├── utils
├── __init__.py
├── README.md
└── logger.py
├── docs
├── assets
│ ├── igan.jpg
│ ├── higan.jpg
│ ├── teaser.jpg
│ ├── genforce.png
│ ├── mganprior.jpg
│ ├── pix2pix.jpg
│ ├── image2stylegan.jpg
│ ├── interfacegan.jpg
│ ├── teaser_video.gif
│ ├── teaser_diffusion.gif
│ ├── font.css
│ └── style.css
└── index.html
├── examples
├── 000001.png
├── 000002.png
├── 000003.png
├── 000004.png
├── 000005.png
├── 000006.png
├── 000007.png
├── 000008.png
├── 000009.png
├── 000010.png
├── 000011.png
├── 000012.png
├── 000013.png
├── 000014.png
├── 000015.png
├── 000016.png
├── 000017.png
├── target.list
├── context.list
└── test.list
├── .gitignore
├── boundaries
├── stylegan_ffhq256
│ ├── age.npy
│ ├── pose.npy
│ ├── gender.npy
│ ├── expression.npy
│ └── eyeglasses.npy
├── stylegan_bedroom256
│ ├── cloth.npy
│ ├── scary.npy
│ ├── wood.npy
│ ├── soothing.npy
│ ├── cluttered_space.npy
│ └── indoor_lighting.npy
└── stylegan_tower256
│ ├── clouds.npy
│ ├── sunny.npy
│ └── vegetation.npy
├── metrics
├── __init__.py
├── frechet_inception_distance.py
├── perceptual_path_length.py
├── metric_base.py
└── linear_separability.py
├── training
├── __init__.py
├── loss_encoder.py
├── misc.py
├── loss.py
├── training_loop_encoder.py
└── dataset.py
├── dnnlib
├── submission
│ ├── __init__.py
│ ├── _internal
│ │ └── run.py
│ ├── run_context.py
│ └── submit.py
├── tflib
│ ├── __init__.py
│ ├── autosummary.py
│ ├── tfutil.py
│ └── optimizer.py
└── __init__.py
├── config.py
├── LICENSE.txt
├── perceptual_model.py
├── pretrained_example.py
├── train_encoder.py
├── run_metrics.py
├── README.md
├── interpolate.py
├── mix_style.py
├── manipulate.py
├── invert.py
├── diffuse.py
└── generate_figures.py
/utils/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/docs/assets/igan.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/igan.jpg
--------------------------------------------------------------------------------
/examples/000001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000001.png
--------------------------------------------------------------------------------
/examples/000002.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000002.png
--------------------------------------------------------------------------------
/examples/000003.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000003.png
--------------------------------------------------------------------------------
/examples/000004.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000004.png
--------------------------------------------------------------------------------
/examples/000005.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000005.png
--------------------------------------------------------------------------------
/examples/000006.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000006.png
--------------------------------------------------------------------------------
/examples/000007.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000007.png
--------------------------------------------------------------------------------
/examples/000008.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000008.png
--------------------------------------------------------------------------------
/examples/000009.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000009.png
--------------------------------------------------------------------------------
/examples/000010.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000010.png
--------------------------------------------------------------------------------
/examples/000011.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000011.png
--------------------------------------------------------------------------------
/examples/000012.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000012.png
--------------------------------------------------------------------------------
/examples/000013.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000013.png
--------------------------------------------------------------------------------
/examples/000014.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000014.png
--------------------------------------------------------------------------------
/examples/000015.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000015.png
--------------------------------------------------------------------------------
/examples/000016.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000016.png
--------------------------------------------------------------------------------
/examples/000017.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/examples/000017.png
--------------------------------------------------------------------------------
/docs/assets/higan.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/higan.jpg
--------------------------------------------------------------------------------
/docs/assets/teaser.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/teaser.jpg
--------------------------------------------------------------------------------
/examples/target.list:
--------------------------------------------------------------------------------
1 | examples/000001.png
2 | examples/000005.png
3 | examples/000006.png
4 |
--------------------------------------------------------------------------------
/docs/assets/genforce.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/genforce.png
--------------------------------------------------------------------------------
/docs/assets/mganprior.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/mganprior.jpg
--------------------------------------------------------------------------------
/docs/assets/pix2pix.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/pix2pix.jpg
--------------------------------------------------------------------------------
/docs/assets/image2stylegan.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/image2stylegan.jpg
--------------------------------------------------------------------------------
/docs/assets/interfacegan.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/interfacegan.jpg
--------------------------------------------------------------------------------
/docs/assets/teaser_video.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/teaser_video.gif
--------------------------------------------------------------------------------
/docs/assets/teaser_diffusion.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/docs/assets/teaser_diffusion.gif
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__/
2 | *.py[cod]
3 |
4 | *.jpg
5 | *.png
6 | *.jpeg
7 | *.npy
8 | *.log
9 | /results/
10 |
--------------------------------------------------------------------------------
/boundaries/stylegan_ffhq256/age.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_ffhq256/age.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_ffhq256/pose.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_ffhq256/pose.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/cloth.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/cloth.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/scary.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/scary.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/wood.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/wood.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_ffhq256/gender.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_ffhq256/gender.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_tower256/clouds.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_tower256/clouds.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_tower256/sunny.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_tower256/sunny.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_ffhq256/expression.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_ffhq256/expression.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_ffhq256/eyeglasses.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_ffhq256/eyeglasses.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/soothing.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/soothing.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_tower256/vegetation.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_tower256/vegetation.npy
--------------------------------------------------------------------------------
/utils/README.md:
--------------------------------------------------------------------------------
1 | # Utility Functions
2 |
3 | Scripts under this folder are borrowed from [HiGAN](https://github.com/genforce/higan).
4 |
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/cluttered_space.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/cluttered_space.npy
--------------------------------------------------------------------------------
/boundaries/stylegan_bedroom256/indoor_lighting.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genforce/idinvert/HEAD/boundaries/stylegan_bedroom256/indoor_lighting.npy
--------------------------------------------------------------------------------
/examples/context.list:
--------------------------------------------------------------------------------
1 | examples/000001.png
2 | examples/000002.png
3 | examples/000003.png
4 | examples/000004.png
5 | examples/000005.png
6 | examples/000006.png
7 | examples/000007.png
8 | examples/000008.png
9 | examples/000009.png
10 | examples/000010.png
11 | examples/000011.png
12 |
--------------------------------------------------------------------------------
/metrics/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | # empty
9 |
--------------------------------------------------------------------------------
/training/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | # empty
9 |
--------------------------------------------------------------------------------
/examples/test.list:
--------------------------------------------------------------------------------
1 | examples/000001.png
2 | examples/000002.png
3 | examples/000003.png
4 | examples/000004.png
5 | examples/000005.png
6 | examples/000006.png
7 | examples/000007.png
8 | examples/000008.png
9 | examples/000009.png
10 | examples/000010.png
11 | examples/000011.png
12 | examples/000012.png
13 | examples/000013.png
14 | examples/000014.png
15 | examples/000015.png
16 | examples/000016.png
17 | examples/000017.png
18 |
--------------------------------------------------------------------------------
/dnnlib/submission/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | from . import run_context
9 | from . import submit
10 |
--------------------------------------------------------------------------------
/dnnlib/tflib/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | from . import autosummary
9 | from . import network
10 | from . import optimizer
11 | from . import tfutil
12 |
13 | from .tfutil import *
14 | from .network import Network
15 |
16 | from .optimizer import Optimizer
17 |
--------------------------------------------------------------------------------
/config.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Global configuration."""
9 |
10 | #----------------------------------------------------------------------------
11 | # Paths.
12 |
13 | result_dir = 'results'
14 | data_dir = 'datasets'
15 | cache_dir = 'cache'
16 | run_dir_ignore = ['results', 'datasets', 'cache']
17 |
18 | #----------------------------------------------------------------------------
19 |
--------------------------------------------------------------------------------
/dnnlib/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | from . import submission
9 |
10 | from .submission.run_context import RunContext
11 |
12 | from .submission.submit import SubmitTarget
13 | from .submission.submit import PathType
14 | from .submission.submit import SubmitConfig
15 | from .submission.submit import get_path_from_template
16 | from .submission.submit import submit_run
17 |
18 | from .util import EasyDict
19 |
20 | submit_config: SubmitConfig = None # Package level variable for SubmitConfig which is only valid when inside the run function.
21 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | Copyright (c) 2020 Yujun Shen
2 |
3 | Permission is hereby granted, free of charge, to any person obtaining a copy of
4 | this software and associated documentation files (the "Software"), to deal in
5 | the Software without restriction, including without limitation the rights to
6 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
7 | of the Software, and to permit persons to whom the Software is furnished to do
8 | so, subject to the following conditions:
9 |
10 | The above copyright notice and this permission notice shall be included in all
11 | copies or substantial portions of the Software.
12 |
13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
15 | FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
16 | COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
17 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
18 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
19 |
--------------------------------------------------------------------------------
/perceptual_model.py:
--------------------------------------------------------------------------------
1 | """Perceptual module for encoder training."""
2 |
3 | from keras.models import Model
4 | from keras.layers import Flatten, Concatenate
5 | from keras.applications.vgg16 import VGG16, preprocess_input
6 |
7 |
8 | class PerceptualModel(Model):
9 | """Defines the VGG16 model for perceptual loss."""
10 |
11 | def __init__(self, img_size, multi_layers=False):
12 | """Initializes with image size.
13 |
14 | Args:
15 | img_size: The image size prepared to feed to VGG16, default=256.
16 | multi_layers: Whether to use the multiple layers output of VGG16 or not.
17 | """
18 | super().__init__()
19 |
20 | vgg = VGG16(include_top=False, input_shape=(img_size[0], img_size[1], 3))
21 | if multi_layers:
22 | layer_ids = [2, 5, 9, 13, 17]
23 | layer_outputs = [
24 | Flatten()(vgg.layers[layer_id].output) for layer_id in layer_ids]
25 | features = Concatenate(axis=-1)(layer_outputs)
26 | else:
27 | layer_ids = [13] # 13 -> conv4_3
28 | features = [
29 | Flatten()(vgg.layers[layer_id].output) for layer_id in layer_ids]
30 |
31 | self._model = Model(inputs=vgg.input, outputs=features)
32 |
33 | def call(self, inputs, mask=None):
34 | return self._model(preprocess_input(inputs))
35 |
36 | def compute_output_shape(self, input_shape):
37 | return self._model.compute_output_shape(input_shape)
38 |
--------------------------------------------------------------------------------
/docs/assets/font.css:
--------------------------------------------------------------------------------
1 | /* Homepage Font */
2 |
3 | /* latin-ext */
4 | @font-face {
5 | font-family: 'Lato';
6 | font-style: normal;
7 | font-weight: 400;
8 | src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v16/S6uyw4BMUTPHjxAwXjeu.woff2) format('woff2');
9 | unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF;
10 | }
11 |
12 | /* latin */
13 | @font-face {
14 | font-family: 'Lato';
15 | font-style: normal;
16 | font-weight: 400;
17 | src: local('Lato Regular'), local('Lato-Regular'), url(https://fonts.gstatic.com/s/lato/v16/S6uyw4BMUTPHjx4wXg.woff2) format('woff2');
18 | unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
19 | }
20 |
21 | /* latin-ext */
22 | @font-face {
23 | font-family: 'Lato';
24 | font-style: normal;
25 | font-weight: 700;
26 | src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v16/S6u9w4BMUTPHh6UVSwaPGR_p.woff2) format('woff2');
27 | unicode-range: U+0100-024F, U+0259, U+1E00-1EFF, U+2020, U+20A0-20AB, U+20AD-20CF, U+2113, U+2C60-2C7F, U+A720-A7FF;
28 | }
29 |
30 | /* latin */
31 | @font-face {
32 | font-family: 'Lato';
33 | font-style: normal;
34 | font-weight: 700;
35 | src: local('Lato Bold'), local('Lato-Bold'), url(https://fonts.gstatic.com/s/lato/v16/S6u9w4BMUTPHh6UVSwiPGQ.woff2) format('woff2');
36 | unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
37 | }
38 |
--------------------------------------------------------------------------------
/dnnlib/submission/_internal/run.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Helper for launching run functions in computing clusters.
9 |
10 | During the submit process, this file is copied to the appropriate run dir.
11 | When the job is launched in the cluster, this module is the first thing that
12 | is run inside the docker container.
13 | """
14 |
15 | import os
16 | import pickle
17 | import sys
18 |
19 | # PYTHONPATH should have been set so that the run_dir/src is in it
20 | import dnnlib
21 |
22 | def main():
23 | if not len(sys.argv) >= 4:
24 | raise RuntimeError("This script needs three arguments: run_dir, task_name and host_name!")
25 |
26 | run_dir = str(sys.argv[1])
27 | task_name = str(sys.argv[2])
28 | host_name = str(sys.argv[3])
29 |
30 | submit_config_path = os.path.join(run_dir, "submit_config.pkl")
31 |
32 | # SubmitConfig should have been pickled to the run dir
33 | if not os.path.exists(submit_config_path):
34 | raise RuntimeError("SubmitConfig pickle file does not exist!")
35 |
36 | submit_config: dnnlib.SubmitConfig = pickle.load(open(submit_config_path, "rb"))
37 | dnnlib.submission.submit.set_user_name_override(submit_config.user_name)
38 |
39 | submit_config.task_name = task_name
40 | submit_config.host_name = host_name
41 |
42 | dnnlib.submission.submit.run_wrapper(submit_config)
43 |
44 | if __name__ == "__main__":
45 | main()
46 |
--------------------------------------------------------------------------------
/pretrained_example.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Minimal script for generating an image using pre-trained StyleGAN generator."""
9 |
10 | import os
11 | import pickle
12 | import numpy as np
13 | import PIL.Image
14 | import dnnlib
15 | import dnnlib.tflib as tflib
16 | import config
17 |
18 | def main():
19 | # Initialize TensorFlow.
20 | tflib.init_tf()
21 |
22 | # Load pre-trained network.
23 | url = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl
24 | with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f:
25 | _G, _D, Gs = pickle.load(f)
26 | # _G = Instantaneous snapshot of the generator. Mainly useful for resuming a previous training run.
27 | # _D = Instantaneous snapshot of the discriminator. Mainly useful for resuming a previous training run.
28 | # Gs = Long-term average of the generator. Yields higher-quality results than the instantaneous snapshot.
29 |
30 | # Print network details.
31 | Gs.print_layers()
32 |
33 | # Pick latent vector.
34 | rnd = np.random.RandomState(5)
35 | latents = rnd.randn(1, Gs.input_shape[1])
36 |
37 | # Generate image.
38 | fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
39 | images = Gs.run(latents, None, truncation_psi=0.7, randomize_noise=True, output_transform=fmt)
40 |
41 | # Save image.
42 | os.makedirs(config.result_dir, exist_ok=True)
43 | png_filename = os.path.join(config.result_dir, 'example.png')
44 | PIL.Image.fromarray(images[0], 'RGB').save(png_filename)
45 |
46 | if __name__ == "__main__":
47 | main()
48 |
--------------------------------------------------------------------------------
/utils/logger.py:
--------------------------------------------------------------------------------
1 | # python 3.7
2 | """Utility functions for logging."""
3 |
4 | import os
5 | import sys
6 | import logging
7 |
8 | __all__ = ['setup_logger']
9 |
10 | DEFAULT_WORK_DIR = 'results'
11 |
12 | def setup_logger(work_dir=None, logfile_name='log.txt', logger_name='logger'):
13 | """Sets up logger from target work directory.
14 |
15 | The function will sets up a logger with `DEBUG` log level. Two handlers will
16 | be added to the logger automatically. One is the `sys.stdout` stream, with
17 | `INFO` log level, which will print improtant messages on the screen. The other
18 | is used to save all messages to file `$WORK_DIR/$LOGFILE_NAME`. Messages will
19 | be added time stamp and log level before logged.
20 |
21 | NOTE: If `logfile_name` is empty, the file stream will be skipped. Also,
22 | `DEFAULT_WORK_DIR` will be used as default work directory.
23 |
24 | Args:
25 | work_dir: The work directory. All intermediate files will be saved here.
26 | (default: None)
27 | logfile_name: Name of the file to save log message. (default: `log.txt`)
28 | logger_name: Unique name for the logger. (default: `logger`)
29 |
30 | Returns:
31 | A `logging.Logger` object.
32 |
33 | Raises:
34 | SystemExit: If the work directory has already existed, of the logger with
35 | specified name `logger_name` has already existed.
36 | """
37 |
38 | logger = logging.getLogger(logger_name)
39 | if logger.hasHandlers(): # Already existed
40 | raise SystemExit(f'Logger name `{logger_name}` has already been set up!\n'
41 | f'Please use another name, or otherwise the messages '
42 | f'may be mixed between these two loggers.')
43 |
44 | logger.setLevel(logging.DEBUG)
45 | formatter = logging.Formatter("[%(asctime)s][%(levelname)s] %(message)s")
46 |
47 | # Print log message with `INFO` level or above onto the screen.
48 | sh = logging.StreamHandler(stream=sys.stdout)
49 | sh.setLevel(logging.INFO)
50 | sh.setFormatter(formatter)
51 | logger.addHandler(sh)
52 |
53 | if not logfile_name:
54 | return logger
55 |
56 | work_dir = work_dir or DEFAULT_WORK_DIR
57 | logfile_name = os.path.join(work_dir, logfile_name)
58 | if os.path.isfile(logfile_name):
59 | print(f'Log file `{logfile_name}` has already existed!')
60 | while True:
61 | decision = input(f'Would you like to overwrite it (Y/N): ')
62 | decision = decision.strip().lower()
63 | if decision == 'n':
64 | raise SystemExit(f'Please specify another one.')
65 | if decision == 'y':
66 | logger.warning(f'Overwriting log file `{logfile_name}`!')
67 | break
68 |
69 | os.makedirs(work_dir, exist_ok=True)
70 |
71 | # Save log message with all levels in log file.
72 | fh = logging.FileHandler(logfile_name)
73 | fh.setLevel(logging.DEBUG)
74 | fh.setFormatter(formatter)
75 | logger.addHandler(fh)
76 |
77 | return logger
78 |
--------------------------------------------------------------------------------
/docs/assets/style.css:
--------------------------------------------------------------------------------
1 | /* Body */
2 | body {
3 | background: #e3e5e8;
4 | color: #ffffff;
5 | font-family: 'Lato', Verdana, Helvetica, sans-serif;
6 | font-weight: 300;
7 | font-size: 14pt;
8 | }
9 |
10 | /* Hyperlinks */
11 | a {text-decoration: none;}
12 | a:link {color: #1772d0;}
13 | a:visited {color: #1772d0;}
14 | a:active {color: red;}
15 | a:hover {color: #f09228;}
16 |
17 | /* Pre-formatted Text */
18 | pre {
19 | margin: 5pt 0;
20 | border: 0;
21 | font-size: 12pt;
22 | background: #fcfcfc;
23 | }
24 |
25 | /* Project Page Style */
26 | /* Section */
27 | .section {
28 | width: 768pt;
29 | min-height: 100pt;
30 | margin: 15pt auto;
31 | padding: 20pt 30pt;
32 | border: 1pt hidden #000;
33 | text-align: justify;
34 | color: #000000;
35 | background: #ffffff;
36 | }
37 |
38 | /* Header (Title and Logo) */
39 | .section .header {
40 | min-height: 80pt;
41 | margin-top: 30pt;
42 | }
43 | .section .header .logo {
44 | width: 80pt;
45 | margin-left: 10pt;
46 | float: left;
47 | }
48 | .section .header .logo img {
49 | width: 80pt;
50 | object-fit: cover;
51 | }
52 | .section .header .title {
53 | margin: 0 120pt;
54 | text-align: center;
55 | font-size: 22pt;
56 | }
57 |
58 | /* Author */
59 | .section .author {
60 | margin: 5pt 0;
61 | text-align: center;
62 | font-size: 16pt;
63 | }
64 |
65 | /* Institution */
66 | .section .institution {
67 | margin: 5pt 0;
68 | text-align: center;
69 | font-size: 16pt;
70 | }
71 |
72 | /* Hyperlink (such as Paper and Code) */
73 | .section .link {
74 | margin: 5pt 0;
75 | text-align: center;
76 | font-size: 16pt;
77 | }
78 |
79 | /* Teaser */
80 | .section .teaser {
81 | margin: 20pt 0;
82 | text-align: center;
83 | }
84 | .section .teaser img {
85 | width: 95%;
86 | }
87 |
88 | /* Section Title */
89 | .section .title {
90 | text-align: center;
91 | font-size: 22pt;
92 | margin: 5pt 0 15pt 0; /* top right bottom left */
93 | }
94 |
95 | /* Section Body */
96 | .section .body {
97 | margin-bottom: 15pt;
98 | text-align: justify;
99 | font-size: 14pt;
100 | }
101 |
102 | /* BibTeX */
103 | .section .bibtex {
104 | margin: 5pt 0;
105 | text-align: left;
106 | font-size: 22pt;
107 | }
108 |
109 | /* Related Work */
110 | .section .ref {
111 | margin: 20pt 0 10pt 0; /* top right bottom left */
112 | text-align: left;
113 | font-size: 18pt;
114 | font-weight: bold;
115 | }
116 |
117 | /* Citation */
118 | .section .citation {
119 | min-height: 60pt;
120 | margin: 10pt 0;
121 | }
122 | .section .citation .image {
123 | width: 120pt;
124 | float: left;
125 | }
126 | .section .citation .image img {
127 | max-height: 60pt;
128 | width: 120pt;
129 | object-fit: cover;
130 | }
131 | .section .citation .comment{
132 | margin-left: 130pt;
133 | text-align: left;
134 | font-size: 14pt;
135 | }
136 |
--------------------------------------------------------------------------------
/metrics/frechet_inception_distance.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Frechet Inception Distance (FID)."""
9 |
10 | import os
11 | import numpy as np
12 | import scipy
13 | import tensorflow as tf
14 | import dnnlib.tflib as tflib
15 |
16 | from metrics import metric_base
17 | from training import misc
18 |
19 | #----------------------------------------------------------------------------
20 |
21 | class FID(metric_base.MetricBase):
22 | def __init__(self, num_images, minibatch_per_gpu, **kwargs):
23 | super().__init__(**kwargs)
24 | self.num_images = num_images
25 | self.minibatch_per_gpu = minibatch_per_gpu
26 |
27 | def _evaluate(self, Gs, num_gpus):
28 | minibatch_size = num_gpus * self.minibatch_per_gpu
29 | inception = misc.load_pkl('https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn') # inception_v3_features.pkl
30 | activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32)
31 |
32 | # Calculate statistics for reals.
33 | cache_file = self._get_cache_file_for_reals(num_images=self.num_images)
34 | os.makedirs(os.path.dirname(cache_file), exist_ok=True)
35 | if os.path.isfile(cache_file):
36 | mu_real, sigma_real = misc.load_pkl(cache_file)
37 | else:
38 | for idx, images in enumerate(self._iterate_reals(minibatch_size=minibatch_size)):
39 | begin = idx * minibatch_size
40 | end = min(begin + minibatch_size, self.num_images)
41 | activations[begin:end] = inception.run(images[:end-begin], num_gpus=num_gpus, assume_frozen=True)
42 | if end == self.num_images:
43 | break
44 | mu_real = np.mean(activations, axis=0)
45 | sigma_real = np.cov(activations, rowvar=False)
46 | misc.save_pkl((mu_real, sigma_real), cache_file)
47 |
48 | # Construct TensorFlow graph.
49 | result_expr = []
50 | for gpu_idx in range(num_gpus):
51 | with tf.device('/gpu:%d' % gpu_idx):
52 | Gs_clone = Gs.clone()
53 | inception_clone = inception.clone()
54 | latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
55 | images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
56 | images = tflib.convert_images_to_uint8(images)
57 | result_expr.append(inception_clone.get_output_for(images))
58 |
59 | # Calculate statistics for fakes.
60 | for begin in range(0, self.num_images, minibatch_size):
61 | end = min(begin + minibatch_size, self.num_images)
62 | activations[begin:end] = np.concatenate(tflib.run(result_expr), axis=0)[:end-begin]
63 | mu_fake = np.mean(activations, axis=0)
64 | sigma_fake = np.cov(activations, rowvar=False)
65 |
66 | # Calculate FID.
67 | m = np.square(mu_fake - mu_real).sum()
68 | s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
69 | dist = m + np.trace(sigma_fake + sigma_real - 2*s)
70 | self._report_result(np.real(dist))
71 |
72 | #----------------------------------------------------------------------------
73 |
--------------------------------------------------------------------------------
/train_encoder.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import dnnlib
3 | from dnnlib import EasyDict
4 | import config
5 | import copy
6 |
7 | def main():
8 | parser = argparse.ArgumentParser(description='Training the in-domain encoder')
9 | parser.add_argument('training_data', type=str,
10 | help='path to training data (.tfrecords).')
11 | parser.add_argument('test_data', type=str,
12 | help='path to test data (.tfrecords).')
13 | parser.add_argument('decoder_pkl', default=str,
14 | help='path to the stylegan generator, which serves as a decoder here.')
15 | parser.add_argument('--num_gpus', type=int, default=8,
16 | help='Number of GPUs to use during training (defaults: 8)')
17 | parser.add_argument('--image_size', type=int, default=256,
18 | help='the image size in training dataset (defaults; 256)')
19 | parser.add_argument('--dataset_name', type=str, default='ffhq',
20 | help='the name of the training dataset (defaults; ffhq)')
21 | parser.add_argument('--mirror_augment', action='store_false',
22 | help='Mirror augment (default: True)')
23 | args = parser.parse_args()
24 |
25 | train = EasyDict(run_func_name='training.training_loop_encoder.training_loop')
26 | Encoder = EasyDict(func_name='training.networks_encoder.Encoder')
27 | E_opt = EasyDict(beta1=0.9, beta2=0.99, epsilon=1e-8)
28 | D_opt = EasyDict(beta1=0.9, beta2=0.99, epsilon=1e-8)
29 | E_loss = EasyDict(func_name='training.loss_encoder.E_loss', feature_scale=0.00005, D_scale=0.08, perceptual_img_size=256)
30 | D_loss = EasyDict(func_name='training.loss_encoder.D_logistic_simplegp', r1_gamma=10.0)
31 | lr = EasyDict(learning_rate=0.0001, decay_step=30000, decay_rate=0.8, stair=False)
32 | Data_dir = EasyDict(data_train=args.training_data, data_test=args.test_data)
33 | Decoder_pkl = EasyDict(decoder_pkl=args.decoder_pkl)
34 | tf_config = {'rnd.np_random_seed': 1000}
35 | submit_config = dnnlib.SubmitConfig()
36 |
37 | desc = 'stylegan-encoder'
38 | desc += '-%dgpu' % (args.num_gpus)
39 | desc += '-%dx%d' % (args.image_size, args.image_size)
40 | desc += '-%s' % (args.dataset_name)
41 |
42 | train.mirror_augment = args.mirror_augment
43 | minibatch_per_gpu_train = {128: 16, 256: 16, 512: 8, 1024: 4}
44 | minibatch_per_gpu_test = {128: 1, 256: 1, 512: 1, 1024: 1}
45 | total_kimgs = {128: 12000, 256: 14000, 512: 16000, 1024: 18000}
46 |
47 | assert args.image_size in minibatch_per_gpu_train, 'Invalid image size'
48 | batch_size = minibatch_per_gpu_train.get(args.image_size) * args.num_gpus
49 | batch_size_test = minibatch_per_gpu_test.get(args.image_size) * args.num_gpus
50 | train.max_iters = int(total_kimgs.get(args.image_size) * 1000 / batch_size)
51 |
52 | kwargs = EasyDict(train)
53 | kwargs.update(Encoder_args=Encoder, E_opt_args=E_opt, D_opt_args=D_opt, E_loss_args=E_loss, D_loss_args=D_loss, lr_args=lr)
54 | kwargs.update(dataset_args=Data_dir, decoder_pkl=Decoder_pkl, tf_config=tf_config)
55 | kwargs.lr_args.decay_step = train.max_iters // 4
56 | kwargs.submit_config = copy.deepcopy(submit_config)
57 | kwargs.submit_config.num_gpus = args.num_gpus
58 | kwargs.submit_config.image_size = args.image_size
59 | kwargs.submit_config.batch_size = batch_size
60 | kwargs.submit_config.batch_size_test = batch_size_test
61 | kwargs.submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir)
62 | kwargs.submit_config.run_dir_ignore += config.run_dir_ignore
63 | kwargs.submit_config.run_desc = desc
64 |
65 | dnnlib.submit_run(**kwargs)
66 |
67 |
68 | if __name__ == "__main__":
69 | main()
70 |
--------------------------------------------------------------------------------
/training/loss_encoder.py:
--------------------------------------------------------------------------------
1 | """Loss functions for training encoder."""
2 | import tensorflow as tf
3 | from dnnlib.tflib.autosummary import autosummary
4 |
5 |
6 | #----------------------------------------------------------------------------
7 | # Convenience func that casts all of its arguments to tf.float32.
8 |
9 | def fp32(*values):
10 | if len(values) == 1 and isinstance(values[0], tuple):
11 | values = values[0]
12 | values = tuple(tf.cast(v, tf.float32) for v in values)
13 | return values if len(values) >= 2 else values[0]
14 |
15 |
16 | #----------------------------------------------------------------------------
17 | # Encoder loss function .
18 | def E_loss(E, G, D, perceptual_model, reals, feature_scale=0.00005, D_scale=0.1, perceptual_img_size=256):
19 | num_layers, latent_dim = G.components.synthesis.input_shape[1:3]
20 | latent_w = E.get_output_for(reals, is_training=True)
21 | latent_wp = tf.reshape(latent_w, [reals.shape[0], num_layers, latent_dim])
22 | fake_X = G.components.synthesis.get_output_for(latent_wp, randomize_noise=False)
23 | fake_scores_out = fp32(D.get_output_for(fake_X, None))
24 |
25 | with tf.variable_scope('recon_loss'):
26 | vgg16_input_real = tf.transpose(reals, perm=[0, 2, 3, 1])
27 | vgg16_input_real = tf.image.resize_images(vgg16_input_real, size=[perceptual_img_size, perceptual_img_size], method=1)
28 | vgg16_input_real = ((vgg16_input_real + 1) / 2) * 255
29 | vgg16_input_fake = tf.transpose(fake_X, perm=[0, 2, 3, 1])
30 | vgg16_input_fake = tf.image.resize_images(vgg16_input_fake, size=[perceptual_img_size, perceptual_img_size], method=1)
31 | vgg16_input_fake = ((vgg16_input_fake + 1) / 2) * 255
32 | vgg16_feature_real = perceptual_model(vgg16_input_real)
33 | vgg16_feature_fake = perceptual_model(vgg16_input_fake)
34 | recon_loss_feats = feature_scale * tf.reduce_mean(tf.square(vgg16_feature_real - vgg16_feature_fake))
35 | recon_loss_pixel = tf.reduce_mean(tf.square(fake_X - reals))
36 | recon_loss_feats = autosummary('Loss/scores/loss_feats', recon_loss_feats)
37 | recon_loss_pixel = autosummary('Loss/scores/loss_pixel', recon_loss_pixel)
38 | recon_loss = recon_loss_feats + recon_loss_pixel
39 | recon_loss = autosummary('Loss/scores/recon_loss', recon_loss)
40 |
41 | with tf.variable_scope('adv_loss'):
42 | D_scale = autosummary('Loss/scores/d_scale', D_scale)
43 | adv_loss = D_scale * tf.reduce_mean(tf.nn.softplus(-fake_scores_out))
44 | adv_loss = autosummary('Loss/scores/adv_loss', adv_loss)
45 |
46 | loss = recon_loss + adv_loss
47 |
48 | return loss, recon_loss, adv_loss
49 |
50 | #----------------------------------------------------------------------------
51 | # Discriminator loss function.
52 | def D_logistic_simplegp(E, G, D, reals, r1_gamma=10.0):
53 |
54 | num_layers, latent_dim = G.components.synthesis.input_shape[1:3]
55 | latent_w = E.get_output_for(reals, is_training=True)
56 | latent_wp = tf.reshape(latent_w, [reals.shape[0], num_layers, latent_dim])
57 | fake_X = G.components.synthesis.get_output_for(latent_wp, randomize_noise=False)
58 | real_scores_out = fp32(D.get_output_for(reals, None))
59 | fake_scores_out = fp32(D.get_output_for(fake_X, None))
60 |
61 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
62 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
63 | loss_fake = tf.reduce_mean(tf.nn.softplus(fake_scores_out))
64 | loss_real = tf.reduce_mean(tf.nn.softplus(-real_scores_out))
65 |
66 | with tf.name_scope('R1Penalty'):
67 | real_grads = fp32(tf.gradients(real_scores_out, [reals])[0])
68 | r1_penalty = tf.reduce_mean(tf.reduce_sum(tf.square(real_grads), axis=[1, 2, 3]))
69 | r1_penalty = autosummary('Loss/r1_penalty', r1_penalty)
70 | loss_gp = r1_penalty * (r1_gamma * 0.5)
71 | loss = loss_fake + loss_real + loss_gp
72 | return loss, loss_fake, loss_real, loss_gp
73 |
--------------------------------------------------------------------------------
/dnnlib/submission/run_context.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Helpers for managing the run/training loop."""
9 |
10 | import datetime
11 | import json
12 | import os
13 | import pprint
14 | import time
15 | import types
16 |
17 | from typing import Any
18 |
19 | from . import submit
20 |
21 |
22 | class RunContext(object):
23 | """Helper class for managing the run/training loop.
24 |
25 | The context will hide the implementation details of a basic run/training loop.
26 | It will set things up properly, tell if run should be stopped, and then cleans up.
27 | User should call update periodically and use should_stop to determine if run should be stopped.
28 |
29 | Args:
30 | submit_config: The SubmitConfig that is used for the current run.
31 | config_module: The whole config module that is used for the current run.
32 | max_epoch: Optional cached value for the max_epoch variable used in update.
33 | """
34 |
35 | def __init__(self, submit_config: submit.SubmitConfig, config_module: types.ModuleType = None, max_epoch: Any = None):
36 | self.submit_config = submit_config
37 | self.should_stop_flag = False
38 | self.has_closed = False
39 | self.start_time = time.time()
40 | self.last_update_time = time.time()
41 | self.last_update_interval = 0.0
42 | self.max_epoch = max_epoch
43 |
44 | # pretty print the all the relevant content of the config module to a text file
45 | if config_module is not None:
46 | with open(os.path.join(submit_config.run_dir, "config.txt"), "w") as f:
47 | filtered_dict = {k: v for k, v in config_module.__dict__.items() if not k.startswith("_") and not isinstance(v, (types.ModuleType, types.FunctionType, types.LambdaType, submit.SubmitConfig, type))}
48 | pprint.pprint(filtered_dict, stream=f, indent=4, width=200, compact=False)
49 |
50 | # write out details about the run to a text file
51 | self.run_txt_data = {"task_name": submit_config.task_name, "host_name": submit_config.host_name, "start_time": datetime.datetime.now().isoformat(sep=" ")}
52 | with open(os.path.join(submit_config.run_dir, "run.txt"), "w") as f:
53 | pprint.pprint(self.run_txt_data, stream=f, indent=4, width=200, compact=False)
54 |
55 | def __enter__(self) -> "RunContext":
56 | return self
57 |
58 | def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
59 | self.close()
60 |
61 | def update(self, loss: Any = 0, cur_epoch: Any = 0, max_epoch: Any = None) -> None:
62 | """Do general housekeeping and keep the state of the context up-to-date.
63 | Should be called often enough but not in a tight loop."""
64 | assert not self.has_closed
65 |
66 | self.last_update_interval = time.time() - self.last_update_time
67 | self.last_update_time = time.time()
68 |
69 | if os.path.exists(os.path.join(self.submit_config.run_dir, "abort.txt")):
70 | self.should_stop_flag = True
71 |
72 | max_epoch_val = self.max_epoch if max_epoch is None else max_epoch
73 |
74 | def should_stop(self) -> bool:
75 | """Tell whether a stopping condition has been triggered one way or another."""
76 | return self.should_stop_flag
77 |
78 | def get_time_since_start(self) -> float:
79 | """How much time has passed since the creation of the context."""
80 | return time.time() - self.start_time
81 |
82 | def get_time_since_last_update(self) -> float:
83 | """How much time has passed since the last call to update."""
84 | return time.time() - self.last_update_time
85 |
86 | def get_last_update_interval(self) -> float:
87 | """How much time passed between the previous two calls to update."""
88 | return self.last_update_interval
89 |
90 | def close(self) -> None:
91 | """Close the context and clean up.
92 | Should only be called once."""
93 | if not self.has_closed:
94 | # update the run.txt with stopping time
95 | self.run_txt_data["stop_time"] = datetime.datetime.now().isoformat(sep=" ")
96 | with open(os.path.join(self.submit_config.run_dir, "run.txt"), "w") as f:
97 | pprint.pprint(self.run_txt_data, stream=f, indent=4, width=200, compact=False)
98 |
99 | self.has_closed = True
100 |
--------------------------------------------------------------------------------
/run_metrics.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Main entry point for training StyleGAN and ProGAN networks."""
9 |
10 | import dnnlib
11 | from dnnlib import EasyDict
12 | import dnnlib.tflib as tflib
13 |
14 | import config
15 | from metrics import metric_base
16 | from training import misc
17 |
18 | #----------------------------------------------------------------------------
19 |
20 | def run_pickle(submit_config, metric_args, network_pkl, dataset_args, mirror_augment):
21 | ctx = dnnlib.RunContext(submit_config)
22 | tflib.init_tf()
23 | print('Evaluating %s metric on network_pkl "%s"...' % (metric_args.name, network_pkl))
24 | metric = dnnlib.util.call_func_by_name(**metric_args)
25 | print()
26 | metric.run(network_pkl, dataset_args=dataset_args, mirror_augment=mirror_augment, num_gpus=submit_config.num_gpus)
27 | print()
28 | ctx.close()
29 |
30 | #----------------------------------------------------------------------------
31 |
32 | def run_snapshot(submit_config, metric_args, run_id, snapshot):
33 | ctx = dnnlib.RunContext(submit_config)
34 | tflib.init_tf()
35 | print('Evaluating %s metric on run_id %s, snapshot %s...' % (metric_args.name, run_id, snapshot))
36 | run_dir = misc.locate_run_dir(run_id)
37 | network_pkl = misc.locate_network_pkl(run_dir, snapshot)
38 | metric = dnnlib.util.call_func_by_name(**metric_args)
39 | print()
40 | metric.run(network_pkl, run_dir=run_dir, num_gpus=submit_config.num_gpus)
41 | print()
42 | ctx.close()
43 |
44 | #----------------------------------------------------------------------------
45 |
46 | def run_all_snapshots(submit_config, metric_args, run_id):
47 | ctx = dnnlib.RunContext(submit_config)
48 | tflib.init_tf()
49 | print('Evaluating %s metric on all snapshots of run_id %s...' % (metric_args.name, run_id))
50 | run_dir = misc.locate_run_dir(run_id)
51 | network_pkls = misc.list_network_pkls(run_dir)
52 | metric = dnnlib.util.call_func_by_name(**metric_args)
53 | print()
54 | for idx, network_pkl in enumerate(network_pkls):
55 | ctx.update('', idx, len(network_pkls))
56 | metric.run(network_pkl, run_dir=run_dir, num_gpus=submit_config.num_gpus)
57 | print()
58 | ctx.close()
59 |
60 | #----------------------------------------------------------------------------
61 |
62 | def main():
63 | submit_config = dnnlib.SubmitConfig()
64 |
65 | # Which metrics to evaluate?
66 | metrics = []
67 | metrics += [metric_base.fid50k]
68 | #metrics += [metric_base.ppl_zfull]
69 | #metrics += [metric_base.ppl_wfull]
70 | #metrics += [metric_base.ppl_zend]
71 | #metrics += [metric_base.ppl_wend]
72 | #metrics += [metric_base.ls]
73 | #metrics += [metric_base.dummy]
74 |
75 | # Which networks to evaluate them on?
76 | tasks = []
77 | tasks += [EasyDict(run_func_name='run_metrics.run_pickle', network_pkl='https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ', dataset_args=EasyDict(tfrecord_dir='ffhq', shuffle_mb=0), mirror_augment=True)] # karras2019stylegan-ffhq-1024x1024.pkl
78 | #tasks += [EasyDict(run_func_name='run_metrics.run_snapshot', run_id=100, snapshot=25000)]
79 | #tasks += [EasyDict(run_func_name='run_metrics.run_all_snapshots', run_id=100)]
80 |
81 | # How many GPUs to use?
82 | submit_config.num_gpus = 1
83 | #submit_config.num_gpus = 2
84 | #submit_config.num_gpus = 4
85 | #submit_config.num_gpus = 8
86 |
87 | # Execute.
88 | submit_config.run_dir_root = dnnlib.submission.submit.get_template_from_path(config.result_dir)
89 | submit_config.run_dir_ignore += config.run_dir_ignore
90 | for task in tasks:
91 | for metric in metrics:
92 | submit_config.run_desc = '%s-%s' % (task.run_func_name, metric.name)
93 | if task.run_func_name.endswith('run_snapshot'):
94 | submit_config.run_desc += '-%s-%s' % (task.run_id, task.snapshot)
95 | if task.run_func_name.endswith('run_all_snapshots'):
96 | submit_config.run_desc += '-%s' % task.run_id
97 | submit_config.run_desc += '-%dgpu' % submit_config.num_gpus
98 | dnnlib.submit_run(submit_config, metric_args=metric, **task)
99 |
100 | #----------------------------------------------------------------------------
101 |
102 | if __name__ == "__main__":
103 | main()
104 |
105 | #----------------------------------------------------------------------------
106 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # In-Domain GAN Inversion for Real Image Editing
2 |
3 | 
4 | 
5 | 
6 |
7 | 
8 |
9 | **Figure:** *Real image editing using the proposed In-Domain GAN inversion with a fixed GAN generator.*
10 |
11 | > **In-Domain GAN Inversion for Real Image Editing**
12 | > Jiapeng Zhu*, Yujun Shen*, Deli Zhao, Bolei Zhou
13 | > *European Conference on Computer Vision (ECCV) 2020*
14 |
15 | In the repository, we propose an in-domain GAN inversion method, which not only faithfully reconstructs the input image but also ensures the inverted code to be **semantically meaningful** for editing. Basically, the in-domain GAN inversion contains two steps:
16 |
17 | 1. Training **domain-guided** encoder.
18 | 2. Performing **domain-regularized** optimization.
19 |
20 | **NEWS: Please also find [this repo](https://github.com/genforce/idinvert_pytorch), which is friendly to PyTorch users!**
21 |
22 | [[Paper](https://arxiv.org/pdf/2004.00049.pdf)]
23 | [[Project Page](https://genforce.github.io/idinvert/)]
24 | [[Demo](https://www.youtube.com/watch?v=3v6NHrhuyFY)]
25 | [[Colab](https://colab.research.google.com/github/genforce/idinvert_pytorch/blob/master/docs/Idinvert.ipynb)]
26 |
27 | ## Testing
28 |
29 | ### Pre-trained Models
30 |
31 | Please download the pre-trained models from the following links. For each model, it contains the GAN generator and discriminator, as well as the proposed **domain-guided encoder**.
32 |
33 | | Path | Description
34 | | :--- | :----------
35 | |[face_256x256](https://drive.google.com/file/d/1azAzSZg6VfNydjWr4qfl8Z4LfxktTPqM/view?usp=sharing) | In-domain GAN trained with [FFHQ](https://github.com/NVlabs/ffhq-dataset) dataset.
36 | |[tower_256x256](https://drive.google.com/file/d/1USfaSLor5d71IRoC8CWTbKJagS0-MJEv/view?usp=sharing) | In-domain GAN trained with [LSUN Tower](https://github.com/fyu/lsun) dataset.
37 | |[bedroom_256x256](https://drive.google.com/file/d/1nRa4WAE1qF_j1CtH32hxjREK0o-rpucD/view?usp=sharing) | In-domain GAN trained with [LSUN Bedroom](https://github.com/fyu/lsun) dataset.
38 |
39 | ### Inversion
40 |
41 | ```bash
42 | MODEL_PATH='styleganinv_face_256.pkl'
43 | IMAGE_LIST='examples/test.list'
44 | python invert.py $MODEL_PATH $IMAGE_LIST
45 | ```
46 |
47 | NOTE: We find that 100 iterations are good enough for inverting an image, which takes about 8s (on P40). But users can always use more iterations (much slower) for a more precise reconstruction.
48 |
49 | ### Semantic Diffusion
50 |
51 | ```bash
52 | MODEL_PATH='styleganinv_face_256.pkl'
53 | TARGET_LIST='examples/target.list'
54 | CONTEXT_LIST='examples/context.list'
55 | python diffuse.py $MODEL_PATH $TARGET_LIST $CONTEXT_LIST
56 | ```
57 |
58 | NOTE: The diffusion process is highly similar to image inversion. The main difference is that only the target patch is used to compute loss for **masked** optimization.
59 |
60 | ### Interpolation
61 |
62 | ```bash
63 | SRC_DIR='results/inversion/test'
64 | DST_DIR='results/inversion/test'
65 | python interpolate.py $MODEL_PATH $SRC_DIR $DST_DIR
66 | ```
67 |
68 | ### Manipulation
69 |
70 | ```bash
71 | IMAGE_DIR='results/inversion/test'
72 | BOUNDARY='boundaries/expression.npy'
73 | python manipulate.py $MODEL_PATH $IMAGE_DIR $BOUNDARY
74 | ```
75 |
76 | NOTE: Boundaries are obtained using [InterFaceGAN](https://github.com/genforce/interfacegan).
77 |
78 | ### Style Mixing
79 |
80 | ```bash
81 | STYLE_DIR='results/inversion/test'
82 | CONTENT_DIR='results/inversion/test'
83 | python mix_style.py $MODEL_PATH $STYLE_DIR $CONTENT_DIR
84 | ```
85 |
86 | ## Training
87 |
88 | The GAN model used in this work is [StyleGAN](https://github.com/NVlabs/stylegan). Beyond the original repository, we make following changes:
89 |
90 | - Change repleated $w$ for all layers to different $w$s (Line 428-435 in file `training/networks_stylegan.py`).
91 | - Add the *domain-guided* encoder in file `training/networks_encoder.py`.
92 | - Add losses for training the *domain-guided* encoder in file `training/loss_encoder.py`.
93 | - Add schedule for training the *domain-guided* encoder in file `training/training_loop_encoder.py`.
94 | - Add a perceptual model (VGG16) for computing perceptual loss in file `perceptual_model.py`.
95 | - Add training script for the *domain-guided* encoder in file `train_encoder.py`.
96 |
97 | ### Step-1: Train your own generator
98 |
99 | ```bash
100 | python train.py
101 | ```
102 |
103 | ### Step-2: Train your own encoder
104 |
105 | ```bash
106 | TRAINING_DATA=PATH_TO_TRAINING_DATA
107 | TESTING_DATA=PATH_TO_TESTING_DATA
108 | DECODER_PKL=PATH_TO_GENERATOR
109 | python train_encoder.py $TRAINING_DATA $TESTING_DATA $DECODER_PKL
110 | ```
111 |
112 | Note that the file `dataset_tool.py`, which is borrowed from the [StyleGAN](https://github.com/NVlabs/stylegan) repo, is used to prepared a directory of data from all resolutions. The training of the encoder does not rely on the progressive strategy, therefore, the training data and the test data should be both specified as the `.tfrecords` file with the highest resolution.
113 |
114 | ## BibTeX
115 |
116 | ```bibtex
117 | @inproceedings{zhu2020indomain,
118 | title = {In-domain GAN Inversion for Real Image Editing},
119 | author = {Zhu, Jiapeng and Shen, Yujun and Zhao, Deli and Zhou, Bolei},
120 | booktitle = {Proceedings of European Conference on Computer Vision (ECCV)},
121 | year = {2020}
122 | }
123 | ```
124 |
--------------------------------------------------------------------------------
/metrics/perceptual_path_length.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Perceptual Path Length (PPL)."""
9 |
10 | import numpy as np
11 | import tensorflow as tf
12 | import dnnlib.tflib as tflib
13 |
14 | from metrics import metric_base
15 | from training import misc
16 |
17 | #----------------------------------------------------------------------------
18 |
19 | # Normalize batch of vectors.
20 | def normalize(v):
21 | return v / tf.sqrt(tf.reduce_sum(tf.square(v), axis=-1, keepdims=True))
22 |
23 | # Spherical interpolation of a batch of vectors.
24 | def slerp(a, b, t):
25 | a = normalize(a)
26 | b = normalize(b)
27 | d = tf.reduce_sum(a * b, axis=-1, keepdims=True)
28 | p = t * tf.math.acos(d)
29 | c = normalize(b - d * a)
30 | d = a * tf.math.cos(p) + c * tf.math.sin(p)
31 | return normalize(d)
32 |
33 | #----------------------------------------------------------------------------
34 |
35 | class PPL(metric_base.MetricBase):
36 | def __init__(self, num_samples, epsilon, space, sampling, minibatch_per_gpu, **kwargs):
37 | assert space in ['z', 'w']
38 | assert sampling in ['full', 'end']
39 | super().__init__(**kwargs)
40 | self.num_samples = num_samples
41 | self.epsilon = epsilon
42 | self.space = space
43 | self.sampling = sampling
44 | self.minibatch_per_gpu = minibatch_per_gpu
45 |
46 | def _evaluate(self, Gs, num_gpus):
47 | minibatch_size = num_gpus * self.minibatch_per_gpu
48 |
49 | # Construct TensorFlow graph.
50 | distance_expr = []
51 | for gpu_idx in range(num_gpus):
52 | with tf.device('/gpu:%d' % gpu_idx):
53 | Gs_clone = Gs.clone()
54 | noise_vars = [var for name, var in Gs_clone.components.synthesis.vars.items() if name.startswith('noise')]
55 |
56 | # Generate random latents and interpolation t-values.
57 | lat_t01 = tf.random_normal([self.minibatch_per_gpu * 2] + Gs_clone.input_shape[1:])
58 | lerp_t = tf.random_uniform([self.minibatch_per_gpu], 0.0, 1.0 if self.sampling == 'full' else 0.0)
59 |
60 | # Interpolate in W or Z.
61 | if self.space == 'w':
62 | dlat_t01 = Gs_clone.components.mapping.get_output_for(lat_t01, None, is_validation=True)
63 | dlat_t0, dlat_t1 = dlat_t01[0::2], dlat_t01[1::2]
64 | dlat_e0 = tflib.lerp(dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis])
65 | dlat_e1 = tflib.lerp(dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis] + self.epsilon)
66 | dlat_e01 = tf.reshape(tf.stack([dlat_e0, dlat_e1], axis=1), dlat_t01.shape)
67 | else: # space == 'z'
68 | lat_t0, lat_t1 = lat_t01[0::2], lat_t01[1::2]
69 | lat_e0 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis])
70 | lat_e1 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis] + self.epsilon)
71 | lat_e01 = tf.reshape(tf.stack([lat_e0, lat_e1], axis=1), lat_t01.shape)
72 | dlat_e01 = Gs_clone.components.mapping.get_output_for(lat_e01, None, is_validation=True)
73 |
74 | # Synthesize images.
75 | with tf.control_dependencies([var.initializer for var in noise_vars]): # use same noise inputs for the entire minibatch
76 | images = Gs_clone.components.synthesis.get_output_for(dlat_e01, is_validation=True, randomize_noise=False)
77 |
78 | # Crop only the face region.
79 | c = int(images.shape[2] // 8)
80 | images = images[:, :, c*3 : c*7, c*2 : c*6]
81 |
82 | # Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
83 | if images.shape[2] > 256:
84 | factor = images.shape[2] // 256
85 | images = tf.reshape(images, [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor])
86 | images = tf.reduce_mean(images, axis=[3,5])
87 |
88 | # Scale dynamic range from [-1,1] to [0,255] for VGG.
89 | images = (images + 1) * (255 / 2)
90 |
91 | # Evaluate perceptual distance.
92 | img_e0, img_e1 = images[0::2], images[1::2]
93 | distance_measure = misc.load_pkl('https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2') # vgg16_zhang_perceptual.pkl
94 | distance_expr.append(distance_measure.get_output_for(img_e0, img_e1) * (1 / self.epsilon**2))
95 |
96 | # Sampling loop.
97 | all_distances = []
98 | for _ in range(0, self.num_samples, minibatch_size):
99 | all_distances += tflib.run(distance_expr)
100 | all_distances = np.concatenate(all_distances, axis=0)
101 |
102 | # Reject outliers.
103 | lo = np.percentile(all_distances, 1, interpolation='lower')
104 | hi = np.percentile(all_distances, 99, interpolation='higher')
105 | filtered_distances = np.extract(np.logical_and(lo <= all_distances, all_distances <= hi), all_distances)
106 | self._report_result(np.mean(filtered_distances))
107 |
108 | #----------------------------------------------------------------------------
109 |
--------------------------------------------------------------------------------
/interpolate.py:
--------------------------------------------------------------------------------
1 | # python 3.6
2 | """Interpolates real images with In-domain GAN Inversion.
3 |
4 | The real images should be first inverted to latent codes with `invert.py`. After
5 | that, this script can be used for image interpolation.
6 |
7 | NOTE: This script will interpolate every image pair from source directory to
8 | target directory.
9 | """
10 |
11 | import os
12 | import argparse
13 | import pickle
14 | from tqdm import tqdm
15 | import numpy as np
16 | import tensorflow as tf
17 | from dnnlib import tflib
18 |
19 | from utils.logger import setup_logger
20 | from utils.editor import interpolate
21 | from utils.visualizer import load_image
22 | from utils.visualizer import adjust_pixel_range
23 | from utils.visualizer import HtmlPageVisualizer
24 |
25 |
26 | def parse_args():
27 | """Parses arguments."""
28 | parser = argparse.ArgumentParser()
29 | parser.add_argument('model_path', type=str,
30 | help='Path to the pre-trained model.')
31 | parser.add_argument('src_dir', type=str,
32 | help='Source directory, which includes original images, '
33 | 'inverted codes, and image list.')
34 | parser.add_argument('dst_dir', type=str,
35 | help='Target directory, which includes original images, '
36 | 'inverted codes, and image list.')
37 | parser.add_argument('-o', '--output_dir', type=str, default='',
38 | help='Directory to save the results. If not specified, '
39 | '`./results/interpolation` will be used by default.')
40 | parser.add_argument('--batch_size', type=int, default=32,
41 | help='Batch size. (default: 32)')
42 | parser.add_argument('--step', type=int, default=5,
43 | help='Number of steps for interpolation. (default: 5)')
44 | parser.add_argument('--viz_size', type=int, default=256,
45 | help='Image size for visualization. (default: 256)')
46 | parser.add_argument('--gpu_id', type=str, default='0',
47 | help='Which GPU(s) to use. (default: `0`)')
48 | return parser.parse_args()
49 |
50 |
51 | def main():
52 | """Main function."""
53 | args = parse_args()
54 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
55 | src_dir = args.src_dir
56 | src_dir_name = os.path.basename(src_dir.rstrip('/'))
57 | assert os.path.exists(src_dir)
58 | assert os.path.exists(f'{src_dir}/image_list.txt')
59 | assert os.path.exists(f'{src_dir}/inverted_codes.npy')
60 | dst_dir = args.dst_dir
61 | dst_dir_name = os.path.basename(dst_dir.rstrip('/'))
62 | assert os.path.exists(dst_dir)
63 | assert os.path.exists(f'{dst_dir}/image_list.txt')
64 | assert os.path.exists(f'{dst_dir}/inverted_codes.npy')
65 | output_dir = args.output_dir or 'results/interpolation'
66 | job_name = f'{src_dir_name}_TO_{dst_dir_name}'
67 | logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')
68 |
69 | # Load model.
70 | logger.info(f'Loading generator.')
71 | tflib.init_tf({'rnd.np_random_seed': 1000})
72 | with open(args.model_path, 'rb') as f:
73 | _, _, _, Gs = pickle.load(f)
74 |
75 | # Build graph.
76 | logger.info(f'Building graph.')
77 | sess = tf.get_default_session()
78 | num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
79 | wp = tf.placeholder(
80 | tf.float32, [args.batch_size, num_layers, latent_dim], name='latent_code')
81 | x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
82 |
83 | # Load image and codes.
84 | logger.info(f'Loading images and corresponding inverted latent codes.')
85 | src_list = []
86 | with open(f'{src_dir}/image_list.txt', 'r') as f:
87 | for line in f:
88 | name = os.path.splitext(os.path.basename(line.strip()))[0]
89 | assert os.path.exists(f'{src_dir}/{name}_ori.png')
90 | src_list.append(name)
91 | src_codes = np.load(f'{src_dir}/inverted_codes.npy')
92 | assert src_codes.shape[0] == len(src_list)
93 | num_src = src_codes.shape[0]
94 | dst_list = []
95 | with open(f'{dst_dir}/image_list.txt', 'r') as f:
96 | for line in f:
97 | name = os.path.splitext(os.path.basename(line.strip()))[0]
98 | assert os.path.exists(f'{dst_dir}/{name}_ori.png')
99 | dst_list.append(name)
100 | dst_codes = np.load(f'{dst_dir}/inverted_codes.npy')
101 | assert dst_codes.shape[0] == len(dst_list)
102 | num_dst = dst_codes.shape[0]
103 |
104 | # Interpolate images.
105 | logger.info(f'Start interpolation.')
106 | step = args.step + 2
107 | viz_size = None if args.viz_size == 0 else args.viz_size
108 | visualizer = HtmlPageVisualizer(
109 | num_rows=num_src * num_dst, num_cols=step + 2, viz_size=viz_size)
110 | visualizer.set_headers(
111 | ['Source', 'Source Inversion'] +
112 | [f'Step {i:02d}' for i in range(1, step - 1)] +
113 | ['Target Inversion', 'Target']
114 | )
115 |
116 | inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
117 | for src_idx in tqdm(range(num_src), leave=False):
118 | src_code = src_codes[src_idx:src_idx + 1]
119 | src_path = f'{src_dir}/{src_list[src_idx]}_ori.png'
120 | codes = interpolate(src_codes=np.repeat(src_code, num_dst, axis=0),
121 | dst_codes=dst_codes,
122 | step=step)
123 | for dst_idx in tqdm(range(num_dst), leave=False):
124 | dst_path = f'{dst_dir}/{dst_list[dst_idx]}_ori.png'
125 | output_images = []
126 | for idx in range(0, step, args.batch_size):
127 | batch = codes[dst_idx, idx:idx + args.batch_size]
128 | inputs[0:len(batch)] = batch
129 | images = sess.run(x, feed_dict={wp: inputs})
130 | output_images.append(images[0:len(batch)])
131 | output_images = adjust_pixel_range(np.concatenate(output_images, axis=0))
132 |
133 | row_idx = src_idx * num_dst + dst_idx
134 | visualizer.set_cell(row_idx, 0, image=load_image(src_path))
135 | visualizer.set_cell(row_idx, step + 1, image=load_image(dst_path))
136 | for s, output_image in enumerate(output_images):
137 | visualizer.set_cell(row_idx, s + 1, image=output_image)
138 |
139 | # Save results.
140 | visualizer.save(f'{output_dir}/{job_name}.html')
141 |
142 |
143 | if __name__ == '__main__':
144 | main()
145 |
--------------------------------------------------------------------------------
/mix_style.py:
--------------------------------------------------------------------------------
1 | # python 3.6
2 | """Mixes styles with In-domain GAN Inversion.
3 |
4 | The real images should be first inverted to latent codes with `invert.py`. After
5 | that, this script can be used for style mixing.
6 |
7 | NOTE: This script will mix every `style-content` image pair from style
8 | directory to content directory.
9 | """
10 |
11 | import os
12 | import argparse
13 | import pickle
14 | from tqdm import tqdm
15 | import numpy as np
16 | import tensorflow as tf
17 | from dnnlib import tflib
18 |
19 | from utils.logger import setup_logger
20 | from utils.editor import mix_style
21 | from utils.visualizer import load_image
22 | from utils.visualizer import adjust_pixel_range
23 | from utils.visualizer import HtmlPageVisualizer
24 |
25 |
26 | def parse_args():
27 | """Parses arguments."""
28 | parser = argparse.ArgumentParser()
29 | parser.add_argument('model_path', type=str,
30 | help='Path to the pre-trained model.')
31 | parser.add_argument('style_dir', type=str,
32 | help='Style directory, which includes original images, '
33 | 'inverted codes, and image list.')
34 | parser.add_argument('content_dir', type=str,
35 | help='Content directory, which includes original images, '
36 | 'inverted codes, and image list.')
37 | parser.add_argument('-o', '--output_dir', type=str, default='',
38 | help='Directory to save the results. If not specified, '
39 | '`./results/style_mixing` will be used by default.')
40 | parser.add_argument('--batch_size', type=int, default=32,
41 | help='Batch size. (default: 32)')
42 | parser.add_argument('--mix_layer_start_idx', type=int, default=10,
43 | help='0-based layer index. Style mixing is performed '
44 | 'from this layer to the last layer. (default: 10)')
45 | parser.add_argument('--viz_size', type=int, default=256,
46 | help='Image size for visualization. (default: 256)')
47 | parser.add_argument('--gpu_id', type=str, default='0',
48 | help='Which GPU(s) to use. (default: `0`)')
49 | return parser.parse_args()
50 |
51 |
52 | def main():
53 | """Main function."""
54 | args = parse_args()
55 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
56 | style_dir = args.style_dir
57 | style_dir_name = os.path.basename(style_dir.rstrip('/'))
58 | assert os.path.exists(style_dir)
59 | assert os.path.exists(f'{style_dir}/image_list.txt')
60 | assert os.path.exists(f'{style_dir}/inverted_codes.npy')
61 | content_dir = args.content_dir
62 | content_dir_name = os.path.basename(content_dir.rstrip('/'))
63 | assert os.path.exists(content_dir)
64 | assert os.path.exists(f'{content_dir}/image_list.txt')
65 | assert os.path.exists(f'{content_dir}/inverted_codes.npy')
66 | output_dir = args.output_dir or 'results/style_mixing'
67 | job_name = f'{style_dir_name}_STYLIZE_{content_dir_name}'
68 | logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')
69 |
70 | # Load model.
71 | logger.info(f'Loading generator.')
72 | tflib.init_tf({'rnd.np_random_seed': 1000})
73 | with open(args.model_path, 'rb') as f:
74 | _, _, _, Gs = pickle.load(f)
75 |
76 | # Build graph.
77 | logger.info(f'Building graph.')
78 | sess = tf.get_default_session()
79 | num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
80 | wp = tf.placeholder(
81 | tf.float32, [args.batch_size, num_layers, latent_dim], name='latent_code')
82 | x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
83 | mix_layers = list(range(args.mix_layer_start_idx, num_layers))
84 |
85 | # Load image and codes.
86 | logger.info(f'Loading images and corresponding inverted latent codes.')
87 | style_list = []
88 | with open(f'{style_dir}/image_list.txt', 'r') as f:
89 | for line in f:
90 | name = os.path.splitext(os.path.basename(line.strip()))[0]
91 | assert os.path.exists(f'{style_dir}/{name}_ori.png')
92 | style_list.append(name)
93 | logger.info(f'Loading inverted latent codes.')
94 | style_codes = np.load(f'{style_dir}/inverted_codes.npy')
95 | assert style_codes.shape[0] == len(style_list)
96 | num_styles = style_codes.shape[0]
97 | content_list = []
98 | with open(f'{content_dir}/image_list.txt', 'r') as f:
99 | for line in f:
100 | name = os.path.splitext(os.path.basename(line.strip()))[0]
101 | assert os.path.exists(f'{content_dir}/{name}_ori.png')
102 | content_list.append(name)
103 | logger.info(f'Loading inverted latent codes.')
104 | content_codes = np.load(f'{content_dir}/inverted_codes.npy')
105 | assert content_codes.shape[0] == len(content_list)
106 | num_contents = content_codes.shape[0]
107 |
108 | # Mix styles.
109 | logger.info(f'Start style mixing.')
110 | viz_size = None if args.viz_size == 0 else args.viz_size
111 | visualizer = HtmlPageVisualizer(
112 | num_rows=num_styles + 1, num_cols=num_contents + 1, viz_size=viz_size)
113 | visualizer.set_headers(
114 | ['Style'] +
115 | [f'Content {i:03d}' for i in range(num_contents)]
116 | )
117 | for style_idx, style_name in enumerate(style_list):
118 | style_image = load_image(f'{style_dir}/{style_name}_ori.png')
119 | visualizer.set_cell(style_idx + 1, 0, image=style_image)
120 | for content_idx, content_name in enumerate(content_list):
121 | content_image = load_image(f'{content_dir}/{content_name}_ori.png')
122 | visualizer.set_cell(0, content_idx + 1, image=content_image)
123 |
124 | codes = mix_style(style_codes=style_codes,
125 | content_codes=content_codes,
126 | num_layers=num_layers,
127 | mix_layers=mix_layers)
128 | inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
129 | for style_idx in tqdm(range(num_styles), leave=False):
130 | output_images = []
131 | for idx in range(0, num_contents, args.batch_size):
132 | batch = codes[style_idx, idx:idx + args.batch_size]
133 | inputs[0:len(batch)] = batch
134 | images = sess.run(x, feed_dict={wp: inputs})
135 | output_images.append(images[0:len(batch)])
136 | output_images = adjust_pixel_range(np.concatenate(output_images, axis=0))
137 | for content_idx, output_image in enumerate(output_images):
138 | visualizer.set_cell(style_idx + 1, content_idx + 1, image=output_image)
139 |
140 | # Save results.
141 | visualizer.save(f'{output_dir}/{job_name}.html')
142 |
143 |
144 | if __name__ == '__main__':
145 | main()
146 |
--------------------------------------------------------------------------------
/metrics/metric_base.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Common definitions for GAN metrics."""
9 |
10 | import os
11 | import time
12 | import hashlib
13 | import numpy as np
14 | import tensorflow as tf
15 | import dnnlib
16 | import dnnlib.tflib as tflib
17 |
18 | import config
19 | from training import misc
20 | from training import dataset
21 |
22 | #----------------------------------------------------------------------------
23 | # Standard metrics.
24 |
25 | fid50k = dnnlib.EasyDict(func_name='metrics.frechet_inception_distance.FID', name='fid50k', num_images=50000, minibatch_per_gpu=8)
26 | ppl_zfull = dnnlib.EasyDict(func_name='metrics.perceptual_path_length.PPL', name='ppl_zfull', num_samples=100000, epsilon=1e-4, space='z', sampling='full', minibatch_per_gpu=16)
27 | ppl_wfull = dnnlib.EasyDict(func_name='metrics.perceptual_path_length.PPL', name='ppl_wfull', num_samples=100000, epsilon=1e-4, space='w', sampling='full', minibatch_per_gpu=16)
28 | ppl_zend = dnnlib.EasyDict(func_name='metrics.perceptual_path_length.PPL', name='ppl_zend', num_samples=100000, epsilon=1e-4, space='z', sampling='end', minibatch_per_gpu=16)
29 | ppl_wend = dnnlib.EasyDict(func_name='metrics.perceptual_path_length.PPL', name='ppl_wend', num_samples=100000, epsilon=1e-4, space='w', sampling='end', minibatch_per_gpu=16)
30 | ls = dnnlib.EasyDict(func_name='metrics.linear_separability.LS', name='ls', num_samples=200000, num_keep=100000, attrib_indices=range(40), minibatch_per_gpu=4)
31 | dummy = dnnlib.EasyDict(func_name='metrics.metric_base.DummyMetric', name='dummy') # for debugging
32 |
33 | #----------------------------------------------------------------------------
34 | # Base class for metrics.
35 |
36 | class MetricBase:
37 | def __init__(self, name):
38 | self.name = name
39 | self._network_pkl = None
40 | self._dataset_args = None
41 | self._mirror_augment = None
42 | self._results = []
43 | self._eval_time = None
44 |
45 | def run(self, network_pkl, run_dir=None, dataset_args=None, mirror_augment=None, num_gpus=1, tf_config=None, log_results=True):
46 | self._network_pkl = network_pkl
47 | self._dataset_args = dataset_args
48 | self._mirror_augment = mirror_augment
49 | self._results = []
50 |
51 | if (dataset_args is None or mirror_augment is None) and run_dir is not None:
52 | run_config = misc.parse_config_for_previous_run(run_dir)
53 | self._dataset_args = dict(run_config['dataset'])
54 | self._dataset_args['shuffle_mb'] = 0
55 | self._mirror_augment = run_config['train'].get('mirror_augment', False)
56 |
57 | time_begin = time.time()
58 | with tf.Graph().as_default(), tflib.create_session(tf_config).as_default(): # pylint: disable=not-context-manager
59 | _G, _D, Gs = misc.load_pkl(self._network_pkl)
60 | self._evaluate(Gs, num_gpus=num_gpus)
61 | self._eval_time = time.time() - time_begin
62 |
63 | if log_results:
64 | result_str = self.get_result_str()
65 | if run_dir is not None:
66 | log = os.path.join(run_dir, 'metric-%s.txt' % self.name)
67 | with dnnlib.util.Logger(log, 'a'):
68 | print(result_str)
69 | else:
70 | print(result_str)
71 |
72 | def get_result_str(self):
73 | network_name = os.path.splitext(os.path.basename(self._network_pkl))[0]
74 | if len(network_name) > 29:
75 | network_name = '...' + network_name[-26:]
76 | result_str = '%-30s' % network_name
77 | result_str += ' time %-12s' % dnnlib.util.format_time(self._eval_time)
78 | for res in self._results:
79 | result_str += ' ' + self.name + res.suffix + ' '
80 | result_str += res.fmt % res.value
81 | return result_str
82 |
83 | def update_autosummaries(self):
84 | for res in self._results:
85 | tflib.autosummary.autosummary('Metrics/' + self.name + res.suffix, res.value)
86 |
87 | def _evaluate(self, Gs, num_gpus):
88 | raise NotImplementedError # to be overridden by subclasses
89 |
90 | def _report_result(self, value, suffix='', fmt='%-10.4f'):
91 | self._results += [dnnlib.EasyDict(value=value, suffix=suffix, fmt=fmt)]
92 |
93 | def _get_cache_file_for_reals(self, extension='pkl', **kwargs):
94 | all_args = dnnlib.EasyDict(metric_name=self.name, mirror_augment=self._mirror_augment)
95 | all_args.update(self._dataset_args)
96 | all_args.update(kwargs)
97 | md5 = hashlib.md5(repr(sorted(all_args.items())).encode('utf-8'))
98 | dataset_name = self._dataset_args['tfrecord_dir'].replace('\\', '/').split('/')[-1]
99 | return os.path.join(config.cache_dir, '%s-%s-%s.%s' % (md5.hexdigest(), self.name, dataset_name, extension))
100 |
101 | def _iterate_reals(self, minibatch_size):
102 | dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **self._dataset_args)
103 | while True:
104 | images, _labels = dataset_obj.get_minibatch_np(minibatch_size)
105 | if self._mirror_augment:
106 | images = misc.apply_mirror_augment(images)
107 | yield images
108 |
109 | def _iterate_fakes(self, Gs, minibatch_size, num_gpus):
110 | while True:
111 | latents = np.random.randn(minibatch_size, *Gs.input_shape[1:])
112 | fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True)
113 | images = Gs.run(latents, None, output_transform=fmt, is_validation=True, num_gpus=num_gpus, assume_frozen=True)
114 | yield images
115 |
116 | #----------------------------------------------------------------------------
117 | # Group of multiple metrics.
118 |
119 | class MetricGroup:
120 | def __init__(self, metric_kwarg_list):
121 | self.metrics = [dnnlib.util.call_func_by_name(**kwargs) for kwargs in metric_kwarg_list]
122 |
123 | def run(self, *args, **kwargs):
124 | for metric in self.metrics:
125 | metric.run(*args, **kwargs)
126 |
127 | def get_result_str(self):
128 | return ' '.join(metric.get_result_str() for metric in self.metrics)
129 |
130 | def update_autosummaries(self):
131 | for metric in self.metrics:
132 | metric.update_autosummaries()
133 |
134 | #----------------------------------------------------------------------------
135 | # Dummy metric for debugging purposes.
136 |
137 | class DummyMetric(MetricBase):
138 | def _evaluate(self, Gs, num_gpus):
139 | _ = Gs, num_gpus
140 | self._report_result(0.0)
141 |
142 | #----------------------------------------------------------------------------
143 |
--------------------------------------------------------------------------------
/manipulate.py:
--------------------------------------------------------------------------------
1 | # python 3.6
2 | """Manipulates real images with In-domain GAN Inversion.
3 |
4 | The real images should be first inverted to latent codes with `invert.py`. After
5 | that, this script can be used for image manipulation with a given boundary.
6 | """
7 |
8 | import os.path
9 | import argparse
10 | import pickle
11 | import numpy as np
12 | from tqdm import tqdm
13 | import tensorflow as tf
14 | from dnnlib import tflib
15 |
16 | from utils.logger import setup_logger
17 | from utils.editor import manipulate
18 | from utils.visualizer import load_image
19 | from utils.visualizer import adjust_pixel_range
20 | from utils.visualizer import HtmlPageVisualizer
21 |
22 |
23 | def parse_args():
24 | """Parses arguments."""
25 | parser = argparse.ArgumentParser()
26 | parser.add_argument('model_path', type=str,
27 | help='Name of the model used for synthesis.')
28 | parser.add_argument('image_dir', type=str,
29 | help='Image directory, which includes original images, '
30 | 'inverted codes, and image list.')
31 | parser.add_argument('boundary_path', type=str,
32 | help='Path to the boundary for semantic manipulation.')
33 | parser.add_argument('-o', '--output_dir', type=str, default='',
34 | help='Directory to save the results. If not specified, '
35 | '`./results/manipulation` will be used by default.')
36 | parser.add_argument('--batch_size', type=int, default=32,
37 | help='Batch size. (default: 32)')
38 | parser.add_argument('--step', type=int, default=7,
39 | help='Number of manipulation steps. (default: 7)')
40 | parser.add_argument('--start_distance', type=float, default=-3.0,
41 | help='Start distance for manipulation. (default: -3.0)')
42 | parser.add_argument('--end_distance', type=float, default=3.0,
43 | help='End distance for manipulation. (default: 3.0)')
44 | parser.add_argument('--manipulate_layers', type=str, default='',
45 | help='Indices of the layers to perform manipulation. '
46 | 'If not specified, all layers will be manipulated. '
47 | 'More than one layers should be separated by `,`. '
48 | '(default: None)')
49 | parser.add_argument('--viz_size', type=int, default=256,
50 | help='Image size for visualization. (default: 256)')
51 | parser.add_argument('--gpu_id', type=str, default='0',
52 | help='Which GPU(s) to use. (default: `0`)')
53 | return parser.parse_args()
54 |
55 |
56 | def main():
57 | """Main function."""
58 | args = parse_args()
59 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
60 | image_dir = args.image_dir
61 | image_dir_name = os.path.basename(image_dir.rstrip('/'))
62 | assert os.path.exists(image_dir)
63 | assert os.path.exists(f'{image_dir}/image_list.txt')
64 | assert os.path.exists(f'{image_dir}/inverted_codes.npy')
65 | boundary_path = args.boundary_path
66 | assert os.path.exists(boundary_path)
67 | boundary_name = os.path.splitext(os.path.basename(boundary_path))[0]
68 | output_dir = args.output_dir or 'results/manipulation'
69 | job_name = f'{boundary_name.upper()}_{image_dir_name}'
70 | logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')
71 |
72 | # Load model.
73 | logger.info(f'Loading generator.')
74 | tflib.init_tf({'rnd.np_random_seed': 1000})
75 | with open(args.model_path, 'rb') as f:
76 | _, _, _, Gs = pickle.load(f)
77 |
78 | # Build graph.
79 | logger.info(f'Building graph.')
80 | sess = tf.get_default_session()
81 | num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
82 | wp = tf.placeholder(
83 | tf.float32, [args.batch_size, num_layers, latent_dim], name='latent_code')
84 | x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
85 |
86 | # Load image, codes, and boundary.
87 | logger.info(f'Loading images and corresponding inverted latent codes.')
88 | image_list = []
89 | with open(f'{image_dir}/image_list.txt', 'r') as f:
90 | for line in f:
91 | name = os.path.splitext(os.path.basename(line.strip()))[0]
92 | assert os.path.exists(f'{image_dir}/{name}_ori.png')
93 | assert os.path.exists(f'{image_dir}/{name}_inv.png')
94 | image_list.append(name)
95 | latent_codes = np.load(f'{image_dir}/inverted_codes.npy')
96 | assert latent_codes.shape[0] == len(image_list)
97 | num_images = latent_codes.shape[0]
98 | logger.info(f'Loading boundary.')
99 | boundary_file = np.load(boundary_path, allow_pickle=True)[()]
100 | if isinstance(boundary_file, dict):
101 | boundary = boundary_file['boundary']
102 | manipulate_layers = boundary_file['meta_data']['manipulate_layers']
103 | else:
104 | boundary = boundary_file
105 | manipulate_layers = args.manipulate_layers
106 | if manipulate_layers:
107 | logger.info(f' Manipulating on layers `{manipulate_layers}`.')
108 | else:
109 | logger.info(f' Manipulating on ALL layers.')
110 |
111 | # Manipulate images.
112 | logger.info(f'Start manipulation.')
113 | step = args.step
114 | viz_size = None if args.viz_size == 0 else args.viz_size
115 | visualizer = HtmlPageVisualizer(
116 | num_rows=num_images, num_cols=step + 3, viz_size=viz_size)
117 | visualizer.set_headers(
118 | ['Name', 'Origin', 'Inverted'] +
119 | [f'Step {i:02d}' for i in range(1, step + 1)]
120 | )
121 | for img_idx, img_name in enumerate(image_list):
122 | ori_image = load_image(f'{image_dir}/{img_name}_ori.png')
123 | inv_image = load_image(f'{image_dir}/{img_name}_inv.png')
124 | visualizer.set_cell(img_idx, 0, text=img_name)
125 | visualizer.set_cell(img_idx, 1, image=ori_image)
126 | visualizer.set_cell(img_idx, 2, image=inv_image)
127 |
128 | codes = manipulate(latent_codes=latent_codes,
129 | boundary=boundary,
130 | start_distance=args.start_distance,
131 | end_distance=args.end_distance,
132 | step=step,
133 | layerwise_manipulation=True,
134 | num_layers=num_layers,
135 | manipulate_layers=manipulate_layers,
136 | is_code_layerwise=True,
137 | is_boundary_layerwise=True)
138 | inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
139 | for img_idx in tqdm(range(num_images), leave=False):
140 | output_images = []
141 | for idx in range(0, step, args.batch_size):
142 | batch = codes[img_idx, idx:idx + args.batch_size]
143 | inputs[0:len(batch)] = batch
144 | images = sess.run(x, feed_dict={wp: inputs})
145 | output_images.append(images[0:len(batch)])
146 | output_images = adjust_pixel_range(np.concatenate(output_images, axis=0))
147 | for s, output_image in enumerate(output_images):
148 | visualizer.set_cell(img_idx, s + 3, image=output_image)
149 |
150 | # Save results.
151 | visualizer.save(f'{output_dir}/{job_name}.html')
152 |
153 |
154 | if __name__ == '__main__':
155 | main()
156 |
--------------------------------------------------------------------------------
/dnnlib/tflib/autosummary.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Helper for adding automatically tracked values to Tensorboard.
9 |
10 | Autosummary creates an identity op that internally keeps track of the input
11 | values and automatically shows up in TensorBoard. The reported value
12 | represents an average over input components. The average is accumulated
13 | constantly over time and flushed when save_summaries() is called.
14 |
15 | Notes:
16 | - The output tensor must be used as an input for something else in the
17 | graph. Otherwise, the autosummary op will not get executed, and the average
18 | value will not get accumulated.
19 | - It is perfectly fine to include autosummaries with the same name in
20 | several places throughout the graph, even if they are executed concurrently.
21 | - It is ok to also pass in a python scalar or numpy array. In this case, it
22 | is added to the average immediately.
23 | """
24 |
25 | from collections import OrderedDict
26 | import numpy as np
27 | import tensorflow as tf
28 | from tensorboard import summary as summary_lib
29 | from tensorboard.plugins.custom_scalar import layout_pb2
30 |
31 | from . import tfutil
32 | from .tfutil import TfExpression
33 | from .tfutil import TfExpressionEx
34 |
35 | _dtype = tf.float64
36 | _vars = OrderedDict() # name => [var, ...]
37 | _immediate = OrderedDict() # name => update_op, update_value
38 | _finalized = False
39 | _merge_op = None
40 |
41 |
42 | def _create_var(name: str, value_expr: TfExpression) -> TfExpression:
43 | """Internal helper for creating autosummary accumulators."""
44 | assert not _finalized
45 | name_id = name.replace("/", "_")
46 | v = tf.cast(value_expr, _dtype)
47 |
48 | if v.shape.is_fully_defined():
49 | size = np.prod(tfutil.shape_to_list(v.shape))
50 | size_expr = tf.constant(size, dtype=_dtype)
51 | else:
52 | size = None
53 | size_expr = tf.reduce_prod(tf.cast(tf.shape(v), _dtype))
54 |
55 | if size == 1:
56 | if v.shape.ndims != 0:
57 | v = tf.reshape(v, [])
58 | v = [size_expr, v, tf.square(v)]
59 | else:
60 | v = [size_expr, tf.reduce_sum(v), tf.reduce_sum(tf.square(v))]
61 | v = tf.cond(tf.is_finite(v[1]), lambda: tf.stack(v), lambda: tf.zeros(3, dtype=_dtype))
62 |
63 | with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.control_dependencies(None):
64 | var = tf.Variable(tf.zeros(3, dtype=_dtype), trainable=False) # [sum(1), sum(x), sum(x**2)]
65 | update_op = tf.cond(tf.is_variable_initialized(var), lambda: tf.assign_add(var, v), lambda: tf.assign(var, v))
66 |
67 | if name in _vars:
68 | _vars[name].append(var)
69 | else:
70 | _vars[name] = [var]
71 | return update_op
72 |
73 |
74 | def autosummary(name: str, value: TfExpressionEx, passthru: TfExpressionEx = None) -> TfExpressionEx:
75 | """Create a new autosummary.
76 |
77 | Args:
78 | name: Name to use in TensorBoard
79 | value: TensorFlow expression or python value to track
80 | passthru: Optionally return this TF node without modifications but tack an autosummary update side-effect to this node.
81 |
82 | Example use of the passthru mechanism:
83 |
84 | n = autosummary('l2loss', loss, passthru=n)
85 |
86 | This is a shorthand for the following code:
87 |
88 | with tf.control_dependencies([autosummary('l2loss', loss)]):
89 | n = tf.identity(n)
90 | """
91 | tfutil.assert_tf_initialized()
92 | name_id = name.replace("/", "_")
93 |
94 | if tfutil.is_tf_expression(value):
95 | with tf.name_scope("summary_" + name_id), tf.device(value.device):
96 | update_op = _create_var(name, value)
97 | with tf.control_dependencies([update_op]):
98 | return tf.identity(value if passthru is None else passthru)
99 |
100 | else: # python scalar or numpy array
101 | if name not in _immediate:
102 | with tfutil.absolute_name_scope("Autosummary/" + name_id), tf.device(None), tf.control_dependencies(None):
103 | update_value = tf.placeholder(_dtype)
104 | update_op = _create_var(name, update_value)
105 | _immediate[name] = update_op, update_value
106 |
107 | update_op, update_value = _immediate[name]
108 | tfutil.run(update_op, {update_value: value})
109 | return value if passthru is None else passthru
110 |
111 |
112 | def finalize_autosummaries() -> None:
113 | """Create the necessary ops to include autosummaries in TensorBoard report.
114 | Note: This should be done only once per graph.
115 | """
116 | global _finalized
117 | tfutil.assert_tf_initialized()
118 |
119 | if _finalized:
120 | return None
121 |
122 | _finalized = True
123 | tfutil.init_uninitialized_vars([var for vars_list in _vars.values() for var in vars_list])
124 |
125 | # Create summary ops.
126 | with tf.device(None), tf.control_dependencies(None):
127 | for name, vars_list in _vars.items():
128 | name_id = name.replace("/", "_")
129 | with tfutil.absolute_name_scope("Autosummary/" + name_id):
130 | moments = tf.add_n(vars_list)
131 | moments /= moments[0]
132 | with tf.control_dependencies([moments]): # read before resetting
133 | reset_ops = [tf.assign(var, tf.zeros(3, dtype=_dtype)) for var in vars_list]
134 | with tf.name_scope(None), tf.control_dependencies(reset_ops): # reset before reporting
135 | mean = moments[1]
136 | std = tf.sqrt(moments[2] - tf.square(moments[1]))
137 | tf.summary.scalar(name, mean)
138 | tf.summary.scalar("xCustomScalars/" + name + "/margin_lo", mean - std)
139 | tf.summary.scalar("xCustomScalars/" + name + "/margin_hi", mean + std)
140 |
141 | # Group by category and chart name.
142 | cat_dict = OrderedDict()
143 | for series_name in sorted(_vars.keys()):
144 | p = series_name.split("/")
145 | cat = p[0] if len(p) >= 2 else ""
146 | chart = "/".join(p[1:-1]) if len(p) >= 3 else p[-1]
147 | if cat not in cat_dict:
148 | cat_dict[cat] = OrderedDict()
149 | if chart not in cat_dict[cat]:
150 | cat_dict[cat][chart] = []
151 | cat_dict[cat][chart].append(series_name)
152 |
153 | # Setup custom_scalar layout.
154 | categories = []
155 | for cat_name, chart_dict in cat_dict.items():
156 | charts = []
157 | for chart_name, series_names in chart_dict.items():
158 | series = []
159 | for series_name in series_names:
160 | series.append(layout_pb2.MarginChartContent.Series(
161 | value=series_name,
162 | lower="xCustomScalars/" + series_name + "/margin_lo",
163 | upper="xCustomScalars/" + series_name + "/margin_hi"))
164 | margin = layout_pb2.MarginChartContent(series=series)
165 | charts.append(layout_pb2.Chart(title=chart_name, margin=margin))
166 | categories.append(layout_pb2.Category(title=cat_name, chart=charts))
167 | layout = summary_lib.custom_scalar_pb(layout_pb2.Layout(category=categories))
168 | return layout
169 |
170 | def save_summaries(file_writer, global_step=None):
171 | """Call FileWriter.add_summary() with all summaries in the default graph,
172 | automatically finalizing and merging them on the first call.
173 | """
174 | global _merge_op
175 | tfutil.assert_tf_initialized()
176 |
177 | if _merge_op is None:
178 | layout = finalize_autosummaries()
179 | if layout is not None:
180 | file_writer.add_summary(layout)
181 | with tf.device(None), tf.control_dependencies(None):
182 | _merge_op = tf.summary.merge_all()
183 |
184 | file_writer.add_summary(_merge_op.eval(), global_step)
185 |
--------------------------------------------------------------------------------
/docs/index.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 | IDInvert
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
32 |
33 |
39 |
40 | 1 The Chinese University of Hong Kong
41 | 2 Xiaomi AI Lab
42 |
43 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
Overview
59 |
60 | In this work, we argue that the GAN inversion task is required
61 | not only to reconstruct the target image by pixel values,
62 | but also to keep the inverted code in the semantic domain of the original latent space of well-trained GANs. For this purpose, we propose In-Domain GAN inversion (IDInvert) by
63 | first training a novel domain-guided encoder which is able to produce in-domain latent code,
64 | and then performing domain-regularized optimization which involves the encoder as a regularizer to land the
65 | code inside the latent space when being finetuned.
66 | The in-domain codes produced by IDInvert enable high-quality real image editing with fixed GAN models.
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
Results
75 |
76 | Semantic diffusion results.
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 | Image editing results.
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 | See more results in the following demo video:
93 |
94 |
95 | VIDEO
99 |
100 |
101 | This work is featured in
Two Minute Papers Youtube channel as below:
102 |
103 |
104 | VIDEO
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
BibTeX
118 |
119 | @inproceedings{zhu2020indomain,
120 | title = {In-domain GAN Inversion for Real Image Editing},
121 | author = {Zhu, Jiapeng and Shen, Yujun and Zhao, Deli and Zhou, Bolei},
122 | booktitle = {Proceedings of European Conference on Computer Vision (ECCV)},
123 | year = {2020}
124 | }
125 |
126 |
127 |
Related Work
128 |
139 |
150 |
161 |
172 |
183 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
--------------------------------------------------------------------------------
/invert.py:
--------------------------------------------------------------------------------
1 | # python 3.6
2 | """Inverts given images to latent codes with In-Domain GAN Inversion.
3 |
4 | Basically, for a particular image (real or synthesized), this script first
5 | employs the domain-guided encoder to produce a initial point in the latent
6 | space and then performs domain-regularized optimization to refine the latent
7 | code.
8 | """
9 |
10 | import os
11 | import argparse
12 | import pickle
13 | from tqdm import tqdm
14 | import numpy as np
15 | import tensorflow as tf
16 | from dnnlib import tflib
17 |
18 | from perceptual_model import PerceptualModel
19 | from utils.logger import setup_logger
20 | from utils.visualizer import adjust_pixel_range
21 | from utils.visualizer import HtmlPageVisualizer
22 | from utils.visualizer import save_image, load_image, resize_image
23 |
24 |
25 | def parse_args():
26 | """Parses arguments."""
27 | parser = argparse.ArgumentParser()
28 | parser.add_argument('model_path', type=str,
29 | help='Path to the pre-trained model.')
30 | parser.add_argument('image_list', type=str,
31 | help='List of images to invert.')
32 | parser.add_argument('-o', '--output_dir', type=str, default='',
33 | help='Directory to save the results. If not specified, '
34 | '`./results/inversion/${IMAGE_LIST}` '
35 | 'will be used by default.')
36 | parser.add_argument('--batch_size', type=int, default=4,
37 | help='Batch size. (default: 4)')
38 | parser.add_argument('--learning_rate', type=float, default=0.01,
39 | help='Learning rate for optimization. (default: 0.01)')
40 | parser.add_argument('--num_iterations', type=int, default=100,
41 | help='Number of optimization iterations. (default: 100)')
42 | parser.add_argument('--num_results', type=int, default=5,
43 | help='Number of intermediate optimization results to '
44 | 'save for each sample. (default: 5)')
45 | parser.add_argument('-R', '--random_init', action='store_true',
46 | help='Whether to use random initialization instead of '
47 | 'the output from encoder. (default: False)')
48 | parser.add_argument('-E', '--domain_regularizer', action='store_false',
49 | help='Whether to use domain regularizer for '
50 | 'optimization. (default: True)')
51 | parser.add_argument('--loss_weight_feat', type=float, default=5e-5,
52 | help='The perceptual loss scale for optimization. '
53 | '(default: 5e-5)')
54 | parser.add_argument('--loss_weight_enc', type=float, default=2.0,
55 | help='The encoder loss scale for optimization.'
56 | '(default: 2.0)')
57 | parser.add_argument('--viz_size', type=int, default=256,
58 | help='Image size for visualization. (default: 256)')
59 | parser.add_argument('--gpu_id', type=str, default='0',
60 | help='Which GPU(s) to use. (default: `0`)')
61 | return parser.parse_args()
62 |
63 |
64 | def main():
65 | """Main function."""
66 | args = parse_args()
67 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
68 | assert os.path.exists(args.image_list)
69 | image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
70 | output_dir = args.output_dir or f'results/inversion/{image_list_name}'
71 | logger = setup_logger(output_dir, 'inversion.log', 'inversion_logger')
72 |
73 | logger.info(f'Loading model.')
74 | tflib.init_tf({'rnd.np_random_seed': 1000})
75 | with open(args.model_path, 'rb') as f:
76 | E, _, _, Gs = pickle.load(f)
77 |
78 | # Get input size.
79 | image_size = E.input_shape[2]
80 | assert image_size == E.input_shape[3]
81 |
82 | # Build graph.
83 | logger.info(f'Building graph.')
84 | sess = tf.get_default_session()
85 | input_shape = E.input_shape
86 | input_shape[0] = args.batch_size
87 | x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
88 | x_255 = (tf.transpose(x, [0, 2, 3, 1]) + 1) / 2 * 255
89 | latent_shape = Gs.components.synthesis.input_shape
90 | latent_shape[0] = args.batch_size
91 | wp = tf.get_variable(shape=latent_shape, name='latent_code')
92 | x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
93 | x_rec_255 = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) / 2 * 255
94 | if args.random_init:
95 | logger.info(f' Use random initialization for optimization.')
96 | wp_rnd = tf.random.normal(shape=latent_shape, name='latent_code_init')
97 | setter = tf.assign(wp, wp_rnd)
98 | else:
99 | logger.info(f' Use encoder output as the initialization for optimization.')
100 | w_enc = E.get_output_for(x, is_training=False)
101 | wp_enc = tf.reshape(w_enc, latent_shape)
102 | setter = tf.assign(wp, wp_enc)
103 |
104 | # Settings for optimization.
105 | logger.info(f'Setting configuration for optimization.')
106 | perceptual_model = PerceptualModel([image_size, image_size], False)
107 | x_feat = perceptual_model(x_255)
108 | x_rec_feat = perceptual_model(x_rec_255)
109 | loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
110 | loss_pix = tf.reduce_mean(tf.square(x - x_rec), axis=[1, 2, 3])
111 | if args.domain_regularizer:
112 | logger.info(f' Involve encoder for optimization.')
113 | w_enc_new = E.get_output_for(x_rec, is_training=False)
114 | wp_enc_new = tf.reshape(w_enc_new, latent_shape)
115 | loss_enc = tf.reduce_mean(tf.square(wp - wp_enc_new), axis=[1, 2])
116 | else:
117 | logger.info(f' Do NOT involve encoder for optimization.')
118 | loss_enc = 0
119 | loss = (loss_pix +
120 | args.loss_weight_feat * loss_feat +
121 | args.loss_weight_enc * loss_enc)
122 | optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
123 | train_op = optimizer.minimize(loss, var_list=[wp])
124 | tflib.init_uninitialized_vars()
125 |
126 | # Load image list.
127 | logger.info(f'Loading image list.')
128 | image_list = []
129 | with open(args.image_list, 'r') as f:
130 | for line in f:
131 | image_list.append(line.strip())
132 |
133 | # Invert images.
134 | logger.info(f'Start inversion.')
135 | save_interval = args.num_iterations // args.num_results
136 | headers = ['Name', 'Original Image', 'Encoder Output']
137 | for step in range(1, args.num_iterations + 1):
138 | if step == args.num_iterations or step % save_interval == 0:
139 | headers.append(f'Step {step:06d}')
140 | viz_size = None if args.viz_size == 0 else args.viz_size
141 | visualizer = HtmlPageVisualizer(
142 | num_rows=len(image_list), num_cols=len(headers), viz_size=viz_size)
143 | visualizer.set_headers(headers)
144 |
145 | images = np.zeros(input_shape, np.uint8)
146 | names = ['' for _ in range(args.batch_size)]
147 | latent_codes_enc = []
148 | latent_codes = []
149 | for img_idx in tqdm(range(0, len(image_list), args.batch_size), leave=False):
150 | # Load inputs.
151 | batch = image_list[img_idx:img_idx + args.batch_size]
152 | for i, image_path in enumerate(batch):
153 | image = resize_image(load_image(image_path), (image_size, image_size))
154 | images[i] = np.transpose(image, [2, 0, 1])
155 | names[i] = os.path.splitext(os.path.basename(image_path))[0]
156 | inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
157 | # Run encoder.
158 | sess.run([setter], {x: inputs})
159 | outputs = sess.run([wp, x_rec])
160 | latent_codes_enc.append(outputs[0][0:len(batch)])
161 | outputs[1] = adjust_pixel_range(outputs[1])
162 | for i, _ in enumerate(batch):
163 | image = np.transpose(images[i], [1, 2, 0])
164 | save_image(f'{output_dir}/{names[i]}_ori.png', image)
165 | save_image(f'{output_dir}/{names[i]}_enc.png', outputs[1][i])
166 | visualizer.set_cell(i + img_idx, 0, text=names[i])
167 | visualizer.set_cell(i + img_idx, 1, image=image)
168 | visualizer.set_cell(i + img_idx, 2, image=outputs[1][i])
169 | # Optimize latent codes.
170 | col_idx = 3
171 | for step in tqdm(range(1, args.num_iterations + 1), leave=False):
172 | sess.run(train_op, {x: inputs})
173 | if step == args.num_iterations or step % save_interval == 0:
174 | outputs = sess.run([wp, x_rec])
175 | outputs[1] = adjust_pixel_range(outputs[1])
176 | for i, _ in enumerate(batch):
177 | if step == args.num_iterations:
178 | save_image(f'{output_dir}/{names[i]}_inv.png', outputs[1][i])
179 | visualizer.set_cell(i + img_idx, col_idx, image=outputs[1][i])
180 | col_idx += 1
181 | latent_codes.append(outputs[0][0:len(batch)])
182 |
183 | # Save results.
184 | os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
185 | np.save(f'{output_dir}/encoded_codes.npy',
186 | np.concatenate(latent_codes_enc, axis=0))
187 | np.save(f'{output_dir}/inverted_codes.npy',
188 | np.concatenate(latent_codes, axis=0))
189 | visualizer.save(f'{output_dir}/inversion.html')
190 |
191 |
192 | if __name__ == '__main__':
193 | main()
194 |
--------------------------------------------------------------------------------
/diffuse.py:
--------------------------------------------------------------------------------
1 | # python 3.6
2 | """diffuses target images to context images with In-domain GAN Inversion.
3 |
4 | Basically, this script first copies the central region from the target image to
5 | the context image, and then performs in-domain GAN inversion on the stitched
6 | image. Different from `intert.py`, masked reconstruction loss is used in the
7 | optimization stage.
8 |
9 | NOTE: This script will diffuse every image from `target_image_list` to every
10 | image from `context_image_list`.
11 | """
12 |
13 | import os
14 | import argparse
15 | import pickle
16 | from tqdm import tqdm
17 | import numpy as np
18 | import tensorflow as tf
19 | from dnnlib import tflib
20 |
21 | from perceptual_model import PerceptualModel
22 | from utils.logger import setup_logger
23 | from utils.visualizer import adjust_pixel_range
24 | from utils.visualizer import HtmlPageVisualizer
25 | from utils.visualizer import load_image, resize_image
26 |
27 |
28 | def parse_args():
29 | """Parses arguments."""
30 | parser = argparse.ArgumentParser()
31 | parser.add_argument('model_path', type=str,
32 | help='Path to the pre-trained model.')
33 | parser.add_argument('target_list', type=str,
34 | help='List of target images to diffuse from.')
35 | parser.add_argument('context_list', type=str,
36 | help='List of context images to diffuse to.')
37 | parser.add_argument('-o', '--output_dir', type=str, default='',
38 | help='Directory to save the results. If not specified, '
39 | '`./results/diffusion` will be used by default.')
40 | parser.add_argument('-s', '--crop_size', type=int, default=110,
41 | help='Crop size. (default: 110)')
42 | parser.add_argument('-x', '--center_x', type=int, default=125,
43 | help='X-coordinate (column) of the center of the cropped '
44 | 'patch. This field should be adjusted according to '
45 | 'dataset and image size. (default: 125)')
46 | parser.add_argument('-y', '--center_y', type=int, default=145,
47 | help='Y-coordinate (row) of the center of the cropped '
48 | 'patch. This field should be adjusted according to '
49 | 'dataset and image size. (default: 145)')
50 | parser.add_argument('--batch_size', type=int, default=4,
51 | help='Batch size. (default: 4)')
52 | parser.add_argument('--learning_rate', type=float, default=0.01,
53 | help='Learning rate for optimization. (default: 0.01)')
54 | parser.add_argument('--num_iterations', type=int, default=100,
55 | help='Number of optimization iterations. (default: 100)')
56 | parser.add_argument('--num_results', type=int, default=5,
57 | help='Number of intermediate optimization results to '
58 | 'save for each sample. (default: 5)')
59 | parser.add_argument('--loss_weight_feat', type=float, default=5e-5,
60 | help='The perceptual loss scale for optimization. '
61 | '(default: 5e-5)')
62 | parser.add_argument('--viz_size', type=int, default=256,
63 | help='Image size for visualization. (default: 256)')
64 | parser.add_argument('--gpu_id', type=str, default='0',
65 | help='Which GPU(s) to use. (default: `0`)')
66 | return parser.parse_args()
67 |
68 |
69 | def main():
70 | """Main function."""
71 | args = parse_args()
72 | os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
73 | assert os.path.exists(args.target_list)
74 | target_list_name = os.path.splitext(os.path.basename(args.target_list))[0]
75 | assert os.path.exists(args.context_list)
76 | context_list_name = os.path.splitext(os.path.basename(args.context_list))[0]
77 | output_dir = args.output_dir or f'results/diffusion'
78 | job_name = f'{target_list_name}_TO_{context_list_name}'
79 | logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')
80 |
81 | logger.info(f'Loading model.')
82 | tflib.init_tf({'rnd.np_random_seed': 1000})
83 | with open(args.model_path, 'rb') as f:
84 | E, _, _, Gs = pickle.load(f)
85 |
86 | # Get input size.
87 | image_size = E.input_shape[2]
88 | assert image_size == E.input_shape[3]
89 | crop_size = args.crop_size
90 | crop_x = args.center_x - crop_size // 2
91 | crop_y = args.center_y - crop_size // 2
92 | mask = np.zeros((1, image_size, image_size, 3), dtype=np.float32)
93 | mask[:, crop_y:crop_y + crop_size, crop_x:crop_x + crop_size, :] = 1.0
94 |
95 | # Build graph.
96 | logger.info(f'Building graph.')
97 | sess = tf.get_default_session()
98 | input_shape = E.input_shape
99 | input_shape[0] = args.batch_size
100 | x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
101 | x_mask = (tf.transpose(x, [0, 2, 3, 1]) + 1) * mask - 1
102 | x_mask_255 = (x_mask + 1) / 2 * 255
103 | latent_shape = Gs.components.synthesis.input_shape
104 | latent_shape[0] = args.batch_size
105 | wp = tf.get_variable(shape=latent_shape, name='latent_code')
106 | x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
107 | x_rec_mask = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) * mask - 1
108 | x_rec_mask_255 = (x_rec_mask + 1) / 2 * 255
109 |
110 | w_enc = E.get_output_for(x, is_training=False)
111 | wp_enc = tf.reshape(w_enc, latent_shape)
112 | setter = tf.assign(wp, wp_enc)
113 |
114 | # Settings for optimization.
115 | logger.info(f'Setting configuration for optimization.')
116 | perceptual_model = PerceptualModel([image_size, image_size], False)
117 | x_feat = perceptual_model(x_mask_255)
118 | x_rec_feat = perceptual_model(x_rec_mask_255)
119 | loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
120 | loss_pix = tf.reduce_mean(tf.square(x_mask - x_rec_mask), axis=[1, 2, 3])
121 |
122 | loss = loss_pix + args.loss_weight_feat * loss_feat
123 | optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
124 | train_op = optimizer.minimize(loss, var_list=[wp])
125 | tflib.init_uninitialized_vars()
126 |
127 | # Load image list.
128 | logger.info(f'Loading target images and context images.')
129 | target_list = []
130 | with open(args.target_list, 'r') as f:
131 | for line in f:
132 | target_list.append(line.strip())
133 | num_targets = len(target_list)
134 | context_list = []
135 | with open(args.context_list, 'r') as f:
136 | for line in f:
137 | context_list.append(line.strip())
138 | num_contexts = len(context_list)
139 | num_pairs = num_targets * num_contexts
140 |
141 | # Invert images.
142 | logger.info(f'Start diffusion.')
143 | save_interval = args.num_iterations // args.num_results
144 | headers = ['Target Image', 'Context Image', 'Stitched Image',
145 | 'Encoder Output']
146 | for step in range(1, args.num_iterations + 1):
147 | if step == args.num_iterations or step % save_interval == 0:
148 | headers.append(f'Step {step:06d}')
149 | viz_size = None if args.viz_size == 0 else args.viz_size
150 | visualizer = HtmlPageVisualizer(
151 | num_rows=num_pairs, num_cols=len(headers), viz_size=viz_size)
152 | visualizer.set_headers(headers)
153 |
154 | images = np.zeros(input_shape, np.uint8)
155 | latent_codes_enc = []
156 | latent_codes = []
157 | for target_idx in tqdm(range(num_targets), desc='Target ID', leave=False):
158 | # Load target.
159 | target_image = resize_image(load_image(target_list[target_idx]),
160 | (image_size, image_size))
161 | visualizer.set_cell(target_idx * num_contexts, 0, image=target_image)
162 | for context_idx in tqdm(range(0, num_contexts, args.batch_size),
163 | desc='Context ID', leave=False):
164 | row_idx = target_idx * num_contexts + context_idx
165 | batch = context_list[context_idx:context_idx + args.batch_size]
166 | for i, context_image_path in enumerate(batch):
167 | context_image = resize_image(load_image(context_image_path),
168 | (image_size, image_size))
169 | visualizer.set_cell(row_idx + i, 1, image=context_image)
170 | context_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = (
171 | target_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size])
172 | visualizer.set_cell(row_idx + i, 2, image=context_image)
173 | images[i] = np.transpose(context_image, [2, 0, 1])
174 | inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
175 | # Run encoder.
176 | sess.run([setter], {x: inputs})
177 | outputs = sess.run([wp, x_rec])
178 | latent_codes_enc.append(outputs[0][0:len(batch)])
179 | outputs[1] = adjust_pixel_range(outputs[1])
180 | for i, _ in enumerate(batch):
181 | visualizer.set_cell(row_idx + i, 3, image=outputs[1][i])
182 | # Optimize latent codes.
183 | col_idx = 4
184 | for step in tqdm(range(1, args.num_iterations + 1), leave=False):
185 | sess.run(train_op, {x: inputs})
186 | if step == args.num_iterations or step % save_interval == 0:
187 | outputs = sess.run([wp, x_rec])
188 | outputs[1] = adjust_pixel_range(outputs[1])
189 | for i, _ in enumerate(batch):
190 | visualizer.set_cell(row_idx + i, col_idx, image=outputs[1][i])
191 | col_idx += 1
192 | latent_codes.append(outputs[0][0:len(batch)])
193 |
194 | # Save results.
195 | code_shape = [num_targets, num_contexts] + list(latent_shape[1:])
196 | np.save(f'{output_dir}/{job_name}_encoded_codes.npy',
197 | np.concatenate(latent_codes_enc, axis=0).reshape(code_shape))
198 | np.save(f'{output_dir}/{job_name}_inverted_codes.npy',
199 | np.concatenate(latent_codes, axis=0).reshape(code_shape))
200 | visualizer.save(f'{output_dir}/{job_name}.html')
201 |
202 |
203 | if __name__ == '__main__':
204 | main()
205 |
--------------------------------------------------------------------------------
/generate_figures.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Minimal script for reproducing the figures of the StyleGAN paper using pre-trained generators."""
9 |
10 | import os
11 | import pickle
12 | import numpy as np
13 | import PIL.Image
14 | import dnnlib
15 | import dnnlib.tflib as tflib
16 | import config
17 |
18 | #----------------------------------------------------------------------------
19 | # Helpers for loading and using pre-trained generators.
20 |
21 | url_ffhq = 'https://drive.google.com/uc?id=1MEGjdvVpUsu1jB4zrXZN7Y4kBBOzizDQ' # karras2019stylegan-ffhq-1024x1024.pkl
22 | url_celebahq = 'https://drive.google.com/uc?id=1MGqJl28pN4t7SAtSrPdSRJSQJqahkzUf' # karras2019stylegan-celebahq-1024x1024.pkl
23 | url_bedrooms = 'https://drive.google.com/uc?id=1MOSKeGF0FJcivpBI7s63V9YHloUTORiF' # karras2019stylegan-bedrooms-256x256.pkl
24 | url_cars = 'https://drive.google.com/uc?id=1MJ6iCfNtMIRicihwRorsM3b7mmtmK9c3' # karras2019stylegan-cars-512x384.pkl
25 | url_cats = 'https://drive.google.com/uc?id=1MQywl0FNt6lHu8E_EUqnRbviagS7fbiJ' # karras2019stylegan-cats-256x256.pkl
26 |
27 | synthesis_kwargs = dict(output_transform=dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True), minibatch_size=8)
28 |
29 | _Gs_cache = dict()
30 |
31 | def load_Gs(url):
32 | if url not in _Gs_cache:
33 | with dnnlib.util.open_url(url, cache_dir=config.cache_dir) as f:
34 | _G, _D, Gs = pickle.load(f)
35 | _Gs_cache[url] = Gs
36 | return _Gs_cache[url]
37 |
38 | #----------------------------------------------------------------------------
39 | # Figures 2, 3, 10, 11, 12: Multi-resolution grid of uncurated result images.
40 |
41 | def draw_uncurated_result_figure(png, Gs, cx, cy, cw, ch, rows, lods, seed):
42 | print(png)
43 | latents = np.random.RandomState(seed).randn(sum(rows * 2**lod for lod in lods), Gs.input_shape[1])
44 | images = Gs.run(latents, None, **synthesis_kwargs) # [seed, y, x, rgb]
45 |
46 | canvas = PIL.Image.new('RGB', (sum(cw // 2**lod for lod in lods), ch * rows), 'white')
47 | image_iter = iter(list(images))
48 | for col, lod in enumerate(lods):
49 | for row in range(rows * 2**lod):
50 | image = PIL.Image.fromarray(next(image_iter), 'RGB')
51 | image = image.crop((cx, cy, cx + cw, cy + ch))
52 | image = image.resize((cw // 2**lod, ch // 2**lod), PIL.Image.ANTIALIAS)
53 | canvas.paste(image, (sum(cw // 2**lod for lod in lods[:col]), row * ch // 2**lod))
54 | canvas.save(png)
55 |
56 | #----------------------------------------------------------------------------
57 | # Figure 3: Style mixing.
58 |
59 | def draw_style_mixing_figure(png, Gs, w, h, src_seeds, dst_seeds, style_ranges):
60 | print(png)
61 | src_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in src_seeds)
62 | dst_latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in dst_seeds)
63 | src_dlatents = Gs.components.mapping.run(src_latents, None) # [seed, layer, component]
64 | dst_dlatents = Gs.components.mapping.run(dst_latents, None) # [seed, layer, component]
65 | src_images = Gs.components.synthesis.run(src_dlatents, randomize_noise=False, **synthesis_kwargs)
66 | dst_images = Gs.components.synthesis.run(dst_dlatents, randomize_noise=False, **synthesis_kwargs)
67 |
68 | canvas = PIL.Image.new('RGB', (w * (len(src_seeds) + 1), h * (len(dst_seeds) + 1)), 'white')
69 | for col, src_image in enumerate(list(src_images)):
70 | canvas.paste(PIL.Image.fromarray(src_image, 'RGB'), ((col + 1) * w, 0))
71 | for row, dst_image in enumerate(list(dst_images)):
72 | canvas.paste(PIL.Image.fromarray(dst_image, 'RGB'), (0, (row + 1) * h))
73 | row_dlatents = np.stack([dst_dlatents[row]] * len(src_seeds))
74 | row_dlatents[:, style_ranges[row]] = src_dlatents[:, style_ranges[row]]
75 | row_images = Gs.components.synthesis.run(row_dlatents, randomize_noise=False, **synthesis_kwargs)
76 | for col, image in enumerate(list(row_images)):
77 | canvas.paste(PIL.Image.fromarray(image, 'RGB'), ((col + 1) * w, (row + 1) * h))
78 | canvas.save(png)
79 |
80 | #----------------------------------------------------------------------------
81 | # Figure 4: Noise detail.
82 |
83 | def draw_noise_detail_figure(png, Gs, w, h, num_samples, seeds):
84 | print(png)
85 | canvas = PIL.Image.new('RGB', (w * 3, h * len(seeds)), 'white')
86 | for row, seed in enumerate(seeds):
87 | latents = np.stack([np.random.RandomState(seed).randn(Gs.input_shape[1])] * num_samples)
88 | images = Gs.run(latents, None, truncation_psi=1, **synthesis_kwargs)
89 | canvas.paste(PIL.Image.fromarray(images[0], 'RGB'), (0, row * h))
90 | for i in range(4):
91 | crop = PIL.Image.fromarray(images[i + 1], 'RGB')
92 | crop = crop.crop((650, 180, 906, 436))
93 | crop = crop.resize((w//2, h//2), PIL.Image.NEAREST)
94 | canvas.paste(crop, (w + (i%2) * w//2, row * h + (i//2) * h//2))
95 | diff = np.std(np.mean(images, axis=3), axis=0) * 4
96 | diff = np.clip(diff + 0.5, 0, 255).astype(np.uint8)
97 | canvas.paste(PIL.Image.fromarray(diff, 'L'), (w * 2, row * h))
98 | canvas.save(png)
99 |
100 | #----------------------------------------------------------------------------
101 | # Figure 5: Noise components.
102 |
103 | def draw_noise_components_figure(png, Gs, w, h, seeds, noise_ranges, flips):
104 | print(png)
105 | Gsc = Gs.clone()
106 | noise_vars = [var for name, var in Gsc.components.synthesis.vars.items() if name.startswith('noise')]
107 | noise_pairs = list(zip(noise_vars, tflib.run(noise_vars))) # [(var, val), ...]
108 | latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in seeds)
109 | all_images = []
110 | for noise_range in noise_ranges:
111 | tflib.set_vars({var: val * (1 if i in noise_range else 0) for i, (var, val) in enumerate(noise_pairs)})
112 | range_images = Gsc.run(latents, None, truncation_psi=1, randomize_noise=False, **synthesis_kwargs)
113 | range_images[flips, :, :] = range_images[flips, :, ::-1]
114 | all_images.append(list(range_images))
115 |
116 | canvas = PIL.Image.new('RGB', (w * 2, h * 2), 'white')
117 | for col, col_images in enumerate(zip(*all_images)):
118 | canvas.paste(PIL.Image.fromarray(col_images[0], 'RGB').crop((0, 0, w//2, h)), (col * w, 0))
119 | canvas.paste(PIL.Image.fromarray(col_images[1], 'RGB').crop((w//2, 0, w, h)), (col * w + w//2, 0))
120 | canvas.paste(PIL.Image.fromarray(col_images[2], 'RGB').crop((0, 0, w//2, h)), (col * w, h))
121 | canvas.paste(PIL.Image.fromarray(col_images[3], 'RGB').crop((w//2, 0, w, h)), (col * w + w//2, h))
122 | canvas.save(png)
123 |
124 | #----------------------------------------------------------------------------
125 | # Figure 8: Truncation trick.
126 |
127 | def draw_truncation_trick_figure(png, Gs, w, h, seeds, psis):
128 | print(png)
129 | latents = np.stack(np.random.RandomState(seed).randn(Gs.input_shape[1]) for seed in seeds)
130 | dlatents = Gs.components.mapping.run(latents, None) # [seed, layer, component]
131 | dlatent_avg = Gs.get_var('dlatent_avg') # [component]
132 |
133 | canvas = PIL.Image.new('RGB', (w * len(psis), h * len(seeds)), 'white')
134 | for row, dlatent in enumerate(list(dlatents)):
135 | row_dlatents = (dlatent[np.newaxis] - dlatent_avg) * np.reshape(psis, [-1, 1, 1]) + dlatent_avg
136 | row_images = Gs.components.synthesis.run(row_dlatents, randomize_noise=False, **synthesis_kwargs)
137 | for col, image in enumerate(list(row_images)):
138 | canvas.paste(PIL.Image.fromarray(image, 'RGB'), (col * w, row * h))
139 | canvas.save(png)
140 |
141 | #----------------------------------------------------------------------------
142 | # Main program.
143 |
144 | def main():
145 | tflib.init_tf()
146 | os.makedirs(config.result_dir, exist_ok=True)
147 | draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure02-uncurated-ffhq.png'), load_Gs(url_ffhq), cx=0, cy=0, cw=1024, ch=1024, rows=3, lods=[0,1,2,2,3,3], seed=5)
148 | draw_style_mixing_figure(os.path.join(config.result_dir, 'figure03-style-mixing.png'), load_Gs(url_ffhq), w=1024, h=1024, src_seeds=[639,701,687,615,2268], dst_seeds=[888,829,1898,1733,1614,845], style_ranges=[range(0,4)]*3+[range(4,8)]*2+[range(8,18)])
149 | draw_noise_detail_figure(os.path.join(config.result_dir, 'figure04-noise-detail.png'), load_Gs(url_ffhq), w=1024, h=1024, num_samples=100, seeds=[1157,1012])
150 | draw_noise_components_figure(os.path.join(config.result_dir, 'figure05-noise-components.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[1967,1555], noise_ranges=[range(0, 18), range(0, 0), range(8, 18), range(0, 8)], flips=[1])
151 | draw_truncation_trick_figure(os.path.join(config.result_dir, 'figure08-truncation-trick.png'), load_Gs(url_ffhq), w=1024, h=1024, seeds=[91,388], psis=[1, 0.7, 0.5, 0, -0.5, -1])
152 | draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure10-uncurated-bedrooms.png'), load_Gs(url_bedrooms), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=0)
153 | draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure11-uncurated-cars.png'), load_Gs(url_cars), cx=0, cy=64, cw=512, ch=384, rows=4, lods=[0,1,2,2,3,3], seed=2)
154 | draw_uncurated_result_figure(os.path.join(config.result_dir, 'figure12-uncurated-cats.png'), load_Gs(url_cats), cx=0, cy=0, cw=256, ch=256, rows=5, lods=[0,0,1,1,2,2,2], seed=1)
155 |
156 | #----------------------------------------------------------------------------
157 |
158 | if __name__ == "__main__":
159 | main()
160 |
161 | #----------------------------------------------------------------------------
162 |
--------------------------------------------------------------------------------
/dnnlib/tflib/tfutil.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Miscellaneous helper utils for Tensorflow."""
9 |
10 | import os
11 | import numpy as np
12 | import tensorflow as tf
13 |
14 | from typing import Any, Iterable, List, Union
15 |
16 | TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
17 | """A type that represents a valid Tensorflow expression."""
18 |
19 | TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
20 | """A type that can be converted to a valid Tensorflow expression."""
21 |
22 |
23 | def run(*args, **kwargs) -> Any:
24 | """Run the specified ops in the default session."""
25 | assert_tf_initialized()
26 | return tf.get_default_session().run(*args, **kwargs)
27 |
28 |
29 | def is_tf_expression(x: Any) -> bool:
30 | """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
31 | return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))
32 |
33 |
34 | def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
35 | """Convert a Tensorflow shape to a list of ints."""
36 | return [dim.value for dim in shape]
37 |
38 |
39 | def flatten(x: TfExpressionEx) -> TfExpression:
40 | """Shortcut function for flattening a tensor."""
41 | with tf.name_scope("Flatten"):
42 | return tf.reshape(x, [-1])
43 |
44 |
45 | def log2(x: TfExpressionEx) -> TfExpression:
46 | """Logarithm in base 2."""
47 | with tf.name_scope("Log2"):
48 | return tf.log(x) * np.float32(1.0 / np.log(2.0))
49 |
50 |
51 | def exp2(x: TfExpressionEx) -> TfExpression:
52 | """Exponent in base 2."""
53 | with tf.name_scope("Exp2"):
54 | return tf.exp(x * np.float32(np.log(2.0)))
55 |
56 |
57 | def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
58 | """Linear interpolation."""
59 | with tf.name_scope("Lerp"):
60 | return a + (b - a) * t
61 |
62 |
63 | def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
64 | """Linear interpolation with clip."""
65 | with tf.name_scope("LerpClip"):
66 | return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)
67 |
68 |
69 | def absolute_name_scope(scope: str) -> tf.name_scope:
70 | """Forcefully enter the specified name scope, ignoring any surrounding scopes."""
71 | return tf.name_scope(scope + "/")
72 |
73 |
74 | def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
75 | """Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
76 | return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)
77 |
78 |
79 | def _sanitize_tf_config(config_dict: dict = None) -> dict:
80 | # Defaults.
81 | cfg = dict()
82 | cfg["rnd.np_random_seed"] = None # Random seed for NumPy. None = keep as is.
83 | cfg["rnd.tf_random_seed"] = "auto" # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
84 | cfg["env.TF_CPP_MIN_LOG_LEVEL"] = "1" # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
85 | cfg["graph_options.place_pruned_graph"] = True # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
86 | cfg["gpu_options.allow_growth"] = True # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.
87 |
88 | # User overrides.
89 | if config_dict is not None:
90 | cfg.update(config_dict)
91 | return cfg
92 |
93 |
94 | def init_tf(config_dict: dict = None) -> None:
95 | """Initialize TensorFlow session using good default settings."""
96 | # Skip if already initialized.
97 | if tf.get_default_session() is not None:
98 | return
99 |
100 | # Setup config dict and random seeds.
101 | cfg = _sanitize_tf_config(config_dict)
102 | np_random_seed = cfg["rnd.np_random_seed"]
103 | if np_random_seed is not None:
104 | np.random.seed(np_random_seed)
105 | tf_random_seed = cfg["rnd.tf_random_seed"]
106 | if tf_random_seed == "auto":
107 | tf_random_seed = np.random.randint(1 << 31)
108 | if tf_random_seed is not None:
109 | tf.set_random_seed(tf_random_seed)
110 |
111 | # Setup environment variables.
112 | for key, value in list(cfg.items()):
113 | fields = key.split(".")
114 | if fields[0] == "env":
115 | assert len(fields) == 2
116 | os.environ[fields[1]] = str(value)
117 |
118 | # Create default TensorFlow session.
119 | create_session(cfg, force_as_default=True)
120 |
121 |
122 | def assert_tf_initialized():
123 | """Check that TensorFlow session has been initialized."""
124 | if tf.get_default_session() is None:
125 | raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")
126 |
127 |
128 | def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
129 | """Create tf.Session based on config dict."""
130 | # Setup TensorFlow config proto.
131 | cfg = _sanitize_tf_config(config_dict)
132 | config_proto = tf.ConfigProto()
133 | for key, value in cfg.items():
134 | fields = key.split(".")
135 | if fields[0] not in ["rnd", "env"]:
136 | obj = config_proto
137 | for field in fields[:-1]:
138 | obj = getattr(obj, field)
139 | setattr(obj, fields[-1], value)
140 |
141 | # Create session.
142 | session = tf.Session(config=config_proto)
143 | if force_as_default:
144 | # pylint: disable=protected-access
145 | session._default_session = session.as_default()
146 | session._default_session.enforce_nesting = False
147 | session._default_session.__enter__() # pylint: disable=no-member
148 |
149 | return session
150 |
151 |
152 | def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
153 | """Initialize all tf.Variables that have not already been initialized.
154 |
155 | Equivalent to the following, but more efficient and does not bloat the tf graph:
156 | tf.variables_initializer(tf.report_uninitialized_variables()).run()
157 | """
158 | assert_tf_initialized()
159 | if target_vars is None:
160 | target_vars = tf.global_variables()
161 |
162 | test_vars = []
163 | test_ops = []
164 |
165 | with tf.control_dependencies(None): # ignore surrounding control_dependencies
166 | for var in target_vars:
167 | assert is_tf_expression(var)
168 |
169 | try:
170 | tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
171 | except KeyError:
172 | # Op does not exist => variable may be uninitialized.
173 | test_vars.append(var)
174 |
175 | with absolute_name_scope(var.name.split(":")[0]):
176 | test_ops.append(tf.is_variable_initialized(var))
177 |
178 | init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
179 | run([var.initializer for var in init_vars])
180 |
181 |
182 | def set_vars(var_to_value_dict: dict) -> None:
183 | """Set the values of given tf.Variables.
184 |
185 | Equivalent to the following, but more efficient and does not bloat the tf graph:
186 | tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
187 | """
188 | assert_tf_initialized()
189 | ops = []
190 | feed_dict = {}
191 |
192 | for var, value in var_to_value_dict.items():
193 | assert is_tf_expression(var)
194 |
195 | try:
196 | setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0")) # look for existing op
197 | except KeyError:
198 | with absolute_name_scope(var.name.split(":")[0]):
199 | with tf.control_dependencies(None): # ignore surrounding control_dependencies
200 | setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter") # create new setter
201 |
202 | ops.append(setter)
203 | feed_dict[setter.op.inputs[1]] = value
204 |
205 | run(ops, feed_dict)
206 |
207 |
208 | def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
209 | """Create tf.Variable with large initial value without bloating the tf graph."""
210 | assert_tf_initialized()
211 | assert isinstance(initial_value, np.ndarray)
212 | zeros = tf.zeros(initial_value.shape, initial_value.dtype)
213 | var = tf.Variable(zeros, *args, **kwargs)
214 | set_vars({var: initial_value})
215 | return var
216 |
217 |
218 | def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
219 | """Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
220 | Can be used as an input transformation for Network.run().
221 | """
222 | images = tf.cast(images, tf.float32)
223 | if nhwc_to_nchw:
224 | images = tf.transpose(images, [0, 3, 1, 2])
225 | return (images - drange[0]) * ((drange[1] - drange[0]) / 255)
226 |
227 |
228 | def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
229 | """Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
230 | Can be used as an output transformation for Network.run().
231 | """
232 | images = tf.cast(images, tf.float32)
233 | if shrink > 1:
234 | ksize = [1, 1, shrink, shrink]
235 | images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
236 | if nchw_to_nhwc:
237 | images = tf.transpose(images, [0, 2, 3, 1])
238 | scale = 255 / (drange[1] - drange[0])
239 | images = images * scale + (0.5 - drange[0] * scale)
240 | return tf.saturate_cast(images, tf.uint8)
241 |
--------------------------------------------------------------------------------
/dnnlib/tflib/optimizer.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Helper wrapper for a Tensorflow optimizer."""
9 |
10 | import numpy as np
11 | import tensorflow as tf
12 |
13 | from collections import OrderedDict
14 | from typing import List, Union
15 |
16 | from . import autosummary
17 | from . import tfutil
18 | from .. import util
19 |
20 | from .tfutil import TfExpression, TfExpressionEx
21 |
22 | try:
23 | # TensorFlow 1.13
24 | from tensorflow.python.ops import nccl_ops
25 | except:
26 | # Older TensorFlow versions
27 | import tensorflow.contrib.nccl as nccl_ops
28 |
29 | class Optimizer:
30 | """A Wrapper for tf.train.Optimizer.
31 |
32 | Automatically takes care of:
33 | - Gradient averaging for multi-GPU training.
34 | - Dynamic loss scaling and typecasts for FP16 training.
35 | - Ignoring corrupted gradients that contain NaNs/Infs.
36 | - Reporting statistics.
37 | - Well-chosen default settings.
38 | """
39 |
40 | def __init__(self,
41 | name: str = "Train",
42 | tf_optimizer: str = "tf.train.AdamOptimizer",
43 | learning_rate: TfExpressionEx = 0.001,
44 | use_loss_scaling: bool = False,
45 | loss_scaling_init: float = 64.0,
46 | loss_scaling_inc: float = 0.0005,
47 | loss_scaling_dec: float = 1.0,
48 | **kwargs):
49 |
50 | # Init fields.
51 | self.name = name
52 | self.learning_rate = tf.convert_to_tensor(learning_rate)
53 | self.id = self.name.replace("/", ".")
54 | self.scope = tf.get_default_graph().unique_name(self.id)
55 | self.optimizer_class = util.get_obj_by_name(tf_optimizer)
56 | self.optimizer_kwargs = dict(kwargs)
57 | self.use_loss_scaling = use_loss_scaling
58 | self.loss_scaling_init = loss_scaling_init
59 | self.loss_scaling_inc = loss_scaling_inc
60 | self.loss_scaling_dec = loss_scaling_dec
61 | self._grad_shapes = None # [shape, ...]
62 | self._dev_opt = OrderedDict() # device => optimizer
63 | self._dev_grads = OrderedDict() # device => [[(grad, var), ...], ...]
64 | self._dev_ls_var = OrderedDict() # device => variable (log2 of loss scaling factor)
65 | self._updates_applied = False
66 |
67 | def register_gradients(self, loss: TfExpression, trainable_vars: Union[List, dict]) -> None:
68 | """Register the gradients of the given loss function with respect to the given variables.
69 | Intended to be called once per GPU."""
70 | assert not self._updates_applied
71 |
72 | # Validate arguments.
73 | if isinstance(trainable_vars, dict):
74 | trainable_vars = list(trainable_vars.values()) # allow passing in Network.trainables as vars
75 |
76 | assert isinstance(trainable_vars, list) and len(trainable_vars) >= 1
77 | assert all(tfutil.is_tf_expression(expr) for expr in trainable_vars + [loss])
78 |
79 | if self._grad_shapes is None:
80 | self._grad_shapes = [tfutil.shape_to_list(var.shape) for var in trainable_vars]
81 |
82 | assert len(trainable_vars) == len(self._grad_shapes)
83 | assert all(tfutil.shape_to_list(var.shape) == var_shape for var, var_shape in zip(trainable_vars, self._grad_shapes))
84 |
85 | dev = loss.device
86 |
87 | assert all(var.device == dev for var in trainable_vars)
88 |
89 | # Register device and compute gradients.
90 | with tf.name_scope(self.id + "_grad"), tf.device(dev):
91 | if dev not in self._dev_opt:
92 | opt_name = self.scope.replace("/", "_") + "_opt%d" % len(self._dev_opt)
93 | assert callable(self.optimizer_class)
94 | self._dev_opt[dev] = self.optimizer_class(name=opt_name, learning_rate=self.learning_rate, **self.optimizer_kwargs)
95 | self._dev_grads[dev] = []
96 |
97 | loss = self.apply_loss_scaling(tf.cast(loss, tf.float32))
98 | grads = self._dev_opt[dev].compute_gradients(loss, trainable_vars, gate_gradients=tf.train.Optimizer.GATE_NONE) # disable gating to reduce memory usage
99 | grads = [(g, v) if g is not None else (tf.zeros_like(v), v) for g, v in grads] # replace disconnected gradients with zeros
100 | self._dev_grads[dev].append(grads)
101 |
102 | def apply_updates(self) -> tf.Operation:
103 | """Construct training op to update the registered variables based on their gradients."""
104 | tfutil.assert_tf_initialized()
105 | assert not self._updates_applied
106 | self._updates_applied = True
107 | devices = list(self._dev_grads.keys())
108 | total_grads = sum(len(grads) for grads in self._dev_grads.values())
109 | assert len(devices) >= 1 and total_grads >= 1
110 | ops = []
111 |
112 | with tfutil.absolute_name_scope(self.scope):
113 | # Cast gradients to FP32 and calculate partial sum within each device.
114 | dev_grads = OrderedDict() # device => [(grad, var), ...]
115 |
116 | for dev_idx, dev in enumerate(devices):
117 | with tf.name_scope("ProcessGrads%d" % dev_idx), tf.device(dev):
118 | sums = []
119 |
120 | for gv in zip(*self._dev_grads[dev]):
121 | assert all(v is gv[0][1] for g, v in gv)
122 | g = [tf.cast(g, tf.float32) for g, v in gv]
123 | g = g[0] if len(g) == 1 else tf.add_n(g)
124 | sums.append((g, gv[0][1]))
125 |
126 | dev_grads[dev] = sums
127 |
128 | # Sum gradients across devices.
129 | if len(devices) > 1:
130 | with tf.name_scope("SumAcrossGPUs"), tf.device(None):
131 | for var_idx, grad_shape in enumerate(self._grad_shapes):
132 | g = [dev_grads[dev][var_idx][0] for dev in devices]
133 |
134 | if np.prod(grad_shape): # nccl does not support zero-sized tensors
135 | g = nccl_ops.all_sum(g)
136 |
137 | for dev, gg in zip(devices, g):
138 | dev_grads[dev][var_idx] = (gg, dev_grads[dev][var_idx][1])
139 |
140 | # Apply updates separately on each device.
141 | for dev_idx, (dev, grads) in enumerate(dev_grads.items()):
142 | with tf.name_scope("ApplyGrads%d" % dev_idx), tf.device(dev):
143 | # Scale gradients as needed.
144 | if self.use_loss_scaling or total_grads > 1:
145 | with tf.name_scope("Scale"):
146 | coef = tf.constant(np.float32(1.0 / total_grads), name="coef")
147 | coef = self.undo_loss_scaling(coef)
148 | grads = [(g * coef, v) for g, v in grads]
149 |
150 | # Check for overflows.
151 | with tf.name_scope("CheckOverflow"):
152 | grad_ok = tf.reduce_all(tf.stack([tf.reduce_all(tf.is_finite(g)) for g, v in grads]))
153 |
154 | # Update weights and adjust loss scaling.
155 | with tf.name_scope("UpdateWeights"):
156 | # pylint: disable=cell-var-from-loop
157 | opt = self._dev_opt[dev]
158 | ls_var = self.get_loss_scaling_var(dev)
159 |
160 | if not self.use_loss_scaling:
161 | ops.append(tf.cond(grad_ok, lambda: opt.apply_gradients(grads), tf.no_op))
162 | else:
163 | ops.append(tf.cond(grad_ok,
164 | lambda: tf.group(tf.assign_add(ls_var, self.loss_scaling_inc), opt.apply_gradients(grads)),
165 | lambda: tf.group(tf.assign_sub(ls_var, self.loss_scaling_dec))))
166 |
167 | # Report statistics on the last device.
168 | if dev == devices[-1]:
169 | with tf.name_scope("Statistics"):
170 | ops.append(autosummary.autosummary(self.id + "/learning_rate", self.learning_rate))
171 | ops.append(autosummary.autosummary(self.id + "/overflow_frequency", tf.where(grad_ok, 0, 1)))
172 |
173 | if self.use_loss_scaling:
174 | ops.append(autosummary.autosummary(self.id + "/loss_scaling_log2", ls_var))
175 |
176 | # Initialize variables and group everything into a single op.
177 | self.reset_optimizer_state()
178 | tfutil.init_uninitialized_vars(list(self._dev_ls_var.values()))
179 |
180 | return tf.group(*ops, name="TrainingOp")
181 |
182 | def reset_optimizer_state(self) -> None:
183 | """Reset internal state of the underlying optimizer."""
184 | tfutil.assert_tf_initialized()
185 | tfutil.run([var.initializer for opt in self._dev_opt.values() for var in opt.variables()])
186 |
187 | def get_loss_scaling_var(self, device: str) -> Union[tf.Variable, None]:
188 | """Get or create variable representing log2 of the current dynamic loss scaling factor."""
189 | if not self.use_loss_scaling:
190 | return None
191 |
192 | if device not in self._dev_ls_var:
193 | with tfutil.absolute_name_scope(self.scope + "/LossScalingVars"), tf.control_dependencies(None):
194 | self._dev_ls_var[device] = tf.Variable(np.float32(self.loss_scaling_init), name="loss_scaling_var")
195 |
196 | return self._dev_ls_var[device]
197 |
198 | def apply_loss_scaling(self, value: TfExpression) -> TfExpression:
199 | """Apply dynamic loss scaling for the given expression."""
200 | assert tfutil.is_tf_expression(value)
201 |
202 | if not self.use_loss_scaling:
203 | return value
204 |
205 | return value * tfutil.exp2(self.get_loss_scaling_var(value.device))
206 |
207 | def undo_loss_scaling(self, value: TfExpression) -> TfExpression:
208 | """Undo the effect of dynamic loss scaling for the given expression."""
209 | assert tfutil.is_tf_expression(value)
210 |
211 | if not self.use_loss_scaling:
212 | return value
213 |
214 | return value * tfutil.exp2(-self.get_loss_scaling_var(value.device)) # pylint: disable=invalid-unary-operand-type
215 |
--------------------------------------------------------------------------------
/metrics/linear_separability.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Linear Separability (LS)."""
9 |
10 | from collections import defaultdict
11 | import numpy as np
12 | import sklearn.svm
13 | import tensorflow as tf
14 | import dnnlib.tflib as tflib
15 |
16 | from metrics import metric_base
17 | from training import misc
18 |
19 | #----------------------------------------------------------------------------
20 |
21 | classifier_urls = [
22 | 'https://drive.google.com/uc?id=1Q5-AI6TwWhCVM7Muu4tBM7rp5nG_gmCX', # celebahq-classifier-00-male.pkl
23 | 'https://drive.google.com/uc?id=1Q5c6HE__ReW2W8qYAXpao68V1ryuisGo', # celebahq-classifier-01-smiling.pkl
24 | 'https://drive.google.com/uc?id=1Q7738mgWTljPOJQrZtSMLxzShEhrvVsU', # celebahq-classifier-02-attractive.pkl
25 | 'https://drive.google.com/uc?id=1QBv2Mxe7ZLvOv1YBTLq-T4DS3HjmXV0o', # celebahq-classifier-03-wavy-hair.pkl
26 | 'https://drive.google.com/uc?id=1QIvKTrkYpUrdA45nf7pspwAqXDwWOLhV', # celebahq-classifier-04-young.pkl
27 | 'https://drive.google.com/uc?id=1QJPH5rW7MbIjFUdZT7vRYfyUjNYDl4_L', # celebahq-classifier-05-5-o-clock-shadow.pkl
28 | 'https://drive.google.com/uc?id=1QPZXSYf6cptQnApWS_T83sqFMun3rULY', # celebahq-classifier-06-arched-eyebrows.pkl
29 | 'https://drive.google.com/uc?id=1QPgoAZRqINXk_PFoQ6NwMmiJfxc5d2Pg', # celebahq-classifier-07-bags-under-eyes.pkl
30 | 'https://drive.google.com/uc?id=1QQPQgxgI6wrMWNyxFyTLSgMVZmRr1oO7', # celebahq-classifier-08-bald.pkl
31 | 'https://drive.google.com/uc?id=1QcSphAmV62UrCIqhMGgcIlZfoe8hfWaF', # celebahq-classifier-09-bangs.pkl
32 | 'https://drive.google.com/uc?id=1QdWTVwljClTFrrrcZnPuPOR4mEuz7jGh', # celebahq-classifier-10-big-lips.pkl
33 | 'https://drive.google.com/uc?id=1QgvEWEtr2mS4yj1b_Y3WKe6cLWL3LYmK', # celebahq-classifier-11-big-nose.pkl
34 | 'https://drive.google.com/uc?id=1QidfMk9FOKgmUUIziTCeo8t-kTGwcT18', # celebahq-classifier-12-black-hair.pkl
35 | 'https://drive.google.com/uc?id=1QthrJt-wY31GPtV8SbnZQZ0_UEdhasHO', # celebahq-classifier-13-blond-hair.pkl
36 | 'https://drive.google.com/uc?id=1QvCAkXxdYT4sIwCzYDnCL9Nb5TDYUxGW', # celebahq-classifier-14-blurry.pkl
37 | 'https://drive.google.com/uc?id=1QvLWuwSuWI9Ln8cpxSGHIciUsnmaw8L0', # celebahq-classifier-15-brown-hair.pkl
38 | 'https://drive.google.com/uc?id=1QxW6THPI2fqDoiFEMaV6pWWHhKI_OoA7', # celebahq-classifier-16-bushy-eyebrows.pkl
39 | 'https://drive.google.com/uc?id=1R71xKw8oTW2IHyqmRDChhTBkW9wq4N9v', # celebahq-classifier-17-chubby.pkl
40 | 'https://drive.google.com/uc?id=1RDn_fiLfEGbTc7JjazRXuAxJpr-4Pl67', # celebahq-classifier-18-double-chin.pkl
41 | 'https://drive.google.com/uc?id=1RGBuwXbaz5052bM4VFvaSJaqNvVM4_cI', # celebahq-classifier-19-eyeglasses.pkl
42 | 'https://drive.google.com/uc?id=1RIxOiWxDpUwhB-9HzDkbkLegkd7euRU9', # celebahq-classifier-20-goatee.pkl
43 | 'https://drive.google.com/uc?id=1RPaNiEnJODdr-fwXhUFdoSQLFFZC7rC-', # celebahq-classifier-21-gray-hair.pkl
44 | 'https://drive.google.com/uc?id=1RQH8lPSwOI2K_9XQCZ2Ktz7xm46o80ep', # celebahq-classifier-22-heavy-makeup.pkl
45 | 'https://drive.google.com/uc?id=1RXZM61xCzlwUZKq-X7QhxOg0D2telPow', # celebahq-classifier-23-high-cheekbones.pkl
46 | 'https://drive.google.com/uc?id=1RgASVHW8EWMyOCiRb5fsUijFu-HfxONM', # celebahq-classifier-24-mouth-slightly-open.pkl
47 | 'https://drive.google.com/uc?id=1RkC8JLqLosWMaRne3DARRgolhbtg_wnr', # celebahq-classifier-25-mustache.pkl
48 | 'https://drive.google.com/uc?id=1RqtbtFT2EuwpGTqsTYJDyXdnDsFCPtLO', # celebahq-classifier-26-narrow-eyes.pkl
49 | 'https://drive.google.com/uc?id=1Rs7hU-re8bBMeRHR-fKgMbjPh-RIbrsh', # celebahq-classifier-27-no-beard.pkl
50 | 'https://drive.google.com/uc?id=1RynDJQWdGOAGffmkPVCrLJqy_fciPF9E', # celebahq-classifier-28-oval-face.pkl
51 | 'https://drive.google.com/uc?id=1S0TZ_Hdv5cb06NDaCD8NqVfKy7MuXZsN', # celebahq-classifier-29-pale-skin.pkl
52 | 'https://drive.google.com/uc?id=1S3JPhZH2B4gVZZYCWkxoRP11q09PjCkA', # celebahq-classifier-30-pointy-nose.pkl
53 | 'https://drive.google.com/uc?id=1S3pQuUz-Jiywq_euhsfezWfGkfzLZ87W', # celebahq-classifier-31-receding-hairline.pkl
54 | 'https://drive.google.com/uc?id=1S6nyIl_SEI3M4l748xEdTV2vymB_-lrY', # celebahq-classifier-32-rosy-cheeks.pkl
55 | 'https://drive.google.com/uc?id=1S9P5WCi3GYIBPVYiPTWygrYIUSIKGxbU', # celebahq-classifier-33-sideburns.pkl
56 | 'https://drive.google.com/uc?id=1SANviG-pp08n7AFpE9wrARzozPIlbfCH', # celebahq-classifier-34-straight-hair.pkl
57 | 'https://drive.google.com/uc?id=1SArgyMl6_z7P7coAuArqUC2zbmckecEY', # celebahq-classifier-35-wearing-earrings.pkl
58 | 'https://drive.google.com/uc?id=1SC5JjS5J-J4zXFO9Vk2ZU2DT82TZUza_', # celebahq-classifier-36-wearing-hat.pkl
59 | 'https://drive.google.com/uc?id=1SDAQWz03HGiu0MSOKyn7gvrp3wdIGoj-', # celebahq-classifier-37-wearing-lipstick.pkl
60 | 'https://drive.google.com/uc?id=1SEtrVK-TQUC0XeGkBE9y7L8VXfbchyKX', # celebahq-classifier-38-wearing-necklace.pkl
61 | 'https://drive.google.com/uc?id=1SF_mJIdyGINXoV-I6IAxHB_k5dxiF6M-', # celebahq-classifier-39-wearing-necktie.pkl
62 | ]
63 |
64 | #----------------------------------------------------------------------------
65 |
66 | def prob_normalize(p):
67 | p = np.asarray(p).astype(np.float32)
68 | assert len(p.shape) == 2
69 | return p / np.sum(p)
70 |
71 | def mutual_information(p):
72 | p = prob_normalize(p)
73 | px = np.sum(p, axis=1)
74 | py = np.sum(p, axis=0)
75 | result = 0.0
76 | for x in range(p.shape[0]):
77 | p_x = px[x]
78 | for y in range(p.shape[1]):
79 | p_xy = p[x][y]
80 | p_y = py[y]
81 | if p_xy > 0.0:
82 | result += p_xy * np.log2(p_xy / (p_x * p_y)) # get bits as output
83 | return result
84 |
85 | def entropy(p):
86 | p = prob_normalize(p)
87 | result = 0.0
88 | for x in range(p.shape[0]):
89 | for y in range(p.shape[1]):
90 | p_xy = p[x][y]
91 | if p_xy > 0.0:
92 | result -= p_xy * np.log2(p_xy)
93 | return result
94 |
95 | def conditional_entropy(p):
96 | # H(Y|X) where X corresponds to axis 0, Y to axis 1
97 | # i.e., How many bits of additional information are needed to where we are on axis 1 if we know where we are on axis 0?
98 | p = prob_normalize(p)
99 | y = np.sum(p, axis=0, keepdims=True) # marginalize to calculate H(Y)
100 | return max(0.0, entropy(y) - mutual_information(p)) # can slip just below 0 due to FP inaccuracies, clean those up.
101 |
102 | #----------------------------------------------------------------------------
103 |
104 | class LS(metric_base.MetricBase):
105 | def __init__(self, num_samples, num_keep, attrib_indices, minibatch_per_gpu, **kwargs):
106 | assert num_keep <= num_samples
107 | super().__init__(**kwargs)
108 | self.num_samples = num_samples
109 | self.num_keep = num_keep
110 | self.attrib_indices = attrib_indices
111 | self.minibatch_per_gpu = minibatch_per_gpu
112 |
113 | def _evaluate(self, Gs, num_gpus):
114 | minibatch_size = num_gpus * self.minibatch_per_gpu
115 |
116 | # Construct TensorFlow graph for each GPU.
117 | result_expr = []
118 | for gpu_idx in range(num_gpus):
119 | with tf.device('/gpu:%d' % gpu_idx):
120 | Gs_clone = Gs.clone()
121 |
122 | # Generate images.
123 | latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
124 | dlatents = Gs_clone.components.mapping.get_output_for(latents, None, is_validation=True)
125 | images = Gs_clone.components.synthesis.get_output_for(dlatents, is_validation=True, randomize_noise=True)
126 |
127 | # Downsample to 256x256. The attribute classifiers were built for 256x256.
128 | if images.shape[2] > 256:
129 | factor = images.shape[2] // 256
130 | images = tf.reshape(images, [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor])
131 | images = tf.reduce_mean(images, axis=[3, 5])
132 |
133 | # Run classifier for each attribute.
134 | result_dict = dict(latents=latents, dlatents=dlatents[:,-1])
135 | for attrib_idx in self.attrib_indices:
136 | classifier = misc.load_pkl(classifier_urls[attrib_idx])
137 | logits = classifier.get_output_for(images, None)
138 | predictions = tf.nn.softmax(tf.concat([logits, -logits], axis=1))
139 | result_dict[attrib_idx] = predictions
140 | result_expr.append(result_dict)
141 |
142 | # Sampling loop.
143 | results = []
144 | for _ in range(0, self.num_samples, minibatch_size):
145 | results += tflib.run(result_expr)
146 | results = {key: np.concatenate([value[key] for value in results], axis=0) for key in results[0].keys()}
147 |
148 | # Calculate conditional entropy for each attribute.
149 | conditional_entropies = defaultdict(list)
150 | for attrib_idx in self.attrib_indices:
151 | # Prune the least confident samples.
152 | pruned_indices = list(range(self.num_samples))
153 | pruned_indices = sorted(pruned_indices, key=lambda i: -np.max(results[attrib_idx][i]))
154 | pruned_indices = pruned_indices[:self.num_keep]
155 |
156 | # Fit SVM to the remaining samples.
157 | svm_targets = np.argmax(results[attrib_idx][pruned_indices], axis=1)
158 | for space in ['latents', 'dlatents']:
159 | svm_inputs = results[space][pruned_indices]
160 | try:
161 | svm = sklearn.svm.LinearSVC()
162 | svm.fit(svm_inputs, svm_targets)
163 | svm.score(svm_inputs, svm_targets)
164 | svm_outputs = svm.predict(svm_inputs)
165 | except:
166 | svm_outputs = svm_targets # assume perfect prediction
167 |
168 | # Calculate conditional entropy.
169 | p = [[np.mean([case == (row, col) for case in zip(svm_outputs, svm_targets)]) for col in (0, 1)] for row in (0, 1)]
170 | conditional_entropies[space].append(conditional_entropy(p))
171 |
172 | # Calculate separability scores.
173 | scores = {key: 2**np.sum(values) for key, values in conditional_entropies.items()}
174 | self._report_result(scores['latents'], suffix='_z')
175 | self._report_result(scores['dlatents'], suffix='_w')
176 |
177 | #----------------------------------------------------------------------------
178 |
--------------------------------------------------------------------------------
/training/misc.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Miscellaneous utility functions."""
9 |
10 | import os
11 | import glob
12 | import pickle
13 | import re
14 | import numpy as np
15 | from collections import defaultdict
16 | import PIL.Image
17 | import dnnlib
18 |
19 | import config
20 | from training import dataset
21 |
22 | #----------------------------------------------------------------------------
23 | # Convenience wrappers for pickle that are able to load data produced by
24 | # older versions of the code, and from external URLs.
25 |
26 | def open_file_or_url(file_or_url):
27 | if dnnlib.util.is_url(file_or_url):
28 | return dnnlib.util.open_url(file_or_url, cache_dir=config.cache_dir)
29 | return open(file_or_url, 'rb')
30 |
31 | def load_pkl(file_or_url):
32 | with open_file_or_url(file_or_url) as file:
33 | return pickle.load(file, encoding='latin1')
34 |
35 | def save_pkl(obj, filename):
36 | with open(filename, 'wb') as file:
37 | pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL)
38 |
39 | #----------------------------------------------------------------------------
40 | # Image utils.
41 |
42 | def adjust_dynamic_range(data, drange_in, drange_out):
43 | if drange_in != drange_out:
44 | scale = (np.float32(drange_out[1]) - np.float32(drange_out[0])) / (np.float32(drange_in[1]) - np.float32(drange_in[0]))
45 | bias = (np.float32(drange_out[0]) - np.float32(drange_in[0]) * scale)
46 | data = data * scale + bias
47 | return data
48 |
49 | def create_image_grid(images, grid_size=None):
50 | assert images.ndim == 3 or images.ndim == 4
51 | num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2]
52 |
53 | if grid_size is not None:
54 | grid_w, grid_h = tuple(grid_size)
55 | else:
56 | grid_w = max(int(np.ceil(np.sqrt(num))), 1)
57 | grid_h = max((num - 1) // grid_w + 1, 1)
58 |
59 | grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype)
60 | for idx in range(num):
61 | x = (idx % grid_w) * img_w
62 | y = (idx // grid_w) * img_h
63 | grid[..., y : y + img_h, x : x + img_w] = images[idx]
64 | return grid
65 |
66 | def convert_to_pil_image(image, drange=[0,1]):
67 | assert image.ndim == 2 or image.ndim == 3
68 | if image.ndim == 3:
69 | if image.shape[0] == 1:
70 | image = image[0] # grayscale CHW => HW
71 | else:
72 | image = image.transpose(1, 2, 0) # CHW -> HWC
73 |
74 | image = adjust_dynamic_range(image, drange, [0,255])
75 | image = np.rint(image).clip(0, 255).astype(np.uint8)
76 | fmt = 'RGB' if image.ndim == 3 else 'L'
77 | return PIL.Image.fromarray(image, fmt)
78 |
79 | def save_image(image, filename, drange=[0,1], quality=95):
80 | img = convert_to_pil_image(image, drange)
81 | if '.jpg' in filename:
82 | img.save(filename,"JPEG", quality=quality, optimize=True)
83 | else:
84 | img.save(filename)
85 |
86 | def save_image_grid(images, filename, drange=[0,1], grid_size=None):
87 | convert_to_pil_image(create_image_grid(images, grid_size), drange).save(filename)
88 |
89 | #----------------------------------------------------------------------------
90 | # Locating results.
91 |
92 | def locate_run_dir(run_id_or_run_dir):
93 | if isinstance(run_id_or_run_dir, str):
94 | if os.path.isdir(run_id_or_run_dir):
95 | return run_id_or_run_dir
96 | converted = dnnlib.submission.submit.convert_path(run_id_or_run_dir)
97 | if os.path.isdir(converted):
98 | return converted
99 |
100 | run_dir_pattern = re.compile('^0*%s-' % str(run_id_or_run_dir))
101 | for search_dir in ['']:
102 | full_search_dir = config.result_dir if search_dir == '' else os.path.normpath(os.path.join(config.result_dir, search_dir))
103 | run_dir = os.path.join(full_search_dir, str(run_id_or_run_dir))
104 | if os.path.isdir(run_dir):
105 | return run_dir
106 | run_dirs = sorted(glob.glob(os.path.join(full_search_dir, '*')))
107 | run_dirs = [run_dir for run_dir in run_dirs if run_dir_pattern.match(os.path.basename(run_dir))]
108 | run_dirs = [run_dir for run_dir in run_dirs if os.path.isdir(run_dir)]
109 | if len(run_dirs) == 1:
110 | return run_dirs[0]
111 | raise IOError('Cannot locate result subdir for run', run_id_or_run_dir)
112 |
113 | def list_network_pkls(run_id_or_run_dir, include_final=True):
114 | run_dir = locate_run_dir(run_id_or_run_dir)
115 | pkls = sorted(glob.glob(os.path.join(run_dir, 'network-*.pkl')))
116 | if len(pkls) >= 1 and os.path.basename(pkls[0]) == 'network-final.pkl':
117 | if include_final:
118 | pkls.append(pkls[0])
119 | del pkls[0]
120 | return pkls
121 |
122 | def locate_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl=None):
123 | for candidate in [snapshot_or_network_pkl, run_id_or_run_dir_or_network_pkl]:
124 | if isinstance(candidate, str):
125 | if os.path.isfile(candidate):
126 | return candidate
127 | converted = dnnlib.submission.submit.convert_path(candidate)
128 | if os.path.isfile(converted):
129 | return converted
130 |
131 | pkls = list_network_pkls(run_id_or_run_dir_or_network_pkl)
132 | if len(pkls) >= 1 and snapshot_or_network_pkl is None:
133 | return pkls[-1]
134 |
135 | for pkl in pkls:
136 | try:
137 | name = os.path.splitext(os.path.basename(pkl))[0]
138 | number = int(name.split('-')[-1])
139 | if number == snapshot_or_network_pkl:
140 | return pkl
141 | except ValueError: pass
142 | except IndexError: pass
143 | raise IOError('Cannot locate network pkl for snapshot', snapshot_or_network_pkl)
144 |
145 | def get_id_string_for_network_pkl(network_pkl):
146 | p = network_pkl.replace('.pkl', '').replace('\\', '/').split('/')
147 | return '-'.join(p[max(len(p) - 2, 0):])
148 |
149 | #----------------------------------------------------------------------------
150 | # Loading data from previous training runs.
151 |
152 | def load_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl=None):
153 | return load_pkl(locate_network_pkl(run_id_or_run_dir_or_network_pkl, snapshot_or_network_pkl))
154 |
155 | def parse_config_for_previous_run(run_id):
156 | run_dir = locate_run_dir(run_id)
157 |
158 | # Parse config.txt.
159 | cfg = defaultdict(dict)
160 | with open(os.path.join(run_dir, 'config.txt'), 'rt') as f:
161 | for line in f:
162 | line = re.sub(r"^{?\s*'(\w+)':\s*{(.*)(},|}})$", r"\1 = {\2}", line.strip())
163 | if line.startswith('dataset =') or line.startswith('train ='):
164 | exec(line, cfg, cfg) # pylint: disable=exec-used
165 |
166 | # Handle legacy options.
167 | if 'file_pattern' in cfg['dataset']:
168 | cfg['dataset']['tfrecord_dir'] = cfg['dataset'].pop('file_pattern').replace('-r??.tfrecords', '')
169 | if 'mirror_augment' in cfg['dataset']:
170 | cfg['train']['mirror_augment'] = cfg['dataset'].pop('mirror_augment')
171 | if 'max_labels' in cfg['dataset']:
172 | v = cfg['dataset'].pop('max_labels')
173 | if v is None: v = 0
174 | if v == 'all': v = 'full'
175 | cfg['dataset']['max_label_size'] = v
176 | if 'max_images' in cfg['dataset']:
177 | cfg['dataset'].pop('max_images')
178 | return cfg
179 |
180 | def load_dataset_for_previous_run(run_id, **kwargs): # => dataset_obj, mirror_augment
181 | cfg = parse_config_for_previous_run(run_id)
182 | cfg['dataset'].update(kwargs)
183 | dataset_obj = dataset.load_dataset(data_dir=config.data_dir, **cfg['dataset'])
184 | mirror_augment = cfg['train'].get('mirror_augment', False)
185 | return dataset_obj, mirror_augment
186 |
187 | def apply_mirror_augment(minibatch):
188 | mask = np.random.rand(minibatch.shape[0]) < 0.5
189 | minibatch = np.array(minibatch)
190 | minibatch[mask] = minibatch[mask, :, :, ::-1]
191 | return minibatch
192 |
193 | #----------------------------------------------------------------------------
194 | # Size and contents of the image snapshot grids that are exported
195 | # periodically during training.
196 |
197 | def setup_snapshot_image_grid(G, training_set,
198 | size = '1080p', # '1080p' = to be viewed on 1080p display, '4k' = to be viewed on 4k display.
199 | layout = 'random'): # 'random' = grid contents are selected randomly, 'row_per_class' = each row corresponds to one class label.
200 |
201 | # Select size.
202 | gw = 1; gh = 1
203 | if size == '1080p':
204 | gw = np.clip(1920 // G.output_shape[3], 3, 32)
205 | gh = np.clip(1080 // G.output_shape[2], 2, 32)
206 | if size == '4k':
207 | gw = np.clip(3840 // G.output_shape[3], 7, 32)
208 | gh = np.clip(2160 // G.output_shape[2], 4, 32)
209 |
210 | # Initialize data arrays.
211 | reals = np.zeros([gw * gh] + training_set.shape, dtype=training_set.dtype)
212 | labels = np.zeros([gw * gh, training_set.label_size], dtype=training_set.label_dtype)
213 | latents = np.random.randn(gw * gh, *G.input_shape[1:])
214 |
215 | # Random layout.
216 | if layout == 'random':
217 | reals[:], labels[:] = training_set.get_minibatch_np(gw * gh)
218 |
219 | # Class-conditional layouts.
220 | class_layouts = dict(row_per_class=[gw,1], col_per_class=[1,gh], class4x4=[4,4])
221 | if layout in class_layouts:
222 | bw, bh = class_layouts[layout]
223 | nw = (gw - 1) // bw + 1
224 | nh = (gh - 1) // bh + 1
225 | blocks = [[] for _i in range(nw * nh)]
226 | for _iter in range(1000000):
227 | real, label = training_set.get_minibatch_np(1)
228 | idx = np.argmax(label[0])
229 | while idx < len(blocks) and len(blocks[idx]) >= bw * bh:
230 | idx += training_set.label_size
231 | if idx < len(blocks):
232 | blocks[idx].append((real, label))
233 | if all(len(block) >= bw * bh for block in blocks):
234 | break
235 | for i, block in enumerate(blocks):
236 | for j, (real, label) in enumerate(block):
237 | x = (i % nw) * bw + j % bw
238 | y = (i // nw) * bh + j // bw
239 | if x < gw and y < gh:
240 | reals[x + y * gw] = real[0]
241 | labels[x + y * gw] = label[0]
242 |
243 | return (gw, gh), reals, labels, latents
244 |
245 | #----------------------------------------------------------------------------
246 |
--------------------------------------------------------------------------------
/training/loss.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Loss functions."""
9 |
10 | import tensorflow as tf
11 | import dnnlib.tflib as tflib
12 | from dnnlib.tflib.autosummary import autosummary
13 |
14 | #----------------------------------------------------------------------------
15 | # Convenience func that casts all of its arguments to tf.float32.
16 |
17 | def fp32(*values):
18 | if len(values) == 1 and isinstance(values[0], tuple):
19 | values = values[0]
20 | values = tuple(tf.cast(v, tf.float32) for v in values)
21 | return values if len(values) >= 2 else values[0]
22 |
23 | #----------------------------------------------------------------------------
24 | # WGAN & WGAN-GP loss functions.
25 |
26 | def G_wgan(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument
27 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
28 | labels = training_set.get_random_labels_tf(minibatch_size)
29 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
30 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
31 | loss = -fake_scores_out
32 | return loss
33 |
34 | def D_wgan(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument
35 | wgan_epsilon = 0.001): # Weight for the epsilon term, \epsilon_{drift}.
36 |
37 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
38 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
39 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
40 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
41 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
42 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
43 | loss = fake_scores_out - real_scores_out
44 |
45 | with tf.name_scope('EpsilonPenalty'):
46 | epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out))
47 | loss += epsilon_penalty * wgan_epsilon
48 | return loss
49 |
50 | def D_wgan_gp(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument
51 | wgan_lambda = 10.0, # Weight for the gradient penalty term.
52 | wgan_epsilon = 0.001, # Weight for the epsilon term, \epsilon_{drift}.
53 | wgan_target = 1.0): # Target value for gradient magnitudes.
54 |
55 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
56 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
57 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
58 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
59 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
60 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
61 | loss = fake_scores_out - real_scores_out
62 |
63 | with tf.name_scope('GradientPenalty'):
64 | mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype)
65 | mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors)
66 | mixed_scores_out = fp32(D.get_output_for(mixed_images_out, labels, is_training=True))
67 | mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out)
68 | mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out))
69 | mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0]))
70 | mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3]))
71 | mixed_norms = autosummary('Loss/mixed_norms', mixed_norms)
72 | gradient_penalty = tf.square(mixed_norms - wgan_target)
73 | loss += gradient_penalty * (wgan_lambda / (wgan_target**2))
74 |
75 | with tf.name_scope('EpsilonPenalty'):
76 | epsilon_penalty = autosummary('Loss/epsilon_penalty', tf.square(real_scores_out))
77 | loss += epsilon_penalty * wgan_epsilon
78 | return loss
79 |
80 | #----------------------------------------------------------------------------
81 | # Hinge loss functions. (Use G_wgan with these)
82 |
83 | def D_hinge(G, D, opt, training_set, minibatch_size, reals, labels): # pylint: disable=unused-argument
84 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
85 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
86 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
87 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
88 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
89 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
90 | loss = tf.maximum(0., 1.+fake_scores_out) + tf.maximum(0., 1.-real_scores_out)
91 | return loss
92 |
93 | def D_hinge_gp(G, D, opt, training_set, minibatch_size, reals, labels, # pylint: disable=unused-argument
94 | wgan_lambda = 10.0, # Weight for the gradient penalty term.
95 | wgan_target = 1.0): # Target value for gradient magnitudes.
96 |
97 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
98 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
99 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
100 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
101 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
102 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
103 | loss = tf.maximum(0., 1.+fake_scores_out) + tf.maximum(0., 1.-real_scores_out)
104 |
105 | with tf.name_scope('GradientPenalty'):
106 | mixing_factors = tf.random_uniform([minibatch_size, 1, 1, 1], 0.0, 1.0, dtype=fake_images_out.dtype)
107 | mixed_images_out = tflib.lerp(tf.cast(reals, fake_images_out.dtype), fake_images_out, mixing_factors)
108 | mixed_scores_out = fp32(D.get_output_for(mixed_images_out, labels, is_training=True))
109 | mixed_scores_out = autosummary('Loss/scores/mixed', mixed_scores_out)
110 | mixed_loss = opt.apply_loss_scaling(tf.reduce_sum(mixed_scores_out))
111 | mixed_grads = opt.undo_loss_scaling(fp32(tf.gradients(mixed_loss, [mixed_images_out])[0]))
112 | mixed_norms = tf.sqrt(tf.reduce_sum(tf.square(mixed_grads), axis=[1,2,3]))
113 | mixed_norms = autosummary('Loss/mixed_norms', mixed_norms)
114 | gradient_penalty = tf.square(mixed_norms - wgan_target)
115 | loss += gradient_penalty * (wgan_lambda / (wgan_target**2))
116 | return loss
117 |
118 |
119 | #----------------------------------------------------------------------------
120 | # Loss functions advocated by the paper
121 | # "Which Training Methods for GANs do actually Converge?"
122 |
123 | def G_logistic_saturating(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument
124 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
125 | labels = training_set.get_random_labels_tf(minibatch_size)
126 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
127 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
128 | loss = -tf.nn.softplus(fake_scores_out) # log(1 - logistic(fake_scores_out))
129 | return loss
130 |
131 | def G_logistic_nonsaturating(G, D, opt, training_set, minibatch_size): # pylint: disable=unused-argument
132 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
133 | labels = training_set.get_random_labels_tf(minibatch_size)
134 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
135 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
136 | loss = tf.nn.softplus(-fake_scores_out) # -log(logistic(fake_scores_out))
137 | return loss
138 |
139 | def D_logistic(G, D, opt, training_set, minibatch_size, reals, labels): # pylint: disable=unused-argument
140 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
141 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
142 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
143 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
144 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
145 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
146 | loss = tf.nn.softplus(fake_scores_out) # -log(1 - logistic(fake_scores_out))
147 | loss += tf.nn.softplus(-real_scores_out) # -log(logistic(real_scores_out)) # temporary pylint workaround # pylint: disable=invalid-unary-operand-type
148 | return loss
149 |
150 | def D_logistic_simplegp(G, D, opt, training_set, minibatch_size, reals, labels, r1_gamma=10.0, r2_gamma=0.0): # pylint: disable=unused-argument
151 | latents = tf.random_normal([minibatch_size] + G.input_shapes[0][1:])
152 | fake_images_out = G.get_output_for(latents, labels, is_training=True)
153 | real_scores_out = fp32(D.get_output_for(reals, labels, is_training=True))
154 | fake_scores_out = fp32(D.get_output_for(fake_images_out, labels, is_training=True))
155 | real_scores_out = autosummary('Loss/scores/real', real_scores_out)
156 | fake_scores_out = autosummary('Loss/scores/fake', fake_scores_out)
157 | loss = tf.nn.softplus(fake_scores_out) # -log(1 - logistic(fake_scores_out))
158 | loss += tf.nn.softplus(-real_scores_out) # -log(logistic(real_scores_out)) # temporary pylint workaround # pylint: disable=invalid-unary-operand-type
159 |
160 | if r1_gamma != 0.0:
161 | with tf.name_scope('R1Penalty'):
162 | real_loss = opt.apply_loss_scaling(tf.reduce_sum(real_scores_out))
163 | real_grads = opt.undo_loss_scaling(fp32(tf.gradients(real_loss, [reals])[0]))
164 | r1_penalty = tf.reduce_sum(tf.square(real_grads), axis=[1,2,3])
165 | r1_penalty = autosummary('Loss/r1_penalty', r1_penalty)
166 | loss += r1_penalty * (r1_gamma * 0.5)
167 |
168 | if r2_gamma != 0.0:
169 | with tf.name_scope('R2Penalty'):
170 | fake_loss = opt.apply_loss_scaling(tf.reduce_sum(fake_scores_out))
171 | fake_grads = opt.undo_loss_scaling(fp32(tf.gradients(fake_loss, [fake_images_out])[0]))
172 | r2_penalty = tf.reduce_sum(tf.square(fake_grads), axis=[1,2,3])
173 | r2_penalty = autosummary('Loss/r2_penalty', r2_penalty)
174 | loss += r2_penalty * (r2_gamma * 0.5)
175 | return loss
176 |
177 | #----------------------------------------------------------------------------
178 |
--------------------------------------------------------------------------------
/training/training_loop_encoder.py:
--------------------------------------------------------------------------------
1 | """Main script for training encoder. This script should be run
2 | only after the stylegan's generator is well-trained"""
3 |
4 | import os
5 | import time
6 | import sys
7 | import tensorflow as tf
8 | import numpy as np
9 | import dnnlib
10 | from dnnlib import EasyDict
11 | import dnnlib.tflib as tflib
12 | from training import misc
13 | from perceptual_model import PerceptualModel
14 | from utils.visualizer import fuse_images
15 | from utils.visualizer import save_image
16 | from utils.visualizer import adjust_pixel_range
17 |
18 |
19 | def process_reals(x, mirror_augment, drange_data, drange_net):
20 | with tf.name_scope('ProcessReals'):
21 | with tf.name_scope('DynamicRange'):
22 | x = tf.cast(x, tf.float32)
23 | x = misc.adjust_dynamic_range(x, drange_data, drange_net)
24 | if mirror_augment:
25 | with tf.name_scope('MirrorAugment'):
26 | s = tf.shape(x)
27 | mask = tf.random_uniform([s[0], 1, 1, 1], 0.0, 1.0)
28 | mask = tf.tile(mask, [1, s[1], s[2], s[3]])
29 | x = tf.where(mask < 0.5, x, tf.reverse(x, axis=[3]))
30 | return x
31 |
32 |
33 | def parse_tfrecord_tf(record):
34 | features = tf.parse_single_example(record, features={
35 | 'shape': tf.FixedLenFeature([3], tf.int64),
36 | 'data': tf.FixedLenFeature([], tf.string)})
37 | data = tf.decode_raw(features['data'], tf.uint8)
38 | return tf.reshape(data, features['shape'])
39 |
40 |
41 | def get_train_data(sess, data_dir, submit_config, mode):
42 | if mode == 'train':
43 | shuffle = True; repeat = True; batch_size = submit_config.batch_size
44 | elif mode == 'test':
45 | shuffle = False; repeat = True; batch_size = submit_config.batch_size_test
46 | else:
47 | raise Exception("mode must in ['train', 'test'], but got {}" % mode)
48 |
49 | dset = tf.data.TFRecordDataset(data_dir)
50 | dset = dset.map(parse_tfrecord_tf, num_parallel_calls=16)
51 | if shuffle:
52 | bytes_per_item = np.prod([3, submit_config.image_size, submit_config.image_size]) * np.dtype('uint8').itemsize
53 | dset = dset.shuffle(((4096 << 20) - 1) // bytes_per_item + 1)
54 | if repeat:
55 | dset = dset.repeat()
56 | dset = dset.batch(batch_size)
57 | train_iterator = tf.data.Iterator.from_structure(dset.output_types, dset.output_shapes)
58 | training_init_op = train_iterator.make_initializer(dset)
59 | image_batch = train_iterator.get_next()
60 | sess.run(training_init_op)
61 | return image_batch
62 |
63 |
64 | def test(E, Gs, real_test, submit_config):
65 | with tf.name_scope("Run"), tf.control_dependencies(None):
66 | with tf.device("/cpu:0"):
67 | in_split = tf.split(real_test, submit_config.num_gpus)
68 | out_split = []
69 | num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
70 | for gpu in range(submit_config.num_gpus):
71 | with tf.device("/gpu:%d" % gpu):
72 | in_gpu = in_split[gpu]
73 | latent_w = E.get_output_for(in_gpu, is_training=False)
74 | latent_wp = tf.reshape(latent_w, [in_gpu.shape[0], num_layers, latent_dim])
75 | fake_X_val = Gs.components.synthesis.get_output_for(latent_wp, randomize_noise=False)
76 | out_split.append(fake_X_val)
77 |
78 | with tf.device("/cpu:0"):
79 | out_expr = tf.concat(out_split, axis=0)
80 |
81 | return out_expr
82 |
83 |
84 | def training_loop(
85 | submit_config,
86 | Encoder_args = {},
87 | E_opt_args = {},
88 | D_opt_args = {},
89 | E_loss_args = EasyDict(),
90 | D_loss_args = {},
91 | lr_args = EasyDict(),
92 | tf_config = {},
93 | dataset_args = EasyDict(),
94 | decoder_pkl = EasyDict(),
95 | drange_data = [0, 255],
96 | drange_net = [-1,1], # Dynamic range used when feeding image data to the networks.
97 | mirror_augment = False,
98 | filter = 64, # Minimum number of feature maps in any layer.
99 | filter_max = 512, # Maximum number of feature maps in any layer.
100 | resume_run_id = None, # Run ID or network pkl to resume training from, None = start from scratch.
101 | resume_snapshot = None, # Snapshot index to resume training from, None = autodetect.
102 | image_snapshot_ticks = 1, # How often to export image snapshots?
103 | network_snapshot_ticks = 10, # How often to export network snapshots?
104 | max_iters = 150000):
105 |
106 | tflib.init_tf(tf_config)
107 |
108 | with tf.name_scope('Input'):
109 | real_train = tf.placeholder(tf.float32, [submit_config.batch_size, 3, submit_config.image_size, submit_config.image_size], name='real_image_train')
110 | real_test = tf.placeholder(tf.float32, [submit_config.batch_size_test, 3, submit_config.image_size, submit_config.image_size], name='real_image_test')
111 | real_split = tf.split(real_train, num_or_size_splits=submit_config.num_gpus, axis=0)
112 |
113 | with tf.device('/gpu:0'):
114 | if resume_run_id is not None:
115 | network_pkl = misc.locate_network_pkl(resume_run_id, resume_snapshot)
116 | print('Loading networks from "%s"...' % network_pkl)
117 | E, G, D, Gs = misc.load_pkl(network_pkl)
118 | start = int(network_pkl.split('-')[-1].split('.')[0]) // submit_config.batch_size
119 | print('Start: ', start)
120 | else:
121 | print('Constructing networks...')
122 | G, D, Gs = misc.load_pkl(decoder_pkl.decoder_pkl)
123 | num_layers = Gs.components.synthesis.input_shape[1]
124 | E = tflib.Network('E_gpu0', size=submit_config.image_size, filter=filter, filter_max=filter_max,
125 | num_layers=num_layers, is_training=True, num_gpus=submit_config.num_gpus, **Encoder_args)
126 | start = 0
127 |
128 | E.print_layers(); Gs.print_layers(); D.print_layers()
129 |
130 | global_step0 = tf.Variable(start, trainable=False, name='learning_rate_step')
131 | learning_rate = tf.train.exponential_decay(lr_args.learning_rate, global_step0, lr_args.decay_step,
132 | lr_args.decay_rate, staircase=lr_args.stair)
133 | add_global0 = global_step0.assign_add(1)
134 |
135 | E_opt = tflib.Optimizer(name='TrainE', learning_rate=learning_rate, **E_opt_args)
136 | D_opt = tflib.Optimizer(name='TrainD', learning_rate=learning_rate, **D_opt_args)
137 |
138 | E_loss_rec = 0.
139 | E_loss_adv = 0.
140 | D_loss_real = 0.
141 | D_loss_fake = 0.
142 | D_loss_grad = 0.
143 | for gpu in range(submit_config.num_gpus):
144 | print('Building Graph on GPU %s' % str(gpu))
145 | with tf.name_scope('GPU%d' % gpu), tf.device('/gpu:%d' % gpu):
146 | E_gpu = E if gpu == 0 else E.clone(E.name[:-1] + str(gpu))
147 | D_gpu = D if gpu == 0 else D.clone(D.name + '_shadow')
148 | G_gpu = Gs if gpu == 0 else Gs.clone(Gs.name + '_shadow')
149 | perceptual_model = PerceptualModel(img_size=[E_loss_args.perceptual_img_size, E_loss_args.perceptual_img_size], multi_layers=False)
150 | real_gpu = process_reals(real_split[gpu], mirror_augment, drange_data, drange_net)
151 | with tf.name_scope('E_loss'), tf.control_dependencies(None):
152 | E_loss, recon_loss, adv_loss = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, perceptual_model=perceptual_model, reals=real_gpu, **E_loss_args)
153 | E_loss_rec += recon_loss
154 | E_loss_adv += adv_loss
155 | with tf.name_scope('D_loss'), tf.control_dependencies(None):
156 | D_loss, loss_fake, loss_real, loss_gp = dnnlib.util.call_func_by_name(E=E_gpu, G=G_gpu, D=D_gpu, reals=real_gpu, **D_loss_args)
157 | D_loss_real += loss_real
158 | D_loss_fake += loss_fake
159 | D_loss_grad += loss_gp
160 | with tf.control_dependencies([add_global0]):
161 | E_opt.register_gradients(E_loss, E_gpu.trainables)
162 | D_opt.register_gradients(D_loss, D_gpu.trainables)
163 |
164 | E_loss_rec /= submit_config.num_gpus
165 | E_loss_adv /= submit_config.num_gpus
166 | D_loss_real /= submit_config.num_gpus
167 | D_loss_fake /= submit_config.num_gpus
168 | D_loss_grad /= submit_config.num_gpus
169 |
170 | E_train_op = E_opt.apply_updates()
171 | D_train_op = D_opt.apply_updates()
172 |
173 | print('Building testing graph...')
174 | fake_X_val = test(E, Gs, real_test, submit_config)
175 |
176 | sess = tf.get_default_session()
177 |
178 | print('Getting training data...')
179 | image_batch_train = get_train_data(sess, data_dir=dataset_args.data_train, submit_config=submit_config, mode='train')
180 | image_batch_test = get_train_data(sess, data_dir=dataset_args.data_test, submit_config=submit_config, mode='test')
181 |
182 | summary_log = tf.summary.FileWriter(submit_config.run_dir)
183 |
184 | cur_nimg = start * submit_config.batch_size
185 | cur_tick = 0
186 | tick_start_nimg = cur_nimg
187 | start_time = time.time()
188 |
189 | print('Optimization starts!!!')
190 | for it in range(start, max_iters):
191 |
192 | batch_images = sess.run(image_batch_train)
193 | feed_dict = {real_train: batch_images}
194 | _, recon_, adv_ = sess.run([E_train_op, E_loss_rec, E_loss_adv], feed_dict)
195 | _, d_r_, d_f_, d_g_ = sess.run([D_train_op, D_loss_real, D_loss_fake, D_loss_grad], feed_dict)
196 |
197 | cur_nimg += submit_config.batch_size
198 |
199 | if it % 50 == 0:
200 | print('Iter: %06d recon_loss: %-6.4f adv_loss: %-6.4f d_r_loss: %-6.4f d_f_loss: %-6.4f d_reg: %-6.4f time:%-12s' % (
201 | it, recon_, adv_, d_r_, d_f_, d_g_, dnnlib.util.format_time(time.time() - start_time)))
202 | sys.stdout.flush()
203 | tflib.autosummary.save_summaries(summary_log, it)
204 |
205 | if cur_nimg >= tick_start_nimg + 65000:
206 | cur_tick += 1
207 | tick_start_nimg = cur_nimg
208 |
209 | if cur_tick % image_snapshot_ticks == 0:
210 | batch_images_test = sess.run(image_batch_test)
211 | batch_images_test = misc.adjust_dynamic_range(batch_images_test.astype(np.float32), [0, 255], [-1., 1.])
212 | recon = sess.run(fake_X_val, feed_dict={real_test: batch_images_test})
213 | orin_recon = np.concatenate([batch_images_test, recon], axis=0)
214 | orin_recon = adjust_pixel_range(orin_recon)
215 | orin_recon = fuse_images(orin_recon, row=2, col=submit_config.batch_size_test)
216 | # save image results during training, first row is original images and the second row is reconstructed images
217 | save_image('%s/iter_%08d.png' % (submit_config.run_dir, cur_nimg), orin_recon)
218 |
219 | if cur_tick % network_snapshot_ticks == 0:
220 | pkl = os.path.join(submit_config.run_dir, 'network-snapshot-%08d.pkl' % (cur_nimg))
221 | misc.save_pkl((E, G, D, Gs), pkl)
222 |
223 | misc.save_pkl((E, G, D, Gs), os.path.join(submit_config.run_dir, 'network-final.pkl'))
224 | summary_log.close()
225 |
--------------------------------------------------------------------------------
/dnnlib/submission/submit.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Submit a function to be run either locally or in a computing cluster."""
9 |
10 | import copy
11 | import io
12 | import os
13 | import pathlib
14 | import pickle
15 | import platform
16 | import pprint
17 | import re
18 | import shutil
19 | import time
20 | import traceback
21 |
22 | import zipfile
23 |
24 | from enum import Enum
25 |
26 | from .. import util
27 | from ..util import EasyDict
28 |
29 |
30 | class SubmitTarget(Enum):
31 | """The target where the function should be run.
32 |
33 | LOCAL: Run it locally.
34 | """
35 | LOCAL = 1
36 |
37 |
38 | class PathType(Enum):
39 | """Determines in which format should a path be formatted.
40 |
41 | WINDOWS: Format with Windows style.
42 | LINUX: Format with Linux/Posix style.
43 | AUTO: Use current OS type to select either WINDOWS or LINUX.
44 | """
45 | WINDOWS = 1
46 | LINUX = 2
47 | AUTO = 3
48 |
49 |
50 | _user_name_override = None
51 |
52 |
53 | class SubmitConfig(util.EasyDict):
54 | """Strongly typed config dict needed to submit runs.
55 |
56 | Attributes:
57 | run_dir_root: Path to the run dir root. Can be optionally templated with tags. Needs to always be run through get_path_from_template.
58 | run_desc: Description of the run. Will be used in the run dir and task name.
59 | run_dir_ignore: List of file patterns used to ignore files when copying files to the run dir.
60 | run_dir_extra_files: List of (abs_path, rel_path) tuples of file paths. rel_path root will be the src directory inside the run dir.
61 | submit_target: Submit target enum value. Used to select where the run is actually launched.
62 | num_gpus: Number of GPUs used/requested for the run.
63 | print_info: Whether to print debug information when submitting.
64 | ask_confirmation: Whether to ask a confirmation before submitting.
65 | run_id: Automatically populated value during submit.
66 | run_name: Automatically populated value during submit.
67 | run_dir: Automatically populated value during submit.
68 | run_func_name: Automatically populated value during submit.
69 | run_func_kwargs: Automatically populated value during submit.
70 | user_name: Automatically populated value during submit. Can be set by the user which will then override the automatic value.
71 | task_name: Automatically populated value during submit.
72 | host_name: Automatically populated value during submit.
73 | """
74 |
75 | def __init__(self):
76 | super().__init__()
77 |
78 | # run (set these)
79 | self.run_dir_root = "" # should always be passed through get_path_from_template
80 | self.run_desc = ""
81 | self.run_dir_ignore = ["__pycache__", "*.pyproj", "*.sln", "*.suo", ".cache", ".idea", ".vs", ".vscode"]
82 | self.run_dir_extra_files = None
83 |
84 | # submit (set these)
85 | self.submit_target = SubmitTarget.LOCAL
86 | self.num_gpus = 1
87 | self.print_info = False
88 | self.ask_confirmation = False
89 |
90 | # (automatically populated)
91 | self.run_id = None
92 | self.run_name = None
93 | self.run_dir = None
94 | self.run_func_name = None
95 | self.run_func_kwargs = None
96 | self.user_name = None
97 | self.task_name = None
98 | self.host_name = "localhost"
99 |
100 |
101 | def get_path_from_template(path_template: str, path_type: PathType = PathType.AUTO) -> str:
102 | """Replace tags in the given path template and return either Windows or Linux formatted path."""
103 | # automatically select path type depending on running OS
104 | if path_type == PathType.AUTO:
105 | if platform.system() == "Windows":
106 | path_type = PathType.WINDOWS
107 | elif platform.system() == "Linux":
108 | path_type = PathType.LINUX
109 | else:
110 | raise RuntimeError("Unknown platform")
111 |
112 | path_template = path_template.replace("", get_user_name())
113 |
114 | # return correctly formatted path
115 | if path_type == PathType.WINDOWS:
116 | return str(pathlib.PureWindowsPath(path_template))
117 | elif path_type == PathType.LINUX:
118 | return str(pathlib.PurePosixPath(path_template))
119 | else:
120 | raise RuntimeError("Unknown platform")
121 |
122 |
123 | def get_template_from_path(path: str) -> str:
124 | """Convert a normal path back to its template representation."""
125 | # replace all path parts with the template tags
126 | path = path.replace("\\", "/")
127 | return path
128 |
129 |
130 | def convert_path(path: str, path_type: PathType = PathType.AUTO) -> str:
131 | """Convert a normal path to template and the convert it back to a normal path with given path type."""
132 | path_template = get_template_from_path(path)
133 | path = get_path_from_template(path_template, path_type)
134 | return path
135 |
136 |
137 | def set_user_name_override(name: str) -> None:
138 | """Set the global username override value."""
139 | global _user_name_override
140 | _user_name_override = name
141 |
142 |
143 | def get_user_name():
144 | """Get the current user name."""
145 | if _user_name_override is not None:
146 | return _user_name_override
147 | elif platform.system() == "Windows":
148 | return os.getlogin()
149 | elif platform.system() == "Linux":
150 | try:
151 | import pwd # pylint: disable=import-error
152 | return pwd.getpwuid(os.geteuid()).pw_name # pylint: disable=no-member
153 | except:
154 | return "unknown"
155 | else:
156 | raise RuntimeError("Unknown platform")
157 |
158 |
159 | def _create_run_dir_local(submit_config: SubmitConfig) -> str:
160 | """Create a new run dir with increasing ID number at the start."""
161 | run_dir_root = get_path_from_template(submit_config.run_dir_root, PathType.AUTO)
162 |
163 | if not os.path.exists(run_dir_root):
164 | print("Creating the run dir root: {}".format(run_dir_root))
165 | os.makedirs(run_dir_root)
166 |
167 | submit_config.run_id = _get_next_run_id_local(run_dir_root)
168 | submit_config.run_name = "{0:05d}-{1}".format(submit_config.run_id, submit_config.run_desc)
169 | run_dir = os.path.join(run_dir_root, submit_config.run_name)
170 |
171 | if os.path.exists(run_dir):
172 | raise RuntimeError("The run dir already exists! ({0})".format(run_dir))
173 |
174 | print("Creating the run dir: {}".format(run_dir))
175 | os.makedirs(run_dir)
176 |
177 | return run_dir
178 |
179 |
180 | def _get_next_run_id_local(run_dir_root: str) -> int:
181 | """Reads all directory names in a given directory (non-recursive) and returns the next (increasing) run id. Assumes IDs are numbers at the start of the directory names."""
182 | dir_names = [d for d in os.listdir(run_dir_root) if os.path.isdir(os.path.join(run_dir_root, d))]
183 | r = re.compile("^\\d+") # match one or more digits at the start of the string
184 | run_id = 0
185 |
186 | for dir_name in dir_names:
187 | m = r.match(dir_name)
188 |
189 | if m is not None:
190 | i = int(m.group())
191 | run_id = max(run_id, i + 1)
192 |
193 | return run_id
194 |
195 |
196 | def _populate_run_dir(run_dir: str, submit_config: SubmitConfig) -> None:
197 | """Copy all necessary files into the run dir. Assumes that the dir exists, is local, and is writable."""
198 | print("Copying files to the run dir")
199 | files = []
200 |
201 | run_func_module_dir_path = util.get_module_dir_by_obj_name(submit_config.run_func_name)
202 | assert '.' in submit_config.run_func_name
203 | for _idx in range(submit_config.run_func_name.count('.') - 1):
204 | run_func_module_dir_path = os.path.dirname(run_func_module_dir_path)
205 | files += util.list_dir_recursively_with_ignore(run_func_module_dir_path, ignores=submit_config.run_dir_ignore, add_base_to_relative=False)
206 |
207 | dnnlib_module_dir_path = util.get_module_dir_by_obj_name("dnnlib")
208 | files += util.list_dir_recursively_with_ignore(dnnlib_module_dir_path, ignores=submit_config.run_dir_ignore, add_base_to_relative=True)
209 |
210 | if submit_config.run_dir_extra_files is not None:
211 | files += submit_config.run_dir_extra_files
212 |
213 | files = [(f[0], os.path.join(run_dir, "src", f[1])) for f in files]
214 | files += [(os.path.join(dnnlib_module_dir_path, "submission", "_internal", "run.py"), os.path.join(run_dir, "run.py"))]
215 |
216 | util.copy_files_and_create_dirs(files)
217 |
218 | pickle.dump(submit_config, open(os.path.join(run_dir, "submit_config.pkl"), "wb"))
219 |
220 | with open(os.path.join(run_dir, "submit_config.txt"), "w") as f:
221 | pprint.pprint(submit_config, stream=f, indent=4, width=200, compact=False)
222 |
223 |
224 | def run_wrapper(submit_config: SubmitConfig) -> None:
225 | """Wrap the actual run function call for handling logging, exceptions, typing, etc."""
226 | is_local = submit_config.submit_target == SubmitTarget.LOCAL
227 |
228 | checker = None
229 |
230 | # when running locally, redirect stderr to stdout, log stdout to a file, and force flushing
231 | if is_local:
232 | logger = util.Logger(file_name=os.path.join(submit_config.run_dir, "log.txt"), file_mode="w", should_flush=True)
233 | else: # when running in a cluster, redirect stderr to stdout, and just force flushing (log writing is handled by run.sh)
234 | logger = util.Logger(file_name=None, should_flush=True)
235 |
236 | import dnnlib
237 | dnnlib.submit_config = submit_config
238 |
239 | try:
240 | print("dnnlib: Running {0}() on {1}...".format(submit_config.run_func_name, submit_config.host_name))
241 | start_time = time.time()
242 | util.call_func_by_name(func_name=submit_config.run_func_name, submit_config=submit_config, **submit_config.run_func_kwargs)
243 | print("dnnlib: Finished {0}() in {1}.".format(submit_config.run_func_name, util.format_time(time.time() - start_time)))
244 | except:
245 | if is_local:
246 | raise
247 | else:
248 | traceback.print_exc()
249 |
250 | log_src = os.path.join(submit_config.run_dir, "log.txt")
251 | log_dst = os.path.join(get_path_from_template(submit_config.run_dir_root), "{0}-error.txt".format(submit_config.run_name))
252 | shutil.copyfile(log_src, log_dst)
253 | finally:
254 | open(os.path.join(submit_config.run_dir, "_finished.txt"), "w").close()
255 |
256 | dnnlib.submit_config = None
257 | logger.close()
258 |
259 | if checker is not None:
260 | checker.stop()
261 |
262 |
263 | def submit_run(submit_config: SubmitConfig, run_func_name: str, **run_func_kwargs) -> None:
264 | """Create a run dir, gather files related to the run, copy files to the run dir, and launch the run in appropriate place."""
265 | submit_config = copy.copy(submit_config)
266 |
267 | if submit_config.user_name is None:
268 | submit_config.user_name = get_user_name()
269 |
270 | submit_config.run_func_name = run_func_name
271 | submit_config.run_func_kwargs = run_func_kwargs
272 |
273 | assert submit_config.submit_target == SubmitTarget.LOCAL
274 | if submit_config.submit_target in {SubmitTarget.LOCAL}:
275 | run_dir = _create_run_dir_local(submit_config)
276 |
277 | submit_config.task_name = "{0}-{1:05d}-{2}".format(submit_config.user_name, submit_config.run_id, submit_config.run_desc)
278 | submit_config.run_dir = run_dir
279 | _populate_run_dir(run_dir, submit_config)
280 |
281 | if submit_config.print_info:
282 | print("\nSubmit config:\n")
283 | pprint.pprint(submit_config, indent=4, width=200, compact=False)
284 | print()
285 |
286 | if submit_config.ask_confirmation:
287 | if not util.ask_yes_no("Continue submitting the job?"):
288 | return
289 |
290 | run_wrapper(submit_config)
291 |
--------------------------------------------------------------------------------
/training/dataset.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
2 | #
3 | # This work is licensed under the Creative Commons Attribution-NonCommercial
4 | # 4.0 International License. To view a copy of this license, visit
5 | # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
6 | # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
7 |
8 | """Multi-resolution input data pipeline."""
9 |
10 | import os
11 | import glob
12 | import numpy as np
13 | import tensorflow as tf
14 | import dnnlib
15 | import dnnlib.tflib as tflib
16 |
17 | #----------------------------------------------------------------------------
18 | # Parse individual image from a tfrecords file.
19 |
20 | def parse_tfrecord_tf(record):
21 | features = tf.parse_single_example(record, features={
22 | 'shape': tf.FixedLenFeature([3], tf.int64),
23 | 'data': tf.FixedLenFeature([], tf.string)})
24 | data = tf.decode_raw(features['data'], tf.uint8)
25 | return tf.reshape(data, features['shape'])
26 |
27 | def parse_tfrecord_np(record):
28 | ex = tf.train.Example()
29 | ex.ParseFromString(record)
30 | shape = ex.features.feature['shape'].int64_list.value # temporary pylint workaround # pylint: disable=no-member
31 | data = ex.features.feature['data'].bytes_list.value[0] # temporary pylint workaround # pylint: disable=no-member
32 | return np.fromstring(data, np.uint8).reshape(shape)
33 |
34 | #----------------------------------------------------------------------------
35 | # Dataset class that loads data from tfrecords files.
36 |
37 | class TFRecordDataset:
38 | def __init__(self,
39 | tfrecord_dir, # Directory containing a collection of tfrecords files.
40 | resolution = None, # Dataset resolution, None = autodetect.
41 | label_file = None, # Relative path of the labels file, None = autodetect.
42 | max_label_size = 0, # 0 = no labels, 'full' = full labels, = N first label components.
43 | repeat = True, # Repeat dataset indefinitely.
44 | shuffle_mb = 4096, # Shuffle data within specified window (megabytes), 0 = disable shuffling.
45 | prefetch_mb = 2048, # Amount of data to prefetch (megabytes), 0 = disable prefetching.
46 | buffer_mb = 256, # Read buffer size (megabytes).
47 | num_threads = 2): # Number of concurrent threads.
48 |
49 | self.tfrecord_dir = tfrecord_dir
50 | self.resolution = None
51 | self.resolution_log2 = None
52 | self.shape = [] # [channel, height, width]
53 | self.dtype = 'uint8'
54 | self.dynamic_range = [0, 255]
55 | self.label_file = label_file
56 | self.label_size = None # [component]
57 | self.label_dtype = None
58 | self._np_labels = None
59 | self._tf_minibatch_in = None
60 | self._tf_labels_var = None
61 | self._tf_labels_dataset = None
62 | self._tf_datasets = dict()
63 | self._tf_iterator = None
64 | self._tf_init_ops = dict()
65 | self._tf_minibatch_np = None
66 | self._cur_minibatch = -1
67 | self._cur_lod = -1
68 |
69 | # List tfrecords files and inspect their shapes.
70 | assert os.path.isdir(self.tfrecord_dir)
71 | tfr_files = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.tfrecords')))
72 | assert len(tfr_files) >= 1
73 | tfr_shapes = []
74 | for tfr_file in tfr_files:
75 | tfr_opt = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.NONE)
76 | for record in tf.python_io.tf_record_iterator(tfr_file, tfr_opt):
77 | tfr_shapes.append(parse_tfrecord_np(record).shape)
78 | break
79 |
80 | # Autodetect label filename.
81 | if self.label_file is None:
82 | guess = sorted(glob.glob(os.path.join(self.tfrecord_dir, '*.labels')))
83 | if len(guess):
84 | self.label_file = guess[0]
85 | elif not os.path.isfile(self.label_file):
86 | guess = os.path.join(self.tfrecord_dir, self.label_file)
87 | if os.path.isfile(guess):
88 | self.label_file = guess
89 |
90 | # Determine shape and resolution.
91 | max_shape = max(tfr_shapes, key=np.prod)
92 | self.resolution = resolution if resolution is not None else max_shape[1]
93 | self.resolution_log2 = int(np.log2(self.resolution))
94 | self.shape = [max_shape[0], self.resolution, self.resolution]
95 | tfr_lods = [self.resolution_log2 - int(np.log2(shape[1])) for shape in tfr_shapes]
96 | assert all(shape[0] == max_shape[0] for shape in tfr_shapes)
97 | assert all(shape[1] == shape[2] for shape in tfr_shapes)
98 | assert all(shape[1] == self.resolution // (2**lod) for shape, lod in zip(tfr_shapes, tfr_lods))
99 | assert all(lod in tfr_lods for lod in range(self.resolution_log2 - 1))
100 |
101 | # Load labels.
102 | assert max_label_size == 'full' or max_label_size >= 0
103 | self._np_labels = np.zeros([1<<20, 0], dtype=np.float32)
104 | if self.label_file is not None and max_label_size != 0:
105 | self._np_labels = np.load(self.label_file)
106 | assert self._np_labels.ndim == 2
107 | if max_label_size != 'full' and self._np_labels.shape[1] > max_label_size:
108 | self._np_labels = self._np_labels[:, :max_label_size]
109 | self.label_size = self._np_labels.shape[1]
110 | self.label_dtype = self._np_labels.dtype.name
111 |
112 | # Build TF expressions.
113 | with tf.name_scope('Dataset'), tf.device('/cpu:0'):
114 | self._tf_minibatch_in = tf.placeholder(tf.int64, name='minibatch_in', shape=[])
115 | self._tf_labels_var = tflib.create_var_with_large_initial_value(self._np_labels, name='labels_var')
116 | self._tf_labels_dataset = tf.data.Dataset.from_tensor_slices(self._tf_labels_var)
117 | for tfr_file, tfr_shape, tfr_lod in zip(tfr_files, tfr_shapes, tfr_lods):
118 | if tfr_lod < 0:
119 | continue
120 | dset = tf.data.TFRecordDataset(tfr_file, compression_type='', buffer_size=buffer_mb<<20)
121 | dset = dset.map(parse_tfrecord_tf, num_parallel_calls=num_threads)
122 | dset = tf.data.Dataset.zip((dset, self._tf_labels_dataset))
123 | bytes_per_item = np.prod(tfr_shape) * np.dtype(self.dtype).itemsize
124 | if shuffle_mb > 0:
125 | dset = dset.shuffle(((shuffle_mb << 20) - 1) // bytes_per_item + 1)
126 | if repeat:
127 | dset = dset.repeat()
128 | if prefetch_mb > 0:
129 | dset = dset.prefetch(((prefetch_mb << 20) - 1) // bytes_per_item + 1)
130 | dset = dset.batch(self._tf_minibatch_in)
131 | self._tf_datasets[tfr_lod] = dset
132 | self._tf_iterator = tf.data.Iterator.from_structure(self._tf_datasets[0].output_types, self._tf_datasets[0].output_shapes)
133 | self._tf_init_ops = {lod: self._tf_iterator.make_initializer(dset) for lod, dset in self._tf_datasets.items()}
134 |
135 | # Use the given minibatch size and level-of-detail for the data returned by get_minibatch_tf().
136 | def configure(self, minibatch_size, lod=0):
137 | lod = int(np.floor(lod))
138 | assert minibatch_size >= 1 and lod in self._tf_datasets
139 | if self._cur_minibatch != minibatch_size or self._cur_lod != lod:
140 | self._tf_init_ops[lod].run({self._tf_minibatch_in: minibatch_size})
141 | self._cur_minibatch = minibatch_size
142 | self._cur_lod = lod
143 |
144 | # Get next minibatch as TensorFlow expressions.
145 | def get_minibatch_tf(self): # => images, labels
146 | return self._tf_iterator.get_next()
147 |
148 | # Get next minibatch as NumPy arrays.
149 | def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
150 | self.configure(minibatch_size, lod)
151 | if self._tf_minibatch_np is None:
152 | self._tf_minibatch_np = self.get_minibatch_tf()
153 | return tflib.run(self._tf_minibatch_np)
154 |
155 | # Get random labels as TensorFlow expression.
156 | def get_random_labels_tf(self, minibatch_size): # => labels
157 | if self.label_size > 0:
158 | with tf.device('/cpu:0'):
159 | return tf.gather(self._tf_labels_var, tf.random_uniform([minibatch_size], 0, self._np_labels.shape[0], dtype=tf.int32))
160 | return tf.zeros([minibatch_size, 0], self.label_dtype)
161 |
162 | # Get random labels as NumPy array.
163 | def get_random_labels_np(self, minibatch_size): # => labels
164 | if self.label_size > 0:
165 | return self._np_labels[np.random.randint(self._np_labels.shape[0], size=[minibatch_size])]
166 | return np.zeros([minibatch_size, 0], self.label_dtype)
167 |
168 | #----------------------------------------------------------------------------
169 | # Base class for datasets that are generated on the fly.
170 |
171 | class SyntheticDataset:
172 | def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
173 | self.resolution = resolution
174 | self.resolution_log2 = int(np.log2(resolution))
175 | self.shape = [num_channels, resolution, resolution]
176 | self.dtype = dtype
177 | self.dynamic_range = dynamic_range
178 | self.label_size = label_size
179 | self.label_dtype = label_dtype
180 | self._tf_minibatch_var = None
181 | self._tf_lod_var = None
182 | self._tf_minibatch_np = None
183 | self._tf_labels_np = None
184 |
185 | assert self.resolution == 2 ** self.resolution_log2
186 | with tf.name_scope('Dataset'):
187 | self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
188 | self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var')
189 |
190 | def configure(self, minibatch_size, lod=0):
191 | lod = int(np.floor(lod))
192 | assert minibatch_size >= 1 and 0 <= lod <= self.resolution_log2
193 | tflib.set_vars({self._tf_minibatch_var: minibatch_size, self._tf_lod_var: lod})
194 |
195 | def get_minibatch_tf(self): # => images, labels
196 | with tf.name_scope('SyntheticDataset'):
197 | shrink = tf.cast(2.0 ** tf.cast(self._tf_lod_var, tf.float32), tf.int32)
198 | shape = [self.shape[0], self.shape[1] // shrink, self.shape[2] // shrink]
199 | images = self._generate_images(self._tf_minibatch_var, self._tf_lod_var, shape)
200 | labels = self._generate_labels(self._tf_minibatch_var)
201 | return images, labels
202 |
203 | def get_minibatch_np(self, minibatch_size, lod=0): # => images, labels
204 | self.configure(minibatch_size, lod)
205 | if self._tf_minibatch_np is None:
206 | self._tf_minibatch_np = self.get_minibatch_tf()
207 | return tflib.run(self._tf_minibatch_np)
208 |
209 | def get_random_labels_tf(self, minibatch_size): # => labels
210 | with tf.name_scope('SyntheticDataset'):
211 | return self._generate_labels(minibatch_size)
212 |
213 | def get_random_labels_np(self, minibatch_size): # => labels
214 | self.configure(minibatch_size)
215 | if self._tf_labels_np is None:
216 | self._tf_labels_np = self.get_random_labels_tf(minibatch_size)
217 | return tflib.run(self._tf_labels_np)
218 |
219 | def _generate_images(self, minibatch, lod, shape): # to be overridden by subclasses # pylint: disable=unused-argument
220 | return tf.zeros([minibatch] + shape, self.dtype)
221 |
222 | def _generate_labels(self, minibatch): # to be overridden by subclasses
223 | return tf.zeros([minibatch, self.label_size], self.label_dtype)
224 |
225 | #----------------------------------------------------------------------------
226 | # Helper func for constructing a dataset object using the given options.
227 |
228 | def load_dataset(class_name='training.dataset.TFRecordDataset', data_dir=None, verbose=False, **kwargs):
229 | adjusted_kwargs = dict(kwargs)
230 | if 'tfrecord_dir' in adjusted_kwargs and data_dir is not None:
231 | adjusted_kwargs['tfrecord_dir'] = os.path.join(data_dir, adjusted_kwargs['tfrecord_dir'])
232 | if verbose:
233 | print('Streaming data using %s...' % class_name)
234 | dataset = dnnlib.util.get_obj_by_name(class_name)(**adjusted_kwargs)
235 | if verbose:
236 | print('Dataset shape =', np.int32(dataset.shape).tolist())
237 | print('Dynamic range =', dataset.dynamic_range)
238 | print('Label size =', dataset.label_size)
239 | return dataset
240 |
241 | #----------------------------------------------------------------------------
242 |
--------------------------------------------------------------------------------
135 | Comment: 136 | Proposes a technique for semantic face editing in latent space. 137 |