├── BilateralFilter.cpp ├── BilateralFilter.h ├── BilateralFilter.mexa64 ├── BilateralFilter.mexw64 ├── FastGlobalSmoothing.cpp ├── FastGlobalSmoothing.h ├── FastGlobalSmoothing.mexa64 ├── FastGlobalSmoothing.mexw64 ├── GuidedFilter.cpp ├── GuidedFilter.h ├── GuidedFilter.mexa64 ├── GuidedFilter.mexw64 ├── NoiseVarianceEstimation.cpp ├── README.md ├── demo.cpp ├── demo.m ├── demorgb.cpp ├── result.png ├── stb ├── .github │ ├── CONTRIBUTING.md │ └── PULL_REQUEST_TEMPLATE.md ├── .travis.yml ├── stb_image.h └── stb_image_write.h └── stripes.png /BilateralFilter.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | 6 | #ifdef MATLAB_MEX_FILE // if compiled as a MEX-file 7 | #include "mex.h" 8 | #include 9 | #include "BilateralFilter.h" 10 | 11 | // Bilateral filtering MEX-gateway 12 | // output_image = BilateralFilter(input_image, sigma_s, sigma_r); 13 | 14 | void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 15 | { 16 | if(nrhs < 3) 17 | { 18 | mexErrMsgTxt("GF must be called with 3 arguments."); 19 | } 20 | 21 | const mxArray *img_input = prhs[0]; // input images 22 | mxArray *img_output = plhs[0] = mxDuplicateArray(img_input); // output images 23 | void *ptr_input, *ptr_output; 24 | mxClassID category = mxGetClassID(img_input); 25 | switch (category) 26 | { 27 | case mxUINT8_CLASS: 28 | ptr_input = (uint8_t*)mxGetPr(img_input); 29 | ptr_output = (uint8_t*)mxGetPr(img_output); break; 30 | case mxUINT16_CLASS: 31 | ptr_input = (uint16_t*)mxGetPr(img_input); 32 | ptr_output = (uint16_t*)mxGetPr(img_output); break; 33 | case mxSINGLE_CLASS: 34 | ptr_input = (float*)mxGetPr(img_input); 35 | ptr_output = (float*)mxGetPr(img_output); break; 36 | case mxDOUBLE_CLASS: 37 | ptr_input = (double*)mxGetPr(img_input); 38 | ptr_output = (double*)mxGetPr(img_output); break; 39 | default: mexErrMsgTxt("Expected input image to be one of these types:\n\nuint8, uint16, single, double"); 40 | } 41 | 42 | // image resolution 43 | int width = mxGetDimensions(img_input)[1]; 44 | int height = mxGetDimensions(img_input)[0]; 45 | int nChannels = (mxGetNumberOfDimensions(img_input) > 2)?(mxGetDimensions(img_input)[2]):1; 46 | 47 | // Bilateral filter parameters 48 | float sigma_s = mxGetScalar(prhs[1]); 49 | float sigma_r = mxGetScalar(prhs[2]); 50 | 51 | mexPrintf("Image resolution: %d x %d x %d\n", width, height, nChannels); 52 | mexPrintf("Parameters:\n"); 53 | mexPrintf(" spatial sigma = %f\n", sigma_s); 54 | mexPrintf(" range sigma = %f\n", sigma_r); 55 | 56 | // Image buffer preperation 57 | float* image = (float*)malloc(width*height*nChannels*sizeof(float)); 58 | 59 | switch (category) 60 | { 61 | case mxUINT8_CLASS: 62 | for (int i = 0; i < height; ++i) 63 | for (int j = 0; j < width; ++j) 64 | for (int c = 0; c < nChannels; ++c) 65 | image[c*height*width + i*width + j] = (float)(((uint8_t*)ptr_input)[j*height + i + c*height*width])/255; 66 | break; 67 | case mxUINT16_CLASS: 68 | for (int i = 0; i < height; ++i) 69 | for (int j = 0; j < width; ++j) 70 | for (int c = 0; c < nChannels; ++c) 71 | image[c*height*width + i*width + j] = (float)(((uint16_t*)ptr_input)[j*height + i + c*height*width])/65535; 72 | break; 73 | case mxSINGLE_CLASS: 74 | for (int i = 0; i < height; ++i) 75 | for (int j = 0; j < width; ++j) 76 | for (int c = 0; c < nChannels; ++c) 77 | image[c*height*width + i*width + j] = (float)(((float*)ptr_input)[j*height + i + c*height*width]); 78 | break; 79 | case mxDOUBLE_CLASS: 80 | for (int i = 0; i < height; ++i) 81 | for (int j = 0; j < width; ++j) 82 | for (int c = 0; c < nChannels; ++c) 83 | image[c*height*width + i*width + j] = (float)(((double*)ptr_input)[j*height + i + c*height*width]); 84 | break; 85 | } 86 | 87 | for(int i = 0;i < height*width*nChannels; ++i) 88 | { 89 | if (image[i]*(image[i] - 1.0) > 0.0) 90 | mexErrMsgTxt("Intensity value must be between 0 and 1."); 91 | } 92 | 93 | 94 | clock_t m_begin = clock(); // time measurement; 95 | for (int c = 0; c < nChannels; ++c) 96 | { 97 | BilateralFilter(&image[c*width*height], width, height, sigma_s, sigma_r); 98 | } 99 | mexPrintf("Elapsed time is %f seconds.\n", double(clock() - m_begin)/CLOCKS_PER_SEC); 100 | 101 | 102 | // output conversion 103 | switch (category) 104 | { 105 | case mxUINT8_CLASS: 106 | for (int i = 0; i < height; ++i) 107 | for (int j = 0; j < width; ++j) 108 | for (int c = 0; c < nChannels; ++c) 109 | ((uint8_t*)ptr_output)[j*height + i + c*height*width] = (uint8_t)(image[c*height*width + i*width + j]*255 + 0.5); 110 | break; 111 | case mxUINT16_CLASS: 112 | for (int i = 0; i < height; ++i) 113 | for (int j = 0; j < width; ++j) 114 | for (int c = 0; c < nChannels; ++c) 115 | ((uint16_t*)ptr_output)[j*height + i + c*height*width] = (uint16_t)(image[c*height*width + i*width + j]*65535 + 0.5); 116 | break; 117 | case mxSINGLE_CLASS: 118 | for (int i = 0; i < height; ++i) 119 | for (int j = 0; j < width; ++j) 120 | for (int c = 0; c < nChannels; ++c) 121 | ((float*)ptr_output)[j*height + i + c*height*width] = (float)(image[c*height*width + i*width + j]); 122 | break; 123 | case mxDOUBLE_CLASS: 124 | for (int i = 0; i < height; ++i) 125 | for (int j = 0; j < width; ++j) 126 | for (int c = 0; c < nChannels; ++c) 127 | ((double*)ptr_output)[j*height + i + c*height*width] = (double)(image[c*height*width + i*width + j]); 128 | break; 129 | } 130 | free(image); 131 | } 132 | #endif // MATLAB_MEX_FILE 133 | 134 | /* 135 | * Bilateral filtering 136 | * 137 | * image image buffer of size width*height (float) 138 | * width image width 139 | * height image height 140 | * sigma_s spatial sigma 141 | * sigma_r range sigma 142 | */ 143 | 144 | int BilateralFilter(float* image, int width, int height, float sigma_s, float sigma_r) 145 | { 146 | int px, sz = width*height; 147 | int i, j, k, l, imin, imax, jmin, jmax, r; 148 | float sum1, sum2, bf; 149 | 150 | if (image == NULL) 151 | { 152 | return 1; 153 | } 154 | for (px = 0; px < sz; ++px) 155 | { 156 | // restrict the pixel value within 0 and 1 157 | if (image[px]*(image[px] - 1.0) > 0.0) 158 | return 1; 159 | } 160 | 161 | r = ceil(2.0*sigma_s) + 1; 162 | if (r >= 10) 163 | r = 10; 164 | 165 | float* spatial_filter = (float*)malloc((2*r + 1)*(2*r + 1)*sizeof(float)); 166 | float* image_bf = (float*)malloc(sz*sizeof(float)); 167 | 168 | for (k = -r;k <= r; ++k) 169 | { 170 | for (l = -r;l <= r; ++l) 171 | { 172 | spatial_filter[(k + r)*(2*r + 1) + l + r] 173 | = exp(-(float)(k*k + l*l)/(2.0*sigma_s*sigma_s)); 174 | } 175 | } 176 | 177 | for (i = 0;i < height; ++i) 178 | { 179 | for (j = 0;j < width; ++j) 180 | { 181 | imin = (i - r > 0)?(i - r):0; 182 | imax = (i + r < height)?(i + r):(height - 1); 183 | jmin = (j - r > 0)?(j - r):0; 184 | jmax = (j + r < width)?(j + r):(width - 1); 185 | 186 | sum1 = 0.0; 187 | sum2 = 0.0; 188 | for (k = imin - i;k <= imax - i; ++k) 189 | { 190 | for (l = jmin - j;l <= jmax - j; ++l) 191 | { 192 | bf = image[(i + k)*width + j + l] - image[i*width + j]; 193 | bf = bf/sigma_r; 194 | bf = exp(-0.5*bf*bf); 195 | bf *= spatial_filter[(k + r)*(2*r + 1) + l + r]; 196 | sum1 += image[(i + k)*width + j + l]*bf; 197 | sum2 += bf; 198 | } 199 | } 200 | image_bf[i*width + j] = sum1/sum2; 201 | } 202 | } 203 | memcpy(image, image_bf, sz*sizeof(float)); 204 | 205 | // clip the value 206 | for (px = 0; px < sz; ++px) 207 | { 208 | if(image[px] < 0.0) 209 | image[px] = 0.0; 210 | if(image[px] > 1.0) 211 | image[px] = 1.0; 212 | } 213 | 214 | free(spatial_filter); 215 | free(image_bf); 216 | return 0; 217 | } -------------------------------------------------------------------------------- /BilateralFilter.h: -------------------------------------------------------------------------------- 1 | #ifndef _BF_H_ 2 | #define _BF_H_ 3 | 4 | // naive bilateral filter 5 | 6 | int BilateralFilter(float* image, int width, int height, float sigma_s, float sigma_r); 7 | 8 | #endif -------------------------------------------------------------------------------- /BilateralFilter.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/BilateralFilter.mexa64 -------------------------------------------------------------------------------- /BilateralFilter.mexw64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/BilateralFilter.mexw64 -------------------------------------------------------------------------------- /FastGlobalSmoothing.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | 6 | #define BINNUM 256 7 | float BLFKernel[BINNUM]; 8 | float *a1_vec, *b1_vec, *c1_vec, *a2_vec, *b2_vec, *c2_vec; 9 | 10 | #ifdef MATLAB_MEX_FILE // if compiled as a MEX-file 11 | #include "mex.h" 12 | #include 13 | #include "FastGlobalSmoothing.h" 14 | 15 | // Fast global smoothing MEX-gateway 16 | // output_image = FastGlobalSmoothing(input_image, sigma, lambda, solver_iteration); 17 | 18 | void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 19 | { 20 | if(nrhs < 3) 21 | { 22 | mexErrMsgTxt("FGS must be called with 3 arguments."); 23 | } 24 | 25 | const mxArray *img_input = prhs[0]; // input images 26 | mxArray *img_output = plhs[0] = mxDuplicateArray(img_input); // output images 27 | void *ptr_input, *ptr_output; 28 | mxClassID category = mxGetClassID(img_input); 29 | switch (category) 30 | { 31 | case mxUINT8_CLASS: 32 | ptr_input = (uint8_t*)mxGetPr(img_input); 33 | ptr_output = (uint8_t*)mxGetPr(img_output); break; 34 | case mxUINT16_CLASS: 35 | ptr_input = (uint16_t*)mxGetPr(img_input); 36 | ptr_output = (uint16_t*)mxGetPr(img_output); break; 37 | case mxSINGLE_CLASS: 38 | ptr_input = (float*)mxGetPr(img_input); 39 | ptr_output = (float*)mxGetPr(img_output); break; 40 | case mxDOUBLE_CLASS: 41 | ptr_input = (double*)mxGetPr(img_input); 42 | ptr_output = (double*)mxGetPr(img_output); break; 43 | default: mexErrMsgTxt("Expected input image to be one of these types:\n\nuint8, uint16, single, double"); 44 | } 45 | 46 | // image resolution 47 | int width = mxGetDimensions(img_input)[1]; 48 | int height = mxGetDimensions(img_input)[0]; 49 | int nChannels = (mxGetNumberOfDimensions(img_input) > 2)?(mxGetDimensions(img_input)[2]):1; 50 | 51 | // FGS parameters 52 | float sigma = mxGetScalar(prhs[1]); 53 | float lambda = mxGetScalar(prhs[2]); 54 | int solver_iteration = (nrhs > 3)?(int)mxGetScalar(prhs[3]):3; 55 | 56 | mexPrintf("Image resolution: %d x %d x %d\n", width, height, nChannels); 57 | mexPrintf("Parameters:\n"); 58 | mexPrintf(" Sigma = %f\n", sigma); 59 | mexPrintf(" Lambda = %f\n", lambda); 60 | mexPrintf(" Iteration = %d\n", solver_iteration); 61 | 62 | // Image buffer preperation 63 | float* image = (float*)malloc(width*height*nChannels*sizeof(float)); 64 | 65 | switch (category) 66 | { 67 | case mxUINT8_CLASS: 68 | for (int i = 0; i < height; ++i) 69 | for (int j = 0; j < width; ++j) 70 | for (int c = 0; c < nChannels; ++c) 71 | image[c*height*width + i*width + j] = (float)(((uint8_t*)ptr_input)[j*height + i + c*height*width])/255; 72 | break; 73 | case mxUINT16_CLASS: 74 | for (int i = 0; i < height; ++i) 75 | for (int j = 0; j < width; ++j) 76 | for (int c = 0; c < nChannels; ++c) 77 | image[c*height*width + i*width + j] = (float)(((uint16_t*)ptr_input)[j*height + i + c*height*width])/65535; 78 | break; 79 | case mxSINGLE_CLASS: 80 | for (int i = 0; i < height; ++i) 81 | for (int j = 0; j < width; ++j) 82 | for (int c = 0; c < nChannels; ++c) 83 | image[c*height*width + i*width + j] = (float)(((float*)ptr_input)[j*height + i + c*height*width]); 84 | break; 85 | case mxDOUBLE_CLASS: 86 | for (int i = 0; i < height; ++i) 87 | for (int j = 0; j < width; ++j) 88 | for (int c = 0; c < nChannels; ++c) 89 | image[c*height*width + i*width + j] = (float)(((double*)ptr_input)[j*height + i + c*height*width]); 90 | break; 91 | } 92 | 93 | for(int i = 0;i < height*width*nChannels; ++i) 94 | { 95 | if (image[i]*(image[i] - 1.0) > 0.0) 96 | mexErrMsgTxt("Intensity value must be between 0 and 1."); 97 | } 98 | 99 | InitFGS(width, height); 100 | clock_t m_begin = clock(); // time measurement; 101 | for (int c = 0; c < nChannels; ++c) 102 | { 103 | FastGlobalSmoothing(&image[c*width*height], width, height, sigma, lambda, solver_iteration); 104 | } 105 | mexPrintf("Elapsed time is %f seconds.\n", double(clock() - m_begin)/CLOCKS_PER_SEC); 106 | DeinitFGS(); 107 | 108 | // output conversion 109 | switch (category) 110 | { 111 | case mxUINT8_CLASS: 112 | for (int i = 0; i < height; ++i) 113 | for (int j = 0; j < width; ++j) 114 | for (int c = 0; c < nChannels; ++c) 115 | ((uint8_t*)ptr_output)[j*height + i + c*height*width] = (uint8_t)(image[c*height*width + i*width + j]*255 + 0.5); 116 | break; 117 | case mxUINT16_CLASS: 118 | for (int i = 0; i < height; ++i) 119 | for (int j = 0; j < width; ++j) 120 | for (int c = 0; c < nChannels; ++c) 121 | ((uint16_t*)ptr_output)[j*height + i + c*height*width] = (uint16_t)(image[c*height*width + i*width + j]*65535 + 0.5); 122 | break; 123 | case mxSINGLE_CLASS: 124 | for (int i = 0; i < height; ++i) 125 | for (int j = 0; j < width; ++j) 126 | for (int c = 0; c < nChannels; ++c) 127 | ((float*)ptr_output)[j*height + i + c*height*width] = (float)(image[c*height*width + i*width + j]); 128 | break; 129 | case mxDOUBLE_CLASS: 130 | for (int i = 0; i < height; ++i) 131 | for (int j = 0; j < width; ++j) 132 | for (int c = 0; c < nChannels; ++c) 133 | ((double*)ptr_output)[j*height + i + c*height*width] = (double)(image[c*height*width + i*width + j]); 134 | break; 135 | } 136 | free(image); 137 | } 138 | #endif // MATLAB_MEX_FILE 139 | 140 | /* 141 | * Prepare lookup table of bilateral filter kernel 142 | */ 143 | 144 | int PrepareBLFKernel(float sigma) 145 | { 146 | for (int i = 0;i < BINNUM;i++) 147 | { 148 | float r = i/(BINNUM - 1.0)/sigma; 149 | BLFKernel[i] = exp(-0.5*r*r); 150 | } 151 | return 0; 152 | } 153 | 154 | float NoiseVarianceEstimation(float* variance, const float* img, int width, int height, int r); 155 | 156 | /* 157 | * Fast Global Smoothing Routine 158 | * 159 | * image image buffer of size width*height (float) 160 | * width image width 161 | * height image height 162 | * sigma range standard deviation 163 | * lambda regularization parameter 164 | * solver_iteration(optional) number of iterations (default: 3) 165 | */ 166 | 167 | int FastGlobalSmoothing(float* image, int width, int height, 168 | float sigma, float lambda, int solver_iteration) 169 | { 170 | float *pc, *po, *pa_vec, *pb_vec, *pc_vec; 171 | float tcr, ncr, tpr, weight, m, lambda_in, range; 172 | int i, j, iter; 173 | 174 | if (image == NULL) 175 | { 176 | return 1; 177 | } 178 | 179 | for (i = 0; i < width*height; ++i) 180 | { 181 | // restrict the pixel value within 0 and 1 182 | if (image[i]*(image[i] - 1.0) > 0.0) 183 | return 1; 184 | } 185 | 186 | switch (solver_iteration) 187 | { 188 | case 1: lambda_in = 0.5000*lambda;break; 189 | case 2: lambda_in = 0.4000*lambda;break; 190 | case 3: lambda_in = 0.3810*lambda;break; 191 | case 4: lambda_in = 0.3765*lambda;break; 192 | default: lambda_in = 0.3750*lambda;break; 193 | //lambda_in = 1.5*lambda*pow(4.0, solver_iteration - 1)/(pow(4.0, solver_iteration) - 1.0);break; 194 | } 195 | 196 | float* variance; 197 | if (sigma > 0.0) 198 | { 199 | // prepare LUT 200 | PrepareBLFKernel(sigma); 201 | } 202 | else 203 | { 204 | variance = (float*)malloc(width*height*sizeof(float)); 205 | float var = NoiseVarianceEstimation(variance, image, width, height, 10); 206 | printf("recommended sigma value: %f\n", 1.95*sqrt(var)); 207 | } 208 | 209 | for(iter = 0;iter < solver_iteration;iter++) 210 | { 211 | // apply 1D solver along rows of image 212 | for(i = 0;i < height;i++) 213 | { 214 | memset(a1_vec, 0, sizeof(float)*width); 215 | memset(b1_vec, 0, sizeof(float)*width); 216 | memset(c1_vec, 0, sizeof(float)*width); 217 | 218 | pc = &image[i*width]; 219 | tpr = *pc++; 220 | pa_vec = &a1_vec[1]; 221 | pc_vec = &c1_vec[0]; 222 | 223 | // prepare tridiagonal system 224 | for(j = 1;j < width;j++) 225 | { 226 | tcr = *pc++; 227 | range = (tpr > tcr)?(tpr - tcr):(tcr - tpr); 228 | 229 | if (sigma > 0.0) 230 | { 231 | weight = (range > 1.0)?0.0:BLFKernel[(unsigned int)(range*(BINNUM - 1.0) + 0.5)]; 232 | } 233 | else 234 | { 235 | weight = exp(-0.5*range*range/3.8025/(variance[i*width + j] + 1e-12)/(sigma - 1e-12)/(sigma - 1e-12)); 236 | } 237 | 238 | *pa_vec = -lambda_in*weight; 239 | *pc_vec = *pa_vec; 240 | pa_vec++; 241 | pc_vec++; 242 | tpr = tcr; 243 | } 244 | 245 | pa_vec = a1_vec; 246 | pc_vec = c1_vec; 247 | pb_vec = b1_vec; 248 | for(j = 0;j < width;j++) 249 | { 250 | *pb_vec++ = 1.0 - *pa_vec++ - *pc_vec++; 251 | } 252 | 253 | // tridiagonal solver 254 | c1_vec[0] /= b1_vec[0]; 255 | image[i*width] /= b1_vec[0]; 256 | 257 | pb_vec = &b1_vec[1]; 258 | pa_vec = &a1_vec[1]; 259 | pc_vec = &c1_vec[0]; 260 | 261 | pc = &image[i*width]; 262 | tpr = *pc++; 263 | po = &image[i*width + 1]; 264 | for (j = 1; j < width; j++) 265 | { 266 | m = 1.0/(*pb_vec - *pa_vec*(*pc_vec++)); // TODO: divide by zero risk 267 | *pc_vec *= m; 268 | tcr = *pc++; 269 | ncr = (tcr - *pa_vec*tpr)*m; 270 | pb_vec++; 271 | pa_vec++; 272 | tpr = ncr; 273 | *po++ = ncr; 274 | } 275 | 276 | pc_vec = &c1_vec[width - 2]; 277 | tpr = *--pc; 278 | --po; 279 | 280 | for (j = width - 1; j-- > 0; ) 281 | { 282 | tcr = *--pc; 283 | ncr = tcr - *pc_vec*tpr; 284 | pc_vec--; 285 | tpr = ncr; 286 | *--po = ncr; 287 | } 288 | } 289 | 290 | // apply 1D solver along columns 291 | for(j = 0;j < width;j++) 292 | { 293 | memset(a2_vec, 0, sizeof(float)*height); 294 | memset(b2_vec, 0, sizeof(float)*height); 295 | memset(c2_vec, 0, sizeof(float)*height); 296 | 297 | pc = &image[j]; 298 | tpr = *pc++; 299 | pa_vec = &a2_vec[1]; 300 | pc_vec = &c2_vec[0]; 301 | 302 | // prepare tridiagonal system 303 | for(i = 1;i < height;i++) 304 | { 305 | pc += (width - 1); 306 | tcr = *pc++; 307 | range = (tpr > tcr)?(tpr - tcr):(tcr - tpr); 308 | 309 | if (sigma > 0.0) 310 | { 311 | weight = (range > 1.0)?0.0:BLFKernel[(unsigned int)(range*(BINNUM - 1.0) + 0.5)]; 312 | } 313 | else 314 | { 315 | weight = exp(-0.5*range*range/3.8025/(variance[i*width + j] + 1e-12)/(sigma - 1e-12)/(sigma - 1e-12)); 316 | } 317 | 318 | *pa_vec = -lambda_in*weight; 319 | *pc_vec = *pa_vec; 320 | pa_vec++; 321 | pc_vec++; 322 | tpr = tcr; 323 | } 324 | 325 | pa_vec = a2_vec; 326 | pc_vec = c2_vec; 327 | pb_vec = b2_vec; 328 | for(i = 0;i < height;i++) 329 | { 330 | *pb_vec++ = 1.0 - *pa_vec++ - *pc_vec++; 331 | } 332 | 333 | // tridiagonal solver 334 | c2_vec[0] /= b2_vec[0]; 335 | image[j] /= b2_vec[0]; 336 | 337 | pb_vec = &b2_vec[1]; 338 | pa_vec = &a2_vec[1]; 339 | pc_vec = &c2_vec[0]; 340 | 341 | pc = &image[j]; 342 | tpr = *pc++; 343 | po = &image[j + width]; 344 | for (i = 1; i < height; i++) 345 | { 346 | m = 1.0/(*pb_vec - *pa_vec*(*pc_vec++)); // TODO: divide by zero risk 347 | *pc_vec *= m; 348 | pc += (width - 1); 349 | tcr = *pc++; 350 | ncr = (tcr - *pa_vec*tpr )*m; 351 | pb_vec++; 352 | pa_vec++; 353 | tpr = ncr; 354 | *po = ncr; 355 | po += width; 356 | } 357 | 358 | pc_vec = &c2_vec[height - 2]; 359 | tpr = *--pc; 360 | po -= (2*width - 1); 361 | 362 | for (i = height - 1; i-- > 0; ) 363 | { 364 | pc -= (width - 1); 365 | tcr = *--pc; 366 | ncr = tcr - *pc_vec*tpr; 367 | pc_vec--; 368 | tpr = ncr; 369 | *--po = ncr; 370 | po -= (width - 1); 371 | } 372 | } 373 | lambda_in *= 0.25; 374 | } 375 | 376 | if (sigma <= 0.0) 377 | { 378 | free(variance); 379 | } 380 | 381 | // clip the value 382 | for (i = 0; i < width*height; ++i) 383 | { 384 | if(image[i] < 0.0) 385 | image[i] = 0.0; 386 | if(image[i] > 1.0) 387 | image[i] = 1.0; 388 | } 389 | return 0; 390 | } 391 | 392 | int InitFGS(int width, int height) 393 | { 394 | a1_vec = (float *)malloc(sizeof(float)*width); 395 | b1_vec = (float *)malloc(sizeof(float)*width); 396 | c1_vec = (float *)malloc(sizeof(float)*width); 397 | a2_vec = (float *)malloc(sizeof(float)*height); 398 | b2_vec = (float *)malloc(sizeof(float)*height); 399 | c2_vec = (float *)malloc(sizeof(float)*height); 400 | if (a1_vec == NULL || b1_vec == NULL || c1_vec == NULL 401 | || a2_vec == NULL || b2_vec == NULL || c2_vec == NULL) 402 | { 403 | return 1; 404 | } 405 | return 0; 406 | } 407 | 408 | int DeinitFGS() 409 | { 410 | free(a1_vec); free(b1_vec); free(c1_vec); 411 | free(a2_vec); free(b2_vec); free(c2_vec); 412 | return 0; 413 | } 414 | -------------------------------------------------------------------------------- /FastGlobalSmoothing.h: -------------------------------------------------------------------------------- 1 | #ifndef _FGS_H_ 2 | #define _FGS_H_ 3 | 4 | int InitFGS(int width, int height); 5 | int DeinitFGS(); 6 | int FastGlobalSmoothing(float* image, int width, int height, float sigma, float lambda, 7 | int solver_iteration = 3); 8 | int PrepareBLFKernel(float sigma); 9 | 10 | #endif -------------------------------------------------------------------------------- /FastGlobalSmoothing.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/FastGlobalSmoothing.mexa64 -------------------------------------------------------------------------------- /FastGlobalSmoothing.mexw64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/FastGlobalSmoothing.mexw64 -------------------------------------------------------------------------------- /GuidedFilter.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | 5 | float* buffer1, *buffer2, *buffer3, *N; 6 | 7 | #ifdef MATLAB_MEX_FILE // if compiled as a MEX-file 8 | #include "mex.h" 9 | #include 10 | #include "GuidedFilter.h" 11 | 12 | // Guided filtering MEX-gateway 13 | // output_image = GuidedFilter(input_image, radius, epsilon); 14 | 15 | void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 16 | { 17 | if(nrhs < 3) 18 | { 19 | mexErrMsgTxt("GF must be called with 3 arguments."); 20 | } 21 | 22 | const mxArray *img_input = prhs[0]; // input images 23 | mxArray *img_output = plhs[0] = mxDuplicateArray(img_input); // output images 24 | void *ptr_input, *ptr_output; 25 | mxClassID category = mxGetClassID(img_input); 26 | switch (category) 27 | { 28 | case mxUINT8_CLASS: 29 | ptr_input = (uint8_t*)mxGetPr(img_input); 30 | ptr_output = (uint8_t*)mxGetPr(img_output); break; 31 | case mxUINT16_CLASS: 32 | ptr_input = (uint16_t*)mxGetPr(img_input); 33 | ptr_output = (uint16_t*)mxGetPr(img_output); break; 34 | case mxSINGLE_CLASS: 35 | ptr_input = (float*)mxGetPr(img_input); 36 | ptr_output = (float*)mxGetPr(img_output); break; 37 | case mxDOUBLE_CLASS: 38 | ptr_input = (double*)mxGetPr(img_input); 39 | ptr_output = (double*)mxGetPr(img_output); break; 40 | default: mexErrMsgTxt("Expected input image to be one of these types:\n\nuint8, uint16, single, double"); 41 | } 42 | 43 | // image resolution 44 | int width = mxGetDimensions(img_input)[1]; 45 | int height = mxGetDimensions(img_input)[0]; 46 | int nChannels = (mxGetNumberOfDimensions(img_input) > 2)?(mxGetDimensions(img_input)[2]):1; 47 | 48 | // Guided filter parameters 49 | int radius = mxGetScalar(prhs[1]); // TODO: check integer type 50 | float epsilon = mxGetScalar(prhs[2]); 51 | 52 | mexPrintf("Image resolution: %d x %d x %d\n", width, height, nChannels); 53 | mexPrintf("Parameters:\n"); 54 | mexPrintf(" radius = %d\n", radius); 55 | mexPrintf(" epsilon = %f\n", epsilon); 56 | 57 | // Image buffer preperation 58 | float* image = (float*)malloc(width*height*nChannels*sizeof(float)); 59 | 60 | switch (category) 61 | { 62 | case mxUINT8_CLASS: 63 | for (int i = 0; i < height; ++i) 64 | for (int j = 0; j < width; ++j) 65 | for (int c = 0; c < nChannels; ++c) 66 | image[c*height*width + i*width + j] = (float)(((uint8_t*)ptr_input)[j*height + i + c*height*width])/255; 67 | break; 68 | case mxUINT16_CLASS: 69 | for (int i = 0; i < height; ++i) 70 | for (int j = 0; j < width; ++j) 71 | for (int c = 0; c < nChannels; ++c) 72 | image[c*height*width + i*width + j] = (float)(((uint16_t*)ptr_input)[j*height + i + c*height*width])/65535; 73 | break; 74 | case mxSINGLE_CLASS: 75 | for (int i = 0; i < height; ++i) 76 | for (int j = 0; j < width; ++j) 77 | for (int c = 0; c < nChannels; ++c) 78 | image[c*height*width + i*width + j] = (float)(((float*)ptr_input)[j*height + i + c*height*width]); 79 | break; 80 | case mxDOUBLE_CLASS: 81 | for (int i = 0; i < height; ++i) 82 | for (int j = 0; j < width; ++j) 83 | for (int c = 0; c < nChannels; ++c) 84 | image[c*height*width + i*width + j] = (float)(((double*)ptr_input)[j*height + i + c*height*width]); 85 | break; 86 | } 87 | 88 | for(int i = 0;i < height*width*nChannels; ++i) 89 | { 90 | if (image[i]*(image[i] - 1.0) > 0.0) 91 | mexErrMsgTxt("Intensity value must be between 0 and 1."); 92 | } 93 | 94 | InitGF(width, height, radius); 95 | 96 | clock_t m_begin = clock(); // time measurement; 97 | for (int c = 0; c < nChannels; ++c) 98 | { 99 | GuidedFilter(&image[c*width*height], width, height, radius, epsilon); 100 | } 101 | mexPrintf("Elapsed time is %f seconds.\n", double(clock() - m_begin)/CLOCKS_PER_SEC); 102 | 103 | DeinitGF(); 104 | 105 | // output conversion 106 | switch (category) 107 | { 108 | case mxUINT8_CLASS: 109 | for (int i = 0; i < height; ++i) 110 | for (int j = 0; j < width; ++j) 111 | for (int c = 0; c < nChannels; ++c) 112 | ((uint8_t*)ptr_output)[j*height + i + c*height*width] = (uint8_t)(image[c*height*width + i*width + j]*255 + 0.5); 113 | break; 114 | case mxUINT16_CLASS: 115 | for (int i = 0; i < height; ++i) 116 | for (int j = 0; j < width; ++j) 117 | for (int c = 0; c < nChannels; ++c) 118 | ((uint16_t*)ptr_output)[j*height + i + c*height*width] = (uint16_t)(image[c*height*width + i*width + j]*65535 + 0.5); 119 | break; 120 | case mxSINGLE_CLASS: 121 | for (int i = 0; i < height; ++i) 122 | for (int j = 0; j < width; ++j) 123 | for (int c = 0; c < nChannels; ++c) 124 | ((float*)ptr_output)[j*height + i + c*height*width] = (float)(image[c*height*width + i*width + j]); 125 | break; 126 | case mxDOUBLE_CLASS: 127 | for (int i = 0; i < height; ++i) 128 | for (int j = 0; j < width; ++j) 129 | for (int c = 0; c < nChannels; ++c) 130 | ((double*)ptr_output)[j*height + i + c*height*width] = (double)(image[c*height*width + i*width + j]); 131 | break; 132 | } 133 | free(image); 134 | } 135 | #endif // MATLAB_MEX_FILE 136 | 137 | int BoxFilter(float* dst, const float* src, int width, int height, int r) 138 | { 139 | int sz = width*height; 140 | float* cumsum = (float*)malloc(sz*sizeof(float)); 141 | int i, j; 142 | memcpy(cumsum, src, sz*sizeof(float)); 143 | for(i = 1; i < height; ++i) 144 | { 145 | for(j = 0; j < width; ++j) 146 | { 147 | cumsum[i*width+j] += cumsum[(i - 1)*width + j]; 148 | } 149 | } 150 | 151 | for(j = 0; j < width; ++j) 152 | { 153 | for (i = 0; i <= r; ++i) 154 | { 155 | dst[i*width + j] = cumsum[(i + r)*width + j]; 156 | } 157 | for (i = r + 1; i <= height - r - 1; ++i) 158 | { 159 | dst[i*width + j] = cumsum[(i + r)*width + j] - cumsum[(i - r - 1)*width + j]; 160 | } 161 | for (i = height - r; i <= height - 1; ++i) 162 | { 163 | dst[i*width + j] = cumsum[(height - 1)*width + j] - cumsum[(i - r - 1)*width + j]; 164 | } 165 | } 166 | 167 | memcpy(cumsum, dst, sz*sizeof(float)); 168 | for(i = 0; i < height; ++i) 169 | { 170 | for(j = 1; j < width; ++j) 171 | { 172 | cumsum[i*width+j] += cumsum[i*width + j - 1]; 173 | } 174 | } 175 | 176 | for(i = 0; i < height; ++i) 177 | { 178 | for (j = 0; j <= r; ++j) 179 | { 180 | dst[i*width + j] = cumsum[i*width + j + r]; 181 | } 182 | for (j = r + 1; j <= width - r - 1; ++j) 183 | { 184 | dst[i*width + j] = cumsum[i*width + j + r] - cumsum[i*width + j - r - 1]; 185 | } 186 | for (j = width - r; j <= width - 1; ++j) 187 | { 188 | dst[i*width + j] = cumsum[i*width + width - 1] - cumsum[i*width + j - r - 1]; 189 | } 190 | } 191 | free(cumsum); 192 | return 0; 193 | } 194 | 195 | /* 196 | * Guided filtering Routine 197 | * 198 | * image image buffer of size width*height (float) 199 | * width image width 200 | * height image height 201 | * radius neighborbood radius 202 | * epsilon variance threshold 203 | */ 204 | 205 | int GuidedFilter(float* image, int width, int height, int radius, float epsilon) 206 | { 207 | int px, sz = width*height; 208 | 209 | if (image == NULL) 210 | { 211 | return 1; 212 | } 213 | 214 | for (px = 0; px < sz; ++px) 215 | { 216 | // restrict the pixel value within 0 and 1 217 | if (image[px]*(image[px] - 1.0) > 0.0) 218 | return 1; 219 | } 220 | 221 | for (px = 0; px < sz; ++px) 222 | { 223 | buffer1[px] = image[px]*image[px]; 224 | } 225 | BoxFilter(buffer2, buffer1, width, height, radius); 226 | 227 | for (px = 0; px < sz; ++px) 228 | { 229 | buffer2[px] /= N[px]; // buffer2:mean_II 230 | } 231 | BoxFilter(buffer1, image, width, height, radius); 232 | for (px = 0; px < sz; ++px) 233 | { 234 | buffer1[px] /= N[px]; // buffer1:meanI 235 | } 236 | 237 | for (px = 0; px < sz; ++px) 238 | { 239 | buffer2[px] -= buffer1[px]*buffer1[px]; // buffer2: varI 240 | buffer2[px] /= (buffer2[px] + epsilon); // buffer2: a 241 | buffer1[px] *= (1.0 - buffer2[px]); // buffer1: b 242 | } 243 | 244 | BoxFilter(buffer3, buffer2, width, height, radius); 245 | for (px = 0; px < sz; ++px) 246 | { 247 | buffer3[px] /= N[px]; // buffer3:meana 248 | } 249 | 250 | BoxFilter(buffer2, buffer1, width, height, radius); 251 | for (px = 0; px < sz; ++px) 252 | { 253 | buffer2[px] /= N[px]; // buffer2:meanb 254 | } 255 | 256 | for (px = 0; px < sz; ++px) 257 | { 258 | image[px] = buffer3[px]*image[px] + buffer2[px]; 259 | } 260 | 261 | // clip the value 262 | for (px = 0; px < sz; ++px) 263 | { 264 | if(image[px] < 0.0) 265 | image[px] = 0.0; 266 | if(image[px] > 1.0) 267 | image[px] = 1.0; 268 | } 269 | return 0; 270 | } 271 | 272 | int InitGF(int width, int height, int radius) 273 | { 274 | int sz = width*height; 275 | N = (float*)malloc(sz*sizeof(float)); 276 | buffer1 = (float*)malloc(sz*sizeof(float)); 277 | buffer2 = (float*)malloc(sz*sizeof(float)); 278 | buffer3 = (float*)malloc(sz*sizeof(float)); 279 | 280 | // size of each local patch 281 | float* ones = (float*)malloc(sz*sizeof(float)); 282 | for (int px = 0;px < sz;++px) 283 | { 284 | ones[px] = 1.0; 285 | } 286 | BoxFilter(N, ones, width, height, radius); 287 | free(ones); 288 | return 0; 289 | } 290 | 291 | int DeinitGF() 292 | { 293 | free(buffer1); 294 | free(buffer2); 295 | free(buffer3); 296 | free(N); 297 | } 298 | -------------------------------------------------------------------------------- /GuidedFilter.h: -------------------------------------------------------------------------------- 1 | #ifndef _GF_H_ 2 | #define _GF_H_ 3 | 4 | // O(1) time implementation of guided filter 5 | 6 | int GuidedFilter(float* image, int width, int height, int radius, float epsilon); 7 | int InitGF(int width, int height, int radius); 8 | int DeinitGF(); 9 | 10 | #endif -------------------------------------------------------------------------------- /GuidedFilter.mexa64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/GuidedFilter.mexa64 -------------------------------------------------------------------------------- /GuidedFilter.mexw64: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/GuidedFilter.mexw64 -------------------------------------------------------------------------------- /NoiseVarianceEstimation.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #define NORMALIZE_CONSTANT 0.20888568955258335346769626994501 4 | 5 | int BoxFilter(float* dst, const float* src, int width, int height, int r) 6 | { 7 | int sz = width*height; 8 | float* cumsum = (float*)malloc(sz*sizeof(float)); 9 | int i, j; 10 | memcpy(cumsum, src, sz*sizeof(float)); 11 | for(i = 1; i < height; ++i) 12 | { 13 | for(j = 0; j < width; ++j) 14 | { 15 | cumsum[i*width+j] += cumsum[(i - 1)*width + j]; 16 | } 17 | } 18 | 19 | for(j = 0; j < width; ++j) 20 | { 21 | for (i = 0; i <= r; ++i) 22 | { 23 | dst[i*width + j] = cumsum[(i + r)*width + j]; 24 | } 25 | for (i = r + 1; i <= height - r - 1; ++i) 26 | { 27 | dst[i*width + j] = cumsum[(i + r)*width + j] - cumsum[(i - r - 1)*width + j]; 28 | } 29 | for (i = height - r; i <= height - 1; ++i) 30 | { 31 | dst[i*width + j] = cumsum[(height - 1)*width + j] - cumsum[(i - r - 1)*width + j]; 32 | } 33 | } 34 | 35 | memcpy(cumsum, dst, sz*sizeof(float)); 36 | for(i = 0; i < height; ++i) 37 | { 38 | for(j = 1; j < width; ++j) 39 | { 40 | cumsum[i*width+j] += cumsum[i*width + j - 1]; 41 | } 42 | } 43 | 44 | for(i = 0; i < height; ++i) 45 | { 46 | for (j = 0; j <= r; ++j) 47 | { 48 | dst[i*width + j] = cumsum[i*width + j + r]; 49 | } 50 | for (j = r + 1; j <= width - r - 1; ++j) 51 | { 52 | dst[i*width + j] = cumsum[i*width + j + r] - cumsum[i*width + j - r - 1]; 53 | } 54 | for (j = width - r; j <= width - 1; ++j) 55 | { 56 | dst[i*width + j] = cumsum[i*width + width - 1] - cumsum[i*width + j - r - 1]; 57 | } 58 | } 59 | free(cumsum); 60 | return 0; 61 | } 62 | 63 | /* 64 | * Estimate noise variance using 3x3 mask followed by a summation over a local neighborhood 65 | * Immerkaer, John. "Fast Noise Variance Estimation." Computer Vision and Image Understanding 64.2 (1996): 300-302. 66 | */ 67 | 68 | float NoiseVarianceEstimation(float* variance, const float* img, int width, int height, int r) 69 | { 70 | float * convolution = (float*)malloc(width*height*sizeof(float)); 71 | float value; 72 | 73 | memset(convolution, 0, width*height*sizeof(float)); 74 | 75 | // [ 1,-2, 1] 76 | // convolve with kernel [-2, 4,-2] 77 | // [ 1,-2, 1] 78 | 79 | for (int i = 1; i < height - 1; ++i) 80 | { 81 | for (int j = 1; j < width - 1; ++j) 82 | { 83 | value = 4*img[i*width + j]; 84 | value += img[(i - 1)*width + j - 1]; 85 | value += img[(i - 1)*width + j + 1]; 86 | value += img[(i + 1)*width + j - 1]; 87 | value += img[(i + 1)*width + j + 1]; 88 | value -= 2*img[i*width + j - 1]; 89 | value -= 2*img[i*width + j + 1]; 90 | value -= 2*img[(i - 1)*width + j]; 91 | value -= 2*img[(i + 1)*width + j]; 92 | if (value < 0) 93 | value *= -1; 94 | convolution[i*width + j] = value; 95 | } 96 | } 97 | 98 | BoxFilter(variance, convolution, width, height, r); 99 | 100 | int w2, h2; 101 | float total_variance = 0.0; 102 | for (int i = 0; i < height; ++i) 103 | { 104 | h2 = (i < r)?(r - 1 + i):((i >= height - r)?(height + r - i - 2):(2*r - 1)); 105 | for (int j = 0; j < width; ++j) 106 | { 107 | w2 = (j < r)?(r - 1 + j):((j >= width - r)?(width + r - j - 2):(2*r - 1)); 108 | variance[i*width + j] *= NORMALIZE_CONSTANT/(double)w2/(double)h2; 109 | variance[i*width + j] *= variance[i*width + j]; 110 | total_variance += convolution[i*width + j]; 111 | } 112 | } 113 | total_variance *= NORMALIZE_CONSTANT/(double)(width - 2)/(double)(height - 2); 114 | total_variance *= total_variance; 115 | 116 | free(convolution); 117 | return total_variance; 118 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Fast Global Smoothing Based on Weighted Least-Squares 2 | 3 | Reimplementation of the paper "D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do, Fast Global Image Smoothing Based on Weighted Least Squares, *IEEE Trans. on Image Processing*, 23(12), 5638-5653, 2014" 4 | 5 | 6 | 7 | ![filtering result](./result.png) 8 | 9 | 10 | 11 | ## Usage 12 | 13 | Two demo codes in MATLAB and C are provided. 14 | 15 | ### MATLAB API 16 | 17 | 18 | output_image = FastGlobalSmoothing(input_image, sigma, lambda) 19 | 20 | - The input image can be one of these types: **uint8**, **uint16**, **single** or **double**. 21 | - The output image has the same size and data type as the input image. 22 | - If sigma value is negative or zero, then an *adaptive strategy* based on local noise variance estimation will be adopted. 23 | - The binary MEX files for the operation system Linux 64-bit and Windows 64-bit are provided, with extensions mexa64 and mexw64 respectively. 24 | 25 | ### C API 26 | 27 | int FastGlobalSmoothing(float* image, int width, int height, float sigma, float lambda, int solver_iteration = 3) 28 | 29 | - The elements of **single channel** data *image* are arranged in **row-major** order. 30 | 31 | - The output image buffer **overwrites** the input image buffer. 32 | - The value of input image is assumed to be in the range [0, 1]. 33 | 34 | 35 | ## License 36 | 37 | Copyright (c) 2020, Li Chen All rights reserved. 38 | 39 | For research and education purpose only. 40 | -------------------------------------------------------------------------------- /demo.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include "FastGlobalSmoothing.h" 4 | 5 | int main(int argc, char* argv[]) 6 | { 7 | const int width = 1920, height = 1080; 8 | const int sz = width*height; 9 | u_int8_t* buffer = (u_int8_t*)malloc(sz*3/2); 10 | float* image = (float*)malloc(sizeof(float)*sz); 11 | // Load YUV data from file 12 | 13 | FILE* fin = fopen("input.yuv","rb"); 14 | if (fin == NULL) 15 | { 16 | return -1; 17 | } 18 | int ret = fread(buffer, sz*3/2, 1, fin); 19 | fclose(fin); 20 | 21 | // convert luma component 22 | for(int px = 0;px < sz; ++px) 23 | { 24 | image[px] = (float)buffer[px]; 25 | } 26 | 27 | const float sigma = 0.05; 28 | const float lambda = 10.0; 29 | 30 | // fast global smoothing 31 | InitFGS(width, height); 32 | FastGlobalSmoothing(image, width, height, sigma, lambda); 33 | DeinitFGS(); 34 | 35 | // overwrite luma component 36 | for(int px = 0;px < sz; ++px) 37 | { 38 | buffer[px] = (u_int8_t)(image[px]); 39 | } 40 | 41 | // write filtered to file 42 | FILE* fout = fopen("output.yuv","wb"); 43 | if (fout == NULL) 44 | { 45 | return -1; 46 | } 47 | fwrite(buffer, sz*3/2, 1, fout); 48 | fclose(fout); 49 | 50 | free(buffer); 51 | free(image); 52 | return 0; 53 | } 54 | -------------------------------------------------------------------------------- /demo.m: -------------------------------------------------------------------------------- 1 | clear;close all; 2 | img = imread('stripes.png'); % uint8 3 | %img = im2uint16(imread('stripes.png')); % uint16 4 | %img = im2double(imread('stripes.png')); % double 5 | %img = im2single(imread('stripes.png')); % single 6 | 7 | filtered = FastGlobalSmoothing(img, 0.03, 900); 8 | %filtered = GuidedFilter(img, 3, 0.25); 9 | %filtered = BilateralFilter(img, 3, 0.5); 10 | 11 | subplot(121);imshow(img);title('Original'); 12 | subplot(122);imshow(filtered);title('Filtered'); 13 | -------------------------------------------------------------------------------- /demorgb.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | #define STB_IMAGE_IMPLEMENTATION 6 | #define STB_IMAGE_WRITE_IMPLEMENTATION 7 | #include "stb/stb_image.h" 8 | #include "stb/stb_image_write.h" 9 | #include "FastGlobalSmoothing.h" 10 | 11 | int main(int argc, char* argv[]) 12 | { 13 | int width, height, bpp; 14 | if (argc == 1) 15 | { 16 | printf("Usage: %s input [output] [sigma] [lambda]\n",argv[0]); 17 | return -1; 18 | } 19 | uint8_t* image = stbi_load(argv[1], &width, &height, &bpp, 0); 20 | 21 | if (image == NULL) 22 | { 23 | printf("Cannot open file %s!\n",argv[1]); 24 | return -1; 25 | } 26 | const int sz = width*height; 27 | float* channel = (float*)malloc(sizeof(float)*sz*bpp); 28 | 29 | for (int px = 0;px < sz; ++px) 30 | { 31 | for (int c = 0; c < bpp; ++c) 32 | { 33 | channel[c*sz + px] = image[bpp*px + c]/255.0f; 34 | } 35 | } 36 | 37 | const float sigma = (argc > 3)?atof(argv[3]):0.08; 38 | const float lambda = (argc > 4)?atof(argv[4]):10.0; 39 | 40 | InitFGS(width, height); 41 | clock_t start = clock(); 42 | for (int c = 0; c < bpp; ++c) 43 | { 44 | FastGlobalSmoothing(&channel[c*sz], width, height, sigma, lambda); 45 | } 46 | printf("exec time: %.2f ms\n",1000*(clock() - start)/(float)CLOCKS_PER_SEC); 47 | DeinitFGS(); 48 | 49 | for (int px = 0;px < sz; ++px) 50 | { 51 | for (int c = 0; c < bpp; ++c) 52 | { 53 | image[bpp*px + c] = (u_int8_t)(channel[c*sz + px]*255.0f + 0.5f); 54 | } 55 | } 56 | 57 | bool correct_format = false; 58 | if (argc > 2) 59 | { 60 | int len = strlen(argv[2]); 61 | if (len > 4) 62 | { 63 | char extension[5]; 64 | strcpy(extension, &argv[2][len - 4]); 65 | if (strcmp(extension, ".bmp") == 0) 66 | { 67 | correct_format = true; 68 | stbi_write_bmp(argv[2], width, height, bpp, image); 69 | } 70 | else 71 | { 72 | if (strcmp(extension, ".png") == 0) 73 | { 74 | correct_format = true; 75 | stbi_write_png(argv[2], width, height, bpp, image, width*bpp); 76 | } 77 | else 78 | { 79 | if (strcmp(extension, ".jpg") == 0) 80 | { 81 | correct_format = true; 82 | stbi_write_jpg(argv[2], width, height, bpp, image, 100); 83 | } 84 | } 85 | } 86 | } 87 | } 88 | 89 | if (!correct_format) 90 | { 91 | printf("invalid output filename!\n"); 92 | stbi_write_png("output.png", width, height, bpp, image, width*bpp); 93 | } 94 | 95 | free(channel); 96 | free(image); 97 | return 0; 98 | } 99 | -------------------------------------------------------------------------------- /result.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/result.png -------------------------------------------------------------------------------- /stb/.github/CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | Pull Requests and Issues are both welcome. 2 | 3 | # Responsiveness 4 | 5 | General priority order is: 6 | 7 | * Crashes 8 | * Security issues in stb_image 9 | * Bugs 10 | * Security concerns in other libs 11 | * Warnings 12 | * Enhancements (new features, performance improvement, etc) 13 | 14 | Pull requests get priority over Issues. Some pull requests I take 15 | as written; some I modify myself; some I will request changes before 16 | accepting them. Because I've ended up supporting a lot of libraries 17 | (20 as I write this, with more on the way), I am somewhat slow to 18 | address things. Many issues have been around for a long time. 19 | 20 | # Pull requests 21 | 22 | * Make sure you're using a special branch just for this pull request. (Sometimes people unknowingly use a default branch, then later update that branch, which updates the pull request with the other changes if it hasn't been merged yet.) 23 | * Do NOT update the version number in the file. (This just causes conflicts.) 24 | * Do add your name to the list of contributors. (Don't worry about the formatting.) I'll try to remember to add it if you don't, but I sometimes forget as it's an extra step. 25 | * Your change needs to compile as both C and C++. Pre-C99 compilers should be supported (e.g. declare at start of block) 26 | 27 | # Specific libraries 28 | 29 | I generally do not want new file formats for stb_image because 30 | we are trying to improve its security, so increasing its attack 31 | surface is counter-productive. 32 | 33 | -------------------------------------------------------------------------------- /stb/.github/PULL_REQUEST_TEMPLATE.md: -------------------------------------------------------------------------------- 1 | * Delete this list before clicking CREATE PULL REQUEST 2 | * Make sure you're using a special branch just for this pull request. (Sometimes people unknowingly use a default branch, then later update that branch, which updates the pull request with the other changes if it hasn't been merged yet.) 3 | * Do NOT update the version number in the file. (This just causes conflicts.) 4 | * Do add your name to the list of contributors. (Don't worry about the formatting.) I'll try to remember to add it if you don't, but I sometimes forget as it's an extra step. 5 | 6 | If you get something above wrong, don't fret it, it's not the end of the world. 7 | -------------------------------------------------------------------------------- /stb/.travis.yml: -------------------------------------------------------------------------------- 1 | language: C 2 | install: true 3 | script: 4 | - cd tests 5 | - make all 6 | -------------------------------------------------------------------------------- /stb/stb_image_write.h: -------------------------------------------------------------------------------- 1 | /* stb_image_write - v1.15 - public domain - http://nothings.org/stb 2 | writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015 3 | no warranty implied; use at your own risk 4 | 5 | Before #including, 6 | 7 | #define STB_IMAGE_WRITE_IMPLEMENTATION 8 | 9 | in the file that you want to have the implementation. 10 | 11 | Will probably not work correctly with strict-aliasing optimizations. 12 | 13 | ABOUT: 14 | 15 | This header file is a library for writing images to C stdio or a callback. 16 | 17 | The PNG output is not optimal; it is 20-50% larger than the file 18 | written by a decent optimizing implementation; though providing a custom 19 | zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that. 20 | This library is designed for source code compactness and simplicity, 21 | not optimal image file size or run-time performance. 22 | 23 | BUILDING: 24 | 25 | You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h. 26 | You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace 27 | malloc,realloc,free. 28 | You can #define STBIW_MEMMOVE() to replace memmove() 29 | You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function 30 | for PNG compression (instead of the builtin one), it must have the following signature: 31 | unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality); 32 | The returned data will be freed with STBIW_FREE() (free() by default), 33 | so it must be heap allocated with STBIW_MALLOC() (malloc() by default), 34 | 35 | UNICODE: 36 | 37 | If compiling for Windows and you wish to use Unicode filenames, compile 38 | with 39 | #define STBIW_WINDOWS_UTF8 40 | and pass utf8-encoded filenames. Call stbiw_convert_wchar_to_utf8 to convert 41 | Windows wchar_t filenames to utf8. 42 | 43 | USAGE: 44 | 45 | There are five functions, one for each image file format: 46 | 47 | int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); 48 | int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); 49 | int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); 50 | int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality); 51 | int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); 52 | 53 | void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically 54 | 55 | There are also five equivalent functions that use an arbitrary write function. You are 56 | expected to open/close your file-equivalent before and after calling these: 57 | 58 | int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); 59 | int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); 60 | int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); 61 | int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); 62 | int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); 63 | 64 | where the callback is: 65 | void stbi_write_func(void *context, void *data, int size); 66 | 67 | You can configure it with these global variables: 68 | int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE 69 | int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression 70 | int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode 71 | 72 | 73 | You can define STBI_WRITE_NO_STDIO to disable the file variant of these 74 | functions, so the library will not use stdio.h at all. However, this will 75 | also disable HDR writing, because it requires stdio for formatted output. 76 | 77 | Each function returns 0 on failure and non-0 on success. 78 | 79 | The functions create an image file defined by the parameters. The image 80 | is a rectangle of pixels stored from left-to-right, top-to-bottom. 81 | Each pixel contains 'comp' channels of data stored interleaved with 8-bits 82 | per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is 83 | monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall. 84 | The *data pointer points to the first byte of the top-left-most pixel. 85 | For PNG, "stride_in_bytes" is the distance in bytes from the first byte of 86 | a row of pixels to the first byte of the next row of pixels. 87 | 88 | PNG creates output files with the same number of components as the input. 89 | The BMP format expands Y to RGB in the file format and does not 90 | output alpha. 91 | 92 | PNG supports writing rectangles of data even when the bytes storing rows of 93 | data are not consecutive in memory (e.g. sub-rectangles of a larger image), 94 | by supplying the stride between the beginning of adjacent rows. The other 95 | formats do not. (Thus you cannot write a native-format BMP through the BMP 96 | writer, both because it is in BGR order and because it may have padding 97 | at the end of the line.) 98 | 99 | PNG allows you to set the deflate compression level by setting the global 100 | variable 'stbi_write_png_compression_level' (it defaults to 8). 101 | 102 | HDR expects linear float data. Since the format is always 32-bit rgb(e) 103 | data, alpha (if provided) is discarded, and for monochrome data it is 104 | replicated across all three channels. 105 | 106 | TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed 107 | data, set the global variable 'stbi_write_tga_with_rle' to 0. 108 | 109 | JPEG does ignore alpha channels in input data; quality is between 1 and 100. 110 | Higher quality looks better but results in a bigger image. 111 | JPEG baseline (no JPEG progressive). 112 | 113 | CREDITS: 114 | 115 | 116 | Sean Barrett - PNG/BMP/TGA 117 | Baldur Karlsson - HDR 118 | Jean-Sebastien Guay - TGA monochrome 119 | Tim Kelsey - misc enhancements 120 | Alan Hickman - TGA RLE 121 | Emmanuel Julien - initial file IO callback implementation 122 | Jon Olick - original jo_jpeg.cpp code 123 | Daniel Gibson - integrate JPEG, allow external zlib 124 | Aarni Koskela - allow choosing PNG filter 125 | 126 | bugfixes: 127 | github:Chribba 128 | Guillaume Chereau 129 | github:jry2 130 | github:romigrou 131 | Sergio Gonzalez 132 | Jonas Karlsson 133 | Filip Wasil 134 | Thatcher Ulrich 135 | github:poppolopoppo 136 | Patrick Boettcher 137 | github:xeekworx 138 | Cap Petschulat 139 | Simon Rodriguez 140 | Ivan Tikhonov 141 | github:ignotion 142 | Adam Schackart 143 | 144 | LICENSE 145 | 146 | See end of file for license information. 147 | 148 | */ 149 | 150 | #ifndef INCLUDE_STB_IMAGE_WRITE_H 151 | #define INCLUDE_STB_IMAGE_WRITE_H 152 | 153 | #include 154 | 155 | // if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline' 156 | #ifndef STBIWDEF 157 | #ifdef STB_IMAGE_WRITE_STATIC 158 | #define STBIWDEF static 159 | #else 160 | #ifdef __cplusplus 161 | #define STBIWDEF extern "C" 162 | #else 163 | #define STBIWDEF extern 164 | #endif 165 | #endif 166 | #endif 167 | 168 | #ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations 169 | extern int stbi_write_tga_with_rle; 170 | extern int stbi_write_png_compression_level; 171 | extern int stbi_write_force_png_filter; 172 | #endif 173 | 174 | #ifndef STBI_WRITE_NO_STDIO 175 | STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes); 176 | STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data); 177 | STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data); 178 | STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data); 179 | STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality); 180 | 181 | #ifdef STBI_WINDOWS_UTF8 182 | STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input); 183 | #endif 184 | #endif 185 | 186 | typedef void stbi_write_func(void *context, void *data, int size); 187 | 188 | STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes); 189 | STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); 190 | STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data); 191 | STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data); 192 | STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality); 193 | 194 | STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean); 195 | 196 | #endif//INCLUDE_STB_IMAGE_WRITE_H 197 | 198 | #ifdef STB_IMAGE_WRITE_IMPLEMENTATION 199 | 200 | #ifdef _WIN32 201 | #ifndef _CRT_SECURE_NO_WARNINGS 202 | #define _CRT_SECURE_NO_WARNINGS 203 | #endif 204 | #ifndef _CRT_NONSTDC_NO_DEPRECATE 205 | #define _CRT_NONSTDC_NO_DEPRECATE 206 | #endif 207 | #endif 208 | 209 | #ifndef STBI_WRITE_NO_STDIO 210 | #include 211 | #endif // STBI_WRITE_NO_STDIO 212 | 213 | #include 214 | #include 215 | #include 216 | #include 217 | 218 | #if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED)) 219 | // ok 220 | #elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED) 221 | // ok 222 | #else 223 | #error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)." 224 | #endif 225 | 226 | #ifndef STBIW_MALLOC 227 | #define STBIW_MALLOC(sz) malloc(sz) 228 | #define STBIW_REALLOC(p,newsz) realloc(p,newsz) 229 | #define STBIW_FREE(p) free(p) 230 | #endif 231 | 232 | #ifndef STBIW_REALLOC_SIZED 233 | #define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz) 234 | #endif 235 | 236 | 237 | #ifndef STBIW_MEMMOVE 238 | #define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz) 239 | #endif 240 | 241 | 242 | #ifndef STBIW_ASSERT 243 | #include 244 | #define STBIW_ASSERT(x) assert(x) 245 | #endif 246 | 247 | #define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff) 248 | 249 | #ifdef STB_IMAGE_WRITE_STATIC 250 | static int stbi_write_png_compression_level = 8; 251 | static int stbi_write_tga_with_rle = 1; 252 | static int stbi_write_force_png_filter = -1; 253 | #else 254 | int stbi_write_png_compression_level = 8; 255 | int stbi_write_tga_with_rle = 1; 256 | int stbi_write_force_png_filter = -1; 257 | #endif 258 | 259 | static int stbi__flip_vertically_on_write = 0; 260 | 261 | STBIWDEF void stbi_flip_vertically_on_write(int flag) 262 | { 263 | stbi__flip_vertically_on_write = flag; 264 | } 265 | 266 | typedef struct 267 | { 268 | stbi_write_func *func; 269 | void *context; 270 | unsigned char buffer[64]; 271 | int buf_used; 272 | } stbi__write_context; 273 | 274 | // initialize a callback-based context 275 | static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context) 276 | { 277 | s->func = c; 278 | s->context = context; 279 | } 280 | 281 | #ifndef STBI_WRITE_NO_STDIO 282 | 283 | static void stbi__stdio_write(void *context, void *data, int size) 284 | { 285 | fwrite(data,1,size,(FILE*) context); 286 | } 287 | 288 | #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) 289 | #ifdef __cplusplus 290 | #define STBIW_EXTERN extern "C" 291 | #else 292 | #define STBIW_EXTERN extern 293 | #endif 294 | STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide); 295 | STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default); 296 | 297 | STBIWDEF int stbiw_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input) 298 | { 299 | return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL); 300 | } 301 | #endif 302 | 303 | static FILE *stbiw__fopen(char const *filename, char const *mode) 304 | { 305 | FILE *f; 306 | #if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) 307 | wchar_t wMode[64]; 308 | wchar_t wFilename[1024]; 309 | if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename))) 310 | return 0; 311 | 312 | if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode))) 313 | return 0; 314 | 315 | #if _MSC_VER >= 1400 316 | if (0 != _wfopen_s(&f, wFilename, wMode)) 317 | f = 0; 318 | #else 319 | f = _wfopen(wFilename, wMode); 320 | #endif 321 | 322 | #elif defined(_MSC_VER) && _MSC_VER >= 1400 323 | if (0 != fopen_s(&f, filename, mode)) 324 | f=0; 325 | #else 326 | f = fopen(filename, mode); 327 | #endif 328 | return f; 329 | } 330 | 331 | static int stbi__start_write_file(stbi__write_context *s, const char *filename) 332 | { 333 | FILE *f = stbiw__fopen(filename, "wb"); 334 | stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f); 335 | return f != NULL; 336 | } 337 | 338 | static void stbi__end_write_file(stbi__write_context *s) 339 | { 340 | fclose((FILE *)s->context); 341 | } 342 | 343 | #endif // !STBI_WRITE_NO_STDIO 344 | 345 | typedef unsigned int stbiw_uint32; 346 | typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1]; 347 | 348 | static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v) 349 | { 350 | while (*fmt) { 351 | switch (*fmt++) { 352 | case ' ': break; 353 | case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int)); 354 | s->func(s->context,&x,1); 355 | break; } 356 | case '2': { int x = va_arg(v,int); 357 | unsigned char b[2]; 358 | b[0] = STBIW_UCHAR(x); 359 | b[1] = STBIW_UCHAR(x>>8); 360 | s->func(s->context,b,2); 361 | break; } 362 | case '4': { stbiw_uint32 x = va_arg(v,int); 363 | unsigned char b[4]; 364 | b[0]=STBIW_UCHAR(x); 365 | b[1]=STBIW_UCHAR(x>>8); 366 | b[2]=STBIW_UCHAR(x>>16); 367 | b[3]=STBIW_UCHAR(x>>24); 368 | s->func(s->context,b,4); 369 | break; } 370 | default: 371 | STBIW_ASSERT(0); 372 | return; 373 | } 374 | } 375 | } 376 | 377 | static void stbiw__writef(stbi__write_context *s, const char *fmt, ...) 378 | { 379 | va_list v; 380 | va_start(v, fmt); 381 | stbiw__writefv(s, fmt, v); 382 | va_end(v); 383 | } 384 | 385 | static void stbiw__write_flush(stbi__write_context *s) 386 | { 387 | if (s->buf_used) { 388 | s->func(s->context, &s->buffer, s->buf_used); 389 | s->buf_used = 0; 390 | } 391 | } 392 | 393 | static void stbiw__putc(stbi__write_context *s, unsigned char c) 394 | { 395 | s->func(s->context, &c, 1); 396 | } 397 | 398 | static void stbiw__write1(stbi__write_context *s, unsigned char a) 399 | { 400 | if (s->buf_used + 1 > sizeof(s->buffer)) 401 | stbiw__write_flush(s); 402 | s->buffer[s->buf_used++] = a; 403 | } 404 | 405 | static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c) 406 | { 407 | int n; 408 | if (s->buf_used + 3 > sizeof(s->buffer)) 409 | stbiw__write_flush(s); 410 | n = s->buf_used; 411 | s->buf_used = n+3; 412 | s->buffer[n+0] = a; 413 | s->buffer[n+1] = b; 414 | s->buffer[n+2] = c; 415 | } 416 | 417 | static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d) 418 | { 419 | unsigned char bg[3] = { 255, 0, 255}, px[3]; 420 | int k; 421 | 422 | if (write_alpha < 0) 423 | stbiw__write1(s, d[comp - 1]); 424 | 425 | switch (comp) { 426 | case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case 427 | case 1: 428 | if (expand_mono) 429 | stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp 430 | else 431 | stbiw__write1(s, d[0]); // monochrome TGA 432 | break; 433 | case 4: 434 | if (!write_alpha) { 435 | // composite against pink background 436 | for (k = 0; k < 3; ++k) 437 | px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255; 438 | stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]); 439 | break; 440 | } 441 | /* FALLTHROUGH */ 442 | case 3: 443 | stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]); 444 | break; 445 | } 446 | if (write_alpha > 0) 447 | stbiw__write1(s, d[comp - 1]); 448 | } 449 | 450 | static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono) 451 | { 452 | stbiw_uint32 zero = 0; 453 | int i,j, j_end; 454 | 455 | if (y <= 0) 456 | return; 457 | 458 | if (stbi__flip_vertically_on_write) 459 | vdir *= -1; 460 | 461 | if (vdir < 0) { 462 | j_end = -1; j = y-1; 463 | } else { 464 | j_end = y; j = 0; 465 | } 466 | 467 | for (; j != j_end; j += vdir) { 468 | for (i=0; i < x; ++i) { 469 | unsigned char *d = (unsigned char *) data + (j*x+i)*comp; 470 | stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d); 471 | } 472 | stbiw__write_flush(s); 473 | s->func(s->context, &zero, scanline_pad); 474 | } 475 | } 476 | 477 | static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...) 478 | { 479 | if (y < 0 || x < 0) { 480 | return 0; 481 | } else { 482 | va_list v; 483 | va_start(v, fmt); 484 | stbiw__writefv(s, fmt, v); 485 | va_end(v); 486 | stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono); 487 | return 1; 488 | } 489 | } 490 | 491 | static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data) 492 | { 493 | int pad = (-x*3) & 3; 494 | return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad, 495 | "11 4 22 4" "4 44 22 444444", 496 | 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header 497 | 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header 498 | } 499 | 500 | STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) 501 | { 502 | stbi__write_context s = { 0 }; 503 | stbi__start_write_callbacks(&s, func, context); 504 | return stbi_write_bmp_core(&s, x, y, comp, data); 505 | } 506 | 507 | #ifndef STBI_WRITE_NO_STDIO 508 | STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data) 509 | { 510 | stbi__write_context s = { 0 }; 511 | if (stbi__start_write_file(&s,filename)) { 512 | int r = stbi_write_bmp_core(&s, x, y, comp, data); 513 | stbi__end_write_file(&s); 514 | return r; 515 | } else 516 | return 0; 517 | } 518 | #endif //!STBI_WRITE_NO_STDIO 519 | 520 | static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data) 521 | { 522 | int has_alpha = (comp == 2 || comp == 4); 523 | int colorbytes = has_alpha ? comp-1 : comp; 524 | int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3 525 | 526 | if (y < 0 || x < 0) 527 | return 0; 528 | 529 | if (!stbi_write_tga_with_rle) { 530 | return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0, 531 | "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8); 532 | } else { 533 | int i,j,k; 534 | int jend, jdir; 535 | 536 | stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8); 537 | 538 | if (stbi__flip_vertically_on_write) { 539 | j = 0; 540 | jend = y; 541 | jdir = 1; 542 | } else { 543 | j = y-1; 544 | jend = -1; 545 | jdir = -1; 546 | } 547 | for (; j != jend; j += jdir) { 548 | unsigned char *row = (unsigned char *) data + j * x * comp; 549 | int len; 550 | 551 | for (i = 0; i < x; i += len) { 552 | unsigned char *begin = row + i * comp; 553 | int diff = 1; 554 | len = 1; 555 | 556 | if (i < x - 1) { 557 | ++len; 558 | diff = memcmp(begin, row + (i + 1) * comp, comp); 559 | if (diff) { 560 | const unsigned char *prev = begin; 561 | for (k = i + 2; k < x && len < 128; ++k) { 562 | if (memcmp(prev, row + k * comp, comp)) { 563 | prev += comp; 564 | ++len; 565 | } else { 566 | --len; 567 | break; 568 | } 569 | } 570 | } else { 571 | for (k = i + 2; k < x && len < 128; ++k) { 572 | if (!memcmp(begin, row + k * comp, comp)) { 573 | ++len; 574 | } else { 575 | break; 576 | } 577 | } 578 | } 579 | } 580 | 581 | if (diff) { 582 | unsigned char header = STBIW_UCHAR(len - 1); 583 | stbiw__write1(s, header); 584 | for (k = 0; k < len; ++k) { 585 | stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp); 586 | } 587 | } else { 588 | unsigned char header = STBIW_UCHAR(len - 129); 589 | stbiw__write1(s, header); 590 | stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin); 591 | } 592 | } 593 | } 594 | stbiw__write_flush(s); 595 | } 596 | return 1; 597 | } 598 | 599 | STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data) 600 | { 601 | stbi__write_context s = { 0 }; 602 | stbi__start_write_callbacks(&s, func, context); 603 | return stbi_write_tga_core(&s, x, y, comp, (void *) data); 604 | } 605 | 606 | #ifndef STBI_WRITE_NO_STDIO 607 | STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data) 608 | { 609 | stbi__write_context s = { 0 }; 610 | if (stbi__start_write_file(&s,filename)) { 611 | int r = stbi_write_tga_core(&s, x, y, comp, (void *) data); 612 | stbi__end_write_file(&s); 613 | return r; 614 | } else 615 | return 0; 616 | } 617 | #endif 618 | 619 | // ************************************************************************************************* 620 | // Radiance RGBE HDR writer 621 | // by Baldur Karlsson 622 | 623 | #define stbiw__max(a, b) ((a) > (b) ? (a) : (b)) 624 | 625 | static void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear) 626 | { 627 | int exponent; 628 | float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2])); 629 | 630 | if (maxcomp < 1e-32f) { 631 | rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0; 632 | } else { 633 | float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp; 634 | 635 | rgbe[0] = (unsigned char)(linear[0] * normalize); 636 | rgbe[1] = (unsigned char)(linear[1] * normalize); 637 | rgbe[2] = (unsigned char)(linear[2] * normalize); 638 | rgbe[3] = (unsigned char)(exponent + 128); 639 | } 640 | } 641 | 642 | static void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte) 643 | { 644 | unsigned char lengthbyte = STBIW_UCHAR(length+128); 645 | STBIW_ASSERT(length+128 <= 255); 646 | s->func(s->context, &lengthbyte, 1); 647 | s->func(s->context, &databyte, 1); 648 | } 649 | 650 | static void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data) 651 | { 652 | unsigned char lengthbyte = STBIW_UCHAR(length); 653 | STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code 654 | s->func(s->context, &lengthbyte, 1); 655 | s->func(s->context, data, length); 656 | } 657 | 658 | static void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline) 659 | { 660 | unsigned char scanlineheader[4] = { 2, 2, 0, 0 }; 661 | unsigned char rgbe[4]; 662 | float linear[3]; 663 | int x; 664 | 665 | scanlineheader[2] = (width&0xff00)>>8; 666 | scanlineheader[3] = (width&0x00ff); 667 | 668 | /* skip RLE for images too small or large */ 669 | if (width < 8 || width >= 32768) { 670 | for (x=0; x < width; x++) { 671 | switch (ncomp) { 672 | case 4: /* fallthrough */ 673 | case 3: linear[2] = scanline[x*ncomp + 2]; 674 | linear[1] = scanline[x*ncomp + 1]; 675 | linear[0] = scanline[x*ncomp + 0]; 676 | break; 677 | default: 678 | linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; 679 | break; 680 | } 681 | stbiw__linear_to_rgbe(rgbe, linear); 682 | s->func(s->context, rgbe, 4); 683 | } 684 | } else { 685 | int c,r; 686 | /* encode into scratch buffer */ 687 | for (x=0; x < width; x++) { 688 | switch(ncomp) { 689 | case 4: /* fallthrough */ 690 | case 3: linear[2] = scanline[x*ncomp + 2]; 691 | linear[1] = scanline[x*ncomp + 1]; 692 | linear[0] = scanline[x*ncomp + 0]; 693 | break; 694 | default: 695 | linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0]; 696 | break; 697 | } 698 | stbiw__linear_to_rgbe(rgbe, linear); 699 | scratch[x + width*0] = rgbe[0]; 700 | scratch[x + width*1] = rgbe[1]; 701 | scratch[x + width*2] = rgbe[2]; 702 | scratch[x + width*3] = rgbe[3]; 703 | } 704 | 705 | s->func(s->context, scanlineheader, 4); 706 | 707 | /* RLE each component separately */ 708 | for (c=0; c < 4; c++) { 709 | unsigned char *comp = &scratch[width*c]; 710 | 711 | x = 0; 712 | while (x < width) { 713 | // find first run 714 | r = x; 715 | while (r+2 < width) { 716 | if (comp[r] == comp[r+1] && comp[r] == comp[r+2]) 717 | break; 718 | ++r; 719 | } 720 | if (r+2 >= width) 721 | r = width; 722 | // dump up to first run 723 | while (x < r) { 724 | int len = r-x; 725 | if (len > 128) len = 128; 726 | stbiw__write_dump_data(s, len, &comp[x]); 727 | x += len; 728 | } 729 | // if there's a run, output it 730 | if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd 731 | // find next byte after run 732 | while (r < width && comp[r] == comp[x]) 733 | ++r; 734 | // output run up to r 735 | while (x < r) { 736 | int len = r-x; 737 | if (len > 127) len = 127; 738 | stbiw__write_run_data(s, len, comp[x]); 739 | x += len; 740 | } 741 | } 742 | } 743 | } 744 | } 745 | } 746 | 747 | static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data) 748 | { 749 | if (y <= 0 || x <= 0 || data == NULL) 750 | return 0; 751 | else { 752 | // Each component is stored separately. Allocate scratch space for full output scanline. 753 | unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4); 754 | int i, len; 755 | char buffer[128]; 756 | char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n"; 757 | s->func(s->context, header, sizeof(header)-1); 758 | 759 | #ifdef __STDC_WANT_SECURE_LIB__ 760 | len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); 761 | #else 762 | len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x); 763 | #endif 764 | s->func(s->context, buffer, len); 765 | 766 | for(i=0; i < y; i++) 767 | stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*x*(stbi__flip_vertically_on_write ? y-1-i : i)); 768 | STBIW_FREE(scratch); 769 | return 1; 770 | } 771 | } 772 | 773 | STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data) 774 | { 775 | stbi__write_context s = { 0 }; 776 | stbi__start_write_callbacks(&s, func, context); 777 | return stbi_write_hdr_core(&s, x, y, comp, (float *) data); 778 | } 779 | 780 | #ifndef STBI_WRITE_NO_STDIO 781 | STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data) 782 | { 783 | stbi__write_context s = { 0 }; 784 | if (stbi__start_write_file(&s,filename)) { 785 | int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data); 786 | stbi__end_write_file(&s); 787 | return r; 788 | } else 789 | return 0; 790 | } 791 | #endif // STBI_WRITE_NO_STDIO 792 | 793 | 794 | ////////////////////////////////////////////////////////////////////////////// 795 | // 796 | // PNG writer 797 | // 798 | 799 | #ifndef STBIW_ZLIB_COMPRESS 800 | // stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size() 801 | #define stbiw__sbraw(a) ((int *) (void *) (a) - 2) 802 | #define stbiw__sbm(a) stbiw__sbraw(a)[0] 803 | #define stbiw__sbn(a) stbiw__sbraw(a)[1] 804 | 805 | #define stbiw__sbneedgrow(a,n) ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a)) 806 | #define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0) 807 | #define stbiw__sbgrow(a,n) stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a))) 808 | 809 | #define stbiw__sbpush(a, v) (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v)) 810 | #define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0) 811 | #define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0) 812 | 813 | static void *stbiw__sbgrowf(void **arr, int increment, int itemsize) 814 | { 815 | int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1; 816 | void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2); 817 | STBIW_ASSERT(p); 818 | if (p) { 819 | if (!*arr) ((int *) p)[1] = 0; 820 | *arr = (void *) ((int *) p + 2); 821 | stbiw__sbm(*arr) = m; 822 | } 823 | return *arr; 824 | } 825 | 826 | static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount) 827 | { 828 | while (*bitcount >= 8) { 829 | stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer)); 830 | *bitbuffer >>= 8; 831 | *bitcount -= 8; 832 | } 833 | return data; 834 | } 835 | 836 | static int stbiw__zlib_bitrev(int code, int codebits) 837 | { 838 | int res=0; 839 | while (codebits--) { 840 | res = (res << 1) | (code & 1); 841 | code >>= 1; 842 | } 843 | return res; 844 | } 845 | 846 | static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit) 847 | { 848 | int i; 849 | for (i=0; i < limit && i < 258; ++i) 850 | if (a[i] != b[i]) break; 851 | return i; 852 | } 853 | 854 | static unsigned int stbiw__zhash(unsigned char *data) 855 | { 856 | stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16); 857 | hash ^= hash << 3; 858 | hash += hash >> 5; 859 | hash ^= hash << 4; 860 | hash += hash >> 17; 861 | hash ^= hash << 25; 862 | hash += hash >> 6; 863 | return hash; 864 | } 865 | 866 | #define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount)) 867 | #define stbiw__zlib_add(code,codebits) \ 868 | (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush()) 869 | #define stbiw__zlib_huffa(b,c) stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c) 870 | // default huffman tables 871 | #define stbiw__zlib_huff1(n) stbiw__zlib_huffa(0x30 + (n), 8) 872 | #define stbiw__zlib_huff2(n) stbiw__zlib_huffa(0x190 + (n)-144, 9) 873 | #define stbiw__zlib_huff3(n) stbiw__zlib_huffa(0 + (n)-256,7) 874 | #define stbiw__zlib_huff4(n) stbiw__zlib_huffa(0xc0 + (n)-280,8) 875 | #define stbiw__zlib_huff(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n)) 876 | #define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n)) 877 | 878 | #define stbiw__ZHASH 16384 879 | 880 | #endif // STBIW_ZLIB_COMPRESS 881 | 882 | STBIWDEF unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality) 883 | { 884 | #ifdef STBIW_ZLIB_COMPRESS 885 | // user provided a zlib compress implementation, use that 886 | return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality); 887 | #else // use builtin 888 | static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 }; 889 | static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 }; 890 | static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 }; 891 | static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 }; 892 | unsigned int bitbuf=0; 893 | int i,j, bitcount=0; 894 | unsigned char *out = NULL; 895 | unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**)); 896 | if (hash_table == NULL) 897 | return NULL; 898 | if (quality < 5) quality = 5; 899 | 900 | stbiw__sbpush(out, 0x78); // DEFLATE 32K window 901 | stbiw__sbpush(out, 0x5e); // FLEVEL = 1 902 | stbiw__zlib_add(1,1); // BFINAL = 1 903 | stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman 904 | 905 | for (i=0; i < stbiw__ZHASH; ++i) 906 | hash_table[i] = NULL; 907 | 908 | i=0; 909 | while (i < data_len-3) { 910 | // hash next 3 bytes of data to be compressed 911 | int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3; 912 | unsigned char *bestloc = 0; 913 | unsigned char **hlist = hash_table[h]; 914 | int n = stbiw__sbcount(hlist); 915 | for (j=0; j < n; ++j) { 916 | if (hlist[j]-data > i-32768) { // if entry lies within window 917 | int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i); 918 | if (d >= best) { best=d; bestloc=hlist[j]; } 919 | } 920 | } 921 | // when hash table entry is too long, delete half the entries 922 | if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) { 923 | STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality); 924 | stbiw__sbn(hash_table[h]) = quality; 925 | } 926 | stbiw__sbpush(hash_table[h],data+i); 927 | 928 | if (bestloc) { 929 | // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal 930 | h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1); 931 | hlist = hash_table[h]; 932 | n = stbiw__sbcount(hlist); 933 | for (j=0; j < n; ++j) { 934 | if (hlist[j]-data > i-32767) { 935 | int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1); 936 | if (e > best) { // if next match is better, bail on current match 937 | bestloc = NULL; 938 | break; 939 | } 940 | } 941 | } 942 | } 943 | 944 | if (bestloc) { 945 | int d = (int) (data+i - bestloc); // distance back 946 | STBIW_ASSERT(d <= 32767 && best <= 258); 947 | for (j=0; best > lengthc[j+1]-1; ++j); 948 | stbiw__zlib_huff(j+257); 949 | if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]); 950 | for (j=0; d > distc[j+1]-1; ++j); 951 | stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5); 952 | if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]); 953 | i += best; 954 | } else { 955 | stbiw__zlib_huffb(data[i]); 956 | ++i; 957 | } 958 | } 959 | // write out final bytes 960 | for (;i < data_len; ++i) 961 | stbiw__zlib_huffb(data[i]); 962 | stbiw__zlib_huff(256); // end of block 963 | // pad with 0 bits to byte boundary 964 | while (bitcount) 965 | stbiw__zlib_add(0,1); 966 | 967 | for (i=0; i < stbiw__ZHASH; ++i) 968 | (void) stbiw__sbfree(hash_table[i]); 969 | STBIW_FREE(hash_table); 970 | 971 | { 972 | // compute adler32 on input 973 | unsigned int s1=1, s2=0; 974 | int blocklen = (int) (data_len % 5552); 975 | j=0; 976 | while (j < data_len) { 977 | for (i=0; i < blocklen; ++i) { s1 += data[j+i]; s2 += s1; } 978 | s1 %= 65521; s2 %= 65521; 979 | j += blocklen; 980 | blocklen = 5552; 981 | } 982 | stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8)); 983 | stbiw__sbpush(out, STBIW_UCHAR(s2)); 984 | stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8)); 985 | stbiw__sbpush(out, STBIW_UCHAR(s1)); 986 | } 987 | *out_len = stbiw__sbn(out); 988 | // make returned pointer freeable 989 | STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len); 990 | return (unsigned char *) stbiw__sbraw(out); 991 | #endif // STBIW_ZLIB_COMPRESS 992 | } 993 | 994 | static unsigned int stbiw__crc32(unsigned char *buffer, int len) 995 | { 996 | #ifdef STBIW_CRC32 997 | return STBIW_CRC32(buffer, len); 998 | #else 999 | static unsigned int crc_table[256] = 1000 | { 1001 | 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 1002 | 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91, 1003 | 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 1004 | 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5, 1005 | 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 1006 | 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 1007 | 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F, 1008 | 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 1009 | 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 1010 | 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 1011 | 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 1012 | 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65, 1013 | 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 1014 | 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 1015 | 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 1016 | 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 1017 | 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683, 1018 | 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 1019 | 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7, 1020 | 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 1021 | 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 1022 | 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79, 1023 | 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 1024 | 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 1025 | 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 1026 | 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 1027 | 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 1028 | 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 1029 | 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB, 1030 | 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 1031 | 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF, 1032 | 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D 1033 | }; 1034 | 1035 | unsigned int crc = ~0u; 1036 | int i; 1037 | for (i=0; i < len; ++i) 1038 | crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)]; 1039 | return ~crc; 1040 | #endif 1041 | } 1042 | 1043 | #define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4) 1044 | #define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v)); 1045 | #define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3]) 1046 | 1047 | static void stbiw__wpcrc(unsigned char **data, int len) 1048 | { 1049 | unsigned int crc = stbiw__crc32(*data - len - 4, len+4); 1050 | stbiw__wp32(*data, crc); 1051 | } 1052 | 1053 | static unsigned char stbiw__paeth(int a, int b, int c) 1054 | { 1055 | int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c); 1056 | if (pa <= pb && pa <= pc) return STBIW_UCHAR(a); 1057 | if (pb <= pc) return STBIW_UCHAR(b); 1058 | return STBIW_UCHAR(c); 1059 | } 1060 | 1061 | // @OPTIMIZE: provide an option that always forces left-predict or paeth predict 1062 | static void stbiw__encode_png_line(unsigned char *pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char *line_buffer) 1063 | { 1064 | static int mapping[] = { 0,1,2,3,4 }; 1065 | static int firstmap[] = { 0,1,0,5,6 }; 1066 | int *mymap = (y != 0) ? mapping : firstmap; 1067 | int i; 1068 | int type = mymap[filter_type]; 1069 | unsigned char *z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height-1-y : y); 1070 | int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes; 1071 | 1072 | if (type==0) { 1073 | memcpy(line_buffer, z, width*n); 1074 | return; 1075 | } 1076 | 1077 | // first loop isn't optimized since it's just one pixel 1078 | for (i = 0; i < n; ++i) { 1079 | switch (type) { 1080 | case 1: line_buffer[i] = z[i]; break; 1081 | case 2: line_buffer[i] = z[i] - z[i-signed_stride]; break; 1082 | case 3: line_buffer[i] = z[i] - (z[i-signed_stride]>>1); break; 1083 | case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-signed_stride],0)); break; 1084 | case 5: line_buffer[i] = z[i]; break; 1085 | case 6: line_buffer[i] = z[i]; break; 1086 | } 1087 | } 1088 | switch (type) { 1089 | case 1: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-n]; break; 1090 | case 2: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - z[i-signed_stride]; break; 1091 | case 3: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - ((z[i-n] + z[i-signed_stride])>>1); break; 1092 | case 4: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-signed_stride], z[i-signed_stride-n]); break; 1093 | case 5: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - (z[i-n]>>1); break; 1094 | case 6: for (i=n; i < width*n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break; 1095 | } 1096 | } 1097 | 1098 | STBIWDEF unsigned char *stbi_write_png_to_mem(const unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len) 1099 | { 1100 | int force_filter = stbi_write_force_png_filter; 1101 | int ctype[5] = { -1, 0, 4, 2, 6 }; 1102 | unsigned char sig[8] = { 137,80,78,71,13,10,26,10 }; 1103 | unsigned char *out,*o, *filt, *zlib; 1104 | signed char *line_buffer; 1105 | int j,zlen; 1106 | 1107 | if (stride_bytes == 0) 1108 | stride_bytes = x * n; 1109 | 1110 | if (force_filter >= 5) { 1111 | force_filter = -1; 1112 | } 1113 | 1114 | filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0; 1115 | line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; } 1116 | for (j=0; j < y; ++j) { 1117 | int filter_type; 1118 | if (force_filter > -1) { 1119 | filter_type = force_filter; 1120 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer); 1121 | } else { // Estimate the best filter by running through all of them: 1122 | int best_filter = 0, best_filter_val = 0x7fffffff, est, i; 1123 | for (filter_type = 0; filter_type < 5; filter_type++) { 1124 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer); 1125 | 1126 | // Estimate the entropy of the line using this filter; the less, the better. 1127 | est = 0; 1128 | for (i = 0; i < x*n; ++i) { 1129 | est += abs((signed char) line_buffer[i]); 1130 | } 1131 | if (est < best_filter_val) { 1132 | best_filter_val = est; 1133 | best_filter = filter_type; 1134 | } 1135 | } 1136 | if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it 1137 | stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer); 1138 | filter_type = best_filter; 1139 | } 1140 | } 1141 | // when we get here, filter_type contains the filter type, and line_buffer contains the data 1142 | filt[j*(x*n+1)] = (unsigned char) filter_type; 1143 | STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n); 1144 | } 1145 | STBIW_FREE(line_buffer); 1146 | zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, stbi_write_png_compression_level); 1147 | STBIW_FREE(filt); 1148 | if (!zlib) return 0; 1149 | 1150 | // each tag requires 12 bytes of overhead 1151 | out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12); 1152 | if (!out) return 0; 1153 | *out_len = 8 + 12+13 + 12+zlen + 12; 1154 | 1155 | o=out; 1156 | STBIW_MEMMOVE(o,sig,8); o+= 8; 1157 | stbiw__wp32(o, 13); // header length 1158 | stbiw__wptag(o, "IHDR"); 1159 | stbiw__wp32(o, x); 1160 | stbiw__wp32(o, y); 1161 | *o++ = 8; 1162 | *o++ = STBIW_UCHAR(ctype[n]); 1163 | *o++ = 0; 1164 | *o++ = 0; 1165 | *o++ = 0; 1166 | stbiw__wpcrc(&o,13); 1167 | 1168 | stbiw__wp32(o, zlen); 1169 | stbiw__wptag(o, "IDAT"); 1170 | STBIW_MEMMOVE(o, zlib, zlen); 1171 | o += zlen; 1172 | STBIW_FREE(zlib); 1173 | stbiw__wpcrc(&o, zlen); 1174 | 1175 | stbiw__wp32(o,0); 1176 | stbiw__wptag(o, "IEND"); 1177 | stbiw__wpcrc(&o,0); 1178 | 1179 | STBIW_ASSERT(o == out + *out_len); 1180 | 1181 | return out; 1182 | } 1183 | 1184 | #ifndef STBI_WRITE_NO_STDIO 1185 | STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes) 1186 | { 1187 | FILE *f; 1188 | int len; 1189 | unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); 1190 | if (png == NULL) return 0; 1191 | 1192 | f = stbiw__fopen(filename, "wb"); 1193 | if (!f) { STBIW_FREE(png); return 0; } 1194 | fwrite(png, 1, len, f); 1195 | fclose(f); 1196 | STBIW_FREE(png); 1197 | return 1; 1198 | } 1199 | #endif 1200 | 1201 | STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes) 1202 | { 1203 | int len; 1204 | unsigned char *png = stbi_write_png_to_mem((const unsigned char *) data, stride_bytes, x, y, comp, &len); 1205 | if (png == NULL) return 0; 1206 | func(context, png, len); 1207 | STBIW_FREE(png); 1208 | return 1; 1209 | } 1210 | 1211 | 1212 | /* *************************************************************************** 1213 | * 1214 | * JPEG writer 1215 | * 1216 | * This is based on Jon Olick's jo_jpeg.cpp: 1217 | * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html 1218 | */ 1219 | 1220 | static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18, 1221 | 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 }; 1222 | 1223 | static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) { 1224 | int bitBuf = *bitBufP, bitCnt = *bitCntP; 1225 | bitCnt += bs[1]; 1226 | bitBuf |= bs[0] << (24 - bitCnt); 1227 | while(bitCnt >= 8) { 1228 | unsigned char c = (bitBuf >> 16) & 255; 1229 | stbiw__putc(s, c); 1230 | if(c == 255) { 1231 | stbiw__putc(s, 0); 1232 | } 1233 | bitBuf <<= 8; 1234 | bitCnt -= 8; 1235 | } 1236 | *bitBufP = bitBuf; 1237 | *bitCntP = bitCnt; 1238 | } 1239 | 1240 | static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) { 1241 | float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p; 1242 | float z1, z2, z3, z4, z5, z11, z13; 1243 | 1244 | float tmp0 = d0 + d7; 1245 | float tmp7 = d0 - d7; 1246 | float tmp1 = d1 + d6; 1247 | float tmp6 = d1 - d6; 1248 | float tmp2 = d2 + d5; 1249 | float tmp5 = d2 - d5; 1250 | float tmp3 = d3 + d4; 1251 | float tmp4 = d3 - d4; 1252 | 1253 | // Even part 1254 | float tmp10 = tmp0 + tmp3; // phase 2 1255 | float tmp13 = tmp0 - tmp3; 1256 | float tmp11 = tmp1 + tmp2; 1257 | float tmp12 = tmp1 - tmp2; 1258 | 1259 | d0 = tmp10 + tmp11; // phase 3 1260 | d4 = tmp10 - tmp11; 1261 | 1262 | z1 = (tmp12 + tmp13) * 0.707106781f; // c4 1263 | d2 = tmp13 + z1; // phase 5 1264 | d6 = tmp13 - z1; 1265 | 1266 | // Odd part 1267 | tmp10 = tmp4 + tmp5; // phase 2 1268 | tmp11 = tmp5 + tmp6; 1269 | tmp12 = tmp6 + tmp7; 1270 | 1271 | // The rotator is modified from fig 4-8 to avoid extra negations. 1272 | z5 = (tmp10 - tmp12) * 0.382683433f; // c6 1273 | z2 = tmp10 * 0.541196100f + z5; // c2-c6 1274 | z4 = tmp12 * 1.306562965f + z5; // c2+c6 1275 | z3 = tmp11 * 0.707106781f; // c4 1276 | 1277 | z11 = tmp7 + z3; // phase 5 1278 | z13 = tmp7 - z3; 1279 | 1280 | *d5p = z13 + z2; // phase 6 1281 | *d3p = z13 - z2; 1282 | *d1p = z11 + z4; 1283 | *d7p = z11 - z4; 1284 | 1285 | *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6; 1286 | } 1287 | 1288 | static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) { 1289 | int tmp1 = val < 0 ? -val : val; 1290 | val = val < 0 ? val-1 : val; 1291 | bits[1] = 1; 1292 | while(tmp1 >>= 1) { 1293 | ++bits[1]; 1294 | } 1295 | bits[0] = val & ((1<0)&&(DU[end0pos]==0); --end0pos) { 1338 | } 1339 | // end0pos = first element in reverse order !=0 1340 | if(end0pos == 0) { 1341 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); 1342 | return DU[0]; 1343 | } 1344 | for(i = 1; i <= end0pos; ++i) { 1345 | int startpos = i; 1346 | int nrzeroes; 1347 | unsigned short bits[2]; 1348 | for (; DU[i]==0 && i<=end0pos; ++i) { 1349 | } 1350 | nrzeroes = i-startpos; 1351 | if ( nrzeroes >= 16 ) { 1352 | int lng = nrzeroes>>4; 1353 | int nrmarker; 1354 | for (nrmarker=1; nrmarker <= lng; ++nrmarker) 1355 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes); 1356 | nrzeroes &= 15; 1357 | } 1358 | stbiw__jpg_calcBits(DU[i], bits); 1359 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]); 1360 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits); 1361 | } 1362 | if(end0pos != 63) { 1363 | stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB); 1364 | } 1365 | return DU[0]; 1366 | } 1367 | 1368 | static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) { 1369 | // Constants that don't pollute global namespace 1370 | static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0}; 1371 | static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; 1372 | static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d}; 1373 | static const unsigned char std_ac_luminance_values[] = { 1374 | 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08, 1375 | 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28, 1376 | 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59, 1377 | 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89, 1378 | 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6, 1379 | 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2, 1380 | 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa 1381 | }; 1382 | static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0}; 1383 | static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11}; 1384 | static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77}; 1385 | static const unsigned char std_ac_chrominance_values[] = { 1386 | 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91, 1387 | 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26, 1388 | 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58, 1389 | 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87, 1390 | 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4, 1391 | 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda, 1392 | 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa 1393 | }; 1394 | // Huffman tables 1395 | static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}}; 1396 | static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}}; 1397 | static const unsigned short YAC_HT[256][2] = { 1398 | {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1399 | {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1400 | {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1401 | {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1402 | {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1403 | {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1404 | {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1405 | {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1406 | {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1407 | {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1408 | {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1409 | {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1410 | {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1411 | {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1412 | {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0}, 1413 | {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} 1414 | }; 1415 | static const unsigned short UVAC_HT[256][2] = { 1416 | {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1417 | {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1418 | {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1419 | {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1420 | {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1421 | {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1422 | {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1423 | {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1424 | {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1425 | {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1426 | {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1427 | {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1428 | {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1429 | {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0}, 1430 | {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0}, 1431 | {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0} 1432 | }; 1433 | static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22, 1434 | 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99}; 1435 | static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99, 1436 | 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99}; 1437 | static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f, 1438 | 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f }; 1439 | 1440 | int row, col, i, k, subsample; 1441 | float fdtbl_Y[64], fdtbl_UV[64]; 1442 | unsigned char YTable[64], UVTable[64]; 1443 | 1444 | if(!data || !width || !height || comp > 4 || comp < 1) { 1445 | return 0; 1446 | } 1447 | 1448 | quality = quality ? quality : 90; 1449 | subsample = quality <= 90 ? 1 : 0; 1450 | quality = quality < 1 ? 1 : quality > 100 ? 100 : quality; 1451 | quality = quality < 50 ? 5000 / quality : 200 - quality * 2; 1452 | 1453 | for(i = 0; i < 64; ++i) { 1454 | int uvti, yti = (YQT[i]*quality+50)/100; 1455 | YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti); 1456 | uvti = (UVQT[i]*quality+50)/100; 1457 | UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti); 1458 | } 1459 | 1460 | for(row = 0, k = 0; row < 8; ++row) { 1461 | for(col = 0; col < 8; ++col, ++k) { 1462 | fdtbl_Y[k] = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); 1463 | fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]); 1464 | } 1465 | } 1466 | 1467 | // Write Headers 1468 | { 1469 | static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 }; 1470 | static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 }; 1471 | const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width), 1472 | 3,1,(unsigned char)(subsample?0x22:0x11),0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 }; 1473 | s->func(s->context, (void*)head0, sizeof(head0)); 1474 | s->func(s->context, (void*)YTable, sizeof(YTable)); 1475 | stbiw__putc(s, 1); 1476 | s->func(s->context, UVTable, sizeof(UVTable)); 1477 | s->func(s->context, (void*)head1, sizeof(head1)); 1478 | s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1); 1479 | s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values)); 1480 | stbiw__putc(s, 0x10); // HTYACinfo 1481 | s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1); 1482 | s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values)); 1483 | stbiw__putc(s, 1); // HTUDCinfo 1484 | s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1); 1485 | s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values)); 1486 | stbiw__putc(s, 0x11); // HTUACinfo 1487 | s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1); 1488 | s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values)); 1489 | s->func(s->context, (void*)head2, sizeof(head2)); 1490 | } 1491 | 1492 | // Encode 8x8 macroblocks 1493 | { 1494 | static const unsigned short fillBits[] = {0x7F, 7}; 1495 | int DCY=0, DCU=0, DCV=0; 1496 | int bitBuf=0, bitCnt=0; 1497 | // comp == 2 is grey+alpha (alpha is ignored) 1498 | int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0; 1499 | const unsigned char *dataR = (const unsigned char *)data; 1500 | const unsigned char *dataG = dataR + ofsG; 1501 | const unsigned char *dataB = dataR + ofsB; 1502 | int x, y, pos; 1503 | if(subsample) { 1504 | for(y = 0; y < height; y += 16) { 1505 | for(x = 0; x < width; x += 16) { 1506 | float Y[256], U[256], V[256]; 1507 | for(row = y, pos = 0; row < y+16; ++row) { 1508 | // row >= height => use last input row 1509 | int clamped_row = (row < height) ? row : height - 1; 1510 | int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp; 1511 | for(col = x; col < x+16; ++col, ++pos) { 1512 | // if col >= width => use pixel from last input column 1513 | int p = base_p + ((col < width) ? col : (width-1))*comp; 1514 | float r = dataR[p], g = dataG[p], b = dataB[p]; 1515 | Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128; 1516 | U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b; 1517 | V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b; 1518 | } 1519 | } 1520 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+0, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); 1521 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+8, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); 1522 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+128, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); 1523 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y+136, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT); 1524 | 1525 | // subsample U,V 1526 | { 1527 | float subU[64], subV[64]; 1528 | int yy, xx; 1529 | for(yy = 0, pos = 0; yy < 8; ++yy) { 1530 | for(xx = 0; xx < 8; ++xx, ++pos) { 1531 | int j = yy*32+xx*2; 1532 | subU[pos] = (U[j+0] + U[j+1] + U[j+16] + U[j+17]) * 0.25f; 1533 | subV[pos] = (V[j+0] + V[j+1] + V[j+16] + V[j+17]) * 0.25f; 1534 | } 1535 | } 1536 | DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subU, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); 1537 | DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subV, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); 1538 | } 1539 | } 1540 | } 1541 | } else { 1542 | for(y = 0; y < height; y += 8) { 1543 | for(x = 0; x < width; x += 8) { 1544 | float Y[64], U[64], V[64]; 1545 | for(row = y, pos = 0; row < y+8; ++row) { 1546 | // row >= height => use last input row 1547 | int clamped_row = (row < height) ? row : height - 1; 1548 | int base_p = (stbi__flip_vertically_on_write ? (height-1-clamped_row) : clamped_row)*width*comp; 1549 | for(col = x; col < x+8; ++col, ++pos) { 1550 | // if col >= width => use pixel from last input column 1551 | int p = base_p + ((col < width) ? col : (width-1))*comp; 1552 | float r = dataR[p], g = dataG[p], b = dataB[p]; 1553 | Y[pos]= +0.29900f*r + 0.58700f*g + 0.11400f*b - 128; 1554 | U[pos]= -0.16874f*r - 0.33126f*g + 0.50000f*b; 1555 | V[pos]= +0.50000f*r - 0.41869f*g - 0.08131f*b; 1556 | } 1557 | } 1558 | 1559 | DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y, 8, fdtbl_Y, DCY, YDC_HT, YAC_HT); 1560 | DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, U, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT); 1561 | DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, V, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT); 1562 | } 1563 | } 1564 | } 1565 | 1566 | // Do the bit alignment of the EOI marker 1567 | stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits); 1568 | } 1569 | 1570 | // EOI 1571 | stbiw__putc(s, 0xFF); 1572 | stbiw__putc(s, 0xD9); 1573 | 1574 | return 1; 1575 | } 1576 | 1577 | STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality) 1578 | { 1579 | stbi__write_context s = { 0 }; 1580 | stbi__start_write_callbacks(&s, func, context); 1581 | return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality); 1582 | } 1583 | 1584 | 1585 | #ifndef STBI_WRITE_NO_STDIO 1586 | STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality) 1587 | { 1588 | stbi__write_context s = { 0 }; 1589 | if (stbi__start_write_file(&s,filename)) { 1590 | int r = stbi_write_jpg_core(&s, x, y, comp, data, quality); 1591 | stbi__end_write_file(&s); 1592 | return r; 1593 | } else 1594 | return 0; 1595 | } 1596 | #endif 1597 | 1598 | #endif // STB_IMAGE_WRITE_IMPLEMENTATION 1599 | 1600 | /* Revision history 1601 | 1.14 (2020-02-02) updated JPEG writer to downsample chroma channels 1602 | 1.13 1603 | 1.12 1604 | 1.11 (2019-08-11) 1605 | 1606 | 1.10 (2019-02-07) 1607 | support utf8 filenames in Windows; fix warnings and platform ifdefs 1608 | 1.09 (2018-02-11) 1609 | fix typo in zlib quality API, improve STB_I_W_STATIC in C++ 1610 | 1.08 (2018-01-29) 1611 | add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter 1612 | 1.07 (2017-07-24) 1613 | doc fix 1614 | 1.06 (2017-07-23) 1615 | writing JPEG (using Jon Olick's code) 1616 | 1.05 ??? 1617 | 1.04 (2017-03-03) 1618 | monochrome BMP expansion 1619 | 1.03 ??? 1620 | 1.02 (2016-04-02) 1621 | avoid allocating large structures on the stack 1622 | 1.01 (2016-01-16) 1623 | STBIW_REALLOC_SIZED: support allocators with no realloc support 1624 | avoid race-condition in crc initialization 1625 | minor compile issues 1626 | 1.00 (2015-09-14) 1627 | installable file IO function 1628 | 0.99 (2015-09-13) 1629 | warning fixes; TGA rle support 1630 | 0.98 (2015-04-08) 1631 | added STBIW_MALLOC, STBIW_ASSERT etc 1632 | 0.97 (2015-01-18) 1633 | fixed HDR asserts, rewrote HDR rle logic 1634 | 0.96 (2015-01-17) 1635 | add HDR output 1636 | fix monochrome BMP 1637 | 0.95 (2014-08-17) 1638 | add monochrome TGA output 1639 | 0.94 (2014-05-31) 1640 | rename private functions to avoid conflicts with stb_image.h 1641 | 0.93 (2014-05-27) 1642 | warning fixes 1643 | 0.92 (2010-08-01) 1644 | casts to unsigned char to fix warnings 1645 | 0.91 (2010-07-17) 1646 | first public release 1647 | 0.90 first internal release 1648 | */ 1649 | 1650 | /* 1651 | ------------------------------------------------------------------------------ 1652 | This software is available under 2 licenses -- choose whichever you prefer. 1653 | ------------------------------------------------------------------------------ 1654 | ALTERNATIVE A - MIT License 1655 | Copyright (c) 2017 Sean Barrett 1656 | Permission is hereby granted, free of charge, to any person obtaining a copy of 1657 | this software and associated documentation files (the "Software"), to deal in 1658 | the Software without restriction, including without limitation the rights to 1659 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies 1660 | of the Software, and to permit persons to whom the Software is furnished to do 1661 | so, subject to the following conditions: 1662 | The above copyright notice and this permission notice shall be included in all 1663 | copies or substantial portions of the Software. 1664 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 1665 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 1666 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 1667 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 1668 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 1669 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 1670 | SOFTWARE. 1671 | ------------------------------------------------------------------------------ 1672 | ALTERNATIVE B - Public Domain (www.unlicense.org) 1673 | This is free and unencumbered software released into the public domain. 1674 | Anyone is free to copy, modify, publish, use, compile, sell, or distribute this 1675 | software, either in source code form or as a compiled binary, for any purpose, 1676 | commercial or non-commercial, and by any means. 1677 | In jurisdictions that recognize copyright laws, the author or authors of this 1678 | software dedicate any and all copyright interest in the software to the public 1679 | domain. We make this dedication for the benefit of the public at large and to 1680 | the detriment of our heirs and successors. We intend this dedication to be an 1681 | overt act of relinquishment in perpetuity of all present and future rights to 1682 | this software under copyright law. 1683 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 1684 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 1685 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 1686 | AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 1687 | ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 1688 | WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 1689 | ------------------------------------------------------------------------------ 1690 | */ 1691 | -------------------------------------------------------------------------------- /stripes.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gary21978/wlsfilter/39bb6e566392febb0e97b6596d9daf03824c6e93/stripes.png --------------------------------------------------------------------------------