 | #include "caffe/util/io.hpp" 12 | #include "caffe/util/upgrade_proto.hpp" 13 | 14 | using std::ofstream; 15 | 16 | using namespace caffe; // NOLINT(build/namespaces) 17 | 18 | int main(int argc, char** argv) { 19 | FLAGS_alsologtostderr = 1; // Print output to stderr (while still logging) 20 | ::google::InitGoogleLogging(argv[0]); 21 | if (argc != 3) { 22 | LOG(ERROR) << "Usage: " 23 | << "upgrade_net_proto_binary v0_net_proto_file_in net_proto_file_out"; 24 | return 1; 25 | } 26 | 27 | NetParameter net_param; 28 | string input_filename(argv[1]); 29 | if (!ReadProtoFromBinaryFile(input_filename, &net_param)) { 30 | LOG(ERROR) << "Failed to parse input binary file as NetParameter: " 31 | << input_filename; 32 | return 2; 33 | } 34 | bool need_upgrade = NetNeedsUpgrade(net_param); 35 | bool success = true; 36 | if (need_upgrade) { 37 | success = UpgradeNetAsNeeded(input_filename, &net_param); 38 | if (!success) { 39 | LOG(ERROR) << "Encountered error(s) while upgrading prototxt; " 40 | << "see details above."; 41 | } 42 | } else { 43 | LOG(ERROR) << "File already in latest proto format: " << input_filename; 44 | } 45 | 46 | WriteProtoToBinaryFile(net_param, argv[2]); 47 | 48 | LOG(INFO) << "Wrote upgraded NetParameter binary proto to " << argv[2]; 49 | return !success; 50 | } 51 | -------------------------------------------------------------------------------- /tools/upgrade_net_proto_text.cpp: -------------------------------------------------------------------------------- 1 | // This is a script to upgrade "V0" network prototxts to the new format. 2 | // Usage: 3 | // upgrade_net_proto_text v0_net_proto_file_in net_proto_file_out 4 | 5 | #include 6 | #include // NOLINT(readability/streams) 7 | #include // NOLINT(readability/streams) 8 | #include 9 | 10 | #include "caffe/caffe.hpp" 11 | #include "caffe/util/io.hpp" 12 | #include "caffe/util/upgrade_proto.hpp" 13 | 14 | using std::ofstream; 15 | 16 | using namespace caffe; // NOLINT(build/namespaces) 17 | 18 | int main(int argc, char** argv) { 19 | FLAGS_alsologtostderr = 1; // Print output to stderr (while still logging) 20 | ::google::InitGoogleLogging(argv[0]); 21 | if (argc != 3) { 22 | LOG(ERROR) << "Usage: " 23 | << "upgrade_net_proto_text v0_net_proto_file_in net_proto_file_out"; 24 | return 1; 25 | } 26 | 27 | NetParameter net_param; 28 | string input_filename(argv[1]); 29 | if (!ReadProtoFromTextFile(input_filename, &net_param)) { 30 | LOG(ERROR) << "Failed to parse input text file as NetParameter: " 31 | << input_filename; 32 | return 2; 33 | } 34 | bool need_upgrade = NetNeedsUpgrade(net_param); 35 | bool success = true; 36 | if (need_upgrade) { 37 | success = UpgradeNetAsNeeded(input_filename, &net_param); 38 | if (!success) { 39 | LOG(ERROR) << "Encountered error(s) while upgrading prototxt; " 40 | << "see details above."; 41 | } 42 | } else { 43 | LOG(ERROR) << "File already in latest proto format: " << input_filename; 44 | } 45 | 46 | // Save new format prototxt. 47 | WriteProtoToTextFile(net_param, argv[2]); 48 | 49 | LOG(INFO) << "Wrote upgraded NetParameter text proto to " << argv[2]; 50 | return !success; 51 | } 52 | --------------------------------------------------------------------------------