├── .github
└── workflows
│ └── main.yml
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── README.md
├── homeworks
├── hw1_kalman_filter.ipynb
├── hw2_particle_filter.ipynb
└── hw3
│ ├── Dockerfile
│ ├── README.md
│ ├── control.py
│ ├── entrypoint.sh
│ └── pid.py
├── pyproject.toml
├── setup.cfg
├── week01_ros_intro
├── lect_01_introduction_to_robotics_sensors.pdf
└── sem_01_ros_intro.pdf
├── week02_localization
├── lect_02_localization.pdf
├── sem_02_file_system_first_package_communication_types.pdf
└── turtle.sh
├── week03_motion_models
├── first_node.sh
├── lect_03_kinematics_probabilistic_motion_models.pdf
├── sem_03_services_actions_parameter_server_roslaunch.pdf
├── signal_filter_node.py
└── signal_generator_node.py
├── week04_observation_models
├── GetWindowMedian.srv
├── Signal.msg
├── lect_04_probabilistic_observation_models.pdf
├── second_node.sh
├── sem_04_names_time_debugging_visualization.pdf
├── signal_filter_node.py
└── signal_generator_node.py
├── week05_mapping_turtlebot_simulation
├── lect_05_mapping.pdf
├── signal_filter_node.py
├── signal_pipeline.launch
├── turtle_action.sh
└── turtlebot_simulation.sh
└── week06_planning_control
├── lect_06_path planning.pdf
└── lect_07_control algorithms.pdf
/.github/workflows/main.yml:
--------------------------------------------------------------------------------
1 | name: Mirroring
2 |
3 | on: [push, delete]
4 |
5 | jobs:
6 | to_gitlab:
7 | runs-on: ubuntu-latest
8 | steps:
9 | - uses: actions/checkout@v2
10 | with:
11 | fetch-depth: 0
12 | - uses: pixta-dev/repository-mirroring-action@v1
13 | with:
14 | target_repo_url:
15 | git@gitlab.girafe.ai:courses/robotics.git
16 | ssh_private_key:
17 | ${{ secrets.GITLAB_SSH_PRIVATE_KEY }}
18 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/.pre-commit-config.yaml:
--------------------------------------------------------------------------------
1 | default_language_version:
2 | python: python3.8
3 | repos:
4 | - repo: https://github.com/pre-commit/pre-commit-hooks
5 | rev: v4.0.1
6 | hooks:
7 | - id: check-yaml
8 | - id: check-json
9 | - id: check-added-large-files
10 | - id: end-of-file-fixer
11 | - id: trailing-whitespace
12 | - id: check-case-conflict
13 | - id: mixed-line-ending
14 |
15 | - repo: https://github.com/psf/black
16 | rev: 21.8b0
17 | hooks:
18 | - id: black
19 |
20 | - repo: https://github.com/timothycrosley/isort
21 | rev: 5.9.3
22 | hooks:
23 | - id: isort
24 |
25 | - repo: https://gitlab.com/pycqa/flake8
26 | rev: 3.9.2
27 | hooks:
28 | - id: flake8
29 | additional_dependencies: [flake8-bugbear]
30 |
31 | - repo: https://github.com/nbQA-dev/nbQA
32 | rev: 1.1.0
33 | hooks:
34 | - id: nbqa-black
35 | additional_dependencies: [black==21.8b0]
36 | - id: nbqa-isort
37 | additional_dependencies: [isort==5.9.3]
38 | - id: nbqa-flake8
39 | additional_dependencies: [flake8==3.9.2]
40 |
41 | - repo: https://github.com/pre-commit/mirrors-prettier
42 | rev: v2.4.0
43 | hooks:
44 | - id: prettier
45 | args: [--print-width=80, --prose-wrap=always]
46 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Mobile robotics course by girafe-ai team
2 |
3 | Course is currently thought at MIPT's MSAI program and in MADE mail.ru
4 |
5 | ## Install ROS for this course
6 |
7 | In our course we will use only Python and no hardware, so setup needed is a
8 | computing part (without sensors and actuators).
9 |
10 | Thus we have following options:
11 |
12 | 1. Docker machine (the most simple and convenient, recommended)
13 | 1. Classical virtual machine (recommended as backup to Docker)
14 | 1. Cloud virtual machine with GUI (experimental)
15 | 1. Installation on host machine (not recommended)
16 |
17 | ### Docker
18 |
19 | Suppose you have Docker installed, if no - follow
20 | [official instructions](https://docs.docker.com/get-docker/)
21 |
22 | We will use prebuilt
23 | [osrf/ros:noetic-desktop-full](https://hub.docker.com/layers/ros/osrf/ros/noetic-desktop-full/images/sha256-9cb69b409a9a93c8bfa4faacf9b27bf705ce182021cb26c2a9667bb5c5513a67?context=explore)
24 | Docker image. FYI
25 | [Dockerfile source](<(https://github.com/osrf/docker_images/blob/master/ros/noetic/ubuntu/focal/desktop-full/Dockerfile)>).
26 |
27 | 1. Pull Docker container (~1Gb)
`docker pull osrf/ros:noetic-desktop-full`
28 |
29 | ### Ubuntu
30 |
31 | 1. Allow localhost to acess display:
`xhost +local:docker`
32 | 1. Run Docker with display forwarding
33 | `docker run -it --rm --privileged --net=host -e DISPLAY=$IP:0 -v /tmp/.X11-unix:/tmp/.X11-unix osrf/ros:noetic-desktop-full`
34 |
35 | #### MacOS
36 |
37 | 1. Install Xquartz:
`brew install xquartz`
or manually with `.dmg` from
38 | [official site](https://www.xquartz.org/)
39 | 1. Run Xquartz, go to _Preferences > Security > Allow connections from network
40 | clients_, close Xquartz.
41 | 1. Allow localhost to acess display:
`xhost +127.0.0.1`
42 | 1. Run Docker with display forwarding
43 | `docker run -it --rm --privileged --net=host -e DISPLAY=$IP:0 -v /tmp/.X11-unix:/tmp/.X11-unix osrf/ros:noetic-desktop-full`
44 |
45 | If you have troubles follow
46 | [full instruction](https://desertbot.io/blog/ros-turtlesim-beginners-guide-mac).
47 |
48 | #### Windows
49 |
50 | 1. Instal X Server.
51 | [Download here](https://sourceforge.net/projects/vcxsrv/),
52 | [more detailed instruction here](https://dev.to/darksmile92/run-gui-app-in-linux-docker-container-on-windows-host-4kde).
53 | 1. Run Docker with display forwarding
54 | `docker run -it -e DISPLAY=host.docker.internal:0 osrf/ros:noetic-desktop-full`
55 |
56 | Tested on Windows 10 + WSL 2.
57 |
58 | You could setup host VSCode to be able to edit files in running Docker image:
59 | [instruction](https://www.cloudsavvyit.com/12837/how-to-edit-code-in-docker-containers-with-visual-studio-code/).
60 |
61 | [Offifial Docker installation instruction](http://wiki.ros.org/docker/Tutorials/Docker) -
62 | very concise and missing details.
63 |
64 | ## Virtual machine
65 |
66 | Install [Virtualbox](https://www.virtualbox.org/wiki/Downloads) or
67 | [Parallels Desktop](https://www.parallels.com/products/desktop/) (recommeded for
68 | MacOS, not free).
69 |
70 | Then create and launch Ubuntu instance.
71 |
72 | Then follow regular installation on Ubuntu host (see [Host section](#host))
73 |
74 | ## Cloud virtual machine with GUI
75 |
76 | [Follow instructions](https://dev.to/easyawslearn/how-to-setup-gui-on-amazon-ec2-ubuntu-server-4mgn)
77 | for AWS.
78 |
79 | Then follow regular installation on Ubuntu host (see [Host section](#host))
80 |
81 | This is tested only once on Windows (RDP is available for MacSO tooo). If you
82 | prefer that way - please report your experience.
83 |
84 | ## Host
85 |
86 | Follow
87 | [installation guide for ROS on Ubuntu](http://wiki.ros.org/noetic/Installation/Ubuntu)
88 | (you need to install `ros-noetic-desktop-full`)
89 |
90 | This option is not recommended.
91 |
92 | Really available only for Linux machines. Warning - it may influence your
93 | machine behaviour, so do that if you know what you do or you are on virtual
94 | machine.
95 |
96 | ## Gratitude and reference
97 |
98 | Initial materials provided by [Oleg Shipitko](https://www.oleg-shipitko.com/).\
99 | Currently course is thaught by Vladislav Goncharenko
100 |
--------------------------------------------------------------------------------
/homeworks/hw1_kalman_filter.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Home assignment 1: Kalman filter"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "Imagine a robot. Robot state is described with the following parameters\n",
15 | "\n",
16 | "1. $x$, $y$ - robot coordinates,\n",
17 | "2. $V_x$, $V_y$ - velocities.\n",
18 | "\n",
19 | "We can only measure the coordinates of the robot, which should be reflected in the $ H $ matrix.\n",
20 | "\n",
21 | "In this homework assignment:\n",
22 | "- Fill in the matrices for the Kalman filter correctly.\n",
23 | "- For all three experiments, visualize the dependence of $ x $, $ y $, $ V_x $, $ V_y $ over time.\n",
24 | "- For all three experiments, visualize the dependence of each component of the gain matrix ($ K $) over time.\n",
25 | " - What does the dynamics of changes in its components say?\n",
26 | "- How much does the velocity uncertainty decrease as a result of each experiment?"
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": null,
32 | "metadata": {
33 | "ExecuteTime": {
34 | "end_time": "2021-10-06T18:43:23.441304Z",
35 | "start_time": "2021-10-06T18:43:23.228920Z"
36 | }
37 | },
38 | "outputs": [],
39 | "source": [
40 | "import numpy as np"
41 | ]
42 | },
43 | {
44 | "cell_type": "code",
45 | "execution_count": null,
46 | "metadata": {
47 | "ExecuteTime": {
48 | "end_time": "2021-10-06T19:56:50.855904Z",
49 | "start_time": "2021-10-06T19:56:50.847424Z"
50 | }
51 | },
52 | "outputs": [],
53 | "source": [
54 | "def kalman_filter(x, E):\n",
55 | " \"\"\"Apply Kalman filter to sequence\n",
56 | "\n",
57 | " Args:\n",
58 | " x: initial state space configuration (location and velocity)\n",
59 | " E: initial covariance matrix\n",
60 | " \"\"\"\n",
61 | " k_log = []\n",
62 | "\n",
63 | " for measurement in measurements:\n",
64 | " # prediction\n",
65 | " x = (F @ x) + u\n",
66 | " E = F @ E @ F.T\n",
67 | "\n",
68 | " # measurement update\n",
69 | " Z = np.array([measurement])\n",
70 | " S = H @ E @ H.T + R\n",
71 | " K = E @ H.T @ np.linalg.inv(S)\n",
72 | " k_log.append(K)\n",
73 | " x = x + (K @ (Z.T - (H @ x)))\n",
74 | " E = (I - (K @ H)) @ E\n",
75 | "\n",
76 | " print(f\"x= \\n{x}\")\n",
77 | " print(f\"E= \\n{E}\")\n",
78 | "\n",
79 | " return k_log"
80 | ]
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "You could edit `kalman_filter` function if you need more info about the process e.g. `x` values over time and so on\n",
87 | "\n",
88 | "_Hint:_ to define matrices below function [np.diag](https://numpy.org/doc/stable/reference/generated/numpy.diag.html) is very handy"
89 | ]
90 | },
91 | {
92 | "cell_type": "code",
93 | "execution_count": null,
94 | "metadata": {},
95 | "outputs": [],
96 | "source": [
97 | "dt = 0.1\n",
98 | "\n",
99 | "# initial covariance matrix: 0. for positions x and y, 1000 for the two velocities\n",
100 | "E = \n",
101 | "\n",
102 | "# next state function: 4D\n",
103 | "F = \n",
104 | "\n",
105 | "# measurement function: reflect the fact that we observe x and y but not the two velocities\n",
106 | "H = \n",
107 | "\n",
108 | "# measurement uncertainty: use 2x2 matrix with 0.1 as main diagonal\n",
109 | "R = \n",
110 | "\n",
111 | "# 4D identity matrix\n",
112 | "I = "
113 | ]
114 | },
115 | {
116 | "cell_type": "markdown",
117 | "metadata": {},
118 | "source": [
119 | "## First experiment"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": null,
125 | "metadata": {},
126 | "outputs": [],
127 | "source": [
128 | "measurements = [[5.0, 10.0], [6.0, 8.0], [7.0, 6.0], [8.0, 4.0], [9.0, 2.0], [10.0, 0.0]]\n",
129 | "initial_xy = [4.0, 12.0]\n",
130 | "\n",
131 | "\n",
132 | "# initial robot state (location and velocity)\n",
133 | "x = np.array([[initial_xy[0]], [initial_xy[1]], [0.0], [0.0]])\n",
134 | "# external motion applied to the robot\n",
135 | "u = np.array([[0.0], [0.1], [0.0], [0.0]])"
136 | ]
137 | },
138 | {
139 | "cell_type": "code",
140 | "execution_count": null,
141 | "metadata": {},
142 | "outputs": [],
143 | "source": [
144 | "kalman_filter(x, E)"
145 | ]
146 | },
147 | {
148 | "cell_type": "markdown",
149 | "metadata": {},
150 | "source": [
151 | "Visualize the dependence of $ x $, $ y $, $ V_x $, $ V_y $ over time\n",
152 | "\n",
153 | "_(It's a good idea to write a function for this, so you could reuse it in the next experiment)_"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "execution_count": null,
159 | "metadata": {},
160 | "outputs": [],
161 | "source": [
162 | "# YOUR CODE HERE"
163 | ]
164 | },
165 | {
166 | "cell_type": "markdown",
167 | "metadata": {},
168 | "source": [
169 | "Visualize the components of the $ K $ matrix below"
170 | ]
171 | },
172 | {
173 | "cell_type": "code",
174 | "execution_count": null,
175 | "metadata": {},
176 | "outputs": [],
177 | "source": [
178 | "# YOUR CODE HERE"
179 | ]
180 | },
181 | {
182 | "cell_type": "markdown",
183 | "metadata": {},
184 | "source": [
185 | "## Second experiment"
186 | ]
187 | },
188 | {
189 | "cell_type": "code",
190 | "execution_count": null,
191 | "metadata": {},
192 | "outputs": [],
193 | "source": [
194 | "measurements = [[1.0, 4.0], [6.0, 0.0], [11.0, -4.0], [16.0, -8.0]]\n",
195 | "initial_xy = [-4.0, 8.0]\n",
196 | "\n",
197 | "dt = 0.1\n",
198 | "\n",
199 | "# initial robot state (location and velocity)\n",
200 | "x = np.array([[initial_xy[0]], [initial_xy[1]], [0.0], [0.0]])\n",
201 | "# external motion applied to the robot\n",
202 | "u = np.array([[0.0], [0.1], [0.0], [0.0]])"
203 | ]
204 | },
205 | {
206 | "cell_type": "code",
207 | "execution_count": null,
208 | "metadata": {},
209 | "outputs": [],
210 | "source": [
211 | "kalman_filter(x, E)"
212 | ]
213 | },
214 | {
215 | "cell_type": "markdown",
216 | "metadata": {},
217 | "source": [
218 | "Visualize the dependence of $ x $, $ y $, $ V_x $, $ V_y $ over time"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": null,
224 | "metadata": {},
225 | "outputs": [],
226 | "source": [
227 | "# YOUR CODE HERE"
228 | ]
229 | },
230 | {
231 | "cell_type": "markdown",
232 | "metadata": {},
233 | "source": [
234 | "Visualize the components of the $ K $ matrix below"
235 | ]
236 | },
237 | {
238 | "cell_type": "code",
239 | "execution_count": null,
240 | "metadata": {},
241 | "outputs": [],
242 | "source": [
243 | "# YOUR CODE HERE"
244 | ]
245 | },
246 | {
247 | "cell_type": "markdown",
248 | "metadata": {},
249 | "source": [
250 | "## Third Experiment"
251 | ]
252 | },
253 | {
254 | "cell_type": "code",
255 | "execution_count": null,
256 | "metadata": {},
257 | "outputs": [],
258 | "source": [
259 | "measurements = [[1.0, 17.0], [1.0, 15.0], [1.0, 13.0], [1.0, 11.0]]\n",
260 | "initial_xy = [1.0, 19.0]\n",
261 | "\n",
262 | "dt = 0.1\n",
263 | "\n",
264 | "# initial robot state (location and velocity)\n",
265 | "x = np.array([[initial_xy[0]], [initial_xy[1]], [0.0], [0.0]])\n",
266 | "# external motion applied to the robot\n",
267 | "u = np.array([[0.0], [0.1], [0.0], [0.0]])"
268 | ]
269 | },
270 | {
271 | "cell_type": "code",
272 | "execution_count": null,
273 | "metadata": {},
274 | "outputs": [],
275 | "source": [
276 | "kalman_filter(x, E)"
277 | ]
278 | },
279 | {
280 | "cell_type": "markdown",
281 | "metadata": {},
282 | "source": [
283 | "Visualize the dependence of $ x $, $ y $, $ V_x $, $ V_y $ over time"
284 | ]
285 | },
286 | {
287 | "cell_type": "code",
288 | "execution_count": null,
289 | "metadata": {},
290 | "outputs": [],
291 | "source": [
292 | "# YOUR CODE HERE"
293 | ]
294 | },
295 | {
296 | "cell_type": "markdown",
297 | "metadata": {},
298 | "source": [
299 | "Visualize the components of the $ K $ matrix below"
300 | ]
301 | },
302 | {
303 | "cell_type": "code",
304 | "execution_count": null,
305 | "metadata": {},
306 | "outputs": [],
307 | "source": [
308 | "# YOUR CODE HERE"
309 | ]
310 | },
311 | {
312 | "cell_type": "markdown",
313 | "metadata": {},
314 | "source": [
315 | "## Conclusions\n",
316 | "\n",
317 | "Don't forget to put your thoughts on the experiments above.\n",
318 | "\n",
319 | "Questions to stimulate thoughts could be found in the beginning of the notebook =)"
320 | ]
321 | },
322 | {
323 | "cell_type": "markdown",
324 | "metadata": {},
325 | "source": []
326 | }
327 | ],
328 | "metadata": {
329 | "kernelspec": {
330 | "display_name": "Python [conda env:ml-mipt]",
331 | "language": "python",
332 | "name": "conda-env-ml-mipt-py"
333 | },
334 | "language_info": {
335 | "codemirror_mode": {
336 | "name": "ipython",
337 | "version": 3
338 | },
339 | "file_extension": ".py",
340 | "mimetype": "text/x-python",
341 | "name": "python",
342 | "nbconvert_exporter": "python",
343 | "pygments_lexer": "ipython3",
344 | "version": "3.8.5"
345 | },
346 | "toc": {
347 | "base_numbering": 1,
348 | "nav_menu": {},
349 | "number_sections": true,
350 | "sideBar": true,
351 | "skip_h1_title": false,
352 | "title_cell": "Table of Contents",
353 | "title_sidebar": "Contents",
354 | "toc_cell": false,
355 | "toc_position": {},
356 | "toc_section_display": true,
357 | "toc_window_display": true
358 | }
359 | },
360 | "nbformat": 4,
361 | "nbformat_minor": 2
362 | }
363 |
--------------------------------------------------------------------------------
/homeworks/hw2_particle_filter.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Home assignment 2: Particle filter"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "In this homework assignment, we will implement an algorithm for estimating the robot's pose known as a particle filter.\n",
15 | "\n",
16 | "A particle filter consists of the following steps:\n",
17 | "\n",
18 | "1. The movement of particles in accordance with the kinematic motion model. The movement is carried out using the probabilistic motion function, taking into account the randomness of the process (noise of the motion).\n",
19 | "2. Comparison of the obtained measurement with the expected one by applying a probabilistic measurement function that estimates the probability of the obtained measurement given a fixed position of the particle. As a result of this step, each particle is assigned a weight proportional to the likelihood of the measurement given the position of the particle.\n",
20 | "3. Resampling is a process in which the probability of a particle to be chosen for a new set is proportional to the weight (likelihood) of the particle.\n",
21 | "\n",
22 | "\n",
23 | "## Task 1\n",
24 | " \n",
25 | "Implement the motion model of the mobile robot $p(x_ {t + 1} | x_t, u_t)$ as part of the `Robot` class. The method must be named `move`. The `move` method takes as input the current position of the robot and a vector of control signals (the steering angle ($\\alpha$) and the distance the robot should move ($d$)). The `move` method must return an instance of the `Robot` class with a new state vector $(x, y, \\theta)$.\n",
26 | "\n",
27 | "For this homework assignment, we will assume that our robot has car-like kinematics. Such kinematics is described by the [bicycle model](https://nabinsharma.wordpress.com/2014/01/02/kinematics-of-a-robot-bicycle-model/) (you can also refer to Lecture 3. The tricycle (note the difference in the notation). You need to implement a bicycle model in the `move()` method as an approximation of car-like kinematics.\n",
28 | "\n",
29 | "**Important:** The coordinates $(x, y)$ of the robot's state vector set the position of the center of the rear wheel axle of the robot.\n",
30 | "\n",
31 | "**Important:** The `move` method must also simulate the noise of the control signals. For this, additive normal noise is applied to each component of the control signal vector. The steering angle noise is specified by the `Robot.steering_noise` class attribute. The movement noise is specified by the `Robot.distance_noise` class attribute. The `Robot.steering_noise` and `Robot.distance_noise` parameters set the standard deviation ($\\sigma$) of the normal distribution."
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": null,
37 | "metadata": {},
38 | "outputs": [],
39 | "source": [
40 | "from math import pi, \n",
41 | "import random"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": null,
47 | "metadata": {},
48 | "outputs": [],
49 | "source": [
50 | "# --------\n",
51 | "#\n",
52 | "# the \"world\" has 4 landmarks.\n",
53 | "# the robot's initial coordinates are somewhere in the square\n",
54 | "# represented by the landmarks.\n",
55 | "\n",
56 | "landmarks = [\n",
57 | " [100.0, 0.0],\n",
58 | " [0.0, 0.0],\n",
59 | " [0.0, 100.0],\n",
60 | " [100.0, 100.0],\n",
61 | "] # position of 4 landmarks\n",
62 | "world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel \"out of bounds\""
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": null,
68 | "metadata": {},
69 | "outputs": [],
70 | "source": [
71 | "class Robot:\n",
72 | "\n",
73 | " # --------\n",
74 | "\n",
75 | " # init:\n",
76 | " # creates robot and initializes location/orientation\n",
77 | " #\n",
78 | "\n",
79 | " def __init__(self, length=10.0):\n",
80 | " self.x = random.random() * world_size # initial x position\n",
81 | " self.y = random.random() * world_size # initial y position\n",
82 | " self.orientation = random.random() * 2.0 * pi # initial orientation\n",
83 | " self.length = length # length of robot\n",
84 | " self.bearing_noise = 0.0 # initialize bearing noise to zero\n",
85 | " self.distance_noise = 0.0 # initialize distance noise to zero\n",
86 | " self.steering_noise = 0.0 # initialize steering noise to zero\n",
87 | "\n",
88 | " def __repr__(self):\n",
89 | " return \"[x=%.6s y=%.6s theta=%.6s]\" % (\n",
90 | " str(self.x),\n",
91 | " str(self.y),\n",
92 | " str(self.orientation),\n",
93 | " )\n",
94 | "\n",
95 | " # --------\n",
96 | " # set:\n",
97 | " # sets a robot coordinate\n",
98 | " #\n",
99 | "\n",
100 | " def set(self, new_x, new_y, new_orientation):\n",
101 | "\n",
102 | " if new_orientation < 0 or new_orientation >= 2 * pi:\n",
103 | " raise ValueError(\"Orientation must be in [0..2pi]\")\n",
104 | " self.x = float(new_x)\n",
105 | " self.y = float(new_y)\n",
106 | " self.orientation = float(new_orientation)\n",
107 | "\n",
108 | " # --------\n",
109 | " # set_noise:\n",
110 | " # \tsets the noise parameters\n",
111 | " #\n",
112 | "\n",
113 | " def set_noise(self, new_b_noise, new_s_noise, new_d_noise):\n",
114 | " # makes it possible to change the noise parameters\n",
115 | " # this is often useful in particle filters\n",
116 | " self.bearing_noise = float(new_b_noise)\n",
117 | " self.steering_noise = float(new_s_noise)\n",
118 | " self.distance_noise = float(new_d_noise)\n",
119 | "\n",
120 | " ############# ONLY ADD/MODIFY CODE BELOW ###################\n",
121 | "\n",
122 | " # --------\n",
123 | " # move:\n",
124 | " # move along a section of a circular path according to motion parameters\n",
125 | " #\n",
126 | "\n",
127 | " def move(self, motion):\n",
128 | " return 0\n",
129 | " # make sure your move function returns an instance of Robot class\n",
130 | " # with the correct coordinates.\n",
131 | "\n",
132 | " ############## ONLY ADD/MODIFY CODE ABOVE ####################"
133 | ]
134 | },
135 | {
136 | "cell_type": "code",
137 | "execution_count": null,
138 | "metadata": {},
139 | "outputs": [],
140 | "source": [
141 | "## --------\n",
142 | "## TEST CASE #1:\n",
143 | "##\n",
144 | "## The following code should print:\n",
145 | "## Robot: [x=0.0 y=0.0 theta=0.0]\n",
146 | "## Robot: [x=10.0 y=0.0 theta=0.0]\n",
147 | "## Robot: [x=19.861 y=1.4333 theta=0.2886]\n",
148 | "## Robot: [x=39.034 y=7.1270 theta=0.2886]\n",
149 | "##\n",
150 | "\n",
151 | "length = 20.0\n",
152 | "bearing_noise = 0.0\n",
153 | "steering_noise = 0.0\n",
154 | "distance_noise = 0.0\n",
155 | "\n",
156 | "myrobot = Robot(length)\n",
157 | "myrobot.set(0.0, 0.0, 0.0)\n",
158 | "myrobot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
159 | "\n",
160 | "motions = [[0.0, 10.0], [pi / 6.0, 10], [0.0, 20.0]]\n",
161 | "\n",
162 | "T = len(motions)\n",
163 | "\n",
164 | "print(\"Robot: \", myrobot)\n",
165 | "for t in range(T):\n",
166 | " myrobot = myrobot.move(motions[t])\n",
167 | " print(\"Robot: \", myrobot)"
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": null,
173 | "metadata": {},
174 | "outputs": [],
175 | "source": [
176 | "## --------\n",
177 | "## TEST CASE #2:\n",
178 | "##\n",
179 | "## The following code should print:\n",
180 | "## Robot: [x=0.0 y=0.0 theta=0.0]\n",
181 | "## Robot: [x=9.9828 y=0.5063 theta=0.1013]\n",
182 | "## Robot: [x=19.863 y=2.0201 theta=0.2027]\n",
183 | "## Robot: [x=29.539 y=4.5259 theta=0.3040]\n",
184 | "## Robot: [x=38.913 y=7.9979 theta=0.4054]\n",
185 | "## Robot: [x=47.887 y=12.400 theta=0.5067]\n",
186 | "## Robot: [x=56.369 y=17.688 theta=0.6081]\n",
187 | "## Robot: [x=64.273 y=23.807 theta=0.7094]\n",
188 | "## Robot: [x=71.517 y=30.695 theta=0.8108]\n",
189 | "## Robot: [x=78.027 y=38.280 theta=0.9121]\n",
190 | "## Robot: [x=83.736 y=46.485 theta=1.0135]\n",
191 | "\n",
192 | "length = 20.0\n",
193 | "bearing_noise = 0.0\n",
194 | "steering_noise = 0.0\n",
195 | "distance_noise = 0.0\n",
196 | "\n",
197 | "myrobot = Robot(length)\n",
198 | "myrobot.set(0.0, 0.0, 0.0)\n",
199 | "myrobot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
200 | "\n",
201 | "motions = [[0.2, 10.0] for row in range(10)]\n",
202 | "\n",
203 | "T = len(motions)\n",
204 | "\n",
205 | "print(\"Robot: \", myrobot)\n",
206 | "for t in range(T):\n",
207 | " myrobot = myrobot.move(motions[t])\n",
208 | " print(\"Robot: \", myrobot)"
209 | ]
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "metadata": {},
214 | "source": [
215 | "## Task 2\n",
216 | " \n",
217 | "Implement a mobile robot measurement method. The method must be named `sense`. The `sense` method takes as input the current state of the robot (`self`) and returns $z$ - the current measurement consisting of four bearings to four landmarks located in space. Bearing is the angle at which the object is observed from the current position. The angle at which the robot observes each landmark is measured from the robot's current orientation $\\theta$. The counterclockwise direction is assumed to be positive.\n",
218 | "\n",
219 | "To calculate the bearing, you need the position of the landmarks in space. It is set by the global variable `landmarks`.\n",
220 | "\n",
221 | "**Important:** The `sense` method should also simulate the measurement noise. For this, additive normal noise is applied to each component of the measurement vector. The measurement noise is specified by the *Robot.bearing_noise* class attribute. This parameter specifies the standard deviation ($\\sigma$) of the normal distribution. Provide the ability to calculate a noisy measurement vector by passing an input argument `no_noise = True` to the function."
222 | ]
223 | },
224 | {
225 | "cell_type": "markdown",
226 | "metadata": {},
227 | "source": [
228 | "Copy the `Robot` class to the cell below and add the `sense` method to it."
229 | ]
230 | },
231 | {
232 | "cell_type": "code",
233 | "execution_count": null,
234 | "metadata": {},
235 | "outputs": [],
236 | "source": [
237 | "## --------\n",
238 | "## TEST CASE #1:\n",
239 | "##\n",
240 | "## 1) The following code should print the list:\n",
241 | "## [6.004885648174475, 3.7295952571373605, 1.9295669970654687, 0.8519663271732721]\n",
242 | "\n",
243 | "length = 20.0\n",
244 | "bearing_noise = 0.0\n",
245 | "steering_noise = 0.0\n",
246 | "distance_noise = 0.0\n",
247 | "\n",
248 | "myrobot = Robot(length)\n",
249 | "myrobot.set(30.0, 20.0, 0.0)\n",
250 | "myrobot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
251 | "\n",
252 | "print(\"Robot: \", myrobot)\n",
253 | "print(\"Measurements: \", myrobot.sense())"
254 | ]
255 | },
256 | {
257 | "cell_type": "code",
258 | "execution_count": null,
259 | "metadata": {},
260 | "outputs": [],
261 | "source": [
262 | "## --------\n",
263 | "## TEST CASE #2:\n",
264 | "##\n",
265 | "## 2) The following code should print the list^\n",
266 | "## [5.376567117456516, 3.101276726419402, 1.3012484663475101, 0.22364779645531352]\n",
267 | "\n",
268 | "length = 20.0\n",
269 | "bearing_noise = 0.0\n",
270 | "steering_noise = 0.0\n",
271 | "distance_noise = 0.0\n",
272 | "\n",
273 | "myrobot = Robot(length)\n",
274 | "myrobot.set(30.0, 20.0, pi / 5.0)\n",
275 | "myrobot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
276 | "\n",
277 | "print(\"Robot: \", myrobot)\n",
278 | "print(\"Measurements: \", myrobot.sense())"
279 | ]
280 | },
281 | {
282 | "cell_type": "markdown",
283 | "metadata": {},
284 | "source": [
285 | "## Task 3\n",
286 | "\n",
287 | "Implement the mobile robot observation model $p(z_t | x_t, M)$. The method must be named `measurement_prob`. The `measurement_prob` method takes a measurement vector $z$ as input and returns the likelihood of the measurement. Likelihood is calculated as the product of four (by the number of landmarks) normal distributions of measurement errors. Each normal distribution shows the bearing probability i.e. the normal distribution of the error for each bearing has the mathematical expectation in the true (expected) bearing value and the variance given by the `Robot.bearing_noise` parameter.\n",
288 | "\n",
289 | "**Important:** Remember to normalize the angles when calculating bearing errors. The error must be in the range $- \\pi ... + \\pi$.\n",
290 | "\n",
291 | "**Important:** To get the true (expected) values of the measurements, you can use the `sense` method with the `no_noise = True` flag.\n",
292 | "\n",
293 | "Copy the `Robot` class into the cell below and add the `measurement_prob` method to it."
294 | ]
295 | },
296 | {
297 | "cell_type": "code",
298 | "execution_count": null,
299 | "metadata": {},
300 | "outputs": [],
301 | "source": [
302 | "# YOUR CODE HERE"
303 | ]
304 | },
305 | {
306 | "cell_type": "markdown",
307 | "metadata": {},
308 | "source": [
309 | "## Task 4\n",
310 | "\n",
311 | "Run the particle filter based on the `Robot` class you have implemented. Add a step-by-step visualization of the particle filter for the second test case.\n",
312 | "\n",
313 | "The visualization should reflect:\n",
314 | "1. Map with marked positions of landmarks\n",
315 | "2. Particles - it is enough to reflect only $(x, y)$\n",
316 | "3. The final estimated position of the robot at each moment in time"
317 | ]
318 | },
319 | {
320 | "cell_type": "code",
321 | "execution_count": null,
322 | "metadata": {},
323 | "outputs": [],
324 | "source": [
325 | "max_steering_angle = (\n",
326 | " pi / 4.0\n",
327 | ") # You do not need to use this value, but keep in mind the limitations of a real car.\n",
328 | "bearing_noise = 0.1\n",
329 | "steering_noise = 0.1\n",
330 | "distance_noise = 5.0\n",
331 | "\n",
332 | "tolerance_xy = 15.0 # Tolerance for localization in the x and y directions.\n",
333 | "tolerance_orientation = 0.25 # Tolerance for orientation.\n",
334 | "\n",
335 | "\n",
336 | "# --------\n",
337 | "#\n",
338 | "# the \"world\" has 4 landmarks.\n",
339 | "# the robot's initial coordinates are somewhere in the square\n",
340 | "# represented by the landmarks.\n",
341 | "\n",
342 | "landmarks = [\n",
343 | " [100.0, 0.0],\n",
344 | " [0.0, 0.0],\n",
345 | " [0.0, 100.0],\n",
346 | " [100.0, 100.0],\n",
347 | "] # position of 4 landmarks\n",
348 | "world_size = 100.0 # world is NOT cyclic. Robot is allowed to travel \"out of bounds\""
349 | ]
350 | },
351 | {
352 | "cell_type": "code",
353 | "execution_count": null,
354 | "metadata": {},
355 | "outputs": [],
356 | "source": [
357 | "# Some utility functions\n",
358 | "\n",
359 | "def get_position(p):\n",
360 | " x = 0.0\n",
361 | " y = 0.0\n",
362 | " orientation = 0.0\n",
363 | " for i in range(len(p)):\n",
364 | " x += p[i].x\n",
365 | " y += p[i].y\n",
366 | " # orientation is tricky because it is cyclic. By normalizing\n",
367 | " # around the first particle we are somewhat more robust to\n",
368 | " # the 0=2pi problem\n",
369 | " orientation += (((p[i].orientation - p[0].orientation + pi) % (2.0 * pi)) \n",
370 | " + p[0].orientation - pi)\n",
371 | " return [x / len(p), y / len(p), orientation / len(p)]\n",
372 | "\n",
373 | "\n",
374 | "# The following code generates ground truth poses and measurements\n",
375 | "def generate_ground_truth(motions):\n",
376 | "\n",
377 | " myrobot = Robot()\n",
378 | " myrobot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
379 | "\n",
380 | " Z = []\n",
381 | " T = len(motions)\n",
382 | "\n",
383 | " for t in range(T):\n",
384 | " myrobot = myrobot.move(motions[t])\n",
385 | " Z.append(myrobot.sense())\n",
386 | " #print 'Robot: ', myrobot\n",
387 | " return [myrobot, Z]\n",
388 | "\n",
389 | "\n",
390 | "# The following code prints the measurements associated\n",
391 | "# with generate_ground_truth\n",
392 | "def print_measurements(Z):\n",
393 | "\n",
394 | " T = len(Z)\n",
395 | "\n",
396 | " print 'measurements = [[%.8s, %.8s, %.8s, %.8s],' % \\\n",
397 | " (str(Z[0][0]), str(Z[0][1]), str(Z[0][2]), str(Z[0][3]))\n",
398 | " for t in range(1,T-1):\n",
399 | " print ' [%.8s, %.8s, %.8s, %.8s],' % \\\n",
400 | " (str(Z[t][0]), str(Z[t][1]), str(Z[t][2]), str(Z[t][3]))\n",
401 | " print ' [%.8s, %.8s, %.8s, %.8s]]' % \\\n",
402 | " (str(Z[T-1][0]), str(Z[T-1][1]), str(Z[T-1][2]), str(Z[T-1][3]))\n",
403 | "\n",
404 | "\n",
405 | "# The following code checks to see if your particle filter\n",
406 | "# localizes the robot to within the desired tolerances\n",
407 | "# of the true position. The tolerances are defined at the top.\n",
408 | "def check_output(final_robot, estimated_position):\n",
409 | "\n",
410 | " error_x = abs(final_robot.x - estimated_position[0])\n",
411 | " error_y = abs(final_robot.y - estimated_position[1])\n",
412 | " error_orientation = abs(final_robot.orientation - estimated_position[2])\n",
413 | " error_orientation = (error_orientation + pi) % (2.0 * pi) - pi\n",
414 | " correct = error_x < tolerance_xy and error_y < tolerance_xy \\\n",
415 | " and error_orientation < tolerance_orientation\n",
416 | " return correct"
417 | ]
418 | },
419 | {
420 | "cell_type": "code",
421 | "execution_count": null,
422 | "metadata": {},
423 | "outputs": [],
424 | "source": [
425 | "def particle_filter(motions, measurements, N=500): # We will use 500 particles\n",
426 | " # --------\n",
427 | " #\n",
428 | " # Create particles (models of the Robot)\n",
429 | " #\n",
430 | "\n",
431 | " particles = []\n",
432 | " for i in range(N):\n",
433 | " robot = Robot()\n",
434 | " robot.set_noise(bearing_noise, steering_noise, distance_noise)\n",
435 | " particles.append(robot)\n",
436 | "\n",
437 | " # --------\n",
438 | " #\n",
439 | " # Update particles\n",
440 | " #\n",
441 | "\n",
442 | " for t in range(len(motions)):\n",
443 | "\n",
444 | " # motion update (prediction)\n",
445 | " particles_after_motion = []\n",
446 | " for i in range(N):\n",
447 | " particles_after_motion.append(particles[i].move(motions[t]))\n",
448 | " particles = particles_after_motion\n",
449 | "\n",
450 | " # measurement update (correction)\n",
451 | " weights = []\n",
452 | " for i in range(N):\n",
453 | " weights.append(particles[i].measurement_prob(measurements[t]))\n",
454 | "\n",
455 | " # resampling\n",
456 | " particles_resampled = []\n",
457 | " index = int(random.random() * N)\n",
458 | " beta = 0.0\n",
459 | " mw = max(weights)\n",
460 | " for i in range(N):\n",
461 | " beta += random.random() * 2.0 * mw\n",
462 | " while beta > weights[index]:\n",
463 | " beta -= weights[index]\n",
464 | " index = (index + 1) % N\n",
465 | " particles_resampled.append(particles[index])\n",
466 | " particles = particles_resampled\n",
467 | "\n",
468 | " return get_position(particles)"
469 | ]
470 | },
471 | {
472 | "cell_type": "code",
473 | "execution_count": null,
474 | "metadata": {},
475 | "outputs": [],
476 | "source": [
477 | "## --------\n",
478 | "## TEST CASE #1:\n",
479 | "## \n",
480 | "##1) Calling the particle_filter function with the following\n",
481 | "## motions and measurements should return a [x,y,orientation]\n",
482 | "## vector near [x=93.476 y=75.186 orient=5.2664], that is, the\n",
483 | "## robot's true location.\n",
484 | "##\n",
485 | "motions = [[2. * pi / 10, 20.] for row in range(8)]\n",
486 | "measurements = [[4.746936, 3.859782, 3.045217, 2.045506],\n",
487 | " [3.510067, 2.916300, 2.146394, 1.598332],\n",
488 | " [2.972469, 2.407489, 1.588474, 1.611094],\n",
489 | " [1.906178, 1.193329, 0.619356, 0.807930],\n",
490 | " [1.352825, 0.662233, 0.144927, 0.799090],\n",
491 | " [0.856150, 0.214590, 5.651497, 1.062401],\n",
492 | " [0.194460, 5.660382, 4.761072, 2.471682],\n",
493 | " [5.717342, 4.736780, 3.909599, 2.342536]]\n",
494 | "\n",
495 | "print particle_filter(motions, measurements)"
496 | ]
497 | },
498 | {
499 | "cell_type": "code",
500 | "execution_count": null,
501 | "metadata": {},
502 | "outputs": [],
503 | "source": [
504 | "## --------\n",
505 | "## TEST CASE #1:\n",
506 | "##\n",
507 | "## 2) You can generate your own test cases by generating\n",
508 | "## measurements using the generate_ground_truth function.\n",
509 | "## It will print the robot's last location when calling it.\n",
510 | "##\n",
511 | "\n",
512 | "number_of_iterations = 6\n",
513 | "motions = [[2.0 * pi / 20, 12.0] for row in range(number_of_iterations)]\n",
514 | "\n",
515 | "x = generate_ground_truth(motions)\n",
516 | "final_robot = x[0]\n",
517 | "measurements = x[1]\n",
518 | "estimated_position = particle_filter(motions, measurements)\n",
519 | "print_measurements(measurements)\n",
520 | "print(\"Ground truth: \", final_robot)\n",
521 | "print(\"Particle filter: \", estimated_position)\n",
522 | "print(\"Code check: \", check_output(final_robot, estimated_position))"
523 | ]
524 | }
525 | ],
526 | "metadata": {
527 | "kernelspec": {
528 | "display_name": "Python 3",
529 | "language": "python",
530 | "name": "python3"
531 | },
532 | "language_info": {
533 | "codemirror_mode": {
534 | "name": "ipython",
535 | "version": 3
536 | },
537 | "file_extension": ".py",
538 | "mimetype": "text/x-python",
539 | "name": "python",
540 | "nbconvert_exporter": "python",
541 | "pygments_lexer": "ipython3",
542 | "version": "3.8.3"
543 | },
544 | "toc": {
545 | "base_numbering": 1,
546 | "nav_menu": {},
547 | "number_sections": true,
548 | "sideBar": true,
549 | "skip_h1_title": false,
550 | "title_cell": "Table of Contents",
551 | "title_sidebar": "Contents",
552 | "toc_cell": false,
553 | "toc_position": {},
554 | "toc_section_display": true,
555 | "toc_window_display": true
556 | }
557 | },
558 | "nbformat": 4,
559 | "nbformat_minor": 2
560 | }
561 |
--------------------------------------------------------------------------------
/homeworks/hw3/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ros:melodic-ros-base
2 |
3 |
4 | RUN mkdir -p homework/homework3/cpp \
5 | mkdir -p homework/homework3/python
6 |
7 | # homework folder creation and PID homework repo downloading
8 | RUN cd homework/homework3/cpp && \
9 | git clone https://github.com/udacity/CarND-PID-Control-Project.git && \
10 | cd CarND-PID-Control-Project && sudo apt-get update && \
11 | sudo apt-get install git libuv1-dev libssl-dev gcc g++ cmake make unzip wget -y && \
12 | git clone https://github.com/uWebSockets/uWebSockets && \
13 | cd uWebSockets && \
14 | git checkout e94b6e1 && \
15 | mkdir build && \
16 | cd build && \
17 | cmake .. && \
18 | make && \
19 | sudo make install && \
20 | cd .. && \
21 | cd .. && \
22 | sudo ln -s /usr/lib64/libuWS.so /usr/lib/libuWS.so && \
23 | sudo rm -r uWebSockets
24 |
25 | # udacity simulator installation
26 | RUN cd homework/homework3 && \
27 | wget https://github.com/udacity/self-driving-car-sim/releases/download/v1.45/term2_sim_linux.zip && \
28 | unzip term2_sim_linux.zip && rm term2_sim_linux.zip && cd term2_sim_linux && \
29 | sudo chmod +x term2_sim.x86_64 && rm term2_sim.x86
30 |
31 | # zsh and oh-my-zsh installation
32 | RUN sudo apt install --yes zsh &&\
33 | set -uex; \
34 | wget https://raw.githubusercontent.com/robbyrussell/oh-my-zsh/master/tools/install.sh; \
35 | sh ./install.sh; \
36 | rm ./install.sh
37 |
38 | # vs code installation
39 | RUN sudo apt install --yes apt-utils libasound2 curl; \
40 | echo "deb [arch=amd64] http://packages.microsoft.com/repos/vscode stable main" | sudo \
41 | tee /etc/apt/sources.list.d/vs-code.list; \
42 | curl https://packages.microsoft.com/keys/microsoft.asc | gpg --dearmor > microsoft.gpg; \
43 | sudo mv microsoft.gpg /etc/apt/trusted.gpg.d/microsoft.gpg; \
44 | sudo apt update; \
45 | sudo apt install --yes code
46 |
47 | ADD ./control.py homework/homework3/python/control.py
48 | ADD ./pid.py homework/homework3/python/pid.py
49 |
50 | ADD ./entrypoint.sh /entrypoint.sh
51 | RUN chmod +x /entrypoint.sh
52 | ENTRYPOINT ["/entrypoint.sh"]
53 |
--------------------------------------------------------------------------------
/homeworks/hw3/README.md:
--------------------------------------------------------------------------------
1 | # Homework 3
2 |
3 | In this homework assignment, we will implement a PID controller to control the
4 | steering wheel of an autonomous vehicle. We will test the implemented regulator
5 | on a simulator of an autonomous car, designed for Udacity Self-Driving Car
6 | Nanodegree https://github.com/udacity/self-driving-car-sim.
7 |
8 | We will use a prepared docker container for homework (of course you can install
9 | everything into your local OS or use virtual machine if you prefer to). In the
10 | directory where the archive is unpacked, build the docker image:
11 |
12 | `docker build --tag homework`
13 |
14 | After building the image, you can start the container with the command:
15 |
16 | `sudo docker run -e DISPLAY=unix$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -it homework`
17 |
18 | **Warning:** If you get an error, starting graphical applications from the
19 | container, run the following command on you host OS: xhost + local
20 |
21 | To run an additional terminal in a container, you can find out the
22 | `CONTAINER_ID` by running the `docker ps` command and finding the required
23 | container in the `CONTAINER_ID` output. After that, you need to run the command:
24 |
25 | `docker exec -it zsh`
26 |
27 | **Warning:** With this method of launching an additional terminal, the launch of
28 | graphical applications will not be available from it.
29 |
30 | In the container, you need to go to the homework/homework3/ directory:
31 |
32 | `cd homework/homework3/`
33 |
34 | The homework directory contains three folders:
35 |
36 | - cpp - directory containing files to implement PID regulator in C++
37 | - cpp - directory containing files to implement PID regulator in Python
38 | - term2_sim_linux/ - directory with a simulator of an autonomous vehicle
39 |
40 | To run the simulator, run the executable file:
41 |
42 | `/homework/homework3/term2_sim_linux/term2_sim.x86_64`
43 |
44 | Select the "Project 4: PID Controller" tab and press Select.
45 |
46 | There are two programming languages which can be used for this assignment (С++
47 | or Python). Depending on the language you prefer proceed to the corresponding
48 | section.
49 |
50 | ## Python
51 |
52 | **Note:** Python 3.6 and higher is required
53 |
54 | `cd /homework/homework3/python`
55 |
56 | The homework directory contains two files:
57 |
58 | - `control.py` - main file for realizing steering control;
59 | - `pid.py` - realization of PID regulator.
60 |
61 | Realize the PID regulator in order to control the steering of autonomous car.
62 | All the instructions are given inside `.py` files. Note that you should launch
63 | control.py script in another terminal (not the one you used to launch
64 | simulator).
65 |
66 | `code --user-data-dir = / vscode`
67 |
68 | ## С++
69 |
70 | In another terminal (not the one you used to launch simulator) of the container,
71 | you need to run a car control program with an implemented PID controller. To do
72 | this, go to the source code folder:
73 |
74 | `cd /homework/homework3/cpp/CarND-PID-Control-Project`
75 |
76 | Create a build directory and build the project:
77 |
78 | ```bash
79 | mkdir build && cd build
80 | cmake .. && make
81 | ```
82 |
83 | Start the regulator (**Warning** when starting the regulator, the simulator must
84 | be running):
85 |
86 | `./pid`
87 |
88 | After starting the regulator, the vehicle should drive in a straight line. This
89 | is because the regulator code for steering control has not yet been implemented.
90 | You need to implement a PID controller in C ++. To do this, go to the directory:
91 |
92 | `cd /homework/homework3/cpp/CarND-PID-Control-Project/src`
93 |
94 | In this directory, you need to modify 2 files:
95 |
96 | - `PID.cpp` - PID regulator implementation
97 | - `main.cpp` - the main file with the main function, which implements the
98 | connection to the simulator and the call of the PID regulator
99 |
100 | In PID.cpp, you need to implement 3 functions:
101 |
102 | - void PID :: Init (double Kp*, double Ki*, double Kd\_) - initialization of the
103 | regulator, as well as its internal state
104 | - void PID :: UpdateError (double cte) - a function that updates the internal
105 | state of the regulator (proportional, integral and differential), depending on
106 | the error of the vehicle's lateral displacement from the desired trajectory
107 | (cross-track error, cte)
108 | - double PID :: TotalError () - calculation of the resulting influence of the
109 | regulator (according to the formula of the PID regulator from the lecture),
110 | which will be fed to the steering, as the angle of steering wheel rotation
111 |
112 | In `main.cpp`, you need to modify the main function, in which you need to add
113 | the initialization of the PID controller, as well as its use to calculate the
114 | steer_value - control signal for the angle of rotation of the wheels depending
115 | on the current error of the lateral displacement from the trajectory
116 | (cross-track error, cte).
117 |
118 | After making the necessary modifications, rebuild the cmake .. && make project
119 | from the /homework/homework3/cpp/CarND-PID-Control-Project/build folder. Run the
120 | simulator and regulator to see the updated car controls. Select such
121 | coefficients of the PID controller (Kp, Ki, Kd) at which the deviation from the
122 | trajectory will be minimal.
123 |
124 | **Warning!** For the convenience of programming, the Visual Studio Code
125 | development environment is installed in the container. Launching Visual Studio
126 | Code only works from a terminal that allows graphical applications to run. The
127 | Visual Studio Code environment can be launched with the command:
128 |
129 | `code --user-data-dir = / vscode`
130 |
--------------------------------------------------------------------------------
/homeworks/hw3/control.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import asyncio
4 | import json
5 |
6 | import websockets
7 | from pid import PID
8 |
9 |
10 | # TODO: Initialize the pid variable.
11 | steering_pid = PID(0.053, 0.0, 0.0)
12 |
13 | # Checks if the SocketIO event has JSON data.
14 | # If there is data the JSON object in string format will be returned,
15 | # else the empty string "" will be returned.
16 | def getData(message):
17 | try:
18 | start = message.find("[")
19 | end = message.rfind("]")
20 | return message[start : end + 1]
21 | except:
22 | return ""
23 |
24 |
25 | async def handleTelemetry(websocket, msgJson):
26 | cte = msgJson[1]["cte"]
27 | speed = msgJson[1]["speed"]
28 | angle = msgJson[1]["steering_angle"]
29 |
30 | print("CTE: ", cte, ", speed: ", speed, ", angle: ", angle)
31 |
32 | # TODO: Calculate steering value here, remember the steering value is
33 | # [-1, 1].
34 | # NOTE: Feel free to play around with the throttle and speed.
35 | # Maybe use another PID controller to control the speed!
36 |
37 | response = {}
38 |
39 | response["steering_angle"] = steer_value
40 |
41 | # TODO: Play around with throttle value
42 | response["throttle"] = 0.3
43 |
44 | msg = '42["steer",' + json.dumps(response) + "]"
45 |
46 | await websocket.send(msg)
47 |
48 |
49 | async def echo(websocket, path):
50 | async for message in websocket:
51 | if len(message) < 3 or message[0] != "4" or message[1] != "2":
52 | return
53 |
54 | s = getData(message)
55 | msgJson = json.loads(s)
56 |
57 | event = msgJson[0]
58 | if event == "telemetry":
59 | await handleTelemetry(websocket, msgJson)
60 | else:
61 | msg = '42["manual",{}]'
62 | await websocket.send(msg)
63 |
64 |
65 | def main():
66 | start_server = websockets.serve(echo, "localhost", 4567)
67 |
68 | asyncio.get_event_loop().run_until_complete(start_server)
69 | asyncio.get_event_loop().run_forever()
70 |
71 |
72 | if __name__ == "__main__":
73 | main()
74 |
--------------------------------------------------------------------------------
/homeworks/hw3/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | set -e
4 | exec zsh
5 | exec "$@"
6 |
--------------------------------------------------------------------------------
/homeworks/hw3/pid.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 |
4 | class PID:
5 |
6 | # TODO: Complete the PID class. You may add any additional desired functions
7 |
8 | def __init__(self, Kp, Ki=0.0, Kd=0.0):
9 | # TODO: Initialize PID coefficients (and errors, if needed)
10 | pass
11 |
12 | def UpdateError(self, cte):
13 | # TODO: Update PID errors based on cte
14 | pass
15 |
16 | def TotalError(self):
17 | # TODO: Calculate and return the total error
18 | return 0.0
19 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.black]
2 | line-length = 90
3 | target-version = ["py38"]
4 |
5 | [tool.isort]
6 | profile="black"
7 | line_length = 90
8 | lines_after_imports = 2
9 |
10 | [tool.nbqa.config]
11 | black = "pyproject.toml"
12 | isort = "pyproject.toml"
13 | flake8 = "setup.cfg"
14 |
15 | [tool.nbqa.addopts]
16 | flake8 = ["--extend-ignore=E402"]
17 |
18 | [tool.nbqa.mutate]
19 | black = 1
20 | isort = 1
21 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [flake8]
2 | max-line-length = 100
3 | ignore = E203, E501, W503, B950
4 | max-complexity = 12
5 | select = B, C, E, F, W, B9
6 |
--------------------------------------------------------------------------------
/week01_ros_intro/lect_01_introduction_to_robotics_sensors.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week01_ros_intro/lect_01_introduction_to_robotics_sensors.pdf
--------------------------------------------------------------------------------
/week01_ros_intro/sem_01_ros_intro.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week01_ros_intro/sem_01_ros_intro.pdf
--------------------------------------------------------------------------------
/week02_localization/lect_02_localization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week02_localization/lect_02_localization.pdf
--------------------------------------------------------------------------------
/week02_localization/sem_02_file_system_first_package_communication_types.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week02_localization/sem_02_file_system_first_package_communication_types.pdf
--------------------------------------------------------------------------------
/week02_localization/turtle.sh:
--------------------------------------------------------------------------------
1 | # get docker image (~1 Gb)
2 | docker pull osrf/ros:noetic-desktop-full
3 |
4 |
5 | # 1. For Linux
6 | # start image with graphical interface forwarded to host
7 | docker run -it -e DISPLAY=unix$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix osrf/ros:noetic-desktop-full
8 | # same as above but destroys container image after shutting down
9 | docker run -it --rm --privileged --net=host -e DISPLAY=$IP:0 -v /tmp/.X11-unix:/tmp/.X11-unix osrf/ros:noetic-desktop-full
10 |
11 | # 2. For MacOS
12 | docker run -it -e DISPLAY=host.docker.internal:0 -v /tmp/.X11-unix:/tmp/.X11-unix osrf/ros:noetic-desktop-full
13 | export LIBGL_ALWAYS_INDIRECT=1 # to enable rendering on host machine, not virtual
14 |
15 | # setup ROS environment for particular shell
16 | env | grep ROS #
17 |
18 | echo $SHELL # /bin/bash (or smth else)
19 | source /opt/ros/noetic/setup.bash
20 |
21 | env | grep ROS #
22 |
23 |
24 | # Start ROS
25 | roscore
26 | # PRESS Ctrl+Z to pass roscore to background
27 | # alternative command: `roscore &`
28 | # to pass process to background from the start
29 |
30 | # check roscore is in background
31 | ps
32 |
33 | # roscore is unique process
34 | roscore #
35 |
36 |
37 | # Check logging
38 | ls -la /root/.ros/log//
39 |
40 | # Alternative way to check latest log
41 | ls -la ~/.ros/log/latest/
42 |
43 | # Look into log file
44 | less ~/.ros/log/latest/master.log
45 |
46 |
47 | # Multiple terminals for one docker container
48 | # OPEN new terminal window
49 | docker ps # find running docker id
50 | docker exec -it bash
51 | source /opt/ros/noetic/setup.bash # DON'T FORGET!!!
52 |
53 |
54 | # Start turtlesim
55 | rosrun turtlesim turtlesim_node
56 |
57 |
58 | # Launch rqt GUI
59 | rqt_graph
60 |
61 |
62 | # Moving turtle
63 | rosrun turtlesim turtle_teleop_key
64 |
65 |
66 | # CLI instruments
67 | rostopic list
68 | rosnode list
69 | rostopic info /turtle1/cmd_vel
70 | rosmsg info geometry_msgs/Twist
71 | rostopic echo /turtle1/cmd_vel
72 | # now press keys to see what happens
73 |
74 |
75 | # Make turtle make autonomous actions
76 | rosrun turtlesim draw_square
77 | rostopic echo /turtle1/pose
78 | rostopic info /turtle1/pose
79 | rqt_graph
80 |
--------------------------------------------------------------------------------
/week03_motion_models/first_node.sh:
--------------------------------------------------------------------------------
1 | # Start in your virtual machine or docker container with ros
2 | sudo apt install build-essential ros-melodic-desktop-full
3 | source /opt/ros/melodic/setup.bash
4 |
5 | # Create dir for project
6 | mkdir first_workspace
7 | cd first_workspace
8 | mkdir src
9 |
10 | # First invocation of this command creates infrastructure for your ROS project
11 | catkin_make # juicy output
12 |
13 | # Add your workspace infrastructure to environment and note difference
14 | env | grep ROS
15 | source devel/setup.bash
16 | env | grep ROS
17 |
18 | # Create package in workspace
19 | cd src
20 | catkin_create_pkg first_package rospy std_msgs # juicy output
21 | # inspect contents
22 | ls first_package
23 | less first_package/package.xml
24 |
25 | # Open file wiht some editor e.g. VSCode
26 | code . --user-data-dir=/vscode
27 |
28 | # Add code files
29 | mv /signal_generator_node.py first_package/src
30 | mv /signal_filter_node.py first_package/src
31 |
32 | # make executable
33 | chmod +x first_package/src/signal_generator_node.py
34 | chmod +x first_package/src/signal_filter_node.py
35 |
36 | # Check package is building well
37 | cd ..
38 | catkin_make
39 |
40 | # Launch ROS and new nodes
41 | roscore
42 | # Ctrl + Z (or another terminal)
43 | rosrun first_package signal_generator_node.py
44 | rosrun first_package signal_filter_node.py
45 |
46 | # Analyze package
47 | rostopic list
48 | rostopic info /signal
49 | rostopic hz /signal
50 |
51 | # Visualize topics
52 | rqt_graph
53 |
54 | # Visualize topic contents on plot
55 | rqt_plot
56 |
--------------------------------------------------------------------------------
/week03_motion_models/lect_03_kinematics_probabilistic_motion_models.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week03_motion_models/lect_03_kinematics_probabilistic_motion_models.pdf
--------------------------------------------------------------------------------
/week03_motion_models/sem_03_services_actions_parameter_server_roslaunch.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week03_motion_models/sem_03_services_actions_parameter_server_roslaunch.pdf
--------------------------------------------------------------------------------
/week03_motion_models/signal_filter_node.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | from collections import deque
4 |
5 | import rospy
6 | from std_msgs.msg import Float32
7 |
8 |
9 | class SignalFilter:
10 | def __init__(self):
11 | # Initializing node with the "signal_filter" name in this process
12 | rospy.init_node("signal_filter")
13 | # Creating subscriber for the signal and publisher for filtered one
14 | self.signal_sub = rospy.Subscriber("signal", Float32, self.signal_callback)
15 | self.signal_pub = rospy.Publisher("filtered_signal", Float32, queue_size=10)
16 |
17 | # Buffer to store last 5 signal values
18 | self.signal_window = deque([], 5)
19 |
20 | def signal_callback(self, signal):
21 | # Logging recieved data
22 | rospy.loginfo("Recieved {}".format(signal.data))
23 |
24 | # Filtering signal with the moving average and
25 | # publishing filtered signal
26 | self.signal_window.append(signal.data)
27 | filtered_signal = sum(self.signal_window) / len(self.signal_window)
28 |
29 | self.signal_pub.publish(filtered_signal)
30 |
31 | def spin(self):
32 | # Pass control to ROS
33 | try:
34 | rospy.spin()
35 | except rospy.ROSInterruptException:
36 | rospy.logerr("Ctrl+C was pressed!")
37 |
38 |
39 | if __name__ == "__main__":
40 | SignalFilter().spin()
41 |
--------------------------------------------------------------------------------
/week03_motion_models/signal_generator_node.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import numpy as np
4 | import rospy
5 | from std_msgs.msg import Float32
6 |
7 |
8 | class SignalGenerator:
9 | def __init__(self):
10 | # Creaytin publisher for the signal
11 | self.signal_pub = rospy.Publisher("signal", Float32, queue_size=10)
12 |
13 | def generate_and_publish_signal(self):
14 | # Generation and publishing sine signal
15 | # dependent on current system time
16 | seconds = rospy.get_time()
17 | new_signal_value = np.sin(seconds) + 0.2 * np.random.randn()
18 |
19 | self.signal_pub.publish(new_signal_value)
20 |
21 | rospy.loginfo("Published {}".format(new_signal_value))
22 |
23 | def launch_signal_generator(self):
24 | # Initializing node with the "signal_generator" name
25 | rospy.init_node("signal_generator")
26 |
27 | # Setting node (publishing) rate
28 | rate = rospy.Rate(10)
29 | while not rospy.is_shutdown():
30 | self.generate_and_publish_signal()
31 | # Using sleep to keep the desired rate
32 | rate.sleep()
33 |
34 | def spin(self):
35 | try:
36 | self.launch_signal_generator()
37 | except rospy.ROSInterruptException:
38 | rospy.logerr("Ctrl+C was pressed!")
39 |
40 |
41 | if __name__ == "__main__":
42 | SignalGenerator().spin()
43 |
--------------------------------------------------------------------------------
/week04_observation_models/GetWindowMedian.srv:
--------------------------------------------------------------------------------
1 | ---
2 | bool success
3 | float32 median
4 |
--------------------------------------------------------------------------------
/week04_observation_models/Signal.msg:
--------------------------------------------------------------------------------
1 | Header header
2 | float32 signal
3 |
--------------------------------------------------------------------------------
/week04_observation_models/lect_04_probabilistic_observation_models.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week04_observation_models/lect_04_probabilistic_observation_models.pdf
--------------------------------------------------------------------------------
/week04_observation_models/second_node.sh:
--------------------------------------------------------------------------------
1 | # Start in your virtual machine or docker container with ros
2 | sudo apt install build-essential ros-melodic-desktop-full
3 | source /opt/ros/melodic/setup.bash
4 |
5 | # Create dir for project. Just repeat of previous seminar
6 | mkdir second_workspace
7 | cd second_workspace
8 | mkdir src
9 | catkin_make
10 | source devel/setup.bash
11 | cd src
12 | catkin_create_pkg second_package rospy std_msgs
13 | # Add code files
14 | mv /signal_generator_node.py second_package/src
15 | mv /signal_filter_node.py second_package/src
16 | chmod +x second_package/src/signal_generator_node.py
17 | chmod +x second_package/src/signal_filter_node.py
18 |
19 | # NEW: create custom messages
20 | mkdir second_package/msg
21 | mv /Signal.msg second_package/msg/
22 |
23 | # Add to package.xml:
24 | # message_generation
25 | # message_runtime
26 |
27 | # Add to package CMakeLists.txt:
28 | # find_package(catkin REQUIRED COMPONENTS
29 | # roscpp
30 | # rospy
31 | # std_msgs
32 | # message_generation
33 | # )
34 |
35 | # And to the same file below:
36 | # catkin_package(
37 | # ...
38 | # CATKIN_DEPENDS message_runtime ...
39 | # ...
40 | # )
41 |
42 | # Uncomment directive:
43 | # add_message_files(
44 | # FILES
45 | # signal.msg
46 | # )
47 |
48 | # Uncomment generating messages:
49 | # generate_messages(
50 | # DEPENDENCIES
51 | # std_msgs
52 | # )
53 |
54 | # Check package is building well
55 | cd ..
56 | catkin_make
57 |
58 | # Look at our beautiful message!
59 | rosmsg show second_package/Signal
60 |
61 | # Launch ROS and new nodes
62 | roscore
63 | # Ctrl + Z (or another terminal)
64 | rosrun second_package signal_generator_node.py
65 | # Ctrl + Z (or another terminal)
66 | rosrun second_package signal_filter_node.py
67 |
68 | rostopic info /signal
69 |
70 |
71 | # Setup own service
72 | # Copy service description to appropriate dir
73 | mkdir src/second_package/srv
74 | cp /GetWindowMedian.srv src/second_package/srv
75 | # Compile new service to ROS
76 | catkin_make
77 |
78 | # Update source files to expose service (add handle_get_median)
79 | # Restart nodes in terminal
80 |
81 | rossrv show second_package/GetWindowMedian
82 | rosservice list
83 | rosservice call /get_median "{}"
84 |
--------------------------------------------------------------------------------
/week04_observation_models/sem_04_names_time_debugging_visualization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week04_observation_models/sem_04_names_time_debugging_visualization.pdf
--------------------------------------------------------------------------------
/week04_observation_models/signal_filter_node.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | from collections import deque
4 |
5 | import numpy as np
6 | import rospy
7 | from second_package.msg import Signal
8 | from second_package.srv import GetWindowMedian, GetWindowMedianResponse
9 |
10 |
11 | class SignalFilter:
12 | def __init__(self):
13 | # Initializing node with the "signal_filter" name in this process
14 | rospy.init_node("signal_filter")
15 | # Creating subscriber for the signal and publisher for filtered one
16 | self.signal_sub = rospy.Subscriber("signal", Signal, self.signal_callback)
17 | self.signal_pub = rospy.Publisher("filtered_signal", Signal, queue_size=10)
18 |
19 | self.median_srv = rospy.Service(
20 | "get_median", GetWindowMedian, self.handle_get_median
21 | )
22 |
23 | # Buffer to store last 5 signal values
24 | self.signal_window = deque([], 5)
25 |
26 | def signal_callback(self, signal):
27 | # Logging recieved data
28 | rospy.loginfo("Recieved {}\nAt {}".format(signal.signal, signal.header.stamp))
29 |
30 | # Filtering signal with the moving average and
31 | # publishing filtered signal
32 | self.signal_window.append(signal.signal)
33 | # TODO: use Butterworth filter
34 | filtered_signal_value = sum(self.signal_window) / len(self.signal_window)
35 | filtered_signal = Signal()
36 | filtered_signal.signal = filtered_signal_value
37 | filtered_signal.header.stamp = rospy.Time.now()
38 |
39 | self.signal_pub.publish(filtered_signal)
40 |
41 | def handle_get_median(self, request):
42 | median = np.median(self.signal_window)
43 | response = GetWindowMedianResponse()
44 | response.median = median
45 | response.success = True
46 | return response
47 |
48 | def spin(self):
49 | # Pass control to ROS
50 | try:
51 | rospy.spin()
52 | except rospy.ROSInterruptException:
53 | rospy.logerr("Ctrl+C was pressed!")
54 |
55 |
56 | if __name__ == "__main__":
57 | SignalFilter().spin()
58 |
--------------------------------------------------------------------------------
/week04_observation_models/signal_generator_node.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | import numpy as np
4 | import rospy
5 | from second_package.msg import Signal
6 |
7 |
8 | class SignalGenerator:
9 | def __init__(self):
10 | # Creaytin publisher for the signal
11 | self.signal_pub = rospy.Publisher("signal", Signal, queue_size=10)
12 |
13 | def generate_and_publish_signal(self):
14 | # Generation and publishing sine signal
15 | # dependent on current system time
16 | # WARNING: not safe operation
17 | seconds = rospy.get_time()
18 | new_signal_value = np.sin(seconds) + 0.2 * np.random.randn()
19 | new_signal = Signal()
20 | new_signal.signal = new_signal_value
21 | new_signal.header.stamp = rospy.Time.now()
22 |
23 | self.signal_pub.publish(new_signal)
24 |
25 | rospy.loginfo("Published {}".format(new_signal_value))
26 |
27 | def launch_signal_generator(self):
28 | # Initializing node with the "signal_generator" name
29 | rospy.init_node("signal_generator")
30 |
31 | # Setting node (publishing) rate
32 | rate = rospy.Rate(10)
33 | while not rospy.is_shutdown():
34 | self.generate_and_publish_signal()
35 | # Using sleep to keep the desired rate
36 | rate.sleep()
37 |
38 | def spin(self):
39 | try:
40 | self.launch_signal_generator()
41 | except rospy.ROSInterruptException:
42 | rospy.logerr("Ctrl+C was pressed!")
43 |
44 |
45 | if __name__ == "__main__":
46 | SignalGenerator().spin()
47 |
--------------------------------------------------------------------------------
/week05_mapping_turtlebot_simulation/lect_05_mapping.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week05_mapping_turtlebot_simulation/lect_05_mapping.pdf
--------------------------------------------------------------------------------
/week05_mapping_turtlebot_simulation/signal_filter_node.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 |
3 | from collections import deque
4 |
5 | import numpy as np
6 | import rospy
7 | from second_package.msg import Signal
8 | from second_package.srv import GetWindowMedian, GetWindowMedianResponse
9 |
10 |
11 | class SignalFilter:
12 | def __init__(self):
13 | # Initializing node with the "signal_filter" name in this process
14 | rospy.init_node("signal_filter")
15 | # Creating subscriber for the signal and publisher for filtered one
16 | self.signal_sub = rospy.Subscriber("signal", Signal, self.signal_callback)
17 | self.signal_pub = rospy.Publisher("filtered_signal", Signal, queue_size=10)
18 |
19 | self.median_srv = rospy.Service(
20 | "get_median", GetWindowMedian, self.handle_get_median
21 | )
22 |
23 | self.window_size = rospy.get_param("/window_size", 5)
24 | rospy.loginfo("Setup node with window_size {}".format(self.window_size))
25 |
26 | # Buffer to store last 5 signal values
27 | self.signal_window = deque([], self.window_size)
28 |
29 | def signal_callback(self, signal):
30 | # Logging recieved data
31 | rospy.loginfo("Recieved {}\nAt {}".format(signal.signal, signal.header.stamp))
32 |
33 | # Filtering signal with the moving average and
34 | # publishing filtered signal
35 | self.signal_window.append(signal.signal)
36 | # TODO: use Butterworth filter
37 | filtered_signal_value = sum(self.signal_window) / len(self.signal_window)
38 | filtered_signal = Signal()
39 | filtered_signal.signal = filtered_signal_value
40 | filtered_signal.header.stamp = rospy.Time.now()
41 |
42 | self.signal_pub.publish(filtered_signal)
43 |
44 | def handle_get_median(self, request):
45 | median = np.median(self.signal_window)
46 | response = GetWindowMedianResponse()
47 | response.median = median
48 | response.success = True
49 | return response
50 |
51 | def spin(self):
52 | # Pass control to ROS
53 | try:
54 | rospy.spin()
55 | except rospy.ROSInterruptException:
56 | rospy.logerr("Ctrl+C was pressed!")
57 |
58 |
59 | if __name__ == "__main__":
60 | SignalFilter().spin()
61 |
--------------------------------------------------------------------------------
/week05_mapping_turtlebot_simulation/signal_pipeline.launch:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/week05_mapping_turtlebot_simulation/turtle_action.sh:
--------------------------------------------------------------------------------
1 | # Based on tutorial page http://wiki.ros.org/actionlib_tutorials/Tutorials/Calling%20Action%20Server%20without%20Action%20Client
2 |
3 | # Start ROS
4 | roscore
5 | # and turtle
6 | rosrun turtlesim turtlesim_node
7 | # and readymade actioin server
8 | rosrun turtle_actionlib shape_server
9 |
10 | # Check everything has created
11 | rostopic list
12 | rqt_graph
13 |
14 | # Send task to action server
15 | rostopic pub /turtle_shape/goal turtle_actionlib/ShapeActionGoal
16 | # here press to autofill all the info and set:
17 | # edges: 3
18 | # radius: 1.0
19 |
20 | # At another terminal!!
21 | # Look at result
22 | rostopic echo /turtle_shape/result
23 | rostopic echo /turtle_shape/feedback
24 | # hit goal one more time
25 | rostopic pub /turtle_shape/goal ....
26 |
27 |
28 | # Update signal_filter_node.py to use paramter
29 | rosparam set /window_size 10
30 | rosparam get /window_size 10
31 | rosrun second_package signal_generator_node.py
32 | # Ctrl + Z (or another terminal)
33 | rosrun second_package signal_filter_node.py
34 |
35 | # look at changed result
36 | rqt_plot
37 |
38 |
39 | # Launch file createion
40 | mkdir src/second_package/launch
41 | mv /signal_pipeline.launch src/second_package/launch
42 |
43 | # Start process with launch file
44 | roslaunch second_package signal_pipeline.launch
45 |
46 | # Check everything created
47 | rostopic echo /filtered_signal
48 | rqt_graph
49 |
--------------------------------------------------------------------------------
/week05_mapping_turtlebot_simulation/turtlebot_simulation.sh:
--------------------------------------------------------------------------------
1 | source /opt/ros/melodic/setup.bash
2 |
3 | sudo apt update
4 | sudo apt install ros-melodic-turtlebot3
5 | cd first_workspace/src
6 | # change branch to your ROS version instead of `melodic-devel`
7 | git clone -b melodic-devel https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
8 | cd ..
9 | catkin_make
10 | source devel/setup.bash
11 |
12 |
13 | # First terminal:
14 | # TB3_MODEL: burger, waffle, waffle_pi - choose your
15 | export TURTLEBOT3_MODEL=burger
16 | roslaunch turtlebot3_fake turtlebot3_fake.launch
17 |
18 | # Second terminal:
19 | export TURTLEBOT3_MODEL=burger
20 | roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
21 |
22 | # Third terminal:
23 | rqt
24 | # Go to Visualization -> TF Tree
25 |
26 |
27 | # First terminal:
28 | export TURTLEBOT3_MODEL=waffle_pi
29 | roslaunch turtlebot3_gazebo turtlebot3_house.launch
30 | # Second terminal:
31 | export TURTLEBOT3_MODEL=waffle_pi
32 | roslaunch turtlebot3_gazebo turtlebot3_simulation.launch
33 | # Third terminal:
34 | export TURTLEBOT3_MODEL=waffle_pi
35 | roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch
36 |
--------------------------------------------------------------------------------
/week06_planning_control/lect_06_path planning.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week06_planning_control/lect_06_path planning.pdf
--------------------------------------------------------------------------------
/week06_planning_control/lect_07_control algorithms.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/girafe-ai/robotics/85fdb522eb3699c8c962a7f57bbb7bd6c4864f5d/week06_planning_control/lect_07_control algorithms.pdf
--------------------------------------------------------------------------------