├── Plots ├── AR_Model.png ├── MA_Model.png ├── ARIMA_Model.png ├── acf_pacf_plot.png ├── eliminating_trend.png ├── decompose_timeseries.png ├── differencing_timeseries.png ├── one_period_simple_returns.png ├── rolling_mean_std_returns.png ├── 25_day_period_simple_returns.png ├── autocorrelation_scatter_plot.png ├── distributional_hist_returns.png ├── autocorrelation_simple_returns.png ├── continuously_compounded_returns.png └── final_returns_prediction_model.png ├── backtest_plots ├── auto_ARIMA.png └── ARIMA(0, 1, 1)_window_20.png ├── __pycache__ ├── Simple.cpython-38.pyc └── functions.cpython-38.pyc ├── test.py ├── README.md ├── Simple.py ├── functions.py ├── msft.csv └── DJIA.csv /Plots/AR_Model.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/AR_Model.png -------------------------------------------------------------------------------- /Plots/MA_Model.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/MA_Model.png -------------------------------------------------------------------------------- /Plots/ARIMA_Model.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/ARIMA_Model.png -------------------------------------------------------------------------------- /Plots/acf_pacf_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/acf_pacf_plot.png -------------------------------------------------------------------------------- /Plots/eliminating_trend.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/eliminating_trend.png -------------------------------------------------------------------------------- /Plots/decompose_timeseries.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/decompose_timeseries.png -------------------------------------------------------------------------------- /backtest_plots/auto_ARIMA.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/backtest_plots/auto_ARIMA.png -------------------------------------------------------------------------------- /Plots/differencing_timeseries.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/differencing_timeseries.png -------------------------------------------------------------------------------- /__pycache__/Simple.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/__pycache__/Simple.cpython-38.pyc -------------------------------------------------------------------------------- /Plots/one_period_simple_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/one_period_simple_returns.png -------------------------------------------------------------------------------- /Plots/rolling_mean_std_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/rolling_mean_std_returns.png -------------------------------------------------------------------------------- /__pycache__/functions.cpython-38.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/__pycache__/functions.cpython-38.pyc -------------------------------------------------------------------------------- /Plots/25_day_period_simple_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/25_day_period_simple_returns.png -------------------------------------------------------------------------------- /Plots/autocorrelation_scatter_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/autocorrelation_scatter_plot.png -------------------------------------------------------------------------------- /Plots/distributional_hist_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/distributional_hist_returns.png -------------------------------------------------------------------------------- /Plots/autocorrelation_simple_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/autocorrelation_simple_returns.png -------------------------------------------------------------------------------- /Plots/continuously_compounded_returns.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/continuously_compounded_returns.png -------------------------------------------------------------------------------- /Plots/final_returns_prediction_model.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/Plots/final_returns_prediction_model.png -------------------------------------------------------------------------------- /backtest_plots/ARIMA(0, 1, 1)_window_20.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gawd-coder/Backtest-ARIMA-Model-Startegy/HEAD/backtest_plots/ARIMA(0, 1, 1)_window_20.png -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import argparse 3 | import backtrader as bt 4 | import backtrader.indicators as btind 5 | import backtrader.analyzers as btanalyzers 6 | import backtrader.feeds as btfeeds 7 | from Simple import my_strat 8 | 9 | import matplotlib 10 | import matplotlib.pyplot as plt 11 | matplotlib.use('Qt5Agg') 12 | plt.switch_backend('Qt5Agg') 13 | 14 | # change the "default=XYZ" values if required 15 | parser = argparse.ArgumentParser(description='Backtest the strategy') 16 | parser.add_argument('-df','--datafile',type=str,default='msft.csv',help='Path to the data file') 17 | parser.add_argument('-C','--CASH',type=float,default=1000.0,help='Total Cash') 18 | parser.add_argument('-S','--STAKE',type=float,default=5,help='Stake') 19 | parser.add_argument('-CM','--COMMISSION',type=float,default=0.001,help='Commission') 20 | 21 | args = parser.parse_args() 22 | 23 | cerebro = bt.Cerebro() 24 | 25 | # Add/Change the strategy 26 | # You may want to change the default cash for different strategy 27 | cerebro.addstrategy(my_strat) 28 | 29 | # Datas are in a subfolder of the samples. Need to find where the script is 30 | # because it could have been called from anywhere 31 | 32 | data_path = args.datafile 33 | 34 | # Create a Generic Data Feed 35 | # You will need to change the specifications if you change the datafile format 36 | data = btfeeds.GenericCSVData( 37 | dataname=data_path, 38 | dtformat=('%d-%m-%Y'), 39 | tmformat=('%H.%M.%S'), 40 | datetime=0, 41 | high=2, 42 | low=3, 43 | open=1, 44 | close=4, 45 | volume=5, 46 | ) 47 | 48 | # Add the Data Feed to Cerebro 49 | cerebro.adddata(data) 50 | 51 | # Set the specifications 52 | cerebro.broker.setcash(args.CASH) 53 | cerebro.addsizer(bt.sizers.FixedSize, stake=args.STAKE) 54 | cerebro.broker.setcommission(commission=args.COMMISSION) 55 | cerebro.addanalyzer(btanalyzers.SharpeRatio, _name='mysharpe') 56 | 57 | # Print out the starting conditions 58 | print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) 59 | 60 | 61 | thestrats = cerebro.run() 62 | thestrat = thestrats[0] 63 | 64 | print('Sharpe Ratio:', thestrat.analyzers.mysharpe.get_analysis()) 65 | 66 | # Print out the final result 67 | print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue()) 68 | 69 | cerebro.plot(iplot = False) -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Backtest-ARIMA-Model-Startegy 2 | Backtested trading strategy based on modelling stock returns based on Auto Regressive Integrated Moving Average model 3 | 4 | Install 5 | ------- 6 | 7 | This project uses [backtrader](https://www.backtrader.com/) and [pmdarima](https://pypi.org/project/pmdarima/). Go check them out if you don't have them locally installed. 8 | 9 | ```source-shell 10 | $ pip install backtrader[plotting] 11 | $ pip install pmdarima 12 | ``` 13 | 14 | Interpretation 15 | ------- 16 | 17 | Dive right into functions.py. I have added a lot of interpretations right after the various functions used in comments. This file starts with normal operations that are 18 | required to be done and checked when handling time series to understand it. I have used returns from msft stock to plot all the results (in the ```plots``` directory). 19 | 20 | ***Operations covered in functions.py*** - 21 | 22 | 1. one_period-multi_period-continuosly_compounded returns 23 | 2. Plotted returns distribution histogram along with normal distribution histogram on same plot 24 | 3. Performed Ljung-Box Test and plotted autocorrelation lags plot 25 | 4. Plotted scatter plot between retruns and 1-day lag return 26 | 5. Performed Augmented Dickey–Fuller test and plotted rolling mean, deviation and returns to check stationarity 27 | 6. Log-Difference Returns taken to remove trend and increase stationarity of time series 28 | 7. Time series decomposed into residuals, trend and seasonality components and plotted 29 | 8. Autocorrelation(ACF) and Partial Autocorrelation(PACF) plotted to find q and p resp. for the ARIMA model 30 | 9. AR(1, 1, 0), MA(0, 1, 1), ARIMA(1, 1, 1) model fitted to logarithmic difference of returns. RSS values compared for each to find best fit 31 | 32 | ***Backtesting -*** 33 | 34 | First I have written a [custom indicator](https://www.backtrader.com/docu/inddev/) - *class ARIMA_ind* to generate a positive buying signal whenever the returns predicted by the 35 | ARIMA based model on the past window(20 or 30 days) of current time is positive and go short if predicted results are negative. 36 | 37 | I have made 2 indicators - 38 | 39 | 1. ARIMA(0, 1, 1) with lag_window = 20 days 40 | 2. This one selects the best ARIMA model for the lag period on its own. I have used [pmdarima](https://pypi.org/project/pmdarima/) library for this. 41 | 42 | The 2 generated plots are in the ```backtest_plots``` directory 43 | 44 | Contributing 45 | ------------ 46 | 47 | Feel free to dive in! Open an issue or submit PRs. 48 | -------------------------------------------------------------------------------- /Simple.py: -------------------------------------------------------------------------------- 1 | import backtrader as bt 2 | import math 3 | import numpy as np 4 | import pmdarima as pm 5 | from statsmodels.tsa.arima_model import ARIMA 6 | from sklearn.metrics import mean_squared_error 7 | 8 | class my_strat(bt.Strategy): 9 | 10 | params = (('max_position', 10), ) 11 | 12 | def __init__(self): 13 | self.dataclose = self.datas[0].close 14 | self.signal = ARIMA_ind(self.dataclose) 15 | 16 | def log(self, txt, dt=None): 17 | ''' 18 | Logging function for this strategy 19 | ''' 20 | dt = dt or self.datas[0].datetime.date(0) 21 | print('%s, %s' % (dt.isoformat(), txt)) 22 | 23 | def notify_order(self, order): 24 | if order.status in [order.Submitted, order.Accepted]: 25 | # Buy/Sell order submitted/accepted to/by broker - Nothing to do 26 | return 27 | 28 | # Check if an order has been completed 29 | # Attention: broker could reject order if not enough cash 30 | if order.status in [order.Completed]: 31 | if order.isbuy(): 32 | self.log('BUY EXECUTED, %.2f' % order.executed.price) 33 | elif order.issell(): 34 | self.log('SELL EXECUTED, %.2f' % order.executed.price) 35 | 36 | self.bar_executed = len(self) 37 | 38 | elif order.status in [order.Canceled, order.Margin, order.Rejected]: 39 | 40 | self.log('Order Canceled/Margin/Rejected') 41 | 42 | # Write down: no pending order 43 | self.order = None 44 | 45 | def next(self): 46 | 47 | if self.signal > 0: 48 | if self.position.size < self.params.max_position: 49 | self.buy() 50 | 51 | elif self.signal < 0: 52 | if self.position.size > 0: 53 | self.close() 54 | 55 | class ARIMA_ind(bt.Indicator): 56 | 57 | lines = ('ARIMA_Model_Returns_Forecast', ) 58 | params = (('period', 20), ) 59 | 60 | plotinfo = dict( 61 | plot=True, 62 | plotname='ARIMA_Model_Returns_Forecast', 63 | subplot=True, 64 | plotlinelabels=True) 65 | 66 | def __init__(self): 67 | self.addminperiod(self.params.period) 68 | 69 | def next(self): 70 | x = self.data.get(size = self.p.period) 71 | # percent returns 72 | X = [(a / x[x.index(a) - 1]) - 1 for a in x] 73 | size = int(len(X) * 0.8) 74 | train, test = X[0:size], X[size:len(X)] 75 | history = [x for x in train] 76 | predictions = list() 77 | for t in range(len(test)): 78 | model = ARIMA(history, order = (0, 1, 1)) 79 | model_fit = model.fit(disp = -1) 80 | output = model_fit.forecast() 81 | yhat = output[0] 82 | predictions.append(yhat) 83 | obs = test[t] 84 | history.append(obs) 85 | print ('predicted = %f, expected = %f'%(yhat, obs)) 86 | error = mean_squared_error(test, predictions) 87 | print('Test MSE: %.6f' % error) 88 | 89 | self.lines.ARIMA_Model_Returns_Forecast[0] = predictions[-1] 90 | 91 | """ 92 | Sharpe Ratio: OrderedDict([('sharperatio', 0.5928765212729156)]) 93 | Final Portfolio Value: 1374.18 94 | """ 95 | 96 | class auto_ARIMA_ind(bt.Indicator): 97 | 98 | lines = ('ARIMA_Model_Returns_Forecast', ) 99 | params = (('period', 30), ) 100 | 101 | plotinfo = dict( 102 | plot=True, 103 | plotname='ARIMA_Model_Returns_Forecast', 104 | subplot=True, 105 | plotlinelabels=True) 106 | 107 | def __init__(self): 108 | self.addminperiod(self.params.period) 109 | 110 | def next(self): 111 | x = self.data.get(size = self.p.period) 112 | # percent returns 113 | X = [(a / x[x.index(a) - 1]) - 1 for a in x] 114 | size = int(len(X) * 0.8) 115 | train, test = X[0:size], X[size:len(X)] 116 | history = [x for x in train] 117 | predictions = list() 118 | for t in range(len(test)): 119 | #Automatically selects the best parameters for ARIMA model 120 | model = model = pm.auto_arima(history, start_p=1, start_q=1, 121 | test='adf', # use adftest to find optimal 'd' 122 | max_p=3, max_q=3, # maximum p and q 123 | m=1, # frequency of series 124 | d=None, # let model determine 'd' 125 | seasonal=False, # No Seasonality 126 | start_P=0, 127 | D=0, 128 | trace=True, 129 | error_action='ignore', 130 | suppress_warnings=True, 131 | stepwise=True) 132 | model_fit = model.fit(disp = -1) 133 | output = model_fit.forecast() 134 | yhat = output[0] 135 | predictions.append(yhat) 136 | obs = test[t] 137 | history.append(obs) 138 | print ('predicted = %f, expected = %f'%(yhat, obs)) 139 | error = mean_squared_error(test, predictions) 140 | print('Test MSE: %.6f' % error) 141 | 142 | self.lines.ARIMA_Model_Returns_Forecast[0] = predictions[-1] 143 | 144 | """ 145 | Sharpe Ratio: OrderedDict([('sharperatio', 0.7088414735506292)]) 146 | Final Portfolio Value: 1567.80 147 | """ 148 | -------------------------------------------------------------------------------- /functions.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | import numpy as np 3 | from scipy import stats 4 | import statsmodels.api as sm 5 | from statsmodels.tsa.stattools import adfuller, acf, pacf 6 | from statsmodels.graphics.tsaplots import plot_acf 7 | from statsmodels.tsa.arima_model import ARIMA 8 | from statsmodels.tsa.seasonal import seasonal_decompose 9 | import matplotlib 10 | import matplotlib.pyplot as plt 11 | matplotlib.use('Qt5Agg') 12 | plt.switch_backend('Qt5Agg') 13 | 14 | data = pd.read_csv('msft.csv') 15 | data.set_index('Date', inplace = True) 16 | ts = data['Close'].pct_change() 17 | ts = ts[1:] 18 | 19 | def one_period_simple_return(data): 20 | 21 | data['simple_return'] = data['Close'] / data['Close'].shift(1, axis = 0) - 1 22 | # data['simple_return'] = data['Close'].pct_change() 23 | 24 | fig, ax1 = plt.subplots() 25 | 26 | color = 'tab:purple' 27 | ax1.set_xlabel('time') 28 | ax1.set_ylabel('Returns', color=color) 29 | ax1.plot(data.simple_return[1:], color=color) 30 | ax1.tick_params(axis='y', labelcolor=color) 31 | 32 | ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis 33 | 34 | color = 'tab:blue' 35 | ax2.set_ylabel('Close Price', color=color) # we already handled the x-label with ax1 36 | ax2.plot(data.Close[1:], color=color) 37 | ax2.tick_params(axis='y', labelcolor=color) 38 | fig.tight_layout() # otherwise the right y-label is slightly clipped 39 | plt.title('One Period Simple Returns') 40 | plt.show() 41 | 42 | def multi_period_simple_return(data, period): 43 | 44 | data['multi_period_return'] = data['Close'] / data['Close'].shift(period, axis = 0) - 1 45 | 46 | fig, ax1 = plt.subplots() 47 | 48 | color = 'tab:purple' 49 | ax1.set_xlabel('time') 50 | ax1.set_ylabel('Returns', color=color) 51 | ax1.plot(data.index[1:], data.multi_period_return[1:], color=color) 52 | ax1.tick_params(axis='y', labelcolor=color) 53 | 54 | ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis 55 | 56 | color = 'tab:blue' 57 | ax2.set_ylabel('Close Price', color=color) # we already handled the x-label with ax1 58 | ax2.plot(data.index[1:], data.Close[1:], color=color) 59 | ax2.tick_params(axis='y', labelcolor=color) 60 | fig.tight_layout() # otherwise the right y-label is slightly clipped 61 | plt.title('Multi Period Simple Returns : %.0f days' % period) 62 | plt.show() 63 | 64 | def continuously_compounded_return(data): 65 | 66 | data['cc_return'] = np.log(1 + (data['Close'] / data['Close'].shift(1, axis = 0))) 67 | 68 | fig, ax1 = plt.subplots() 69 | 70 | color = 'tab:purple' 71 | ax1.set_xlabel('time') 72 | ax1.set_ylabel('Returns', color=color) 73 | ax1.plot(data.index[1:], data.cc_return[1:], color=color) 74 | ax1.tick_params(axis='y', labelcolor=color) 75 | 76 | ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis 77 | 78 | color = 'tab:blue' 79 | ax2.set_ylabel('Close Price', color=color) # we already handled the x-label with ax1 80 | ax2.plot(data.index[1:], data.Close[1:], color=color) 81 | ax2.tick_params(axis='y', labelcolor=color) 82 | fig.tight_layout() # otherwise the right y-label is slightly clipped 83 | plt.title('Continuously Compounded Returns') 84 | plt.show() 85 | 86 | def distributional_properties(data): 87 | 88 | data['simple_return'] = data['Close'].pct_change() 89 | 90 | mu, sigma = data['simple_return'].mean(), data['simple_return'].std() 91 | s = np.random.normal(mu, sigma, 1000) 92 | count, bins, ignored = plt.hist(data['simple_return'], 50, density = True) 93 | plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) * 94 | np.exp( - (bins - mu)**2 / (2 * sigma**2) ), linewidth=2, color='r') 95 | plt.title('Distributional Properties of Returns') 96 | plt.xlabel('Returns') 97 | plt.ylabel('Frequency') 98 | plt.show() 99 | 100 | print (stats.describe(data.simple_return[1:])) 101 | 102 | def skewness(data): 103 | data['simple_return'] = data['Close'].pct_change() 104 | mean = data.simple_return[1:].mean() 105 | std = data.simple_return[1:].std() 106 | n = len(data.simple_return[1:]) 107 | sigma = 0 108 | for i in range(1, n): 109 | sigma += ((data.simple_return[i] - mean) / (std)) ** 3 110 | skew = (sigma * n)/((n - 1) * (n - 2)) 111 | print ('Skew :', skew) 112 | 113 | def autocorrelation_returns(data, return_type): 114 | 115 | data['simple_return'] = data['Close'].pct_change() 116 | data['cc_return'] = np.log(1 + (data['Close'] / data['Close'].shift(1, axis = 0))) #log return 117 | 118 | if return_type == 'simple': 119 | # plt.acorr(data.simple_return[1:], maxlags = 20) 120 | plot_acf(data.simple_return[1:]) 121 | plt.title('Autocorrelation of Simple Returns') 122 | plt.xlabel('Lags') 123 | plt.ylabel('Correlation') 124 | print (sm.stats.acorr_ljungbox(data.simple_return[1:], lags=[30], return_df=True)) 125 | if sm.stats.acorr_ljungbox(data.simple_return[1:], lags=[30], return_df=False)[1] < 0.0001: 126 | print ('Simple Returns are serially correlated') 127 | else: 128 | print ('Simple Returns are not serially correlated') 129 | 130 | elif return_type == 'log': 131 | # plt.acorr(data.cc_return[1:], maxlags = 20) 132 | plot_acf(data.cc_return[1:]) 133 | plt.title('Autocorrelation of Log Returns') 134 | plt.xlabel('Lags') 135 | plt.ylabel('Correlation') 136 | print (sm.stats.acorr_ljungbox(data.cc_return[1:], lags=[30], return_df=True)) 137 | if sm.stats.acorr_ljungbox(data.simple_return[1:], lags=[30], return_df=False)[1] < 0.0001: 138 | print ('Log Returns are serially correlated') 139 | else: 140 | print ('Log Returns are not serially correlated') 141 | 142 | """ 143 | lb_stat lb_pvalue 144 | 30 312.105175 1.079277e-48 145 | Simple Returns are serially correlated 146 | lb_stat lb_pvalue 147 | 30 309.635054 3.323054e-48 148 | Log Returns are serially correlated 149 | """ 150 | 151 | def correlation(data): 152 | 153 | data['simple_return'] = data['Close'].pct_change() 154 | data['lagged'] = data['simple_return'].shift(1, axis = 0) 155 | plt.scatter(data.lagged[2:], data.simple_return[2:]) 156 | plt.title('Correlation between return and 1-day-lag return') 157 | plt.xlabel('X[t-1]') 158 | plt.ylabel('X[t+1]') 159 | 160 | dataframe = pd.concat([data.lagged[2:], data.simple_return[2:]], axis=1) 161 | dataframe.columns = ['t-1', 't+1'] 162 | result = dataframe.corr() 163 | print (result) 164 | plt.show() 165 | 166 | """ 167 | t-1 t+1 168 | t-1 1.000000 -0.311883 169 | t+1 -0.311883 1.000000 170 | """ 171 | 172 | def stationarity_check(ts): 173 | 174 | # 1. Check Stationarity (moving mean/variance should not move with time) 175 | rolmean = ts.rolling(20).mean() 176 | rolstd = ts.rolling(20).std() 177 | original = plt.plot(ts, color = 'blue', label = 'Original') 178 | mean = plt.plot(rolmean, color = 'red', label = 'Rolling Mean') 179 | std = plt.plot(rolstd, color = 'black', label = 'Rolling Std') 180 | plt.legend(loc = 'upper left') 181 | plt.title('Rolling Mean and Standard Deviation of Returns') 182 | plt.show(block = False) 183 | 184 | ''' 185 | The intuition behind a unit root test is that it determines how strongly a time series is defined by a trend. 186 | 187 | There are a number of unit root tests and the Augmented Dickey-Fuller may be one of the more widely used. 188 | It uses an autoregressive model and optimizes an information criterion across multiple different lag values. 189 | 190 | The null hypothesis of the test is that the time series can be represented by a unit root, that it is not 191 | stationary (has some time-dependent structure). The alternate hypothesis (rejecting the null hypothesis) is 192 | that the time series is stationary. 193 | 194 | We interpret this result using the p-value from the test. A p-value below a threshold (such as 5% or 1%) 195 | suggests we reject the null hypothesis (stationary), otherwise a p-value above the threshold suggests we 196 | fail to reject the null hypothesis (non-stationary). 197 | 198 | p-value > 0.05: Fail to reject the null hypothesis (H0), the data has a unit root and is non-stationary. 199 | p-value <= 0.05: Reject the null hypothesis (H0), the data does not have a unit root and is stationary. 200 | 201 | ''' 202 | 203 | #2. Dicky Fuller Test to test Stationarity 204 | print ('Results of Dicket Fuller Test :') 205 | dftest = adfuller(ts, autolag = 'AIC') 206 | dfoutput = pd.Series(dftest[0:4], index = ['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) 207 | for key, value in dftest[4].items(): 208 | dfoutput['Critical Value (%s)'%key] = value 209 | print (dfoutput) 210 | 211 | #We can see that our statistic value of -11.20287 is less than the value of -3.449 at 1%. 212 | #This suggests that we can reject the null hypothesis with a significance level of 213 | #less than 1%. 214 | #This means that the process does not have a unit root, and in turn that the time series is 215 | #stationary or does not have time-dependent structure. 216 | 217 | """ 218 | Results of Dicket Fuller Test : 219 | Test Statistic -1.120287e+01 220 | p-value 2.221409e-20 221 | #Lags Used 8.000000e+00 222 | Number of Observations Used 9.900000e+02 223 | Critical Value (1%) -3.436973e+00 224 | Critical Value (5%) -2.864464e+00 225 | Critical Value (10%) -2.568327e+00 226 | dtype: float64 227 | """ 228 | 229 | def eliminating_trend(ts): 230 | 231 | ''' 232 | The underlying principle is to model or estimate the trend and seasonality in the 233 | series and remove those from the series to get a stationary series. Then statistical 234 | forecasting techniques can be implemented on this series. The final step would be to 235 | convert the forecasted values into the original scale by applying trend and seasonality 236 | constraints back 237 | 238 | In this simpler case, it is easy to see a forward trend in the data. But its not very 239 | intuitive in presence of noise. So we can use some techniques to estimate or model this 240 | trend and then remove it from the series. There can be many ways of doing it and some of 241 | most commonly used are: 242 | 243 | Aggregation – taking average for a time period like monthly/weekly averages 244 | Smoothing – taking rolling averages 245 | Polynomial Fitting – fit a regression model 246 | 247 | ''' 248 | log_ts = np.log(ts + 1) 249 | # moving_avg = log_ts.rolling(20).mean() 250 | weighted_avg = np.average(log_ts) 251 | # plt.plot(log_ts) 252 | # plt.plot(moving_avg, color='red') 253 | 254 | weighted_avg_diff = log_ts - weighted_avg 255 | weighted_avg_diff.dropna(inplace = True) 256 | stationarity_check(weighted_avg_diff) 257 | 258 | """ 259 | Results of Dicket Fuller Test : 260 | Test Statistic -1.108386e+01 261 | p-value 4.244721e-20 262 | #Lags Used 8.000000e+00 263 | Number of Observations Used 9.900000e+02 264 | Critical Value (1%) -3.436973e+00 265 | Critical Value (5%) -2.864464e+00 266 | Critical Value (10%) -2.568327e+00 267 | dtype: float64 268 | """ 269 | 270 | #This looks like a good series. The rolling values appear to be varying slightly 271 | #but there is no specific trend. Also, the test statistic is smaller than the 1% critical 272 | #values so we can say with 99% confidence that this is a stationary series. 273 | #However, a drawback in this particular approach is that the time-period has to be strictly defined. 274 | # We take a ‘weighted moving average’ where more recent 275 | #values are given a higher weight. In this case there will be no missing values as all values from 276 | #starting are given weights. So it’ll work even with no previous values. 277 | 278 | def differencing(ts): 279 | 280 | ''' 281 | The simple trend reduction techniques discussed before don’t work in all cases, particularly the ones 282 | with high seasonality. Lets discuss two ways of removing trend and seasonality: 283 | 284 | Differencing – taking the differece with a particular time lag 285 | Decomposition – modeling both trend and seasonality and removing them from the model. 286 | ''' 287 | 288 | #One of the most common methods of dealing with both trend and seasonality is differencing. 289 | #In this technique, we take the difference of the observation at a particular instant with 290 | #that at the previous instant. This mostly works well in improving stationarity. 291 | 292 | log_ts = np.log(ts + 1) 293 | ts_log_diff = log_ts - log_ts.shift(1) 294 | plt.plot(ts_log_diff) 295 | 296 | ts_log_diff.dropna(inplace = True) 297 | stationarity_check(ts_log_diff) 298 | 299 | """ 300 | Results of Dicket Fuller Test : 301 | Test Statistic -1.410245e+01 302 | p-value 2.604226e-26 303 | #Lags Used 1.600000e+01 304 | Number of Observations Used 9.810000e+02 305 | Critical Value (1%) -3.437033e+00 306 | Critical Value (5%) -2.864491e+00 307 | Critical Value (10%) -2.568341e+00 308 | dtype: float64 309 | """ 310 | 311 | def decomposing(ts): 312 | 313 | log_ts = np.log(ts + 1) 314 | decomposition = seasonal_decompose(log_ts, freq = 20) 315 | 316 | trend = decomposition.trend 317 | seasonal = decomposition.seasonal 318 | residual = decomposition.resid 319 | 320 | plt.subplot(411) 321 | plt.plot(log_ts, label = 'Original') 322 | plt.legend(loc = 'best') 323 | plt.subplot(412) 324 | plt.plot(trend, label='Trend') 325 | plt.legend(loc='best') 326 | plt.subplot(413) 327 | plt.plot(seasonal,label='Seasonality') 328 | plt.legend(loc='best') 329 | plt.subplot(414) 330 | plt.plot(residual, label='Residuals') 331 | plt.legend(loc='best') 332 | plt.tight_layout() 333 | 334 | #Here we can see that the trend, seasonality are separated out from data and we can model the residuals. 335 | #Lets check stationarity of residuals: 336 | 337 | 338 | log_data_decompose = residual 339 | log_data_decompose.dropna(inplace = True) 340 | stationarity_check(log_data_decompose) 341 | 342 | """ 343 | Results of Dicket Fuller Test : 344 | Test Statistic -1.205855e+01 345 | p-value 2.500315e-22 346 | #Lags Used 1.900000e+01 347 | Number of Observations Used 9.590000e+02 348 | Critical Value (1%) -3.437187e+00 349 | Critical Value (5%) -2.864559e+00 350 | Critical Value (10%) -2.568377e+00 351 | dtype: float64 352 | """ 353 | 354 | #The Dickey-Fuller test statistic is significantly lower than the 1% critical value. So this TS is very close to stationary. 355 | 356 | 357 | def acf_pcf_plot(ts): 358 | 359 | ''' 360 | ARIMA stands for Auto-Regressive Integrated Moving Averages. 361 | The ARIMA forecasting for a stationary time series is nothing but a linear (like a linear regression) equation. 362 | The predictors depend on the parameters (p,d,q) of the ARIMA model: 363 | 364 | Number of AR (Auto-Regressive) terms (p): AR terms are just lags of dependent variable. For instance if p is 5, the predictors for x(t) will be x(t-1)….x(t-5). 365 | Number of MA (Moving Average) terms (q): MA terms are lagged forecast errors in prediction equation. For instance if q is 5, the predictors for x(t) 366 | will be e(t-1)….e(t-5) where e(i) is the difference between the moving average at ith instant and actual value. 367 | Number of Differences (d): These are the number of nonseasonal differences, i.e. in this case we took the first order difference. 368 | So either we can pass that variable and put d=0 or pass the original variable and put d=1. Both will generate same results. 369 | 370 | An importance concern here is how to determine the value of ‘p’ and ‘q’. We use two plots to determine these numbers. 371 | 372 | 1. Autocorrelation Function (ACF) 373 | 2. Partial Autocorrelation Function (PACF) 374 | ''' 375 | 376 | log_ts = np.log(ts + 1) 377 | ts_log_diff = log_ts - log_ts.shift() 378 | ts_log_diff.dropna(inplace = True) 379 | 380 | lag_acf = acf(ts_log_diff, nlags = 20) 381 | lag_pacf = pacf(ts_log_diff, nlags = 20, method = 'ols') 382 | 383 | plt.subplot(121) 384 | plt.plot(lag_acf) 385 | plt.axhline(y = 0, linestyle = '--', color = 'gray') 386 | plt.axhline(y = -1.96/np.sqrt(len(ts_log_diff)), linestyle = '--', color = 'gray') 387 | plt.axhline(y = 1.96/np.sqrt(len(ts_log_diff)), linestyle = '--', color = 'gray') 388 | plt.title('Autocorrelation Function') 389 | 390 | plt.subplot(122) 391 | plt.plot(lag_pacf) 392 | plt.axhline(y = 0, linestyle = '--', color = 'gray') 393 | plt.axhline(y = -1.96/np.sqrt(len(ts_log_diff)), linestyle = '--', color = 'gray') 394 | plt.axhline(y = 1.96/np.sqrt(len(ts_log_diff)), linestyle = '--', color = 'gray') 395 | plt.title('Partial Autocorrelation Function') 396 | plt.tight_layout() 397 | 398 | """ 399 | In this plot, the two dotted lines on either sides of 0 are the confidence interevals. These can be used to determine the ‘p’ and ‘q’ values as: 400 | 401 | p – The lag value where the PACF chart crosses the upper confidence interval for the first time. If you notice closely, in this case p=1. 402 | q – The lag value where the ACF chart crosses the upper confidence interval for the first time. If you notice closely, in this case q=1 403 | """ 404 | 405 | def AR_model(ts): 406 | 407 | """ 408 | ACCURACY METRICS := 409 | mean absolute percentage error : Around 2.2% MAPE implies the model is 410 | about 97.8% accurate in predicting the next 15 observations. Around 2.2% 411 | MAPE implies the model is about 97.8% accurate in predicting the next 15 observations. 412 | 413 | mape = np.mean(np.abs(predictions[i] - test[i])/np.abs(test[i]) for i in range(len(test))) 414 | print ('Test MAPE: %.6f'%mape) 415 | correlation coefficient 416 | corr = np.corrcoef(predictions, test)[0,1] 417 | print ('Correlation Coefficient : %.6f'%corr) 418 | """ 419 | log_ts = np.log(ts + 1) 420 | ts_log_diff = log_ts - log_ts.shift() 421 | ts_log_diff.dropna(inplace = True) 422 | 423 | model = ARIMA(log_ts, order = (1, 1, 0)) 424 | results_AR = model.fit(disp = -1) 425 | RSS = sum((results_AR.fittedvalues - ts_log_diff)**2) 426 | plt.plot(ts_log_diff, label = 'Difference of Log Returns') 427 | plt.plot(results_AR.fittedvalues, color = 'red', label = 'AR Model of Returns') 428 | plt.title('AR_Model RSS : %.6f'% RSS) 429 | plt.legend(loc = 'best') 430 | plt.show() 431 | 432 | def MA_model(ts): 433 | 434 | log_ts = np.log(ts + 1) 435 | ts_log_diff = log_ts - log_ts.shift() 436 | ts_log_diff.dropna(inplace = True) 437 | 438 | model = ARIMA(log_ts, order = (0, 1, 1)) 439 | results_MA = model.fit(disp = -1) 440 | RSS = sum((results_MA.fittedvalues - ts_log_diff)**2) 441 | plt.plot(ts_log_diff, label = 'Difference of Log Returns') 442 | plt.plot(results_MA.fittedvalues, color = 'red', label = 'MA Model of Returns') 443 | plt.title('MA_Model RSS : %.6f'% RSS) 444 | plt.legend(loc = 'best') 445 | plt.show() 446 | 447 | def ARIMA_model(ts): 448 | 449 | log_ts = np.log(ts + 1) 450 | ts_log_diff = log_ts - log_ts.shift() 451 | ts_log_diff.dropna(inplace = True) 452 | 453 | model = ARIMA(log_ts, order = (1, 1, 1)) 454 | results_ARIMA = model.fit(disp = -1) 455 | RSS = sum((results_ARIMA.fittedvalues - ts_log_diff)**2) 456 | plt.plot(ts_log_diff, label = 'Difference of Log Returns') 457 | plt.plot(results_ARIMA.fittedvalues, color = 'red', label = 'ARIMA Model of Returns') 458 | plt.title('ARIMA_Model RSS : %.6f'% RSS) 459 | plt.legend(loc = 'best') 460 | plt.show() 461 | print (log_ts.head()) 462 | 463 | def final_model(ts): 464 | 465 | #Using ARIMA model to get modelled data as it gave lowest RSS but maximum likelihood optimization does not converge 466 | # So I wil use MA model 467 | 468 | log_ts = np.log(ts + 1) 469 | ts_log_diff = log_ts - log_ts.shift() 470 | ts_log_diff.dropna(inplace = True) 471 | 472 | model = ARIMA(log_ts, order = (0, 1, 1)) 473 | results_MA = model.fit(disp = -1) 474 | print (results_MA.summary()) 475 | 476 | predictions_MA_diff = pd.Series(results_MA.fittedvalues, copy = True) 477 | 478 | #The way to convert the differencing to log scale is to add these differences consecutively to the base number. 479 | #An easy way to do it is to first determine the cumulative sum at index and then add it to the base number. 480 | #predictions_ARIMA_diff_cumsum = predictions_ARIMA_diff.cumsum() 481 | 482 | # Next we’ve to add them to base number 483 | # predictions_ARIMA_log = pd.Series(log_data.iloc[0], index=log_data.index) 484 | #base_data = 0 * predictions_ARIMA_diff_cumsum + float(log_ts.iloc[0]) 485 | #predictions_ARIMA_log = base_data.add(predictions_ARIMA_diff.cumsum(), fill_value=0) 486 | 487 | #Last step is to take exponent and add values cumulatively from there 488 | #predictions_ARIMA = np.exp(predictions_ARIMA_log) - 1 489 | 490 | plt.plot(ts, label = 'Returns') 491 | plt.plot(predictions_MA_diff, label = 'MA model Return predictions') 492 | RMS = sum((predictions_MA_diff - ts[1:])**2) 493 | plt.title('RMS : %.6f'% RMS) 494 | plt.legend() 495 | 496 | # plot residual errors 497 | residuals = pd.DataFrame(results_MA.resid) 498 | residuals.plot(title = 'Residual Plot') 499 | residuals.plot(kind='kde', title = 'Residual Distribution') 500 | 501 | print(residuals.describe()) 502 | 503 | plt.show() 504 | 505 | """ 506 | ARIMA Model Results 507 | ============================================================================== 508 | Dep. Variable: D.Close No. Observations: 998 509 | Model: ARIMA(0, 1, 1) Log Likelihood 2609.144 510 | Method: css-mle S.D. of innovations 0.018 511 | Date: Sun, 04 Oct 2020 AIC -5212.288 512 | Time: 15:40:34 BIC -5197.571 513 | Sample: 1 HQIC -5206.694 514 | 515 | ================================================================================= 516 | coef std err z P>|z| [0.025 0.975] 517 | --------------------------------------------------------------------------------- 518 | const 9.434e-07 1.94e-06 0.487 0.626 -2.85e-06 4.74e-06 519 | ma.L1.D.Close -1.0000 0.003 -389.043 0.000 -1.005 -0.995 520 | Roots 521 | ============================================================================= 522 | Real Imaginary Modulus Frequency 523 | ----------------------------------------------------------------------------- 524 | MA.1 1.0000 +0.0000j 1.0000 0.0000 525 | ----------------------------------------------------------------------------- 526 | 0 527 | count 998.000000 528 | mean -0.000016 529 | std 0.017693 530 | min -0.161110 531 | 25% -0.006813 532 | 50% -0.000115 533 | 75% 0.007837 534 | max 0.131444 535 | """ -------------------------------------------------------------------------------- /msft.csv: -------------------------------------------------------------------------------- 1 | Date,Open,High,Low,Close,Volume,Dividends,Stock Splits 2 | 12-09-2016,52.29,53.42,51.92,53.27,29303000,0,0 3 | 13-09-2016,52.76,52.9,52.33,52.78,30130200,0,0 4 | 14-09-2016,52.65,52.88,52.32,52.53,24062500,0,0 5 | 15-09-2016,52.43,53.55,52.27,53.4,26847000,0,0 6 | 16-09-2016,53.81,53.81,52.99,53.46,44607000,0,0 7 | 19-09-2016,53.47,53.92,53.08,53.16,20937100,0,0 8 | 20-09-2016,53.55,53.55,52.99,53.04,17384000,0,0 9 | 21-09-2016,53.7,54.02,53.3,53.93,33707300,0,0 10 | 22-09-2016,54.08,54.16,53.81,53.99,19822200,0,0 11 | 23-09-2016,54.03,54.07,53.58,53.62,19955300,0,0 12 | 26-09-2016,53.3,53.35,53.06,53.13,21688700,0,0 13 | 27-09-2016,53.16,54.21,52.92,54.11,28065100,0,0 14 | 28-09-2016,54.04,54.21,53.85,54.18,20536400,0,0 15 | 29-09-2016,53.98,54.31,53.42,53.6,25463500,0,0 16 | 30-09-2016,53.75,53.94,53.54,53.78,29910800,0,0 17 | 03-10-2016,53.6,53.74,53.28,53.61,19189500,0,0 18 | 04-10-2016,53.47,53.78,53.19,53.45,20085900,0,0 19 | 05-10-2016,53.49,54.12,53.46,53.82,16726400,0,0 20 | 06-10-2016,53.91,54.02,53.48,53.91,16212600,0,0 21 | 07-10-2016,54.02,54.14,53.61,53.97,20089000,0,0 22 | 10-10-2016,54.07,54.52,54.03,54.19,18196500,0,0 23 | 11-10-2016,54.05,54.17,53.12,53.4,26497400,0,0 24 | 12-10-2016,53.32,53.47,52.66,53.32,22177500,0,0 25 | 13-10-2016,52.94,53.5,52.59,53.15,25313700,0,0 26 | 14-10-2016,53.33,53.91,53.33,53.61,27402500,0,0 27 | 17-10-2016,53.56,53.65,53.1,53.43,23830000,0,0 28 | 18-10-2016,53.72,54.11,53.6,53.84,19149500,0,0 29 | 19-10-2016,53.66,54.01,53.6,53.72,22878400,0,0 30 | 20-10-2016,53.69,53.71,52.9,53.46,49455600,0,0 31 | 21-10-2016,56.28,56.44,55.55,55.71,80032200,0,0 32 | 24-10-2016,55.97,56.96,55.96,56.96,54067000,0,0 33 | 25-10-2016,56.82,57.3,56.77,56.95,35137200,0,0 34 | 26-10-2016,56.78,57.14,56.46,56.61,29911600,0,0 35 | 27-10-2016,56.59,56.8,56.11,56.12,28479900,0,0 36 | 28-10-2016,56.03,56.51,55.63,55.9,33574700,0,0 37 | 31-10-2016,56.17,56.42,55.95,55.95,26434700,0,0 38 | 01-11-2016,56,56.04,55.32,55.84,24533000,0,0 39 | 02-11-2016,55.86,55.96,55.37,55.49,22147000,0,0 40 | 03-11-2016,55.58,55.69,55.19,55.29,21600400,0,0 41 | 04-11-2016,54.76,55.35,54.64,54.82,28697000,0,0 42 | 07-11-2016,55.82,56.51,55.82,56.42,31664800,0,0 43 | 08-11-2016,56.54,56.75,56.16,56.46,22935400,0,0 44 | 09-11-2016,56.02,56.57,55.28,56.18,49632500,0,0 45 | 10-11-2016,56.47,56.48,53.81,54.81,57822400,0,0 46 | 11-11-2016,54.37,55.2,54.17,55.11,38767800,0,0 47 | 14-11-2016,55.11,55.16,53.48,54.27,41328400,0,0 48 | 15-11-2016,54.83,55.92,54.82,55.34,35904100,0.39,0 49 | 16-11-2016,55.41,56.08,55.28,56.07,27332500,0,0 50 | 17-11-2016,56.79,57.29,56.37,57,32132700,0,0 51 | 18-11-2016,57.13,57.47,56.68,56.73,27686300,0,0 52 | 21-11-2016,56.87,57.31,56.8,57.21,19652600,0,0 53 | 22-11-2016,57.32,57.59,57.16,57.45,23206700,0,0 54 | 23-11-2016,57.35,57.44,56.64,56.78,21848900,0,0 55 | 25-11-2016,56.68,56.9,56.52,56.9,8409600,0,0 56 | 28-11-2016,56.72,57.36,56.6,56.98,20732600,0,0 57 | 29-11-2016,57.01,57.73,56.89,57.43,22366700,0,0 58 | 30-11-2016,57.21,57.51,56.61,56.65,34655400,0,0 59 | 01-12-2016,56.5,56.54,55.41,55.65,34542100,0,0 60 | 02-12-2016,55.54,55.9,55.27,55.7,25515700,0,0 61 | 05-12-2016,56.12,56.96,55.99,56.61,23552700,0,0 62 | 06-12-2016,56.81,56.83,56.21,56.35,19907000,0,0 63 | 07-12-2016,56.41,57.7,56.21,57.69,30809000,0,0 64 | 08-12-2016,57.62,57.89,57.19,57.35,21220800,0,0 65 | 09-12-2016,57.51,58.27,57.46,58.25,27349400,0,0 66 | 12-12-2016,58.11,58.56,58.02,58.44,20198100,0,0 67 | 13-12-2016,58.75,59.62,58.51,59.2,35718900,0,0 68 | 14-12-2016,59.22,59.64,58.78,58.92,30352700,0,0 69 | 15-12-2016,58.94,59.36,58.56,58.83,27669900,0,0 70 | 16-12-2016,59.17,59.17,58.39,58.56,42453100,0,0 71 | 19-12-2016,58.81,59.95,58.68,59.8,34338200,0,0 72 | 20-12-2016,59.87,59.97,59.25,59.73,26028400,0,0 73 | 21-12-2016,59.63,59.88,59.33,59.73,17096300,0,0 74 | 22-12-2016,60.01,60.26,59.61,59.74,22176600,0,0 75 | 23-12-2016,59.64,59.73,59.03,59.45,12403800,0,0 76 | 27-12-2016,59.42,60.23,59.42,59.48,11763200,0,0 77 | 28-12-2016,59.6,59.6,59.06,59.21,14653300,0,0 78 | 29-12-2016,59.09,59.41,58.97,59.13,10250600,0,0 79 | 30-12-2016,59.18,59.21,58.31,58.41,25579900,0,0 80 | 03-01-2017,59.02,59.07,58.4,58.83,20694100,0,0 81 | 04-01-2017,58.73,58.99,58.39,58.56,21340000,0,0 82 | 05-01-2017,58.46,58.9,58.31,58.56,24876000,0,0 83 | 06-01-2017,58.56,59.36,58.32,59.07,19922900,0,0 84 | 09-01-2017,59,59.3,58.79,58.88,20382700,0,0 85 | 10-01-2017,58.97,59.29,58.54,58.86,18593000,0,0 86 | 11-01-2017,58.86,59.44,58.69,59.4,21517300,0,0 87 | 12-01-2017,59.28,59.6,58.23,58.86,20968200,0,0 88 | 13-01-2017,58.86,59.1,58.61,58.94,19422300,0,0 89 | 17-01-2017,58.92,58.94,58.31,58.78,20664000,0,0 90 | 18-01-2017,58.91,58.94,58.39,58.75,19670100,0,0 91 | 19-01-2017,58.51,59.2,58.47,58.56,18451700,0,0 92 | 20-01-2017,58.91,59.05,58.63,58.98,30213500,0,0 93 | 23-01-2017,58.94,59.33,58.82,59.18,23097600,0,0 94 | 24-01-2017,59.41,59.92,59.17,59.71,24672900,0,0 95 | 25-01-2017,60.11,60.26,59.64,59.86,23672700,0,0 96 | 26-01-2017,60.27,60.67,59.74,60.42,43554600,0,0 97 | 27-01-2017,61.47,61.96,61,61.83,44818000,0,0 98 | 30-01-2017,61.75,61.84,60.91,61.22,31651400,0,0 99 | 31-01-2017,60.97,61.24,60.41,60.77,25270500,0,0 100 | 01-02-2017,60.5,60.74,59.66,59.77,39671500,0,0 101 | 02-02-2017,59.46,59.61,58.99,59.38,45827000,0,0 102 | 03-02-2017,59.69,59.88,59.29,59.86,30301800,0,0 103 | 06-02-2017,59.69,59.83,59.35,59.82,19796400,0,0 104 | 07-02-2017,59.92,59.95,59.44,59.63,20277200,0,0 105 | 08-02-2017,59.76,59.98,59.43,59.54,18096400,0,0 106 | 09-02-2017,59.71,60.58,59.52,60.22,22644400,0,0 107 | 10-02-2017,60.4,60.44,60.14,60.16,18170700,0,0 108 | 13-02-2017,60.39,60.97,60.28,60.84,22920100,0,0 109 | 14-02-2017,60.91,61.21,60.55,61.07,23108400,0.39,0 110 | 15-02-2017,61,61.07,60.68,61.03,17005200,0,0 111 | 16-02-2017,61.23,61.7,60.94,61.02,20546300,0,0 112 | 17-02-2017,60.97,61.18,60.81,61.11,21248800,0,0 113 | 21-02-2017,61.1,61.42,60.95,60.99,20655900,0,0 114 | 22-02-2017,60.84,60.9,60.57,60.87,19292700,0,0 115 | 23-02-2017,60.92,61.22,60.71,61.11,20273100,0,0 116 | 24-02-2017,61.03,61.28,60.66,61.11,21796800,0,0 117 | 27-02-2017,61.04,61.04,60.57,60.74,15871500,0,0 118 | 28-02-2017,60.6,60.72,60.3,60.51,23239800,0,0 119 | 01-03-2017,60.65,61.46,60.55,61.42,26937500,0,0 120 | 02-03-2017,61.18,61.24,60.41,60.54,24539600,0,0 121 | 03-03-2017,60.52,60.79,60.17,60.76,18135900,0,0 122 | 06-03-2017,60.5,61.06,60.35,60.78,18750300,0,0 123 | 07-03-2017,60.71,61.26,60.71,60.9,18521000,0,0 124 | 08-03-2017,60.77,61.55,60.76,61.46,21510900,0,0 125 | 09-03-2017,61.65,61.66,60.98,61.22,19846800,0,0 126 | 10-03-2017,61.58,61.72,61.24,61.41,19538200,0,0 127 | 13-03-2017,61.48,61.65,61.07,61.2,20100000,0,0 128 | 14-03-2017,61.03,61.05,60.67,60.91,14280200,0,0 129 | 15-03-2017,61.05,61.4,60.76,61.24,24833800,0,0 130 | 16-03-2017,61.24,61.25,60.81,61.13,20674300,0,0 131 | 17-03-2017,61.39,61.7,61.17,61.35,49219700,0,0 132 | 20-03-2017,61.39,61.64,61.21,61.41,14598100,0,0 133 | 21-03-2017,61.65,61.95,60.65,60.73,26640500,0,0 134 | 22-03-2017,60.64,61.6,60.64,61.5,20680000,0,0 135 | 23-03-2017,61.42,61.7,61.25,61.35,19269200,0,0 136 | 24-03-2017,61.81,61.9,61.25,61.45,22617100,0,0 137 | 27-03-2017,61.12,61.68,60.86,61.57,18614700,0,0 138 | 28-03-2017,61.43,61.92,61.14,61.75,20080400,0,0 139 | 29-03-2017,61.59,61.95,61.42,61.92,13618400,0,0 140 | 30-03-2017,61.87,62.4,61.81,62.14,15122800,0,0 141 | 31-03-2017,62.09,62.6,61.9,62.29,21040300,0,0 142 | 03-04-2017,62.24,62.36,61.65,61.99,20400900,0,0 143 | 04-04-2017,61.84,62.24,61.74,62.16,12997400,0,0 144 | 05-04-2017,62.7,62.75,61.89,62,21448600,0,0 145 | 06-04-2017,62.04,62.47,61.93,62.16,18103500,0,0 146 | 07-04-2017,62.28,62.38,61.89,62.12,14108500,0,0 147 | 10-04-2017,62.05,62.25,61.81,61.97,17952700,0,0 148 | 11-04-2017,62.04,62.05,61.33,61.93,18791500,0,0 149 | 12-04-2017,61.87,61.95,61.58,61.69,17108500,0,0 150 | 13-04-2017,61.75,62.29,61.42,61.42,17896500,0,0 151 | 17-04-2017,61.51,61.94,61.48,61.93,16689300,0,0 152 | 18-04-2017,61.78,62.14,61.62,61.84,15155600,0,0 153 | 19-04-2017,62.09,62.18,61.37,61.51,26992800,0,0 154 | 20-04-2017,61.91,62.18,61.6,61.95,22299500,0,0 155 | 21-04-2017,62.11,63.08,61.9,62.8,32522600,0,0 156 | 24-04-2017,63.82,63.99,63.46,63.86,29770000,0,0 157 | 25-04-2017,64.21,64.35,63.93,64.23,30242700,0,0 158 | 26-04-2017,64.38,64.6,63.95,64.15,26190800,0,0 159 | 27-04-2017,64.45,64.67,63.91,64.56,34971000,0,0 160 | 28-04-2017,65.17,65.39,64.02,64.74,39548800,0,0 161 | 01-05-2017,64.95,65.78,64.78,65.64,31954400,0,0 162 | 02-05-2017,65.93,65.93,65.38,65.54,23906100,0,0 163 | 03-05-2017,65.61,65.61,64.98,65.33,28928000,0,0 164 | 04-05-2017,65.28,65.33,64.91,65.08,21749400,0,0 165 | 05-05-2017,65.16,65.28,64.77,65.26,19128800,0,0 166 | 08-05-2017,65.23,65.3,64.71,65.2,18566100,0,0 167 | 09-05-2017,65.12,65.52,64.95,65.29,22858400,0,0 168 | 10-05-2017,65.25,65.78,65.18,65.55,17977800,0,0 169 | 11-05-2017,64.65,65,64.42,64.74,28789400,0,0 170 | 12-05-2017,64.89,64.89,64.35,64.67,18714100,0,0 171 | 15-05-2017,64.44,64.76,63.9,64.72,31530300,0,0 172 | 16-05-2017,64.9,66.05,64.83,66.02,34956000,0.39,0 173 | 17-05-2017,65.52,65.72,64.14,64.18,30548800,0,0 174 | 18-05-2017,64.11,64.8,63.86,64.4,25201300,0,0 175 | 19-05-2017,64.2,64.77,64.14,64.38,26961100,0,0 176 | 22-05-2017,64.57,65.15,64.2,65.11,16237600,0,0 177 | 23-05-2017,65.36,65.39,65.04,65.32,15425800,0,0 178 | 24-05-2017,65.51,65.51,65.11,65.41,14593900,0,0 179 | 25-05-2017,65.6,66.47,65.54,66.22,21854100,0,0 180 | 26-05-2017,66.39,66.79,66.12,66.54,19827900,0,0 181 | 30-05-2017,66.38,66.97,66.36,66.97,17072800,0,0 182 | 31-05-2017,67.08,67.28,66.4,66.43,30436400,0,0 183 | 01-06-2017,66.81,67.16,66.06,66.68,21603600,0,0 184 | 02-06-2017,67,68.35,66.81,68.25,34770300,0,0 185 | 05-06-2017,68.45,69.33,68.3,68.75,33316800,0,0 186 | 06-06-2017,68.77,69.07,68.74,68.98,31511100,0,0 187 | 07-06-2017,69.09,69.21,68.43,68.85,22301800,0,0 188 | 08-06-2017,68.97,68.98,68.01,68.43,24588300,0,0 189 | 09-06-2017,68.52,68.56,65.24,66.88,49187400,0,0 190 | 12-06-2017,65.87,66.52,64.8,66.37,47761700,0,0 191 | 13-06-2017,66.6,67.36,66.54,67.2,25258600,0,0 192 | 14-06-2017,67.45,67.63,66.04,66.84,25510700,0,0 193 | 15-06-2017,65.89,66.78,65.44,66.49,26068700,0,0 194 | 16-06-2017,66.32,66.61,65.84,66.58,48345100,0,0 195 | 19-06-2017,67.06,67.47,66.91,67.41,23798300,0,0 196 | 20-06-2017,67.36,67.41,66.46,66.49,21512200,0,0 197 | 21-06-2017,66.78,67.17,66.52,66.84,19891100,0,0 198 | 22-06-2017,67.09,67.14,66.3,66.83,22965700,0,0 199 | 23-06-2017,66.67,67.77,66.5,67.73,27617300,0,0 200 | 26-06-2017,67.91,68.21,67,67.08,19607000,0,0 201 | 27-06-2017,66.68,66.75,65.8,65.83,25215100,0,0 202 | 28-06-2017,65.83,66.43,65.43,66.39,25806200,0,0 203 | 29-06-2017,65.99,66.1,64.76,65.14,28918700,0,0 204 | 30-06-2017,65.42,65.99,65.38,65.56,24161100,0,0 205 | 03-07-2017,65.94,66.2,64.7,64.84,16165500,0,0 206 | 05-07-2017,64.93,66.05,64.89,65.71,21176300,0,0 207 | 06-07-2017,64.93,65.42,64.79,65.22,21117600,0,0 208 | 07-07-2017,65.34,66.43,65.34,66.07,16878300,0,0 209 | 10-07-2017,66.07,66.82,65.82,66.56,15014500,0,0 210 | 11-07-2017,66.58,67.23,66.34,66.57,17460000,0,0 211 | 12-07-2017,67.24,67.8,67.1,67.67,17750900,0,0 212 | 13-07-2017,68.01,68.52,67.83,68.26,20269800,0,0 213 | 14-07-2017,68.71,69.69,68.44,69.22,25868100,0,0 214 | 17-07-2017,69.24,69.86,69.17,69.77,21803900,0,0 215 | 18-07-2017,69.52,69.8,69.11,69.72,26435300,0,0 216 | 19-07-2017,69.91,70.42,69.86,70.25,22416200,0,0 217 | 20-07-2017,70.56,70.67,69.7,70.59,42361000,0,0 218 | 21-07-2017,69.86,70.66,69.6,70.19,46717100,0,0 219 | 24-07-2017,69.94,70.15,69.56,70,21394800,0,0 220 | 25-07-2017,70.19,70.68,69.91,70.57,22018700,0,0 221 | 26-07-2017,70.71,70.75,70.2,70.43,16252200,0,0 222 | 27-07-2017,70.16,70.78,68.79,69.59,36844200,0,0 223 | 28-07-2017,69.12,69.73,69,69.47,18306700,0,0 224 | 31-07-2017,69.72,69.85,68.87,69.15,23600100,0,0 225 | 01-08-2017,69.53,69.83,68.95,69.03,22132300,0,0 226 | 02-08-2017,69.01,69.02,67.95,68.73,26499200,0,0 227 | 03-08-2017,68.66,68.9,68.34,68.63,18214400,0,0 228 | 04-08-2017,68.86,69.47,68.71,69.13,22579000,0,0 229 | 07-08-2017,69.24,69.34,68.73,68.86,18705700,0,0 230 | 08-08-2017,68.57,69.56,68.24,69.23,22044600,0,0 231 | 09-08-2017,68.72,68.97,68.53,68.93,22213400,0,0 232 | 10-08-2017,68.39,68.66,67.86,67.92,24734500,0,0 233 | 11-08-2017,68.11,69.15,67.8,68.96,21443700,0,0 234 | 14-08-2017,69.49,70.12,69.39,69.99,20096600,0,0 235 | 15-08-2017,70.37,70.37,69.84,70.01,19181400,0.39,0 236 | 16-08-2017,70.13,70.86,69.97,70.43,18150400,0,0 237 | 17-08-2017,70.36,70.64,69.23,69.23,22977500,0,0 238 | 18-08-2017,69.11,69.65,68.78,69.32,18761500,0,0 239 | 21-08-2017,69.3,69.31,68.56,68.99,17734800,0,0 240 | 22-08-2017,69.18,70.03,69.18,69.96,14343700,0,0 241 | 23-08-2017,69.77,69.95,69.35,69.54,13766500,0,0 242 | 24-08-2017,69.55,69.67,68.91,69.51,17098300,0,0 243 | 25-08-2017,69.67,70.14,69.31,69.63,12794300,0,0 244 | 28-08-2017,69.86,69.89,69.37,69.64,14569700,0,0 245 | 29-08-2017,69.09,69.96,68.9,69.85,11478400,0,0 246 | 30-08-2017,69.81,70.96,69.64,70.77,16897800,0,0 247 | 31-08-2017,70.79,71.68,70.57,71.5,27652800,0,0 248 | 01-09-2017,71.44,71.47,70.42,70.7,21736200,0,0 249 | 05-09-2017,70.13,70.65,69.78,70.39,21556000,0,0 250 | 06-09-2017,70.51,70.8,70.14,70.19,16535800,0,0 251 | 07-09-2017,70.45,71.33,70.38,71.08,17471200,0,0 252 | 08-09-2017,71.08,71.18,70.61,70.74,14703800,0,0 253 | 11-09-2017,71.06,71.66,71.06,71.49,17910400,0,0 254 | 12-09-2017,71.49,71.95,71.11,71.41,14394900,0,0 255 | 13-09-2017,71.65,71.94,71.29,71.92,13380800,0,0 256 | 14-09-2017,71.72,72.18,71.26,71.5,15733900,0,0 257 | 15-09-2017,71.55,72.09,70.83,72.01,38578400,0,0 258 | 18-09-2017,71.94,72.64,71.75,71.87,23307000,0,0 259 | 19-09-2017,71.92,72.39,71.73,72.14,16093300,0,0 260 | 20-09-2017,72.05,72.24,71.06,71.66,21587900,0,0 261 | 21-09-2017,71.82,71.95,70.86,70.96,19186100,0,0 262 | 22-09-2017,70.75,71.25,70.62,71.15,14111400,0,0 263 | 25-09-2017,70.85,71,69.73,70.05,24149200,0,0 264 | 26-09-2017,70.44,70.58,69.79,70.05,18019600,0,0 265 | 27-09-2017,70.33,70.92,69.97,70.62,19565100,0,0 266 | 28-09-2017,70.32,70.73,70.1,70.64,10883800,0,0 267 | 29-09-2017,70.7,71.28,70.65,71.23,17079100,0,0 268 | 02-10-2017,71.44,71.73,71.05,71.34,15304800,0,0 269 | 03-10-2017,71.4,71.6,70.94,71.01,12190400,0,0 270 | 04-10-2017,70.85,71.45,70.48,71.42,13317700,0,0 271 | 05-10-2017,71.93,72.79,71.68,72.64,21195300,0,0 272 | 06-10-2017,72.36,72.7,72.23,72.67,13959800,0,0 273 | 09-10-2017,72.64,73.2,72.54,72.95,11386500,0,0 274 | 10-10-2017,72.99,73.27,72.81,72.95,13944500,0,0 275 | 11-10-2017,73.02,73.11,72.62,73.07,15388900,0,0 276 | 12-10-2017,73.14,73.91,73.03,73.74,16876500,0,0 277 | 13-10-2017,74.19,74.46,73.91,74.1,15335700,0,0 278 | 16-10-2017,74.03,74.4,73.96,74.25,12380100,0,0 279 | 17-10-2017,74.08,74.22,73.87,74.19,16824000,0,0 280 | 18-10-2017,74.27,74.44,73.98,74.21,13300700,0,0 281 | 19-10-2017,74.17,74.52,73.96,74.5,15092800,0,0 282 | 20-10-2017,74.89,75.51,74.8,75.36,22866400,0,0 283 | 23-10-2017,75.53,75.87,75.31,75.38,20627200,0,0 284 | 24-10-2017,75.45,75.73,75.02,75.41,17517200,0,0 285 | 25-10-2017,75.14,75.64,74.59,75.19,20410800,0,0 286 | 26-10-2017,75.73,75.94,75.3,75.31,32120700,0,0 287 | 27-10-2017,80.68,82.43,79.95,80.14,71066700,0,0 288 | 30-10-2017,80.04,80.64,79.47,80.22,31756700,0,0 289 | 31-10-2017,80.67,80.67,79.47,79.54,27086600,0,0 290 | 01-11-2017,80.02,80.09,79.25,79.54,22307400,0,0 291 | 02-11-2017,79.7,80.76,79.48,80.37,23992900,0,0 292 | 03-11-2017,80.4,80.84,79.75,80.46,17633500,0,0 293 | 06-11-2017,80.51,80.99,80.4,80.77,19860900,0,0 294 | 07-11-2017,81.06,81.18,80.26,80.58,17939700,0,0 295 | 08-11-2017,80.46,80.91,80.16,80.86,18034200,0,0 296 | 09-11-2017,80.43,80.58,79.27,80.41,21178400,0,0 297 | 10-11-2017,80.12,80.42,79.59,80.2,19397800,0,0 298 | 13-11-2017,80,80.26,79.81,80.26,14196900,0,0 299 | 14-11-2017,79.84,80.42,79.35,80.37,18801300,0,0 300 | 15-11-2017,80.22,80.43,79.47,79.75,19383100,0.42,0 301 | 16-11-2017,79.86,80.17,79.71,79.96,20962800,0,0 302 | 17-11-2017,79.88,79.88,79.03,79.19,22079000,0,0 303 | 20-11-2017,79.19,79.37,79.04,79.31,16315000,0,0 304 | 21-11-2017,79.51,80.57,79.51,80.46,21237500,0,0 305 | 22-11-2017,80.56,80.63,79.8,79.87,20553100,0,0 306 | 24-11-2017,79.77,80.18,79.55,80.01,7425600,0,0 307 | 27-11-2017,80.06,80.71,80.05,80.6,18265200,0,0 308 | 28-11-2017,80.79,81.74,80.74,81.57,21926000,0,0 309 | 29-11-2017,81.41,81.61,79.94,80.09,27381100,0,0 310 | 30-11-2017,80.25,81.23,80.09,80.89,33054600,0,0 311 | 01-12-2017,80.34,81.5,79.98,80.98,29532100,0,0 312 | 04-12-2017,81.13,81.14,77.55,77.92,39094900,0,0 313 | 05-12-2017,78.17,79.46,77.82,78.41,26152300,0,0 314 | 06-12-2017,78.37,79.9,78.26,79.55,26162100,0,0 315 | 07-12-2017,79.32,79.57,78.8,79.27,23184500,0,0 316 | 08-12-2017,80.37,81.28,80.08,80.88,24489100,0,0 317 | 11-12-2017,81,82.04,80.84,81.91,22857900,0,0 318 | 12-12-2017,81.98,82.7,81.76,82.24,23924100,0,0 319 | 13-12-2017,82.4,82.65,81.85,82.02,22062700,0,0 320 | 14-12-2017,82.1,82.52,81.23,81.39,19306000,0,0 321 | 15-12-2017,81.94,83.69,81.57,83.46,53936700,0,0 322 | 18-12-2017,83.72,84.09,82.87,83.01,22283800,0,0 323 | 19-12-2017,82.98,82.98,81.95,82.48,23524800,0,0 324 | 20-12-2017,82.84,82.94,81.41,82.19,23674900,0,0 325 | 21-12-2017,82.7,82.74,82.07,82.17,17990700,0,0 326 | 22-12-2017,82.07,82.29,81.61,82.18,14145800,0,0 327 | 26-12-2017,81.98,82.2,81.72,82.07,9891200,0,0 328 | 27-12-2017,82.31,82.63,81.9,82.37,14678000,0,0 329 | 28-12-2017,82.55,82.58,82.21,82.38,10594300,0,0 330 | 29-12-2017,82.29,82.7,82.17,82.21,18717400,0,0 331 | 02-01-2018,82.77,82.95,82.17,82.6,22483800,0,0 332 | 03-01-2018,82.71,83.14,82.62,82.98,26061400,0,0 333 | 04-01-2018,83.21,84.24,83.2,83.71,21912000,0,0 334 | 05-01-2018,84.24,84.96,84.02,84.75,23407100,0,0 335 | 08-01-2018,84.76,85.13,84.18,84.84,22113000,0,0 336 | 09-01-2018,85.19,85.27,84.43,84.78,19484300,0,0 337 | 10-01-2018,84.43,84.75,84,84.4,18652200,0,0 338 | 11-01-2018,84.69,84.69,83.84,84.65,17808900,0,0 339 | 12-01-2018,85.21,86.28,85,86.11,24271500,0,0 340 | 16-01-2018,86.59,87.25,84.58,84.91,36599700,0,0 341 | 17-01-2018,85.61,86.76,85.29,86.63,25621200,0,0 342 | 18-01-2018,86.3,87.14,86.16,86.59,24159700,0,0 343 | 19-01-2018,86.63,87.08,86.16,86.49,36875000,0,0 344 | 22-01-2018,86.49,88.05,86.24,88.04,23601600,0,0 345 | 23-01-2018,88.32,88.7,87.97,88.32,23412800,0,0 346 | 24-01-2018,88.94,89.79,88.01,88.24,33277500,0,0 347 | 25-01-2018,88.87,89.61,88.35,88.73,26383200,0,0 348 | 26-01-2018,89.49,90.39,88.97,90.39,29172200,0,0 349 | 29-01-2018,91.43,91.73,90.07,90.26,31569900,0,0 350 | 30-01-2018,89.66,90.01,88.51,89.12,38635100,0,0 351 | 31-01-2018,90.1,91.68,89.86,91.31,48756300,0,0 352 | 01-02-2018,91.09,92.32,89.93,90.59,47227900,0,0 353 | 02-02-2018,89.99,90.31,87.93,88.2,47867800,0,0 354 | 05-02-2018,87.03,89.61,84.57,84.57,51031500,0,0 355 | 06-02-2018,83.5,87.91,81.93,87.77,67998600,0,0 356 | 07-02-2018,86.96,88.19,85.72,86.12,41107600,0,0 357 | 08-02-2018,86.21,86.38,81.46,81.7,55628700,0,0 358 | 09-02-2018,82.94,85.46,80.56,84.74,63499100,0,0 359 | 12-02-2018,85.28,86.28,84.5,85.66,35720300,0,0 360 | 13-02-2018,85.46,86.49,84.38,86.33,26407700,0,0 361 | 14-02-2018,85.46,87.85,85.36,87.68,34960900,0.42,0 362 | 15-02-2018,88.07,89.52,87.5,89.47,27823900,0,0 363 | 16-02-2018,89.26,90.28,88.64,88.83,30596900,0,0 364 | 20-02-2018,88.33,89.85,87.87,89.52,30911700,0,0 365 | 21-02-2018,89.78,90.14,88.34,88.34,26922500,0,0 366 | 22-02-2018,88.88,89.53,88.21,88.57,24392800,0,0 367 | 23-02-2018,90.37,90.83,89.18,90.82,26329200,0,0 368 | 26-02-2018,91.15,92.16,91,92.13,30199800,0,0 369 | 27-02-2018,92.44,92.54,90.95,90.95,25869100,0,0 370 | 28-02-2018,91.57,92.41,90.4,90.54,31167300,0,0 371 | 01-03-2018,90.75,91.31,88.67,89.65,37135600,0,0 372 | 02-03-2018,88.42,89.94,87.73,89.84,32830400,0,0 373 | 05-03-2018,89.16,91.02,89.08,90.41,23901600,0,0 374 | 06-03-2018,91.09,91.23,89.74,90.1,22175800,0,0 375 | 07-03-2018,89.95,90.7,89.24,90.62,26716100,0,0 376 | 08-03-2018,91.02,91.82,90.54,91.18,25887800,0,0 377 | 09-03-2018,92.01,93.21,91.73,93.21,36937300,0,0 378 | 12-03-2018,93.17,93.86,92.73,93.43,26073700,0,0 379 | 13-03-2018,93.66,93.89,90.73,91.16,35387800,0,0 380 | 14-03-2018,91.84,92.12,90.28,90.62,32132000,0,0 381 | 15-03-2018,90.31,91.32,89.63,90.93,27611000,0,0 382 | 16-03-2018,91.42,92.09,90.68,91.34,49081300,0,0 383 | 19-03-2018,90.51,90.66,88.93,89.69,33344100,0,0 384 | 20-03-2018,89.84,90.54,89.79,89.92,23075200,0,0 385 | 21-03-2018,89.73,90.81,89.03,89.29,24457100,0,0 386 | 22-03-2018,88.12,88.59,86.57,86.69,38604700,0,0 387 | 23-03-2018,86.41,87.34,84.08,84.17,44068900,0,0 388 | 26-03-2018,87.49,90.76,87.28,90.55,56396800,0,0 389 | 27-03-2018,91.67,91.86,85.46,86.39,56569000,0,0 390 | 28-03-2018,86.72,88.09,85.81,86.31,52501100,0,0 391 | 29-03-2018,87.07,89.11,85.35,88.12,45867500,0,0 392 | 02-04-2018,87.35,87.75,84.49,85.47,48515400,0,0 393 | 03-04-2018,86.49,86.95,84.86,86.62,37213800,0,0 394 | 04-04-2018,84.82,89.56,84.71,89.15,35560000,0,0 395 | 05-04-2018,89.25,89.86,88.25,89.2,29771900,0,0 396 | 06-04-2018,88.34,89.27,86.4,87.12,38026000,0,0 397 | 09-04-2018,87.9,89.96,87.5,87.64,31533900,0,0 398 | 10-04-2018,89.21,90.06,88.48,89.68,26812000,0,0 399 | 11-04-2018,88.84,90.07,88.33,88.69,24872100,0,0 400 | 12-04-2018,89.24,90.91,89.24,90.35,26758900,0,0 401 | 13-04-2018,90.81,90.93,89.25,89.87,23346100,0,0 402 | 16-04-2018,90.83,91.4,90.2,90.92,20288100,0,0 403 | 17-04-2018,91.73,93.21,91.61,92.76,26771000,0,0 404 | 18-04-2018,92.9,93.39,92.23,93.12,21043300,0,0 405 | 19-04-2018,93.12,93.72,92.05,92.8,23552500,0,0 406 | 20-04-2018,92.6,92.8,90.81,91.73,31154400,0,0 407 | 23-04-2018,92.44,92.97,91.37,92.06,22331800,0,0 408 | 24-04-2018,92.92,93.14,89.22,89.91,34524800,0,0 409 | 25-04-2018,90.08,90.08,87.17,89.13,33729300,0,0 410 | 26-04-2018,90.33,91.87,89.89,91.01,42529000,0,0 411 | 27-04-2018,94.24,94.53,90.67,92.52,48272800,0,0 412 | 30-04-2018,93.01,93.08,89.94,90.3,41523600,0,0 413 | 01-05-2018,90,92.01,89.59,91.73,31408900,0,0 414 | 02-05-2018,91.72,91.89,89.98,90.29,27471000,0,0 415 | 03-05-2018,89.76,91.66,89.26,90.83,31142500,0,0 416 | 04-05-2018,90.1,92.08,89.72,91.88,22531300,0,0 417 | 07-05-2018,91.89,93.38,91.82,92.9,24242000,0,0 418 | 08-05-2018,92.55,92.85,91.78,92.51,23484600,0,0 419 | 09-05-2018,92.7,93.63,91.77,93.6,27327400,0,0 420 | 10-05-2018,94.1,94.57,93.7,94.54,22388100,0,0 421 | 11-05-2018,94.43,94.5,93.7,94.33,16778300,0,0 422 | 14-05-2018,94.54,95.29,93.96,94.65,19454100,0,0 423 | 15-05-2018,93.89,94.48,93.02,93.97,24594000,0,0 424 | 16-05-2018,94.41,94.45,93.69,94.21,17384700,0.42,0 425 | 17-05-2018,93.83,94.59,92.93,93.27,17246700,0,0 426 | 18-05-2018,93.1,93.99,93.1,93.44,17865800,0,0 427 | 21-05-2018,94.06,95.04,93.87,94.64,19422500,0,0 428 | 22-05-2018,94.72,95.2,94.26,94.55,15441200,0,0 429 | 23-05-2018,93.78,95.74,93.4,95.67,21251200,0,0 430 | 24-05-2018,95.74,95.94,93.88,95.33,26649300,0,0 431 | 25-05-2018,95.32,95.98,94.9,95.38,18363900,0,0 432 | 29-05-2018,94.88,95.89,94.29,95.04,28671000,0,0 433 | 30-05-2018,95.33,96.24,94.94,95.95,22158500,0,0 434 | 31-05-2018,96.28,96.96,95.62,95.85,34140900,0,0 435 | 01-06-2018,96.27,97.81,96.17,97.74,28655600,0,0 436 | 04-06-2018,98.19,98.78,97.8,98.59,27281600,0,0 437 | 05-06-2018,98.91,99.23,98.46,99.1,23514400,0,0 438 | 06-06-2018,99.38,99.49,98.81,99.39,21122900,0,0 439 | 07-06-2018,99.54,99.58,97.34,97.82,28232200,0,0 440 | 08-06-2018,98.03,98.86,97.5,98.55,22165100,0,0 441 | 11-06-2018,97.95,98.51,97.62,97.99,23490900,0,0 442 | 12-06-2018,98.04,98.38,97.7,98.24,18325200,0,0 443 | 13-06-2018,98.64,98.92,97.51,97.8,29492900,0,0 444 | 14-06-2018,98.57,98.94,97.94,98.35,25691800,0,0 445 | 15-06-2018,98.44,98.46,97.04,97.1,65738600,0,0 446 | 18-06-2018,96.98,98.05,96.41,97.81,23586000,0,0 447 | 19-06-2018,96.63,97.94,96.49,97.81,28653100,0,0 448 | 20-06-2018,98.3,99.42,98.06,98.78,26180800,0,0 449 | 21-06-2018,98.99,99.36,97.82,98.08,23198200,0,0 450 | 22-06-2018,97.37,97.72,96.61,97.37,38923100,0,0 451 | 25-06-2018,96.97,97.08,94.35,95.41,35433300,0,0 452 | 26-06-2018,95.83,97.05,95.76,96.08,26897200,0,0 453 | 27-06-2018,96.56,96.99,94.45,94.59,31298400,0,0 454 | 28-06-2018,94.43,96.11,94.31,95.64,26650700,0,0 455 | 29-06-2018,95.93,96.88,95.35,95.62,28053200,0,0 456 | 02-07-2018,95.13,97.03,95.03,96.98,19564500,0,0 457 | 03-07-2018,97.44,97.58,95.94,96.05,14670300,0,0 458 | 05-07-2018,96.49,96.89,96.03,96.74,18977400,0,0 459 | 06-07-2018,96.86,98.36,96.65,98.1,19234600,0,0 460 | 09-07-2018,98.57,99.15,98.18,98.77,18212000,0,0 461 | 10-07-2018,98.91,99.41,98.78,99.03,19293100,0,0 462 | 11-07-2018,98.09,99.24,98.04,98.89,19644600,0,0 463 | 12-07-2018,99.66,101.25,99.62,101.03,24335900,0,0 464 | 13-07-2018,101.21,102.4,100.94,102.24,24635200,0,0 465 | 16-07-2018,102.21,102.62,101.35,101.73,21786900,0,0 466 | 17-07-2018,101.44,103.27,101.16,102.74,25901700,0,0 467 | 18-07-2018,102.73,102.84,101.55,101.94,29493900,0,0 468 | 19-07-2018,101.75,102.12,100.74,101.24,40171600,0,0 469 | 20-07-2018,104.81,104.92,102.87,103.05,56004000,0,0 470 | 23-07-2018,103.08,104.87,102.92,104.7,29707000,0,0 471 | 24-07-2018,105.28,105.52,104.01,104.4,26316600,0,0 472 | 25-07-2018,104.69,107.78,104.34,107.47,30702100,0,0 473 | 26-07-2018,107.39,107.64,106.18,106.3,31372100,0,0 474 | 27-07-2018,106.84,106.84,102.93,104.42,37005300,0,0 475 | 30-07-2018,103.94,104.27,101.59,102.18,34668300,0,0 476 | 31-07-2018,103.26,103.49,102.19,102.87,27655200,0,0 477 | 01-08-2018,102.82,103.23,102.23,103.06,23628700,0,0 478 | 02-08-2018,102.21,104.82,101.66,104.31,26104300,0,0 479 | 03-08-2018,104.54,104.78,103.58,104.77,18659600,0,0 480 | 06-08-2018,104.85,105.14,104.3,104.86,20265900,0,0 481 | 07-08-2018,105.27,105.8,104.89,105.58,16080200,0,0 482 | 08-08-2018,106.02,106.43,105.47,106.17,15487500,0,0 483 | 09-08-2018,106.39,106.82,106.28,106.35,13677200,0,0 484 | 10-08-2018,106.11,106.37,105.1,105.7,18183700,0,0 485 | 13-08-2018,105.93,106.26,104.83,104.93,18472500,0,0 486 | 14-08-2018,105.27,106.43,104.77,106.24,16788300,0,0 487 | 15-08-2018,105.61,106.1,103.98,104.8,29982800,0.42,0 488 | 16-08-2018,105.42,105.97,104.45,104.78,21384300,0,0 489 | 17-08-2018,104.51,105.03,103.86,104.72,18061500,0,0 490 | 20-08-2018,104.66,105.03,103.65,104.03,17914200,0,0 491 | 21-08-2018,104.08,104.5,103.04,103.17,22881900,0,0 492 | 22-08-2018,103.04,104.49,102.97,104.22,18000600,0,0 493 | 23-08-2018,104.3,105.31,104.03,104.7,18167700,0,0 494 | 24-08-2018,104.81,105.68,104.7,105.52,17234000,0,0 495 | 27-08-2018,106.37,106.73,105.63,106.69,19662300,0,0 496 | 28-08-2018,107.02,107.57,106.87,107.33,19151500,0,0 497 | 29-08-2018,107.52,109.06,107.34,109.05,20818000,0,0 498 | 30-08-2018,108.7,109.62,108.48,108.98,22798700,0,0 499 | 31-08-2018,108.72,109.79,108.56,109.35,23222700,0,0 500 | 04-09-2018,107.91,108.99,107.29,108.74,22634600,0,0 501 | 05-09-2018,108.06,108.46,105.23,105.61,32872400,0,0 502 | 06-09-2018,105.38,106.1,104.66,105.85,23477600,0,0 503 | 07-09-2018,105.36,105.83,104.38,105.34,22498600,0,0 504 | 10-09-2018,105.95,106.73,105.48,106.48,20727900,0,0 505 | 11-09-2018,106.01,108.63,106,108.29,24301800,0,0 506 | 12-09-2018,108.47,108.88,107.58,108.74,18891100,0,0 507 | 13-09-2018,109.14,110.71,109.14,109.91,26055600,0,0 508 | 14-09-2018,110.35,110.71,109.45,110.36,19122300,0,0 509 | 17-09-2018,110.67,110.68,108.89,109.16,20736500,0,0 510 | 18-09-2018,109.21,110.68,108.75,110.2,22170900,0,0 511 | 19-09-2018,110.05,110.31,108.09,108.73,21728400,0,0 512 | 20-09-2018,109.3,110.78,108.96,110.55,23714500,0,0 513 | 21-09-2018,110.97,112.23,110.5,111.23,71229700,0,0 514 | 24-09-2018,110.03,111.85,109.24,111.63,27334500,0,0 515 | 25-09-2018,111.75,112.04,110.73,111.41,22668000,0,0 516 | 26-09-2018,111.43,112,110.72,110.95,19352000,0,0 517 | 27-09-2018,111.73,111.86,111.17,111.37,19091300,0,0 518 | 28-09-2018,111.16,111.53,110.66,111.33,21647800,0,0 519 | 01-10-2018,111.7,112.61,111.68,112.54,18883100,0,0 520 | 02-10-2018,112.24,112.76,111.4,112.09,20787200,0,0 521 | 03-10-2018,112.36,113.1,111.88,112.11,16648000,0,0 522 | 04-10-2018,111.57,111.71,108.67,109.8,34821700,0,0 523 | 05-10-2018,109.64,110.17,107.7,109.15,29068900,0,0 524 | 08-10-2018,108.7,109.06,106.44,107.91,29640600,0,0 525 | 09-10-2018,108.19,110.08,107.86,109.28,26198600,0,0 526 | 10-10-2018,108.29,108.54,102.98,103.34,61376300,0,0 527 | 11-10-2018,102.55,106.04,101.43,103.1,63904300,0,0 528 | 12-10-2018,106.12,108.29,104.28,106.66,47742100,0,0 529 | 15-10-2018,106.02,106.57,104.11,104.74,32068100,0,0 530 | 16-10-2018,106.63,108.45,106.06,108.05,31610200,0,0 531 | 17-10-2018,108.71,108.84,106.64,107.77,26548200,0,0 532 | 18-10-2018,107.18,107.6,104.97,105.62,32506200,0,0 533 | 19-10-2018,106.04,107.92,105.34,105.77,32785500,0,0 534 | 22-10-2018,106.42,107.6,105.37,106.72,26545600,0,0 535 | 23-10-2018,104.91,106.08,102.32,105.23,43770400,0,0 536 | 24-10-2018,105.53,105.61,98.89,99.6,63897800,0,0 537 | 25-10-2018,103.72,106.37,103.33,105.42,61646800,0,0 538 | 26-10-2018,102.88,105.86,101.98,104.12,55523100,0,0 539 | 29-10-2018,105.24,105.81,98.93,101.09,55162000,0,0 540 | 30-10-2018,100.91,101.61,97.45,100.98,65350900,0,0 541 | 31-10-2018,102.64,105.27,102.59,103.97,51062400,0,0 542 | 01-11-2018,104.21,104.47,102.73,103.11,33384200,0,0 543 | 02-11-2018,103.65,104.47,102.19,103.34,37680200,0,0 544 | 05-11-2018,103.55,104.88,103.09,104.66,27922100,0,0 545 | 06-11-2018,104.53,105.95,103.46,104.86,24340200,0,0 546 | 07-11-2018,106.53,109.26,106.5,108.99,37901700,0,0 547 | 08-11-2018,108.83,109.23,107.97,108.78,25644100,0,0 548 | 09-11-2018,107.91,108.49,105.87,106.66,32039200,0,0 549 | 12-11-2018,106.51,107.04,103.28,104.03,33621800,0,0 550 | 13-11-2018,104.69,105.85,103.81,104.1,35374600,0,0 551 | 14-11-2018,105.68,105.84,102.14,102.62,39495100,0.46,0 552 | 15-11-2018,102.64,105.39,101.59,104.88,38505200,0,0 553 | 16-11-2018,104.69,106.45,104.41,105.87,33502100,0,0 554 | 19-11-2018,105.85,106.13,101.24,102.28,44773900,0,0 555 | 20-11-2018,99.53,100.67,97.13,99.44,64052500,0,0 556 | 21-11-2018,101.28,102.1,99.96,100.81,28130600,0,0 557 | 23-11-2018,99.89,101.49,99.72,100.77,13823100,0,0 558 | 26-11-2018,102.45,104.25,102.24,104.09,32336200,0,0 559 | 27-11-2018,103.9,104.93,103.01,104.75,29124500,0,0 560 | 28-11-2018,105.48,108.84,105.45,108.64,46788500,0,0 561 | 29-11-2018,107.86,108.64,106.59,107.73,28123200,0,0 562 | 30-11-2018,108.23,108.49,106.92,108.41,33665600,0,0 563 | 03-12-2018,110.47,110.89,108.26,109.59,34732800,0,0 564 | 04-12-2018,109.44,110.12,105.79,106.09,45197000,0,0 565 | 06-12-2018,103.46,106.8,102.65,106.75,49107400,0,0 566 | 07-12-2018,105.96,107,101.97,102.48,45044900,0,0 567 | 10-12-2018,102.46,105.57,101.57,105.19,40801500,0,0 568 | 11-12-2018,107.35,108.47,105.04,106.16,42381900,0,0 569 | 12-12-2018,108.41,108.78,106.6,106.64,36183000,0,0 570 | 13-12-2018,107.13,108.39,106.2,107,31333400,0,0 571 | 14-12-2018,105.83,106.82,103.14,103.66,47043100,0,0 572 | 17-12-2018,103.05,103.44,99.44,100.59,56957300,0,0 573 | 18-12-2018,101.43,102.17,100.23,101.65,49319200,0,0 574 | 19-12-2018,101.33,104.49,99.09,101.37,68198200,0,0 575 | 20-12-2018,100.75,101.98,96.57,99.24,70334200,0,0 576 | 21-12-2018,99.36,100.7,95.28,96.03,111242100,0,0 577 | 24-12-2018,95.5,95.78,91.88,92.03,43935200,0,0 578 | 26-12-2018,93.01,98.44,91.86,98.31,51634800,0,0 579 | 27-12-2018,97.08,98.93,94.25,98.92,49498500,0,0 580 | 28-12-2018,99.81,100.12,97.3,98.15,38196300,0,0 581 | 31-12-2018,99.03,100.11,98.2,99.3,33173800,0,0 582 | 02-01-2019,97.33,99.48,96.73,98.86,35329300,0,0 583 | 03-01-2019,97.86,97.95,95.03,95.22,42579100,0,0 584 | 04-01-2019,97.49,100.22,96.72,99.65,44060600,0,0 585 | 07-01-2019,99.37,100.96,98.72,99.78,35656100,0,0 586 | 08-01-2019,100.74,101.65,99.44,100.5,31514400,0,0 587 | 09-01-2019,101.54,102.54,100.93,101.94,32280800,0,0 588 | 10-01-2019,100.91,101.43,100.09,101.28,30067600,0,0 589 | 11-01-2019,100.88,101.13,99.37,100.5,28314200,0,0 590 | 14-01-2019,99.62,100.57,99,99.77,28437100,0,0 591 | 15-01-2019,100.22,102.7,99.6,102.66,31587600,0,0 592 | 16-01-2019,102.91,103.89,102.61,103.03,29853900,0,0 593 | 17-01-2019,102.65,104.25,102.42,103.75,28393000,0,0 594 | 18-01-2019,105.06,105.49,103.54,105.3,37427600,0,0 595 | 22-01-2019,104.36,104.71,102.52,103.32,32371300,0,0 596 | 23-01-2019,103.75,104.65,102.99,104.33,25874300,0,0 597 | 24-01-2019,104.47,104.61,102.99,103.83,23164800,0,0 598 | 25-01-2019,104.84,105.47,103.83,104.78,31225600,0,0 599 | 28-01-2019,103.89,104.1,102.32,102.73,29476700,0,0 600 | 29-01-2019,102.54,102.62,99.89,100.64,31490500,0,0 601 | 30-01-2019,102.28,104,102,104,49471900,0,0 602 | 31-01-2019,101.48,102.87,100.87,102.1,55636400,0,0 603 | 01-02-2019,101.46,101.77,100.06,100.48,35535700,0,0 604 | 04-02-2019,100.57,103.44,100.47,103.38,31315100,0,0 605 | 05-02-2019,103.69,104.87,103.59,104.82,27325400,0,0 606 | 06-02-2019,104.61,104.61,103.17,103.66,20609800,0,0 607 | 07-02-2019,102.84,103.23,101.96,102.92,29760700,0,0 608 | 08-02-2019,102.06,103.42,101.93,103.31,21461100,0,0 609 | 11-02-2019,103.83,104.2,102.62,102.9,18914100,0,0 610 | 12-02-2019,103.77,104.75,103.12,104.5,25056600,0,0 611 | 13-02-2019,105.1,105.37,104.33,104.42,18394900,0,0 612 | 14-02-2019,103.93,104.89,103.3,104.51,21784700,0,0 613 | 15-02-2019,105.5,105.88,104.96,105.8,26606900,0,0 614 | 19-02-2019,105.38,106.23,105.37,105.75,18038500,0,0 615 | 20-02-2019,105.9,105.98,104.36,105.2,21607700,0.46,0 616 | 21-02-2019,104.96,107.49,104.93,107.42,29063200,0,0 617 | 22-02-2019,108.05,109.18,107.82,108.95,27763200,0,0 618 | 25-02-2019,109.73,110.14,109.24,109.56,23750600,0,0 619 | 26-02-2019,109.24,111.18,109.15,110.32,21536700,0,0 620 | 27-02-2019,109.66,110.32,108.87,110.13,21487100,0,0 621 | 28-02-2019,110,110.83,109.7,109.99,29083900,0,0 622 | 01-03-2019,110.84,110.97,109.64,110.49,23501200,0,0 623 | 04-03-2019,110.97,111.19,108.79,110.22,26608000,0,0 624 | 05-03-2019,110.21,110.35,109.21,109.67,19538300,0,0 625 | 06-03-2019,109.84,110.61,109.41,109.72,17687000,0,0 626 | 07-03-2019,109.38,109.52,107.87,108.38,25339000,0,0 627 | 08-03-2019,107.18,108.7,106.82,108.5,22818400,0,0 628 | 11-03-2019,108.97,110.9,108.96,110.78,26491600,0,0 629 | 12-03-2019,110.77,111.92,110.6,111.56,26132700,0,0 630 | 13-03-2019,112.06,112.91,111.71,112.42,35513800,0,0 631 | 14-03-2019,112.46,113.11,112.25,112.51,30763400,0,0 632 | 15-03-2019,113.24,115.12,112.51,113.8,54681100,0,0 633 | 18-03-2019,114.06,115.47,113.94,115.43,31207600,0,0 634 | 19-03-2019,115.94,116.29,114.86,115.51,37588700,0,0 635 | 20-03-2019,115.26,116.59,114.59,115.38,28113300,0,0 636 | 21-03-2019,115.01,118.62,114.96,118.04,29854400,0,0 637 | 22-03-2019,117.33,117.42,114.91,114.92,33624500,0,0 638 | 25-03-2019,114.44,115.87,114.21,115.52,27067100,0,0 639 | 26-03-2019,116.46,116.55,114.73,115.77,26097700,0,0 640 | 27-03-2019,115.74,116.06,113.42,114.65,22733400,0,0 641 | 28-03-2019,115.31,115.44,114.02,114.81,18334800,0,0 642 | 29-03-2019,115.92,116.17,114.83,115.8,25399800,0,0 643 | 01-04-2019,116.79,116.95,115.95,116.86,22789100,0,0 644 | 02-04-2019,116.9,117.31,116.37,117.02,18142300,0,0 645 | 03-04-2019,117.68,118.24,116.98,117.79,22860700,0,0 646 | 04-04-2019,117.92,118.05,116.23,117.19,20112800,0,0 647 | 05-04-2019,117.22,118.05,117.2,117.71,15826200,0,0 648 | 08-04-2019,117.63,117.84,116.48,117.75,15116200,0,0 649 | 09-04-2019,116.47,117.37,116.43,117.11,17612000,0,0 650 | 10-04-2019,117.58,118.16,117.37,118.01,16477200,0,0 651 | 11-04-2019,118.35,118.65,117.74,118.14,14209100,0,0 652 | 12-04-2019,118.45,118.78,118.18,118.75,19745100,0,0 653 | 15-04-2019,118.74,119.37,118.38,118.85,15792600,0,0 654 | 16-04-2019,119.43,119.44,117.92,118.58,14071800,0,0 655 | 17-04-2019,119.04,119.64,118.35,119.56,19300900,0,0 656 | 18-04-2019,119.97,121.28,119.1,121.13,27991000,0,0 657 | 22-04-2019,120.39,121.75,120.34,121.51,15648700,0,0 658 | 23-04-2019,121.84,123.3,121.58,123.16,24025500,0,0 659 | 24-04-2019,123.5,123.56,122.26,122.74,31257000,0,0 660 | 25-04-2019,127.7,128.98,126.49,126.8,38033900,0,0 661 | 26-04-2019,127.34,128.15,126.68,127.53,23654900,0,0 662 | 29-04-2019,127.54,127.81,127,127.41,16324200,0,0 663 | 30-04-2019,127.45,128.32,127.04,128.23,24166500,0,0 664 | 01-05-2019,128.16,128.28,125.38,125.56,26821700,0,0 665 | 02-05-2019,125.65,125.67,123.24,123.92,27350200,0,0 666 | 03-05-2019,125.05,127.08,124.94,126.56,24911100,0,0 667 | 06-05-2019,124.09,126.22,123.82,125.82,24239800,0,0 668 | 07-05-2019,124.16,124.87,121.96,123.24,36017700,0,0 669 | 08-05-2019,123.16,124.07,122.48,123.23,28419000,0,0 670 | 09-05-2019,122.03,123.5,121.32,123.22,27235800,0,0 671 | 10-05-2019,122.64,125.61,121.57,124.82,30915100,0,0 672 | 13-05-2019,121.85,123.27,120.8,121.11,33944900,0,0 673 | 14-05-2019,121.62,123.59,121.45,122.46,25266300,0,0 674 | 15-05-2019,122.45,124.87,121.9,124.19,24722700,0.46,0 675 | 16-05-2019,124.91,127.5,124.62,127.06,30112200,0,0 676 | 17-05-2019,126.44,128.56,126.06,126.21,25770500,0,0 677 | 20-05-2019,124.68,125.74,123.93,124.39,23706900,0,0 678 | 21-05-2019,125.58,125.68,124.74,125.06,15293300,0,0 679 | 22-05-2019,124.78,126.38,124.68,125.81,15396500,0,0 680 | 23-05-2019,124.37,124.45,122.93,124.35,23603800,0,0 681 | 24-05-2019,125.06,125.57,124.14,124.4,14123400,0,0 682 | 28-05-2019,125.13,126.14,124.22,124.33,23128400,0,0 683 | 29-05-2019,123.56,123.57,122.24,123.12,22763100,0,0 684 | 30-05-2019,123.44,123.93,122.97,123.9,16829600,0,0 685 | 31-05-2019,122.42,122.81,121.53,121.88,26646800,0,0 686 | 03-06-2019,122.05,122.56,117.28,118.1,37983600,0,0 687 | 04-06-2019,119.52,121.49,118.9,121.37,29382600,0,0 688 | 05-06-2019,123.13,124.04,122.4,124,24926100,0,0 689 | 06-06-2019,124.6,126.11,123.77,125.96,21459000,0,0 690 | 07-06-2019,127.31,130.33,126.4,129.49,33885600,0,0 691 | 10-06-2019,130.48,132.13,130.08,130.67,26477100,0,0 692 | 11-06-2019,131.93,132.29,129.37,130.18,23913700,0,0 693 | 12-06-2019,129.49,130.05,128.81,129.58,17084700,0,0 694 | 13-06-2019,130.06,131.07,129.65,130.4,17200800,0,0 695 | 14-06-2019,130.34,131.84,129.73,130.52,17821700,0,0 696 | 17-06-2019,130.7,131.79,130.6,130.92,14517800,0,0 697 | 18-06-2019,132.24,133.27,131.63,133.2,25934500,0,0 698 | 19-06-2019,133.04,133.95,131.86,133.72,23744400,0,0 699 | 20-06-2019,135.45,135.66,133.75,134.96,33042600,0,0 700 | 21-06-2019,134.59,135.73,134.48,134.98,36727900,0,0 701 | 24-06-2019,135.01,136.39,135.01,135.78,20628800,0,0 702 | 25-06-2019,135.25,135.59,130.8,131.49,33327400,0,0 703 | 26-06-2019,132.4,133.77,131.66,131.98,23657700,0,0 704 | 27-06-2019,132.19,132.75,131.57,132.2,16557500,0,0 705 | 28-06-2019,132.61,132.64,131.22,132.01,30043000,0,0 706 | 01-07-2019,134.64,134.71,133.01,133.71,22654200,0,0 707 | 02-07-2019,134.14,134.6,133.37,134.59,15237800,0,0 708 | 03-07-2019,134.81,135.74,134.31,135.46,13629300,0,0 709 | 05-07-2019,133.96,135.33,133.75,135.07,18141100,0,0 710 | 08-07-2019,134.42,135.11,133.4,134.97,16779700,0,0 711 | 09-07-2019,134.02,134.98,133.83,134.48,19953100,0,0 712 | 10-07-2019,135.14,136.57,135.03,135.85,24204400,0,0 713 | 11-07-2019,136.19,137.2,135.87,136.39,22327900,0,0 714 | 12-07-2019,136.83,137.11,136,136.88,18936800,0,0 715 | 15-07-2019,137.41,137.51,136.45,136.88,16651500,0,0 716 | 16-07-2019,136.94,137.03,134.54,135.09,22726100,0,0 717 | 17-07-2019,135.7,135.92,134.24,134.29,20211000,0,0 718 | 18-07-2019,133.58,134.63,132.71,134.44,30808700,0,0 719 | 19-07-2019,138.18,138.62,134.47,134.63,48992400,0,0 720 | 22-07-2019,135.41,137.17,135.33,136.42,25074900,0,0 721 | 23-07-2019,137.73,137.95,136.02,137.26,18034600,0,0 722 | 24-07-2019,136.88,138.69,136.83,138.67,20738300,0,0 723 | 25-07-2019,138.39,138.57,137.29,138.15,18356900,0,0 724 | 26-07-2019,138.33,139.62,138.26,139.29,19037600,0,0 725 | 29-07-2019,139.44,139.45,137.34,138.98,16605900,0,0 726 | 30-07-2019,138.1,139.17,137.77,138.31,16846500,0,0 727 | 31-07-2019,138.29,138.45,133.12,134.29,38598800,0,0 728 | 01-08-2019,135.01,138.89,134.94,136.05,40557500,0,0 729 | 02-08-2019,136.08,136.31,133.29,134.91,30791600,0,0 730 | 05-08-2019,131.36,131.98,128.88,130.29,42749600,0,0 731 | 06-08-2019,131.85,133.71,131.27,132.73,32696700,0,0 732 | 07-08-2019,131.84,133.68,129.91,133.31,33414500,0,0 733 | 08-08-2019,134.61,136.97,133.95,136.87,27496500,0,0 734 | 09-08-2019,136.59,137.35,134.48,135.71,23466700,0,0 735 | 12-08-2019,135.08,135.86,133.27,133.82,20476600,0,0 736 | 13-08-2019,134.07,136.78,133.04,136.59,25154600,0,0 737 | 14-08-2019,134.83,135.38,132.17,132.47,32527300,0.46,0 738 | 15-08-2019,132.88,133.07,130.76,132.18,28074400,0,0 739 | 16-08-2019,133.36,134.92,133.2,134.6,24449100,0,0 740 | 19-08-2019,136.3,136.99,135.35,136.85,24355700,0,0 741 | 20-08-2019,136.65,137.15,135.7,135.71,21170800,0,0 742 | 21-08-2019,136.99,137.92,136.45,137.23,14970300,0,0 743 | 22-08-2019,137.1,137.63,134.76,136.23,18697000,0,0 744 | 23-08-2019,135.65,136.79,131.31,131.89,38508600,0,0 745 | 26-08-2019,133.47,134.03,132.39,133.93,20312600,0,0 746 | 27-08-2019,134.85,135.18,133.14,134.21,23102100,0,0 747 | 28-08-2019,133.36,134.23,132.05,134.03,17393300,0,0 748 | 29-08-2019,135.71,136.88,135.37,136.57,20168700,0,0 749 | 30-08-2019,137.58,137.61,134.74,136.31,23940100,0,0 750 | 03-09-2019,135.07,135.66,134.17,134.51,18869300,0,0 751 | 04-09-2019,135.75,136.14,134.94,136.08,17995900,0,0 752 | 05-09-2019,137.54,138.8,137.2,138.47,26101800,0,0 753 | 06-09-2019,138.45,138.6,136.64,137.53,20824500,0,0 754 | 09-09-2019,138.02,138.18,134.92,135.97,25773900,0,0 755 | 10-09-2019,135.26,135.35,133,134.55,28903400,0,0 756 | 11-09-2019,134.38,134.74,133.57,134.59,24726100,0,0 757 | 12-09-2019,136.3,136.86,135.33,135.97,27010000,0,0 758 | 13-09-2019,136.23,136.51,135.03,135.77,23363100,0,0 759 | 16-09-2019,134.3,135.16,134.13,134.8,16731400,0,0 760 | 17-09-2019,135.42,135.97,134.89,135.84,17814200,0,0 761 | 18-09-2019,135.81,137.11,134.99,136.96,23982100,0,0 762 | 19-09-2019,138.72,140.77,138.49,139.48,35772100,0,0 763 | 20-09-2019,139.42,140.06,136.69,137.87,39167300,0,0 764 | 23-09-2019,137.66,138.06,136.88,137.57,17139300,0,0 765 | 24-09-2019,138.78,139.11,135.34,135.83,29773200,0,0 766 | 25-09-2019,135.95,138.38,134.5,137.79,21382000,0,0 767 | 26-09-2019,137.87,138.6,136.88,137.97,17456600,0,0 768 | 27-09-2019,138.57,138.78,135.11,136.18,22477700,0,0 769 | 30-09-2019,136.5,137.65,136.23,137.47,17280900,0,0 770 | 01-10-2019,138.09,138.67,135.46,135.53,21466600,0,0 771 | 02-10-2019,134.72,134.83,132.08,133.13,30521700,0,0 772 | 03-10-2019,133.43,135.21,131.72,134.75,24132900,0,0 773 | 04-10-2019,135.21,136.69,134.88,136.57,22897700,0,0 774 | 07-10-2019,135.6,136.62,135.48,135.58,15303700,0,0 775 | 08-10-2019,135.54,136.21,134.09,134.14,25550500,0,0 776 | 09-10-2019,135.91,137.14,135.43,136.68,19749900,0,0 777 | 10-10-2019,136.93,138.1,136.69,137.53,17654600,0,0 778 | 11-10-2019,138.54,139.44,137.93,138.11,25446000,0,0 779 | 14-10-2019,138.12,138.71,137.95,137.98,13304300,0,0 780 | 15-10-2019,138.48,140.19,138.24,139.98,19695700,0,0 781 | 16-10-2019,139.21,139.4,137.96,138.83,20751600,0,0 782 | 17-10-2019,139.36,139.83,137.46,138.12,21460600,0,0 783 | 18-10-2019,138.19,138.42,135.02,135.86,32273500,0,0 784 | 21-10-2019,136.89,136.94,135.47,136.87,20078200,0,0 785 | 22-10-2019,137.41,138.43,134.73,134.83,27431000,0,0 786 | 23-10-2019,135.34,135.9,134.08,135.7,29844600,0,0 787 | 24-10-2019,137.82,138.84,137.11,138.36,37029300,0,0 788 | 25-10-2019,137.77,139.55,137.63,139.15,25959700,0,0 789 | 28-10-2019,142.77,144.03,141.89,142.57,35280100,0,0 790 | 29-10-2019,142.46,142.87,141.04,141.22,20589500,0,0 791 | 30-10-2019,141.9,143.37,141.18,142.98,18496600,0,0 792 | 31-10-2019,143.27,143.3,141.38,141.76,24605100,0,0 793 | 01-11-2019,142.64,142.79,141.36,142.1,33128400,0,0 794 | 04-11-2019,143.2,143.37,142.54,142.92,16912000,0,0 795 | 05-11-2019,143.34,143.39,142.29,142.83,18250200,0,0 796 | 06-11-2019,142.74,142.89,141.59,142.44,16575800,0,0 797 | 07-11-2019,142.22,143.25,142.15,142.64,17786700,0,0 798 | 08-11-2019,142.36,144.35,142.14,144.32,16732700,0,0 799 | 11-11-2019,143.7,144.77,143.1,144.47,14362600,0,0 800 | 12-11-2019,144.63,145.91,144.42,145.41,18641600,0,0 801 | 13-11-2019,145.09,145.8,144.63,145.65,16919200,0,0 802 | 14-11-2019,145.37,146.74,145.35,146.39,19729800,0,0 803 | 15-11-2019,147.25,148.3,146.6,148.28,23485700,0,0 804 | 18-11-2019,148.38,148.86,147.3,148.65,21534000,0,0 805 | 19-11-2019,149.18,149.63,148.51,148.7,23935700,0,0 806 | 20-11-2019,149.12,149.65,147.29,148.44,25696800,0.51,0 807 | 21-11-2019,148.22,148.62,147.33,148.3,18576100,0,0 808 | 22-11-2019,148.89,149.11,147.65,148.41,15901800,0,0 809 | 25-11-2019,148.82,150.16,148.74,150.04,22420900,0,0 810 | 26-11-2019,150.17,151.22,150.13,150.83,24620100,0,0 811 | 27-11-2019,151.13,151.3,150.32,151.12,15184400,0,0 812 | 29-11-2019,150.9,151.1,150.09,150.19,11977300,0,0 813 | 02-12-2019,150.61,150.63,147.15,148.37,27418400,0,0 814 | 03-12-2019,146.33,148.25,145.49,148.13,24066000,0,0 815 | 04-12-2019,148.96,148.99,148.02,148.67,17574700,0,0 816 | 05-12-2019,148.87,149.13,148.3,148.75,17869100,0,0 817 | 06-12-2019,149.8,150.67,149.08,150.55,16403500,0,0 818 | 09-12-2019,149.88,151.01,149.72,150.17,16687400,0,0 819 | 10-12-2019,150.1,150.69,149.57,149.94,16476100,0,0 820 | 11-12-2019,150.34,150.67,149.14,150.5,18856600,0,0 821 | 12-12-2019,150.45,152.23,149.83,152.03,24612100,0,0 822 | 13-12-2019,151.79,153.67,151.62,153.31,23845400,0,0 823 | 16-12-2019,153.89,154.67,153.6,154.3,24144200,0,0 824 | 17-12-2019,154.22,154.48,153.23,153.47,25425600,0,0 825 | 18-12-2019,153.08,154.25,152.96,153.15,24129200,0,0 826 | 19-12-2019,152.78,154.54,152.54,154.48,24958900,0,0 827 | 20-12-2019,156.11,157.24,155.06,156.17,53477500,0,0 828 | 23-12-2019,156.87,156.87,156.03,156.17,17718200,0,0 829 | 24-12-2019,156.24,156.47,155.88,156.14,8989200,0,0 830 | 26-12-2019,156.32,157.48,156.16,157.42,14520600,0,0 831 | 27-12-2019,158.19,158.29,156.97,157.71,18412800,0,0 832 | 30-12-2019,157.74,157.77,155.49,156.35,16348400,0,0 833 | 31-12-2019,155.53,156.52,155.22,156.46,18369400,0,0 834 | 02-01-2020,157.53,159.46,157.08,159.35,22622100,0,0 835 | 03-01-2020,157.07,158.69,156.81,157.37,21116200,0,0 836 | 06-01-2020,155.84,157.84,155.27,157.77,20813700,0,0 837 | 07-01-2020,158.06,158.41,156.08,156.34,21634100,0,0 838 | 08-01-2020,157.68,159.53,156.7,158.83,27746500,0,0 839 | 09-01-2020,160.56,160.94,159.76,160.81,21385000,0,0 840 | 10-01-2020,161.54,161.93,159.91,160.07,20725900,0,0 841 | 13-01-2020,160.48,162.02,159.99,161.99,21626500,0,0 842 | 14-01-2020,162.1,162.31,160.44,160.85,23477400,0,0 843 | 15-01-2020,161.34,162.65,161.29,161.89,21417900,0,0 844 | 16-01-2020,163.05,164.93,162.74,164.86,23865400,0,0 845 | 17-01-2020,166.1,166.15,164.12,165.78,34371700,0,0 846 | 21-01-2020,165.36,166.86,165.12,165.19,29517200,0,0 847 | 22-01-2020,166.08,166.17,164.37,164.39,24138800,0,0 848 | 23-01-2020,164.88,165.48,163.97,165.4,19680800,0,0 849 | 24-01-2020,166.19,166.21,163.15,163.74,24918100,0,0 850 | 27-01-2020,159.88,162.09,158.94,161,32078100,0,0 851 | 28-01-2020,162.49,164.45,161.78,164.15,24899900,0,0 852 | 29-01-2020,166.52,167.42,164.38,166.71,34754500,0,0 853 | 30-01-2020,172.68,172.68,169.44,171.42,51597500,0,0 854 | 31-01-2020,170.85,171.04,168.24,168.89,36142700,0,0 855 | 03-02-2020,169.08,173.12,169.06,173,30149100,0,0 856 | 04-02-2020,175.74,179.21,174.92,178.7,36433300,0,0 857 | 05-02-2020,182.58,182.75,177,178.48,39186300,0,0 858 | 06-02-2020,179.54,182.37,178.64,182.18,27751400,0,0 859 | 07-02-2020,181.41,184.17,181.04,182.44,33529100,0,0 860 | 10-02-2020,182.13,187.35,181.8,187.21,35844300,0,0 861 | 11-02-2020,189.15,189.19,182.05,182.98,53159900,0,0 862 | 12-02-2020,184.12,184.38,180.41,183.25,47062900,0,0 863 | 13-02-2020,181.64,184.76,181.43,182.26,35295800,0,0 864 | 14-02-2020,181.8,183.95,181.21,183.89,23149500,0,0 865 | 18-02-2020,184.15,186.22,184.04,185.75,27792200,0,0 866 | 19-02-2020,187.09,187.2,185.5,186.31,29997500,0.51,0 867 | 20-02-2020,185.98,186.28,180.16,183.46,36862400,0,0 868 | 21-02-2020,182.22,182.55,176.33,177.66,48572600,0,0 869 | 24-02-2020,166.9,173.65,162.38,170,68311100,0,0 870 | 25-02-2020,173.3,173.93,166.78,167.2,68073300,0,0 871 | 26-02-2020,168.83,172.36,167.34,169.29,56206100,0,0 872 | 27-02-2020,162.47,166.16,157.16,157.36,93174900,0,0 873 | 28-02-2020,151.62,162.86,151.21,161.17,97012700,0,0 874 | 02-03-2020,164.45,172.02,161.47,171.89,71030800,0,0 875 | 03-03-2020,172.9,174.09,161.42,163.66,71677000,0,0 876 | 04-03-2020,167.62,169.82,164.76,169.67,49814400,0,0 877 | 05-03-2020,165.19,169.98,164.83,165.41,47817300,0,0 878 | 06-03-2020,161.77,162.26,155.19,160.73,72821100,0,0 879 | 09-03-2020,150.22,156.93,149.22,149.84,70419300,0,0 880 | 10-03-2020,157.34,160.2,151.79,160.09,65354400,0,0 881 | 11-03-2020,156.32,156.88,150.37,152.83,56371600,0,0 882 | 12-03-2020,144.55,152.67,137.86,138.34,93226400,0,0 883 | 13-03-2020,146.74,161.07,140,158.01,92727400,0,0 884 | 16-03-2020,139.27,148.58,134.3,134.72,87905900,0,0 885 | 17-03-2020,139.27,146.74,134.3,145.81,81059800,0,0 886 | 18-03-2020,137.28,145.24,134.32,139.67,81593200,0,0 887 | 19-03-2020,142.03,149.37,138.28,141.97,85922700,0,0 888 | 20-03-2020,145.24,146.34,135.16,136.64,84866200,0,0 889 | 23-03-2020,136.3,139.84,131.83,135.28,78975200,0,0 890 | 24-03-2020,143.01,148.82,140.54,147.57,82516700,0,0 891 | 25-03-2020,148.14,153.53,143.69,146.16,75638200,0,0 892 | 26-03-2020,147.63,155.85,147.6,155.3,64568100,0,0 893 | 27-03-2020,150.96,154.09,148.43,148.92,57042300,0,0 894 | 30-03-2020,151.65,159.77,149.23,159.4,63420300,0,0 895 | 31-03-2020,158.57,163.93,155.75,156.89,77927200,0,0 896 | 01-04-2020,152.21,156.93,150.04,151.32,57969900,0,0 897 | 02-04-2020,151.07,154.67,149.58,154.46,49630700,0,0 898 | 03-04-2020,154.3,156.56,151.4,153.03,41243300,0,0 899 | 06-04-2020,159.49,165.64,156.76,164.41,67111700,0,0 900 | 07-04-2020,168.71,169.12,162.41,162.64,62769000,0,0 901 | 08-04-2020,164.81,165.81,162.65,164.27,48318200,0,0 902 | 09-04-2020,165.5,166.5,162.48,164.28,51431800,0,0 903 | 13-04-2020,163.5,164.71,161.46,164.65,41905300,0,0 904 | 14-04-2020,168.12,172.85,167.13,172.8,52874300,0,0 905 | 15-04-2020,170.31,172.67,168.36,170.99,40940800,0,0 906 | 16-04-2020,173.4,176.36,172,176.12,50479600,0,0 907 | 17-04-2020,178.57,179.07,174.96,177.67,52765600,0,0 908 | 20-04-2020,175.71,177.82,174.08,174.15,36669600,0,0 909 | 21-04-2020,172.6,172.77,165.25,166.95,56203700,0,0 910 | 22-04-2020,170.5,173.1,169.93,172.62,34651600,0,0 911 | 23-04-2020,173.21,174.15,170.02,170.53,32790800,0,0 912 | 24-04-2020,171.17,173.66,169.83,173.65,34305300,0,0 913 | 27-04-2020,175.67,175.98,172.4,173.15,33194400,0,0 914 | 28-04-2020,174.68,174.76,168.51,168.93,34392700,0,0 915 | 29-04-2020,172.32,176.76,170.99,176.51,51286600,0,0 916 | 30-04-2020,179.07,179.47,175.32,178.28,53661300,0,0 917 | 01-05-2020,174.89,177.71,173.11,173.67,39370500,0,0 918 | 04-05-2020,173.59,178.07,172.9,177.91,30372900,0,0 919 | 05-05-2020,179.68,182.7,178.97,179.82,36839200,0,0 920 | 06-05-2020,181.14,183.25,180.69,181.59,32139300,0,0 921 | 07-05-2020,183.22,183.59,181.63,182.65,28316000,0,0 922 | 08-05-2020,184.02,184.04,182.41,183.72,30912600,0,0 923 | 11-05-2020,182.2,186.54,181.9,185.77,30809400,0,0 924 | 12-05-2020,185.83,186.07,181.36,181.56,32038200,0,0 925 | 13-05-2020,181.6,183.1,175.63,178.82,44711500,0,0 926 | 14-05-2020,176.62,179.75,174.77,179.59,41873900,0,0 927 | 15-05-2020,178.13,186.09,176.08,182.21,46610400,0,0 928 | 18-05-2020,184.79,185.24,183.01,183.95,35306600,0,0 929 | 19-05-2020,184.07,185.63,182.54,182.68,26799100,0,0 930 | 20-05-2020,184.36,185.4,183.5,185.21,31261300,0.51,0 931 | 21-05-2020,184.95,186.22,182.85,182.99,29119500,0,0 932 | 22-05-2020,182.75,184.02,182.1,183.07,20826900,0,0 933 | 26-05-2020,185.89,186.05,180.66,181.13,36073600,0,0 934 | 27-05-2020,179.77,181.55,176.17,181.37,39517100,0,0 935 | 28-05-2020,180.3,183.71,179.95,180.96,33810200,0,0 936 | 29-05-2020,182.29,183.83,179.97,182.81,42146700,0,0 937 | 01-06-2020,182.1,182.56,181.02,182.39,22622400,0,0 938 | 02-06-2020,183.81,184.55,180.91,184.46,30794600,0,0 939 | 03-06-2020,184.37,185.49,183.14,184.91,27311000,0,0 940 | 04-06-2020,183.86,185.39,181.86,182.48,28761800,0,0 941 | 05-06-2020,182.18,187.28,181.57,186.75,39893600,0,0 942 | 08-06-2020,185.49,188.1,184,187.91,33211600,0,0 943 | 09-06-2020,187.55,190.24,186.81,189.34,29783900,0,0 944 | 10-06-2020,190.67,198.04,190.55,196.37,43872300,0,0 945 | 11-06-2020,192.66,195.29,185.62,185.82,52854700,0,0 946 | 12-06-2020,190.08,191.26,184.73,187.29,43345700,0,0 947 | 15-06-2020,184.13,190.36,183.57,188.48,32770200,0,0 948 | 16-06-2020,192.42,195.11,191,193.1,42556700,0,0 949 | 17-06-2020,194.56,195.85,193.22,193.77,25655900,0,0 950 | 18-06-2020,193.53,196.02,193.53,195.85,23061600,0,0 951 | 19-06-2020,198.11,198.81,193.9,194.68,44441100,0,0 952 | 22-06-2020,195.32,200.28,194.76,200.09,32818900,0,0 953 | 23-06-2020,201.6,203.46,200.94,201.42,30917400,0,0 954 | 24-06-2020,201.11,202.76,196.09,197.36,36740600,0,0 955 | 25-06-2020,197.32,200.13,195,199.86,27803900,0,0 956 | 26-06-2020,199.25,199.41,194.41,195.86,54675800,0,0 957 | 29-06-2020,195.31,198.05,193.08,197.96,26701600,0,0 958 | 30-06-2020,197.4,203.91,197.26,203.02,34310300,0,0 959 | 01-07-2020,202.65,205.85,201.28,204.21,32061200,0,0 960 | 02-07-2020,205.18,207.52,204.51,205.76,29315800,0,0 961 | 06-07-2020,208.33,210.62,207.59,210.19,31897600,0,0 962 | 07-07-2020,209.94,214.15,207.49,207.75,33600700,0,0 963 | 08-07-2020,209.56,212.75,208.19,212.32,33600000,0,0 964 | 09-07-2020,215.81,215.86,210.96,213.8,33121700,0,0 965 | 10-07-2020,213.1,213.56,210.57,213.15,26177600,0,0 966 | 13-07-2020,213.96,215.28,206,206.57,38135600,0,0 967 | 14-07-2020,205.63,208.35,201.54,207.85,37591800,0,0 968 | 15-07-2020,209.05,210.82,204.54,207.54,32179400,0,0 969 | 16-07-2020,204.9,205.2,201.82,203.43,29940700,0,0 970 | 17-07-2020,203.98,204.55,200.9,202.39,31635300,0,0 971 | 20-07-2020,204.51,211.79,202.52,211.09,36884800,0,0 972 | 21-07-2020,213.14,213.42,207.53,208.25,38105800,0,0 973 | 22-07-2020,208.7,211.79,207.89,211.24,49605700,0,0 974 | 23-07-2020,206.69,210.41,201.66,202.05,67457000,0,0 975 | 24-07-2020,199.94,202.37,197.03,200.81,39827000,0,0 976 | 27-07-2020,200.98,203.48,200.38,203.36,30160900,0,0 977 | 28-07-2020,203.12,204.21,201.25,201.53,23251400,0,0 978 | 29-07-2020,202.01,204.16,201.52,203.57,19632600,0,0 979 | 30-07-2020,200.52,203.97,199.09,203.41,25079600,0,0 980 | 31-07-2020,203.91,204.61,198.53,204.52,51248000,0,0 981 | 03-08-2020,211.01,217.12,209.93,216.02,78983000,0,0 982 | 04-08-2020,213.65,214.25,209.8,212.78,49280100,0,0 983 | 05-08-2020,214.38,214.48,211.06,212.43,28858600,0,0 984 | 06-08-2020,211.83,215.85,211.04,215.83,32656800,0,0 985 | 07-08-2020,214.33,215.18,210.42,211.97,27789600,0,0 986 | 10-08-2020,211.16,211.37,205.85,207.75,36716500,0,0 987 | 11-08-2020,206.66,207.15,202.65,202.89,36446500,0,0 988 | 12-08-2020,204.79,209.77,204.26,208.69,28041400,0,0 989 | 13-08-2020,208.93,210.84,207.65,208.2,22588900,0,0 990 | 14-08-2020,208.26,209.08,207.01,208.4,17958900,0,0 991 | 17-08-2020,209.09,210.68,208.42,209.77,20184800,0,0 992 | 18-08-2020,210.02,211.85,208.71,210.98,21336200,0,0 993 | 19-08-2020,211.49,212.1,209.25,209.7,27627600,0.51,0 994 | 20-08-2020,209.54,215,208.91,214.58,26981500,0,0 995 | 21-08-2020,213.86,216.25,212.85,213.02,36249300,0,0 996 | 24-08-2020,214.79,215.52,212.43,213.69,25460100,0,0 997 | 25-08-2020,213.1,216.61,213.1,216.47,23043700,0,0 998 | 26-08-2020,217.88,222.09,217.36,221.15,39600800,0,0 999 | 27-08-2020,222.89,231.15,219.4,226.58,57602200,0,0 1000 | 28-08-2020,228.18,230.64,226.58,228.91,26292900,0,0 1001 | 31-08-2020,227,228.7,224.31,225.53,28722300,0,0 1002 | -------------------------------------------------------------------------------- /DJIA.csv: -------------------------------------------------------------------------------- 1 | Date,Open,High,Low,Close,Volume,Dividends,Stock Splits 2 | 2016-09-13,18262.99,18262.99,18001.97,18066.75,4141670000,0,0 3 | 2016-09-14,18073.39,18198.34,17957.79,18034.77,3664100000,0,0 4 | 2016-09-15,18024.91,18274.49,17977.33,18212.48,3373720000,0,0 5 | 2016-09-16,18217.21,18238.33,18016.93,18123.8,5014360000,0,0 6 | 2016-09-19,18154.82,18297.64,18070.72,18120.17,3163000000,0,0 7 | 2016-09-20,18175.36,18269.25,18088.77,18129.96,3140730000,0,0 8 | 2016-09-21,18164.96,18339.28,18083.84,18293.7,3712090000,0,0 9 | 2016-09-22,18343.76,18497.41,18327.95,18392.46,3552830000,0,0 10 | 2016-09-23,18377.36,18438.68,18210.71,18261.45,3317190000,0,0 11 | 2016-09-26,18217.76,18240.25,18027.65,18094.83,3216170000,0,0 12 | 2016-09-27,18099.21,18271.21,18019.19,18228.3,3437770000,0,0 13 | 2016-09-28,18240.49,18411.53,18135.27,18339.24,3891460000,0,0 14 | 2016-09-29,18322.88,18421.9,18073.7,18143.45,4249220000,0,0 15 | 2016-09-30,18196.94,18402.19,18163.38,18308.15,4173340000,0,0 16 | 2016-10-03,18279.6,18339.79,18155.2,18253.85,3137550000,0,0 17 | 2016-10-04,18267.68,18375.23,18094.28,18168.45,3750890000,0,0 18 | 2016-10-05,18205.5,18370.16,18158.88,18281.03,3906550000,0,0 19 | 2016-10-06,18280.42,18345.55,18103.7,18268.5,3461550000,0,0 20 | 2016-10-07,18295.35,18366.67,18116.3,18240.49,3619890000,0,0 21 | 2016-10-10,18282.95,18464.84,18251.2,18329.04,2916550000,0,0 22 | 2016-10-11,18309.59,18338.15,18050.93,18128.66,3438270000,0,0 23 | 2016-10-12,18132.63,18230.6,18036.96,18144.2,2977100000,0,0 24 | 2016-10-13,18081.88,18155.57,17911.64,18098.94,3580450000,0,0 25 | 2016-10-14,18177.35,18303.77,18101.92,18138.38,3228150000,0,0 26 | 2016-10-17,18138.73,18216.21,18013.3,18086.4,2830390000,0,0 27 | 2016-10-18,18157.22,18293.4,18050.62,18161.94,3170000000,0,0 28 | 2016-10-19,18175.16,18322.09,18105.92,18202.62,3362670000,0,0 29 | 2016-10-20,18161.87,18295.18,18068.8,18162.35,3337170000,0,0 30 | 2016-10-21,18152.63,18219.3,17979.88,18145.71,3448850000,0,0 31 | 2016-10-24,18197.14,18342.98,18140.34,18223.03,3357320000,0,0 32 | 2016-10-25,18206.52,18327.91,18072.54,18169.27,3751340000,0,0 33 | 2016-10-26,18103.8,18308.95,17988.37,18199.33,3775200000,0,0 34 | 2016-10-27,18234.81,18340.87,18084.76,18169.68,4204830000,0,0 35 | 2016-10-28,18193.79,18326.88,18040.94,18161.19,4019510000,0,0 36 | 2016-10-31,18176.6,18256.89,18069.97,18142.42,3922400000,0,0 37 | 2016-11-01,18158.41,18222.1,17928.14,18037.1,4532160000,0,0 38 | 2016-11-02,18017.72,18110.78,17885.71,17959.64,4248580000,0,0 39 | 2016-11-03,17978.75,18077.26,17870.0,17930.67,3886740000,0,0 40 | 2016-11-04,17928.35,18053.51,17815.01,17888.28,3837860000,0,0 41 | 2016-11-07,17994.64,18292.78,17994.64,18259.6,3736060000,0,0 42 | 2016-11-08,18251.38,18427.79,18153.18,18332.74,3916930000,0,0 43 | 2016-11-09,18317.26,18715.1,18084.25,18589.69,6264150000,0,0 44 | 2016-11-10,18603.14,19020.72,18500.45,18807.88,6451640000,0,0 45 | 2016-11-11,18781.65,18944.12,18633.04,18847.66,4988050000,0,0 46 | 2016-11-14,18876.77,19098.04,18651.25,18868.69,5367200000,0,0 47 | 2016-11-15,18858.21,19013.46,18704.09,18923.06,4543860000,0,0 48 | 2016-11-16,18909.85,18993.29,18736.45,18868.14,3830590000,0,0 49 | 2016-11-17,18866.22,18989.51,18750.42,18903.82,3809160000,0,0 50 | 2016-11-18,18905.33,18995.62,18781.54,18867.93,3572400000,0,0 51 | 2016-11-21,18898.68,19026.64,18814.45,18956.69,3607010000,0,0 52 | 2016-11-22,18970.39,19114.89,18877.42,19023.87,3957940000,0,0 53 | 2016-11-23,19015.52,19154.37,18920.74,19083.18,3418640000,0,0 54 | 2016-11-25,19093.72,19211.51,19052.02,19152.14,1584600000,0,0 55 | 2016-11-28,19122.14,19201.96,18999.29,19097.9,3505650000,0,0 56 | 2016-11-29,19064.07,19214.97,18997.37,19121.6,3706560000,0,0 57 | 2016-11-30,19135.64,19326.5,19035.86,19123.58,5533980000,0,0 58 | 2016-12-01,19149.2,19340.74,19017.11,19191.93,5063740000,0,0 59 | 2016-12-02,19161.25,19284.28,19057.94,19170.42,3779500000,0,0 60 | 2016-12-05,19244.35,19274.85,19186.73,19216.24,3895230000,0,0 61 | 2016-12-06,19219.91,19332.7,19105.5,19251.78,3855320000,0,0 62 | 2016-12-07,19241.99,19584.17,19162.93,19549.62,4501820000,0,0 63 | 2016-12-08,19554.55,19722.37,19448.67,19614.81,4200580000,0,0 64 | 2016-12-09,19631.35,19801.87,19533.87,19756.85,3884480000,0,0 65 | 2016-12-12,19770.2,19926.51,19626.42,19796.43,4034510000,0,0 66 | 2016-12-13,19852.21,19953.75,19846.45,19911.21,3857590000,0,0 67 | 2016-12-14,19876.13,20046.46,19696.24,19792.53,4406970000,0,0 68 | 2016-12-15,19814.45,20004.64,19725.45,19852.24,4168200000,0,0 69 | 2016-12-16,19909.01,20004.65,19742.57,19843.41,5920340000,0,0 70 | 2016-12-19,19836.66,19989.55,19752.12,19883.06,3248370000,0,0 71 | 2016-12-20,19920.59,20065.19,19853.48,19974.62,3298780000,0,0 72 | 2016-12-21,19968.97,20059.23,19860.35,19941.96,2852230000,0,0 73 | 2016-12-22,19922.68,20023.96,19801.63,19918.88,2876320000,0,0 74 | 2016-12-23,19908.61,19990.24,19835.87,19933.81,2020550000,0,0 75 | 2016-12-27,19948.33,20032.42,19885.79,19945.04,1987080000,0,0 76 | 2016-12-28,19964.31,20020.16,19807.15,19833.68,2392360000,0,0 77 | 2016-12-29,19837.61,19925.9,19749.73,19819.78,2336370000,0,0 78 | 2016-12-30,19833.17,19895.15,19694.39,19762.6,2670900000,0,0 79 | 2017-01-03,19872.86,20021.6,19694.36,19881.76,3770530000,0,0 80 | 2017-01-04,19890.94,20037.42,19812.15,19942.16,3764890000,0,0 81 | 2017-01-05,19922.56,20031.4,19747.6,19899.29,3761820000,0,0 82 | 2017-01-06,19906.96,20048.52,19781.19,19963.8,3339890000,0,0 83 | 2017-01-09,19931.41,20021.53,19807.52,19887.38,3217610000,0,0 84 | 2017-01-10,19876.35,20007.46,19745.44,19855.53,3638790000,0,0 85 | 2017-01-11,19887.38,20030.37,19779.14,19954.28,3620410000,0,0 86 | 2017-01-12,19926.21,19981.47,19721.44,19891.0,3462130000,0,0 87 | 2017-01-13,19912.54,20009.41,19802.9,19885.73,3081270000,0,0 88 | 2017-01-17,19848.82,19882.99,19775.35,19826.77,3584990000,0,0 89 | 2017-01-18,19822.73,19922.64,19667.13,19804.72,3315250000,0,0 90 | 2017-01-19,19813.55,19893.23,19654.46,19732.4,3165970000,0,0 91 | 2017-01-20,19795.06,19922.95,19695.42,19827.25,3524970000,0,0 92 | 2017-01-23,19794.79,19900.49,19666.55,19799.85,3152710000,0,0 93 | 2017-01-24,19794.68,20022.25,19693.4,19912.71,3810960000,0,0 94 | 2017-01-25,19994.48,20179.56,19904.02,20068.51,3846020000,0,0 95 | 2017-01-26,20076.25,20212.94,19984.66,20100.91,3610360000,0,0 96 | 2017-01-27,20103.36,20203.11,19980.0,20093.78,3135890000,0,0 97 | 2017-01-30,20028.62,20086.52,19822.73,19971.13,3591270000,0,0 98 | 2017-01-31,19913.16,19996.33,19718.19,19864.09,4087450000,0,0 99 | 2017-02-01,19923.81,20054.47,19779.45,19890.94,3916610000,0,0 100 | 2017-02-02,19858.34,19989.52,19731.85,19884.91,3807710000,0,0 101 | 2017-02-03,19964.21,20145.37,19901.41,20071.46,3597970000,0,0 102 | 2017-02-06,20025.61,20156.75,19945.62,20052.42,3109050000,0,0 103 | 2017-02-07,20107.62,20155.35,20068.68,20090.29,3448690000,0,0 104 | 2017-02-08,20049.29,20143.47,19949.18,20054.34,3609740000,0,0 105 | 2017-02-09,20061.73,20257.25,20014.82,20172.4,3677940000,0,0 106 | 2017-02-10,20211.23,20352.34,20137.03,20269.37,3475020000,0,0 107 | 2017-02-13,20338.54,20483.01,20264.18,20412.16,3349730000,0,0 108 | 2017-02-14,20374.22,20544.78,20312.35,20504.41,3520910000,0,0 109 | 2017-02-15,20504.27,20668.57,20438.22,20611.86,3775590000,0,0 110 | 2017-02-16,20627.31,20732.01,20494.62,20619.77,3672370000,0,0 111 | 2017-02-17,20564.13,20684.01,20456.3,20624.05,3513060000,0,0 112 | 2017-02-21,20663.43,20817.26,20588.23,20743.0,3579780000,0,0 113 | 2017-02-22,20715.41,20848.37,20625.83,20775.6,3468670000,0,0 114 | 2017-02-23,20817.21,20928.66,20691.57,20810.32,4015260000,0,0 115 | 2017-02-24,20751.91,20881.75,20652.41,20821.76,3831570000,0,0 116 | 2017-02-27,20808.71,20915.96,20706.2,20837.44,3582610000,0,0 117 | 2017-02-28,20833.88,20921.64,20720.78,20812.24,4210140000,0,0 118 | 2017-03-01,20957.29,21212.94,20924.14,21115.55,4345180000,0,0 119 | 2017-03-02,21128.91,21200.31,20939.35,21002.97,3821320000,0,0 120 | 2017-03-03,21008.75,21113.81,20898.6,21005.71,3555260000,0,0 121 | 2017-03-06,20955.71,21041.62,20838.57,20954.34,3232700000,0,0 122 | 2017-03-07,20934.89,21032.24,20836.14,20924.76,3518390000,0,0 123 | 2017-03-08,20940.44,21027.45,20787.42,20855.73,3812100000,0,0 124 | 2017-03-09,20864.32,20966.05,20735.78,20858.19,3716340000,0,0 125 | 2017-03-10,20919.01,21022.21,20781.29,20902.98,3432950000,0,0 126 | 2017-03-13,20899.28,20981.19,20790.02,20881.48,3133900000,0,0 127 | 2017-03-14,20848.6,20929.34,20733.01,20837.37,3172630000,0,0 128 | 2017-03-15,20874.78,21027.93,20773.21,20950.1,3906840000,0,0 129 | 2017-03-16,20969.27,21059.46,20854.05,20934.55,3365660000,0,0 130 | 2017-03-17,20965.37,21056.04,20835.52,20914.62,5178040000,0,0 131 | 2017-03-20,20916.27,21022.93,20821.62,20905.86,3054930000,0,0 132 | 2017-03-21,20956.33,21007.28,20620.35,20668.01,4265590000,0,0 133 | 2017-03-22,20640.42,20760.09,20503.37,20661.3,3572730000,0,0 134 | 2017-03-23,20645.07,20790.89,20563.06,20656.58,3260600000,0,0 135 | 2017-03-24,20674.45,20783.31,20512.39,20596.72,2975130000,0,0 136 | 2017-03-27,20488.35,20617.58,20348.88,20550.98,3240230000,0,0 137 | 2017-03-28,20542.14,20754.27,20465.58,20701.5,3367780000,0,0 138 | 2017-03-29,20675.75,20751.08,20575.38,20659.32,3106940000,0,0 139 | 2017-03-30,20662.79,20797.45,20602.72,20728.49,3158420000,0,0 140 | 2017-03-31,20700.34,20775.05,20605.32,20663.22,3354110000,0,0 141 | 2017-04-03,20665.17,20745.29,20504.75,20650.21,3416400000,0,0 142 | 2017-04-04,20634.94,20751.0,20558.06,20689.24,3206240000,0,0 143 | 2017-04-05,20745.06,20933.46,20613.16,20648.15,3770520000,0,0 144 | 2017-04-06,20653.77,20768.21,20573.03,20662.95,3201920000,0,0 145 | 2017-04-07,20647.81,20749.58,20575.21,20656.1,3053150000,0,0 146 | 2017-04-10,20668.22,20784.67,20577.99,20658.02,2785410000,0,0 147 | 2017-04-11,20644.32,20712.9,20491.74,20651.3,3117420000,0,0 148 | 2017-04-12,20637.95,20705.58,20508.62,20591.86,3196950000,0,0 149 | 2017-04-13,20561.69,20661.78,20435.65,20453.25,3143890000,0,0 150 | 2017-04-17,20484.75,20665.14,20455.2,20636.92,2824710000,0,0 151 | 2017-04-18,20561.39,20663.63,20412.57,20523.28,3269840000,0,0 152 | 2017-04-19,20503.52,20603.09,20349.01,20404.49,3519900000,0,0 153 | 2017-04-20,20406.68,20656.03,20383.33,20578.71,3647420000,0,0 154 | 2017-04-21,20578.1,20676.16,20468.9,20547.76,3503360000,0,0 155 | 2017-04-24,20723.59,20861.06,20654.9,20763.89,3690650000,0,0 156 | 2017-04-25,20915.51,21091.55,20853.36,20996.12,3995240000,0,0 157 | 2017-04-26,21009.95,21150.2,20893.26,20975.09,4105920000,0,0 158 | 2017-04-27,20991.12,21086.9,20877.37,20981.33,4098460000,0,0 159 | 2017-04-28,20987.39,21050.05,20858.6,20940.51,3718270000,0,0 160 | 2017-05-01,20962.73,21048.74,20841.83,20913.46,3199240000,0,0 161 | 2017-05-02,20941.19,21033.89,20810.29,20949.89,3813680000,0,0 162 | 2017-05-03,20915.0,21044.84,20802.08,20957.9,3893990000,0,0 163 | 2017-05-04,20987.83,21060.22,20821.76,20951.47,4362540000,0,0 164 | 2017-05-05,20929.04,21052.79,20838.57,21006.94,3540140000,0,0 165 | 2017-05-08,20991.26,21092.1,20899.7,21012.28,3429440000,0,0 166 | 2017-05-09,21022.28,21110.72,20895.38,20975.78,3653590000,0,0 167 | 2017-05-10,20958.49,21016.87,20795.22,20943.11,3643530000,0,0 168 | 2017-05-11,20925.72,20990.09,20752.97,20919.42,3727420000,0,0 169 | 2017-05-12,20893.19,20975.16,20805.29,20896.61,3305630000,0,0 170 | 2017-05-15,20923.63,21072.45,20862.88,20981.94,3473600000,0,0 171 | 2017-05-16,20984.48,21106.27,20877.07,20979.75,3420790000,0,0 172 | 2017-05-17,20846.17,20903.95,20550.88,20606.93,4163000000,0,0 173 | 2017-05-18,20579.65,20793.43,20463.63,20663.02,4319420000,0,0 174 | 2017-05-19,20698.28,20893.74,20619.67,20804.84,3825160000,0,0 175 | 2017-05-22,20867.77,20991.77,20781.49,20894.83,3172830000,0,0 176 | 2017-05-23,20908.67,21040.94,20830.35,20937.91,3213570000,0,0 177 | 2017-05-24,20949.21,21087.65,20863.12,21012.42,3389900000,0,0 178 | 2017-05-25,21062.96,21187.6,20971.12,21082.95,3535390000,0,0 179 | 2017-05-26,21070.15,21157.22,20992.21,21080.28,2805040000,0,0 180 | 2017-05-30,21045.49,21137.23,20944.58,21029.47,3203160000,0,0 181 | 2017-05-31,21048.46,21148.97,20875.76,21008.65,4516110000,0,0 182 | 2017-06-01,21030.55,21184.92,20915.65,21144.18,3857140000,0,0 183 | 2017-06-02,21142.09,21307.2,21050.84,21206.29,3461680000,0,0 184 | 2017-06-05,21195.03,21299.16,21105.49,21184.04,2912600000,0,0 185 | 2017-06-06,21145.48,21260.5,21031.01,21136.23,3357840000,0,0 186 | 2017-06-07,21171.57,21278.34,21038.61,21173.69,3572300000,0,0 187 | 2017-06-08,21169.76,21329.53,21039.47,21182.53,3728860000,0,0 188 | 2017-06-09,21208.96,21398.94,21046.32,21271.97,4027340000,0,0 189 | 2017-06-12,21259.95,21396.33,21063.93,21235.67,4027750000,0,0 190 | 2017-06-13,21256.83,21423.83,21181.43,21328.47,3275500000,0,0 191 | 2017-06-14,21342.71,21492.0,21197.46,21374.56,3555590000,0,0 192 | 2017-06-15,21291.69,21459.34,21166.02,21359.9,3353050000,0,0 193 | 2017-06-16,21335.93,21481.18,21215.3,21384.28,5284720000,0,0 194 | 2017-06-19,21444.75,21598.05,21353.63,21528.99,3264700000,0,0 195 | 2017-06-20,21521.25,21620.82,21398.97,21467.14,3416510000,0,0 196 | 2017-06-21,21466.39,21571.1,21302.82,21410.03,3594820000,0,0 197 | 2017-06-22,21407.98,21525.46,21324.86,21397.29,3468210000,0,0 198 | 2017-06-23,21380.92,21515.18,21244.48,21394.76,5278330000,0,0 199 | 2017-06-26,21434.68,21572.71,21318.4,21409.55,3238970000,0,0 200 | 2017-06-27,21411.19,21501.73,21268.48,21310.66,3563910000,0,0 201 | 2017-06-28,21372.36,21551.49,21322.17,21454.61,3500800000,0,0 202 | 2017-06-29,21487.38,21537.86,21184.02,21287.03,3900280000,0,0 203 | 2017-06-30,21348.6,21426.12,21325.08,21349.63,3361590000,0,0 204 | 2017-07-03,21392.3,21562.75,21391.71,21479.27,1962290000,0,0 205 | 2017-07-05,21492.83,21612.19,21333.23,21478.17,3367220000,0,0 206 | 2017-07-06,21423.93,21508.34,21257.35,21320.04,3364520000,0,0 207 | 2017-07-07,21354.66,21503.13,21268.95,21414.34,2901330000,0,0 208 | 2017-07-10,21381.23,21537.44,21283.37,21408.52,2999130000,0,0 209 | 2017-07-11,21410.17,21512.24,21267.14,21409.07,3106750000,0,0 210 | 2017-07-12,21467.93,21645.35,21432.08,21532.14,3171620000,0,0 211 | 2017-07-13,21537.19,21652.36,21433.22,21553.09,3067670000,0,0 212 | 2017-07-14,21532.77,21697.63,21467.18,21637.74,2736640000,0,0 213 | 2017-07-17,21633.97,21726.38,21538.64,21629.72,2793170000,0,0 214 | 2017-07-18,21589.94,21702.42,21421.34,21574.73,2962130000,0,0 215 | 2017-07-19,21569.25,21698.62,21499.37,21640.75,3059760000,0,0 216 | 2017-07-20,21641.54,21770.49,21501.83,21611.78,3182780000,0,0 217 | 2017-07-21,21591.72,21675.27,21434.65,21580.07,3059570000,0,0 218 | 2017-07-24,21577.78,21649.96,21430.78,21513.17,3010240000,0,0 219 | 2017-07-25,21638.56,21788.6,21486.46,21613.43,4108060000,0,0 220 | 2017-07-26,21690.38,21858.62,21555.45,21711.01,3557020000,0,0 221 | 2017-07-27,21717.42,21926.97,21552.48,21796.55,3995520000,0,0 222 | 2017-07-28,21787.51,21922.49,21648.49,21830.31,3294770000,0,0 223 | 2017-07-31,21863.39,22023.43,21777.62,21891.12,3469210000,0,0 224 | 2017-08-01,21961.42,22086.99,21848.8,21963.92,3460860000,0,0 225 | 2017-08-02,22004.36,22126.19,21870.99,22016.24,3478580000,0,0 226 | 2017-08-03,22007.58,22147.29,21899.99,22026.1,3645020000,0,0 227 | 2017-08-04,22058.39,22190.4,21959.13,22092.81,3235140000,0,0 228 | 2017-08-07,22100.2,22214.98,21985.84,22118.42,2931780000,0,0 229 | 2017-08-08,22095.14,22224.4,22003.61,22085.34,3344640000,0,0 230 | 2017-08-09,22022.34,22140.95,21906.78,22048.7,3308060000,0,0 231 | 2017-08-10,21988.2,22062.13,21775.25,21844.01,3621070000,0,0 232 | 2017-08-11,21883.32,22016.59,21754.83,21858.32,3159930000,0,0 233 | 2017-08-14,21945.64,22102.39,21889.14,21993.71,2822550000,0,0 234 | 2017-08-15,22029.91,22135.71,21885.51,21998.99,2913100000,0,0 235 | 2017-08-16,22031.93,22167.34,21919.89,22024.87,2953650000,0,0 236 | 2017-08-17,21984.74,22036.31,21731.11,21750.73,3142620000,0,0 237 | 2017-08-18,21724.88,21851.95,21585.52,21674.51,3415680000,0,0 238 | 2017-08-21,21671.36,21783.47,21545.11,21703.75,2788150000,0,0 239 | 2017-08-22,21739.78,21945.36,21711.42,21899.89,2777490000,0,0 240 | 2017-08-23,21850.27,21954.47,21719.54,21812.09,2785290000,0,0 241 | 2017-08-24,21839.9,21924.27,21703.19,21783.4,2846590000,0,0 242 | 2017-08-25,21819.08,21952.69,21754.43,21813.67,2588780000,0,0 243 | 2017-08-28,21832.5,21927.56,21703.04,21808.4,2677700000,0,0 244 | 2017-08-29,21718.0,21919.05,21626.71,21865.37,2737580000,0,0 245 | 2017-08-30,21859.76,21978.23,21764.67,21892.43,2633660000,0,0 246 | 2017-08-31,21936.01,22056.2,21833.8,21948.1,3348110000,0,0 247 | 2017-09-01,21981.77,22111.56,21876.08,21987.56,2710730000,0,0 248 | 2017-09-05,21912.37,22009.66,21648.45,21753.31,3490260000,0,0 249 | 2017-09-06,21815.76,21849.24,21794.07,21807.64,3374410000,0,0 250 | 2017-09-07,21820.38,21850.01,21745.71,21784.78,3353930000,0,0 251 | 2017-09-08,21764.43,21939.77,21632.78,21797.79,3302490000,0,0 252 | 2017-09-11,21927.79,22067.1,21927.79,22057.37,3291760000,0,0 253 | 2017-09-12,22090.56,22280.53,21959.5,22118.86,3230920000,0,0 254 | 2017-09-13,22103.47,22261.46,21999.12,22158.18,3368050000,0,0 255 | 2017-09-14,22144.96,22307.18,22045.88,22203.48,3414460000,0,0 256 | 2017-09-15,22252.44,22377.73,22105.43,22268.34,4853170000,0,0 257 | 2017-09-18,22297.92,22441.13,22201.7,22331.35,3194300000,0,0 258 | 2017-09-19,22349.7,22493.7,22235.4,22370.8,3249100000,0,0 259 | 2017-09-20,22351.38,22521.01,22222.97,22412.59,3530010000,0,0 260 | 2017-09-21,22414.02,22497.46,22268.62,22359.23,2930860000,0,0 261 | 2017-09-22,22334.07,22456.42,22212.34,22349.59,2865960000,0,0 262 | 2017-09-25,22320.47,22459.42,22145.92,22296.09,3297890000,0,0 263 | 2017-09-26,22322.03,22451.46,22218.6,22284.32,3043110000,0,0 264 | 2017-09-27,22330.93,22481.48,22182.14,22340.71,3456030000,0,0 265 | 2017-09-28,22306.83,22466.34,22211.85,22381.2,3168620000,0,0 266 | 2017-09-29,22358.47,22473.05,22251.75,22405.09,3211920000,0,0 267 | 2017-10-02,22423.47,22610.93,22347.15,22557.6,3199730000,0,0 268 | 2017-10-03,22564.45,22718.17,22499.56,22641.67,3068850000,0,0 269 | 2017-10-04,22645.67,22754.59,22549.37,22661.64,3017120000,0,0 270 | 2017-10-05,22669.08,22843.73,22583.25,22775.39,3045120000,0,0 271 | 2017-10-06,22762.03,22837.43,22664.09,22773.67,2884570000,0,0 272 | 2017-10-09,22779.73,22882.59,22667.2,22761.07,2483970000,0,0 273 | 2017-10-10,22784.76,22930.28,22688.77,22830.68,2960500000,0,0 274 | 2017-10-11,22827.65,22953.24,22716.14,22872.89,2976090000,0,0 275 | 2017-10-12,22854.85,22969.32,22726.29,22841.01,3151510000,0,0 276 | 2017-10-13,22876.43,23004.12,22736.0,22871.72,3149440000,0,0 277 | 2017-10-16,22892.92,23053.18,22789.81,22956.96,2916020000,0,0 278 | 2017-10-17,22952.41,23139.5,22803.42,22997.44,2889390000,0,0 279 | 2017-10-18,23087.13,23267.22,22987.8,23157.6,2998090000,0,0 280 | 2017-10-19,23107.47,23258.85,22948.38,23163.04,2990710000,0,0 281 | 2017-10-20,23205.18,23419.07,23107.58,23328.63,3384650000,0,0 282 | 2017-10-23,23348.95,23484.0,23184.14,23273.96,3211710000,0,0 283 | 2017-10-24,23346.78,23637.76,23261.44,23441.76,3427330000,0,0 284 | 2017-10-25,23431.09,23570.93,23156.75,23329.46,3874510000,0,0 285 | 2017-10-26,23380.89,23597.68,23273.69,23400.86,3869050000,0,0 286 | 2017-10-27,23419.16,23582.6,23215.54,23434.19,3887110000,0,0 287 | 2017-10-30,23405.75,23537.47,23190.48,23348.74,3658870000,0,0 288 | 2017-10-31,23369.22,23493.57,23230.93,23377.24,3827230000,0,0 289 | 2017-11-01,23442.9,23612.24,23304.47,23435.01,3813180000,0,0 290 | 2017-11-02,23463.24,23621.4,23276.89,23531.38,4048270000,0,0 291 | 2017-11-03,23549.59,23669.02,23389.84,23539.19,3567710000,0,0 292 | 2017-11-06,23533.96,23688.53,23407.33,23548.42,3539080000,0,0 293 | 2017-11-07,23574.03,23695.04,23399.86,23557.23,3809650000,0,0 294 | 2017-11-08,23542.6,23665.95,23415.0,23563.36,3899360000,0,0 295 | 2017-11-09,23492.09,23616.48,23248.29,23461.94,3831610000,0,0 296 | 2017-11-10,23432.71,23551.55,23289.63,23422.21,3486910000,0,0 297 | 2017-11-13,23367.47,23544.45,23269.93,23439.7,3402930000,0,0 298 | 2017-11-14,23388.4,23526.18,23211.68,23409.47,3641760000,0,0 299 | 2017-11-15,23334.59,23445.58,23130.3,23271.28,3558890000,0,0 300 | 2017-11-16,23365.34,23579.75,23298.89,23458.36,3312710000,0,0 301 | 2017-11-17,23433.77,23508.41,23258.23,23358.24,3300160000,0,0 302 | 2017-11-20,23370.71,23532.92,23294.24,23430.33,3003540000,0,0 303 | 2017-11-21,23500.15,23689.33,23457.32,23590.83,3332720000,0,0 304 | 2017-11-22,23597.24,23678.93,23458.73,23526.18,2762950000,0,0 305 | 2017-11-24,23552.75,23646.36,23484.76,23557.99,1349780000,0,0 306 | 2017-11-27,23552.86,23688.33,23477.57,23580.78,3006860000,0,0 307 | 2017-11-28,23625.19,23888.11,23533.27,23836.71,3488420000,0,0 308 | 2017-11-29,23883.26,24120.7,23688.71,23940.68,4078280000,0,0 309 | 2017-11-30,24013.8,24403.55,23905.26,24272.35,4938490000,0,0 310 | 2017-12-01,24305.4,24417.5,23892.79,24231.59,3942320000,0,0 311 | 2017-12-04,24424.11,24700.04,24161.74,24290.05,4023150000,0,0 312 | 2017-12-05,24335.01,24470.65,24078.04,24180.64,3539040000,0,0 313 | 2017-12-06,24171.9,24335.7,23996.9,24140.91,3229000000,0,0 314 | 2017-12-07,24116.6,24342.69,24000.79,24211.48,3292400000,0,0 315 | 2017-12-08,24263.26,24415.47,24147.62,24329.16,3106150000,0,0 316 | 2017-12-11,24338.11,24490.41,24201.5,24386.03,3091950000,0,0 317 | 2017-12-12,24452.96,24666.78,24341.38,24504.8,3555680000,0,0 318 | 2017-12-13,24525.19,24763.25,24408.55,24585.43,3542370000,0,0 319 | 2017-12-14,24631.01,24672.48,24508.66,24508.66,3430030000,0,0 320 | 2017-12-15,24585.71,24791.65,24492.48,24651.74,5723920000,0,0 321 | 2017-12-18,24739.56,24973.15,24669.16,24792.2,3724660000,0,0 322 | 2017-12-19,24834.38,24935.56,24635.21,24754.75,3368590000,0,0 323 | 2017-12-20,24838.09,24933.94,24635.32,24726.65,3241030000,0,0 324 | 2017-12-21,24778.26,24967.16,24635.52,24782.29,3273390000,0,0 325 | 2017-12-22,24764.04,24878.85,24618.41,24754.06,2399830000,0,0 326 | 2017-12-26,24715.84,24860.61,24641.14,24746.21,1968780000,0,0 327 | 2017-12-27,24766.52,24860.95,24671.74,24774.3,2202080000,0,0 328 | 2017-12-28,24807.21,24901.85,24729.0,24837.51,2153330000,0,0 329 | 2017-12-29,24849.63,24920.1,24697.67,24719.22,2443490000,0,0 330 | 2018-01-02,24809.35,24983.48,24632.8,24824.01,3367250000,0,0 331 | 2018-01-03,24850.45,25033.64,24719.46,24922.68,3538660000,0,0 332 | 2018-01-04,24964.86,25207.64,24889.36,25075.13,3695260000,0,0 333 | 2018-01-05,25114.92,25369.89,24995.64,25295.87,3236620000,0,0 334 | 2018-01-08,25308.4,25442.39,25114.06,25283.0,3242650000,0,0 335 | 2018-01-09,25312.05,25542.47,25204.88,25385.8,3453480000,0,0 336 | 2018-01-10,25348.13,25488.18,25186.94,25369.13,3576350000,0,0 337 | 2018-01-11,25398.6,25640.65,25300.46,25574.73,3641320000,0,0 338 | 2018-01-12,25638.39,25900.79,25575.63,25803.19,3573970000,0,0 339 | 2018-01-16,25987.62,26194.63,25649.23,25792.86,4325970000,0,0 340 | 2018-01-17,25910.78,26257.32,25731.07,26115.65,3778050000,0,0 341 | 2018-01-18,26149.55,26283.73,25872.98,26017.81,3681470000,0,0 342 | 2018-01-19,25987.35,26212.63,25823.06,26071.72,3639430000,0,0 343 | 2018-01-22,26025.32,26284.55,25884.92,26214.6,3471780000,0,0 344 | 2018-01-23,26214.87,26408.53,26008.93,26210.81,3519650000,0,0 345 | 2018-01-24,26282.07,26502.43,26075.44,26252.12,4014070000,0,0 346 | 2018-01-25,26313.06,26580.46,26124.19,26392.79,3835150000,0,0 347 | 2018-01-26,26466.74,26695.41,26297.33,26616.71,3443230000,0,0 348 | 2018-01-29,26584.28,26735.93,26329.62,26439.48,3573830000,0,0 349 | 2018-01-30,26198.45,26418.44,25842.41,26076.89,3990650000,0,0 350 | 2018-01-31,26268.17,26500.07,25977.02,26149.39,4261280000,0,0 351 | 2018-02-01,26083.04,26390.8,25888.5,26186.71,3938450000,0,0 352 | 2018-02-02,26033.92,26061.79,25490.66,25520.96,4301130000,0,0 353 | 2018-02-05,25337.87,25606.48,23696.52,24345.75,5283460000,0,0 354 | 2018-02-06,24085.17,25000.82,23651.63,24912.77,5891660000,0,0 355 | 2018-02-07,24892.87,25350.99,24681.55,24893.35,4626570000,0,0 356 | 2018-02-08,24902.3,24951.33,23837.05,23860.46,5305440000,0,0 357 | 2018-02-09,23992.67,24445.62,23320.92,24190.9,5680070000,0,0 358 | 2018-02-12,24337.76,24833.03,24217.1,24601.27,4055790000,0,0 359 | 2018-02-13,24540.33,24765.01,24333.22,24640.45,3472870000,0,0 360 | 2018-02-14,24535.82,24978.18,24399.94,24893.49,4003740000,0,0 361 | 2018-02-15,25047.82,25302.1,24789.76,25200.37,3684910000,0,0 362 | 2018-02-16,25165.94,25478.92,25036.02,25219.38,3637460000,0,0 363 | 2018-02-20,25124.91,25304.78,24833.38,24964.75,3627610000,0,0 364 | 2018-02-21,24988.06,25321.04,24750.1,24797.78,3779400000,0,0 365 | 2018-02-22,24855.41,25199.96,24763.35,24962.48,3701270000,0,0 366 | 2018-02-23,25050.51,25360.15,24949.26,25309.99,3189190000,0,0 367 | 2018-02-26,25403.35,25778.67,25337.29,25709.27,3424650000,0,0 368 | 2018-02-27,25735.78,25882.73,25387.31,25410.03,3745080000,0,0 369 | 2018-02-28,25485.15,25676.95,25011.51,25029.2,4230660000,0,0 370 | 2018-03-01,25024.04,25219.2,24411.71,24608.98,4503970000,0,0 371 | 2018-03-02,24394.91,24643.82,24117.19,24538.06,3882450000,0,0 372 | 2018-03-05,24471.31,24987.89,24306.57,24874.76,3710810000,0,0 373 | 2018-03-06,24965.89,25117.4,24667.44,24884.12,3370690000,0,0 374 | 2018-03-07,24884.12,24884.12,24324.26,24801.36,3393270000,0,0 375 | 2018-03-08,24853.41,25059.98,24627.5,24895.21,3212320000,0,0 376 | 2018-03-09,25004.89,25373.06,24935.63,25335.74,3364100000,0,0 377 | 2018-03-12,25372.44,25540.13,25077.64,25178.61,3185020000,0,0 378 | 2018-03-13,25257.75,25460.61,24905.81,25007.03,3301650000,0,0 379 | 2018-03-14,25086.97,25182.16,24613.25,24758.12,3391360000,0,0 380 | 2018-03-15,24837.29,25089.07,24649.5,24873.66,3500330000,0,0 381 | 2018-03-16,24877.34,25129.11,24766.9,24946.51,5372340000,0,0 382 | 2018-03-19,24893.69,24941.0,24415.47,24610.91,3302130000,0,0 383 | 2018-03-20,24650.64,24896.9,24553.69,24727.27,3261030000,0,0 384 | 2018-03-21,24723.49,25027.93,24551.63,24682.31,3415510000,0,0 385 | 2018-03-22,24526.01,24576.3,23916.55,23957.89,3739800000,0,0 386 | 2018-03-23,23995.18,24228.7,23487.93,23533.2,3815080000,0,0 387 | 2018-03-26,23834.56,24202.6,23578.86,24202.6,3511100000,0,0 388 | 2018-03-27,24276.62,24506.53,23688.4,23857.71,3706350000,0,0 389 | 2018-03-28,23883.08,24157.37,23616.55,23848.42,3864500000,0,0 390 | 2018-03-29,23949.18,24357.73,23805.35,24103.11,3565990000,0,0 391 | 2018-04-02,24076.6,24209.88,23329.2,23644.19,3598520000,0,0 392 | 2018-04-03,23698.33,24089.75,23569.91,24033.36,3392810000,0,0 393 | 2018-04-04,23654.15,24323.86,23446.34,24264.3,3350340000,0,0 394 | 2018-04-05,24313.91,24665.75,24257.34,24505.22,3178970000,0,0 395 | 2018-04-06,24373.6,24457.95,23733.36,23932.76,3299700000,0,0 396 | 2018-04-09,24037.52,24438.08,23882.29,23979.1,3062960000,0,0 397 | 2018-04-10,24198.95,24572.28,24178.12,24408.0,3543930000,0,0 398 | 2018-04-11,24274.19,24443.01,24070.26,24189.45,3020760000,0,0 399 | 2018-04-12,24302.82,24664.62,24261.58,24483.05,3021320000,0,0 400 | 2018-04-13,24582.82,24726.16,24221.26,24360.14,2960910000,0,0 401 | 2018-04-16,24483.15,24735.4,24385.79,24573.04,3019700000,0,0 402 | 2018-04-17,24681.79,25026.03,24605.47,24786.63,3234360000,0,0 403 | 2018-04-18,24820.85,24975.39,24584.81,24748.07,3383410000,0,0 404 | 2018-04-19,24711.3,24871.52,24469.79,24664.89,3349370000,0,0 405 | 2018-04-20,24657.39,24771.48,24328.54,24462.94,3388590000,0,0 406 | 2018-04-23,24488.07,24631.46,24275.52,24448.69,3017480000,0,0 407 | 2018-04-24,24579.94,24684.82,23796.02,24024.13,3706740000,0,0 408 | 2018-04-25,24070.2,24250.42,23715.22,24083.83,3499440000,0,0 409 | 2018-04-26,24128.72,24475.25,24010.57,24322.34,3665720000,0,0 410 | 2018-04-27,24342.14,24490.69,24109.55,24311.19,3219030000,0,0 411 | 2018-04-30,24410.41,24599.79,24088.51,24163.15,3734530000,0,0 412 | 2018-05-01,24117.29,24219.51,23739.42,24099.05,3559850000,0,0 413 | 2018-05-02,24097.63,24253.55,23820.36,23924.98,4010770000,0,0 414 | 2018-05-03,23836.23,24053.98,23486.21,23930.15,3851470000,0,0 415 | 2018-05-04,23865.22,24367.06,23746.55,24262.51,3327220000,0,0 416 | 2018-05-07,24317.66,24580.47,24196.83,24357.32,3237960000,0,0 417 | 2018-05-08,24341.35,24501.05,24137.43,24360.21,3717570000,0,0 418 | 2018-05-09,24399.18,24679.28,24246.08,24542.54,3909500000,0,0 419 | 2018-05-10,24591.66,24866.63,24506.77,24739.53,3333050000,0,0 420 | 2018-05-11,24758.64,24970.91,24631.0,24831.17,2862700000,0,0 421 | 2018-05-14,24879.37,25064.56,24786.08,24899.41,2972660000,0,0 422 | 2018-05-15,24809.55,24865.73,24550.99,24706.41,3290680000,0,0 423 | 2018-05-16,24722.32,24864.89,24591.66,24768.93,3202670000,0,0 424 | 2018-05-17,24752.4,24900.92,24567.32,24713.98,3475400000,0,0 425 | 2018-05-18,24707.72,24864.29,24566.95,24715.09,3368690000,0,0 426 | 2018-05-21,24883.06,25150.62,24837.13,25013.29,3019890000,0,0 427 | 2018-05-22,25047.55,25175.0,24777.5,24834.41,3366310000,0,0 428 | 2018-05-23,24757.71,24939.63,24556.07,24886.81,3326290000,0,0 429 | 2018-05-24,24877.36,24938.31,24579.2,24811.76,3256030000,0,0 430 | 2018-05-25,24781.29,24894.59,24618.72,24753.09,2995260000,0,0 431 | 2018-05-29,24606.59,24683.03,24205.95,24361.45,3736890000,0,0 432 | 2018-05-30,24467.83,24746.21,24404.35,24667.78,3561050000,0,0 433 | 2018-05-31,24620.79,24662.89,24317.45,24415.84,4235370000,0,0 434 | 2018-06-01,24542.09,24759.91,24477.3,24635.21,3684130000,0,0 435 | 2018-06-04,24727.55,24962.48,24656.83,24813.69,3376510000,0,0 436 | 2018-06-05,24820.12,24929.81,24653.43,24799.98,3517790000,0,0 437 | 2018-06-06,24854.14,25179.3,24783.15,25146.39,3651640000,0,0 438 | 2018-06-07,25192.14,25446.9,25036.43,25241.41,3711330000,0,0 439 | 2018-06-08,25209.29,25409.73,25073.89,25316.53,3123210000,0,0 440 | 2018-06-11,25336.67,25486.94,25202.2,25322.31,3232330000,0,0 441 | 2018-06-12,25346.82,25463.29,25170.52,25320.73,3401010000,0,0 442 | 2018-06-13,25328.65,25494.0,25122.22,25201.2,3779230000,0,0 443 | 2018-06-14,25254.65,25410.79,25058.19,25175.31,3526890000,0,0 444 | 2018-06-15,25116.71,25217.79,24820.98,25090.48,5428790000,0,0 445 | 2018-06-18,24944.28,25083.56,24732.61,24987.47,3287150000,0,0 446 | 2018-06-19,24763.59,24848.94,24480.64,24700.21,3661470000,0,0 447 | 2018-06-20,24771.17,24880.58,24543.33,24657.8,3327600000,0,0 448 | 2018-06-21,24639.21,24709.03,24338.05,24461.7,3300060000,0,0 449 | 2018-06-22,24526.97,24774.89,24430.2,24580.89,5450550000,0,0 450 | 2018-06-25,24463.73,24539.78,24030.19,24252.8,3655080000,0,0 451 | 2018-06-26,24281.89,24475.06,24146.34,24283.11,3555090000,0,0 452 | 2018-06-27,24303.11,24614.34,24083.86,24117.59,3776090000,0,0 453 | 2018-06-28,24064.19,24360.78,23920.48,24216.05,3428140000,0,0 454 | 2018-06-29,24323.93,24585.7,24199.1,24271.41,3565620000,0,0 455 | 2018-07-02,24161.53,24359.49,23967.78,24307.18,3073650000,0,0 456 | 2018-07-03,24359.39,24535.14,24122.68,24174.82,1911470000,0,0 457 | 2018-07-05,24285.82,24468.01,24134.71,24356.74,2953420000,0,0 458 | 2018-07-06,24352.47,24557.74,24223.47,24456.48,2554780000,0,0 459 | 2018-07-09,24519.2,24848.88,24502.8,24776.59,3050040000,0,0 460 | 2018-07-10,24806.97,25034.83,24748.52,24919.66,3063850000,0,0 461 | 2018-07-11,24789.48,24910.37,24575.82,24700.45,2964740000,0,0 462 | 2018-07-12,24802.9,25019.95,24741.37,24924.89,2821690000,0,0 463 | 2018-07-13,24926.07,25136.74,24784.63,25019.41,2614000000,0,0 464 | 2018-07-16,25025.58,25180.95,24875.05,25064.36,2812230000,0,0 465 | 2018-07-17,25033.92,25263.34,24888.3,25119.89,3050730000,0,0 466 | 2018-07-18,25133.79,25341.41,24977.4,25199.29,3089780000,0,0 467 | 2018-07-19,25139.15,25287.37,24932.93,25064.5,3266700000,0,0 468 | 2018-07-20,25041.14,25194.07,24881.26,25058.12,3230210000,0,0 469 | 2018-07-23,25036.9,25175.8,24885.86,25044.29,2907430000,0,0 470 | 2018-07-24,25092.43,25406.54,24966.07,25241.94,3417530000,0,0 471 | 2018-07-25,25183.7,25467.06,25017.75,25414.1,3553010000,0,0 472 | 2018-07-26,25468.55,25719.7,25332.4,25527.07,3653330000,0,0 473 | 2018-07-27,25520.52,25725.06,25270.79,25451.06,3415710000,0,0 474 | 2018-07-30,25439.32,25640.67,25156.98,25306.83,3245770000,0,0 475 | 2018-07-31,25345.21,25610.67,25226.95,25415.19,3892100000,0,0 476 | 2018-08-01,25461.63,25578.53,25206.14,25333.82,3496990000,0,0 477 | 2018-08-02,25256.45,25427.19,25014.63,25326.16,3467380000,0,0 478 | 2018-08-03,25360.37,25546.32,25213.8,25462.58,3030390000,0,0 479 | 2018-08-06,25437.43,25591.14,25299.44,25502.18,2874540000,0,0 480 | 2018-08-07,25551.65,25766.55,25481.03,25628.91,3162770000,0,0 481 | 2018-08-08,25615.72,25747.32,25450.99,25583.75,2972200000,0,0 482 | 2018-08-09,25589.79,25721.54,25413.06,25509.23,3047050000,0,0 483 | 2018-08-10,25401.19,25459.77,25154.58,25313.14,3256040000,0,0 484 | 2018-08-13,25327.19,25450.98,25118.4,25187.7,3158450000,0,0 485 | 2018-08-14,25215.69,25428.75,25118.71,25299.92,2976970000,0,0 486 | 2018-08-15,25235.37,25325.04,24890.61,25162.41,3645070000,0,0 487 | 2018-08-16,25294.97,25670.81,25294.97,25558.73,3219880000,0,0 488 | 2018-08-17,25550.8,25774.96,25428.7,25669.32,3024100000,0,0 489 | 2018-08-20,25727.7,25905.59,25601.76,25758.69,2748020000,0,0 490 | 2018-08-21,25786.99,25975.12,25675.42,25822.29,3147140000,0,0 491 | 2018-08-22,25825.06,25950.75,25642.37,25733.6,2689560000,0,0 492 | 2018-08-23,25714.86,25809.95,25543.61,25656.98,2713910000,0,0 493 | 2018-08-24,25688.58,25885.79,25635.28,25790.35,2596190000,0,0 494 | 2018-08-27,25882.71,26146.73,25831.61,26049.64,2854080000,0,0 495 | 2018-08-28,26092.7,26220.75,25967.67,26064.02,2683190000,0,0 496 | 2018-08-29,26082.53,26222.58,25955.94,26124.57,2791860000,0,0 497 | 2018-08-30,26099.01,26191.97,25891.28,25986.92,2802180000,0,0 498 | 2018-08-31,25964.85,26076.59,25817.74,25964.82,2880260000,0,0 499 | 2018-09-04,25916.07,26063.78,25711.63,25952.48,3077060000,0,0 500 | 2018-09-05,25919.84,26139.04,25726.92,25974.99,3241250000,0,0 501 | 2018-09-06,25973.02,26181.42,25795.85,25995.87,3139590000,0,0 502 | 2018-09-07,25951.02,26081.0,25728.38,25916.54,2946270000,0,0 503 | 2018-09-10,25991.91,26159.15,25762.08,25857.07,2731400000,0,0 504 | 2018-09-11,25841.14,26082.19,25660.2,25971.06,2899660000,0,0 505 | 2018-09-12,25989.07,26247.54,25780.15,25998.92,3264930000,0,0 506 | 2018-09-13,26083.94,26296.93,25953.49,26145.99,3254930000,0,0 507 | 2018-09-14,26169.56,26335.68,25988.69,26154.67,3149800000,0,0 508 | 2018-09-17,26151.66,26296.25,25948.0,26062.12,2947760000,0,0 509 | 2018-09-18,26076.21,26376.17,25979.57,26246.96,3074610000,0,0 510 | 2018-09-19,26287.84,26574.55,26175.87,26405.76,3280020000,0,0 511 | 2018-09-20,26519.39,26807.13,26461.09,26656.98,3337730000,0,0 512 | 2018-09-21,26726.25,26901.55,26566.76,26743.5,5607610000,0,0 513 | 2018-09-24,26705.25,26820.62,26421.89,26562.05,3372210000,0,0 514 | 2018-09-25,26601.58,26733.87,26396.37,26492.21,3285480000,0,0 515 | 2018-09-26,26536.86,26684.27,26308.73,26385.28,3388620000,0,0 516 | 2018-09-27,26385.28,26620.03,26306.35,26439.93,3060850000,0,0 517 | 2018-09-28,26407.66,26590.29,26276.79,26458.31,3432300000,0,0 518 | 2018-10-01,26598.36,26836.08,26491.77,26651.21,3364190000,0,0 519 | 2018-10-02,26648.91,26902.05,26507.6,26773.94,3401880000,0,0 520 | 2018-10-03,26833.47,27064.11,26697.42,26828.39,3598710000,0,0 521 | 2018-10-04,26784.08,26890.17,26411.28,26627.48,3496860000,0,0 522 | 2018-10-05,26632.77,26761.97,26263.98,26447.05,3328980000,0,0 523 | 2018-10-08,26399.45,26595.92,26130.57,26486.78,3330320000,0,0 524 | 2018-10-09,26469.19,26653.89,26220.89,26430.57,3520500000,0,0 525 | 2018-10-10,26441.73,26441.73,25593.65,25598.74,4501250000,0,0 526 | 2018-10-11,25518.39,25796.12,24883.32,25052.83,4890630000,0,0 527 | 2018-10-12,25407.63,25625.38,24944.82,25339.99,3966040000,0,0 528 | 2018-10-15,25332.46,25551.47,25126.67,25250.55,3300140000,0,0 529 | 2018-10-16,25351.53,25851.51,25303.41,25798.42,3428340000,0,0 530 | 2018-10-17,25705.87,25924.2,25399.79,25706.68,3321710000,0,0 531 | 2018-10-18,25645.56,25924.2,25399.79,25706.68,3616440000,0,0 532 | 2018-10-19,25421.09,25712.31,25241.43,25444.34,3566490000,0,0 533 | 2018-10-22,25492.14,25663.35,25155.97,25317.41,3307140000,0,0 534 | 2018-10-23,25038.46,25307.7,24768.79,25191.43,4348580000,0,0 535 | 2018-10-24,25172.88,25453.9,24468.32,24583.42,4709310000,0,0 536 | 2018-10-25,24740.42,25172.85,24483.27,24984.55,4634770000,0,0 537 | 2018-10-26,24770.25,25008.05,24380.54,24688.31,4803150000,0,0 538 | 2018-10-29,24818.98,25136.47,24108.68,24442.92,4673700000,0,0 539 | 2018-10-30,24482.04,24998.01,24245.27,24874.64,5106380000,0,0 540 | 2018-10-31,25008.82,25443.43,24926.28,25115.76,5112420000,0,0 541 | 2018-11-01,25142.08,25531.27,25108.11,25380.74,4708420000,0,0 542 | 2018-11-02,25443.6,25694.24,25023.06,25270.83,4237930000,0,0 543 | 2018-11-05,25261.47,25599.65,25146.07,25461.7,3623320000,0,0 544 | 2018-11-06,25452.83,25725.13,25341.99,25635.01,3510860000,0,0 545 | 2018-11-07,25788.46,26241.02,25629.32,26180.3,3914750000,0,0 546 | 2018-11-08,26139.59,26371.11,25963.12,26191.22,3630490000,0,0 547 | 2018-11-09,26149.11,26268.04,25780.79,25989.3,4019090000,0,0 548 | 2018-11-12,25959.33,26057.0,25312.77,25387.18,3670930000,0,0 549 | 2018-11-13,25321.21,25655.39,25063.11,25286.49,4091440000,0,0 550 | 2018-11-14,25388.08,25593.62,24918.34,25080.5,4402370000,0,0 551 | 2018-11-15,25061.48,25418.0,24717.26,25289.27,4179140000,0,0 552 | 2018-11-16,25242.35,25585.07,25036.49,25413.22,3975180000,0,0 553 | 2018-11-19,25392.61,25512.59,24838.16,25017.44,3772900000,0,0 554 | 2018-11-20,24618.68,24900.92,24158.24,24465.64,4357900000,0,0 555 | 2018-11-21,24541.65,24833.38,24362.24,24464.69,3233550000,0,0 556 | 2018-11-23,24336.4,24525.04,24139.43,24285.95,1651650000,0,0 557 | 2018-11-26,24364.13,24796.43,24331.72,24640.24,3443950000,0,0 558 | 2018-11-27,24557.02,24820.33,24334.98,24748.73,3485220000,0,0 559 | 2018-11-28,24832.84,25416.75,24716.11,25366.43,3951670000,0,0 560 | 2018-11-29,25343.65,25548.77,25103.32,25338.84,3560770000,0,0 561 | 2018-11-30,25307.14,25627.04,25109.28,25538.46,4658580000,0,0 562 | 2018-12-03,25779.57,26122.91,25588.87,25826.43,4186060000,0,0 563 | 2018-12-04,25752.56,25876.26,24957.02,25027.07,4499840000,0,0 564 | 2018-12-06,24737.42,25001.74,24196.53,24947.67,5141470000,0,0 565 | 2018-12-07,24918.82,25150.03,24271.1,24388.95,4216690000,0,0 566 | 2018-12-10,24360.95,24572.97,23840.74,24423.26,4151030000,0,0 567 | 2018-12-11,24719.91,24910.65,24199.1,24370.24,3905870000,0,0 568 | 2018-12-12,24509.09,24889.46,24447.64,24527.27,3958890000,0,0 569 | 2018-12-13,24575.86,24801.04,24395.83,24597.38,3927720000,0,0 570 | 2018-12-14,24408.04,24534.8,23945.84,24100.51,4035020000,0,0 571 | 2018-12-17,23986.83,24180.35,23443.67,23592.98,4616350000,0,0 572 | 2018-12-18,23769.13,24058.03,23467.03,23675.64,4470880000,0,0 573 | 2018-12-19,23693.33,24107.49,23144.65,23323.66,5127940000,0,0 574 | 2018-12-20,23224.12,23417.32,22617.53,22859.6,5585780000,0,0 575 | 2018-12-21,22871.74,23285.76,22356.62,22445.37,7609010000,0,0 576 | 2018-12-24,22317.28,22438.76,21751.59,21792.2,2613930000,0,0 577 | 2018-12-26,21857.73,22887.06,21668.53,22878.45,4233990000,0,0 578 | 2018-12-27,22629.06,23144.72,22233.45,23138.82,4096610000,0,0 579 | 2018-12-28,23213.61,23426.17,22928.18,23062.4,3702620000,0,0 580 | 2018-12-31,23153.94,23441.81,23068.03,23327.46,3442870000,0,0 581 | 2019-01-02,23058.61,23454.76,22818.94,23346.24,3733160000,0,0 582 | 2019-01-03,23176.39,23199.44,22599.5,22686.22,3822860000,0,0 583 | 2019-01-04,22894.92,23551.32,22894.92,23433.16,4213410000,0,0 584 | 2019-01-07,23474.26,23725.87,23252.97,23531.35,4104710000,0,0 585 | 2019-01-08,23680.32,23985.71,23510.7,23787.45,4083030000,0,0 586 | 2019-01-09,23844.27,24084.71,23703.16,23879.12,4052480000,0,0 587 | 2019-01-10,23811.11,24068.07,23612.95,24001.92,3704500000,0,0 588 | 2019-01-11,23940.01,24069.89,23727.85,23995.95,3434490000,0,0 589 | 2019-01-14,23880.53,24039.28,23691.13,23909.84,3664450000,0,0 590 | 2019-01-15,23914.11,24187.2,23732.59,24065.59,3572330000,0,0 591 | 2019-01-16,24139.91,24393.21,24016.5,24207.16,3863770000,0,0 592 | 2019-01-17,24147.09,24508.22,23986.12,24370.1,3772270000,0,0 593 | 2019-01-18,24534.19,24805.89,24381.9,24706.35,3986730000,0,0 594 | 2019-01-22,24607.76,24701.33,24206.15,24404.48,3908030000,0,0 595 | 2019-01-23,24577.25,24779.79,24283.82,24575.62,3335610000,0,0 596 | 2019-01-24,24579.96,24741.03,24328.74,24553.24,3433250000,0,0 597 | 2019-01-25,24687.21,24948.58,24546.63,24737.2,3814080000,0,0 598 | 2019-01-28,24596.98,24606.17,24260.09,24528.22,3612810000,0,0 599 | 2019-01-29,24519.62,24779.0,24398.34,24579.96,3504200000,0,0 600 | 2019-01-30,24826.52,25201.63,24625.52,25014.86,3867810000,0,0 601 | 2019-01-31,24954.48,25198.18,24704.11,24999.67,4917650000,0,0 602 | 2019-02-01,25025.31,25301.04,24860.06,25063.89,3759270000,0,0 603 | 2019-02-04,25062.12,25283.78,24865.5,25239.37,3359840000,0,0 604 | 2019-02-05,25287.93,25540.9,25191.73,25411.52,3560430000,0,0 605 | 2019-02-06,25371.57,25552.83,25208.12,25390.3,3472690000,0,0 606 | 2019-02-07,25265.81,25359.93,24954.21,25169.53,4099490000,0,0 607 | 2019-02-08,25042.36,25197.94,24812.09,25106.33,3622330000,0,0 608 | 2019-02-11,25142.81,25272.15,24956.55,25053.11,3361970000,0,0 609 | 2019-02-12,25152.03,25507.52,25134.88,25425.76,3827770000,0,0 610 | 2019-02-13,25480.86,25708.58,25403.96,25543.27,3670770000,0,0 611 | 2019-02-14,25460.65,25607.2,25243.44,25439.39,3836700000,0,0 612 | 2019-02-15,25564.63,25932.28,25563.14,25883.25,3641370000,0,0 613 | 2019-02-19,25849.85,26030.15,25729.7,25891.32,3533710000,0,0 614 | 2019-02-20,25872.26,26070.59,25758.8,25954.44,3835450000,0,0 615 | 2019-02-21,25922.41,26053.37,25683.15,25850.63,3559710000,0,0 616 | 2019-02-22,25906.27,26123.25,25829.44,26031.81,3427810000,0,0 617 | 2019-02-25,26126.15,26335.65,26022.66,26091.95,3804380000,0,0 618 | 2019-02-26,26051.61,26208.21,25872.5,26057.98,3645680000,0,0 619 | 2019-02-27,25995.6,26172.47,25787.81,25985.16,3767130000,0,0 620 | 2019-02-28,25984.28,26136.74,25773.67,25916.0,4396930000,0,0 621 | 2019-03-01,26019.67,26259.43,25858.53,26026.32,3972280000,0,0 622 | 2019-03-04,26122.19,26248.01,25579.48,25819.65,3919810000,0,0 623 | 2019-03-05,25829.07,25968.31,25648.3,25806.63,3585690000,0,0 624 | 2019-03-06,25818.76,25930.88,25573.65,25673.46,3786600000,0,0 625 | 2019-03-07,25645.45,25688.07,25295.81,25473.23,3904860000,0,0 626 | 2019-03-08,25347.38,25539.17,25117.42,25450.24,3423130000,0,0 627 | 2019-03-11,25208.0,25739.94,25121.6,25650.88,3749030000,0,0 628 | 2019-03-12,25600.3,25804.46,25391.42,25554.66,3414230000,0,0 629 | 2019-03-13,25637.23,25858.33,25459.26,25702.89,3766150000,0,0 630 | 2019-03-14,25692.31,25852.29,25565.42,25709.94,3469730000,0,0 631 | 2019-03-15,25720.96,26025.77,25564.37,25848.87,5962730000,0,0 632 | 2019-03-18,25801.88,26007.67,25672.51,25914.1,3552190000,0,0 633 | 2019-03-19,25987.87,26189.97,25772.86,25887.38,3620220000,0,0 634 | 2019-03-20,25867.79,26048.23,25572.39,25745.67,3771200000,0,0 635 | 2019-03-21,25688.44,26081.07,25599.01,25962.51,3546800000,0,0 636 | 2019-03-22,25844.65,25967.73,25402.54,25502.32,4237200000,0,0 637 | 2019-03-25,25490.72,25698.44,25262.15,25516.83,3376580000,0,0 638 | 2019-03-26,25649.56,25899.01,25460.34,25657.73,3266050000,0,0 639 | 2019-03-27,25676.34,25846.26,25400.07,25625.59,3372930000,0,0 640 | 2019-03-28,25693.32,25822.53,25535.03,25717.46,3158170000,0,0 641 | 2019-03-29,25827.31,26018.21,25686.65,25928.68,3740700000,0,0 642 | 2019-04-01,26075.1,26383.92,25948.75,26258.42,3500760000,0,0 643 | 2019-04-02,26213.55,26350.28,26023.99,26179.13,3246900000,0,0 644 | 2019-04-03,26238.03,26398.3,26052.27,26218.13,3550240000,0,0 645 | 2019-04-04,26213.42,26508.07,26103.34,26384.63,3015180000,0,0 646 | 2019-04-05,26427.56,26583.18,26288.97,26424.99,3146820000,0,0 647 | 2019-04-08,26312.67,26447.94,26129.69,26341.02,3054030000,0,0 648 | 2019-04-09,26243.54,26314.54,26012.56,26150.58,3007980000,0,0 649 | 2019-04-10,26173.71,26298.94,25993.17,26157.16,3062380000,0,0 650 | 2019-04-11,26188.21,26349.02,25942.03,26143.05,2938540000,0,0 651 | 2019-04-12,26357.79,26607.09,26123.42,26412.3,3688490000,0,0 652 | 2019-04-15,26407.76,26548.59,26207.55,26384.77,3088330000,0,0 653 | 2019-04-16,26482.19,26727.74,26226.37,26452.66,3402210000,0,0 654 | 2019-04-17,26468.53,26728.18,26183.13,26449.54,3602300000,0,0 655 | 2019-04-18,26463.37,26737.91,26322.13,26559.54,3506850000,0,0 656 | 2019-04-22,26510.77,26670.17,26336.76,26511.05,2997950000,0,0 657 | 2019-04-23,26513.83,26786.37,26389.92,26656.39,3635030000,0,0 658 | 2019-04-24,26652.56,26822.76,26437.46,26597.05,3448960000,0,0 659 | 2019-04-25,26426.37,26684.81,26179.91,26462.08,3425280000,0,0 660 | 2019-04-26,26454.62,26647.91,26254.29,26543.33,3248500000,0,0 661 | 2019-04-29,26559.87,26745.17,26380.94,26554.39,3118780000,0,0 662 | 2019-04-30,26594.56,26779.49,26312.06,26592.91,3919330000,0,0 663 | 2019-05-01,26639.06,26828.32,26364.69,26430.14,3645850000,0,0 664 | 2019-05-02,26407.15,26550.15,26116.36,26307.79,3778890000,0,0 665 | 2019-05-03,26379.14,26624.82,26281.9,26504.95,3338120000,0,0 666 | 2019-05-06,26160.62,26508.37,25960.0,26438.48,3181520000,0,0 667 | 2019-05-07,26276.9,26276.9,25764.84,25965.09,3767100000,0,0 668 | 2019-05-08,25933.79,26181.57,25787.36,25967.33,3485790000,0,0 669 | 2019-05-09,25878.85,25884.89,25517.39,25828.36,3638820000,0,0 670 | 2019-05-10,25763.72,26032.4,25430.01,25942.37,3529600000,0,0 671 | 2019-05-13,25568.06,25620.15,25164.7,25324.99,3894030000,0,0 672 | 2019-05-14,25384.03,25755.21,25301.86,25532.05,3322720000,0,0 673 | 2019-05-15,25400.13,25776.1,25272.7,25648.02,3125950000,0,0 674 | 2019-05-16,25692.14,26086.62,25623.67,25862.68,3338060000,0,0 675 | 2019-05-17,25719.95,26000.39,25564.8,25764.0,3257950000,0,0 676 | 2019-05-20,25655.31,25842.77,25480.64,25679.9,3288870000,0,0 677 | 2019-05-21,25782.34,25995.67,25660.29,25877.33,3218700000,0,0 678 | 2019-05-22,25818.46,25878.21,25755.11,25776.61,3192510000,0,0 679 | 2019-05-23,25657.99,25657.99,25328.09,25490.47,3891980000,0,0 680 | 2019-05-24,25551.07,25776.24,25429.4,25585.69,2887390000,0,0 681 | 2019-05-28,25616.55,25717.63,25342.28,25347.77,4121410000,0,0 682 | 2019-05-29,25231.46,25231.46,24938.24,25126.41,3700050000,0,0 683 | 2019-05-30,25139.94,25218.54,25066.75,25169.88,3273790000,0,0 684 | 2019-05-31,25046.31,25046.31,24809.51,24815.04,3981020000,0,0 685 | 2019-06-03,24830.2,24935.21,24680.57,24819.78,3943810000,0,0 686 | 2019-06-04,24962.82,25343.77,24962.82,25332.18,3810430000,0,0 687 | 2019-06-05,25451.0,25544.66,25373.58,25539.57,3548830000,0,0 688 | 2019-06-06,25567.45,25800.3,25518.05,25720.66,3396410000,0,0 689 | 2019-06-07,25768.72,26072.75,25768.72,25983.94,3220250000,0,0 690 | 2019-06-10,26090.22,26210.61,26054.31,26062.68,3209210000,0,0 691 | 2019-06-11,26180.59,26248.67,25998.87,26048.51,3548420000,0,0 692 | 2019-06-12,26040.3,26082.1,25958.66,26004.83,3034130000,0,0 693 | 2019-06-13,26036.94,26146.91,25995.71,26106.77,3069810000,0,0 694 | 2019-06-14,26076.36,26162.28,25988.09,26089.61,2922330000,0,0 695 | 2019-06-17,26108.5,26165.78,26049.8,26112.53,2810140000,0,0 696 | 2019-06-18,26228.9,26527.19,26227.8,26465.54,3437620000,0,0 697 | 2019-06-19,26490.16,26569.75,26415.05,26504.0,3287890000,0,0 698 | 2019-06-20,26665.38,26798.63,26539.69,26753.17,3905940000,0,0 699 | 2019-06-21,26749.12,26907.37,26705.87,26719.13,5000120000,0,0 700 | 2019-06-24,26727.61,26806.52,26723.37,26727.54,3136250000,0,0 701 | 2019-06-25,26731.61,26752.31,26527.66,26548.22,3578050000,0,0 702 | 2019-06-26,26599.42,26660.04,26536.33,26536.82,3478130000,0,0 703 | 2019-06-27,26523.72,26607.24,26465.32,26526.58,3122920000,0,0 704 | 2019-06-28,26605.93,26638.35,26522.27,26599.96,5420700000,0,0 705 | 2019-07-01,26805.86,26890.64,26616.21,26717.43,3513270000,0,0 706 | 2019-07-02,26719.53,26787.56,26632.65,26786.68,3206840000,0,0 707 | 2019-07-03,26832.32,26966.0,26831.44,26966.0,1963720000,0,0 708 | 2019-07-05,26867.75,26950.81,26733.33,26922.12,2434210000,0,0 709 | 2019-07-08,26835.64,26839.14,26744.87,26806.14,2904550000,0,0 710 | 2019-07-09,26725.12,26807.7,26665.57,26783.49,3028210000,0,0 711 | 2019-07-10,26851.96,26983.45,26813.11,26860.2,3154240000,0,0 712 | 2019-07-11,26950.16,27088.45,26916.32,27088.08,3154620000,0,0 713 | 2019-07-12,27139.49,27333.79,27135.45,27332.03,2974960000,0,0 714 | 2019-07-15,27364.69,27364.69,27294.17,27359.16,2874970000,0,0 715 | 2019-07-16,27349.32,27398.68,27290.24,27335.63,3290650000,0,0 716 | 2019-07-17,27320.91,27343.06,27218.38,27219.85,3181600000,0,0 717 | 2019-07-18,27191.98,27266.81,27068.79,27222.97,3296580000,0,0 718 | 2019-07-19,27246.38,27342.96,27145.78,27154.2,3260360000,0,0 719 | 2019-07-22,27174.18,27227.77,27088.9,27171.9,3003720000,0,0 720 | 2019-07-23,27231.86,27368.81,27204.58,27349.19,3313660000,0,0 721 | 2019-07-24,27262.24,27291.04,27191.12,27269.97,3428980000,0,0 722 | 2019-07-25,27247.39,27298.43,27062.48,27140.98,3645270000,0,0 723 | 2019-07-26,27166.0,27213.7,27123.25,27192.45,3257590000,0,0 724 | 2019-07-29,27192.24,27275.85,27178.06,27221.35,3203710000,0,0 725 | 2019-07-30,27145.39,27224.36,27069.86,27198.02,3634330000,0,0 726 | 2019-07-31,27244.67,27281.65,26719.6,26864.27,4623430000,0,0 727 | 2019-08-01,26879.86,27175.59,26548.71,26583.42,4762300000,0,0 728 | 2019-08-02,26528.66,26570.02,26249.22,26485.01,3874660000,0,0 729 | 2019-08-05,26259.23,26259.23,25523.38,25717.74,4513730000,0,0 730 | 2019-08-06,25810.62,26038.68,25710.87,26029.52,4154240000,0,0 731 | 2019-08-07,25814.22,26073.21,25440.39,26007.07,4491750000,0,0 732 | 2019-08-08,26086.52,26383.61,26038.1,26378.19,4106370000,0,0 733 | 2019-08-09,26337.09,26413.36,26097.64,26287.44,3350640000,0,0 734 | 2019-08-12,26169.91,26178.95,25824.94,25896.44,2851630000,0,0 735 | 2019-08-13,25888.88,26426.97,25833.25,26279.91,3853600000,0,0 736 | 2019-08-14,26035.08,26035.08,25471.59,25479.42,4312530000,0,0 737 | 2019-08-15,25514.25,25639.69,25339.6,25579.39,4038000000,0,0 738 | 2019-08-16,25678.17,25929.65,25678.17,25886.01,3498150000,0,0 739 | 2019-08-19,26020.06,26222.32,26020.06,26135.79,3212880000,0,0 740 | 2019-08-20,26086.86,26160.12,25952.0,25962.44,3066300000,0,0 741 | 2019-08-21,26145.36,26268.32,26141.77,26202.73,3011190000,0,0 742 | 2019-08-22,26271.64,26388.78,26099.01,26252.24,2890880000,0,0 743 | 2019-08-23,26134.21,26320.29,25507.18,25628.9,3937300000,0,0 744 | 2019-08-26,25826.05,25941.25,25716.39,25898.83,2857600000,0,0 745 | 2019-08-27,26014.46,26054.02,25721.85,25777.9,3533630000,0,0 746 | 2019-08-28,25712.99,26041.57,25637.43,26036.1,3097420000,0,0 747 | 2019-08-29,26249.09,26408.84,26185.71,26362.25,3176190000,0,0 748 | 2019-08-30,26476.39,26514.62,26295.59,26403.28,3008450000,0,0 749 | 2019-09-03,26198.26,26198.26,25978.22,26118.02,3426790000,0,0 750 | 2019-09-04,26301.99,26362.35,26244.44,26355.47,3163260000,0,0 751 | 2019-09-05,26603.15,26836.3,26603.15,26728.15,3890700000,0,0 752 | 2019-09-06,26790.25,26860.87,26708.39,26797.46,3208280000,0,0 753 | 2019-09-09,26866.23,26900.83,26762.18,26835.51,4002890000,0,0 754 | 2019-09-10,26805.83,26909.43,26717.05,26909.43,4390770000,0,0 755 | 2019-09-11,26928.05,27137.04,26885.48,27137.04,3927550000,0,0 756 | 2019-09-12,27197.32,27306.73,27105.01,27182.45,3791860000,0,0 757 | 2019-09-13,27216.67,27277.55,27193.95,27219.52,3520060000,0,0 758 | 2019-09-16,27146.06,27172.87,27032.56,27076.82,4274640000,0,0 759 | 2019-09-17,27010.12,27110.8,26984.14,27110.8,3671840000,0,0 760 | 2019-09-18,27075.39,27161.93,26899.15,27147.08,3435540000,0,0 761 | 2019-09-19,27186.05,27272.17,27064.21,27094.79,3251290000,0,0 762 | 2019-09-20,27102.18,27194.75,26926.68,26935.07,6094740000,0,0 763 | 2019-09-23,26851.45,27011.07,26831.34,26949.99,3186590000,0,0 764 | 2019-09-24,27034.07,27079.68,26704.96,26807.77,3868160000,0,0 765 | 2019-09-25,26866.71,27016.56,26755.86,26970.71,3318870000,0,0 766 | 2019-09-26,27004.11,27015.07,26803.84,26891.12,3077240000,0,0 767 | 2019-09-27,26987.26,27012.54,26715.82,26820.25,3243650000,0,0 768 | 2019-09-30,26852.33,26998.86,26852.33,26916.83,3247610000,0,0 769 | 2019-10-01,26962.54,27046.21,26562.22,26573.04,3558040000,0,0 770 | 2019-10-02,26425.86,26438.04,25974.12,26078.62,3912520000,0,0 771 | 2019-10-03,26039.02,26205.2,25743.46,26201.04,3503640000,0,0 772 | 2019-10-04,26271.7,26590.74,26271.7,26573.72,2990830000,0,0 773 | 2019-10-07,26502.33,26655.84,26424.54,26478.02,2940140000,0,0 774 | 2019-10-08,26276.59,26421.81,26139.8,26164.04,3356450000,0,0 775 | 2019-10-09,26308.23,26424.31,26249.75,26346.01,2726820000,0,0 776 | 2019-10-10,26317.35,26603.31,26314.51,26496.67,3217250000,0,0 777 | 2019-10-11,26694.2,27013.97,26694.2,26816.59,3580460000,0,0 778 | 2019-10-14,26766.43,26874.33,26749.18,26787.36,2557020000,0,0 779 | 2019-10-15,26811.2,27120.11,26811.2,27024.8,3340740000,0,0 780 | 2019-10-16,26972.31,27058.34,26943.29,27001.98,3222570000,0,0 781 | 2019-10-17,27032.38,27112.16,26970.29,27025.88,3115960000,0,0 782 | 2019-10-18,27004.49,27018.25,26770.13,26770.2,3264290000,0,0 783 | 2019-10-21,26852.67,26852.67,26747.62,26827.64,3271620000,0,0 784 | 2019-10-22,26850.43,26946.64,26782.61,26788.1,3523890000,0,0 785 | 2019-10-23,26835.24,26896.89,26745.0,26833.95,3392870000,0,0 786 | 2019-10-24,26893.93,26931.78,26714.34,26805.53,3692600000,0,0 787 | 2019-10-25,26789.61,27015.37,26765.68,26958.06,3370370000,0,0 788 | 2019-10-28,27040.33,27167.88,27028.71,27090.72,3521230000,0,0 789 | 2019-10-29,27061.07,27165.94,27039.76,27071.46,3589930000,0,0 790 | 2019-10-30,27110.71,27204.36,26999.64,27186.69,3776030000,0,0 791 | 2019-10-31,27188.37,27188.37,26918.29,27046.23,4139280000,0,0 792 | 2019-11-01,27142.95,27347.43,27142.95,27347.36,3930200000,0,0 793 | 2019-11-04,27402.06,27517.58,27402.06,27462.11,4146850000,0,0 794 | 2019-11-05,27500.23,27560.36,27453.55,27492.63,4486130000,0,0 795 | 2019-11-06,27502.74,27526.05,27407.81,27492.56,4458190000,0,0 796 | 2019-11-07,27590.16,27774.67,27590.16,27674.8,4144640000,0,0 797 | 2019-11-08,27686.2,27694.95,27578.97,27681.24,3499150000,0,0 798 | 2019-11-11,27580.66,27714.39,27517.67,27691.49,3035530000,0,0 799 | 2019-11-12,27701.59,27770.86,27635.32,27691.49,3466010000,0,0 800 | 2019-11-13,27622.04,27806.4,27587.2,27783.59,3509280000,0,0 801 | 2019-11-14,27757.2,27800.71,27676.97,27781.96,3276070000,0,0 802 | 2019-11-15,27843.54,28004.89,27843.54,28004.89,3335650000,0,0 803 | 2019-11-18,27993.22,28040.97,27969.24,28036.22,3436690000,0,0 804 | 2019-11-19,28079.76,28090.21,27894.52,27934.02,3590070000,0,0 805 | 2019-11-20,27879.55,27897.28,27675.28,27821.09,4034890000,0,0 806 | 2019-11-21,27820.28,27828.33,27708.34,27766.29,3720560000,0,0 807 | 2019-11-22,27831.23,27898.46,27773.98,27875.62,3226780000,0,0 808 | 2019-11-25,27917.77,28068.69,27917.77,28066.47,3511530000,0,0 809 | 2019-11-26,28080.75,28146.02,28042.21,28121.68,4595590000,0,0 810 | 2019-11-27,28156.47,28174.97,28075.23,28164.0,3033090000,0,0 811 | 2019-11-29,28103.16,28119.51,28042.53,28051.41,1743020000,0,0 812 | 2019-12-02,28109.74,28109.84,27782.35,27783.04,3268740000,0,0 813 | 2019-12-03,27501.98,27524.74,27325.13,27502.81,3653390000,0,0 814 | 2019-12-04,27634.63,27727.45,27612.08,27649.78,3695030000,0,0 815 | 2019-12-05,27736.05,27745.2,27562.8,27677.79,3355750000,0,0 816 | 2019-12-06,27839.68,28035.85,27839.68,28015.06,3479480000,0,0 817 | 2019-12-09,27987.05,28010.42,27906.14,27909.6,3345990000,0,0 818 | 2019-12-10,27900.65,27949.02,27804.0,27881.72,3343790000,0,0 819 | 2019-12-11,27867.31,27925.5,27801.8,27911.3,3252540000,0,0 820 | 2019-12-12,27898.34,28224.95,27859.87,28132.05,3990690000,0,0 821 | 2019-12-13,28123.64,28290.73,28028.32,28135.38,3736870000,0,0 822 | 2019-12-16,28191.67,28337.49,28191.67,28235.89,4051790000,0,0 823 | 2019-12-17,28221.75,28328.63,28220.56,28267.16,3837540000,0,0 824 | 2019-12-18,28291.44,28323.25,28239.28,28239.28,4014080000,0,0 825 | 2019-12-19,28278.31,28381.48,28278.24,28376.96,3720450000,0,0 826 | 2019-12-20,28608.64,28608.64,28445.6,28455.09,6454270000,0,0 827 | 2019-12-23,28491.78,28582.49,28491.78,28551.53,3060610000,0,0 828 | 2019-12-24,28572.57,28576.8,28503.21,28515.45,1296540000,0,0 829 | 2019-12-26,28539.46,28624.1,28535.15,28621.39,2160680000,0,0 830 | 2019-12-27,28675.34,28701.66,28608.98,28645.26,2428670000,0,0 831 | 2019-12-30,28654.76,28664.69,28428.98,28462.14,3013290000,0,0 832 | 2019-12-31,28414.64,28547.35,28376.49,28538.44,2893810000,0,0 833 | 2020-01-02,28638.97,28872.8,28627.77,28868.8,3458250000,0,0 834 | 2020-01-03,28553.33,28716.31,28500.36,28634.88,3461290000,0,0 835 | 2020-01-06,28465.5,28708.02,28418.63,28703.38,3674070000,0,0 836 | 2020-01-07,28639.18,28685.5,28565.28,28583.68,3420380000,0,0 837 | 2020-01-08,28556.14,28866.18,28522.51,28745.09,3720890000,0,0 838 | 2020-01-09,28851.97,28988.01,28844.31,28956.9,3638390000,0,0 839 | 2020-01-10,28977.52,29009.07,28789.1,28823.77,3212970000,0,0 840 | 2020-01-13,28869.01,28909.91,28819.43,28907.05,3456380000,0,0 841 | 2020-01-14,28895.5,29054.16,28872.27,28939.67,3665130000,0,0 842 | 2020-01-15,28901.8,29127.59,28897.35,29030.22,3716840000,0,0 843 | 2020-01-16,29131.95,29300.32,29131.95,29297.64,3535080000,0,0 844 | 2020-01-17,29313.31,29373.62,29289.91,29348.1,3698170000,0,0 845 | 2020-01-21,29269.05,29341.21,29146.47,29196.04,4105340000,0,0 846 | 2020-01-22,29263.63,29320.2,29172.26,29186.27,3619850000,0,0 847 | 2020-01-23,29111.02,29190.47,28966.98,29160.09,3764860000,0,0 848 | 2020-01-24,29230.39,29288.79,28843.31,28989.73,3707130000,0,0 849 | 2020-01-27,28542.49,28671.79,28440.47,28535.8,3823100000,0,0 850 | 2020-01-28,28594.28,28823.23,28575.75,28722.85,3526720000,0,0 851 | 2020-01-29,28820.53,28944.24,28728.19,28734.45,3584500000,0,0 852 | 2020-01-30,28640.16,28879.71,28489.76,28859.44,3787250000,0,0 853 | 2020-01-31,28813.04,28813.04,28169.53,28256.03,4527830000,0,0 854 | 2020-02-03,28319.65,28630.39,28319.65,28399.81,3757910000,0,0 855 | 2020-02-04,28696.74,28904.88,28696.74,28807.63,3995320000,0,0 856 | 2020-02-05,29048.73,29308.89,29000.85,29290.85,4117730000,0,0 857 | 2020-02-06,29388.58,29408.05,29246.93,29379.77,3868370000,0,0 858 | 2020-02-07,29286.92,29286.92,29056.98,29102.51,3730650000,0,0 859 | 2020-02-10,28995.66,29278.07,28995.66,29276.82,3450350000,0,0 860 | 2020-02-11,29390.71,29415.39,29210.47,29276.34,3760550000,0,0 861 | 2020-02-12,29406.75,29568.57,29406.75,29551.42,3926380000,0,0 862 | 2020-02-13,29436.03,29535.4,29345.93,29423.31,3498240000,0,0 863 | 2020-02-14,29440.47,29463.04,29283.18,29398.08,3398040000,0,0 864 | 2020-02-18,29282.78,29330.16,29116.81,29232.19,3746720000,0,0 865 | 2020-02-19,29312.7,29409.09,29274.38,29348.03,3600150000,0,0 866 | 2020-02-20,29296.25,29368.45,28959.65,29219.98,4007320000,0,0 867 | 2020-02-21,29146.53,29146.53,28892.7,28992.41,3899270000,0,0 868 | 2020-02-24,28402.93,28402.93,27912.44,27960.8,4842960000,0,0 869 | 2020-02-25,28037.65,28149.2,26997.62,27081.36,5591510000,0,0 870 | 2020-02-26,27159.46,27542.78,26890.97,26957.59,5478110000,0,0 871 | 2020-02-27,26526.0,26775.31,25752.82,25766.64,66498130000,0,0 872 | 2020-02-28,25270.83,25494.24,24681.01,25409.36,8563850000,0,0 873 | 2020-03-02,25590.51,26706.17,25391.96,26703.32,6376400000,0,0 874 | 2020-03-03,26762.47,27084.59,25706.28,25917.41,6355940000,0,0 875 | 2020-03-04,26383.68,27102.34,26286.31,27090.86,5035480000,0,0 876 | 2020-03-05,26671.92,26671.92,25943.33,26121.28,5575550000,0,0 877 | 2020-03-06,25457.21,25994.38,25226.62,25864.78,6552140000,0,0 878 | 2020-03-09,24992.36,24992.36,23706.07,23851.02,8423050000,0,0 879 | 2020-03-10,24453.0,25020.99,23690.34,25018.16,7635960000,0,0 880 | 2020-03-11,24604.63,24604.63,23328.32,23553.22,7374110000,0,0 881 | 2020-03-12,22184.71,22837.95,21154.46,21200.62,8829380000,0,0 882 | 2020-03-13,21973.82,23189.76,21285.37,23185.62,8258670000,0,0 883 | 2020-03-16,20917.53,21768.28,20116.46,20188.52,7781540000,0,0 884 | 2020-03-17,20487.05,21379.35,19882.26,21237.38,8358500000,0,0 885 | 2020-03-18,20188.69,20489.33,18917.46,19898.92,8755780000,0,0 886 | 2020-03-19,19830.01,20442.63,19177.13,20087.19,7946710000,0,0 887 | 2020-03-20,20253.15,20531.26,19094.27,19173.98,9044690000,0,0 888 | 2020-03-23,19028.36,19121.01,18213.65,18591.93,7402180000,0,0 889 | 2020-03-24,19722.19,20737.7,19649.25,20704.91,7547350000,0,0 890 | 2020-03-25,21050.34,22019.93,20538.34,21200.55,8285670000,0,0 891 | 2020-03-26,21468.38,22595.06,21427.1,22552.17,7753160000,0,0 892 | 2020-03-27,21898.47,22327.57,21469.27,21636.78,6194330000,0,0 893 | 2020-03-30,21678.22,22378.09,21522.08,22327.48,5746220000,0,0 894 | 2020-03-31,22208.42,22480.37,21852.08,21917.16,6568290000,0,0 895 | 2020-04-01,21227.38,21487.24,20784.43,20943.51,5947900000,0,0 896 | 2020-04-02,20819.46,21477.77,20735.02,21413.44,6454990000,0,0 897 | 2020-04-03,21285.93,21447.81,20863.09,21052.53,6087190000,0,0 898 | 2020-04-06,21693.63,22783.45,21693.63,22679.99,6391860000,0,0 899 | 2020-04-07,23537.44,23617.24,22634.45,22653.86,7040720000,0,0 900 | 2020-04-08,22893.47,23513.4,22682.99,23433.57,5856370000,0,0 901 | 2020-04-09,23690.66,24008.99,23504.09,23719.37,7880140000,0,0 902 | 2020-04-13,23698.93,23698.93,23095.35,23390.77,5274310000,0,0 903 | 2020-04-14,23690.57,24040.58,23683.44,23949.76,5567400000,0,0 904 | 2020-04-15,23600.72,23649.72,23233.32,23504.35,5203390000,0,0 905 | 2020-04-16,23543.66,23598.08,23211.38,23537.68,5179990000,0,0 906 | 2020-04-17,23817.15,24264.21,23817.15,24242.49,5792140000,0,0 907 | 2020-04-20,24095.1,24108.69,23627.19,23650.44,5220160000,0,0 908 | 2020-04-21,23365.25,23365.25,22941.88,23018.88,5075830000,0,0 909 | 2020-04-22,23437.34,23613.1,23339.6,23475.82,5049660000,0,0 910 | 2020-04-23,23543.09,23885.36,23483.35,23515.26,5756520000,0,0 911 | 2020-04-24,23628.24,23826.0,23417.68,23775.27,5374480000,0,0 912 | 2020-04-27,23866.15,24207.65,23840.61,24133.78,5194260000,0,0 913 | 2020-04-28,24357.17,24512.24,24031.2,24101.55,5672880000,0,0 914 | 2020-04-29,24490.37,24764.77,24453.99,24633.86,6620140000,0,0 915 | 2020-04-30,24585.57,24585.57,24186.9,24345.72,6523120000,0,0 916 | 2020-05-01,24120.78,24120.78,23645.3,23723.69,4753160000,0,0 917 | 2020-05-04,23581.55,23769.56,23361.16,23749.76,4723140000,0,0 918 | 2020-05-05,23958.88,24169.72,23868.91,23883.09,5129590000,0,0 919 | 2020-05-06,23978.88,24054.59,23661.14,23664.64,4861920000,0,0 920 | 2020-05-07,23837.21,24094.62,23834.39,23875.89,5164640000,0,0 921 | 2020-05-08,24107.82,24349.9,24107.05,24331.32,4857160000,0,0 922 | 2020-05-11,24256.45,24366.21,24070.22,24221.99,4807320000,0,0 923 | 2020-05-12,24292.84,24382.09,23761.58,23764.78,5107710000,0,0 924 | 2020-05-13,23702.16,23708.9,23067.64,23247.97,6143130000,0,0 925 | 2020-05-14,23049.06,23630.86,22789.62,23625.34,5641920000,0,0 926 | 2020-05-15,23454.83,23730.08,23354.15,23685.42,5477040000,0,0 927 | 2020-05-18,24059.98,24708.54,24059.98,24597.37,6364290000,0,0 928 | 2020-05-19,24577.48,24599.5,24202.96,24206.86,4969330000,0,0 929 | 2020-05-20,24455.94,24649.48,24455.94,24575.9,4992970000,0,0 930 | 2020-05-21,24564.27,24718.46,24370.88,24474.12,4966940000,0,0 931 | 2020-05-22,24461.98,24481.64,24294.07,24465.16,3952800000,0,0 932 | 2020-05-26,24781.84,25176.42,24781.84,24995.11,5837060000,0,0 933 | 2020-05-27,25298.63,25551.56,25009.87,25548.27,6371230000,0,0 934 | 2020-05-28,25697.36,25758.79,25358.73,25400.64,5402670000,0,0 935 | 2020-05-29,25324.15,25482.8,25031.67,25383.11,7275080000,0,0 936 | 2020-06-01,25342.99,25508.83,25220.66,25475.02,4673410000,0,0 937 | 2020-06-02,25582.52,25743.13,25523.74,25742.65,5187230000,0,0 938 | 2020-06-03,25906.88,26337.75,25906.88,26269.89,5989560000,0,0 939 | 2020-06-04,26226.49,26384.1,26082.31,26281.82,6428130000,0,0 940 | 2020-06-05,26836.8,27338.3,26836.8,27110.98,8617590000,0,0 941 | 2020-06-08,27232.93,27580.21,27232.48,27572.44,8437380000,0,0 942 | 2020-06-09,27447.37,27447.37,27151.06,27272.3,6382620000,0,0 943 | 2020-06-10,27251.89,27355.22,26938.05,26989.99,6570840000,0,0 944 | 2020-06-11,26282.51,26294.08,25082.72,25128.17,7018890000,0,0 945 | 2020-06-12,25659.42,25965.55,25078.41,25605.54,5832250000,0,0 946 | 2020-06-15,25270.39,25891.58,24843.18,25763.16,5740660000,0,0 947 | 2020-06-16,26326.68,26611.03,25811.7,26289.98,5829240000,0,0 948 | 2020-06-17,26330.52,26400.07,26068.41,26119.61,4549390000,0,0 949 | 2020-06-18,26016.45,26154.2,25848.53,26080.1,4429030000,0,0 950 | 2020-06-19,26213.1,26451.44,25759.66,25871.46,8327780000,0,0 951 | 2020-06-22,25865.08,26059.81,25667.68,26024.96,4665380000,0,0 952 | 2020-06-23,26159.39,26314.97,26105.97,26156.1,4704830000,0,0 953 | 2020-06-24,25992.96,25992.96,25296.73,25445.94,5587200000,0,0 954 | 2020-06-25,25365.22,25769.61,25209.79,25745.6,4815420000,0,0 955 | 2020-06-26,25641.69,25641.69,24971.03,25015.55,8098120000,0,0 956 | 2020-06-29,25152.45,25601.15,25096.16,25595.8,4462770000,0,0 957 | 2020-06-30,25512.43,25905.38,25475.14,25812.88,4696280000,0,0 958 | 2020-07-01,25879.38,26019.31,25713.61,25734.97,4443130000,0,0 959 | 2020-07-02,25936.45,26204.41,25778.12,25827.36,4190830000,0,0 960 | 2020-07-06,25996.08,26297.53,25996.08,26287.03,4736450000,0,0 961 | 2020-07-07,26172.01,26174.93,25866.58,25890.18,4563700000,0,0 962 | 2020-07-08,25950.06,26109.49,25816.25,26067.28,4927700000,0,0 963 | 2020-07-09,26094.92,26103.28,25523.51,25706.09,4829020000,0,0 964 | 2020-07-10,25690.35,26101.32,25637.5,26075.3,4515340000,0,0 965 | 2020-07-13,26225.07,26639.09,26044.23,26085.8,4890780000,0,0 966 | 2020-07-14,26044.17,26690.52,25994.98,26642.59,4476170000,0,0 967 | 2020-07-15,27009.81,27071.33,26692.48,26870.1,4669760000,0,0 968 | 2020-07-16,26746.57,26879.16,26590.01,26734.71,3961230000,0,0 969 | 2020-07-17,26774.62,26808.43,26619.88,26671.95,3993830000,0,0 970 | 2020-07-20,26660.29,26765.02,26504.2,26680.87,3971200000,0,0 971 | 2020-07-21,26833.14,27025.38,26766.22,26840.4,4547960000,0,0 972 | 2020-07-22,26824.56,27035.24,26794.19,27005.84,4255190000,0,0 973 | 2020-07-23,26955.97,26973.85,26560.04,26652.33,4290460000,0,0 974 | 2020-07-24,26533.41,26625.7,26402.86,26469.89,3894900000,0,0 975 | 2020-07-27,26447.67,26625.46,26426.92,26584.77,3963910000,0,0 976 | 2020-07-28,26529.45,26556.84,26361.71,26379.28,4027890000,0,0 977 | 2020-07-29,26388.44,26602.45,26375.39,26539.57,4676300000,0,0 978 | 2020-07-30,26367.42,26374.93,25992.28,26313.65,4254010000,0,0 979 | 2020-07-31,26409.33,26440.02,26013.59,26428.32,5117260000,0,0 980 | 2020-08-03,26542.32,26707.26,26534.38,26664.4,4643640000,0,0 981 | 2020-08-04,26664.61,26832.72,26597.82,26828.47,4621670000,0,0 982 | 2020-08-05,26924.78,27221.67,26924.78,27201.52,4732220000,0,0 983 | 2020-08-06,27170.82,27394.1,27145.25,27386.98,4267490000,0,0 984 | 2020-08-07,27321.68,27456.24,27223.55,27433.48,4104860000,0,0 985 | 2020-08-10,27488.21,27803.86,27488.21,27791.44,4318570000,0,0 986 | 2020-08-11,27961.64,28154.88,27624.51,27686.91,5087650000,0,0 987 | 2020-08-12,27860.24,28043.89,27843.32,27976.84,3768560000,0,0 988 | 2020-08-13,27922.51,27986.1,27789.78,27896.72,3648810000,0,0 989 | 2020-08-14,27828.93,27977.81,27759.39,27931.02,3193400000,0,0 990 | 2020-08-17,27970.05,27999.81,27816.4,27844.91,3671290000,0,0 991 | 2020-08-18,27853.48,27891.12,27668.79,27778.07,3881310000,0,0 992 | 2020-08-19,27811.26,27920.42,27647.67,27692.88,3884480000,0,0 993 | 2020-08-20,27622.68,27781.46,27526.25,27739.73,3642850000,0,0 994 | 2020-08-21,27758.13,27959.48,27686.78,27930.33,3705420000,0,0 995 | 2020-08-24,28077.58,28314.94,28041.75,28308.46,3728690000,0,0 996 | 2020-08-25,28347.42,28400.74,28094.57,28248.44,3619300000,0,0 997 | 2020-08-26,28257.88,28353.8,28153.91,28331.92,3754360000,0,0 998 | 2020-08-27,28384.07,28634.22,28363.93,28492.27,3929560000,0,0 999 | 2020-08-28,28601.29,28733.35,28487.98,28653.87,3855880000,0,0 1000 | 2020-08-31,28643.66,28643.66,28363.55,28430.05,4342290000,0,0 1001 | --------------------------------------------------------------------------------