├── .gitignore └── README.md /.gitignore: -------------------------------------------------------------------------------- 1 | # See https://help.github.com/articles/ignoring-files/ for more about ignoring files. 2 | 3 | # dependencies 4 | /node_modules 5 | /.pnp 6 | .pnp.js 7 | 8 | # testing 9 | /coverage 10 | 11 | # next.js 12 | /.next/ 13 | /out/ 14 | 15 | # production 16 | /build 17 | 18 | # misc 19 | .DS_Store 20 | *.pem 21 | 22 | # debug 23 | npm-debug.log* 24 | yarn-debug.log* 25 | yarn-error.log* 26 | 27 | # local env files 28 | .env*.local 29 | .env 30 | 31 | # vercel 32 | .vercel 33 | 34 | # typescript 35 | *.tsbuildinfo 36 | next-env.d.ts 37 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Used Cars Price Analysis 2 | 3 | ## Overview 4 | 5 | This repository contains a simple analysis of a dataset of used cars to identify the key factors influencing their prices in the second-hand market. The analysis is performed using Python with the help of pandas, numpy, and seaborn for visualization. 6 | 7 | ## Dataset 8 | 9 | The dataset (`used_cars.csv`) includes the following columns: 10 | 11 | - `id` 12 | - `url` 13 | - `region` 14 | - `region_url` 15 | - `price` 16 | - `year` 17 | - `manufacturer` 18 | - `model` 19 | - `condition` 20 | - `cylinders` 21 | - `fuel` 22 | - `odometer` 23 | - `title_status` 24 | - `transmission` 25 | - `VIN` 26 | - `drive` 27 | - `size` 28 | - `type` 29 | - `paint_color` 30 | - `image_url` 31 | - `description` 32 | - `county` 33 | - `state` 34 | - `lat` 35 | - `long` 36 | - `posting_date` 37 | 38 | ## Analysis Steps 39 | 40 | 1. **Load and Explore Data:** 41 | 42 | - Load the dataset using pandas. 43 | - Display basic information about the dataset. 44 | - Select relevant columns for analysis. 45 | 46 | 2. **Data Cleaning:** 47 | 48 | - Handle missing values (dropping or imputing, depending on the context). 49 | - Convert necessary columns to the appropriate data types. 50 | 51 | 3. **Exploratory Data Analysis:** 52 | 53 | - Visualize relationships between different variables and the target variable (price). 54 | - Utilize scatter plots, box plots, etc., to understand patterns. 55 | 56 | 4. **Insights:** 57 | - Extract insights into how variables such as year, manufacturer, condition, cylinders, fuel, and odometer influence the price of used cars. 58 | 59 | ## Usage 60 | 61 | 1. Clone the repository: 62 | 63 | ```bash 64 | git clone https://github.com/your-username/used-cars-analysis.git 65 | cd used-cars-analysis 66 | 67 | ``` 68 | 69 | 2. Install the required dependencies: 70 | 71 | ```bash 72 | pip install -r requirements.txt 73 | 74 | ``` 75 | 76 | ## Results 77 | 78 | The analysis results are presented in various visualizations within the Jupyter notebook or script. These results can provide valuable insights for both buyers and sellers in the second-hand car market. 79 | 80 | ## Contributing 81 | 82 | If you find any issues or have suggestions for improvements, feel free to open an issue or submit a pull request. 83 | 84 | ## License 85 | 86 | This project is licensed under the MIT License - see the LICENSE file for details. 87 | 88 | _Made with ❤️ by [Gimnath Perera](https://github.com/Gimnath-Perera)_ 89 | --------------------------------------------------------------------------------