The response has been limited to 50k tokens of the smallest files in the repo. You can remove this limitation by removing the max tokens filter.
├── .gitignore
├── .python-version
├── LICENSE
├── README.md
├── assets
    ├── grid.mp4
    └── mochi-factory.webp
├── contrib
    ├── README.md
    └── modal
    │   ├── lora.yaml
    │   ├── main.py
    │   └── readme.md
├── demos
    ├── api_example.py
    ├── cli.py
    ├── comfyui_nodes.py
    ├── fine_tuner
    │   ├── README.md
    │   ├── configs
    │   │   └── lora.yaml
    │   ├── dataset.py
    │   ├── embed_captions.py
    │   ├── encode_videos.py
    │   ├── preprocess.bash
    │   ├── run.bash
    │   ├── train.py
    │   └── trim_and_crop_videos.py
    ├── gradio_ui.py
    └── test_encoder_decoder.py
├── pyproject.toml
├── pyrightconfig.json
├── requirements.txt
├── scripts
    ├── download_weights.py
    ├── format.bash
    ├── pytorch_to_safe_tensors.py
    ├── typecheck.bash
    └── weights_to_fp8.py
├── src
    └── genmo
    │   ├── lib
    │       ├── attn_imports.py
    │       ├── progress.py
    │       └── utils.py
    │   └── mochi_preview
    │       ├── __init__.py
    │       ├── dit
    │           └── joint_model
    │           │   ├── __init__.py
    │           │   ├── asymm_models_joint.py
    │           │   ├── context_parallel.py
    │           │   ├── layers.py
    │           │   ├── lora.py
    │           │   ├── mod_rmsnorm.py
    │           │   ├── residual_tanh_gated_rmsnorm.py
    │           │   ├── rope_mixed.py
    │           │   ├── temporal_rope.py
    │           │   └── utils.py
    │       ├── pipelines.py
    │       └── vae
    │           ├── __init__.py
    │           ├── cp_conv.py
    │           ├── latent_dist.py
    │           ├── models.py
    │           └── vae_stats.py
└── uv.lock


/.gitignore:
--------------------------------------------------------------------------------
 1 | .venv
 2 | .venv_test
 3 | dist
 4 | __pycache__
 5 | mochi.egg-info
 6 | genmo.egg-info
 7 | outputs
 8 | build
 9 | .ruff_cache
10 | *.mp4
11 | *.txt
12 | *.pt
13 | *.log
14 | *.json
15 | *.safetensors
16 | wandb/
17 | *.err
18 | *.out
19 | *.MOV


--------------------------------------------------------------------------------
/.python-version:
--------------------------------------------------------------------------------
1 | 3.10
2 | 


--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
  1 |                                  Apache License
  2 |                            Version 2.0, January 2004
  3 |                         http://www.apache.org/licenses/
  4 | 
  5 |    TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
  6 | 
  7 |    1. Definitions.
  8 | 
  9 |       "License" shall mean the terms and conditions for use, reproduction,
 10 |       and distribution as defined by Sections 1 through 9 of this document.
 11 | 
 12 |       "Licensor" shall mean the copyright owner or entity authorized by
 13 |       the copyright owner that is granting the License.
 14 | 
 15 |       "Legal Entity" shall mean the union of the acting entity and all
 16 |       other entities that control, are controlled by, or are under common
 17 |       control with that entity. For the purposes of this definition,
 18 |       "control" means (i) the power, direct or indirect, to cause the
 19 |       direction or management of such entity, whether by contract or
 20 |       otherwise, or (ii) ownership of fifty percent (50%) or more of the
 21 |       outstanding shares, or (iii) beneficial ownership of such entity.
 22 | 
 23 |       "You" (or "Your") shall mean an individual or Legal Entity
 24 |       exercising permissions granted by this License.
 25 | 
 26 |       "Source" form shall mean the preferred form for making modifications,
 27 |       including but not limited to software source code, documentation
 28 |       source, and configuration files.
 29 | 
 30 |       "Object" form shall mean any form resulting from mechanical
 31 |       transformation or translation of a Source form, including but
 32 |       not limited to compiled object code, generated documentation,
 33 |       and conversions to other media types.
 34 | 
 35 |       "Work" shall mean the work of authorship, whether in Source or
 36 |       Object form, made available under the License, as indicated by a
 37 |       copyright notice that is included in or attached to the work
 38 |       (an example is provided in the Appendix below).
 39 | 
 40 |       "Derivative Works" shall mean any work, whether in Source or Object
 41 |       form, that is based on (or derived from) the Work and for which the
 42 |       editorial revisions, annotations, elaborations, or other modifications
 43 |       represent, as a whole, an original work of authorship. For the purposes
 44 |       of this License, Derivative Works shall not include works that remain
 45 |       separable from, or merely link (or bind by name) to the interfaces of,
 46 |       the Work and Derivative Works thereof.
 47 | 
 48 |       "Contribution" shall mean any work of authorship, including
 49 |       the original version of the Work and any modifications or additions
 50 |       to that Work or Derivative Works thereof, that is intentionally
 51 |       submitted to Licensor for inclusion in the Work by the copyright owner
 52 |       or by an individual or Legal Entity authorized to submit on behalf of
 53 |       the copyright owner. For the purposes of this definition, "submitted"
 54 |       means any form of electronic, verbal, or written communication sent
 55 |       to the Licensor or its representatives, including but not limited to
 56 |       communication on electronic mailing lists, source code control systems,
 57 |       and issue tracking systems that are managed by, or on behalf of, the
 58 |       Licensor for the purpose of discussing and improving the Work, but
 59 |       excluding communication that is conspicuously marked or otherwise
 60 |       designated in writing by the copyright owner as "Not a Contribution."
 61 | 
 62 |       "Contributor" shall mean Licensor and any individual or Legal Entity
 63 |       on behalf of whom a Contribution has been received by Licensor and
 64 |       subsequently incorporated within the Work.
 65 | 
 66 |    2. Grant of Copyright License. Subject to the terms and conditions of
 67 |       this License, each Contributor hereby grants to You a perpetual,
 68 |       worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 69 |       copyright license to reproduce, prepare Derivative Works of,
 70 |       publicly display, publicly perform, sublicense, and distribute the
 71 |       Work and such Derivative Works in Source or Object form.
 72 | 
 73 |    3. Grant of Patent License. Subject to the terms and conditions of
 74 |       this License, each Contributor hereby grants to You a perpetual,
 75 |       worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 76 |       (except as stated in this section) patent license to make, have made,
 77 |       use, offer to sell, sell, import, and otherwise transfer the Work,
 78 |       where such license applies only to those patent claims licensable
 79 |       by such Contributor that are necessarily infringed by their
 80 |       Contribution(s) alone or by combination of their Contribution(s)
 81 |       with the Work to which such Contribution(s) was submitted. If You
 82 |       institute patent litigation against any entity (including a
 83 |       cross-claim or counterclaim in a lawsuit) alleging that the Work
 84 |       or a Contribution incorporated within the Work constitutes direct
 85 |       or contributory patent infringement, then any patent licenses
 86 |       granted to You under this License for that Work shall terminate
 87 |       as of the date such litigation is filed.
 88 | 
 89 |    4. Redistribution. You may reproduce and distribute copies of the
 90 |       Work or Derivative Works thereof in any medium, with or without
 91 |       modifications, and in Source or Object form, provided that You
 92 |       meet the following conditions:
 93 | 
 94 |       (a) You must give any other recipients of the Work or
 95 |           Derivative Works a copy of this License; and
 96 | 
 97 |       (b) You must cause any modified files to carry prominent notices
 98 |           stating that You changed the files; and
 99 | 
100 |       (c) You must retain, in the Source form of any Derivative Works
101 |           that You distribute, all copyright, patent, trademark, and
102 |           attribution notices from the Source form of the Work,
103 |           excluding those notices that do not pertain to any part of
104 |           the Derivative Works; and
105 | 
106 |       (d) If the Work includes a "NOTICE" text file as part of its
107 |           distribution, then any Derivative Works that You distribute must
108 |           include a readable copy of the attribution notices contained
109 |           within such NOTICE file, excluding those notices that do not
110 |           pertain to any part of the Derivative Works, in at least one
111 |           of the following places: within a NOTICE text file distributed
112 |           as part of the Derivative Works; within the Source form or
113 |           documentation, if provided along with the Derivative Works; or,
114 |           within a display generated by the Derivative Works, if and
115 |           wherever such third-party notices normally appear. The contents
116 |           of the NOTICE file are for informational purposes only and
117 |           do not modify the License. You may add Your own attribution
118 |           notices within Derivative Works that You distribute, alongside
119 |           or as an addendum to the NOTICE text from the Work, provided
120 |           that such additional attribution notices cannot be construed
121 |           as modifying the License.
122 | 
123 |       You may add Your own copyright statement to Your modifications and
124 |       may provide additional or different license terms and conditions
125 |       for use, reproduction, or distribution of Your modifications, or
126 |       for any such Derivative Works as a whole, provided Your use,
127 |       reproduction, and distribution of the Work otherwise complies with
128 |       the conditions stated in this License.
129 | 
130 |    5. Submission of Contributions. Unless You explicitly state otherwise,
131 |       any Contribution intentionally submitted for inclusion in the Work
132 |       by You to the Licensor shall be under the terms and conditions of
133 |       this License, without any additional terms or conditions.
134 |       Notwithstanding the above, nothing herein shall supersede or modify
135 |       the terms of any separate license agreement you may have executed
136 |       with Licensor regarding such Contributions.
137 | 
138 |    6. Trademarks. This License does not grant permission to use the trade
139 |       names, trademarks, service marks, or product names of the Licensor,
140 |       except as required for reasonable and customary use in describing the
141 |       origin of the Work and reproducing the content of the NOTICE file.
142 | 
143 |    7. Disclaimer of Warranty. Unless required by applicable law or
144 |       agreed to in writing, Licensor provides the Work (and each
145 |       Contributor provides its Contributions) on an "AS IS" BASIS,
146 |       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 |       implied, including, without limitation, any warranties or conditions
148 |       of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 |       PARTICULAR PURPOSE. You are solely responsible for determining the
150 |       appropriateness of using or redistributing the Work and assume any
151 |       risks associated with Your exercise of permissions under this License.
152 | 
153 |    8. Limitation of Liability. In no event and under no legal theory,
154 |       whether in tort (including negligence), contract, or otherwise,
155 |       unless required by applicable law (such as deliberate and grossly
156 |       negligent acts) or agreed to in writing, shall any Contributor be
157 |       liable to You for damages, including any direct, indirect, special,
158 |       incidental, or consequential damages of any character arising as a
159 |       result of this License or out of the use or inability to use the
160 |       Work (including but not limited to damages for loss of goodwill,
161 |       work stoppage, computer failure or malfunction, or any and all
162 |       other commercial damages or losses), even if such Contributor
163 |       has been advised of the possibility of such damages.
164 | 
165 |    9. Accepting Warranty or Additional Liability. While redistributing
166 |       the Work or Derivative Works thereof, You may choose to offer,
167 |       and charge a fee for, acceptance of support, warranty, indemnity,
168 |       or other liability obligations and/or rights consistent with this
169 |       License. However, in accepting such obligations, You may act only
170 |       on Your own behalf and on Your sole responsibility, not on behalf
171 |       of any other Contributor, and only if You agree to indemnify,
172 |       defend, and hold each Contributor harmless for any liability
173 |       incurred by, or claims asserted against, such Contributor by reason
174 |       of your accepting any such warranty or additional liability.
175 | 
176 |    END OF TERMS AND CONDITIONS
177 | 
178 |    APPENDIX: How to apply the Apache License to your work.
179 | 
180 |       To apply the Apache License to your work, attach the following
181 |       boilerplate notice, with the fields enclosed by brackets "[]"
182 |       replaced with your own identifying information. (Don't include
183 |       the brackets!)  The text should be enclosed in the appropriate
184 |       comment syntax for the file format. We also recommend that a
185 |       file or class name and description of purpose be included on the
186 |       same "printed page" as the copyright notice for easier
187 |       identification within third-party archives.
188 | 
189 |    Copyright 2024 Genmo
190 | 
191 |    Licensed under the Apache License, Version 2.0 (the "License");
192 |    you may not use this file except in compliance with the License.
193 |    You may obtain a copy of the License at
194 | 
195 |        http://www.apache.org/licenses/LICENSE-2.0
196 | 
197 |    Unless required by applicable law or agreed to in writing, software
198 |    distributed under the License is distributed on an "AS IS" BASIS,
199 |    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 |    See the License for the specific language governing permissions and
201 |    limitations under the License.


--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
  1 | # Mochi 1
  2 | [Blog](https://www.genmo.ai/blog) | [Hugging Face](https://huggingface.co/genmo/mochi-1-preview) | [Playground](https://www.genmo.ai/play) | [Careers](https://jobs.ashbyhq.com/genmo)
  3 | 
  4 | A state of the art video generation model by [Genmo](https://genmo.ai).
  5 | 
  6 | https://github.com/user-attachments/assets/4d268d02-906d-4cb0-87cc-f467f1497108
  7 | 
  8 | ## News
  9 | 
 10 | - ⭐ **November 26, 2024**: Added support for [LoRA fine-tuning](demos/fine_tuner/README.md)
 11 | - ⭐ **November 5, 2024**: Consumer-GPU support for Mochi [natively in ComfyUI](https://x.com/ComfyUI/status/1853838184012251317)
 12 | 
 13 | ## Overview
 14 | 
 15 | Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation. This model dramatically closes the gap between closed and open video generation systems. We’re releasing the model under a permissive Apache 2.0 license. Try this model for free on [our playground](https://genmo.ai/play).
 16 | 
 17 | ## Installation
 18 | 
 19 | Install using [uv](https://github.com/astral-sh/uv):
 20 | 
 21 | ```bash
 22 | git clone https://github.com/genmoai/models
 23 | cd models 
 24 | pip install uv
 25 | uv venv .venv
 26 | source .venv/bin/activate
 27 | uv pip install setuptools
 28 | uv pip install -e . --no-build-isolation
 29 | ```
 30 | 
 31 | If you want to install flash attention, you can use:
 32 | ```
 33 | uv pip install -e .[flash] --no-build-isolation
 34 | ```
 35 | 
 36 | You will also need to install [FFMPEG](https://www.ffmpeg.org/) to turn your outputs into videos.
 37 | 
 38 | ## Download Weights
 39 | 
 40 | Use [download_weights.py](scripts/download_weights.py) to download the model + VAE to a local directory. Use it like this:
 41 | ```bash
 42 | python3 ./scripts/download_weights.py weights/
 43 | ```
 44 | 
 45 | Or, directly download the weights from [Hugging Face](https://huggingface.co/genmo/mochi-1-preview/tree/main) or via `magnet:?xt=urn:btih:441da1af7a16bcaa4f556964f8028d7113d21cbb&dn=weights&tr=udp://tracker.opentrackr.org:1337/announce` to a folder on your computer.
 46 | 
 47 | ## Running
 48 | 
 49 | Start the gradio UI with
 50 | 
 51 | ```bash
 52 | python3 ./demos/gradio_ui.py --model_dir weights/ --cpu_offload
 53 | ```
 54 | 
 55 | Or generate videos directly from the CLI with
 56 | 
 57 | ```bash
 58 | python3 ./demos/cli.py --model_dir weights/ --cpu_offload
 59 | ```
 60 | 
 61 | If you have a fine-tuned LoRA in the safetensors format, you can add `--lora_path <path/to/my_mochi_lora.safetensors>` to either `gradio_ui.py` or `cli.py`.
 62 | 
 63 | ## API
 64 | 
 65 | This repository comes with a simple, composable API, so you can programmatically call the model. You can find a full example [here](demos/api_example.py). But, roughly, it looks like this:
 66 | 
 67 | ```python
 68 | from genmo.mochi_preview.pipelines import (
 69 |     DecoderModelFactory,
 70 |     DitModelFactory,
 71 |     MochiSingleGPUPipeline,
 72 |     T5ModelFactory,
 73 |     linear_quadratic_schedule,
 74 | )
 75 | 
 76 | pipeline = MochiSingleGPUPipeline(
 77 |     text_encoder_factory=T5ModelFactory(),
 78 |     dit_factory=DitModelFactory(
 79 |         model_path=f"weights/dit.safetensors", model_dtype="bf16"
 80 |     ),
 81 |     decoder_factory=DecoderModelFactory(
 82 |         model_path=f"weights/decoder.safetensors",
 83 |     ),
 84 |     cpu_offload=True,
 85 |     decode_type="tiled_spatial",
 86 | )
 87 | 
 88 | video = pipeline(
 89 |     height=480,
 90 |     width=848,
 91 |     num_frames=31,
 92 |     num_inference_steps=64,
 93 |     sigma_schedule=linear_quadratic_schedule(64, 0.025),
 94 |     cfg_schedule=[6.0] * 64,
 95 |     batch_cfg=False,
 96 |     prompt="your favorite prompt here ...",
 97 |     negative_prompt="",
 98 |     seed=12345,
 99 | )
100 | ```
101 | 
102 | ## Fine-tuning with LoRA
103 | 
104 | We provide [an easy-to-use trainer](demos/fine_tuner/README.md) that allows you to build LoRA fine-tunes of Mochi on your own videos. The model can be fine-tuned on one H100 or A100 80GB GPU.
105 | 
106 | ## Model Architecture
107 | 
108 | Mochi 1 represents a significant advancement in open-source video generation, featuring a 10 billion parameter diffusion model built on our novel Asymmetric Diffusion Transformer (AsymmDiT) architecture. Trained entirely from scratch, it is the largest video generative model ever openly released. And best of all, it’s a simple, hackable architecture. Additionally, we are releasing an inference harness that includes an efficient context parallel implementation. 
109 | 
110 | Alongside Mochi, we are open-sourcing our video AsymmVAE. We use an asymmetric encoder-decoder structure to build an efficient high quality compression model. Our AsymmVAE causally compresses videos to a 128x smaller size, with an 8x8 spatial and a 6x temporal compression to a 12-channel latent space. 
111 | 
112 | ### AsymmVAE Model Specs
113 | |Params <br> Count | Enc Base <br>  Channels | Dec Base <br> Channels |Latent <br> Dim | Spatial <br> Compression | Temporal <br> Compression | 
114 | |:--:|:--:|:--:|:--:|:--:|:--:|
115 | |362M   | 64  | 128  | 12   | 8x8   | 6x   | 
116 | 
117 | An AsymmDiT efficiently processes user prompts alongside compressed video tokens by streamlining text processing and focusing neural network capacity on visual reasoning. AsymmDiT jointly attends to text and visual tokens with multi-modal self-attention and learns separate MLP layers for each modality, similar to Stable Diffusion 3. However, our visual stream has nearly 4 times as many parameters as the text stream via a larger hidden dimension. To unify the modalities in self-attention, we use non-square QKV and output projection layers. This asymmetric design reduces inference memory requirements.
118 | Many modern diffusion models use multiple pretrained language models to represent user prompts. In contrast, Mochi 1 simply encodes prompts with a single T5-XXL language model.
119 | 
120 | ### AsymmDiT Model Specs
121 | |Params <br> Count | Num <br> Layers | Num <br> Heads | Visual <br> Dim | Text <br> Dim | Visual <br> Tokens | Text <br> Tokens | 
122 | |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
123 | |10B   | 48   | 24   | 3072   | 1536   | 44520   |   256   |
124 | 
125 | ## Hardware Requirements
126 | The repository supports both multi-GPU operation (splitting the model across multiple graphics cards) and single-GPU operation, though it requires approximately 60GB VRAM when running on a single GPU. While ComfyUI can optimize Mochi to run on less than 20GB VRAM, this implementation prioritizes flexibility over memory efficiency. When using this repository, we recommend using at least 1 H100 GPU.
127 | 
128 | ## Safety
129 | Genmo video models are general text-to-video diffusion models that inherently reflect the biases and preconceptions found in their training data. While steps have been taken to limit NSFW content, organizations should implement additional safety protocols and careful consideration before deploying these model weights in any commercial services or products.
130 | 
131 | ## Limitations
132 | Under the research preview, Mochi 1 is a living and evolving checkpoint. There are a few known limitations. The initial release generates videos at 480p today. In some edge cases with extreme motion, minor warping and distortions can also occur. Mochi 1 is also optimized for photorealistic styles so does not perform well with animated content. We also anticipate that the community will fine-tune the model to suit various aesthetic preferences.
133 | 
134 | ## Related Work
135 | - [ComfyUI-MochiWrapper](https://github.com/kijai/ComfyUI-MochiWrapper) adds ComfyUI support for Mochi. The integration of Pytorch's SDPA attention was based on their repository.
136 | - [ComfyUI-MochiEdit](https://github.com/logtd/ComfyUI-MochiEdit) adds ComfyUI nodes for video editing, such as object insertion and restyling.
137 | - [mochi-xdit](https://github.com/xdit-project/mochi-xdit) is a fork of this repository and improve the parallel inference speed with [xDiT](https://github.com/xdit-project/xdit).
138 | - [Modal script](contrib/modal/readme.md) for fine-tuning Mochi on Modal GPUs.
139 | 
140 | 
141 | ## BibTeX
142 | ```
143 | @misc{genmo2024mochi,
144 |       title={Mochi 1},
145 |       author={Genmo Team},
146 |       year={2024},
147 |       publisher = {GitHub},
148 |       journal = {GitHub repository},
149 |       howpublished={\url{https://github.com/genmoai/models}}
150 | }
151 | ```
152 | 


--------------------------------------------------------------------------------
/assets/grid.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/assets/grid.mp4


--------------------------------------------------------------------------------
/assets/mochi-factory.webp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/assets/mochi-factory.webp


--------------------------------------------------------------------------------
/contrib/README.md:
--------------------------------------------------------------------------------
1 | # Mochi Community Contributions
2 | 
3 | `mochi/contrib` contains community contributed pipelines for running and customizing Mochi.
4 | 
5 | ## Index:
6 |  - `mochi/contrib/modal` - [Script](contrib/modal/readme.md) for fine-tuning Mochi on Modal GPUs.
7 | 


--------------------------------------------------------------------------------
/contrib/modal/lora.yaml:
--------------------------------------------------------------------------------
 1 | init_checkpoint_path: /weights/dit.safetensors
 2 | checkpoint_dir: /finetunes/my_mochi_lora
 3 | train_data_dir: /videos_prepared
 4 | attention_mode: sdpa
 5 | single_video_mode: false # Useful for debugging whether your model can learn a single video
 6 | 
 7 | # You only need this if you're using wandb
 8 | wandb:
 9 |   # project: mochi_1_lora
10 |   # name: ${checkpoint_dir}
11 |   # group: null
12 | 
13 | optimizer:
14 |   lr: 2e-4
15 |   weight_decay: 0.01
16 | 
17 | model:
18 |   type: lora
19 |   kwargs:
20 |     # Apply LoRA to the QKV projection and the output projection of the attention block.
21 |     qkv_proj_lora_rank: 16
22 |     qkv_proj_lora_alpha: 16
23 |     qkv_proj_lora_dropout: 0.
24 |     out_proj_lora_rank: 16
25 |     out_proj_lora_alpha: 16
26 |     out_proj_lora_dropout: 0.
27 | 
28 | training:
29 |   model_dtype: bf16
30 |   warmup_steps: 200
31 |   num_qkv_checkpoint: 48
32 |   num_ff_checkpoint: 48
33 |   num_post_attn_checkpoint: 48
34 |   num_steps: 2000
35 |   save_interval: 200
36 |   caption_dropout: 0.1
37 |   grad_clip: 0.0
38 |   save_safetensors: true
39 | 
40 | # Used for generating samples during training to monitor progress ...
41 | sample:
42 |    interval: 200
43 |    output_dir: ${checkpoint_dir}/samples
44 |    decoder_path: /weights/decoder.safetensors
45 |    prompts:
46 |       - A pristine snowglobe featuring a winter scene sits peacefully. The glass begins to crumble into fine powder, as the entire sphere deteriorates into sparkling dust that drifts outward. The fake snow mingles with the crystalline particles, creating a glittering cloud captured in high-speed photography.
47 |       - A vintage pocket watch ticks quietly on an antique desk. Its brass casing starts to deteriorate, turning to fine metallic powder that lifts into the air. The gears and springs fragment into microscopic particles, each piece breaking down into a shimmering bronze dust that hangs suspended. The scene is richly detailed with warm, brass tones.
48 |       - A cello is propped up against a wall, a single spotlight illuminating it. The wooden surface begins to decay into fine sawdust, the instrument gradually breaking apart as its form disintegrates into a cloud of earthen particles. The strings unravel into delicate fibers that float amidst the swirling wooden dust. The scene is vibrant and colorful.
49 |       - A graphics card sits inside an oven, heatwaves around it. The silicon and metal components begin to break down at a molecular level, deteriorating into a dark cloud of fine metallic and mineral dust that hangs suspended in the heated air. The scene is darkly lit, high contrast, with a focus on the suspended particles.
50 |       - A delicate porcelain teacup sits on a marble countertop. The ceramic structure begins to crumble into a fine, chalk-like powder, breaking down into countless microscopic white particles that drift upward in graceful patterns. The scene is bright and crisp with dramatic lighting illuminating the cloud of porcelain dust.
51 |    seed: 12345
52 |    kwargs:
53 |      height: 480
54 |      width: 848
55 |      num_frames: 37
56 |      num_inference_steps: 64
57 |      sigma_schedule_python_code: "linear_quadratic_schedule(64, 0.025)"
58 |      cfg_schedule_python_code: "[6.0] * 64"


--------------------------------------------------------------------------------
/contrib/modal/main.py:
--------------------------------------------------------------------------------
  1 | import modal
  2 | from pathlib import Path
  3 | 
  4 | # Creating our Modal App
  5 | app = modal.App("mochi-finetune")
  6 | 
  7 | # Creating volumes for data, intermediate data, and produced weights
  8 | videos_volume = modal.Volume.from_name("mochi-tune-videos", create_if_missing=True)
  9 | videos_prepared_volume = modal.Volume.from_name("mochi-tune-videos-prepared", create_if_missing=True)
 10 | weights_volume = modal.Volume.from_name("mochi-tune-weights", create_if_missing=True)
 11 | finetunes_volume = modal.Volume.from_name("mochi-tune-finetunes", create_if_missing=True)
 12 | outputs_volume = modal.Volume.from_name("mochi-tune-outputs", create_if_missing=True)
 13 | 
 14 | USERNAME = "genmoai"
 15 | REPOSITORY = "mochi"
 16 | CLONE_CMD = f"git clone https://github.com/{USERNAME}/{REPOSITORY}.git"
 17 | 
 18 | # Building our container image
 19 | base_img = (
 20 |     modal.Image.debian_slim()
 21 |     .apt_install("git", "ffmpeg", "bc", "zlib1g-dev", "libjpeg-dev", "wget")
 22 |     .run_commands(CLONE_CMD)
 23 |     .workdir(REPOSITORY)
 24 |     .pip_install("gdown", "setuptools", "wheel")
 25 |     .run_commands('pip install -e . --no-build-isolation')
 26 | )
 27 | 
 28 | MINUTES = 60
 29 | HOURS = 60 * MINUTES
 30 | 
 31 | # Remote function for downloading a labeled video dataset from Google Drive
 32 | # Run it with:
 33 | #   modal run main::download_videos
 34 | @app.function(image=base_img,
 35 |     volumes={
 36 |         "/videos": videos_volume,
 37 |     }
 38 | )
 39 | def download_videos():
 40 |     '''Downloads videos from google drive into our volume'''
 41 |     import gdown
 42 |     import zipfile
 43 | 
 44 |     name = "dissolve"
 45 |     url = "https://drive.google.com/uc?id=1ldoBppcsv5Ueoikh0zCmNviojRCrGXQN"
 46 |     output = f"{name}.zip"
 47 |     gdown.download(url, output, quiet=False)
 48 |     with zipfile.ZipFile(output, "r") as zip_ref:
 49 |         zip_ref.extractall("/videos")
 50 | 
 51 | # Remote function for downloading the model weights from Hugging Face
 52 | # Run it with:
 53 | #   modal run main::download_weights
 54 | @app.function(image=base_img, 
 55 |     volumes={
 56 |         "/weights": weights_volume,
 57 |     },
 58 |     timeout=1*HOURS,
 59 | )
 60 | def download_weights():
 61 |     # HF-transfer and snapshot download tend to hang on the large model, so we download it manually with wget
 62 |     import subprocess
 63 |     print("🍡 Downloading weights from Hugging Face. This may take 30 minutes.")
 64 |     # ~30 min
 65 |     subprocess.run(["wget", "https://huggingface.co/genmo/mochi-1-preview/resolve/main/dit.safetensors", "-O", "/weights/dit.safetensors"])
 66 |     # ~1 min
 67 |     subprocess.run(["wget", "https://huggingface.co/genmo/mochi-1-preview/resolve/main/decoder.safetensors", "-O", "/weights/decoder.safetensors"])
 68 |     # ~20 sec
 69 |     subprocess.run(["wget", "https://huggingface.co/genmo/mochi-1-preview/resolve/main/encoder.safetensors", "-O", "/weights/encoder.safetensors"])
 70 | 
 71 | # Remote function for preprocessing the video dataset
 72 | # Run it with:
 73 | #   modal run main::preprocess
 74 | @app.function(
 75 |     image=base_img, 
 76 |     volumes={
 77 |         "/videos": videos_volume,
 78 |         "/videos_prepared": videos_prepared_volume,
 79 |         "/weights": weights_volume,
 80 |     },
 81 |     timeout=30*MINUTES,
 82 |     gpu="H100"
 83 | )
 84 | def preprocess():
 85 |     import subprocess
 86 |     print("🍡 Preprocessing videos. This may take 2-3 minutes.")
 87 |     video_dir = "videos_dissolve"
 88 |     subprocess.run([
 89 |         "bash", "demos/fine_tuner/preprocess.bash", 
 90 |         "-v", f"/videos/{video_dir}/",
 91 |         "-o", "/videos_prepared/", 
 92 |         "-w", "/weights/", 
 93 |         "-n", "37"
 94 |     ])
 95 | 
 96 | # Remote function for finetuning the model using the prepared dataset
 97 | # Configure the run in lora.yaml
 98 | # Run it with:
 99 | #   modal run main::finetune
100 | @app.function(
101 |     image=base_img, 
102 |     volumes={
103 |         "/videos": videos_volume,
104 |         "/videos_prepared": videos_prepared_volume,
105 |         "/weights": weights_volume,
106 |         "/finetunes": finetunes_volume,
107 |     },
108 |     mounts=[modal.Mount.from_local_file("lora.yaml", remote_path=f"{REPOSITORY}/lora.yaml")],
109 |     timeout=4*HOURS,
110 |     gpu="H100"
111 | )
112 | def finetune():
113 |     import subprocess
114 |     print("🍡 Finetuning Mochi. This may take 3 hours.")
115 |     print("🍡 See your mochi-tune-finetunes volume for intermediate checkpoints and samples.")
116 |     subprocess.run([
117 |         "bash", "demos/fine_tuner/run.bash", 
118 |         "-c", "lora.yaml", # from our locally mounted yaml file
119 |         "-n", "1", 
120 |     ])
121 | 
122 | # Remote function (Modal @cls) for running inference on one or multiple videos
123 | # Run it with the @local_entrypoint below
124 | @app.cls(
125 |     image = base_img,
126 |     volumes={
127 |         "/weights": weights_volume,
128 |         "/finetunes": finetunes_volume,
129 |         "/outputs": outputs_volume,
130 |     },
131 |     timeout=30*MINUTES,
132 |     gpu="H100"
133 | )
134 | class MochiLora():
135 |     def __init__(self, model_dir: str = "/weights", lora_path: str = None, cpu_offload: bool = False):
136 |         self.model_dir = model_dir
137 |         self.lora_path = lora_path
138 |         self.cpu_offload = cpu_offload
139 | 
140 |     @modal.enter()
141 |     def start(self):
142 |         from genmo.mochi_preview.pipelines import (
143 |             DecoderModelFactory,
144 |             DitModelFactory,
145 |             MochiMultiGPUPipeline,
146 |             MochiSingleGPUPipeline,
147 |             T5ModelFactory,
148 |         )
149 |         import torch
150 | 
151 |         """Initialize the model - this runs once when the container starts"""
152 |         print("🍡 Loading Mochi model.")
153 | 
154 |         self.num_gpus = torch.cuda.device_count()
155 |         
156 |         # Configure pipeline based on GPU count
157 |         klass = MochiSingleGPUPipeline if self.num_gpus == 1 else MochiMultiGPUPipeline
158 |         
159 |         kwargs = dict(
160 |             text_encoder_factory=T5ModelFactory(),
161 |             dit_factory=DitModelFactory(
162 |                 model_path=f"{self.model_dir}/dit.safetensors",
163 |                 lora_path=self.lora_path,
164 |                 model_dtype="bf16",
165 |             ),
166 |             decoder_factory=DecoderModelFactory(
167 |                 model_path=f"{self.model_dir}/decoder.safetensors",
168 |             ),
169 |         )
170 | 
171 |         if self.num_gpus > 1:
172 |             assert not self.lora_path, f"Lora not supported in multi-GPU mode"
173 |             assert not self.cpu_offload, "CPU offload not supported in multi-GPU mode"
174 |             kwargs["world_size"] = self.num_gpus
175 |         else:
176 |             kwargs["cpu_offload"] = self.cpu_offload
177 |             kwargs["decode_type"] = "tiled_spatial"
178 |             kwargs["fast_init"] = not self.lora_path
179 |             kwargs["strict_load"] = not self.lora_path
180 |             kwargs["decode_args"] = dict(overlap=8)
181 | 
182 |         self.pipeline = klass(**kwargs)
183 |         print(f"🍡 Model loaded successfully with {self.num_gpus} GPUs")
184 | 
185 |     @modal.method()
186 |     def generate(self, 
187 |                 prompt: str,
188 |                 negative_prompt: str = "",
189 |                 width: int = 848,
190 |                 height: int = 480,
191 |                 num_frames: int = 163,
192 |                 seed: int = 1710977262,
193 |                 cfg_scale: float = 6.0,
194 |                 num_inference_steps: int = 64) -> str:
195 |         """Generate video based on the prompt and parameters"""
196 |         
197 |         print("🍡 Generating video.")
198 | 
199 |         import json
200 |         import os
201 |         import time
202 | 
203 |         import numpy as np
204 | 
205 |         from genmo.lib.progress import progress_bar
206 |         from genmo.lib.utils import save_video
207 |         from genmo.mochi_preview.pipelines import linear_quadratic_schedule
208 | 
209 |         
210 |         # Create sigma schedule
211 |         sigma_schedule = linear_quadratic_schedule(num_inference_steps, 0.025)
212 |         cfg_schedule = [cfg_scale] * num_inference_steps
213 | 
214 |         args = {
215 |             "height": height,
216 |             "width": width,
217 |             "num_frames": num_frames,
218 |             "sigma_schedule": sigma_schedule,
219 |             "cfg_schedule": cfg_schedule,
220 |             "num_inference_steps": num_inference_steps,
221 |             "batch_cfg": False,
222 |             "prompt": prompt,
223 |             "negative_prompt": negative_prompt,
224 |             "seed": seed,
225 |         }
226 | 
227 |         with progress_bar(type="tqdm"):
228 |             final_frames = self.pipeline(**args)
229 |             final_frames = final_frames[0]
230 | 
231 |             assert isinstance(final_frames, np.ndarray)
232 |             assert final_frames.dtype == np.float32
233 | 
234 |             # Save to mounted volume
235 |             output_dir = "/outputs"  # Assuming this path exists in the mounted volume
236 |             os.makedirs(output_dir, exist_ok=True)
237 |             output_path = os.path.join(output_dir, f"output_{int(time.time())}.mp4")
238 | 
239 |             save_video(final_frames, output_path)
240 |             
241 |             # Save generation parameters
242 |             json_path = os.path.splitext(output_path)[0] + ".json"
243 |             json.dump(args, open(json_path, "w"), indent=4)
244 | 
245 |         print(f"🍡 Video saved to {output_path}")
246 |         outputs_volume.commit()
247 |         return output_path.split("/")[-1]
248 | 
249 | # Local entrypoint for using the MochiLora class
250 | # Select the lora_path you'd want to use from the finetunes volume
251 | # Then it with:
252 | #   modal run main
253 | @app.local_entrypoint()
254 | def main(
255 |     prompt="A pristine snowglobe featuring a winter scene sits peacefully. The glass begins to crumble into fine powder, as the entire sphere deteriorates into sparkling dust that drifts outward. The fake snow mingles with the crystalline particles, creating a glittering cloud captured in high-speed photography.",
256 |     negative_prompt="blurry, low quality",
257 |     width=848,
258 |     height=480,
259 |     num_frames=49, # (num_frames - 1) must be divisible by 6
260 |     seed=1710977262,
261 |     cfg_scale=6.0,
262 |     num_inference_steps=64,
263 |     lora_path="/finetunes/my_mochi_lora/model_2000.lora.safetensors",
264 |     cpu_offload=True,
265 | ):
266 |     lora = MochiLora(
267 |         lora_path=lora_path, # your lora path
268 |         cpu_offload=cpu_offload,
269 |     )
270 |     output_path = lora.generate.remote(
271 |         prompt=prompt,
272 |         negative_prompt=negative_prompt,
273 |         width=width,
274 |         height=height,
275 |         num_frames=num_frames,
276 |         seed=seed,
277 |         cfg_scale=cfg_scale,
278 |         num_inference_steps=num_inference_steps,
279 |     )
280 | 
281 |     local_dir = Path("/tmp/mochi")
282 |     local_dir.mkdir(exist_ok=True, parents=True)
283 |     local_path = local_dir / output_path
284 |     local_path.write_bytes(b"".join(outputs_volume.read_file(output_path)))
285 |     print(f"🍡 video saved locally at {local_path}")
286 | 


--------------------------------------------------------------------------------
/contrib/modal/readme.md:
--------------------------------------------------------------------------------
 1 | ## Finetuning Mochi with LoRA on Modal
 2 | 
 3 | This example demonstrates how to run the Mochi finetuner on Modal GPUs.
 4 | 
 5 | ### Setup
 6 | Install [Modal](https://modal.com/docs/guide).
 7 | ```bash
 8 | pip install modal
 9 | modal setup
10 | ```
11 | 
12 | ### Fetch the dataset
13 | There is a labeled dataset for a dissolving visual effect available on Google Drive. Download it into the `mochi-tune-videos` modal volume with:
14 | ```bash
15 | modal run main::download_videos
16 | ```
17 | 
18 | ### Download the model weights
19 | Download the model weights from Hugging Face into the `mochi-tune-weights` modal volume with:
20 | ```bash
21 | modal run -d main::download_weights
22 | ```
23 | Note that this download can take more than 30 minutes. The `-d` flag allows you to exit the terminal session without losing progress.
24 | 
25 | ### Prepare the dataset
26 | We now run the preprocessing script to prepare the dataset for finetuning:
27 | ```bash
28 | modal run main::preprocess
29 | ```
30 | This puts preprocessed training input into the `mochi-tune-videos-prepared` modal volume.
31 | 
32 | ### Finetuning
33 | Finetune the model using the prepared dataset.
34 | 
35 | You may configure the finetune run using the `lora.yaml` file, such as number of steps, learning rate, etc.
36 | 
37 | Run the finetuning with:
38 | ```bash
39 | modal run -d main::finetune
40 | ```
41 | 
42 | This will produce a series of checkpoints, as well as video samples generated along the training process. You can view these files in the Modal `moshi-tune-finetunes` volume using the Storage tab in the dashboard.
43 | 
44 | ### Inference
45 | You can now use the MochiLora class to generate videos from a prompt. The `main` entrypoint will initialize the model to use the specified LoRA weights from your finetuning run. 
46 | 
47 | ```bash
48 | modal run main
49 | ```
50 | or with more parameters: 
51 | ```bash
52 | modal run main lora-path="/finetunes/my_mochi_lora/model_1000.lora.safetensors" prompt="A pristine snowglobe featuring a winter scene sits peacefully. The glass begins to crumble into fine powder, as the entire sphere deteriorates into sparkling dust that drifts outward." 
53 | ```
54 | 
55 | See modal run main --help for all inference options.


--------------------------------------------------------------------------------
/demos/api_example.py:
--------------------------------------------------------------------------------
 1 | #! /usr/bin/env python
 2 | import sys
 3 | from pathlib import Path
 4 | from textwrap import dedent
 5 | 
 6 | from genmo.lib.progress import progress_bar
 7 | from genmo.lib.utils import save_video
 8 | from genmo.mochi_preview.pipelines import (
 9 |     DecoderModelFactory,
10 |     DitModelFactory,
11 |     MochiSingleGPUPipeline,
12 |     T5ModelFactory,
13 |     linear_quadratic_schedule,
14 | )
15 | 
16 | MOCHI_DIR = sys.argv[1]
17 | assert Path(MOCHI_DIR).exists(), f"Model directory {MOCHI_DIR} does not exist."
18 | pipeline = MochiSingleGPUPipeline(
19 |     text_encoder_factory=T5ModelFactory(),
20 |     dit_factory=DitModelFactory(model_path=f"{MOCHI_DIR}/dit.safetensors", model_dtype="bf16"),
21 |     decoder_factory=DecoderModelFactory(
22 |         model_path=f"{MOCHI_DIR}/vae.safetensors",
23 |         model_stats_path=f"{MOCHI_DIR}/vae_stats.json",
24 |     ),
25 |     cpu_offload=True,
26 |     decode_type="tiled_full",
27 | )
28 | 
29 | PROMPT = dedent("""
30 | A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl 
31 | filled with lemons and sprigs of mint against a peach-colored background. 
32 | The hand gently tosses the lemon up and catches it, showcasing its smooth texture. 
33 | A beige string bag sits beside the bowl, adding a rustic touch to the scene. 
34 | Additional lemons, one halved, are scattered around the base of the bowl. 
35 | The even lighting enhances the vibrant colors and creates a fresh, 
36 | inviting atmosphere.
37 | """)
38 | 
39 | video = pipeline(
40 |     height=480,
41 |     width=848,
42 |     num_frames=31,
43 |     num_inference_steps=64,
44 |     sigma_schedule=linear_quadratic_schedule(64, 0.025),
45 |     cfg_schedule=[4.5] * 64,
46 |     batch_cfg=False,
47 |     prompt=PROMPT,
48 |     negative_prompt="",
49 |     seed=12345,
50 | )
51 | 
52 | with progress_bar(type="tqdm"):
53 |     save_video(video[0], "video.mp4")
54 | 


--------------------------------------------------------------------------------
/demos/cli.py:
--------------------------------------------------------------------------------
  1 | #! /usr/bin/env python
  2 | import json
  3 | import os
  4 | import time
  5 | 
  6 | import click
  7 | import numpy as np
  8 | import torch
  9 | 
 10 | from genmo.lib.progress import progress_bar
 11 | from genmo.lib.utils import save_video
 12 | from genmo.mochi_preview.pipelines import (
 13 |     DecoderModelFactory,
 14 |     DitModelFactory,
 15 |     MochiMultiGPUPipeline,
 16 |     MochiSingleGPUPipeline,
 17 |     T5ModelFactory,
 18 |     linear_quadratic_schedule,
 19 | )
 20 | 
 21 | pipeline = None
 22 | model_dir_path = None
 23 | lora_path = None
 24 | num_gpus = torch.cuda.device_count()
 25 | cpu_offload = False
 26 | 
 27 | 
 28 | def configure_model(model_dir_path_, lora_path_, cpu_offload_, fast_model_=False):
 29 |     global model_dir_path, lora_path, cpu_offload
 30 |     model_dir_path = model_dir_path_
 31 |     lora_path = lora_path_
 32 |     cpu_offload = cpu_offload_
 33 | 
 34 | 
 35 | def load_model():
 36 |     global num_gpus, pipeline, model_dir_path, lora_path
 37 |     if pipeline is None:
 38 |         MOCHI_DIR = model_dir_path
 39 |         print(f"Launching with {num_gpus} GPUs. If you want to force single GPU mode use CUDA_VISIBLE_DEVICES=0.")
 40 |         klass = MochiSingleGPUPipeline if num_gpus == 1 else MochiMultiGPUPipeline
 41 |         kwargs = dict(
 42 |             text_encoder_factory=T5ModelFactory(),
 43 |             dit_factory=DitModelFactory(
 44 |                 model_path=f"{MOCHI_DIR}/dit.safetensors",
 45 |                 lora_path=lora_path,
 46 |                 model_dtype="bf16",
 47 |             ),
 48 |             decoder_factory=DecoderModelFactory(
 49 |                 model_path=f"{MOCHI_DIR}/decoder.safetensors",
 50 |             ),
 51 |         )
 52 |         if num_gpus > 1:
 53 |             assert not lora_path, f"Lora not supported in multi-GPU mode"
 54 |             assert not cpu_offload, "CPU offload not supported in multi-GPU mode"
 55 |             kwargs["world_size"] = num_gpus
 56 |         else:
 57 |             kwargs["cpu_offload"] = cpu_offload
 58 |             kwargs["decode_type"] = "tiled_spatial"
 59 |             kwargs["fast_init"] = not lora_path
 60 |             kwargs["strict_load"] = not lora_path
 61 |             kwargs["decode_args"] = dict(overlap=8)
 62 |         pipeline = klass(**kwargs)
 63 | 
 64 | 
 65 | def generate_video(
 66 |     prompt,
 67 |     negative_prompt,
 68 |     width,
 69 |     height,
 70 |     num_frames,
 71 |     seed,
 72 |     cfg_scale,
 73 |     num_inference_steps,
 74 |     threshold_noise=0.025,
 75 |     linear_steps=None,
 76 |     output_dir="outputs",
 77 | ):
 78 |     load_model()
 79 | 
 80 |     # Fast mode parameters: threshold_noise=0.1, linear_steps=6, cfg_scale=1.5, num_inference_steps=8
 81 |     sigma_schedule = linear_quadratic_schedule(num_inference_steps, threshold_noise, linear_steps)
 82 | 
 83 |     # cfg_schedule should be a list of floats of length num_inference_steps.
 84 |     # For simplicity, we just use the same cfg scale at all timesteps,
 85 |     # but more optimal schedules may use varying cfg, e.g:
 86 |     # [5.0] * (num_inference_steps // 2) + [4.5] * (num_inference_steps // 2)
 87 |     cfg_schedule = [cfg_scale] * num_inference_steps
 88 | 
 89 |     args = {
 90 |         "height": height,
 91 |         "width": width,
 92 |         "num_frames": num_frames,
 93 |         "sigma_schedule": sigma_schedule,
 94 |         "cfg_schedule": cfg_schedule,
 95 |         "num_inference_steps": num_inference_steps,
 96 |         # We *need* flash attention to batch cfg
 97 |         # and it's only worth doing in a high-memory regime (assume multiple GPUs)
 98 |         "batch_cfg": False,
 99 |         "prompt": prompt,
100 |         "negative_prompt": negative_prompt,
101 |         "seed": seed,
102 |     }
103 | 
104 |     with progress_bar(type="tqdm"):
105 |         final_frames = pipeline(**args)
106 | 
107 |         final_frames = final_frames[0]
108 | 
109 |         assert isinstance(final_frames, np.ndarray)
110 |         assert final_frames.dtype == np.float32
111 | 
112 |         os.makedirs(output_dir, exist_ok=True)
113 |         output_path = os.path.join(output_dir, f"output_{int(time.time())}.mp4")
114 | 
115 |         save_video(final_frames, output_path)
116 |         json_path = os.path.splitext(output_path)[0] + ".json"
117 |         json.dump(args, open(json_path, "w"), indent=4)
118 | 
119 |         return output_path
120 | 
121 | 
122 | from textwrap import dedent
123 | 
124 | DEFAULT_PROMPT = dedent("""
125 | A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl 
126 | filled with lemons and sprigs of mint against a peach-colored background. 
127 | The hand gently tosses the lemon up and catches it, showcasing its smooth texture. 
128 | A beige string bag sits beside the bowl, adding a rustic touch to the scene. 
129 | Additional lemons, one halved, are scattered around the base of the bowl. 
130 | The even lighting enhances the vibrant colors and creates a fresh, 
131 | inviting atmosphere.
132 | """)
133 | 
134 | 
135 | @click.command()
136 | @click.option("--prompt", default=DEFAULT_PROMPT, help="Prompt for video generation.")
137 | @click.option("--sweep-file", help="JSONL file containing one config per line.")
138 | @click.option("--negative_prompt", default="", help="Negative prompt for video generation.")
139 | @click.option("--width", default=848, type=int, help="Width of the video.")
140 | @click.option("--height", default=480, type=int, help="Height of the video.")
141 | @click.option("--num_frames", default=163, type=int, help="Number of frames.")
142 | @click.option("--seed", default=1710977262, type=int, help="Random seed.")
143 | @click.option("--cfg_scale", default=6.0, type=float, help="CFG Scale.")
144 | @click.option("--num_steps", default=64, type=int, help="Number of inference steps.")
145 | @click.option("--model_dir", required=True, help="Path to the model directory.")
146 | @click.option("--lora_path", required=False, help="Path to the lora file.")
147 | @click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU")
148 | @click.option("--out_dir", default="outputs", help="Output directory for generated videos")
149 | @click.option("--threshold-noise", default=0.025, help="threshold noise")
150 | @click.option("--linear-steps", default=None, type=int, help="linear steps")
151 | def generate_cli(
152 |     prompt, sweep_file, negative_prompt, width, height, num_frames, seed, cfg_scale, num_steps, 
153 |     model_dir, lora_path, cpu_offload, out_dir, threshold_noise, linear_steps
154 | ):
155 |     configure_model(model_dir, lora_path, cpu_offload)
156 | 
157 |     if sweep_file:
158 |         with open(sweep_file, 'r') as f:
159 |             for i, line in enumerate(f):
160 |                 if not line.strip():
161 |                     continue
162 |                 config = json.loads(line)
163 |                 current_prompt = config.get('prompt', prompt)
164 |                 current_cfg_scale = config.get('cfg_scale', cfg_scale)
165 |                 current_num_steps = config.get('num_steps', num_steps)
166 |                 current_threshold_noise = config.get('threshold_noise', threshold_noise)
167 |                 current_linear_steps = config.get('linear_steps', linear_steps)
168 |                 current_seed = config.get('seed', seed)
169 |                 current_width = config.get('width', width)
170 |                 current_height = config.get('height', height)
171 |                 current_num_frames = config.get('num_frames', num_frames)
172 | 
173 |                 output_path = generate_video(
174 |                     current_prompt,
175 |                     negative_prompt,
176 |                     current_width,
177 |                     current_height,
178 |                     current_num_frames,
179 |                     current_seed,
180 |                     current_cfg_scale,
181 |                     current_num_steps,
182 |                     threshold_noise=current_threshold_noise,
183 |                     linear_steps=current_linear_steps,
184 |                     output_dir=out_dir,
185 |                 )
186 |                 click.echo(f"Video {i+1} generated at: {output_path}")
187 |     else:
188 |         output_path = generate_video(
189 |             prompt,
190 |             negative_prompt,
191 |             width,
192 |             height,
193 |             num_frames,
194 |             seed,
195 |             cfg_scale,
196 |             num_steps,
197 |             threshold_noise=threshold_noise,
198 |             linear_steps=linear_steps,
199 |             output_dir=out_dir,
200 |         )
201 |         click.echo(f"Video generated at: {output_path}")
202 | 
203 | 
204 | if __name__ == "__main__":
205 |     generate_cli()
206 | 


--------------------------------------------------------------------------------
/demos/comfyui_nodes.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/demos/comfyui_nodes.py


--------------------------------------------------------------------------------
/demos/fine_tuner/README.md:
--------------------------------------------------------------------------------
  1 | # Mochi 1 LoRA Fine-tuner
  2 | 
  3 | ![Mochi being made](../../assets/mochi-factory.webp)
  4 | 
  5 | 
  6 | This folder contains tools for fine-tuning the Mochi 1 model. It supports [LoRA](https://arxiv.org/abs/2106.09685) fine-tuning on a single GPU.
  7 | 
  8 | ## Quick Start (Single GPU)
  9 | This shows you how to prepare your dataset for single GPU.
 10 | 
 11 | First, setup the inference code and download Mochi 1 weights following [README.md](../../README.md).
 12 | All commands below assume you are in the top-level directory of the Mochi repo.
 13 | 
 14 | ### 1. Collect your videos and captions
 15 | Collect your videos (supported formats: MP4, MOV) into a folder, e.g. `videos/`. Then, write a detailed description of each of the videos in a txt file with the same name. For example,
 16 | ```
 17 | videos/
 18 |   video_1.mp4
 19 |   video_1.txt -- One-paragraph description of video_1
 20 |   video_2.mp4
 21 |   video_2.txt -- One-paragraph description of video_2
 22 |   ...
 23 | ```
 24 | 
 25 | ### 2. Process videos and captions (About 2 minutes)
 26 | Update the paths in the command below to match your dataset. Videos are processed at 30 FPS, so make sure your videos are at least `num_frames / 30` seconds long.
 27 | ```bash
 28 | bash demos/fine_tuner/preprocess.bash -v videos/ -o videos_prepared/ -w weights/ --num_frames 37
 29 | ```
 30 | 
 31 | ### 3. Fine-tune the model
 32 | Update `./demos/fine_tuner/configs/lora.yaml` to customize the fine-tuning process,
 33 | including prompts to generate at various points of the fine-tuning process and the path to your prepared videos.
 34 | 
 35 | Launch LoRA fine-tuning on single GPU:
 36 | ```bash
 37 | bash ./demos/fine_tuner/run.bash -c ./demos/fine_tuner/configs/lora.yaml -n 1
 38 | ```
 39 | 
 40 | Samples will be generated in `finetunes/my_mochi_lora/samples` every 200 steps.
 41 | 
 42 | ### 4. Use your fine-tuned weights to generate videos!
 43 | Update `--lora_path` to the path of your fine-tuned weights and run:
 44 | ```python
 45 | python3 ./demos/cli.py --model_dir weights/ --lora_path finetunes/my_mochi_lora/model_2000.lora.safetensors --num_frames 37 --cpu_offload --prompt "A delicate porcelain teacup sits on a marble countertop. The teacup suddenly shatters into hundreds of white ceramic shards that scatter through the air. The scene is bright and crisp with dramatic lighting."
 46 | ```
 47 | 
 48 | You can increase the number of frames to generate a longer video. Finally, share your creations with the community by uploading your LoRA and sample videos to Hugging Face.
 49 | 
 50 | ## System Requirements
 51 | 
 52 | **Single GPU:**
 53 | - 1x H100 or A100 (80 GB VRAM is recommended)
 54 | - Less VRAM is required if training with less than 1 second long videos.
 55 | 
 56 | **Supported video lengths:** Up to 85 frames (~2.8 seconds at 30 FPS)
 57 | - Choose a frame count in increments of 6: 25, 31, 37, ... 79, 85.
 58 | - Training on 37 frames uses 50 GB of VRAM. On 1 H100, each training step takes about 1.67 s/it,
 59 |   and you'll start seeing changes to your videos within 200-400 steps. Training for 1,000 steps takes about 30 minutes.
 60 | 
 61 | Settings tested on 1x H100 SXM:
 62 | 
 63 | | Frames | Video Length | VRAM | Time/step | num_qkv_checkpoint | num_ff_checkpoint | num_post_attn_checkpoint |
 64 | |--------|--------------|------|-----------|-------------------|-------------------|-------------------------|
 65 | | 37 frames | 1.2 second videos | 50 GB VRAM | 1.67 s/it | 48 | 48† | 48 |
 66 | | 61 frames | 2.0 second videos | 64 GB VRAM | 3.35 s/it | 48 | 48† | 48 |
 67 | | 79 frames | 2.6 second videos | 69-78 GB VRAM | 4.92 s/it | 48 | 48† | 48 |
 68 | | 85 frames | 2.8 second videos | 80 GB VRAM | 5.44 s/it | 48 | 48 | 48 |
 69 | 
 70 | *† As the VRAM is not fully used, you can lower `num_ff_checkpoint` to speed up training.*
 71 | 
 72 | ## Technical Details
 73 | 
 74 | - LoRA fine-tuning updates the query, key, and value projection matrices, as well as the output projection matrix.
 75 |   These settings are configurable in `./demos/fine_tuner/configs/lora.yaml`.
 76 | - We welcome contributions and suggestions for improved settings.
 77 | 
 78 | ## Known Limitations
 79 | 
 80 | - No support for training on multiple GPUs
 81 | - LoRA inference is restricted to 1-GPU (for now)
 82 | 
 83 | ## Tips
 84 | 
 85 | - Be as descriptive as possible in your captions.
 86 | - A learning rate around 1e-4 or 2e-4 seems effective for LoRA fine-tuning.
 87 | - For larger datasets or to customize the model aggressively, increase `num_steps` in in the YAML.
 88 | - To monitor training loss, uncomment the `wandb` section in the YAML and run `wandb login` or set the `WANDB_API_KEY` environment variable.
 89 | - Videos are trimmed to the **first** `num_frames` frames. Make sure your clips contain the content you care about near the beginning.
 90 |   You can check the trimmed versions after running `preprocess.bash` to make sure they look good.
 91 | - When capturing HDR videos on an iPhone, convert your .mov files to .mp4 using the Handbrake application. Our preprocessing script won't produce the correct colorspace otherwise, and your fine-tuned videos may look overly bright.
 92 | 
 93 | ### If you are running out of GPU memory, make sure:
 94 | - `COMPILE_DIT=1` is set in `demos/fine_tuner/run.bash`.
 95 |   This enables model compilation, which saves memory and speeds up training!
 96 | - `num_post_attn_checkpoint`, `num_ff_checkpoint`, and `num_qkv_checkpoint` are set to 48 in your YAML.
 97 |   You can checkpoint up to 48 layers, saving memory at the cost of slower training.
 98 | - If all else fails, reduce `num_frames` when processing your videos and in your YAML.
 99 |   You can fine-tune Mochi on shorter videos, and still generate longer videos at inference time.
100 | 
101 | ## Diffusers trainer
102 | 
103 | The [Diffusers Python library](https://github.com/huggingface/diffusers) supports LoRA fine-tuning of Mochi 1 as well. Check out [this link](https://github.com/a-r-r-o-w/cogvideox-factory/tree/80d1150a0e233a1b2b98dd0367c06276989d049c/training/mochi-1) for more details. 
104 | 


--------------------------------------------------------------------------------
/demos/fine_tuner/configs/lora.yaml:
--------------------------------------------------------------------------------
 1 | init_checkpoint_path: weights/dit.safetensors
 2 | checkpoint_dir: finetunes/my_mochi_lora
 3 | train_data_dir: videos_prepared
 4 | attention_mode: sdpa
 5 | single_video_mode: false # Useful for debugging whether your model can learn a single video
 6 | 
 7 | # You only need this if you're using wandb
 8 | wandb:
 9 |   # project: mochi_1_lora
10 |   # name: ${checkpoint_dir}
11 |   # group: null
12 | 
13 | optimizer:
14 |   lr: 2e-4
15 |   weight_decay: 0.01
16 | 
17 | model:
18 |   type: lora
19 |   kwargs:
20 |     # Apply LoRA to the QKV projection and the output projection of the attention block.
21 |     qkv_proj_lora_rank: 16
22 |     qkv_proj_lora_alpha: 16
23 |     qkv_proj_lora_dropout: 0.
24 |     out_proj_lora_rank: 16
25 |     out_proj_lora_alpha: 16
26 |     out_proj_lora_dropout: 0.
27 | 
28 | training:
29 |   model_dtype: bf16
30 |   warmup_steps: 200
31 |   num_qkv_checkpoint: 48
32 |   num_ff_checkpoint: 48
33 |   num_post_attn_checkpoint: 48
34 |   num_steps: 2000
35 |   save_interval: 200
36 |   caption_dropout: 0.1
37 |   grad_clip: 0.0
38 |   save_safetensors: true
39 | 
40 | # Used for generating samples during training to monitor progress ...
41 | sample:
42 |    interval: 200
43 |    output_dir: ${checkpoint_dir}/samples
44 |    decoder_path: weights/decoder.safetensors
45 |    prompts:
46 |        - A pristine snowglobe featuring a winter scene sits peacefully. The globe violently explodes, sending glass, water, and glittering fake snow in all directions. The scene is captured with high-speed photography.
47 |        - A vintage pocket watch ticks quietly on an antique desk. Suddenly, it explodes into gears, springs and metal fragments that scatter through the air. The scene is richly detailed with warm, brass tones.
48 |        - A cello is propped up against a wall, a single spotlight illuminating it.  The cello explodes into wooden fragments, sending debris everywhere.  The scene is vibrant and colorful.
49 |        - A graphics card sits inside an oven, heatwaves around it.  Suddenly, the graphics card explodes into numerous fragments, sending debris everywhere.  The scene is darkly lit, high contrast, with a focus on the shattered pieces.
50 |        - A delicate porcelain teacup sits on a marble countertop. The teacup suddenly shatters into hundreds of white ceramic shards that scatter through the air. The scene is bright and crisp with dramatic lighting.
51 |    seed: 12345
52 |    kwargs:
53 |      height: 480
54 |      width: 848
55 |      num_frames: 37
56 |      num_inference_steps: 64
57 |      sigma_schedule_python_code: "linear_quadratic_schedule(64, 0.025)"
58 |      cfg_schedule_python_code: "[6.0] * 64"


--------------------------------------------------------------------------------
/demos/fine_tuner/dataset.py:
--------------------------------------------------------------------------------
 1 | from pathlib import Path
 2 | 
 3 | import click
 4 | import torch
 5 | from torch.utils.data import DataLoader, Dataset
 6 | 
 7 | 
 8 | def load_to_cpu(x):
 9 |     return torch.load(x, map_location=torch.device("cpu"), weights_only=True)
10 | 
11 | 
12 | class LatentEmbedDataset(Dataset):
13 |     def __init__(self, file_paths, repeat=1):
14 |         self.items = [
15 |             (Path(p).with_suffix(".latent.pt"), Path(p).with_suffix(".embed.pt"))
16 |             for p in file_paths
17 |             if Path(p).with_suffix(".latent.pt").is_file() and Path(p).with_suffix(".embed.pt").is_file()
18 |         ]
19 |         self.items = self.items * repeat
20 |         print(f"Loaded {len(self.items)}/{len(file_paths)} valid file pairs.")
21 | 
22 |     def __len__(self):
23 |         return len(self.items)
24 | 
25 |     def __getitem__(self, idx):
26 |         latent_path, embed_path = self.items[idx]
27 |         return load_to_cpu(latent_path), load_to_cpu(embed_path)
28 | 
29 | 
30 | @click.command()
31 | @click.argument("directory", type=click.Path(exists=True, file_okay=False))
32 | def process_videos(directory):
33 |     dir_path = Path(directory)
34 |     mp4_files = [str(f) for f in dir_path.glob("**/*.mp4") if not f.name.endswith(".recon.mp4")]
35 |     assert mp4_files, f"No mp4 files found"
36 | 
37 |     dataset = LatentEmbedDataset(mp4_files)
38 |     dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
39 | 
40 |     for latents, embeds in dataloader:
41 |         print([(k, v.shape) for k, v in latents.items()])
42 | 
43 | 
44 | if __name__ == "__main__":
45 |     process_videos()
46 | 


--------------------------------------------------------------------------------
/demos/fine_tuner/embed_captions.py:
--------------------------------------------------------------------------------
 1 | #! /usr/bin/env python3
 2 | from pathlib import Path
 3 | 
 4 | import click
 5 | import torch
 6 | from tqdm import tqdm
 7 | from transformers import T5Tokenizer
 8 | 
 9 | from genmo.mochi_preview.pipelines import T5_MODEL, T5ModelFactory, get_conditioning_for_prompts
10 | 
11 | 
12 | @click.command()
13 | @click.argument("captions_dir", type=click.Path(exists=True, file_okay=False, dir_okay=True, path_type=Path))
14 | @click.option("--device_id", default=0, help="GPU device ID to use")
15 | @click.option("--overwrite", "-ow", is_flag=True, help="Overwrite existing embeddings")
16 | def process_captions(captions_dir: Path, device_id: int, overwrite=True) -> None:
17 |     """Process all text files in a directory using T5 encoder.
18 | 
19 |     Args:
20 |         captions_dir: Directory containing input text files
21 |         device_id: GPU device ID to use
22 |     """
23 | 
24 |     torch.backends.cuda.matmul.allow_tf32 = True
25 |     torch.backends.cudnn.allow_tf32 = True
26 | 
27 |     # Get all text file paths
28 |     text_paths = list(captions_dir.glob("**/*.txt"))
29 |     if not text_paths:
30 |         print(f"No text files found in {captions_dir}")
31 |         return
32 | 
33 |     # Initialize model and tokenizer
34 |     model_factory = T5ModelFactory()
35 |     device = f"cuda:{device_id}"
36 |     model = model_factory.get_model(local_rank=0, device_id=device_id, world_size=1)
37 |     tokenizer = T5Tokenizer.from_pretrained(T5_MODEL, legacy=False)
38 | 
39 |     with tqdm(total=len(text_paths)) as pbar:
40 |         for text_path in text_paths:
41 |             embed_path = text_path.with_suffix(".embed.pt")
42 |             if embed_path.exists() and not overwrite:
43 |                 pbar.write(f"Skipping {text_path} - embeddings already exist")
44 |                 continue
45 | 
46 |             pbar.write(f"Processing {text_path}")
47 |             try:
48 |                 with open(text_path) as f:
49 |                     text = f.read().strip()
50 | 
51 |                 with torch.inference_mode():
52 |                     conditioning = get_conditioning_for_prompts(tokenizer, model, device, [text])
53 | 
54 |                 torch.save(conditioning, embed_path)
55 | 
56 |             except Exception as e:
57 |                 import traceback
58 | 
59 |                 traceback.print_exc()
60 |                 pbar.write(f"Error processing {text_path}: {str(e)}")
61 | 
62 |             pbar.update(1)
63 | 
64 | 
65 | if __name__ == "__main__":
66 |     process_captions()
67 | 


--------------------------------------------------------------------------------
/demos/fine_tuner/encode_videos.py:
--------------------------------------------------------------------------------
  1 | #! /usr/bin/env python3
  2 | import os
  3 | from pathlib import Path
  4 | import traceback
  5 | from typing import Optional
  6 | 
  7 | import click
  8 | import ray
  9 | import torch
 10 | import torchvision
 11 | from einops import rearrange
 12 | 
 13 | import genmo.mochi_preview.dit.joint_model.context_parallel as cp
 14 | import genmo.mochi_preview.vae.cp_conv as cp_conv
 15 | from genmo.lib.progress import get_new_progress_bar, progress_bar
 16 | from genmo.lib.utils import Timer, save_video
 17 | from genmo.mochi_preview.pipelines import DecoderModelFactory, EncoderModelFactory
 18 | from genmo.mochi_preview.vae.models import add_fourier_features, decode_latents
 19 | 
 20 | 
 21 | class GPUContext:
 22 |     def __init__(
 23 |         self,
 24 |         *,
 25 |         encoder_factory: Optional[EncoderModelFactory] = None,
 26 |         decoder_factory: Optional[DecoderModelFactory] = None,
 27 |     ):
 28 |         t = Timer()
 29 |         self.device = torch.device(f"cuda")
 30 |         if encoder_factory is not None:
 31 |             with t("load_encoder"):
 32 |                 self.encoder = encoder_factory.get_model()
 33 |         if decoder_factory is not None:
 34 |             with t("load_decoder"):
 35 |                 self.decoder = decoder_factory.get_model()
 36 |         t.print_stats()
 37 | 
 38 | 
 39 | def preprocess(ctx: GPUContext, vid_path: Path, shape: str, reconstruct: bool):
 40 |     T, H, W = [int(s) for s in shape.split("x")]
 41 |     assert (T - 1) % 6 == 0, "Expected T to be 1 mod 6"
 42 |     video, _, metadata = torchvision.io.read_video(
 43 |         str(vid_path), output_format="THWC", pts_unit="secs")
 44 |     fps = metadata["video_fps"]
 45 |     video = rearrange(video, "t h w c -> c t h w")
 46 |     og_shape = video.shape
 47 |     assert video.shape[2] == H, f"Expected {vid_path} to have height {H}, got {video.shape}"
 48 |     assert video.shape[3] == W, f"Expected {vid_path} to have width {W}, got {video.shape}"
 49 |     assert video.shape[1] >= T, f"Expected {vid_path} to have at least {T} frames, got {video.shape}"
 50 |     if video.shape[1] > T:
 51 |         video = video[:, :T]
 52 |         print(f"Trimmed video from {og_shape[1]} to first {T} frames")
 53 |     video = video.unsqueeze(0)
 54 |     video = video.float() / 127.5 - 1.0
 55 |     video = video.to(ctx.device)
 56 |     video = add_fourier_features(video)
 57 | 
 58 |     assert video.ndim == 5
 59 |     video = cp.local_shard(video, dim=2)  # split along time dimension
 60 | 
 61 |     with torch.inference_mode():
 62 |         with torch.autocast("cuda", dtype=torch.bfloat16):
 63 |             ldist = ctx.encoder(video)
 64 | 
 65 |         print(f"{og_shape} -> {ldist.mean.shape}")
 66 |         torch.save(
 67 |             dict(mean=ldist.mean, logvar=ldist.logvar),
 68 |             vid_path.with_suffix(".latent.pt"),
 69 |         )
 70 | 
 71 |         if reconstruct:
 72 |             latents = ldist.sample()
 73 |             frames = decode_latents(ctx.decoder, latents)
 74 |             frames = frames.cpu().numpy()
 75 |             save_video(frames[0], str(vid_path.with_suffix(".recon.mp4")), fps=fps)
 76 | 
 77 | 
 78 | @click.command()
 79 | @click.argument("videos_dir", type=click.Path(exists=True, file_okay=False, dir_okay=True, path_type=Path))
 80 | @click.option(
 81 |     "--model_dir",
 82 |     type=click.Path(exists=True, file_okay=False, dir_okay=True, path_type=Path),
 83 |     help="Path to folder containing Mochi's VAE encoder and decoder weights. Download from Hugging Face: https://huggingface.co/genmo/mochi-1-preview/blob/main/encoder.safetensors and https://huggingface.co/genmo/mochi-1-preview/blob/main/decoder.safetensors",
 84 |     default="weights/",
 85 | )
 86 | @click.option("--num_gpus", default=1, help="Number of GPUs to split the encoder over")
 87 | @click.option(
 88 |     "--recon_interval", default=10, help="Reconstruct one out of every N videos (0 to disable reconstruction)"
 89 | )
 90 | @click.option("--shape", default="163x480x848", help="Shape of the video to encode")
 91 | @click.option("--overwrite", "-ow", is_flag=True, help="Overwrite existing latents")
 92 | def batch_process(
 93 |     videos_dir: Path, model_dir: Path, num_gpus: int, recon_interval: int, shape: str, overwrite: bool
 94 | ) -> None:
 95 |     """Process all videos in a directory using multiple GPUs.
 96 | 
 97 |     Args:
 98 |         videos_dir: Directory containing input videos
 99 |         encoder_path: Path to encoder model weights
100 |         decoder_path: Path to decoder model weights
101 |         num_gpus: Number of GPUs to use for parallel processing
102 |         recon_interval: Frequency of video reconstructions (0 to disable)
103 |     """
104 | 
105 |     torch.backends.cuda.matmul.allow_tf32 = True
106 |     torch.backends.cudnn.allow_tf32 = True
107 | 
108 |     # Get all video paths
109 |     video_paths = list(videos_dir.glob("**/*.mp4"))
110 |     if not video_paths:
111 |         print(f"No MP4 files found in {videos_dir}")
112 |         return
113 | 
114 |     preproc = GPUContext(
115 |         encoder_factory=EncoderModelFactory(model_path=os.path.join(model_dir, "encoder.safetensors")),
116 |         decoder_factory=DecoderModelFactory(model_path=os.path.join(model_dir, "decoder.safetensors")),
117 |     )
118 |     with progress_bar(type="ray_tqdm"):
119 |         for idx, video_path in get_new_progress_bar((list(enumerate(sorted(video_paths))))):
120 |             if str(video_path).endswith(".recon.mp4"):
121 |                 print(f"Skipping {video_path} b/c it is a reconstruction")
122 |                 continue
123 | 
124 |             print(f"Processing {video_path}")
125 |             try:
126 |                 if video_path.with_suffix(".latent.pt").exists() and not overwrite:
127 |                     print(f"Skipping {video_path}")
128 |                     continue
129 | 
130 |                 preprocess(
131 |                     ctx=preproc,
132 |                     vid_path=video_path,
133 |                     shape=shape,
134 |                     reconstruct=recon_interval != 0 and idx % recon_interval == 0,
135 |                 )
136 |             except Exception as e:
137 |                 traceback.print_exc()
138 |                 print(f"Error processing {video_path}: {str(e)}")
139 | 
140 | 
141 | if __name__ == "__main__":
142 |     batch_process()
143 | 


--------------------------------------------------------------------------------
/demos/fine_tuner/preprocess.bash:
--------------------------------------------------------------------------------
 1 | #! /bin/bash
 2 | 
 3 | # Enable job control and set process group
 4 | set -eo pipefail
 5 | set -x
 6 | 
 7 | # Function to check if a command exists
 8 | command_exists() {
 9 |     command -v "$1" >/dev/null 2>&1
10 | }
11 | 
12 | # Function to install bc using the appropriate package manager
13 | install_bc() {
14 |     if command_exists apt-get; then
15 |         sudo apt-get update && sudo apt-get install -y bc
16 |     elif command_exists yum; then
17 |         sudo yum install -y bc
18 |     else
19 |         echo "Error: Could not find package manager to install bc"
20 |         exit 1
21 |     fi
22 | }
23 | 
24 | # Check and install bc if necessary
25 | if ! command_exists bc; then
26 |     echo "bc is not installed. Installing bc..."
27 |     install_bc
28 | fi
29 | 
30 | # Function to display help
31 | usage() {
32 |   echo "Usage: $0 -v|--videos_dir videos_dir -o|--output_dir output_dir -w|--weights_dir weights_dir -n|--num_frames num_frames"
33 |   echo "  -v, --videos_dir            Path to the videos directory"
34 |   echo "  -o, --output_dir            Path to the output directory"
35 |   echo "  -w, --weights_dir           Path to the weights directory"
36 |   echo "  -n, --num_frames            Number of frames"
37 |   exit 1
38 | }
39 | 
40 | # Function to check if the next argument is missing
41 | check_argument() {
42 |   if [[ -z "$2" || "$2" == -* ]]; then
43 |     echo "Error: Argument for $1 is missing"
44 |     usage
45 |   fi
46 | }
47 | 
48 | # Parse command-line arguments
49 | while [[ "$#" -gt 0 ]]; do
50 |   case $1 in
51 |     -v|--videos_dir) check_argument "$1" "$2"; VIDEOS_DIR="$2"; shift ;;
52 |     -o|--output_dir) check_argument "$1" "$2"; OUTPUT_DIR="$2"; shift ;;
53 |     -w|--weights_dir) check_argument "$1" "$2"; WEIGHTS_DIR="$2"; shift ;;
54 |     -n|--num_frames) check_argument "$1" "$2"; NUM_FRAMES="$2"; shift ;;
55 |     -h|--help) usage ;;
56 |     *) echo "Unknown parameter passed: $1"; usage ;;
57 |   esac
58 |   shift
59 | done
60 | 
61 | # Check if all required arguments are provided
62 | if [[ -z "$VIDEOS_DIR" || -z "$OUTPUT_DIR" || -z "$WEIGHTS_DIR" || -z "$NUM_FRAMES" ]]; then
63 |   echo "Error: All arguments are required."
64 |   usage
65 | fi
66 | 
67 | # Get the directory where this script is located
68 | SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
69 | echo "Using script directory: ${SCRIPT_DIR}"
70 | 
71 | ##### Step 1: Trim and resize videos
72 | echo -e "\n\e[1;35m🎬 **Step 1: Trim and resize videos** \e[0m"
73 | # Calculate duration to trim videos
74 | DURATION=$(printf "%.1f" "$(echo "($NUM_FRAMES / 30) + 0.09" | bc -l)")
75 | echo "Trimming videos to duration: ${DURATION} seconds"
76 | python3 ${SCRIPT_DIR}/trim_and_crop_videos.py ${VIDEOS_DIR} ${OUTPUT_DIR} -d ${DURATION}
77 | 
78 | ##### Step 2: Run the VAE encoder on each video.
79 | echo -e "\n\e[1;35m🎥 **Step 2: Run the VAE encoder on each video** \e[0m"
80 | python3 ${SCRIPT_DIR}/encode_videos.py ${OUTPUT_DIR} \
81 |   --model_dir ${WEIGHTS_DIR} --num_gpus 1 --shape "${NUM_FRAMES}x480x848" --overwrite
82 | 
83 | ##### Step 3: Compute T5 embeddings
84 | echo -e "\n\e[1;35m🧠 **Step 3: Compute T5 embeddings** \e[0m"
85 | python3 ${SCRIPT_DIR}/embed_captions.py --overwrite ${OUTPUT_DIR}
86 | 
87 | echo -e "\n\e[1;32m✓ Done!\e[0m"
88 | 


--------------------------------------------------------------------------------
/demos/fine_tuner/run.bash:
--------------------------------------------------------------------------------
 1 | #! /bin/bash
 2 | 
 3 | # Enable job control and set process group
 4 | set -m
 5 | trap 'kill $(jobs -p)' EXIT INT TERM
 6 | 
 7 | # Get the directory where this script is located
 8 | SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
 9 | DEFAULT_CONFIG="${SCRIPT_DIR}/configs/finetune.yaml"
10 | 
11 | # Parse command line arguments
12 | usage() {
13 |     echo "Usage: $0 [-c|--config <config_path>] [-n|--num-gpus <num_gpus>]"
14 |     echo "  -c, --config     Path to config file (default: ${DEFAULT_CONFIG})"
15 |     echo "  -n, --num-gpus   Number of GPUs to use (default: 8)"
16 |     exit 1
17 | }
18 | 
19 | # Default values
20 | CONFIG_PATH="${DEFAULT_CONFIG}"
21 | NUM_GPUS=8
22 | 
23 | # Parse arguments
24 | while [[ $# -gt 0 ]]; do
25 |     case $1 in
26 |         -c|--config)
27 |             CONFIG_PATH="$2"
28 |             shift 2
29 |             ;;
30 |         -n|--num-gpus)
31 |             NUM_GPUS="$2"
32 |             shift 2
33 |             ;;
34 |         -h|--help)
35 |             usage
36 |             ;;
37 |         *)
38 |             echo "Unknown option: $1"
39 |             usage
40 |             ;;
41 |     esac
42 | done
43 | 
44 | # Validate config file exists
45 | if [ ! -f "${CONFIG_PATH}" ]; then
46 |     echo "Config file not found at ${CONFIG_PATH}"
47 |     exit 1
48 | fi
49 | 
50 | # Validate num_gpus is a positive integer
51 | if ! [[ "$NUM_GPUS" =~ ^[1-9][0-9]*$ ]]; then
52 |     echo "Number of GPUs must be a positive integer"
53 |     exit 1
54 | fi
55 | 
56 | # Set distributed training environment variables
57 | export MASTER_PORT=29500
58 | export MASTER_ADDR="localhost"
59 | export WORLD_SIZE=$NUM_GPUS
60 | export TF_CPP_MIN_LOG_LEVEL=3
61 | export COMPILE_DIT=1
62 | 
63 | # Set IS_DISTRIBUTED based on NUM_GPUS
64 | if [ "$NUM_GPUS" -gt 1 ]; then
65 |     export IS_DISTRIBUTED=true
66 | fi
67 | 
68 | # Load .env file (if it exists)
69 | if [ -f ".env" ]; then
70 |     export $(grep -v '^#' .env | xargs)
71 | fi
72 | 
73 | echo "Starting training with ${NUM_GPUS} GPU(s), mode: ${IS_DISTRIBUTED:+distributed}${IS_DISTRIBUTED:-single_gpu}"
74 | echo "Using config: ${CONFIG_PATH}"
75 | 
76 | # Launch processes
77 | if [ "$NUM_GPUS" -gt 1 ]; then
78 |     for RANK in $(seq 0 $((NUM_GPUS-1))); do
79 |         env RANK=$RANK CUDA_VISIBLE_DEVICES=$RANK python "${SCRIPT_DIR}/train.py" --config-path "${CONFIG_PATH}" &
80 |     done
81 | else
82 |     python "${SCRIPT_DIR}/train.py" --config-path "${CONFIG_PATH}" &
83 | fi
84 | 
85 | # Wait for all background processes to complete
86 | wait
87 | 
88 | # Check if any process failed
89 | if [ $? -ne 0 ]; then
90 |     echo "One or more training processes failed"
91 |     exit 1
92 | fi


--------------------------------------------------------------------------------
/demos/fine_tuner/train.py:
--------------------------------------------------------------------------------
  1 | import json
  2 | import multiprocessing as mp
  3 | import os
  4 | import random
  5 | import re
  6 | import sys
  7 | import time
  8 | from contextlib import contextmanager
  9 | from glob import glob
 10 | from pathlib import Path
 11 | from typing import Any, Dict, Tuple, cast
 12 | 
 13 | import click
 14 | import numpy as np
 15 | from omegaconf import DictConfig, ListConfig, OmegaConf
 16 | from safetensors.torch import save_file
 17 | import torch
 18 | from torch import Tensor
 19 | from torch.distributed.checkpoint.state_dict import StateDictOptions, get_state_dict
 20 | import torch.nn.functional as F
 21 | from tqdm import tqdm
 22 | 
 23 | torch._dynamo.config.cache_size_limit = 32
 24 | torch.backends.cuda.matmul.allow_tf32 = True
 25 | torch.backends.cudnn.allow_tf32 = True
 26 | torch.use_deterministic_algorithms(False)
 27 | 
 28 | import genmo.mochi_preview.dit.joint_model.lora as lora
 29 | from genmo.lib.progress import progress_bar
 30 | from genmo.lib.utils import Timer, save_video
 31 | from genmo.mochi_preview.vae.vae_stats import vae_latents_to_dit_latents
 32 | from genmo.mochi_preview.pipelines import (
 33 |     DecoderModelFactory,
 34 |     DitModelFactory,
 35 |     ModelFactory,
 36 |     T5ModelFactory,
 37 |     cast_dit,
 38 |     compute_packed_indices,
 39 |     get_conditioning,
 40 |     linear_quadratic_schedule,  # used in eval'd Python code in lora.yaml
 41 |     load_to_cpu,
 42 |     move_to_device,
 43 |     sample_model,
 44 |     t5_tokenizer,
 45 | )
 46 | from genmo.mochi_preview.vae.latent_dist import LatentDistribution
 47 | from genmo.mochi_preview.vae.models import decode_latents_tiled_spatial
 48 | 
 49 | sys.path.append("..")
 50 | 
 51 | from dataset import LatentEmbedDataset
 52 | 
 53 | 
 54 | class MochiTorchRunEvalPipeline:
 55 |     def __init__(
 56 |         self,
 57 |         *,
 58 |         device_id,
 59 |         dit,
 60 |         text_encoder_factory: ModelFactory,
 61 |         decoder_factory: ModelFactory,
 62 |     ):
 63 |         self.device = torch.device(f"cuda:{device_id}")
 64 |         self.tokenizer = t5_tokenizer()
 65 |         t = Timer()
 66 |         self.dit = dit
 67 |         with t("load_text_encoder"):
 68 |             self.text_encoder = text_encoder_factory.get_model(
 69 |                 local_rank=0,
 70 |                 world_size=1,
 71 |                 device_id="cpu",
 72 |             )
 73 |         with t("load_vae"):
 74 |             self.decoder = decoder_factory.get_model(local_rank=0, device_id="cpu", world_size=1)
 75 |         t.print_stats()  # type: ignore
 76 | 
 77 |     def __call__(self, prompt, save_path, **kwargs):
 78 |         with progress_bar(type="tqdm", enabled=True), torch.inference_mode():
 79 |             # Encode prompt with T5 XXL.
 80 |             with move_to_device(self.text_encoder, self.device, enabled=True):
 81 |                 conditioning = get_conditioning(
 82 |                     self.tokenizer,
 83 |                     self.text_encoder,
 84 |                     self.device,
 85 |                     batch_inputs=False,
 86 |                     prompt=prompt,
 87 |                     negative_prompt="",
 88 |                 )
 89 | 
 90 |             # Sample video latents from Mochi.
 91 |             with move_to_device(self.dit, self.device, enabled=True):
 92 |                 latents = sample_model(self.device, self.dit, conditioning, **kwargs)
 93 | 
 94 |             # Decode video latents to frames.
 95 |             with move_to_device(self.decoder, self.device, enabled=True):
 96 |                 frames = decode_latents_tiled_spatial(
 97 |                     self.decoder, latents, num_tiles_w=2, num_tiles_h=2, overlap=8)
 98 |             frames = frames.cpu().numpy()  # b t h w c
 99 |             assert isinstance(frames, np.ndarray)
100 | 
101 |             save_video(frames[0], save_path)
102 | 
103 | 
104 | def map_to_device(x, device: torch.device):
105 |     if isinstance(x, dict):
106 |         return {k: map_to_device(v, device) for k, v in x.items()}
107 |     elif isinstance(x, list):
108 |         return [map_to_device(y, device) for y in x]
109 |     elif isinstance(x, tuple):
110 |         return tuple(map_to_device(y, device) for y in x)
111 |     elif isinstance(x, torch.Tensor):
112 |         return x.to(device, non_blocking=True)
113 |     else:
114 |         return x
115 | 
116 | 
117 | EPOCH_IDX = 0
118 | 
119 | 
120 | def infinite_dl(dl):
121 |     global EPOCH_IDX
122 |     while True:
123 |         EPOCH_IDX += 1
124 |         for batch in dl:
125 |             yield batch
126 | 
127 | 
128 | @contextmanager
129 | def timer(description="Task", enabled=True):
130 |     if enabled:
131 |         start = time.perf_counter()
132 |     try:
133 |         yield
134 |     finally:
135 |         if enabled:
136 |             elapsed = time.perf_counter() - start  # type: ignore
137 |             print(f"{description} took {elapsed:.4f} seconds")
138 | 
139 | 
140 | def get_cosine_annealing_lr_scheduler(
141 |     optimizer: torch.optim.Optimizer,
142 |     warmup_steps: int,
143 |     total_steps: int,
144 | ):
145 |     def lr_lambda(step):
146 |         if step < warmup_steps:
147 |             return float(step) / float(max(1, warmup_steps))
148 |         else:
149 |             return 0.5 * (1 + np.cos(np.pi * (step - warmup_steps) / (total_steps - warmup_steps)))
150 |     
151 |     return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
152 | 
153 | 
154 | @click.command()
155 | @click.option("--config-path", type=click.Path(exists=True), required=True, help="Path to YAML config file")
156 | def main(config_path):
157 |     mp.set_start_method("spawn", force=True)
158 |     cfg = cast(DictConfig, OmegaConf.load(config_path))
159 | 
160 |     device_id = 0
161 |     device_str = f"cuda:0"
162 |     device = torch.device(device_str)
163 | 
164 |     # Verify checkpoint path exists
165 |     checkpoint_path = Path(cfg.init_checkpoint_path)
166 |     assert checkpoint_path.exists(), f"Checkpoint file not found: {checkpoint_path}"
167 |     
168 |     # Create checkpoint directory if it doesn't exist
169 |     checkpoint_dir = Path(cfg.checkpoint_dir)
170 |     checkpoint_dir.mkdir(parents=True, exist_ok=True)
171 | 
172 |     # Get step number from checkpoint filename
173 |     pattern = r"model_(\d+)\.(lora|checkpoint)\.(safetensors|pt)"
174 |     match = re.search(pattern, str(checkpoint_path))
175 |     if match:
176 |         start_step_num = int(match.group(1))
177 |         opt_path = str(checkpoint_path).replace("model_", "optimizer_")
178 |     else:
179 |         start_step_num = 0
180 |         opt_path = ""
181 | 
182 |     print(
183 |         f"model={checkpoint_path}, optimizer={opt_path}, start_step_num={start_step_num}"
184 |     )
185 | 
186 |     wandb_run = None
187 |     sample_prompts = cfg.sample.prompts
188 | 
189 |     train_vids = list(sorted(glob(f"{cfg.train_data_dir}/*.mp4")))
190 |     train_vids = [v for v in train_vids if not v.endswith(".recon.mp4")]
191 |     print(f"Found {len(train_vids)} training videos in {cfg.train_data_dir}")
192 |     assert len(train_vids) > 0, f"No training data found in {cfg.train_data_dir}"
193 |     if cfg.single_video_mode:
194 |         train_vids = train_vids[:1]
195 |         sample_prompts = [Path(train_vids[0]).with_suffix(".txt").read_text()]
196 |         print(f"Training on video: {train_vids[0]}")
197 | 
198 |     train_dataset = LatentEmbedDataset(
199 |         train_vids,
200 |         repeat=1_000 if cfg.single_video_mode else 1,
201 |     )
202 |     train_dl = torch.utils.data.DataLoader(
203 |         train_dataset,
204 |         batch_size=None,
205 |         num_workers=4,
206 |         shuffle=True,
207 |         pin_memory=True,
208 |     )
209 |     train_dl_iter = infinite_dl(train_dl)
210 | 
211 |     if cfg.get("wandb"):
212 |         import wandb
213 | 
214 |         wandb_run = wandb.init(
215 |             project=cfg.wandb.project,
216 |             name=f"{cfg.wandb.name}-{int(time.time())}",
217 |             config=OmegaConf.to_container(cfg),  # type: ignore
218 |         )
219 |         print(f"🚀 Weights & Biases run URL: {wandb_run.get_url()}")
220 | 
221 |     print("Loading model")
222 |     patch_model_fns = []
223 |     model_kwargs = {}
224 |     is_lora = cfg.model.type == "lora"
225 |     print(f"Training type: {'LoRA' if is_lora else 'Full'}")
226 |     if is_lora:
227 |         def mark_lora_params(m):
228 |             lora.mark_only_lora_as_trainable(m, bias="none")
229 |             return m
230 | 
231 |         patch_model_fns.append(mark_lora_params)
232 |         model_kwargs = dict(**cfg.model.kwargs)
233 |         # Replace ListConfig with list to allow serialization to JSON.
234 |         for k, v in model_kwargs.items():
235 |             if isinstance(v, ListConfig):
236 |                 model_kwargs[k] = list(v)
237 | 
238 |     if cfg.training.get("model_dtype"):
239 |         assert cfg.training.model_dtype == "bf16", f"Only bf16 is supported"
240 |         patch_model_fns.append(lambda m: cast_dit(m, torch.bfloat16))
241 | 
242 |     model = (
243 |         DitModelFactory(
244 |             model_path=str(checkpoint_path),
245 |             model_dtype="bf16",
246 |             attention_mode=cfg.attention_mode
247 |         ).get_model(
248 |             local_rank=0,
249 |             device_id=device_id,
250 |             model_kwargs=model_kwargs,
251 |             patch_model_fns=patch_model_fns,
252 |             world_size=1,
253 |             strict_load=not is_lora,
254 |             fast_init=not is_lora,  # fast_init not supported for LoRA (please someone fix this !!!)
255 |         )
256 |         .train()  # calling train() makes sure LoRA weights are not merged
257 |     )
258 | 
259 |     optimizer = torch.optim.AdamW(model.parameters(), **cfg.optimizer)
260 |     if os.path.exists(opt_path):
261 |         print("Loading optimizer")
262 |         optimizer.load_state_dict(load_to_cpu(opt_path))
263 | 
264 |     scheduler = get_cosine_annealing_lr_scheduler(
265 |         optimizer,
266 |         warmup_steps=cfg.training.warmup_steps,
267 |         total_steps=cfg.training.num_steps
268 |     )
269 | 
270 |     print("Loading eval pipeline ...")
271 |     eval_pipeline = MochiTorchRunEvalPipeline(
272 |         device_id=device_id,
273 |         dit=model,
274 |         text_encoder_factory=T5ModelFactory(),
275 |         decoder_factory=DecoderModelFactory(model_path=cfg.sample.decoder_path),
276 |     )
277 | 
278 |     def get_batch() -> Tuple[Dict[str, Any], Tensor, Tensor, Tensor]:
279 |         nonlocal train_dl_iter
280 |         batch = next(train_dl_iter)  # type: ignore
281 |         latent, embed = cast(Tuple[Dict[str, Any], Dict[str, Any]], batch)
282 |         assert len(embed["y_feat"]) == 1 and len(embed["y_mask"]) == 1, f"Only batch size 1 is supported"
283 | 
284 |         ldist = LatentDistribution(latent["mean"], latent["logvar"])
285 |         z = ldist.sample()
286 |         assert torch.isfinite(z).all()
287 |         assert z.shape[0] == 1, f"Only batch size 1 is supported"
288 | 
289 |         eps = torch.randn_like(z)
290 |         sigma = torch.rand(z.shape[:1], device="cpu", dtype=torch.float32)
291 | 
292 |         if random.random() < cfg.training.caption_dropout:
293 |             embed["y_mask"][0].zero_()
294 |             embed["y_feat"][0].zero_()
295 |         return embed, z, eps, sigma
296 | 
297 |     pbar = tqdm(
298 |         range(start_step_num, cfg.training.num_steps),
299 |         total=cfg.training.num_steps,
300 |         initial=start_step_num,
301 |     )
302 |     for step in pbar:
303 |         if cfg.sample.interval and step % cfg.sample.interval == 0 and step > 0:
304 |             sample_dir = Path(cfg.sample.output_dir)
305 |             sample_dir.mkdir(exist_ok=True)
306 |             model.eval()
307 |             for eval_idx, prompt in enumerate(sample_prompts):
308 |                 save_path = sample_dir / f"{eval_idx}_{step}.mp4"
309 |                 if save_path.exists():
310 |                     print(f"Skipping {save_path} as it already exists")
311 |                     continue
312 | 
313 |                 sample_kwargs = {
314 |                     k.removesuffix("_python_code"): (eval(v) if k.endswith("_python_code") else v)
315 |                     for k, v in cfg.sample.kwargs.items()
316 |                 }
317 |                 eval_pipeline(
318 |                     prompt=prompt,
319 |                     save_path=str(save_path),
320 |                     seed=cfg.sample.seed + eval_idx,
321 |                     **sample_kwargs,
322 |                 )
323 |                 Path(sample_dir / f"{eval_idx}_{step}.txt").write_text(prompt)
324 |             model.train()
325 | 
326 |         if cfg.training.save_interval and step > 0 and step % cfg.training.save_interval == 0:
327 |             with timer("get_state_dict"):
328 |                 if is_lora:
329 |                     model_sd = lora.lora_state_dict(model, bias="none")
330 |                 else:
331 |                     # NOTE: Not saving optimizer state dict to save space.
332 |                     model_sd, _optimizer_sd = get_state_dict(
333 |                         model, [], options=StateDictOptions(cpu_offload=True, full_state_dict=True)
334 |                     )
335 | 
336 |             checkpoint_filename = f"model_{step}.{'lora' if is_lora else 'checkpoint'}.pt"
337 |             save_path = checkpoint_dir / checkpoint_filename
338 |             if cfg.training.get("save_safetensors", True):
339 |                 save_path = save_path.with_suffix(".safetensors")
340 |                 save_file(
341 |                     model_sd, save_path,
342 |                     # `safetensors` only supports string-to-string metadata,
343 |                     # so we serialize the kwargs to a JSON string.
344 |                     metadata=dict(kwargs=json.dumps(model_kwargs)),
345 |                 )
346 |             else:
347 |                 torch.save(model_sd, save_path)
348 | 
349 |         with torch.no_grad(), timer("load_batch", enabled=False):
350 |             batch = get_batch()
351 |             embed, z, eps, sigma = map_to_device(batch, device)
352 |             embed = cast(Dict[str, Any], embed)
353 | 
354 |             num_latent_toks = np.prod(z.shape[-3:])
355 |             indices = compute_packed_indices(device, cast(Tensor, embed["y_mask"][0]), int(num_latent_toks))
356 | 
357 |             sigma_bcthw = sigma[:, None, None, None, None]  # [B, 1, 1, 1, 1]
358 |             z_sigma = (1 - sigma_bcthw) * z + sigma_bcthw * eps
359 |             ut = z - eps
360 | 
361 |         with torch.autocast("cuda", dtype=torch.bfloat16):
362 |             preds = model(
363 |                 x=z_sigma,
364 |                 sigma=sigma,
365 |                 packed_indices=indices,
366 |                 **embed,
367 |                 num_ff_checkpoint=cfg.training.num_ff_checkpoint,
368 |                 num_qkv_checkpoint=cfg.training.num_qkv_checkpoint,
369 |             )
370 |             assert preds.shape == z.shape
371 | 
372 |         ut_dit_space = vae_latents_to_dit_latents(ut.float())
373 |         loss = F.mse_loss(preds.float(), ut_dit_space)
374 |         loss.backward()
375 | 
376 |         log_kwargs = {
377 |             "train/loss": loss.item(),
378 |             "train/epoch": EPOCH_IDX,
379 |             "train/lr": scheduler.get_last_lr()[0],
380 |         }
381 | 
382 |         if cfg.training.get("grad_clip"):
383 |             assert not is_lora, "Gradient clipping not supported for LoRA"
384 |             gnorm_before_clip = torch.nn.utils.clip_grad_norm_(
385 |                 model.parameters(), max_norm=cfg.training.grad_clip)
386 |             log_kwargs["train/gnorm"] = gnorm_before_clip.item()
387 |         pbar.set_postfix(**log_kwargs)
388 | 
389 |         if wandb_run:
390 |             wandb_run.log(log_kwargs, step=step)
391 | 
392 |         optimizer.step()
393 |         scheduler.step()
394 |         optimizer.zero_grad()
395 | 
396 | 
397 | if __name__ == "__main__":
398 |     main()


--------------------------------------------------------------------------------
/demos/fine_tuner/trim_and_crop_videos.py:
--------------------------------------------------------------------------------
  1 | #! /usr/bin/env python3
  2 | from pathlib import Path
  3 | import shutil
  4 | 
  5 | import click
  6 | from moviepy.editor import VideoFileClip
  7 | from tqdm import tqdm
  8 | 
  9 | 
 10 | @click.command()
 11 | @click.argument("folder", type=click.Path(exists=True, dir_okay=True))
 12 | @click.argument("output_folder", type=click.Path(dir_okay=True))
 13 | @click.option("--duration", "-d", type=float, default=5.4, help="Duration in seconds")
 14 | @click.option("--resolution", "-r", type=str, default="848x480", help="Video resolution")
 15 | def truncate_videos(folder, output_folder, duration, resolution):
 16 |     """Truncate all MP4 and MOV files in FOLDER to specified duration and resolution"""
 17 |     input_path = Path(folder)
 18 |     output_path = Path(output_folder)
 19 |     output_path.mkdir(parents=True, exist_ok=True)
 20 | 
 21 |     # Parse target resolution
 22 |     target_width, target_height = map(int, resolution.split("x"))
 23 | 
 24 |     # Find all MP4 and MOV files
 25 |     video_files = (
 26 |         list(input_path.rglob("*.mp4"))
 27 |         + list(input_path.rglob("*.MOV"))
 28 |         + list(input_path.rglob("*.mov"))
 29 |         + list(input_path.rglob("*.MP4"))
 30 |     )
 31 | 
 32 |     for file_path in tqdm(video_files):
 33 |         try:
 34 |             relative_path = file_path.relative_to(input_path)
 35 |             output_file = output_path / relative_path.with_suffix(".mp4")
 36 |             output_file.parent.mkdir(parents=True, exist_ok=True)
 37 | 
 38 |             click.echo(f"Processing: {file_path}")
 39 |             video = VideoFileClip(str(file_path))
 40 | 
 41 |             # Skip if video is too short
 42 |             if video.duration < duration:
 43 |                 click.echo(f"Skipping {file_path} as it is too short")
 44 |                 continue
 45 | 
 46 |             # Skip if target resolution is larger than input
 47 |             if target_width > video.w or target_height > video.h:
 48 |                 click.echo(
 49 |                     f"Skipping {file_path} as target resolution {resolution} is larger than input {video.w}x{video.h}"
 50 |                 )
 51 |                 continue
 52 | 
 53 |             # First truncate duration
 54 |             truncated = video.subclip(0, duration)
 55 | 
 56 |             # Calculate crop dimensions to maintain aspect ratio
 57 |             target_ratio = target_width / target_height
 58 |             current_ratio = truncated.w / truncated.h
 59 | 
 60 |             if current_ratio > target_ratio:
 61 |                 # Video is wider than target ratio - crop width
 62 |                 new_width = int(truncated.h * target_ratio)
 63 |                 x1 = (truncated.w - new_width) // 2
 64 |                 final = truncated.crop(x1=x1, width=new_width).resize((target_width, target_height))
 65 |             else:
 66 |                 # Video is taller than target ratio - crop height
 67 |                 new_height = int(truncated.w / target_ratio)
 68 |                 y1 = (truncated.h - new_height) // 2
 69 |                 final = truncated.crop(y1=y1, height=new_height).resize((target_width, target_height))
 70 | 
 71 |             # Set output parameters for consistent MP4 encoding
 72 |             output_params = {
 73 |                 "codec": "libx264",
 74 |                 "audio": False,  # Disable audio
 75 |                 "preset": "medium",  # Balance between speed and quality
 76 |                 "bitrate": "5000k",  # Adjust as needed
 77 |             }
 78 | 
 79 |             # Set FPS to 30
 80 |             final = final.set_fps(30)
 81 | 
 82 |             # Check for a corresponding .txt file
 83 |             txt_file_path = file_path.with_suffix('.txt')
 84 |             if txt_file_path.exists():
 85 |                 output_txt_file = output_path / relative_path.with_suffix('.txt')
 86 |                 output_txt_file.parent.mkdir(parents=True, exist_ok=True)
 87 |                 shutil.copy(txt_file_path, output_txt_file)
 88 |                 click.echo(f"Copied {txt_file_path} to {output_txt_file}")
 89 |             else:
 90 |                 # Print warning in bold yellow with a warning emoji
 91 |                 click.echo(f"\033[1;33m⚠️  Warning: No caption found for {file_path}, using an empty caption. This may hurt fine-tuning quality.\033[0m")
 92 |                 output_txt_file = output_path / relative_path.with_suffix('.txt')
 93 |                 output_txt_file.parent.mkdir(parents=True, exist_ok=True)
 94 |                 output_txt_file.touch()
 95 | 
 96 |             # Write the output file
 97 |             final.write_videofile(str(output_file), **output_params)
 98 | 
 99 |             # Clean up
100 |             video.close()
101 |             truncated.close()
102 |             final.close()
103 | 
104 |         except Exception as e:
105 |             click.echo(f"\033[1;31m Error processing {file_path}: {str(e)}\033[0m", err=True)
106 |             raise
107 | 
108 | 
109 | if __name__ == "__main__":
110 |     truncate_videos()
111 | 


--------------------------------------------------------------------------------
/demos/gradio_ui.py:
--------------------------------------------------------------------------------
 1 | #! /usr/bin/env python
 2 | 
 3 | 
 4 | import sys
 5 | 
 6 | import click
 7 | import gradio as gr
 8 | 
 9 | sys.path.append("..")
10 | from cli import configure_model, generate_video
11 | 
12 | with gr.Blocks() as demo:
13 |     gr.Markdown("Video Generator")
14 |     with gr.Row():
15 |         prompt = gr.Textbox(
16 |             label="Prompt",
17 |             value="A hand with delicate fingers picks up a bright yellow lemon from a wooden bowl filled with lemons and sprigs of mint against a peach-colored background. The hand gently tosses the lemon up and catches it, showcasing its smooth texture. A beige string bag sits beside the bowl, adding a rustic touch to the scene. Additional lemons, one halved, are scattered around the base of the bowl. The even lighting enhances the vibrant colors and creates a fresh, inviting atmosphere.",
18 |         )
19 |         negative_prompt = gr.Textbox(label="Negative Prompt", value="")
20 |         seed = gr.Number(label="Seed", value=1710977262, precision=0)
21 |     with gr.Row():
22 |         width = gr.Number(label="Width", value=848, precision=0)
23 |         height = gr.Number(label="Height", value=480, precision=0)
24 |         num_frames = gr.Number(label="Number of Frames", value=163, precision=0)
25 |     with gr.Row():
26 |         cfg_scale = gr.Number(label="CFG Scale", value=6.0)
27 |         num_inference_steps = gr.Number(label="Number of Inference Steps", value=100, precision=0)
28 |     btn = gr.Button("Generate Video")
29 |     output = gr.Video()
30 | 
31 |     btn.click(
32 |         generate_video,
33 |         inputs=[
34 |             prompt,
35 |             negative_prompt,
36 |             width,
37 |             height,
38 |             num_frames,
39 |             seed,
40 |             cfg_scale,
41 |             num_inference_steps,
42 |         ],
43 |         outputs=output,
44 |     )
45 | 
46 | 
47 | @click.command()
48 | @click.option("--model_dir", required=True, help="Path to the model directory.")
49 | @click.option("--lora_path", required=False, help="Path to the lora file.")
50 | @click.option("--cpu_offload", is_flag=True, help="Whether to offload model to CPU")
51 | def launch(model_dir, lora_path, cpu_offload):
52 |     configure_model(model_dir, lora_path, cpu_offload)
53 |     demo.launch()
54 | 
55 | 
56 | if __name__ == "__main__":
57 |     launch()
58 | 


--------------------------------------------------------------------------------
/demos/test_encoder_decoder.py:
--------------------------------------------------------------------------------
 1 | import time
 2 | 
 3 | import click
 4 | import torch
 5 | import torchvision
 6 | from einops import rearrange
 7 | from safetensors.torch import load_file
 8 | 
 9 | from genmo.lib.utils import save_video
10 | from genmo.mochi_preview.pipelines import DecoderModelFactory, decode_latents_tiled_spatial
11 | from genmo.mochi_preview.vae.models import Encoder, add_fourier_features
12 | 
13 | 
14 | @click.command()
15 | @click.argument("mochi_dir", type=str)
16 | @click.argument("video_path", type=click.Path(exists=True))
17 | def reconstruct(mochi_dir, video_path):
18 |     torch.backends.cuda.matmul.allow_tf32 = True
19 |     torch.backends.cudnn.allow_tf32 = True
20 | 
21 |     decoder_factory = DecoderModelFactory(
22 |         model_path=f"{mochi_dir}/decoder.safetensors",
23 |     )
24 |     decoder = decoder_factory.get_model(world_size=1, device_id=0, local_rank=0)
25 | 
26 |     config = dict(
27 |         prune_bottlenecks=[False, False, False, False, False],
28 |         has_attentions=[False, True, True, True, True],
29 |         affine=True,
30 |         bias=True,
31 |         input_is_conv_1x1=True,
32 |         padding_mode="replicate",
33 |     )
34 | 
35 |     # Create VAE encoder
36 |     encoder = Encoder(
37 |         in_channels=15,
38 |         base_channels=64,
39 |         channel_multipliers=[1, 2, 4, 6],
40 |         num_res_blocks=[3, 3, 4, 6, 3],
41 |         latent_dim=12,
42 |         temporal_reductions=[1, 2, 3],
43 |         spatial_reductions=[2, 2, 2],
44 |         **config,
45 |     )
46 |     device = torch.device("cuda:0")
47 |     encoder = encoder.to(device, memory_format=torch.channels_last_3d)
48 |     encoder.load_state_dict(load_file(f"{mochi_dir}/encoder.safetensors"))
49 |     encoder.eval()
50 | 
51 |     video, _, metadata = torchvision.io.read_video(video_path, output_format="THWC")
52 |     fps = metadata["video_fps"]
53 |     video = rearrange(video, "t h w c -> c t h w")
54 |     video = video.unsqueeze(0)
55 |     assert video.dtype == torch.uint8
56 |     # Convert to float in [-1, 1] range.
57 |     video = video.float() / 127.5 - 1.0
58 |     video = video.to(device)
59 |     video = add_fourier_features(video)
60 |     torch.cuda.synchronize()
61 | 
62 |     # Encode video to latent
63 |     with torch.inference_mode():
64 |         with torch.autocast("cuda", dtype=torch.bfloat16):
65 |             t0 = time.time()
66 |             ldist = encoder(video)
67 |             torch.cuda.synchronize()
68 |             print(f"Time to encode: {time.time() - t0:.2f}s")
69 |             t0 = time.time()
70 |             frames = decode_latents_tiled_spatial(decoder, ldist.sample(), num_tiles_w=2, num_tiles_h=2)
71 |             torch.cuda.synchronize()
72 |             print(f"Time to decode: {time.time() - t0:.2f}s")
73 |     t0 = time.time()
74 |     save_video(frames.cpu().numpy()[0], f"{video_path}.recon.mp4", fps=fps)
75 |     print(f"Time to save: {time.time() - t0:.2f}s")
76 | 
77 | 
78 | if __name__ == "__main__":
79 |     reconstruct()
80 | 


--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
 1 | [project]
 2 | name = "genmo"
 3 | version = "0.1.0"
 4 | description = "Genmo models"
 5 | readme = "README.md"
 6 | requires-python = ">=3.10"
 7 | dependencies = [
 8 |     "addict>=2.4.0",
 9 |     "av==13.1.0",
10 |     "click>=8.1.7",
11 |     "einops>=0.8.0",
12 |     "gradio>=3.36.1",
13 |     "moviepy==1.0.3",
14 |     "omegaconf>=2.3.0",
15 |     "pillow==9.5.0",
16 |     "pyyaml>=6.0.2",
17 |     "ray>=2.37.0",
18 |     "sentencepiece>=0.2.0",
19 |     "setuptools>=75.2.0",
20 |     "torch>=2.4.1",
21 |     "torchvision>=0.19.1",
22 |     "transformers>=4.45.2",
23 | ]
24 | 
25 | [project.optional-dependencies]
26 | flash = [
27 |     "flash-attn>=2.6.3"
28 | ]
29 | 
30 | torchvision = [
31 |     "torchvision>=0.15.0",
32 |     "pyav>=13.1.0"
33 | ]
34 | 
35 | [tool.ruff]
36 | # Allow lines to be as long as 120.
37 | line-length = 120
38 | 


--------------------------------------------------------------------------------
/pyrightconfig.json:
--------------------------------------------------------------------------------
1 | {
2 |     "include": ["src/genmo/mochi_preview/pipelines.py"]
3 | }
4 |   


--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
 1 | addict>=2.4.0
 2 | av==13.1.0
 3 | click>=8.1.7
 4 | einops>=0.8.0
 5 | gradio>=3.36.1
 6 | moviepy==1.0.3
 7 | omegaconf>=2.3.0
 8 | pillow==9.5.0
 9 | pyyaml>=6.0.2
10 | ray>=2.37.0
11 | sentencepiece>=0.2.0
12 | setuptools>=75.2.0
13 | torch>=2.4.1
14 | transformers>=4.45.2


--------------------------------------------------------------------------------
/scripts/download_weights.py:
--------------------------------------------------------------------------------
 1 | #! /usr/bin/env python3
 2 | import os
 3 | import tempfile
 4 | 
 5 | import click
 6 | from huggingface_hub import hf_hub_download, snapshot_download
 7 | import shutil
 8 | 
 9 | BASE_MODEL_FILES = [
10 |     # (repo_id, remote_file_path, local_file_path)
11 |     ("genmo/mochi-1-preview", "decoder.safetensors", "decoder.safetensors"),
12 |     ("genmo/mochi-1-preview", "encoder.safetensors", "encoder.safetensors"),
13 |     ("genmo/mochi-1-preview", "dit.safetensors", "dit.safetensors"),
14 | ]
15 | 
16 | FAST_MODEL_FILE = ("FastVideo/FastMochi", "dit.safetensors", "dit.fast.safetensors")
17 | 
18 | 
19 | @click.command()
20 | @click.argument('output_dir', required=True)
21 | @click.option('--fast_model', is_flag=True, help='Download FastMochi model instead of standard model')
22 | @click.option('--hf_transfer', is_flag=True, help='Enable faster downloads using hf_transfer (requires: pip install "huggingface_hub[hf_transfer]")')
23 | def download_weights(output_dir, fast_model, hf_transfer):
24 |     if not os.path.exists(output_dir):
25 |         print(f"Creating output directory: {output_dir}")
26 |         os.makedirs(output_dir, exist_ok=True)
27 | 
28 |     if hf_transfer:
29 |         os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
30 |         print("Using hf_transfer for faster downloads (requires: pip install 'huggingface_hub[hf_transfer]')")
31 | 
32 |     model_files = BASE_MODEL_FILES
33 |     if fast_model:
34 |         # Replace the standard DIT model with the fast model
35 |         model_files = [f for f in model_files if not f[2].startswith("dit.")]
36 |         model_files.append(FAST_MODEL_FILE)
37 | 
38 |     for repo_id, remote_path, local_path in model_files:
39 |         local_file_path = os.path.join(output_dir, local_path)
40 |         if not os.path.exists(local_file_path):
41 |             if hf_transfer:
42 |                 # I don't know if `hf_transfer` works with `snapshot_download`
43 |                 print(f"Downloading {local_path} from {repo_id} to: {local_file_path}")
44 |                 out_path = hf_hub_download(
45 |                     repo_id=repo_id,
46 |                     filename=remote_path,
47 |                     local_dir=output_dir,
48 |                 )
49 |                 print(f"Copying {out_path} to {local_file_path}")
50 |                 # copy instead of mv to avoid destroying huggingface cache
51 |                 shutil.copy2(out_path, local_file_path)
52 |             else:
53 |                 with tempfile.TemporaryDirectory() as tmp_dir:
54 |                     snapshot_download(
55 |                         repo_id=repo_id,
56 |                         allow_patterns=[f"*{remote_path}*"],
57 |                         local_dir=tmp_dir,
58 |                         local_dir_use_symlinks=False,
59 |                     )
60 |                     shutil.move(os.path.join(tmp_dir, remote_path), local_file_path)
61 |         else:
62 |             print(f"{local_path} already exists in: {local_file_path}")
63 |         assert os.path.exists(local_file_path), f"File {local_file_path} does not exist"
64 | 
65 | if __name__ == "__main__":
66 |     download_weights()
67 | 


--------------------------------------------------------------------------------
/scripts/format.bash:
--------------------------------------------------------------------------------
1 | #! /bin/bash
2 | set -euxo pipefail
3 | ruff format src demos
4 | ruff check --fix --select I src
5 | ruff check --fix --select I demos


--------------------------------------------------------------------------------
/scripts/pytorch_to_safe_tensors.py:
--------------------------------------------------------------------------------
 1 | #! /usr/bin/env python3
 2 | from pathlib import Path
 3 | 
 4 | import click
 5 | import torch
 6 | from safetensors.torch import save_file
 7 | 
 8 | 
 9 | @click.command()
10 | @click.argument("input_path", type=click.Path(exists=True))
11 | def convert_to_safetensors(input_path):
12 |     model = torch.load(input_path)
13 |     model = {
14 |         k: v.contiguous() for k, v in model.items()
15 |     }
16 |     assert 'vae_ema' not in model
17 |     input_path = Path(input_path)
18 |     output_path = input_path.with_suffix(".safetensors")
19 |     save_file(model, str(output_path))
20 |     click.echo(f"Converted {input_path} to {output_path}")
21 | 
22 | 
23 | if __name__ == "__main__":
24 |     convert_to_safetensors()
25 | 


--------------------------------------------------------------------------------
/scripts/typecheck.bash:
--------------------------------------------------------------------------------
1 | #! /bin/bash
2 | npx pyright


--------------------------------------------------------------------------------
/scripts/weights_to_fp8.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/scripts/weights_to_fp8.py


--------------------------------------------------------------------------------
/src/genmo/lib/attn_imports.py:
--------------------------------------------------------------------------------
 1 | from contextlib import contextmanager
 2 | 
 3 | import torch
 4 | 
 5 | 
 6 | try:
 7 |     from flash_attn import flash_attn_varlen_func as flash_varlen_attn
 8 | except ImportError:
 9 |     flash_varlen_attn = None
10 | 
11 | try:
12 |     from sageattention import sageattn as sage_attn
13 | except ImportError:
14 |     sage_attn = None
15 | 
16 | from torch.nn.attention import SDPBackend, sdpa_kernel
17 | 
18 | training_backends = [SDPBackend.FLASH_ATTENTION, SDPBackend.EFFICIENT_ATTENTION]
19 | eval_backends = list(training_backends)
20 | if torch.cuda.get_device_properties(0).major >= 9.0:
21 |     # Enable fast CuDNN attention on Hopper.
22 |     # This gives NaN on the backward pass for some reason,
23 |     # so only use it for evaluation.
24 |     eval_backends.append(SDPBackend.CUDNN_ATTENTION)
25 | 
26 | @contextmanager
27 | def sdpa_attn_ctx(training: bool = False):
28 |     with sdpa_kernel(training_backends if training else eval_backends):
29 |         yield
30 | 


--------------------------------------------------------------------------------
/src/genmo/lib/progress.py:
--------------------------------------------------------------------------------
 1 | import contextlib
 2 | from typing import Any, Iterable, Iterator, Optional
 3 | 
 4 | try:
 5 |     from tqdm import tqdm
 6 | except ImportError:
 7 |     tqdm = None
 8 | 
 9 | try:
10 |     from ray.experimental.tqdm_ray import tqdm as ray_tqdm
11 | except:
12 |     ray_tqdm = None
13 | 
14 | # Global state
15 | _current_progress_type = "none"
16 | _is_progress_bar_active = False
17 | 
18 | 
19 | class DummyProgressBar:
20 |     """A no-op progress bar that mimics tqdm interface"""
21 | 
22 |     def __init__(self, iterable=None, **kwargs):
23 |         self.iterable = iterable
24 | 
25 |     def __iter__(self):
26 |         return iter(self.iterable)
27 | 
28 |     def update(self, n=1):
29 |         pass
30 | 
31 |     def close(self):
32 |         pass
33 | 
34 |     def set_description(self, desc):
35 |         pass
36 | 
37 | 
38 | def get_new_progress_bar(iterable: Optional[Iterable] = None, **kwargs) -> Any:
39 |     if not _is_progress_bar_active:
40 |         return DummyProgressBar(iterable=iterable, **kwargs)
41 | 
42 |     if _current_progress_type == "tqdm":
43 |         if tqdm is None:
44 |             raise ImportError("tqdm is required but not installed. Please install tqdm to use the tqdm progress bar.")
45 |         return tqdm(iterable=iterable, **kwargs)
46 |     elif _current_progress_type == "ray_tqdm":
47 |         if ray_tqdm is None:
48 |             raise ImportError("ray is required but not installed. Please install ray to use the ray_tqdm progress bar.")
49 |         return ray_tqdm(iterable=iterable, **kwargs)
50 |     return DummyProgressBar(iterable=iterable, **kwargs)
51 | 
52 | 
53 | @contextlib.contextmanager
54 | def progress_bar(type: str = "none", enabled=True):
55 |     """
56 |     Context manager for setting progress bar type and options.
57 | 
58 |     Args:
59 |         type: Type of progress bar ("none" or "tqdm")
60 |         **options: Options to pass to the progress bar (e.g., total, desc)
61 | 
62 |     Raises:
63 |         ValueError: If progress bar type is invalid
64 |         RuntimeError: If progress bars are nested
65 | 
66 |     Example:
67 |         with progress_bar(type="tqdm", total=100):
68 |             for i in get_new_progress_bar(range(100)):
69 |                 process(i)
70 |     """
71 |     if type not in ("none", "tqdm", "ray_tqdm"):
72 |         raise ValueError("Progress bar type must be 'none' or 'tqdm' or 'ray_tqdm'")
73 |     if not enabled:
74 |         type = "none"
75 |     global _current_progress_type, _is_progress_bar_active
76 | 
77 |     if _is_progress_bar_active:
78 |         raise RuntimeError("Nested progress bars are not supported")
79 | 
80 |     _is_progress_bar_active = True
81 |     _current_progress_type = type
82 | 
83 |     try:
84 |         yield
85 |     finally:
86 |         _is_progress_bar_active = False
87 |         _current_progress_type = "none"
88 | 


--------------------------------------------------------------------------------
/src/genmo/lib/utils.py:
--------------------------------------------------------------------------------
 1 | import os
 2 | import subprocess
 3 | import tempfile
 4 | import time
 5 | 
 6 | import numpy as np
 7 | from moviepy.editor import ImageSequenceClip
 8 | from PIL import Image
 9 | 
10 | from genmo.lib.progress import get_new_progress_bar
11 | 
12 | 
13 | class Timer:
14 |     def __init__(self):
15 |         self.times = {}  # Dictionary to store times per stage
16 | 
17 |     def __call__(self, name):
18 |         print(f"Timing {name}")
19 |         return self.TimerContextManager(self, name)
20 | 
21 |     def print_stats(self):
22 |         total_time = sum(self.times.values())
23 |         # Print table header
24 |         print("{:<20} {:>10} {:>10}".format("Stage", "Time(s)", "Percent"))
25 |         for name, t in self.times.items():
26 |             percent = (t / total_time) * 100 if total_time > 0 else 0
27 |             print("{:<20} {:>10.2f} {:>9.2f}%".format(name, t, percent))
28 | 
29 |     class TimerContextManager:
30 |         def __init__(self, outer, name):
31 |             self.outer = outer  # Reference to the Timer instance
32 |             self.name = name
33 |             self.start_time = None
34 | 
35 |         def __enter__(self):
36 |             self.start_time = time.perf_counter()
37 |             return self
38 | 
39 |         def __exit__(self, exc_type, exc_value, traceback):
40 |             end_time = time.perf_counter()
41 |             elapsed = end_time - self.start_time
42 |             self.outer.times[self.name] = self.outer.times.get(self.name, 0) + elapsed
43 | 
44 | 
45 | def save_video(final_frames, output_path, fps=30):
46 |     assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)"
47 |     if final_frames.dtype != np.uint8:
48 |         final_frames = (final_frames * 255).astype(np.uint8)
49 |     ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path)
50 | 
51 | 
52 | def create_memory_tracker():
53 |     import torch
54 | 
55 |     previous = [None]  # Use list for mutable closure state
56 | 
57 |     def track(label="all2all"):
58 |         current = torch.cuda.memory_allocated() / 1e9
59 |         if previous[0] is not None:
60 |             diff = current - previous[0]
61 |             sign = "+" if diff >= 0 else ""
62 |             print(f"GPU memory ({label}): {current:.2f} GB ({sign}{diff:.2f} GB)")
63 |         else:
64 |             print(f"GPU memory ({label}): {current:.2f} GB")
65 |         previous[0] = current  # type: ignore
66 | 
67 |     return track
68 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/src/genmo/mochi_preview/__init__.py


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/src/genmo/mochi_preview/dit/joint_model/__init__.py


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/asymm_models_joint.py:
--------------------------------------------------------------------------------
  1 | import os
  2 | from typing import Dict, List, Optional, Tuple
  3 | import warnings
  4 | 
  5 | import torch
  6 | import torch.nn as nn
  7 | import torch.nn.functional as F
  8 | from einops import rearrange
  9 | from torch.nn.attention import sdpa_kernel
 10 | 
 11 | import genmo.mochi_preview.dit.joint_model.context_parallel as cp
 12 | from genmo.lib.attn_imports import flash_varlen_attn, sage_attn, sdpa_attn_ctx
 13 | from genmo.mochi_preview.dit.joint_model.layers import (
 14 |     FeedForward,
 15 |     PatchEmbed,
 16 |     RMSNorm,
 17 |     TimestepEmbedder,
 18 | )
 19 | from genmo.mochi_preview.dit.joint_model.lora import LoraLinear
 20 | from genmo.mochi_preview.dit.joint_model.mod_rmsnorm import modulated_rmsnorm
 21 | from genmo.mochi_preview.dit.joint_model.residual_tanh_gated_rmsnorm import (
 22 |     residual_tanh_gated_rmsnorm,
 23 | )
 24 | from genmo.mochi_preview.dit.joint_model.rope_mixed import (
 25 |     compute_mixed_rotation,
 26 |     create_position_matrix,
 27 | )
 28 | from genmo.mochi_preview.dit.joint_model.temporal_rope import apply_rotary_emb_qk_real
 29 | from genmo.mochi_preview.dit.joint_model.utils import (
 30 |     AttentionPool,
 31 |     modulate,
 32 |     pad_and_split_xy,
 33 | )
 34 | 
 35 | COMPILE_FINAL_LAYER = os.environ.get("COMPILE_DIT") == "1"
 36 | COMPILE_MMDIT_BLOCK = os.environ.get("COMPILE_DIT") == "1"
 37 | 
 38 | 
 39 | def ck(fn, *args, enabled=True, **kwargs) -> torch.Tensor:
 40 |     if enabled:
 41 |         return torch.utils.checkpoint.checkpoint(fn, *args, **kwargs, use_reentrant=False)
 42 | 
 43 |     return fn(*args, **kwargs)
 44 | 
 45 | 
 46 | class AsymmetricAttention(nn.Module):
 47 |     def __init__(
 48 |         self,
 49 |         dim_x: int,
 50 |         dim_y: int,
 51 |         num_heads: int = 8,
 52 |         qkv_bias: bool = True,
 53 |         qk_norm: bool = False,
 54 |         update_y: bool = True,
 55 |         out_bias: bool = True,
 56 |         attention_mode: str = "flash",
 57 |         softmax_scale: Optional[float] = None,
 58 |         device: Optional[torch.device] = None,
 59 |         # Disable LoRA by default ...
 60 |         qkv_proj_lora_rank: int = 0,
 61 |         qkv_proj_lora_alpha: int = 0,
 62 |         qkv_proj_lora_dropout: float = 0.0,
 63 |         out_proj_lora_rank: int = 0,
 64 |         out_proj_lora_alpha: int = 0,
 65 |         out_proj_lora_dropout: float = 0.0,
 66 |     ):
 67 |         super().__init__()
 68 |         self.attention_mode = attention_mode
 69 |         self.dim_x = dim_x
 70 |         self.dim_y = dim_y
 71 |         self.num_heads = num_heads
 72 |         self.head_dim = dim_x // num_heads
 73 |         self.update_y = update_y
 74 |         self.softmax_scale = softmax_scale
 75 |         if dim_x % num_heads != 0:
 76 |             raise ValueError(f"dim_x={dim_x} should be divisible by num_heads={num_heads}")
 77 | 
 78 |         # Input layers.
 79 |         self.qkv_bias = qkv_bias
 80 |         qkv_lora_kwargs = dict(
 81 |             bias=qkv_bias,
 82 |             device=device,
 83 |             r=qkv_proj_lora_rank,
 84 |             lora_alpha=qkv_proj_lora_alpha,
 85 |             lora_dropout=qkv_proj_lora_dropout,
 86 |         )
 87 |         self.qkv_x = LoraLinear(dim_x, 3 * dim_x, **qkv_lora_kwargs)
 88 |         # Project text features to match visual features (dim_y -> dim_x)
 89 |         self.qkv_y = LoraLinear(dim_y, 3 * dim_x, **qkv_lora_kwargs)
 90 | 
 91 |         # Query and key normalization for stability.
 92 |         assert qk_norm
 93 |         self.q_norm_x = RMSNorm(self.head_dim, device=device)
 94 |         self.k_norm_x = RMSNorm(self.head_dim, device=device)
 95 |         self.q_norm_y = RMSNorm(self.head_dim, device=device)
 96 |         self.k_norm_y = RMSNorm(self.head_dim, device=device)
 97 | 
 98 |         # Output layers. y features go back down from dim_x -> dim_y.
 99 |         proj_lora_kwargs = dict(
100 |             bias=out_bias,
101 |             device=device,
102 |             r=out_proj_lora_rank,
103 |             lora_alpha=out_proj_lora_alpha,
104 |             lora_dropout=out_proj_lora_dropout,
105 |         )
106 |         self.proj_x = LoraLinear(dim_x, dim_x, **proj_lora_kwargs)
107 |         self.proj_y = LoraLinear(dim_x, dim_y, **proj_lora_kwargs) if update_y else nn.Identity()
108 | 
109 |     def run_qkv_y(self, y):
110 |         cp_rank, cp_size = cp.get_cp_rank_size()
111 |         local_heads = self.num_heads // cp_size
112 | 
113 |         if cp.is_cp_active():
114 |             # Only predict local heads.
115 |             assert not self.qkv_bias
116 |             W_qkv_y = self.qkv_y.weight.view(3, self.num_heads, self.head_dim, self.dim_y)
117 |             W_qkv_y = W_qkv_y.narrow(1, cp_rank * local_heads, local_heads)
118 |             W_qkv_y = W_qkv_y.reshape(3 * local_heads * self.head_dim, self.dim_y)
119 |             qkv_y = F.linear(y, W_qkv_y, None)  # (B, L, 3 * local_h * head_dim)
120 |         else:
121 |             qkv_y = self.qkv_y(y)  # (B, L, 3 * dim)
122 | 
123 |         qkv_y = qkv_y.view(qkv_y.size(0), qkv_y.size(1), 3, local_heads, self.head_dim)
124 |         q_y, k_y, v_y = qkv_y.unbind(2)
125 | 
126 |         q_y = self.q_norm_y(q_y)
127 |         k_y = self.k_norm_y(k_y)
128 |         return q_y, k_y, v_y
129 | 
130 |     def prepare_qkv(
131 |         self,
132 |         x: torch.Tensor,  # (B, M, dim_x)
133 |         y: torch.Tensor,  # (B, L, dim_y)
134 |         *,
135 |         scale_x: torch.Tensor,
136 |         scale_y: torch.Tensor,
137 |         rope_cos: torch.Tensor,
138 |         rope_sin: torch.Tensor,
139 |         valid_token_indices: torch.Tensor,
140 |         max_seqlen_in_batch: int,
141 |     ):
142 |         # Process visual features
143 |         x = modulated_rmsnorm(x, scale_x)  # (B, M, dim_x) where M = N / cp_group_size
144 |         qkv_x = self.qkv_x(x)  # (B, M, 3 * dim_x)
145 |         assert qkv_x.dtype == torch.bfloat16
146 | 
147 |         qkv_x = cp.all_to_all_collect_tokens(qkv_x, self.num_heads)  # (3, B, N, local_h, head_dim)
148 | 
149 |         # Split qkv_x into q, k, v
150 |         q_x, k_x, v_x = qkv_x.unbind(0)  # (B, N, local_h, head_dim)
151 |         q_x = self.q_norm_x(q_x)
152 |         q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
153 |         k_x = self.k_norm_x(k_x)
154 |         k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
155 | 
156 |         # Concatenate streams
157 |         B, N, num_heads, head_dim = q_x.size()
158 |         D = num_heads * head_dim
159 | 
160 |         # Process text features
161 |         if B == 1:
162 |             text_seqlen = max_seqlen_in_batch - N
163 |             if text_seqlen > 0:
164 |                 y = y[:, :text_seqlen]  # Remove padding tokens.
165 |                 y = modulated_rmsnorm(y, scale_y)  # (B, L, dim_y)
166 |                 q_y, k_y, v_y = self.run_qkv_y(y)  # (B, L, local_heads, head_dim)
167 | 
168 |                 q = torch.cat([q_x, q_y], dim=1)
169 |                 k = torch.cat([k_x, k_y], dim=1)
170 |                 v = torch.cat([v_x, v_y], dim=1)
171 |             else:
172 |                 q, k, v = q_x, k_x, v_x
173 |         else:
174 |             y = modulated_rmsnorm(y, scale_y)  # (B, L, dim_y)
175 |             q_y, k_y, v_y = self.run_qkv_y(y)  # (B, L, local_heads, head_dim)
176 | 
177 |             indices = valid_token_indices[:, None].expand(-1, D)
178 |             q = torch.cat([q_x, q_y], dim=1).view(-1, D).gather(0, indices)  # (total, D)
179 |             k = torch.cat([k_x, k_y], dim=1).view(-1, D).gather(0, indices)  # (total, D)
180 |             v = torch.cat([v_x, v_y], dim=1).view(-1, D).gather(0, indices)  # (total, D)
181 | 
182 |         q = q.view(-1, num_heads, head_dim)
183 |         k = k.view(-1, num_heads, head_dim)
184 |         v = v.view(-1, num_heads, head_dim)
185 |         return q, k, v
186 | 
187 |     @torch.autocast("cuda", enabled=False)
188 |     def flash_attention(self, q, k, v, cu_seqlens, max_seqlen_in_batch, total, local_dim):
189 |         out: torch.Tensor = flash_varlen_attn(
190 |             q, k, v,
191 |             cu_seqlens_q=cu_seqlens,
192 |             cu_seqlens_k=cu_seqlens,
193 |             max_seqlen_q=max_seqlen_in_batch,
194 |             max_seqlen_k=max_seqlen_in_batch,
195 |             dropout_p=0.0,
196 |             softmax_scale=self.softmax_scale,
197 |         )  # (total, local_heads, head_dim)
198 |         return out.view(total, local_dim)
199 | 
200 |     def sdpa_attention(self, q, k, v):
201 |         with sdpa_attn_ctx(training=self.training):
202 |             out = F.scaled_dot_product_attention(
203 |                 q, k, v,
204 |                 attn_mask=None,
205 |                 dropout_p=0.0,
206 |                 is_causal=False,
207 |             )
208 |             return out
209 | 
210 |     @torch.autocast("cuda", enabled=False)
211 |     def sage_attention(self, q, k, v):
212 |         return sage_attn(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
213 | 
214 |     def run_attention(
215 |         self,
216 |         q: torch.Tensor,  # (total <= B * (N + L), num_heads, head_dim)
217 |         k: torch.Tensor,  # (total <= B * (N + L), num_heads, head_dim)
218 |         v: torch.Tensor,  # (total <= B * (N + L), num_heads, head_dim)
219 |         *,
220 |         B: int,
221 |         cu_seqlens: Optional[torch.Tensor] = None,
222 |         max_seqlen_in_batch: Optional[int] = None,
223 |     ):
224 |         _, cp_size = cp.get_cp_rank_size()
225 |         assert self.num_heads % cp_size == 0
226 |         local_heads = self.num_heads // cp_size
227 |         local_dim = local_heads * self.head_dim
228 | 
229 |         # Check shapes
230 |         assert q.ndim == 3 and k.ndim == 3 and v.ndim == 3
231 |         total = q.size(0)
232 |         assert k.size(0) == total and v.size(0) == total
233 | 
234 |         if self.attention_mode == "flash":
235 |             out = self.flash_attention(
236 |                 q, k, v, cu_seqlens, max_seqlen_in_batch, total, local_dim)  # (total, local_dim)
237 |         else:
238 |             assert B == 1, \
239 |                 f"Non-flash attention mode {self.attention_mode} only supports batch size 1, got {B}"
240 | 
241 |             q = rearrange(q, "(b s) h d -> b h s d", b=B)
242 |             k = rearrange(k, "(b s) h d -> b h s d", b=B)
243 |             v = rearrange(v, "(b s) h d -> b h s d", b=B)
244 | 
245 |             if self.attention_mode == "sdpa":
246 |                 out = self.sdpa_attention(q, k, v)  # (B, local_heads, seq_len, head_dim)
247 |             elif self.attention_mode == "sage":
248 |                 out = self.sage_attention(q, k, v)  # (B, local_heads, seq_len, head_dim)
249 |             else:
250 |                 raise ValueError(f"Unknown attention mode: {self.attention_mode}")
251 | 
252 |             out = rearrange(out, "b h s d -> (b s) (h d)")
253 | 
254 |         return out
255 | 
256 |     def post_attention(
257 |         self,
258 |         out: torch.Tensor,
259 |         B: int,
260 |         M: int,
261 |         L: int,
262 |         dtype: torch.dtype,
263 |         valid_token_indices: torch.Tensor,
264 |     ):
265 |         """
266 |         Args:
267 |             out: (total <= B * (N + L), local_dim)
268 |             valid_token_indices: (total <= B * (N + L),)
269 |             B: Batch size
270 |             M: Number of visual tokens per context parallel rank
271 |             L: Number of text tokens
272 |             dtype: Data type of the input and output tensors
273 | 
274 |         Returns:
275 |             x: (B, N, dim_x) tensor of visual tokens where N = M * cp_size
276 |             y: (B, L, dim_y) tensor of text token features
277 |         """
278 |         _, cp_size = cp.get_cp_rank_size()
279 |         local_heads = self.num_heads // cp_size
280 |         local_dim = local_heads * self.head_dim
281 |         N = M * cp_size
282 | 
283 |         # Split sequence into visual and text tokens, adding back padding.
284 |         if B == 1:
285 |             out = out.view(B, -1, local_dim)
286 |             if out.size(1) > N:
287 |                 x, y = torch.tensor_split(out, (N,), dim=1)  # (B, N, local_dim), (B, <= L, local_dim)
288 |                 y = F.pad(y, (0, 0, 0, L - y.size(1)))  # (B, L, local_dim)
289 |             else:
290 |                 # Empty prompt.
291 |                 x, y = out, out.new_zeros(B, L, local_dim)
292 |         else:
293 |             x, y = pad_and_split_xy(out, valid_token_indices, B, N, L, dtype)
294 |         assert x.size() == (B, N, local_dim)
295 |         assert y.size() == (B, L, local_dim)
296 | 
297 |         # Communicate across context parallel ranks.
298 |         x = x.view(B, N, local_heads, self.head_dim)
299 |         x = cp.all_to_all_collect_heads(x)  # (B, M, dim_x = num_heads * head_dim)
300 |         if cp.is_cp_active():
301 |             y = cp.all_gather(y)  # (cp_size * B, L, local_heads * head_dim)
302 |             y = rearrange(y, "(G B) L D -> B L (G D)", G=cp_size, D=local_dim)  # (B, L, dim_x)
303 | 
304 |         x = self.proj_x(x)
305 |         y = self.proj_y(y)
306 |         return x, y
307 | 
308 |     def forward(
309 |         self,
310 |         x: torch.Tensor,  # (B, M, dim_x)
311 |         y: torch.Tensor,  # (B, L, dim_y)
312 |         *,
313 |         scale_x: torch.Tensor,  # (B, dim_x), modulation for pre-RMSNorm.
314 |         scale_y: torch.Tensor,  # (B, dim_y), modulation for pre-RMSNorm.
315 |         packed_indices: Dict[str, torch.Tensor] = None,
316 |         checkpoint_qkv: bool = False,
317 |         checkpoint_post_attn: bool = False,
318 |         **rope_rotation,
319 |     ) -> Tuple[torch.Tensor, torch.Tensor]:
320 |         """Forward pass of asymmetric multi-modal attention.
321 | 
322 |         Args:
323 |             x: (B, M, dim_x) tensor of visual tokens
324 |             y: (B, L, dim_y) tensor of text token features
325 |             packed_indices: Dict with keys for Flash Attention
326 |             num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
327 | 
328 |         Returns:
329 |             x: (B, M, dim_x) tensor of visual tokens after multi-modal attention
330 |             y: (B, L, dim_y) tensor of text token features after multi-modal attention
331 |         """
332 |         B, L, _ = y.shape
333 |         _, M, _ = x.shape
334 | 
335 |         # Predict a packed QKV tensor from visual and text features.
336 |         q, k, v = ck(self.prepare_qkv,
337 |             x=x,
338 |             y=y,
339 |             scale_x=scale_x,
340 |             scale_y=scale_y,
341 |             rope_cos=rope_rotation.get("rope_cos"),
342 |             rope_sin=rope_rotation.get("rope_sin"),
343 |             valid_token_indices=packed_indices["valid_token_indices_kv"],
344 |             max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"],
345 |             enabled=checkpoint_qkv,
346 |         )  # (total <= B * (N + L), 3, local_heads, head_dim)
347 | 
348 |         # Self-attention is expensive, so don't checkpoint it.
349 |         out = self.run_attention(
350 |             q, k, v, B=B,
351 |             cu_seqlens=packed_indices["cu_seqlens_kv"],
352 |             max_seqlen_in_batch=packed_indices["max_seqlen_in_batch_kv"],
353 |         )
354 | 
355 |         x, y = ck(self.post_attention,
356 |             out,
357 |             B=B, M=M, L=L,
358 |             dtype=v.dtype,
359 |             valid_token_indices=packed_indices["valid_token_indices_kv"],
360 |             enabled=checkpoint_post_attn,
361 |         )
362 | 
363 |         return x, y
364 | 
365 | 
366 | @torch.compile(disable=not COMPILE_MMDIT_BLOCK)
367 | class AsymmetricJointBlock(nn.Module):
368 |     def __init__(
369 |         self,
370 |         hidden_size_x: int,
371 |         hidden_size_y: int,
372 |         num_heads: int,
373 |         *,
374 |         mlp_ratio_x: float = 8.0,  # Ratio of hidden size to d_model for MLP for visual tokens.
375 |         mlp_ratio_y: float = 4.0,  # Ratio of hidden size to d_model for MLP for text tokens.
376 |         update_y: bool = True,  # Whether to update text tokens in this block.
377 |         device: Optional[torch.device] = None,
378 |         **block_kwargs,
379 |     ):
380 |         super().__init__()
381 |         self.update_y = update_y
382 |         self.hidden_size_x = hidden_size_x
383 |         self.hidden_size_y = hidden_size_y
384 |         self.mod_x = nn.Linear(hidden_size_x, 4 * hidden_size_x, device=device)
385 |         if self.update_y:
386 |             self.mod_y = nn.Linear(hidden_size_x, 4 * hidden_size_y, device=device)
387 |         else:
388 |             self.mod_y = nn.Linear(hidden_size_x, hidden_size_y, device=device)
389 | 
390 |         # Self-attention:
391 |         self.attn = AsymmetricAttention(
392 |             hidden_size_x,
393 |             hidden_size_y,
394 |             num_heads=num_heads,
395 |             update_y=update_y,
396 |             device=device,
397 |             **block_kwargs,
398 |         )
399 | 
400 |         # MLP.
401 |         mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
402 |         assert mlp_hidden_dim_x == int(1536 * 8)
403 |         self.mlp_x = FeedForward(
404 |             in_features=hidden_size_x,
405 |             hidden_size=mlp_hidden_dim_x,
406 |             multiple_of=256,
407 |             ffn_dim_multiplier=None,
408 |             device=device,
409 |         )
410 | 
411 |         # MLP for text not needed in last block.
412 |         if self.update_y:
413 |             mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
414 |             self.mlp_y = FeedForward(
415 |                 in_features=hidden_size_y,
416 |                 hidden_size=mlp_hidden_dim_y,
417 |                 multiple_of=256,
418 |                 ffn_dim_multiplier=None,
419 |                 device=device,
420 |             )
421 | 
422 |     def forward(
423 |         self,
424 |         x: torch.Tensor,
425 |         c: torch.Tensor,
426 |         y: torch.Tensor,
427 |         # TODO: These could probably just go into attn_kwargs
428 |         checkpoint_ff: bool = False,
429 |         checkpoint_qkv: bool = False,
430 |         checkpoint_post_attn: bool = False,
431 |         **attn_kwargs,
432 |     ):
433 |         """Forward pass of a block.
434 | 
435 |         Args:
436 |             x: (B, N, dim) tensor of visual tokens
437 |             c: (B, dim) tensor of conditioned features
438 |             y: (B, L, dim) tensor of text tokens
439 |             num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
440 | 
441 |         Returns:
442 |             x: (B, N, dim) tensor of visual tokens after block
443 |             y: (B, L, dim) tensor of text tokens after block
444 |         """
445 |         N = x.size(1)
446 | 
447 |         c = F.silu(c)
448 |         mod_x = self.mod_x(c)
449 |         scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
450 |         mod_y = self.mod_y(c)
451 | 
452 |         if self.update_y:
453 |             scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
454 |         else:
455 |             scale_msa_y = mod_y
456 | 
457 |         # Self-attention block.
458 |         x_attn, y_attn = self.attn(
459 |             x,
460 |             y,
461 |             scale_x=scale_msa_x,
462 |             scale_y=scale_msa_y,
463 |             checkpoint_qkv=checkpoint_qkv,
464 |             checkpoint_post_attn=checkpoint_post_attn,
465 |             **attn_kwargs,
466 |         )
467 | 
468 |         assert x_attn.size(1) == N
469 |         x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
470 | 
471 |         if self.update_y:
472 |             y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
473 | 
474 |         # MLP block.
475 |         x = ck(self.ff_block_x, x, scale_mlp_x, gate_mlp_x, enabled=checkpoint_ff)
476 |         if self.update_y:
477 |             y = ck(self.ff_block_y, y, scale_mlp_y, gate_mlp_y, enabled=checkpoint_ff)  # type: ignore
478 |         return x, y
479 | 
480 |     def ff_block_x(self, x, scale_x, gate_x):
481 |         x_mod = modulated_rmsnorm(x, scale_x)
482 |         x_res = self.mlp_x(x_mod)
483 |         x = residual_tanh_gated_rmsnorm(x, x_res, gate_x)  # Sandwich norm
484 |         return x
485 | 
486 |     def ff_block_y(self, y, scale_y, gate_y):
487 |         y_mod = modulated_rmsnorm(y, scale_y)
488 |         y_res = self.mlp_y(y_mod)
489 |         y = residual_tanh_gated_rmsnorm(y, y_res, gate_y)  # Sandwich norm
490 |         return y
491 | 
492 | 
493 | @torch.compile(disable=not COMPILE_FINAL_LAYER)
494 | class FinalLayer(nn.Module):
495 |     """
496 |     The final layer of DiT.
497 |     """
498 | 
499 |     def __init__(
500 |         self,
501 |         hidden_size,
502 |         patch_size,
503 |         out_channels,
504 |         device: Optional[torch.device] = None,
505 |     ):
506 |         super().__init__()
507 |         self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, device=device)
508 |         self.mod = nn.Linear(hidden_size, 2 * hidden_size, device=device)
509 |         self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, device=device)
510 | 
511 |     def forward(self, x, c):
512 |         c = F.silu(c)
513 |         shift, scale = self.mod(c).chunk(2, dim=1)
514 |         x = modulate(self.norm_final(x), shift, scale)
515 |         x = self.linear(x)
516 |         return x
517 | 
518 | 
519 | class AsymmDiTJoint(nn.Module):
520 |     """
521 |     Diffusion model with a Transformer backbone.
522 | 
523 |     Ingests text embeddings instead of a label.
524 |     """
525 | 
526 |     def __init__(
527 |         self,
528 |         *,
529 |         patch_size=2,
530 |         in_channels=4,
531 |         hidden_size_x=1152,
532 |         hidden_size_y=1152,
533 |         depth=48,
534 |         num_heads=16,
535 |         mlp_ratio_x=8.0,
536 |         mlp_ratio_y=4.0,
537 |         t5_feat_dim: int = 4096,
538 |         t5_token_length: int = 256,
539 |         patch_embed_bias: bool = True,
540 |         timestep_mlp_bias: bool = True,
541 |         timestep_scale: Optional[float] = None,
542 |         use_extended_posenc: bool = False,
543 |         rope_theta: float = 10000.0,
544 |         device: Optional[torch.device] = None,
545 |         **block_kwargs,
546 |     ):
547 |         super().__init__()
548 |         self.in_channels = in_channels
549 |         self.out_channels = in_channels
550 |         self.patch_size = patch_size
551 |         self.num_heads = num_heads
552 |         self.hidden_size_x = hidden_size_x
553 |         self.hidden_size_y = hidden_size_y
554 |         self.head_dim = hidden_size_x // num_heads  # Head dimension and count is determined by visual.
555 |         self.use_extended_posenc = use_extended_posenc
556 |         self.t5_token_length = t5_token_length
557 |         self.t5_feat_dim = t5_feat_dim
558 |         self.rope_theta = rope_theta  # Scaling factor for frequency computation for temporal RoPE.
559 | 
560 |         self.x_embedder = PatchEmbed(
561 |             patch_size=patch_size,
562 |             in_chans=in_channels,
563 |             embed_dim=hidden_size_x,
564 |             bias=patch_embed_bias,
565 |             device=device,
566 |         )
567 |         # Conditionings
568 |         # Timestep
569 |         self.t_embedder = TimestepEmbedder(hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale)
570 | 
571 |         # Caption Pooling (T5)
572 |         self.t5_y_embedder = AttentionPool(t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device)
573 | 
574 |         # Dense Embedding Projection (T5)
575 |         self.t5_yproj = nn.Linear(t5_feat_dim, hidden_size_y, bias=True, device=device)
576 | 
577 |         # Initialize pos_frequencies as an empty parameter.
578 |         self.pos_frequencies = nn.Parameter(torch.empty(3, self.num_heads, self.head_dim // 2, device=device))
579 | 
580 |         # for depth 48:
581 |         #  b =  0: AsymmetricJointBlock, update_y=True
582 |         #  b =  1: AsymmetricJointBlock, update_y=True
583 |         #  ...
584 |         #  b = 46: AsymmetricJointBlock, update_y=True
585 |         #  b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
586 |         blocks = []
587 |         for b in range(depth):
588 |             # Joint multi-modal block
589 |             update_y = b < depth - 1
590 |             block = AsymmetricJointBlock(
591 |                 hidden_size_x,
592 |                 hidden_size_y,
593 |                 num_heads,
594 |                 mlp_ratio_x=mlp_ratio_x,
595 |                 mlp_ratio_y=mlp_ratio_y,
596 |                 update_y=update_y,
597 |                 device=device,
598 |                 **block_kwargs,
599 |             )
600 | 
601 |             blocks.append(block)
602 |         self.blocks = nn.ModuleList(blocks)
603 | 
604 |         self.final_layer = FinalLayer(hidden_size_x, patch_size, self.out_channels, device=device)
605 | 
606 |     def embed_x(self, x: torch.Tensor) -> torch.Tensor:
607 |         """
608 |         Args:
609 |             x: (B, C=12, T, H, W) tensor of visual tokens
610 | 
611 |         Returns:
612 |             x: (B, C=3072, N) tensor of visual tokens with positional embedding.
613 |         """
614 |         return self.x_embedder(x)  # Convert BcTHW to BCN
615 | 
616 |     @torch.compile(disable=not COMPILE_MMDIT_BLOCK)
617 |     def prepare(
618 |         self,
619 |         x: torch.Tensor,
620 |         sigma: torch.Tensor,
621 |         t5_feat: torch.Tensor,
622 |         t5_mask: torch.Tensor,
623 |     ):
624 |         """Prepare input and conditioning embeddings."""
625 | 
626 |         # Visual patch embeddings with positional encoding.
627 |         T, H, W = x.shape[-3:]
628 |         pH, pW = H // self.patch_size, W // self.patch_size
629 |         x = self.embed_x(x)  # (B, N, D), where N = T * H * W / patch_size ** 2
630 |         assert x.ndim == 3
631 |         B = x.size(0)
632 | 
633 |         # Construct position array of size [N, 3].
634 |         # pos[:, 0] is the frame index for each location,
635 |         # pos[:, 1] is the row index for each location, and
636 |         # pos[:, 2] is the column index for each location.
637 |         N = T * pH * pW
638 |         assert x.size(1) == N
639 |         pos = create_position_matrix(T, pH=pH, pW=pW, device=x.device, dtype=torch.float32)  # (N, 3)
640 |         rope_cos, rope_sin = compute_mixed_rotation(
641 |             freqs=self.pos_frequencies, pos=pos
642 |         )  # Each are (N, num_heads, dim // 2)
643 | 
644 |         # Global vector embedding for conditionings.
645 |         c_t = self.t_embedder(1 - sigma)  # (B, D)
646 | 
647 |         # Pool T5 tokens using attention pooler
648 |         # Note y_feat[1] contains T5 token features.
649 |         assert (
650 |             t5_feat.size(1) == self.t5_token_length
651 |         ), f"Expected L={self.t5_token_length}, got {t5_feat.shape} for y_feat."
652 |         t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask)  # (B, D)
653 |         assert t5_y_pool.size(0) == B, f"Expected B={B}, got {t5_y_pool.shape} for t5_y_pool."
654 | 
655 |         c = c_t + t5_y_pool
656 | 
657 |         y_feat = self.t5_yproj(t5_feat)  # (B, L, t5_feat_dim) --> (B, L, D)
658 | 
659 |         return x, c, y_feat, rope_cos, rope_sin
660 | 
661 |     def forward(
662 |         self,
663 |         x: torch.Tensor,
664 |         sigma: torch.Tensor,
665 |         y_feat: List[torch.Tensor],
666 |         y_mask: List[torch.Tensor],
667 |         packed_indices: Dict[str, torch.Tensor] = None,
668 |         rope_cos: torch.Tensor = None,
669 |         rope_sin: torch.Tensor = None,
670 |         num_ff_checkpoint: int = 0,
671 |         num_qkv_checkpoint: int = 0,
672 |         num_post_attn_checkpoint: int = 0,
673 |     ):
674 |         """Forward pass of DiT.
675 | 
676 |         Args:
677 |             x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
678 |             sigma: (B,) tensor of noise standard deviations
679 |             y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
680 |             y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
681 |             packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices.
682 |         """
683 |         _, _, T, H, W = x.shape
684 | 
685 |         if self.pos_frequencies.dtype != torch.float32:
686 |             warnings.warn(f"pos_frequencies dtype {self.pos_frequencies.dtype} != torch.float32")
687 | 
688 |         # Use EFFICIENT_ATTENTION backend for T5 pooling, since we have a mask.
689 |         # Have to call sdpa_kernel outside of a torch.compile region.
690 |         with sdpa_kernel(torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION):
691 |             x, c, y_feat, rope_cos, rope_sin = self.prepare(x, sigma, y_feat[0], y_mask[0])
692 |         del y_mask
693 | 
694 |         cp_rank, cp_size = cp.get_cp_rank_size()
695 |         N = x.size(1)
696 |         M = N // cp_size
697 |         assert N % cp_size == 0, f"Visual sequence length ({x.shape[1]}) must be divisible by cp_size ({cp_size})."
698 | 
699 |         if cp_size > 1:
700 |             x = x.narrow(1, cp_rank * M, M)
701 | 
702 |             assert self.num_heads % cp_size == 0
703 |             local_heads = self.num_heads // cp_size
704 |             rope_cos = rope_cos.narrow(1, cp_rank * local_heads, local_heads)
705 |             rope_sin = rope_sin.narrow(1, cp_rank * local_heads, local_heads)
706 | 
707 |         for i, block in enumerate(self.blocks):
708 |             x, y_feat = block(
709 |                 x,
710 |                 c,
711 |                 y_feat,
712 |                 rope_cos=rope_cos,
713 |                 rope_sin=rope_sin,
714 |                 packed_indices=packed_indices,
715 |                 checkpoint_ff=i < num_ff_checkpoint,
716 |                 checkpoint_qkv=i < num_qkv_checkpoint,
717 |                 checkpoint_post_attn=i < num_post_attn_checkpoint,
718 |             )  # (B, M, D), (B, L, D)
719 |         del y_feat  # Final layers don't use dense text features.
720 | 
721 |         x = self.final_layer(x, c)  # (B, M, patch_size ** 2 * out_channels)
722 | 
723 |         patch = x.size(2)
724 |         x = cp.all_gather(x)
725 |         x = rearrange(x, "(G B) M P -> B (G M) P", G=cp_size, P=patch)
726 |         x = rearrange(
727 |             x,
728 |             "B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)",
729 |             T=T,
730 |             hp=H // self.patch_size,
731 |             wp=W // self.patch_size,
732 |             p1=self.patch_size,
733 |             p2=self.patch_size,
734 |             c=self.out_channels,
735 |         )
736 | 
737 |         return x
738 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/context_parallel.py:
--------------------------------------------------------------------------------
  1 | from typing import Tuple
  2 | 
  3 | import torch
  4 | import torch.distributed as dist
  5 | from einops import rearrange
  6 | 
  7 | _CONTEXT_PARALLEL_GROUP = None
  8 | _CONTEXT_PARALLEL_RANK = None
  9 | _CONTEXT_PARALLEL_GROUP_SIZE = None
 10 | _CONTEXT_PARALLEL_GROUP_RANKS = None
 11 | 
 12 | 
 13 | def get_cp_rank_size() -> Tuple[int, int]:
 14 |     if _CONTEXT_PARALLEL_GROUP:
 15 |         assert isinstance(_CONTEXT_PARALLEL_RANK, int) and isinstance(_CONTEXT_PARALLEL_GROUP_SIZE, int)
 16 |         return _CONTEXT_PARALLEL_RANK, _CONTEXT_PARALLEL_GROUP_SIZE
 17 |     else:
 18 |         return 0, 1
 19 | 
 20 | 
 21 | def local_shard(x: torch.Tensor, dim: int = 2) -> torch.Tensor:
 22 |     if not _CONTEXT_PARALLEL_GROUP:
 23 |         return x
 24 | 
 25 |     cp_rank, cp_size = get_cp_rank_size()
 26 |     return x.tensor_split(cp_size, dim=dim)[cp_rank]
 27 | 
 28 | 
 29 | def set_cp_group(cp_group, ranks, global_rank):
 30 |     global _CONTEXT_PARALLEL_GROUP, _CONTEXT_PARALLEL_RANK, _CONTEXT_PARALLEL_GROUP_SIZE, _CONTEXT_PARALLEL_GROUP_RANKS
 31 |     if _CONTEXT_PARALLEL_GROUP is not None:
 32 |         raise RuntimeError("CP group already initialized.")
 33 |     _CONTEXT_PARALLEL_GROUP = cp_group
 34 |     _CONTEXT_PARALLEL_RANK = dist.get_rank(cp_group)
 35 |     _CONTEXT_PARALLEL_GROUP_SIZE = dist.get_world_size(cp_group)
 36 |     _CONTEXT_PARALLEL_GROUP_RANKS = ranks
 37 | 
 38 |     assert _CONTEXT_PARALLEL_RANK == ranks.index(
 39 |         global_rank
 40 |     ), f"Rank mismatch: {global_rank} in {ranks} does not have position {_CONTEXT_PARALLEL_RANK} "
 41 |     assert _CONTEXT_PARALLEL_GROUP_SIZE == len(
 42 |         ranks
 43 |     ), f"Group size mismatch: {_CONTEXT_PARALLEL_GROUP_SIZE} != len({ranks})"
 44 | 
 45 | 
 46 | def get_cp_group():
 47 |     if _CONTEXT_PARALLEL_GROUP is None:
 48 |         raise RuntimeError("CP group not initialized")
 49 |     return _CONTEXT_PARALLEL_GROUP
 50 | 
 51 | 
 52 | def is_cp_active():
 53 |     return _CONTEXT_PARALLEL_GROUP is not None
 54 | 
 55 | 
 56 | class AllGatherIntoTensorFunction(torch.autograd.Function):
 57 |     @staticmethod
 58 |     def forward(ctx, x: torch.Tensor, reduce_dtype, group: dist.ProcessGroup):
 59 |         ctx.reduce_dtype = reduce_dtype
 60 |         ctx.group = group
 61 |         ctx.batch_size = x.size(0)
 62 |         group_size = dist.get_world_size(group)
 63 | 
 64 |         x = x.contiguous()
 65 |         output = torch.empty(group_size * x.size(0), *x.shape[1:], dtype=x.dtype, device=x.device)
 66 |         dist.all_gather_into_tensor(output, x, group=group)
 67 |         return output
 68 | 
 69 | 
 70 | def all_gather(tensor: torch.Tensor) -> torch.Tensor:
 71 |     if not _CONTEXT_PARALLEL_GROUP:
 72 |         return tensor
 73 | 
 74 |     return AllGatherIntoTensorFunction.apply(tensor, torch.float32, _CONTEXT_PARALLEL_GROUP)
 75 | 
 76 | 
 77 | @torch.compiler.disable()
 78 | def _all_to_all_single(output, input, group):
 79 |     # Disable compilation since torch compile changes contiguity.
 80 |     assert input.is_contiguous(), "Input tensor must be contiguous."
 81 |     assert output.is_contiguous(), "Output tensor must be contiguous."
 82 |     return dist.all_to_all_single(output, input, group=group)
 83 | 
 84 | 
 85 | class CollectTokens(torch.autograd.Function):
 86 |     @staticmethod
 87 |     def forward(ctx, qkv: torch.Tensor, group: dist.ProcessGroup, num_heads: int):
 88 |         """Redistribute heads and receive tokens.
 89 | 
 90 |         Args:
 91 |             qkv: query, key or value. Shape: [B, M, 3 * num_heads * head_dim]
 92 | 
 93 |         Returns:
 94 |             qkv: shape: [3, B, N, local_heads, head_dim]
 95 | 
 96 |         where M is the number of local tokens,
 97 |         N = cp_size * M is the number of global tokens,
 98 |         local_heads = num_heads // cp_size is the number of local heads.
 99 |         """
100 |         ctx.group = group
101 |         ctx.num_heads = num_heads
102 |         cp_size = dist.get_world_size(group)
103 |         assert num_heads % cp_size == 0
104 |         ctx.local_heads = num_heads // cp_size
105 | 
106 |         qkv = rearrange(
107 |             qkv,
108 |             "B M (qkv G h d) -> G M h B (qkv d)",
109 |             qkv=3,
110 |             G=cp_size,
111 |             h=ctx.local_heads,
112 |         ).contiguous()
113 | 
114 |         output_chunks = torch.empty_like(qkv)
115 |         _all_to_all_single(output_chunks, qkv, group=group)
116 | 
117 |         return rearrange(output_chunks, "G M h B (qkv d) -> qkv B (G M) h d", qkv=3)
118 | 
119 | 
120 | def all_to_all_collect_tokens(x: torch.Tensor, num_heads: int) -> torch.Tensor:
121 |     if not _CONTEXT_PARALLEL_GROUP:
122 |         # Move QKV dimension to the front.
123 |         #   B M (3 H d) -> 3 B M H d
124 |         B, M, _ = x.size()
125 |         x = x.view(B, M, 3, num_heads, -1)
126 |         return x.permute(2, 0, 1, 3, 4)
127 | 
128 |     return CollectTokens.apply(x, _CONTEXT_PARALLEL_GROUP, num_heads)
129 | 
130 | 
131 | class CollectHeads(torch.autograd.Function):
132 |     @staticmethod
133 |     def forward(ctx, x: torch.Tensor, group: dist.ProcessGroup):
134 |         """Redistribute tokens and receive heads.
135 | 
136 |         Args:
137 |             x: Output of attention. Shape: [B, N, local_heads, head_dim]
138 | 
139 |         Returns:
140 |             Shape: [B, M, num_heads * head_dim]
141 |         """
142 |         ctx.group = group
143 |         ctx.local_heads = x.size(2)
144 |         ctx.head_dim = x.size(3)
145 |         group_size = dist.get_world_size(group)
146 |         x = rearrange(x, "B (G M) h D -> G h M B D", G=group_size).contiguous()
147 |         output = torch.empty_like(x)
148 |         _all_to_all_single(output, x, group=group)
149 |         del x
150 |         return rearrange(output, "G h M B D -> B M (G h D)")
151 | 
152 | 
153 | def all_to_all_collect_heads(x: torch.Tensor) -> torch.Tensor:
154 |     if not _CONTEXT_PARALLEL_GROUP:
155 |         # Merge heads.
156 |         return x.view(x.size(0), x.size(1), x.size(2) * x.size(3))
157 | 
158 |     return CollectHeads.apply(x, _CONTEXT_PARALLEL_GROUP)
159 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/layers.py:
--------------------------------------------------------------------------------
  1 | import collections.abc
  2 | import math
  3 | from itertools import repeat
  4 | from typing import Callable, Optional
  5 | 
  6 | import torch
  7 | import torch.nn as nn
  8 | import torch.nn.functional as F
  9 | from einops import rearrange
 10 | 
 11 | 
 12 | # From PyTorch internals
 13 | def _ntuple(n):
 14 |     def parse(x):
 15 |         if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
 16 |             return tuple(x)
 17 |         return tuple(repeat(x, n))
 18 | 
 19 |     return parse
 20 | 
 21 | 
 22 | to_2tuple = _ntuple(2)
 23 | 
 24 | 
 25 | class TimestepEmbedder(nn.Module):
 26 |     def __init__(
 27 |         self,
 28 |         hidden_size: int,
 29 |         frequency_embedding_size: int = 256,
 30 |         *,
 31 |         bias: bool = True,
 32 |         timestep_scale: Optional[float] = None,
 33 |         device: Optional[torch.device] = None,
 34 |     ):
 35 |         super().__init__()
 36 |         self.mlp = nn.Sequential(
 37 |             nn.Linear(frequency_embedding_size, hidden_size, bias=bias, device=device),
 38 |             nn.SiLU(),
 39 |             nn.Linear(hidden_size, hidden_size, bias=bias, device=device),
 40 |         )
 41 |         self.frequency_embedding_size = frequency_embedding_size
 42 |         self.timestep_scale = timestep_scale
 43 | 
 44 |     @staticmethod
 45 |     def timestep_embedding(t, dim, max_period=10000):
 46 |         half = dim // 2
 47 |         freqs = torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
 48 |         freqs.mul_(-math.log(max_period) / half).exp_()
 49 |         args = t[:, None].float() * freqs[None]
 50 |         embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
 51 |         if dim % 2:
 52 |             embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
 53 |         return embedding
 54 | 
 55 |     def forward(self, t):
 56 |         if self.timestep_scale is not None:
 57 |             t = t * self.timestep_scale
 58 |         t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
 59 |         t_emb = self.mlp(t_freq)
 60 |         return t_emb
 61 | 
 62 | 
 63 | class PooledCaptionEmbedder(nn.Module):
 64 |     def __init__(
 65 |         self,
 66 |         caption_feature_dim: int,
 67 |         hidden_size: int,
 68 |         *,
 69 |         bias: bool = True,
 70 |         device: Optional[torch.device] = None,
 71 |     ):
 72 |         super().__init__()
 73 |         self.caption_feature_dim = caption_feature_dim
 74 |         self.hidden_size = hidden_size
 75 |         self.mlp = nn.Sequential(
 76 |             nn.Linear(caption_feature_dim, hidden_size, bias=bias, device=device),
 77 |             nn.SiLU(),
 78 |             nn.Linear(hidden_size, hidden_size, bias=bias, device=device),
 79 |         )
 80 | 
 81 |     def forward(self, x):
 82 |         return self.mlp(x)
 83 | 
 84 | 
 85 | class FeedForward(nn.Module):
 86 |     def __init__(
 87 |         self,
 88 |         in_features: int,
 89 |         hidden_size: int,
 90 |         multiple_of: int,
 91 |         ffn_dim_multiplier: Optional[float],
 92 |         device: Optional[torch.device] = None,
 93 |     ):
 94 |         super().__init__()
 95 |         # keep parameter count and computation constant compared to standard FFN
 96 |         hidden_size = int(2 * hidden_size / 3)
 97 |         # custom dim factor multiplier
 98 |         if ffn_dim_multiplier is not None:
 99 |             hidden_size = int(ffn_dim_multiplier * hidden_size)
100 |         hidden_size = multiple_of * ((hidden_size + multiple_of - 1) // multiple_of)
101 | 
102 |         self.hidden_dim = hidden_size
103 |         self.w1 = nn.Linear(in_features, 2 * hidden_size, bias=False, device=device)
104 |         self.w2 = nn.Linear(hidden_size, in_features, bias=False, device=device)
105 | 
106 |     def forward(self, x):
107 |         # assert self.w1.weight.dtype == torch.bfloat16, f"FFN weight dtype {self.w1.weight.dtype} != bfloat16"
108 |         x, gate = self.w1(x).chunk(2, dim=-1)
109 |         x = self.w2(F.silu(x) * gate)
110 |         return x
111 | 
112 | 
113 | class PatchEmbed(nn.Module):
114 |     def __init__(
115 |         self,
116 |         patch_size: int = 16,
117 |         in_chans: int = 3,
118 |         embed_dim: int = 768,
119 |         norm_layer: Optional[Callable] = None,
120 |         flatten: bool = True,
121 |         bias: bool = True,
122 |         dynamic_img_pad: bool = False,
123 |         device: Optional[torch.device] = None,
124 |     ):
125 |         super().__init__()
126 |         self.patch_size = to_2tuple(patch_size)
127 |         self.flatten = flatten
128 |         self.dynamic_img_pad = dynamic_img_pad
129 | 
130 |         self.proj = nn.Conv2d(
131 |             in_chans,
132 |             embed_dim,
133 |             kernel_size=patch_size,
134 |             stride=patch_size,
135 |             bias=bias,
136 |             device=device,
137 |         )
138 |         assert norm_layer is None
139 |         self.norm = norm_layer(embed_dim, device=device) if norm_layer else nn.Identity()
140 | 
141 |     def forward(self, x):
142 |         B, _C, T, H, W = x.shape
143 |         if not self.dynamic_img_pad:
144 |             assert (
145 |                 H % self.patch_size[0] == 0
146 |             ), f"Input height ({H}) should be divisible by patch size ({self.patch_size[0]})."
147 |             assert (
148 |                 W % self.patch_size[1] == 0
149 |             ), f"Input width ({W}) should be divisible by patch size ({self.patch_size[1]})."
150 |         else:
151 |             pad_h = (self.patch_size[0] - H % self.patch_size[0]) % self.patch_size[0]
152 |             pad_w = (self.patch_size[1] - W % self.patch_size[1]) % self.patch_size[1]
153 |             x = F.pad(x, (0, pad_w, 0, pad_h))
154 | 
155 |         x = rearrange(x, "B C T H W -> (B T) C H W", B=B, T=T)
156 |         x = self.proj(x)
157 | 
158 |         # Flatten temporal and spatial dimensions.
159 |         if not self.flatten:
160 |             raise NotImplementedError("Must flatten output.")
161 |         x = rearrange(x, "(B T) C H W -> B (T H W) C", B=B, T=T)
162 | 
163 |         x = self.norm(x)
164 |         return x
165 | 
166 | 
167 | class RMSNorm(torch.nn.Module):
168 |     def __init__(self, hidden_size, eps=1e-5, device=None):
169 |         super().__init__()
170 |         self.eps = eps
171 |         self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device))
172 |         self.register_parameter("bias", None)
173 | 
174 |     def forward(self, x):
175 |         # assert self.weight.dtype == torch.float32, f"RMSNorm weight dtype {self.weight.dtype} != float32"
176 | 
177 |         x_fp32 = x.float()
178 |         x_normed = x_fp32 * torch.rsqrt(x_fp32.pow(2).mean(-1, keepdim=True) + self.eps)
179 |         return (x_normed * self.weight).type_as(x)
180 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/lora.py:
--------------------------------------------------------------------------------
  1 | #! /usr/bin/env python3
  2 | import math
  3 | from typing import Dict, List, Optional
  4 | 
  5 | import torch
  6 | import torch.nn as nn
  7 | import torch.nn.functional as F
  8 | 
  9 | 
 10 | class LoRALayer:
 11 |     def __init__(
 12 |         self,
 13 |         r: int,
 14 |         lora_alpha: int,
 15 |         lora_dropout: float,
 16 |         merge_weights: bool,
 17 |     ):
 18 |         self.r = r
 19 |         self.lora_alpha = lora_alpha
 20 |         if lora_dropout > 0.0:
 21 |             self.lora_dropout = nn.Dropout(p=lora_dropout)
 22 |         else:
 23 |             self.lora_dropout = lambda x: x
 24 |         self.merged = False
 25 |         self.merge_weights = merge_weights
 26 | 
 27 | 
 28 | def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none") -> None:
 29 |     assert bias == "none", f"Only bias='none' is supported"
 30 |     for n, p in model.named_parameters():
 31 |         if "lora_" not in n:
 32 |             p.requires_grad = False
 33 | 
 34 | 
 35 | def lora_state_dict(model: nn.Module, bias: str = "none") -> Dict[str, torch.Tensor]:
 36 |     assert bias == "none", f"Only bias='none' is supported"
 37 |     my_state_dict = model.state_dict()
 38 |     return {k: my_state_dict[k] for k in my_state_dict if "lora_" in k}
 39 | 
 40 | 
 41 | class LoraLinear(nn.Linear, LoRALayer):
 42 |     # LoRA implemented in a dense layer
 43 |     def __init__(
 44 |         self,
 45 |         in_features: int,
 46 |         out_features: int,
 47 |         r: int = 0,
 48 |         lora_alpha: int = 1,
 49 |         lora_dropout: float = 0.0,
 50 |         fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
 51 |         merge_weights: bool = True,
 52 |         **kwargs,
 53 |     ):
 54 |         nn.Linear.__init__(self, in_features, out_features, **kwargs)
 55 |         LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, merge_weights=merge_weights)
 56 | 
 57 |         self.fan_in_fan_out = fan_in_fan_out
 58 |         # Actual trainable parameters
 59 |         if r > 0:
 60 |             self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)).to(torch.float32))
 61 |             self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)).to(torch.float32))
 62 |             self.scaling = self.lora_alpha / self.r
 63 | 
 64 |             # Freezing the pre-trained weight matrix
 65 |             self.weight.requires_grad = False
 66 | 
 67 |         self.reset_parameters()
 68 | 
 69 |         if fan_in_fan_out:
 70 |             self.weight.data = self.weight.data.transpose(0, 1)
 71 | 
 72 |     def reset_parameters(self):
 73 |         nn.Linear.reset_parameters(self)
 74 |         if hasattr(self, "lora_A"):
 75 |             # initialize B the same way as the default for nn.Linear and A to zero
 76 |             # this is different than what is described in the paper but should not affect performance
 77 |             nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
 78 |             nn.init.zeros_(self.lora_B)
 79 | 
 80 |     def train(self, mode: bool = True):
 81 |         def T(w):
 82 |             return w.transpose(0, 1) if self.fan_in_fan_out else w
 83 | 
 84 |         nn.Linear.train(self, mode)
 85 |         if mode:
 86 |             if self.merge_weights and self.merged:
 87 |                 # Make sure that the weights are not merged
 88 |                 if self.r > 0:
 89 |                     self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
 90 |                 self.merged = False
 91 |         else:
 92 |             if self.merge_weights and not self.merged:
 93 |                 # Merge the weights and mark it
 94 |                 if self.r > 0:
 95 |                     self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
 96 |                 self.merged = True
 97 | 
 98 |     def forward(self, x: torch.Tensor):
 99 |         def T(w):
100 |             return w.transpose(0, 1) if self.fan_in_fan_out else w
101 | 
102 |         if self.r > 0 and not self.merged:
103 |             result = F.linear(x, T(self.weight), bias=self.bias)
104 | 
105 |             x = self.lora_dropout(x)
106 |             x = x @ self.lora_A.transpose(0, 1)
107 |             x = x @ self.lora_B.transpose(0, 1)
108 |             x = x * self.scaling
109 | 
110 |             return result + x
111 |         else:
112 |             return F.linear(x, T(self.weight), bias=self.bias)
113 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/mod_rmsnorm.py:
--------------------------------------------------------------------------------
 1 | import torch
 2 | 
 3 | 
 4 | def modulated_rmsnorm(x, scale, eps=1e-6):
 5 |     dtype = x.dtype
 6 |     x = x.float()
 7 | 
 8 |     # Compute RMS
 9 |     mean_square = x.pow(2).mean(-1, keepdim=True)
10 |     inv_rms = torch.rsqrt(mean_square + eps)
11 | 
12 |     # Normalize and modulate
13 |     x_normed = x * inv_rms
14 |     x_modulated = x_normed * (1 + scale.unsqueeze(1).float())
15 |     return x_modulated.to(dtype)
16 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/residual_tanh_gated_rmsnorm.py:
--------------------------------------------------------------------------------
 1 | import torch
 2 | 
 3 | 
 4 | def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6):
 5 |     # Convert to fp32 for precision
 6 |     x_res = x_res.float()
 7 | 
 8 |     # Compute RMS
 9 |     mean_square = x_res.pow(2).mean(-1, keepdim=True)
10 |     scale = torch.rsqrt(mean_square + eps)
11 | 
12 |     # Apply tanh to gate
13 |     tanh_gate = torch.tanh(gate).unsqueeze(1)
14 | 
15 |     # Normalize and apply gated scaling
16 |     x_normed = x_res * scale * tanh_gate
17 | 
18 |     # Apply residual connection
19 |     output = x + x_normed.type_as(x)
20 |     return output
21 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/rope_mixed.py:
--------------------------------------------------------------------------------
 1 | import functools
 2 | import math
 3 | 
 4 | import torch
 5 | 
 6 | 
 7 | def centers(start: float, stop, num, dtype=None, device=None):
 8 |     """linspace through bin centers.
 9 | 
10 |     Args:
11 |         start (float): Start of the range.
12 |         stop (float): End of the range.
13 |         num (int): Number of points.
14 |         dtype (torch.dtype): Data type of the points.
15 |         device (torch.device): Device of the points.
16 | 
17 |     Returns:
18 |         centers (Tensor): Centers of the bins. Shape: (num,).
19 |     """
20 |     edges = torch.linspace(start, stop, num + 1, dtype=dtype, device=device)
21 |     return (edges[:-1] + edges[1:]) / 2
22 | 
23 | 
24 | @functools.lru_cache(maxsize=1)
25 | def create_position_matrix(
26 |     T: int,
27 |     pH: int,
28 |     pW: int,
29 |     device: torch.device,
30 |     dtype: torch.dtype,
31 |     *,
32 |     target_area: float = 36864,
33 | ):
34 |     """
35 |     Args:
36 |         T: int - Temporal dimension
37 |         pH: int - Height dimension after patchify
38 |         pW: int - Width dimension after patchify
39 | 
40 |     Returns:
41 |         pos: [T * pH * pW, 3] - position matrix
42 |     """
43 |     with torch.no_grad():
44 |         # Create 1D tensors for each dimension
45 |         t = torch.arange(T, dtype=dtype)
46 | 
47 |         # Positionally interpolate to area 36864.
48 |         # (3072x3072 frame with 16x16 patches = 192x192 latents).
49 |         # This automatically scales rope positions when the resolution changes.
50 |         # We use a large target area so the model is more sensitive
51 |         # to changes in the learned pos_frequencies matrix.
52 |         scale = math.sqrt(target_area / (pW * pH))
53 |         w = centers(-pW * scale / 2, pW * scale / 2, pW)
54 |         h = centers(-pH * scale / 2, pH * scale / 2, pH)
55 | 
56 |         # Use meshgrid to create 3D grids
57 |         grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij")
58 | 
59 |         # Stack and reshape the grids.
60 |         pos = torch.stack([grid_t, grid_h, grid_w], dim=-1)  # [T, pH, pW, 3]
61 |         pos = pos.view(-1, 3)  # [T * pH * pW, 3]
62 |         pos = pos.to(dtype=dtype, device=device)
63 | 
64 |     return pos
65 | 
66 | 
67 | def compute_mixed_rotation(
68 |     freqs: torch.Tensor,
69 |     pos: torch.Tensor,
70 | ):
71 |     """
72 |     Project each 3-dim position into per-head, per-head-dim 1D frequencies.
73 | 
74 |     Args:
75 |         freqs: [3, num_heads, num_freqs] - learned rotation frequency (for t, row, col) for each head position
76 |         pos: [N, 3] - position of each token
77 |         num_heads: int
78 | 
79 |     Returns:
80 |         freqs_cos: [N, num_heads, num_freqs] - cosine components
81 |         freqs_sin: [N, num_heads, num_freqs] - sine components
82 |     """
83 |     with torch.autocast("cuda", enabled=False):
84 |         assert freqs.ndim == 3
85 |         freqs_sum = torch.einsum("Nd,dhf->Nhf", pos.to(freqs), freqs)
86 |         freqs_cos = torch.cos(freqs_sum)
87 |         freqs_sin = torch.sin(freqs_sum)
88 |     return freqs_cos, freqs_sin
89 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/temporal_rope.py:
--------------------------------------------------------------------------------
 1 | # Based on Llama3 Implementation.
 2 | import torch
 3 | 
 4 | 
 5 | def apply_rotary_emb_qk_real(
 6 |     xqk: torch.Tensor,
 7 |     freqs_cos: torch.Tensor,
 8 |     freqs_sin: torch.Tensor,
 9 | ) -> torch.Tensor:
10 |     """
11 |     Apply rotary embeddings to input tensors using the given frequency tensor without complex numbers.
12 | 
13 |     Args:
14 |         xqk (torch.Tensor): Query and/or Key tensors to apply rotary embeddings. Shape: (B, S, *, num_heads, D)
15 |                             Can be either just query or just key, or both stacked along some batch or * dim.
16 |         freqs_cos (torch.Tensor): Precomputed cosine frequency tensor.
17 |         freqs_sin (torch.Tensor): Precomputed sine frequency tensor.
18 | 
19 |     Returns:
20 |         torch.Tensor: The input tensor with rotary embeddings applied.
21 |     """
22 |     assert xqk.dtype == torch.bfloat16
23 |     # Split the last dimension into even and odd parts
24 |     xqk_even = xqk[..., 0::2]
25 |     xqk_odd = xqk[..., 1::2]
26 | 
27 |     # Apply rotation
28 |     cos_part = (xqk_even * freqs_cos - xqk_odd * freqs_sin).type_as(xqk)
29 |     sin_part = (xqk_even * freqs_sin + xqk_odd * freqs_cos).type_as(xqk)
30 | 
31 |     # Interleave the results back into the original shape
32 |     out = torch.stack([cos_part, sin_part], dim=-1).flatten(-2)
33 |     assert out.dtype == torch.bfloat16
34 |     return out
35 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/dit/joint_model/utils.py:
--------------------------------------------------------------------------------
  1 | from typing import Optional, Tuple
  2 | 
  3 | import torch
  4 | import torch.nn as nn
  5 | import torch.nn.functional as F
  6 | 
  7 | 
  8 | def modulate(x, shift, scale):
  9 |     return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
 10 | 
 11 | 
 12 | def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
 13 |     """
 14 |     Pool tokens in x using mask.
 15 | 
 16 |     NOTE: We assume x does not require gradients.
 17 | 
 18 |     Args:
 19 |         x: (B, L, D) tensor of tokens.
 20 |         mask: (B, L) boolean tensor indicating which tokens are not padding.
 21 | 
 22 |     Returns:
 23 |         pooled: (B, D) tensor of pooled tokens.
 24 |     """
 25 |     assert x.size(1) == mask.size(1)  # Expected mask to have same length as tokens.
 26 |     assert x.size(0) == mask.size(0)  # Expected mask to have same batch size as tokens.
 27 |     mask = mask[:, :, None].to(dtype=x.dtype)
 28 |     mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
 29 |     pooled = (x * mask).sum(dim=1, keepdim=keepdim)
 30 |     return pooled
 31 | 
 32 | 
 33 | class AttentionPool(nn.Module):
 34 |     def __init__(
 35 |         self,
 36 |         embed_dim: int,
 37 |         num_heads: int,
 38 |         output_dim: int = None,
 39 |         device: Optional[torch.device] = None,
 40 |     ):
 41 |         """
 42 |         Args:
 43 |             spatial_dim (int): Number of tokens in sequence length.
 44 |             embed_dim (int): Dimensionality of input tokens.
 45 |             num_heads (int): Number of attention heads.
 46 |             output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
 47 |         """
 48 |         super().__init__()
 49 |         self.num_heads = num_heads
 50 |         self.to_kv = nn.Linear(embed_dim, 2 * embed_dim, device=device)
 51 |         self.to_q = nn.Linear(embed_dim, embed_dim, device=device)
 52 |         self.to_out = nn.Linear(embed_dim, output_dim or embed_dim, device=device)
 53 | 
 54 |     def forward(self, x, mask):
 55 |         """
 56 |         Args:
 57 |             x (torch.Tensor): (B, L, D) tensor of input tokens.
 58 |             mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
 59 | 
 60 |         NOTE: We assume x does not require gradients.
 61 | 
 62 |         Returns:
 63 |             x (torch.Tensor): (B, D) tensor of pooled tokens.
 64 |         """
 65 |         D = x.size(2)
 66 | 
 67 |         # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
 68 |         attn_mask = mask[:, None, None, :].bool()  # (B, 1, 1, L).
 69 |         attn_mask = F.pad(attn_mask, (1, 0), value=True)  # (B, 1, 1, 1+L).
 70 | 
 71 |         # Average non-padding token features. These will be used as the query.
 72 |         x_pool = pool_tokens(x, mask, keepdim=True)  # (B, 1, D)
 73 | 
 74 |         # Concat pooled features to input sequence.
 75 |         x = torch.cat([x_pool, x], dim=1)  # (B, L+1, D)
 76 | 
 77 |         # Compute queries, keys, values. Only the mean token is used to create a query.
 78 |         kv = self.to_kv(x)  # (B, L+1, 2 * D)
 79 |         q = self.to_q(x[:, 0])  # (B, D)
 80 | 
 81 |         # Extract heads.
 82 |         head_dim = D // self.num_heads
 83 |         kv = kv.unflatten(2, (2, self.num_heads, head_dim))  # (B, 1+L, 2, H, head_dim)
 84 |         kv = kv.transpose(1, 3)  # (B, H, 2, 1+L, head_dim)
 85 |         k, v = kv.unbind(2)  # (B, H, 1+L, head_dim)
 86 |         q = q.unflatten(1, (self.num_heads, head_dim))  # (B, H, head_dim)
 87 |         q = q.unsqueeze(2)  # (B, H, 1, head_dim)
 88 | 
 89 |         # Compute attention.
 90 |         x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0)  # (B, H, 1, head_dim)
 91 | 
 92 |         # Concatenate heads and run output.
 93 |         x = x.squeeze(2).flatten(1, 2)  # (B, D = H * head_dim)
 94 |         x = self.to_out(x)
 95 |         return x
 96 | 
 97 | 
 98 | def pad_and_split_xy(xy, indices, B, N, L, dtype) -> Tuple[torch.Tensor, torch.Tensor]:
 99 |     D = xy.size(1)
100 | 
101 |     # Pad sequences to (B, N + L, dim).
102 |     assert indices.ndim == 1
103 |     indices = indices.unsqueeze(1).expand(-1, D)  # (total,) -> (total, num_heads * head_dim)
104 |     output = torch.zeros(B * (N + L), D, device=xy.device, dtype=dtype)
105 |     output = torch.scatter(output, 0, indices, xy)
106 |     xy = output.view(B, N + L, D)
107 | 
108 |     # Split visual and text tokens along the sequence length.
109 |     return torch.tensor_split(xy, (N,), dim=1)
110 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/pipelines.py:
--------------------------------------------------------------------------------
  1 | import json
  2 | import os
  3 | import random
  4 | from abc import ABC, abstractmethod
  5 | from contextlib import contextmanager
  6 | from functools import partial
  7 | from typing import Any, Dict, List, Literal, Optional, Union, cast
  8 | 
  9 | import numpy as np
 10 | import ray
 11 | import torch
 12 | import torch.distributed as dist
 13 | import torch.nn as nn
 14 | import torch.nn.functional as F
 15 | from einops import repeat
 16 | from safetensors import safe_open
 17 | from safetensors.torch import load_file
 18 | from torch import nn
 19 | from torch.distributed.fsdp import (
 20 |     BackwardPrefetch,
 21 |     MixedPrecision,
 22 |     ShardingStrategy,
 23 | )
 24 | from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
 25 | from torch.distributed.fsdp.wrap import (
 26 |     lambda_auto_wrap_policy,
 27 |     transformer_auto_wrap_policy,
 28 | )
 29 | from transformers import T5EncoderModel, T5Tokenizer
 30 | from transformers.models.t5.modeling_t5 import T5Block
 31 | 
 32 | import genmo.mochi_preview.dit.joint_model.context_parallel as cp
 33 | from genmo.lib.progress import get_new_progress_bar, progress_bar
 34 | from genmo.lib.utils import Timer
 35 | from genmo.mochi_preview.vae.models import (
 36 |     Decoder,
 37 |     Encoder,
 38 |     decode_latents,
 39 |     decode_latents_tiled_full,
 40 |     decode_latents_tiled_spatial,
 41 | )
 42 | from genmo.mochi_preview.vae.vae_stats import dit_latents_to_vae_latents
 43 | 
 44 | 
 45 | def load_to_cpu(p, weights_only=True):
 46 |     if p.endswith(".safetensors"):
 47 |         return load_file(p)
 48 |     else:
 49 |         assert p.endswith(".pt")
 50 |         return torch.load(p, map_location="cpu", weights_only=weights_only)
 51 | 
 52 | 
 53 | def linear_quadratic_schedule(num_steps, threshold_noise, linear_steps=None):
 54 |     if linear_steps is None:
 55 |         linear_steps = num_steps // 2
 56 |     linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
 57 |     threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
 58 |     quadratic_steps = num_steps - linear_steps
 59 |     quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
 60 |     linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
 61 |     const = quadratic_coef * (linear_steps**2)
 62 |     quadratic_sigma_schedule = [
 63 |         quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
 64 |     ]
 65 |     sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
 66 |     sigma_schedule = [1.0 - x for x in sigma_schedule]
 67 |     return sigma_schedule
 68 | 
 69 | 
 70 | T5_MODEL = "google/t5-v1_1-xxl"
 71 | MAX_T5_TOKEN_LENGTH = 256
 72 | 
 73 | 
 74 | def setup_fsdp_sync(model, device_id, *, param_dtype, auto_wrap_policy) -> FSDP:
 75 |     model = FSDP(
 76 |         model,
 77 |         sharding_strategy=ShardingStrategy.FULL_SHARD,
 78 |         mixed_precision=MixedPrecision(
 79 |             param_dtype=param_dtype,
 80 |             reduce_dtype=torch.float32,
 81 |             buffer_dtype=torch.float32,
 82 |         ),
 83 |         auto_wrap_policy=auto_wrap_policy,
 84 |         backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
 85 |         limit_all_gathers=True,
 86 |         device_id=device_id,
 87 |         sync_module_states=True,
 88 |         use_orig_params=True,
 89 |     )
 90 |     torch.cuda.synchronize()
 91 |     return model
 92 | 
 93 | 
 94 | class ModelFactory(ABC):
 95 |     def __init__(self, **kwargs):
 96 |         self.kwargs = kwargs
 97 | 
 98 |     @abstractmethod
 99 |     def get_model(self, *, local_rank: int, device_id: Union[int, Literal["cpu"]], world_size: int) -> Any:
100 |         assert isinstance(device_id, int) or device_id == "cpu", "device_id must be an integer or 'cpu'"
101 |         # FSDP does not work when the model is on the CPU
102 |         if device_id == "cpu":
103 |             assert world_size == 1, "CPU offload only supports single-GPU inference"
104 | 
105 | 
106 | class T5ModelFactory(ModelFactory):
107 |     def __init__(self, model_dir=None):
108 |         super().__init__()
109 |         self.model_dir = model_dir or T5_MODEL
110 | 
111 |     def get_model(self, *, local_rank, device_id, world_size):
112 |         super().get_model(local_rank=local_rank, device_id=device_id, world_size=world_size)
113 |         model = T5EncoderModel.from_pretrained(self.model_dir)
114 |         if world_size > 1:
115 |             model = setup_fsdp_sync(
116 |                 model,
117 |                 device_id=device_id,
118 |                 param_dtype=torch.float32,
119 |                 auto_wrap_policy=partial(
120 |                     transformer_auto_wrap_policy,
121 |                     transformer_layer_cls={
122 |                         T5Block,
123 |                     },
124 |                 ),
125 |             )
126 |         elif isinstance(device_id, int):
127 |             model = model.to(torch.device(f"cuda:{device_id}"))  # type: ignore
128 |         return model.eval()
129 | 
130 | 
131 | class DitModelFactory(ModelFactory):
132 |     def __init__(
133 |         self, *,
134 |         model_path: str,
135 |         model_dtype: str,
136 |         lora_path: Optional[str] = None,
137 |         attention_mode: Optional[str] = None
138 |     ):
139 |         # Infer attention mode if not specified
140 |         if attention_mode is None:
141 |             from genmo.lib.attn_imports import flash_varlen_attn  # type: ignore
142 |             attention_mode = "sdpa" if flash_varlen_attn is None else "flash"
143 |         print(f"Attention mode: {attention_mode}")
144 | 
145 |         super().__init__(
146 |             model_path=model_path,
147 |             lora_path=lora_path,
148 |             model_dtype=model_dtype,
149 |             attention_mode=attention_mode
150 |         )
151 | 
152 |     def get_model(
153 |         self,
154 |         *,
155 |         local_rank,
156 |         device_id,
157 |         world_size,
158 |         model_kwargs=None,
159 |         patch_model_fns=None,
160 |         strict_load=True,
161 |         load_checkpoint=True,
162 |         fast_init=True,
163 |     ):
164 |         from genmo.mochi_preview.dit.joint_model.asymm_models_joint import AsymmDiTJoint
165 | 
166 |         if not model_kwargs:
167 |             model_kwargs = {}
168 | 
169 |         lora_sd = None
170 |         lora_path = self.kwargs["lora_path"]
171 |         if lora_path is not None:
172 |             if lora_path.endswith(".safetensors"):
173 |                 lora_sd = {}
174 |                 with safe_open(lora_path, framework="pt") as f:
175 |                     for k in f.keys():
176 |                         lora_sd[k] = f.get_tensor(k)
177 |                     lora_kwargs = json.loads(f.metadata()["kwargs"])
178 |                     print(f"Loaded LoRA kwargs: {lora_kwargs}")
179 |             else:
180 |                 lora = load_to_cpu(lora_path, weights_only=False)
181 |                 lora_sd, lora_kwargs = lora["state_dict"], lora["kwargs"]
182 | 
183 |             model_kwargs.update(cast(dict, lora_kwargs))
184 | 
185 |         model_args = dict(
186 |             depth=48,
187 |             patch_size=2,
188 |             num_heads=24,
189 |             hidden_size_x=3072,
190 |             hidden_size_y=1536,
191 |             mlp_ratio_x=4.0,
192 |             mlp_ratio_y=4.0,
193 |             in_channels=12,
194 |             qk_norm=True,
195 |             qkv_bias=False,
196 |             out_bias=True,
197 |             patch_embed_bias=True,
198 |             timestep_mlp_bias=True,
199 |             timestep_scale=1000.0,
200 |             t5_feat_dim=4096,
201 |             t5_token_length=256,
202 |             rope_theta=10000.0,
203 |             attention_mode=self.kwargs["attention_mode"],
204 |             **model_kwargs,
205 |         )
206 | 
207 |         if fast_init:
208 |             model: nn.Module = torch.nn.utils.skip_init(AsymmDiTJoint, **model_args)
209 |         else:
210 |             model: nn.Module = AsymmDiTJoint(**model_args)
211 | 
212 |         for fn in patch_model_fns or []:
213 |             model = fn(model)
214 | 
215 |         # FSDP syncs weights from rank 0 to all other ranks
216 |         if local_rank == 0 and load_checkpoint:
217 |             model_path = self.kwargs["model_path"]
218 |             sd = load_to_cpu(model_path)
219 | 
220 |             # Load the state dictionary and capture the return value
221 |             load_result = model.load_state_dict(sd, strict=strict_load)
222 |             if not strict_load:
223 |                 # Print mismatched keys
224 |                 missing_keys = [k for k in load_result.missing_keys if ".lora_" not in k]
225 |                 if missing_keys:
226 |                     print(f"Missing keys from {model_path}: {missing_keys}")
227 |                 if load_result.unexpected_keys:
228 |                     print(f"Unexpected keys from {model_path}: {load_result.unexpected_keys}")
229 | 
230 |             if lora_sd:
231 |                 model.load_state_dict(lora_sd, strict=strict_load) # type: ignore
232 | 
233 |         if world_size > 1:
234 |             assert self.kwargs["model_dtype"] == "bf16", "FP8 is not supported for multi-GPU inference"
235 | 
236 |             model = setup_fsdp_sync(
237 |                 model,
238 |                 device_id=device_id,
239 |                 param_dtype=torch.float32,
240 |                 auto_wrap_policy=partial(
241 |                     lambda_auto_wrap_policy,
242 |                     lambda_fn=lambda m: m in model.blocks,
243 |                 ),
244 |             )
245 |         elif isinstance(device_id, int):
246 |             model = model.to(torch.device(f"cuda:{device_id}"))
247 |         return model.eval()
248 | 
249 | 
250 | class DecoderModelFactory(ModelFactory):
251 |     def __init__(self, *, model_path: str):
252 |         super().__init__(model_path=model_path)
253 | 
254 |     def get_model(self, *, local_rank=0, device_id=0, world_size=1):
255 |         # TODO(ved): Set flag for torch.compile
256 |         # TODO(ved): Use skip_init
257 | 
258 |         decoder = Decoder(
259 |             out_channels=3,
260 |             base_channels=128,
261 |             channel_multipliers=[1, 2, 4, 6],
262 |             temporal_expansions=[1, 2, 3],
263 |             spatial_expansions=[2, 2, 2],
264 |             num_res_blocks=[3, 3, 4, 6, 3],
265 |             latent_dim=12,
266 |             has_attention=[False, False, False, False, False],
267 |             output_norm=False,
268 |             nonlinearity="silu",
269 |             output_nonlinearity="silu",
270 |             causal=True,
271 |         )
272 |         # VAE is not FSDP-wrapped
273 |         state_dict = load_file(self.kwargs["model_path"])
274 |         decoder.load_state_dict(state_dict, strict=True)
275 |         device = torch.device(f"cuda:{device_id}") if isinstance(device_id, int) else "cpu"
276 |         decoder.eval().to(device)
277 |         return decoder
278 | 
279 | 
280 | class EncoderModelFactory(ModelFactory):
281 |     def __init__(self, *, model_path: str):
282 |         super().__init__(model_path=model_path)
283 | 
284 |     def get_model(self, *, local_rank=0, device_id=0, world_size=1):
285 |         # TODO(ved): Set flag for torch.compile
286 |         # TODO(ved): Use skip_init
287 | 
288 |         # We don't FSDP the encoder b/c it is small
289 |         encoder = Encoder(
290 |             in_channels=15,
291 |             base_channels=64,
292 |             channel_multipliers=[1, 2, 4, 6],
293 |             num_res_blocks=[3, 3, 4, 6, 3],
294 |             latent_dim=12,
295 |             temporal_reductions=[1, 2, 3],
296 |             spatial_reductions=[2, 2, 2],
297 |             prune_bottlenecks=[False, False, False, False, False],
298 |             has_attentions=[False, True, True, True, True],
299 |             affine=True,
300 |             bias=True,
301 |             input_is_conv_1x1=True,
302 |             padding_mode="replicate",
303 |         )
304 |         state_dict = load_file(self.kwargs["model_path"])
305 |         encoder.load_state_dict(state_dict, strict=True)
306 |         device = torch.device(f"cuda:{device_id}") if isinstance(device_id, int) else "cpu"
307 |         encoder.eval().to(device)
308 |         return encoder
309 | 
310 | 
311 | def get_conditioning(
312 |     tokenizer: T5Tokenizer,
313 |     encoder: Encoder,
314 |     device: torch.device,
315 |     batch_inputs: bool,
316 |     *,
317 |     prompt: str,
318 |     negative_prompt: str,
319 | ):
320 |     if batch_inputs:
321 |         return dict(
322 |             batched=get_conditioning_for_prompts(
323 |                 tokenizer, encoder, device, [prompt, negative_prompt]
324 |             )
325 |         )
326 |     else:
327 |         cond_input = get_conditioning_for_prompts(tokenizer, encoder, device, [prompt])
328 |         null_input = get_conditioning_for_prompts(tokenizer, encoder, device, [negative_prompt])
329 |         return dict(cond=cond_input, null=null_input)
330 | 
331 | 
332 | def get_conditioning_for_prompts(tokenizer, encoder, device, prompts: List[str]):
333 |     assert len(prompts) in [1, 2]  # [neg] or [pos] or [pos, neg]
334 |     B = len(prompts)
335 |     t5_toks = tokenizer(
336 |         prompts,
337 |         padding="max_length",
338 |         truncation=True,
339 |         max_length=MAX_T5_TOKEN_LENGTH,
340 |         return_tensors="pt",
341 |         return_attention_mask=True,
342 |     )
343 |     caption_input_ids_t5 = t5_toks["input_ids"]
344 |     caption_attention_mask_t5 = t5_toks["attention_mask"].bool()
345 |     del t5_toks
346 | 
347 |     assert caption_input_ids_t5.shape == (B, MAX_T5_TOKEN_LENGTH)
348 |     assert caption_attention_mask_t5.shape == (B, MAX_T5_TOKEN_LENGTH)
349 | 
350 |     # Special-case empty negative prompt by zero-ing it
351 |     if prompts[-1] == "":
352 |         caption_input_ids_t5[-1] = 0
353 |         caption_attention_mask_t5[-1] = False
354 | 
355 |     caption_input_ids_t5 = caption_input_ids_t5.to(device, non_blocking=True)
356 |     caption_attention_mask_t5 = caption_attention_mask_t5.to(device, non_blocking=True)
357 | 
358 |     y_mask = [caption_attention_mask_t5]
359 |     y_feat = [encoder(caption_input_ids_t5, caption_attention_mask_t5).last_hidden_state.detach()]
360 |     # Sometimes returns a tensor, othertimes a tuple, not sure why
361 |     # See: https://huggingface.co/genmo/mochi-1-preview/discussions/3
362 |     assert tuple(y_feat[-1].shape) == (B, MAX_T5_TOKEN_LENGTH, 4096)
363 |     assert y_feat[-1].dtype == torch.float32
364 | 
365 |     return dict(y_mask=y_mask, y_feat=y_feat)
366 | 
367 | 
368 | def compute_packed_indices(
369 |     device: torch.device, text_mask: torch.Tensor, num_latents: int
370 | ) -> Dict[str, Union[torch.Tensor, int]]:
371 |     """
372 |     Based on https://github.com/Dao-AILab/flash-attention/blob/765741c1eeb86c96ee71a3291ad6968cfbf4e4a1/flash_attn/bert_padding.py#L60-L80
373 | 
374 |     Args:
375 |         num_latents: Number of latent tokens
376 |         text_mask: (B, L) List of boolean tensor indicating which text tokens are not padding.
377 | 
378 |     Returns:
379 |         packed_indices: Dict with keys for Flash Attention:
380 |             - valid_token_indices_kv: up to (B * (N + L),) tensor of valid token indices (non-padding)
381 |                                    in the packed sequence.
382 |             - cu_seqlens_kv: (B + 1,) tensor of cumulative sequence lengths in the packed sequence.
383 |             - max_seqlen_in_batch_kv: int of the maximum sequence length in the batch.
384 |     """
385 |     # Create an expanded token mask saying which tokens are valid across both visual and text tokens.
386 |     PATCH_SIZE = 2
387 |     num_visual_tokens = num_latents // (PATCH_SIZE**2)
388 |     assert num_visual_tokens > 0
389 | 
390 |     mask = F.pad(text_mask, (num_visual_tokens, 0), value=True)  # (B, N + L)
391 |     seqlens_in_batch = mask.sum(dim=-1, dtype=torch.int32)  # (B,)
392 |     valid_token_indices = torch.nonzero(mask.flatten(), as_tuple=False).flatten()  # up to (B * (N + L),)
393 |     assert valid_token_indices.size(0) >= text_mask.size(0) * num_visual_tokens  # At least (B * N,)
394 |     cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
395 |     max_seqlen_in_batch = seqlens_in_batch.max().item()
396 | 
397 |     return {
398 |         "cu_seqlens_kv": cu_seqlens.to(device, non_blocking=True),
399 |         "max_seqlen_in_batch_kv": cast(int, max_seqlen_in_batch),
400 |         "valid_token_indices_kv": valid_token_indices.to(device, non_blocking=True),
401 |     }
402 | 
403 | 
404 | def assert_eq(x, y, msg=None):
405 |     assert x == y, f"{msg or 'Assertion failed'}: {x} != {y}"
406 | 
407 | 
408 | def sample_model(device, dit, conditioning, **args):
409 |     random.seed(args["seed"])
410 |     np.random.seed(args["seed"])
411 |     torch.manual_seed(args["seed"])
412 | 
413 |     generator = torch.Generator(device=device)
414 |     generator.manual_seed(args["seed"])
415 | 
416 |     w, h, t = args["width"], args["height"], args["num_frames"]
417 |     sample_steps = args["num_inference_steps"]
418 |     cfg_schedule = args["cfg_schedule"]
419 |     sigma_schedule = args["sigma_schedule"]
420 | 
421 |     assert_eq(len(cfg_schedule), sample_steps, "cfg_schedule must have length sample_steps")
422 |     assert_eq((t - 1) % 6, 0, "t - 1 must be divisible by 6")
423 |     assert_eq(
424 |         len(sigma_schedule),
425 |         sample_steps + 1,
426 |         "sigma_schedule must have length sample_steps + 1",
427 |     )
428 | 
429 |     B = 1
430 |     SPATIAL_DOWNSAMPLE = 8
431 |     TEMPORAL_DOWNSAMPLE = 6
432 |     IN_CHANNELS = 12
433 |     latent_t = ((t - 1) // TEMPORAL_DOWNSAMPLE) + 1
434 |     latent_w, latent_h = w // SPATIAL_DOWNSAMPLE, h // SPATIAL_DOWNSAMPLE
435 | 
436 |     z = torch.randn(
437 |         (B, IN_CHANNELS, latent_t, latent_h, latent_w),
438 |         device=device,
439 |         dtype=torch.float32,
440 |     )
441 | 
442 |     num_latents = latent_t * latent_h * latent_w
443 |     cond_batched = cond_text = cond_null = None
444 |     if "cond" in conditioning:
445 |         cond_text = conditioning["cond"]
446 |         cond_null = conditioning["null"]
447 |         cond_text["packed_indices"] = compute_packed_indices(device, cond_text["y_mask"][0], num_latents)
448 |         cond_null["packed_indices"] = compute_packed_indices(device, cond_null["y_mask"][0], num_latents)
449 |     else:
450 |         cond_batched = conditioning["batched"]
451 |         cond_batched["packed_indices"] = compute_packed_indices(device, cond_batched["y_mask"][0], num_latents)
452 |         z = repeat(z, "b ... -> (repeat b) ...", repeat=2)
453 | 
454 |     def model_fn(*, z, sigma, cfg_scale):
455 |         if cond_batched:
456 |             with torch.autocast("cuda", dtype=torch.bfloat16):
457 |                 out = dit(z, sigma, **cond_batched)
458 |             out_cond, out_uncond = torch.chunk(out, chunks=2, dim=0)
459 |         else:
460 |             nonlocal cond_text, cond_null
461 |             with torch.autocast("cuda", dtype=torch.bfloat16):
462 |                 out_cond = dit(z, sigma, **cond_text)
463 |                 out_uncond = dit(z, sigma, **cond_null)
464 |         assert out_cond.shape == out_uncond.shape
465 |         out_uncond = out_uncond.to(z)
466 |         out_cond = out_cond.to(z)
467 |         return out_uncond + cfg_scale * (out_cond - out_uncond)
468 | 
469 |     # Euler sampler w/ customizable sigma schedule & cfg scale
470 |     for i in get_new_progress_bar(range(0, sample_steps), desc="Sampling"):
471 |         sigma = sigma_schedule[i]
472 |         dsigma = sigma - sigma_schedule[i + 1]
473 | 
474 |         # `pred` estimates `z_0 - eps`.
475 |         pred = model_fn(
476 |             z=z,
477 |             sigma=torch.full([B] if cond_text else [B * 2], sigma, device=z.device),
478 |             cfg_scale=cfg_schedule[i],
479 |         )
480 |         assert pred.dtype == torch.float32
481 |         z = z + dsigma * pred
482 | 
483 |     z = z[:B] if cond_batched else z
484 |     return dit_latents_to_vae_latents(z)
485 | 
486 | 
487 | @contextmanager
488 | def move_to_device(model: nn.Module, target_device, *, enabled=True):
489 |     if not enabled:
490 |         yield
491 |         return
492 | 
493 |     og_device = next(model.parameters()).device
494 |     if og_device == target_device:
495 |         print(f"move_to_device is a no-op model is already on {target_device}")
496 |     else:
497 |         print(f"moving model from {og_device} -> {target_device}")
498 | 
499 |     model.to(target_device)
500 |     yield
501 |     if og_device != target_device:
502 |         print(f"moving model from {target_device} -> {og_device}")
503 |     model.to(og_device)
504 | 
505 | 
506 | def t5_tokenizer(model_dir=None):
507 |     return T5Tokenizer.from_pretrained(model_dir or T5_MODEL, legacy=False)
508 | 
509 | 
510 | class MochiSingleGPUPipeline:
511 |     def __init__(
512 |         self,
513 |         *,
514 |         text_encoder_factory: ModelFactory,
515 |         dit_factory: ModelFactory,
516 |         decoder_factory: ModelFactory,
517 |         cpu_offload: Optional[bool] = False,
518 |         decode_type: str = "full",
519 |         decode_args: Optional[Dict[str, Any]] = None,
520 |         fast_init=True,
521 |         strict_load=True
522 |     ):
523 |         self.device = torch.device("cuda:0")
524 |         self.tokenizer = t5_tokenizer(text_encoder_factory.model_dir)
525 |         t = Timer()
526 |         self.cpu_offload = cpu_offload
527 |         self.decode_args = decode_args or {}
528 |         self.decode_type = decode_type
529 |         init_id = "cpu" if cpu_offload else 0
530 |         with t("load_text_encoder"):
531 |             self.text_encoder = text_encoder_factory.get_model(
532 |                 local_rank=0,
533 |                 device_id=init_id,
534 |                 world_size=1,
535 |             )
536 |         with t("load_dit"):
537 |             self.dit = dit_factory.get_model(local_rank=0, device_id=init_id, world_size=1, fast_init=fast_init, strict_load=strict_load) # type: ignore
538 |         with t("load_vae"):
539 |             self.decoder = decoder_factory.get_model(local_rank=0, device_id=init_id, world_size=1)
540 |         t.print_stats()
541 | 
542 |     def __call__(self, batch_cfg, prompt, negative_prompt, **kwargs):
543 |         with torch.inference_mode():
544 |             print_max_memory = lambda: print(
545 |                 f"Max memory reserved: {torch.cuda.max_memory_reserved() / 1024**3:.2f} GB"
546 |             )
547 |             print_max_memory()
548 | 
549 |             with move_to_device(self.text_encoder, self.device):
550 |                 conditioning = get_conditioning(
551 |                     tokenizer=self.tokenizer,
552 |                     encoder=self.text_encoder,
553 |                     device=self.device,
554 |                     batch_inputs=batch_cfg,
555 |                     prompt=prompt,
556 |                     negative_prompt=negative_prompt,
557 |                 )
558 |             print_max_memory()
559 | 
560 |             with move_to_device(self.dit, self.device):
561 |                 latents = sample_model(self.device, self.dit, conditioning, **kwargs)
562 |             print_max_memory()
563 | 
564 |             with move_to_device(self.decoder, self.device):
565 |                 if self.decode_type == "tiled_full":
566 |                     frames = decode_latents_tiled_full(
567 |                         self.decoder, latents, **self.decode_args)
568 |                 elif self.decode_type == "tiled_spatial":
569 |                     frames = decode_latents_tiled_spatial(
570 |                         self.decoder, latents, **self.decode_args,
571 |                         num_tiles_w=4, num_tiles_h=2)
572 |                 else:
573 |                     frames = decode_latents(self.decoder, latents)
574 |             print_max_memory()
575 |             return frames.cpu().numpy()
576 | 
577 | 
578 | def cast_dit(model, dtype):
579 |     for name, module in model.named_modules():
580 |         if isinstance(module, nn.Linear):
581 |             assert any(
582 |                 n in name for n in ["mlp", "t5", "mod_", "attn.qkv_", "attn.proj_", "final_layer"]
583 |             ), f"Unexpected linear layer: {name}"
584 |             module.to(dtype=dtype)
585 |         elif isinstance(module, nn.Conv2d):
586 |             assert "x_embedder.proj" in name, f"Unexpected conv2d layer: {name}"
587 |             module.to(dtype=dtype)
588 |     return model
589 | 
590 | 
591 | ### ALL CODE BELOW HERE IS FOR MULTI-GPU MODE ###
592 | 
593 | 
594 | # In multi-gpu mode, all models must belong to a device which has a predefined context parallel group
595 | # So it doesn't make sense to work with models individually
596 | class MultiGPUContext:
597 |     def __init__(
598 |         self,
599 |         *,
600 |         text_encoder_factory,
601 |         dit_factory,
602 |         decoder_factory,
603 |         device_id,
604 |         local_rank,
605 |         world_size,
606 |     ):
607 |         t = Timer()
608 |         self.device = torch.device(f"cuda:{device_id}")
609 |         print(f"Initializing rank {local_rank+1}/{world_size}")
610 |         assert world_size > 1, f"Multi-GPU mode requires world_size > 1, got {world_size}"
611 |         os.environ["MASTER_ADDR"] = "127.0.0.1"
612 |         os.environ["MASTER_PORT"] = "29500"
613 |         with t("init_process_group"):
614 |             dist.init_process_group(
615 |                 "nccl",
616 |                 rank=local_rank,
617 |                 world_size=world_size,
618 |                 device_id=self.device,  # force non-lazy init
619 |             )
620 |         pg = dist.group.WORLD
621 |         cp.set_cp_group(pg, list(range(world_size)), local_rank)
622 |         distributed_kwargs = dict(local_rank=local_rank, device_id=device_id, world_size=world_size)
623 |         self.world_size = world_size
624 |         self.tokenizer = t5_tokenizer(text_encoder_factory.model_dir)
625 |         with t("load_text_encoder"):
626 |             self.text_encoder = text_encoder_factory.get_model(**distributed_kwargs)
627 |         with t("load_dit"):
628 |             self.dit = dit_factory.get_model(**distributed_kwargs)
629 |         with t("load_vae"):
630 |             self.decoder = decoder_factory.get_model(**distributed_kwargs)
631 |         self.local_rank = local_rank
632 |         t.print_stats()
633 | 
634 |     def run(self, *, fn, **kwargs):
635 |         return fn(self, **kwargs)
636 | 
637 | 
638 | class MochiMultiGPUPipeline:
639 |     def __init__(
640 |         self,
641 |         *,
642 |         text_encoder_factory: ModelFactory,
643 |         dit_factory: ModelFactory,
644 |         decoder_factory: ModelFactory,
645 |         world_size: int,
646 |     ):
647 |         ray.init()
648 |         RemoteClass = ray.remote(MultiGPUContext)
649 |         self.ctxs = [
650 |             RemoteClass.options(num_gpus=1).remote(
651 |                 text_encoder_factory=text_encoder_factory,
652 |                 dit_factory=dit_factory,
653 |                 decoder_factory=decoder_factory,
654 |                 world_size=world_size,
655 |                 device_id=0,
656 |                 local_rank=i,
657 |             )
658 |             for i in range(world_size)
659 |         ]
660 |         for ctx in self.ctxs:
661 |             ray.get(ctx.__ray_ready__.remote())
662 | 
663 |     def __call__(self, **kwargs):
664 |         def sample(ctx, *, batch_cfg, prompt, negative_prompt, **kwargs):
665 |             with progress_bar(type="ray_tqdm", enabled=ctx.local_rank == 0), torch.inference_mode():
666 |                 conditioning = get_conditioning(
667 |                     ctx.tokenizer,
668 |                     ctx.text_encoder,
669 |                     ctx.device,
670 |                     batch_cfg,
671 |                     prompt=prompt,
672 |                     negative_prompt=negative_prompt,
673 |                 )
674 |                 latents = sample_model(ctx.device, ctx.dit, conditioning=conditioning, **kwargs)
675 |                 if ctx.local_rank == 0:
676 |                     torch.save(latents, "latents.pt")
677 |                 frames = decode_latents(ctx.decoder, latents)
678 |             return frames.cpu().numpy()
679 | 
680 |         return ray.get([ctx.run.remote(fn=sample, **kwargs, show_progress=i == 0) for i, ctx in enumerate(self.ctxs)])[
681 |             0
682 |         ]
683 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/vae/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/genmoai/mochi/d6e96122b77426880961153915889b138140b585/src/genmo/mochi_preview/vae/__init__.py


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/vae/cp_conv.py:
--------------------------------------------------------------------------------
  1 | from typing import Tuple, Union
  2 | 
  3 | import torch
  4 | import torch.distributed as dist
  5 | import torch.nn.functional as F
  6 | 
  7 | import genmo.mochi_preview.dit.joint_model.context_parallel as cp
  8 | 
  9 | 
 10 | def cast_tuple(t, length=1):
 11 |     return t if isinstance(t, tuple) else ((t,) * length)
 12 | 
 13 | 
 14 | def cp_pass_frames(x: torch.Tensor, frames_to_send: int) -> torch.Tensor:
 15 |     """
 16 |     Forward pass that handles communication between ranks for inference.
 17 |     Args:
 18 |         x: Tensor of shape (B, C, T, H, W)
 19 |         frames_to_send: int, number of frames to communicate between ranks
 20 |     Returns:
 21 |         output: Tensor of shape (B, C, T', H, W)
 22 |     """
 23 |     cp_rank, cp_world_size = cp.get_cp_rank_size()
 24 |     if frames_to_send == 0 or cp_world_size == 1:
 25 |         return x
 26 | 
 27 |     group = cp.get_cp_group()
 28 |     global_rank = dist.get_rank()
 29 | 
 30 |     # Send to next rank
 31 |     if cp_rank < cp_world_size - 1:
 32 |         assert x.size(2) >= frames_to_send
 33 |         tail = x[:, :, -frames_to_send:].contiguous()
 34 |         dist.send(tail, global_rank + 1, group=group)
 35 | 
 36 |     # Receive from previous rank
 37 |     if cp_rank > 0:
 38 |         B, C, _, H, W = x.shape
 39 |         recv_buffer = torch.empty(
 40 |             (B, C, frames_to_send, H, W),
 41 |             dtype=x.dtype,
 42 |             device=x.device,
 43 |         )
 44 |         dist.recv(recv_buffer, global_rank - 1, group=group)
 45 |         x = torch.cat([recv_buffer, x], dim=2)
 46 | 
 47 |     return x
 48 | 
 49 | 
 50 | def _pad_to_max(x: torch.Tensor, max_T: int) -> torch.Tensor:
 51 |     if max_T > x.size(2):
 52 |         pad_T = max_T - x.size(2)
 53 |         pad_dims = (0, 0, 0, 0, 0, pad_T)
 54 |         return F.pad(x, pad_dims)
 55 |     return x
 56 | 
 57 | 
 58 | def gather_all_frames(x: torch.Tensor) -> torch.Tensor:
 59 |     """
 60 |     Gathers all frames from all processes for inference.
 61 |     Args:
 62 |         x: Tensor of shape (B, C, T, H, W)
 63 |     Returns:
 64 |         output: Tensor of shape (B, C, T_total, H, W)
 65 |     """
 66 |     cp_rank, cp_size = cp.get_cp_rank_size()
 67 |     if cp_size == 1:
 68 |         return x
 69 | 
 70 |     cp_group = cp.get_cp_group()
 71 | 
 72 |     # Ensure the tensor is contiguous for collective operations
 73 |     x = x.contiguous()
 74 | 
 75 |     # Get the local time dimension size
 76 |     local_T = x.size(2)
 77 |     local_T_tensor = torch.tensor([local_T], device=x.device, dtype=torch.int64)
 78 | 
 79 |     # Gather all T sizes from all processes
 80 |     all_T = [torch.zeros(1, dtype=torch.int64, device=x.device) for _ in range(cp_size)]
 81 |     dist.all_gather(all_T, local_T_tensor, group=cp_group)
 82 |     all_T = [t.item() for t in all_T]
 83 | 
 84 |     # Pad the tensor at the end of the time dimension to match max_T
 85 |     max_T = max(all_T)
 86 |     x = _pad_to_max(x, max_T).contiguous()
 87 | 
 88 |     # Prepare a list to hold the gathered tensors
 89 |     gathered_x = [torch.zeros_like(x).contiguous() for _ in range(cp_size)]
 90 | 
 91 |     # Perform the all_gather operation
 92 |     dist.all_gather(gathered_x, x, group=cp_group)
 93 | 
 94 |     # Slice each gathered tensor back to its original T size
 95 |     for idx, t_size in enumerate(all_T):
 96 |         gathered_x[idx] = gathered_x[idx][:, :, :t_size]
 97 | 
 98 |     return torch.cat(gathered_x, dim=2)
 99 | 
100 | 
101 | def excessive_memory_usage(input: torch.Tensor, max_gb: float = 2.0) -> bool:
102 |     """Estimate memory usage based on input tensor size and data type."""
103 |     element_size = input.element_size()  # Size in bytes of each element
104 |     memory_bytes = input.numel() * element_size
105 |     memory_gb = memory_bytes / 1024**3
106 |     return memory_gb > max_gb
107 | 
108 | 
109 | class ContextParallelCausalConv3d(torch.nn.Conv3d):
110 |     def __init__(
111 |         self,
112 |         in_channels,
113 |         out_channels,
114 |         kernel_size: Union[int, Tuple[int, int, int]],
115 |         stride: Union[int, Tuple[int, int, int]],
116 |         **kwargs,
117 |     ):
118 |         kernel_size = cast_tuple(kernel_size, 3)
119 |         stride = cast_tuple(stride, 3)
120 |         height_pad = (kernel_size[1] - 1) // 2
121 |         width_pad = (kernel_size[2] - 1) // 2
122 | 
123 |         super().__init__(
124 |             in_channels=in_channels,
125 |             out_channels=out_channels,
126 |             kernel_size=kernel_size,
127 |             stride=stride,
128 |             dilation=(1, 1, 1),
129 |             padding=(0, height_pad, width_pad),
130 |             **kwargs,
131 |         )
132 | 
133 |     def forward(self, x: torch.Tensor):
134 |         cp_rank, cp_world_size = cp.get_cp_rank_size()
135 | 
136 |         context_size = self.kernel_size[0] - 1
137 |         if cp_rank == 0:
138 |             mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
139 |             x = F.pad(x, (0, 0, 0, 0, context_size, 0), mode=mode)
140 | 
141 |         if cp_world_size == 1:
142 |             return super().forward(x)
143 | 
144 |         if all(s == 1 for s in self.stride):
145 |             # Receive some frames from previous rank.
146 |             x = cp_pass_frames(x, context_size)
147 |             return super().forward(x)
148 | 
149 |         # Less efficient implementation for strided convs.
150 |         # All gather x, infer and chunk.
151 |         x = gather_all_frames(x)  # [B, C, k - 1 + global_T, H, W]
152 |         x = super().forward(x)
153 |         x_chunks = x.tensor_split(cp_world_size, dim=2)
154 |         assert len(x_chunks) == cp_world_size
155 |         return x_chunks[cp_rank]
156 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/vae/latent_dist.py:
--------------------------------------------------------------------------------
 1 | """Container for latent space posterior."""
 2 | 
 3 | import torch
 4 | 
 5 | 
 6 | class LatentDistribution:
 7 |     def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
 8 |         """Initialize latent distribution.
 9 | 
10 |         Args:
11 |             mean: Mean of the distribution. Shape: [B, C, T, H, W].
12 |             logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
13 |         """
14 |         assert mean.shape == logvar.shape
15 |         self.mean = mean
16 |         self.logvar = logvar
17 | 
18 |     def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
19 |         if temperature == 0.0:
20 |             return self.mean
21 | 
22 |         if noise is None:
23 |             noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
24 |         else:
25 |             assert noise.device == self.mean.device
26 |             noise = noise.to(self.mean.dtype)
27 | 
28 |         if temperature != 1.0:
29 |             raise NotImplementedError(f"Temperature {temperature} is not supported.")
30 | 
31 |         # Just Gaussian sample with no scaling of variance.
32 |         return noise * torch.exp(self.logvar * 0.5) + self.mean
33 | 
34 |     def mode(self):
35 |         return self.mean
36 | 


--------------------------------------------------------------------------------
/src/genmo/mochi_preview/vae/vae_stats.py:
--------------------------------------------------------------------------------
 1 | import torch
 2 | 
 3 | # Channel-wise mean and standard deviation of VAE encoder latents
 4 | STATS = {
 5 |     "mean": torch.Tensor(
 6 |         [
 7 |             -0.06730895953510081,
 8 |             -0.038011381506090416,
 9 |             -0.07477820912866141,
10 |             -0.05565264470995561,
11 |             0.012767231469026969,
12 |             -0.04703542746246419,
13 |             0.043896967884726704,
14 |             -0.09346305707025976,
15 |             -0.09918314763016893,
16 |             -0.008729793427399178,
17 |             -0.011931556316503654,
18 |             -0.0321993391887285,
19 |         ]
20 |     ),
21 |     "std": torch.Tensor(
22 |         [
23 |             0.9263795028493863,
24 |             0.9248894543193766,
25 |             0.9393059390890617,
26 |             0.959253732819592,
27 |             0.8244560132752793,
28 |             0.917259975397747,
29 |             0.9294154431013696,
30 |             1.3720942357788521,
31 |             0.881393668867029,
32 |             0.9168315692124348,
33 |             0.9185249279345552,
34 |             0.9274757570805041,
35 |         ]
36 |     ),
37 | }
38 | 
39 | 
40 | def dit_latents_to_vae_latents(dit_outputs: torch.Tensor) -> torch.Tensor:
41 |     """Unnormalize latents output by Mochi's DiT to be compatible with VAE.
42 |     Run this on sampled latents before calling the VAE decoder.
43 | 
44 |     Args:
45 |         latents (torch.Tensor): [B, C_z, T_z, H_z, W_z], float
46 | 
47 |     Returns:
48 |         torch.Tensor: [B, C_z, T_z, H_z, W_z], float
49 |     """
50 |     mean = STATS["mean"][:, None, None, None]
51 |     std = STATS["std"][:, None, None, None]
52 | 
53 |     assert dit_outputs.ndim == 5
54 |     assert dit_outputs.size(1) == mean.size(0) == std.size(0)
55 |     return dit_outputs * std.to(dit_outputs) + mean.to(dit_outputs)
56 | 
57 | 
58 | def vae_latents_to_dit_latents(vae_latents: torch.Tensor):
59 |     """Normalize latents output by the VAE encoder to be compatible with Mochi's DiT.
60 |     E.g, for fine-tuning or video-to-video.
61 |     """
62 |     mean = STATS["mean"][:, None, None, None]
63 |     std = STATS["std"][:, None, None, None]
64 | 
65 |     assert vae_latents.ndim == 5
66 |     assert vae_latents.size(1) == mean.size(0) == std.size(0)
67 |     return (vae_latents - mean.to(vae_latents)) / std.to(vae_latents)
68 | 


--------------------------------------------------------------------------------