43 |
44 | To enter math mode, click on show more …
45 |
46 |
47 |
48 |
49 | … then click on the sigma button
50 |
51 |
52 |
53 | Press Σ again to end math mode
54 |
55 |
56 |
57 | Keyboard shortcuts are often easier to use
58 |
59 |
60 |
61 | For question titles, you can use [math] and [/math]
62 |
63 |
64 |
65 | Click on ‘Suggest Edits’ to see others’ [math]\LaTeX[/math] code
66 |
67 |
68 |
69 | De[math]\TeX[/math]ify helps you with finding the name of a symbol
70 |
71 |
72 |
73 | Code editors like [math]\TeX[/math]paste can speed up your work
74 |
75 |
76 |
77 |
78 | {{content}}
79 |
98 |
99 |
100 |
129 |
130 |
139 |
140 |
141 |
--------------------------------------------------------------------------------
/src/style.css:
--------------------------------------------------------------------------------
1 | html, body {
2 | font-size:18px;
3 | background:#fafafa;
4 | margin:0;
5 | padding:0;
6 | font-family: 'Roboto', sans-serif
7 | }
8 |
9 |
10 | body > header {
11 | font-size: 60px;
12 | font-family: "Libre Baskerville";
13 | color: #333;
14 | background:whitesmoke;
15 | }
16 |
17 | body > header .subtitle {
18 | font-style: italic;
19 | font-size:50%;
20 | opacity:0.6;
21 | margin-left:20px;
22 | margin-top:5px;
23 | }
24 |
25 | body > header img {
26 | position: relative;
27 | top: 10px;
28 | }
29 |
30 | section, body > header {
31 | width:100%;
32 | padding: 50px 30px;
33 | padding-left:23rem;
34 | box-sizing:border-box;
35 | }
36 |
37 | section:nth-child(2n) {
38 | background: #ebebeb;
39 | }
40 |
41 | h1, h2 {
42 | font-size:70px;
43 | font-family: 'Libre Baskerville', serif;
44 | font-weight:normal;
45 | color:#333;
46 | }
47 |
48 | h2 {
49 | font-size:30px;
50 | opacity:0.9
51 | }
52 |
53 | .figure-set {
54 | display: flex;
55 | flex-wrap: wrap;
56 | justify-content: center;
57 | }
58 |
59 | figure {
60 | background: white;
61 | margin: 10px;
62 | box-shadow: 0 0 10px rgba(0, 0,0 , 0.1);
63 | }
64 |
65 | figcaption {
66 | padding: 10px 25px;
67 | line-height:1.5;
68 | background: whitesmoke;
69 | width: 320px;
70 | box-sizing: border-box;
71 | background:#43a047;
72 | color:white;
73 | }
74 |
75 | figcaption a {
76 | color: white;
77 | border-bottom: 1px solid;
78 | padding-bottom: 4px;
79 | text-decoration: none;
80 | }
81 |
82 | figure img {
83 | width: 300px;
84 | margin: 0px 10px;
85 | }
86 |
87 | a.bookmarklet {
88 | padding: 13px 15px;
89 | background: #43a047;
90 | color: white;
91 | border-radius: 4px;
92 | text-decoration: none;
93 | }
94 |
95 | .examples {
96 | display:flex;
97 | flex-wrap: wrap;
98 | }
99 |
100 | .example {
101 | background: white;
102 | box-shadow: 0 0 10px rgba(0, 0, 0, 0.16);
103 | display: flex;
104 | flex-direction: column;
105 | align-items: stretch;
106 | margin:20px;
107 | min-width:300px;
108 | }
109 |
110 | .example .title {
111 | background:#43a047;
112 | color: white;
113 | padding: 10px 25px;
114 | text-align:center;
115 | line-height:1.5;
116 | }
117 |
118 | code {
119 | font-family:monospace;
120 | background-color:rgba(66,66,66,0.4);
121 | padding:2px 5px;
122 | border-radius:2px;
123 | color:white;
124 | }
125 |
126 |
127 | .example.bad .title {
128 | background: #d32f2f;
129 | }
130 |
131 | .example pre {
132 | margin:0;
133 | font-family:monospace;
134 | border: none;
135 | background: #2d3041;
136 | color: white;
137 | padding: 20px;
138 | font-size:16px;
139 | line-height:1.4;
140 | position:relative;
141 | }
142 |
143 | pre.first::after {
144 | content: 'Edit me!';
145 | position: absolute;
146 | top: 0;
147 | right: 0;
148 | padding: 6px 12px;
149 | background: #3F51B5;
150 | color: white;
151 | opacity:1;
152 | visibility:visible;
153 | transition: all 0.5s;
154 | }
155 |
156 | pre.first.first-focus::after {
157 | opacity:0;
158 | visibility:hidden;
159 | }
160 |
161 |
162 | /* triple selectors are needed to override MathJax FullWidth */
163 | .mjx-full-width.mjx-full-width.mjx-full-width,
164 | .MathJax_FullWidth.MathJax_FullWidth.MathJax_FullWidth {
165 | width: 100% !important;
166 | }
167 |
168 | .example .result {
169 | background: white;
170 | font-size: 25px;
171 | display:flex;
172 | justify-content: center;
173 | align-items: center;
174 | padding:25px;
175 | flex-grow:1;
176 | }
177 |
178 |
179 | #toc {
180 | position: fixed;
181 | top: 0;
182 | left: 0;
183 | height:100%;
184 | background: #2d3041;
185 | color:white;
186 | padding: 1.5em;
187 | width:11em;
188 | line-height: 1.5;
189 | z-index: 2;
190 | }
191 |
192 | #toc a {
193 | display: block;
194 | opacity: 0.6;
195 | transition: 0.3s opacity;
196 | color: inherit;
197 | text-decoration: none;
198 | line-height: 1.7;
199 | }
200 |
201 | #toc a::before {
202 | content: '›';
203 | display:inline-block;
204 | transform:translateX(-10px);
205 | opacity:0;
206 | transition:0.3s all;
207 | }
208 |
209 | #toc a:hover {
210 | opacity:0.9 !important;
211 | }
212 |
213 | #toc a.active {
214 | opacity:1 !important;
215 | }
216 |
217 | #toc a.active::before {
218 | transform: translateX(-5px);
219 | opacity:1;
220 | }
221 |
222 | #toc a.hidden {
223 | opacity:0 !important;
224 | }
225 |
226 | #toc-toggle {
227 | user-select: none;
228 | position:fixed;
229 | left:0;
230 | bottom:0;
231 | padding:10px 12px;
232 | z-index:10;
233 | display: none;
234 | background: #2d3041;
235 | color: white;
236 | border-top-right-radius: 2px;
237 | cursor: pointer;
238 | }
239 |
240 | #toc.active {
241 | position: fixed;
242 | padding-bottom: 3em;
243 | box-shadow: 0 0 5px rgba(0, 0, 0, 0.2);
244 | overflow-y: auto;
245 | display: flex;
246 | flex-direction: column;
247 | }
248 |
249 | #toc.active a {
250 | margin: auto 0;
251 | }
252 |
253 | footer {
254 | background: #f1f1f1;
255 | padding: 20px;
256 | padding-left: 23rem;
257 | box-sizing: border-box;
258 | text-align: center;
259 | font-size: 15px;
260 | color: #4d4d4d;
261 | line-height: 1.6;
262 | }
263 |
264 | footer > span {
265 | margin: 0px 6px;
266 | }
267 |
268 | .love {
269 | color: #E53935;
270 | }
271 |
272 | footer a {
273 | text-decoration: none;
274 | color: #960000;
275 | white-space: nowrap;
276 | }
277 |
278 |
279 | @keyframes bounce {
280 | 0% { transform:scale(1); }
281 | 25% { transform:scale(1.05); }
282 | 50% { transform:scale(1); }
283 | 75% { transform:scale(1.05); }
284 | 100% { transform:scale(1); }
285 | }
286 |
287 | .highlight {
288 | animation: 1s bounce;
289 | }
290 |
291 | @media (max-width: 1300px) {
292 | #toc {
293 | position: relative;
294 | width: 100%;
295 | box-sizing: border-box;
296 | transform: translateX(0px);
297 | }
298 |
299 | #toc-toggle {
300 | display: inline-block;
301 | }
302 |
303 | body> header, body section, body footer {
304 | padding:50px;
305 | }
306 | }
307 |
308 | @media (max-width:900px) {
309 | html body > header, html body section, html footer {
310 | padding: 20px;
311 | box-sizing: border-box;
312 | }
313 |
314 | body>header, body h1 {
315 | font-size: 30px;
316 | }
317 |
318 | body header img {
319 | height:35px;
320 | }
321 |
322 | body h2 {
323 | font-size: 22px;
324 | }
325 | }
326 |
327 | @media (max-width: 650px) {
328 | body {
329 | font-size: 20px !important;
330 | }
331 |
332 | body .examples {
333 | display: flex;
334 | flex-direction: column;
335 | justify-content: flex-start;
336 | align-items: center;
337 | }
338 |
339 | .examples pre {
340 | word-break: break-word;
341 | word-wrap: break-word;
342 | white-space: pre-wrap;
343 | }
344 | .examples .example {
345 | width: 90vw;
346 | font-size: 90%;
347 | }
348 |
349 | .examples .example .result {
350 | font-size: 100%;
351 | }
352 |
353 | footer > span {
354 | display: block;
355 | }
356 | }
357 |
--------------------------------------------------------------------------------
/content.txt:
--------------------------------------------------------------------------------
1 | # Arithmetic
2 |
3 | ## Basic Operators
4 |
5 | Basic operators work as expected
6 | 1 + 2 - 3 = 0
7 |
8 | Division can be done as follows
9 | 1/2 = 1 \div 2 = \frac{1}{2}
10 |
11 | To typeset bigger fractions, use
12 | \dfrac{1}{2}
13 |
14 | Or use `\displaystyle`.
15 | \displaystyle \frac{1}{3}
16 |
17 | Multiplication
18 | 2 \cdot 3 = 2 \times 3
19 |
20 | !bad Avoid using `*` for multiplication
21 | 2 * 3
22 |
23 |
24 | Repeated decimals can be denoted by a bar
25 | \frac{1}{7} = 0.\overline{142857}
26 |
27 | ## Exponents and Indexes
28 |
29 | Exponents can by typeset with a caret
30 | 2^3 = 8
31 |
32 | use braces to group exponents ...
33 | 2^{10}
34 |
35 | !bad ... to avoid
36 | 2^10
37 |
38 | Subscripts, like indices, can by typeset as follows
39 | a_n = 2 \cdot a_{n-1}
40 |
41 | ## Square roots
42 |
43 | A square root can be typeset with
44 | \sqrt{16} = 4
45 |
46 | To take the [math]n^\text{th}[/math] root, use
47 | \sqrt[3]{27} = 3
48 |
49 | `\pm` becomes a plus-minus.
50 | x^2 = 4 \implies x = \pm \sqrt{4}
51 |
52 | Braces can be omitted if the argument is only 1 symbol
53 | \sqrt 2
54 |
55 | ## Delimiters
56 |
57 | For large parentheses, use `\left` and `\right` ...
58 | \left( \dfrac{1}{x} \right)
59 |
60 | !bad ... to avoid the following
61 | (\dfrac{1}{x})
62 |
63 | This can also be used with `|`, `[`, ...
64 | \left| \frac{x + 1}{x - 1} \right|
65 |
66 | Floor can be obtained with `\lfloor` and `\rfloor`
67 | \left\lfloor \frac{1}{2} \right\rfloor
68 |
69 | `\|` becomes a double bar
70 | \left\| \frac{z}{a} \right\|
71 |
72 | Angle brackets can be typeset as follows
73 | \langle x^2 + 1 \rangle
74 |
75 | To make them automatically grow, use
76 | \left< \dfrac{1}{2} \right>
77 |
78 | # Text and spacing
79 |
80 | ## text
81 |
82 | Use `\text` ...
83 | \text{Area 1}
84 |
85 | !bad ... to avoid the following
86 | Area 1
87 |
88 | This can be useful for ordinals
89 | 5^\text{th}
90 |
91 | ## Spacing
92 |
93 | `\ ` adds a space with the width of a space
94 | \blacksquare \ \blacksquare
95 |
96 | `\quad` and `\qquad` are bigger spaces
97 | \blacksquare \quad
98 | \blacksquare \qquad
99 | \blacksquare
100 |
101 | `\:` and `\,` are small spaces
102 | \blacksquare \:
103 | \blacksquare \,
104 | \blacksquare
105 |
106 | Small spaces are useful to group digits
107 | 54\,321
108 |
109 |
110 | # Equalities
111 |
112 | (In)equalities
113 | 1 + 1 = 2 \ne 3 \approx \pi
114 |
115 | Adding a tag will add a number and center your equation
116 | A = b \cdot h \tag 1
117 |
118 | Using `tag*` will remove the parentheses
119 | A = b \cdot h \tag* 2
120 |
121 | To center an equation without a tag, the following works
122 | A = b \cdot h \tag*{}
123 |
124 | `\lt` stands for less than
125 | 3 \lt x \le 4
126 |
127 | `\gt` stands for greater than
128 | x \gt 3
129 |
130 | `\ge` stands for greater than or equal to
131 | x \ge 3
132 |
133 | `\not` can be used to negate anything, but is often ugly
134 | x \not\gt 4
135 |
136 | [math]T[/math] is proportional to [math]p[/math]
137 | T \propto p \text{ or } T \sim p
138 |
139 | ## Alignment of equal signs
140 |
141 | Align equal signs as follows
142 | \begin{align}
143 | 2 + 2 &= 4 \\
144 | 2 &= 4 - 2
145 | \end{align}
146 |
147 | You can also give a tag to a line
148 | \begin{align}
149 | 2 + 2 &= 4 \tag 1 \\
150 | 2 &= 4 - 2 \\
151 | 2 &= 2 \tag a
152 | \end{align}
153 |
154 | To give some more explanation, add some text
155 | \begin{align}
156 | 2 + 2 &= 4 \tag 1 \\
157 | 2 &= 4 - 2 && \text{subtracting 2} \\
158 | 2 &= 2 \tag a
159 | \end{align}
160 |
161 | System of equations
162 | S = \left\{
163 | \begin{aligned}
164 | a + b &= 4\\
165 | a \cdot b &= 4
166 | \end{aligned}
167 | \right.
168 |
169 | ## Annotating equalities
170 |
171 | Overset can be used to stack symbols
172 | 2 \overset{?}{=} 3
173 |
174 | !bad Arrows are sometimes too short
175 | \overset{\text{some text}}{\rightarrow}
176 |
177 | Use `\xrightarrow` instead
178 | \xrightarrow{\text{some text}}
179 |
180 | Underbrace and overbrace in action
181 | (\cos x + \sin x)^2 =
182 | \underbrace{\cos^2 x + \sin^2 x}_{1} +
183 | \overbrace{2 \sin x \cos x}^{\sin 2x}
184 |
185 | ## Modulo
186 |
187 | If [math]\text{mod}[/math] is used as a binary operator
188 | 7 \bmod 4 = 3
189 |
190 | If it's used after an equation
191 | 7 \equiv 3 \pmod 4
192 |
193 | Without parentheses
194 | 7 \equiv 3 \mod 4
195 |
196 | # Geometry
197 |
198 | ## Angles
199 |
200 | Use `\angle` to denote an angle
201 | \angle A = 90^\circ
202 |
203 | `\hat` and `\widehat` are another possibility
204 | \hat A = \widehat{BAC} = 90^\circ
205 |
206 | For radians, the following works
207 | \angle A = \frac{\pi}{2} \text{ radians}
208 |
209 | ## Greek letters
210 |
211 | Some Greek letters
212 | \alpha \beta \gamma \delta
213 |
214 | Greek uppercase letters
215 | \Gamma \Delta \Theta \Xi \Lambda
216 |
217 | Phi and epsilon have variants
218 | \phi, \varphi \quad \epsilon, \varepsilon
219 |
220 | Likewise for theta, kappa ...
221 | \theta, \vartheta \quad \kappa, \varkappa
222 |
223 | ... pi and rho
224 | \pi, \varpi \quad \rho, \varrho
225 |
226 |
227 | ## Other symbols
228 |
229 | Useful shapes
230 | \triangle, \square, \bigcirc
231 |
232 | Perpendicular
233 | AB \perp BC
234 |
235 | Parallel
236 | AB \parallel CD
237 |
238 | Similarity
239 | \triangle ABC \sim \triangle CEF
240 |
241 | Congruence
242 | \triangle ABC \cong \triangle CEF
243 |
244 | # Functions
245 |
246 | ## Standard functions
247 |
248 | Write standard functions with a backslash
249 | \log x
250 |
251 | !bad Not doing so gives bad results
252 | log x
253 |
254 | Lots of functions are available ...
255 | \exp x, \sin x, \arccos x, \cosh x, \max x
256 |
257 |
258 | ## Introducing functions
259 |
260 | Some functions aren't available. Use `operatorname`
261 | \operatorname{arccosh} x
262 |
263 | Another way of defining a function
264 | \begin{align}
265 | f\colon \R &\to \R^+\\
266 | x &\mapsto x^2
267 | \end{align}
268 |
269 | Piecewise functions
270 | f(x) = \begin{cases}
271 | x & \text{if $x \gt 0$}\\
272 | x^2 & \text{else}
273 | \end{cases}
274 |
275 | ## Operations with functions
276 |
277 | Derivative
278 | f'(x) = \frac{df}{dx}
279 |
280 | Composition
281 | (f \circ g)(x) = f(g(x))
282 |
283 | Inverse
284 | f^{-1}(x)
285 |
286 | # Sums and Series
287 |
288 | ## Summation and products
289 |
290 | Typesetting sums is easy
291 | \sum_{n=1}^\infty x^n
292 |
293 | `\displaystyle` makes it breathe some more
294 | \displaystyle \sum_{n=1}^\infty x^n
295 |
296 | `\limits` maintains the small style, but shifts the limits to the bottom of the sum
297 | \sum\limits_{n=1}^\infty x^n
298 |
299 | Products can be typeset in a similar fashion
300 | \displaystyle \prod_{n=1}^\infty x^n
301 |
302 | ## Continuation dots
303 |
304 | !bad Never use `...` to make dots
305 | 1 + 2 - 3 + 4 ...
306 |
307 | `\ldots` gives low dots
308 | 1, 2, \ldots, 10
309 |
310 | `\cdots` gives centered dots
311 | f(x) = x + x^2 + x^3 + \cdots
312 |
313 | Vertical and diagonal dots are useful in matrices
314 | \begin{pmatrix}
315 | 1 & 1 & \cdots & 1 \\
316 | 0 & 1 & \cdots & 1 \\
317 | 0 & 0 & \ddots & \vdots \\
318 | 0 & 0 & 0 & 1
319 | \end{pmatrix}
320 |
321 | # Infinity
322 |
323 | The inf(ini)ty symbol
324 | \infty
325 |
326 | Cardinal infinity
327 | |\N| = \aleph_0,
328 | |\R| = \mathfrak c
329 |
330 | Ordinal infinity
331 | \omega^\omega = \text{big}
332 |
333 | Complex infinity
334 | \tilde\infty
335 |
336 |
337 |
338 | # Logic
339 |
340 | Logical or, logical and
341 | a \lor b \land c
342 |
343 | Negation
344 | \bar{c} \equiv \lnot c
345 |
346 | True and false
347 | \top \land \bot \equiv \bot
348 |
349 | Implications
350 | (a \implies b) \iff (b \impliedby a)
351 |
352 | Quantifiers
353 | \forall A, \exists B : A \lt B
354 |
355 | # Sets
356 |
357 | ## Braces
358 |
359 | !bad `{}` don't work, as they group objects
360 | {1, 2, 3}
361 |
362 | Escape them with a backslash
363 | \{1, 2, 3\}
364 |
365 | Use `\mathbb` to get double stroked letters
366 | \mathbb{N} = \{0, 1, 2, 3, \ldots \}
367 |
368 | You can also use the following shorthands
369 | \O, \N, \Z, \Q, \R, \C
370 |
371 | `\mid` inserts a vertical bar
372 | \{n^2 \mid n \in \N\}
373 |
374 | ## Cup and Cap
375 |
376 | Unify and intersect
377 | A \cup B = C \cap D
378 |
379 | Element of a set
380 | x \in A
381 |
382 | Superset and subset are self-explanatory
383 | A \subset B \iff B \supset A
384 |
385 | Add `eq` to get
386 | A \subseteq B
387 |
388 | To subtract a set, write
389 | \N_0 = \N \setminus \{0\}
390 |
391 | ## Others
392 |
393 | Empty set
394 | \emptyset = \varnothing
395 |
396 | Powerset
397 | \mathcal P \{1, 2\} = \{\{\}, \{1\}, \{2\}, \{1,2\} \}
398 |
399 | # Combinatorics
400 |
401 | Factorial
402 | 4! = 4 \cdot 3 \cdot 2 \cdot 1
403 |
404 | Binomial notation
405 | {n \choose r} = \binom{n}{r} = \frac{n!}{(n-r)!r!}
406 |
407 | Other ways
408 | {}^n\text{C}_r = {}_n\text{C}_r = \text{C}_r^n
409 |
410 | # Complex numbers
411 |
412 | The complex set
413 | a + ib \in \C
414 |
415 | The real part
416 | \Re \left( e^{ix} \right) = \cos x
417 |
418 | The imaginary part
419 | \Im \left( e^{ix} \right) = \sin x
420 |
421 | The conjugate of a number
422 | \overline z = \Re (z) - i \Im (z)
423 |
424 | The magnitude
425 | |z| = \| z \|
426 |
427 | The argument
428 | \arg z
429 |
430 |
431 |
432 | # Calculus
433 |
434 | ## Limits
435 |
436 | Limits can be typeset with a subscript
437 | \lim_{x \to \infty} x^2 = \infty
438 |
439 | Displaystyle makes it breathe more
440 | \displaystyle\lim_{x \to \infty} x^2 = \infty
441 |
442 | ## Derivatives
443 |
444 | Typeset derivatives using fractions
445 | \dfrac{dy}{dx}
446 |
447 | If you want [math]\mathrm d[/math] to be upright, use
448 | \dfrac{\mathrm dy}{\mathrm dx}
449 |
450 | Derivative at a point
451 | \left. \dfrac{dy}{dx} \right|_{x=0}
452 |
453 | Partial derivatives
454 | \dfrac{\partial f(x,y)}{\partial x} = f_x
455 |
456 | Difference quotients
457 | \dfrac{\Delta y}{\Delta x}
458 |
459 | Derivates w.r.t. time
460 | \dot x, \ddot x
461 |
462 | You can add this once ...
463 | \newcommand\deriv[2]{\frac{\mathrm d #1}{\mathrm d #2}}
464 | \deriv{f}{x}
465 |
466 | ... to shorten repeated use
467 | \deriv{y}{x}
468 |
469 |
470 | ## Integrals
471 |
472 | Here, `\,` adds a small space
473 | \int x \, dx = \frac{x^2}{2}
474 |
475 | For an upright [math]\mathrm d[/math], use
476 | \int x \, \mathrm dx = \frac{x^2}{2}
477 |
478 | !bad Never use consecutive `\int`s
479 | \int \int x^2 + y^2 \,dx \,dy
480 |
481 | Use `\iint` instead
482 | \iint x^2 + y^2 \,dx \, dy
483 |
484 | Lower and upper bounds
485 | \int_a^b x \, dx
486 |
487 | Displaystyle makes it breathe more
488 | \displaystyle\int_a^b x \, dx
489 |
490 | Evaluating integrals. `\left.` is an invisible bracket
491 | \displaystyle
492 | \int_0^1 x \, dx = \left. \frac{x^2}{2} \right|_0^1
493 |
494 | Closed path integral
495 | \displaystyle
496 | \oint_C \mathbf F \cdot d \mathbf r
497 |
498 | `\limits` places the boundaries under the integral sign
499 | \displaystyle\oint\limits_C \mathbf F \cdot d \mathbf r
500 |
501 | # Vectors
502 |
503 | Choose one of the following
504 | \mathbf{u} = \vec u
505 |
506 |
507 | Use `\imath` and `\jmath` for unit vectors ...
508 | \hat \imath, \hat \jmath, \hat k
509 |
510 | !bad ... to avoid
511 | \hat i, \hat j, \hat k
512 |
513 |
514 | Take the cross product with `\times`
515 | \vec u \times \vec v
516 |
517 | Take the dot product with `\cdot`
518 | \vec u \cdot \vec v
519 |
520 | Angle brackets can be used
521 | \vec u = \left< u_x, u_y, u_z \right>
522 |
523 | The nabla operator
524 | \nabla f = \operatorname{grad} f
525 |
526 | Divergence of a vector field
527 | \nabla \cdot \mathbf F
528 | = \operatorname{div} \mathbf F
529 |
530 | For repeated use, add this once ...
531 | \DeclareMathOperator{\div}{div}
532 | \div \mathbf F
533 |
534 | ... and use it as many times as you want.
535 | \div \mathbf A = \div \mathbf B
536 |
537 | Curl of a vector field
538 | \nabla \times \mathbf F
539 | = \operatorname{curl} \mathbf F
540 |
541 |
542 | # Matrices
543 |
544 | Make a matrix with parentheses
545 | \begin{pmatrix}
546 | 0 & 1\\
547 | 1 & 1
548 | \end{pmatrix}
549 |
550 | Make a matrix with brackets
551 | \begin{bmatrix}
552 | 0 & 1\\
553 | 1 & 1
554 | \end{bmatrix}
555 |
556 | The adjugate matrix
557 | \operatorname{adj} A
558 |
559 | Transposing a matrix
560 | A^\top \text{ or } A^\intercal
561 |
562 | The determinant
563 | \det A = \begin{vmatrix}
564 | 0 & 1\\
565 | 1 & 1
566 | \end{vmatrix} = -1
567 |
568 | Add some centered, vertical and diagonal dots
569 | \begin{bmatrix}
570 | 1 & 0 & \cdots & 0 \\
571 | 0 & 1 & \cdots & 0 \\
572 | \vdots & \vdots & \ddots & \vdots\\
573 | 0 & 0 & \cdots & 1 \\
574 | \end{bmatrix}
575 |
--------------------------------------------------------------------------------
/dist/images/keyboard.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
271 |
--------------------------------------------------------------------------------