├── tests ├── __init__.py ├── test_privacy_accounting.py ├── test_dataloader.py ├── test_deepee.py ├── test_snooper.py ├── test_surgeon.py ├── test_per_sample_wrapper.py ├── test_privacy_wrapper.py └── test_watchdog.py ├── site ├── assets │ ├── javascripts │ │ └── lunr │ │ │ └── min │ │ │ ├── lunr.jp.min.js │ │ │ ├── lunr.vi.min.js │ │ │ ├── lunr.multi.min.js │ │ │ ├── lunr.ja.min.js │ │ │ ├── lunr.stemmer.support.min.js │ │ │ ├── lunr.sv.min.js │ │ │ ├── lunr.da.min.js │ │ │ ├── lunr.no.min.js │ │ │ ├── lunr.nl.min.js │ │ │ ├── lunr.de.min.js │ │ │ ├── lunr.du.min.js │ │ │ ├── lunr.ru.min.js │ │ │ ├── lunr.fi.min.js │ │ │ ├── lunr.hu.min.js │ │ │ ├── lunr.pt.min.js │ │ │ ├── lunr.fr.min.js │ │ │ ├── lunr.ro.min.js │ │ │ ├── lunr.it.min.js │ │ │ ├── lunr.es.min.js │ │ │ └── lunr.ar.min.js │ ├── images │ │ └── favicon.png │ └── stylesheets │ │ └── palette.f1a3b89f.min.css ├── sitemap.xml.gz ├── sitemap.xml └── 404.html ├── mkdocs.yml ├── CI_env.yml ├── environment.yml ├── deepee ├── __init__.py ├── dataloader.py ├── snooper.py ├── surgery.py └── watchdog.py ├── pyproject.toml ├── README.md ├── .github └── workflows │ └── main.yml ├── .gitignore ├── docs ├── index.md └── examples.md └── LICENSE /tests/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.jp.min.js: -------------------------------------------------------------------------------- 1 | module.exports=require("./lunr.ja"); -------------------------------------------------------------------------------- /site/sitemap.xml.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gkaissis/deepee/HEAD/site/sitemap.xml.gz -------------------------------------------------------------------------------- /site/assets/images/favicon.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gkaissis/deepee/HEAD/site/assets/images/favicon.png -------------------------------------------------------------------------------- /mkdocs.yml: -------------------------------------------------------------------------------- 1 | site_name: deepee 2 | nav: 3 | - Home: index.md 4 | - Examples: examples.md 5 | theme: 6 | name: material 7 | palette: 8 | primary: black 9 | accent: light blue 10 | font: 11 | text: Fira Sans 12 | mono: Fira Code -------------------------------------------------------------------------------- /CI_env.yml: -------------------------------------------------------------------------------- 1 | name: CI 2 | channels: 3 | - pytorch 4 | - conda-forge 5 | - defaults 6 | dependencies: 7 | - python>=3.7.0 8 | - pytorch>=1.8.0 9 | - torchvision>=0.9.0 10 | - scipy 11 | - torchcsprng 12 | - pytest 13 | - mypy 14 | - black 15 | pip: 16 | - testfixtures 17 | 18 | -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | name: deepee2 2 | channels: 3 | - pytorch 4 | - conda-forge 5 | - defaults 6 | dependencies: 7 | - python>=3.7.0 8 | - pytorch>=1.8.0 9 | - torchvision>=0.9.0 10 | - cudatoolkit>=11.1 11 | - scipy 12 | - torchcsprng 13 | - pytest 14 | - mypy 15 | - black 16 | - pip 17 | - pip: 18 | - testfixtures 19 | 20 | -------------------------------------------------------------------------------- /site/sitemap.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | None 4 | 2021-06-02 5 | daily 6 | 7 | None 8 | 2021-06-02 9 | daily 10 | 11 | -------------------------------------------------------------------------------- /deepee/__init__.py: -------------------------------------------------------------------------------- 1 | __version__ = "0.1.9" 2 | 3 | from .wrapper import PrivacyWrapper, PerSampleGradientWrapper 4 | from .snooper import ModelSnooper 5 | from .dataloader import UniformDataLoader 6 | from .surgery import ModelSurgeon, SurgicalProcedures 7 | from .watchdog import PrivacyWatchdog 8 | 9 | __all__ = [ 10 | "PrivacyWrapper", 11 | "PerSampleGradientWrapper", 12 | "UniformDataLoader", 13 | "ModelSurgeon", 14 | "SurgicalProcedures", 15 | "PrivacyWatchdog", 16 | ] 17 | -------------------------------------------------------------------------------- /tests/test_privacy_accounting.py: -------------------------------------------------------------------------------- 1 | from deepee.privacy_accounting import compute_eps_uniform 2 | import pytest 3 | 4 | 5 | def test_epsilon_uniform(): 6 | eps = compute_eps_uniform(10, 1.0, 50_000, 200, 1e-5) 7 | assert 1.29 < eps < 1.31 8 | 9 | 10 | def test_epsilon_float(): 11 | eps = compute_eps_uniform(10.0, 1.0, 50_000, 200, 1e-5) 12 | assert 1.29 < eps < 1.31 13 | 14 | 15 | def test_implausible_values(): 16 | with pytest.raises(ValueError): 17 | compute_eps_uniform(1, 0.001, 60_000, 200, 1e-5) -------------------------------------------------------------------------------- /pyproject.toml: -------------------------------------------------------------------------------- 1 | [tool.poetry] 2 | name = "deepee" 3 | version = "0.1.9" 4 | description = "Fast (and cheeky) differentially private gradient-based optimisation in PyTorch" 5 | authors = ["Georgios Kaissis", "Alexander Ziller"] 6 | license = "Apache-2.0" 7 | readme = "README.md" 8 | repository = "https://github.com/gkaissis/deepee" 9 | homepage = "https://github.com/gkaissis/deepee" 10 | 11 | [tool.poetry.dependencies] 12 | python = ">=3.7" 13 | 14 | [build-system] 15 | requires = ["poetry-core>=1.0.0"] 16 | build-backend = "poetry.core.masonry.api" 17 | -------------------------------------------------------------------------------- /tests/test_dataloader.py: -------------------------------------------------------------------------------- 1 | from deepee import UniformDataLoader 2 | from torch.utils.data import Dataset 3 | import torch 4 | 5 | 6 | class SimpleDataset(Dataset): 7 | def __init__(self): 8 | super().__init__() 9 | self.data = torch.arange(1, 100, 1, dtype=torch.int) 10 | 11 | def __getitem__(self, idx: int) -> torch.Tensor: 12 | return self.data[idx] 13 | 14 | def __len__(self) -> int: 15 | return len(self.data) 16 | 17 | 18 | ds = SimpleDataset() 19 | 20 | dl = UniformDataLoader(ds, 50) 21 | 22 | 23 | def test_dataloader(): 24 | for item in dl: 25 | assert ( 26 | len(set(item)) == 50 27 | ) # always returns correct batch size and never the same item twice 28 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.vi.min.js: -------------------------------------------------------------------------------- 1 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.vi=function(){this.pipeline.reset(),this.pipeline.add(e.vi.stopWordFilter,e.vi.trimmer)},e.vi.wordCharacters="[A-Za-ẓ̀͐́͑̉̃̓ÂâÊêÔôĂ-ăĐ-đƠ-ơƯ-ư]",e.vi.trimmer=e.trimmerSupport.generateTrimmer(e.vi.wordCharacters),e.Pipeline.registerFunction(e.vi.trimmer,"trimmer-vi"),e.vi.stopWordFilter=e.generateStopWordFilter("là cái nhưng mà".split(" "))}}); -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # `deepee` 2 | 3 | `deepee` is a library for differentially private deep learning in PyTorch. More precisely, `deepee` implements the Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm originally described by [Abadi et al.](https://arxiv.org/pdf/1607.00133.pdf). Despite the name, `deepee` works with any (first order) optimizer, including Adam, AdaGrad, etc. 4 | 5 | It wraps a regular `PyTorch` model and takes care of calculating per-sample gradients, clipping, noising and accumulating gradients with an API which closely mimics the `PyTorch` API of the original model. 6 | 7 | Check out the documentation [here](http://g-k.ai/deepee/) 8 | 9 | # For paper readers 10 | If you would like to reproduce the results from our paper, please go [here](https://github.com/gkaissis/deepee/tree/results) -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.multi.min.js: -------------------------------------------------------------------------------- 1 | !function(e,t){"function"==typeof define&&define.amd?define(t):"object"==typeof exports?module.exports=t():t()(e.lunr)}(this,function(){return function(e){e.multiLanguage=function(){for(var t=Array.prototype.slice.call(arguments),i=t.join("-"),r="",n=[],s=[],p=0;p=0;n--)if(/\S/.test(o.charAt(n))){o=o.substring(0,n+1);break}for(a=[],s=o.length,c=0,l=0;c<=s;c++)if(u=o.charAt(c),m=c-l,u.match(/\s/)||c==s){if(m>0)for(p=t.segment(o.slice(l,c)).filter(function(e){return!!e}),f=l,n=0;n Generator: 53 | for _ in range(len(self)): 54 | yield np.random.choice(self.sample_size, self.batch_size, replace=False) 55 | 56 | def __len__(self) -> int: 57 | return self.sample_size // self.batch_size 58 | -------------------------------------------------------------------------------- /tests/test_surgeon.py: -------------------------------------------------------------------------------- 1 | from deepee.wrapper import PrivacyWrapper 2 | from torchvision.models import resnet18 3 | from torch import nn 4 | from deepee import ModelSurgeon, SurgicalProcedures 5 | from functools import partial 6 | import torch 7 | import pytest 8 | 9 | 10 | def test_bn_to_bn_nostats(): 11 | model = resnet18() 12 | surgeon = ModelSurgeon(SurgicalProcedures.BN_to_BN_nostats) 13 | converted_model = surgeon.operate(model) 14 | assert converted_model.bn1.track_running_stats == False 15 | wrapped = PrivacyWrapper( 16 | converted_model, 17 | 2, 18 | 1.0, 19 | 1.0, 20 | ) 21 | data = torch.rand(2, 3, 224, 224) 22 | output = wrapped(data) 23 | 24 | 25 | def test_bn_to_bn_nostats_small_input(): 26 | model = resnet18() 27 | surgeon = ModelSurgeon(SurgicalProcedures.BN_to_BN_nostats) 28 | converted_model = surgeon.operate(model) 29 | assert converted_model.bn1.track_running_stats == False 30 | wrapped = PrivacyWrapper( 31 | converted_model, 32 | 2, 33 | 1.0, 34 | 1.0, 35 | ) 36 | data = torch.rand(2, 3, 32, 32) 37 | with pytest.raises(RuntimeError): 38 | output = wrapped(data) 39 | 40 | 41 | def test_bn_to_gn_default(): 42 | model = resnet18() 43 | surgeon = ModelSurgeon(SurgicalProcedures.BN_to_GN) 44 | converted_model = surgeon.operate(model) 45 | assert isinstance(converted_model.bn1, nn.modules.normalization.GroupNorm) 46 | assert converted_model.bn1.num_groups == 32 47 | wrapped = PrivacyWrapper( 48 | converted_model, 49 | 2, 50 | 1.0, 51 | 1.0, 52 | ) 53 | data = torch.rand(2, 3, 224, 224) 54 | output = wrapped(data) 55 | 56 | 57 | def test_bn_to_gn_96(): 58 | model = resnet18() 59 | surgeon = ModelSurgeon(partial(SurgicalProcedures.BN_to_GN, num_groups=96)) 60 | converted_model = surgeon.operate(model) 61 | assert isinstance(converted_model.bn1, nn.modules.normalization.GroupNorm) 62 | assert converted_model.bn1.num_groups == 96 63 | wrapped = PrivacyWrapper( 64 | converted_model, 65 | 2, 66 | 1.0, 67 | 1.0, 68 | ) 69 | data = torch.rand(2, 3, 224, 224) 70 | with pytest.raises(RuntimeError): 71 | output = wrapped(data) 72 | 73 | 74 | def test_bn_to_in(): 75 | model = resnet18() 76 | surgeon = ModelSurgeon(SurgicalProcedures.BN_to_IN) 77 | converted_model = surgeon.operate(model) 78 | assert isinstance(converted_model.bn1, nn.modules.instancenorm._InstanceNorm) 79 | wrapped = PrivacyWrapper( 80 | converted_model, 81 | 2, 82 | 1.0, 83 | 1.0, 84 | ) 85 | data = torch.rand(2, 3, 224, 224) 86 | output = wrapped(data) 87 | 88 | 89 | def test_bn_to_ln(): 90 | model = resnet18() 91 | surgeon = ModelSurgeon(partial(SurgicalProcedures.BN_to_LN, normalized_shape=16)) 92 | converted_model = surgeon.operate(model) 93 | assert isinstance(converted_model.bn1, nn.modules.normalization.LayerNorm) 94 | assert converted_model.bn1.normalized_shape == (16,) 95 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.stemmer.support.min.js: -------------------------------------------------------------------------------- 1 | !function(r,t){"function"==typeof define&&define.amd?define(t):"object"==typeof exports?module.exports=t():t()(r.lunr)}(this,function(){return function(r){r.stemmerSupport={Among:function(r,t,i,s){if(this.toCharArray=function(r){for(var t=r.length,i=new Array(t),s=0;s=i&&(e-=i,t[e>>3]&1<<(7&e)))return this.cursor++,!0}return!1},in_grouping_b:function(t,i,s){if(this.cursor>this.limit_backward){var e=r.charCodeAt(this.cursor-1);if(e<=s&&e>=i&&(e-=i,t[e>>3]&1<<(7&e)))return this.cursor--,!0}return!1},out_grouping:function(t,i,s){if(this.cursors||e>3]&1<<(7&e)))return this.cursor++,!0}return!1},out_grouping_b:function(t,i,s){if(this.cursor>this.limit_backward){var e=r.charCodeAt(this.cursor-1);if(e>s||e>3]&1<<(7&e)))return this.cursor--,!0}return!1},eq_s:function(t,i){if(this.limit-this.cursor>1),f=0,l=o0||e==s||c)break;c=!0}}for(;;){var _=t[s];if(o>=_.s_size){if(this.cursor=n+_.s_size,!_.method)return _.result;var b=_.method();if(this.cursor=n+_.s_size,b)return _.result}if((s=_.substring_i)<0)return 0}},find_among_b:function(t,i){for(var s=0,e=i,n=this.cursor,u=this.limit_backward,o=0,h=0,c=!1;;){for(var a=s+(e-s>>1),f=0,l=o=0;m--){if(n-l==u){f=-1;break}if(f=r.charCodeAt(n-1-l)-_.s[m])break;l++}if(f<0?(e=a,h=l):(s=a,o=l),e-s<=1){if(s>0||e==s||c)break;c=!0}}for(;;){var _=t[s];if(o>=_.s_size){if(this.cursor=n-_.s_size,!_.method)return _.result;var b=_.method();if(this.cursor=n-_.s_size,b)return _.result}if((s=_.substring_i)<0)return 0}},replace_s:function(t,i,s){var e=s.length-(i-t),n=r.substring(0,t),u=r.substring(i);return r=n+s+u,this.limit+=e,this.cursor>=i?this.cursor+=e:this.cursor>t&&(this.cursor=t),e},slice_check:function(){if(this.bra<0||this.bra>this.ket||this.ket>this.limit||this.limit>r.length)throw"faulty slice operation"},slice_from:function(r){this.slice_check(),this.replace_s(this.bra,this.ket,r)},slice_del:function(){this.slice_from("")},insert:function(r,t,i){var s=this.replace_s(r,t,i);r<=this.bra&&(this.bra+=s),r<=this.ket&&(this.ket+=s)},slice_to:function(){return this.slice_check(),r.substring(this.bra,this.ket)},eq_v_b:function(r){return this.eq_s_b(r.length,r)}}}},r.trimmerSupport={generateTrimmer:function(r){var t=new RegExp("^[^"+r+"]+"),i=new RegExp("[^"+r+"]+$");return function(r){return"function"==typeof r.update?r.update(function(r){return r.replace(t,"").replace(i,"")}):r.replace(t,"").replace(i,"")}}}}}); -------------------------------------------------------------------------------- /deepee/snooper.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from typing import Callable 3 | 4 | 5 | class BadModuleError(Exception): 6 | """Informs the user that the module has some kinda problem.""" 7 | 8 | pass 9 | 10 | 11 | class ModelSnooper: 12 | def __init__(self) -> None: 13 | """The ModelSnooper checks the model for common problems in DP deep learning. 14 | In general, all layers which maintain state based on multiple samples from a batch 15 | are not natively supported since the state is calculated non-privately. 16 | These include: 17 | - Having vanilla BatchNorm layers in the model unless the track_running_stats 18 | attribute is deactivated. In PyTorch, this turns them into InstanceNorm layers. 19 | - Having InstanceNorm layers which track running statistics. 20 | """ 21 | self.validators = [ 22 | Validator( 23 | "InstanceNorm Running Stats Off", 24 | IN_running_stats_off, 25 | "InstanceNorm Layers must have track_running_stats turned off. ", 26 | ), 27 | Validator( 28 | "BatchNorm Running Stats Off", 29 | BN_running_stats_off, 30 | "BatchNorm Layers must have track_running_stats turned off, otherwise be" 31 | " replaced with InstanceNorm, LayerNorm or GroupNorm.", 32 | ), 33 | ] 34 | 35 | def snoop(self, model: torch.nn.Module) -> None: 36 | msg = "" 37 | for validator in self.validators: 38 | msg += validator.validate(model) 39 | if msg != "": 40 | raise BadModuleError(msg) 41 | 42 | 43 | class Validator: 44 | def __init__(self, name: str, val_func: Callable, message: str) -> None: 45 | """Private class for use in the ModelSnooper. Takes a validator function 46 | and applies it to the model's modules. If the function fails, it returns 47 | an exception message for the user. 48 | 49 | Args: 50 | name (str): Human-readable description. Not used elsewhere. 51 | val_func (Callable): The function which validates the model. Should 52 | return False if it fails 53 | message (str): The error message which is passed to the ModelSnooper 54 | to be shown to the user. 55 | """ 56 | self.name = name 57 | self.val_func = val_func 58 | self.message = message 59 | 60 | def validate(self, model: torch.nn.Module) -> str: 61 | """Run the validators on the model. Returns an error 62 | message if one of the validators fails or an empty string otherwise. 63 | """ 64 | if not self.val_func(model): 65 | return self.message 66 | return "" 67 | 68 | 69 | def IN_running_stats_off(model: torch.nn.Module) -> bool: 70 | """Module has InstanceNorm layer with running stats 71 | activated. 72 | """ 73 | for module in model.modules(): 74 | if isinstance( 75 | module, 76 | (torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d), 77 | ): 78 | if module.track_running_stats: 79 | return False 80 | return True 81 | 82 | 83 | def BN_running_stats_off(model: torch.nn.Module) -> bool: 84 | """Module contains BatchNorm layer with running stats 85 | activated. 86 | """ 87 | for module in model.modules(): 88 | if isinstance( 89 | module, 90 | (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d), 91 | ): 92 | if module.track_running_stats: 93 | return False 94 | return True 95 | -------------------------------------------------------------------------------- /docs/index.md: -------------------------------------------------------------------------------- 1 | # About 2 | 3 | `deepee` is a library for differentially private deep learning in PyTorch. More precisely, `deepee` implements the Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm originally described by [Abadi et al.](https://arxiv.org/pdf/1607.00133.pdf). Despite the name, `deepee` works with any (first order) optimizer, including Adam, AdaGrad, etc. 4 | 5 | It wraps a regular `PyTorch` model and takes care of calculating per-sample gradients, clipping, noising and accumulating gradients with an API which closely mimics the `PyTorch` API of the original model. 6 | 7 | # Design principles 8 | 9 | The DP-SGD algorithm requires two key steps, which differ from "normal" neural network training. For every minibatch, the algorithm requires to: 10 | 11 | 1. Obtain the gradients of each individual sample in the batch to calculate their L2-norm and _clip_ it to a pre-set threshold 12 | 2. Average the gradients and add Gaussian noise to the average before taking an optimisation step. 13 | 14 | The first of these two steps is complicated, as deep learning frameworks like `PyTorch` are not designed to provide per-sample gradients by default. `deepee` works around this limitation by creating a "copy" of the network for every sample in the batch and then doing a parallel forward and backward pass on each sample simultaneously. This technique has two benefits: 15 | 16 | 1. `deepee` works with *any* neural network architecture that can be defined in `PyTorch` without any user modification 17 | 2. The process is very efficient as it happens in parallel and doesn't create significant memory overhead. The copies of the models are kept as references to the original weights and thus it's not required to create "real" model copies. The only memory overhead thus results from keeping the per-sample gradients in memory for a short time during each batch. 18 | 19 | 20 | # Basic usage 21 | The key component of the framework is the `PrivacyWrapper` class, which wraps a `PyTorch module` and takes care of the training process behind the scenes. The clipping norm and noise multiplier parameters can be set here. `deepee` will automatically check if a model contains incompatible layers (such as Batch Normalisation) and throw an error. If such layers exist in the network, the `ModelSurgeon` can be used to replace them with compatible layers such as Group Normalisation, Instance Normalisation etc.. `deepee` also offers automatic privacy accounting and will interrupt the training (and optionally save the last model) when the privacy budget is exhausted. This process is abstracted using the `PrivacyWatchdog` class. 22 | 23 | An example for the use of `deepee` showcasing all these concepts can be found [here](examples.md). 24 | 25 | # For paper readers 26 | If you would like to reproduce the experiments from our paper, please switch to the `results` branch. Instructions for reproduction can be found in the README of the branch. 27 | # Installation 28 | You can install deepee with: 29 | 30 | `pip install deepee` 31 | 32 | `deepee` does not come with any hard-coded dependencies to maintain high compatibility, so these must be installed separately. `deepee` is tested with `pytorch>1.8`(CPU and GPU) on Ubuntu Linux (min. 20.04) and MacOS >11.3. No GPU support is available for MacOS. 33 | 34 | The cryptographically secure random number generator (CSPRNG) used by `deepee` must also be installed separately. The framework will function without the CSPRNG, however we stress that it should **not** be used in production environments without this feature. 35 | 36 | To install `torchcsprng`, follow the instructions on [this](https://pypi.org/project/torchcsprng/) page. 37 | 38 | Lastly, `SciPy` is required, which can be installed with `pip install scipy`. 39 | 40 | For Linux, the full installation can therefore look something like this: 41 | 42 | ``` 43 | pip3 install torchcsprng==0.2.0 torch==1.8.0+cu101 torchvision==0.9.0 -f https://download.pytorch.org/whl/cu101/torch_stable.html 44 | pip3 install scipy deepee 45 | ``` 46 | 47 | 48 | # Contributing 49 | `deepee` is licensed under the Apache 2.0. license. Contributions are welcome via PR. To contribute, please install the following additional dependencies: `mypy, black, pytest, testfixtures`. Packaging is carried out using `poetry`. 50 | 51 | -------------------------------------------------------------------------------- /tests/test_per_sample_wrapper.py: -------------------------------------------------------------------------------- 1 | from deepee import PerSampleGradientWrapper 2 | import torch 3 | import pytest 4 | 5 | 6 | class MiniModel(torch.nn.Module): 7 | def __init__(self): 8 | super().__init__() 9 | self.lin = torch.nn.Linear(10, 1) 10 | 11 | def forward(self, x): 12 | return self.lin(x) 13 | 14 | 15 | def test_wrap(): 16 | wrapped = PerSampleGradientWrapper(MiniModel(), 2) 17 | 18 | 19 | def test_forward(): 20 | data = torch.randn(2, 1, 10) 21 | wrapped = PerSampleGradientWrapper(MiniModel(), 2) 22 | output = wrapped(data) 23 | assert output.shape == (2, 1, 1) 24 | 25 | 26 | def test_raises_param_error(): 27 | wrapped = PerSampleGradientWrapper(MiniModel(), 2) 28 | with pytest.raises(ValueError): 29 | params = wrapped.parameters() 30 | 31 | 32 | def test_check_device_cpu(): 33 | wrapped = PerSampleGradientWrapper(MiniModel(), 2).to("cpu") 34 | assert ( 35 | next( 36 | iter( 37 | set([param.device.type for param in wrapped.wrapped_model.parameters()]) 38 | ) 39 | ) 40 | == "cpu" 41 | ) 42 | for model in wrapped.models: 43 | assert ( 44 | next(iter(set([param.device.type for param in model.parameters()]))) 45 | == "cpu" 46 | ) 47 | 48 | 49 | def test_check_device_gpu(): 50 | if torch.cuda.is_available(): 51 | wrapped = PerSampleGradientWrapper(MiniModel(), 2).to("cuda") 52 | assert "cuda" in next( 53 | iter( 54 | set([param.device.type for param in wrapped.wrapped_model.parameters()]) 55 | ) 56 | ) 57 | for model in wrapped.models: 58 | assert "cuda" in next( 59 | iter(set([param.device.type for param in model.parameters()])) 60 | ) 61 | else: 62 | pass 63 | 64 | 65 | def test_per_sample_grads(): 66 | torch.manual_seed(42) 67 | data = torch.randn(2, 1, 10) 68 | torch.manual_seed(42) 69 | wrapped = PerSampleGradientWrapper(MiniModel(), 2) 70 | torch.manual_seed(42) 71 | model = MiniModel() # single copy 72 | output_single = model(data) 73 | output_wrapped = wrapped(data) 74 | loss_single = output_single.mean() 75 | loss_wrapped = output_wrapped.mean() 76 | 77 | loss_single.backward() 78 | loss_wrapped.backward() 79 | wrapped.calculate_per_sample_gradients() 80 | single_grads = torch.cat([param.grad.flatten() for param in model.parameters()]) 81 | accumulated_grads = torch.cat( 82 | [ 83 | param.accumulated_gradients.sum(dim=0).flatten() 84 | for param in wrapped.wrapped_model.parameters() 85 | ] 86 | ) 87 | assert torch.allclose(single_grads, accumulated_grads) 88 | 89 | 90 | def test_per_sample_grads_transfer_learning(): 91 | class MiniModel(torch.nn.Module): 92 | def __init__(self): 93 | super().__init__() 94 | self.lin = torch.nn.Linear(10, 1) 95 | list(self.lin.parameters())[0].requires_grad_(False) 96 | 97 | def forward(self, x): 98 | return self.lin(x) 99 | 100 | "One model parameter does not requires_grad" 101 | torch.manual_seed(42) 102 | data = torch.randn(2, 1, 10) 103 | torch.manual_seed(42) 104 | wrapped = PerSampleGradientWrapper(MiniModel(), 2) 105 | torch.manual_seed(42) 106 | model = MiniModel() # single copy 107 | output_single = model(data) 108 | output_wrapped = wrapped(data) 109 | loss_single = output_single.mean() 110 | loss_wrapped = output_wrapped.mean() 111 | 112 | loss_single.backward() 113 | loss_wrapped.backward() 114 | wrapped.calculate_per_sample_gradients() 115 | single_grads = torch.cat( 116 | [param.grad.flatten() for param in model.parameters() if param.requires_grad] 117 | ) 118 | accumulated_grads = torch.cat( 119 | [ 120 | param.accumulated_gradients.sum(dim=0).flatten() 121 | for param in wrapped.wrapped_model.parameters() 122 | if hasattr(param, "accumulated_gradients") 123 | ] 124 | ) 125 | assert torch.allclose(single_grads, accumulated_grads) -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.sv.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Swedish` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.sv=function(){this.pipeline.reset(),this.pipeline.add(e.sv.trimmer,e.sv.stopWordFilter,e.sv.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.sv.stemmer))},e.sv.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.sv.trimmer=e.trimmerSupport.generateTrimmer(e.sv.wordCharacters),e.Pipeline.registerFunction(e.sv.trimmer,"trimmer-sv"),e.sv.stemmer=function(){var r=e.stemmerSupport.Among,n=e.stemmerSupport.SnowballProgram,t=new function(){function e(){var e,r=w.cursor+3;if(o=w.limit,0<=r||r<=w.limit){for(a=r;;){if(e=w.cursor,w.in_grouping(l,97,246)){w.cursor=e;break}if(w.cursor=e,w.cursor>=w.limit)return;w.cursor++}for(;!w.out_grouping(l,97,246);){if(w.cursor>=w.limit)return;w.cursor++}o=w.cursor,o=o&&(w.limit_backward=o,w.cursor=w.limit,w.ket=w.cursor,e=w.find_among_b(u,37),w.limit_backward=r,e))switch(w.bra=w.cursor,e){case 1:w.slice_del();break;case 2:w.in_grouping_b(d,98,121)&&w.slice_del()}}function i(){var e=w.limit_backward;w.cursor>=o&&(w.limit_backward=o,w.cursor=w.limit,w.find_among_b(c,7)&&(w.cursor=w.limit,w.ket=w.cursor,w.cursor>w.limit_backward&&(w.bra=--w.cursor,w.slice_del())),w.limit_backward=e)}function s(){var e,r;if(w.cursor>=o){if(r=w.limit_backward,w.limit_backward=o,w.cursor=w.limit,w.ket=w.cursor,e=w.find_among_b(m,5))switch(w.bra=w.cursor,e){case 1:w.slice_del();break;case 2:w.slice_from("lös");break;case 3:w.slice_from("full")}w.limit_backward=r}}var a,o,u=[new r("a",-1,1),new r("arna",0,1),new r("erna",0,1),new r("heterna",2,1),new r("orna",0,1),new r("ad",-1,1),new r("e",-1,1),new r("ade",6,1),new r("ande",6,1),new r("arne",6,1),new r("are",6,1),new r("aste",6,1),new r("en",-1,1),new r("anden",12,1),new r("aren",12,1),new r("heten",12,1),new r("ern",-1,1),new r("ar",-1,1),new r("er",-1,1),new r("heter",18,1),new r("or",-1,1),new r("s",-1,2),new r("as",21,1),new r("arnas",22,1),new r("ernas",22,1),new r("ornas",22,1),new r("es",21,1),new r("ades",26,1),new r("andes",26,1),new r("ens",21,1),new r("arens",29,1),new r("hetens",29,1),new r("erns",21,1),new r("at",-1,1),new r("andet",-1,1),new r("het",-1,1),new r("ast",-1,1)],c=[new r("dd",-1,-1),new r("gd",-1,-1),new r("nn",-1,-1),new r("dt",-1,-1),new r("gt",-1,-1),new r("kt",-1,-1),new r("tt",-1,-1)],m=[new r("ig",-1,1),new r("lig",0,1),new r("els",-1,1),new r("fullt",-1,3),new r("löst",-1,2)],l=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,24,0,32],d=[119,127,149],w=new n;this.setCurrent=function(e){w.setCurrent(e)},this.getCurrent=function(){return w.getCurrent()},this.stem=function(){var r=w.cursor;return e(),w.limit_backward=r,w.cursor=w.limit,t(),w.cursor=w.limit,i(),w.cursor=w.limit,s(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return t.setCurrent(e),t.stem(),t.getCurrent()}):(t.setCurrent(e),t.stem(),t.getCurrent())}}(),e.Pipeline.registerFunction(e.sv.stemmer,"stemmer-sv"),e.sv.stopWordFilter=e.generateStopWordFilter("alla allt att av blev bli blir blivit de dem den denna deras dess dessa det detta dig din dina ditt du där då efter ej eller en er era ert ett från för ha hade han hans har henne hennes hon honom hur här i icke ingen inom inte jag ju kan kunde man med mellan men mig min mina mitt mot mycket ni nu när någon något några och om oss på samma sedan sig sin sina sitta själv skulle som så sådan sådana sådant till under upp ut utan vad var vara varför varit varje vars vart vem vi vid vilka vilkas vilken vilket vår våra vårt än är åt över".split(" ")),e.Pipeline.registerFunction(e.sv.stopWordFilter,"stopWordFilter-sv")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.da.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Danish` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.da=function(){this.pipeline.reset(),this.pipeline.add(e.da.trimmer,e.da.stopWordFilter,e.da.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.da.stemmer))},e.da.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.da.trimmer=e.trimmerSupport.generateTrimmer(e.da.wordCharacters),e.Pipeline.registerFunction(e.da.trimmer,"trimmer-da"),e.da.stemmer=function(){var r=e.stemmerSupport.Among,i=e.stemmerSupport.SnowballProgram,n=new function(){function e(){var e,r=f.cursor+3;if(d=f.limit,0<=r&&r<=f.limit){for(a=r;;){if(e=f.cursor,f.in_grouping(w,97,248)){f.cursor=e;break}if(f.cursor=e,e>=f.limit)return;f.cursor++}for(;!f.out_grouping(w,97,248);){if(f.cursor>=f.limit)return;f.cursor++}d=f.cursor,d=d&&(r=f.limit_backward,f.limit_backward=d,f.ket=f.cursor,e=f.find_among_b(c,32),f.limit_backward=r,e))switch(f.bra=f.cursor,e){case 1:f.slice_del();break;case 2:f.in_grouping_b(p,97,229)&&f.slice_del()}}function t(){var e,r=f.limit-f.cursor;f.cursor>=d&&(e=f.limit_backward,f.limit_backward=d,f.ket=f.cursor,f.find_among_b(l,4)?(f.bra=f.cursor,f.limit_backward=e,f.cursor=f.limit-r,f.cursor>f.limit_backward&&(f.cursor--,f.bra=f.cursor,f.slice_del())):f.limit_backward=e)}function s(){var e,r,i,n=f.limit-f.cursor;if(f.ket=f.cursor,f.eq_s_b(2,"st")&&(f.bra=f.cursor,f.eq_s_b(2,"ig")&&f.slice_del()),f.cursor=f.limit-n,f.cursor>=d&&(r=f.limit_backward,f.limit_backward=d,f.ket=f.cursor,e=f.find_among_b(m,5),f.limit_backward=r,e))switch(f.bra=f.cursor,e){case 1:f.slice_del(),i=f.limit-f.cursor,t(),f.cursor=f.limit-i;break;case 2:f.slice_from("løs")}}function o(){var e;f.cursor>=d&&(e=f.limit_backward,f.limit_backward=d,f.ket=f.cursor,f.out_grouping_b(w,97,248)?(f.bra=f.cursor,u=f.slice_to(u),f.limit_backward=e,f.eq_v_b(u)&&f.slice_del()):f.limit_backward=e)}var a,d,u,c=[new r("hed",-1,1),new r("ethed",0,1),new r("ered",-1,1),new r("e",-1,1),new r("erede",3,1),new r("ende",3,1),new r("erende",5,1),new r("ene",3,1),new r("erne",3,1),new r("ere",3,1),new r("en",-1,1),new r("heden",10,1),new r("eren",10,1),new r("er",-1,1),new r("heder",13,1),new r("erer",13,1),new r("s",-1,2),new r("heds",16,1),new r("es",16,1),new r("endes",18,1),new r("erendes",19,1),new r("enes",18,1),new r("ernes",18,1),new r("eres",18,1),new r("ens",16,1),new r("hedens",24,1),new r("erens",24,1),new r("ers",16,1),new r("ets",16,1),new r("erets",28,1),new r("et",-1,1),new r("eret",30,1)],l=[new r("gd",-1,-1),new r("dt",-1,-1),new r("gt",-1,-1),new r("kt",-1,-1)],m=[new r("ig",-1,1),new r("lig",0,1),new r("elig",1,1),new r("els",-1,1),new r("løst",-1,2)],w=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,48,0,128],p=[239,254,42,3,0,0,0,0,0,0,0,0,0,0,0,0,16],f=new i;this.setCurrent=function(e){f.setCurrent(e)},this.getCurrent=function(){return f.getCurrent()},this.stem=function(){var r=f.cursor;return e(),f.limit_backward=r,f.cursor=f.limit,n(),f.cursor=f.limit,t(),f.cursor=f.limit,s(),f.cursor=f.limit,o(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}}(),e.Pipeline.registerFunction(e.da.stemmer,"stemmer-da"),e.da.stopWordFilter=e.generateStopWordFilter("ad af alle alt anden at blev blive bliver da de dem den denne der deres det dette dig din disse dog du efter eller en end er et for fra ham han hans har havde have hende hendes her hos hun hvad hvis hvor i ikke ind jeg jer jo kunne man mange med meget men mig min mine mit mod ned noget nogle nu når og også om op os over på selv sig sin sine sit skal skulle som sådan thi til ud under var vi vil ville vor være været".split(" ")),e.Pipeline.registerFunction(e.da.stopWordFilter,"stopWordFilter-da")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.no.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Norwegian` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.no=function(){this.pipeline.reset(),this.pipeline.add(e.no.trimmer,e.no.stopWordFilter,e.no.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.no.stemmer))},e.no.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.no.trimmer=e.trimmerSupport.generateTrimmer(e.no.wordCharacters),e.Pipeline.registerFunction(e.no.trimmer,"trimmer-no"),e.no.stemmer=function(){var r=e.stemmerSupport.Among,n=e.stemmerSupport.SnowballProgram,i=new function(){function e(){var e,r=w.cursor+3;if(a=w.limit,0<=r||r<=w.limit){for(s=r;;){if(e=w.cursor,w.in_grouping(d,97,248)){w.cursor=e;break}if(e>=w.limit)return;w.cursor=e+1}for(;!w.out_grouping(d,97,248);){if(w.cursor>=w.limit)return;w.cursor++}a=w.cursor,a=a&&(r=w.limit_backward,w.limit_backward=a,w.ket=w.cursor,e=w.find_among_b(m,29),w.limit_backward=r,e))switch(w.bra=w.cursor,e){case 1:w.slice_del();break;case 2:n=w.limit-w.cursor,w.in_grouping_b(c,98,122)?w.slice_del():(w.cursor=w.limit-n,w.eq_s_b(1,"k")&&w.out_grouping_b(d,97,248)&&w.slice_del());break;case 3:w.slice_from("er")}}function t(){var e,r=w.limit-w.cursor;w.cursor>=a&&(e=w.limit_backward,w.limit_backward=a,w.ket=w.cursor,w.find_among_b(u,2)?(w.bra=w.cursor,w.limit_backward=e,w.cursor=w.limit-r,w.cursor>w.limit_backward&&(w.cursor--,w.bra=w.cursor,w.slice_del())):w.limit_backward=e)}function o(){var e,r;w.cursor>=a&&(r=w.limit_backward,w.limit_backward=a,w.ket=w.cursor,e=w.find_among_b(l,11),e?(w.bra=w.cursor,w.limit_backward=r,1==e&&w.slice_del()):w.limit_backward=r)}var s,a,m=[new r("a",-1,1),new r("e",-1,1),new r("ede",1,1),new r("ande",1,1),new r("ende",1,1),new r("ane",1,1),new r("ene",1,1),new r("hetene",6,1),new r("erte",1,3),new r("en",-1,1),new r("heten",9,1),new r("ar",-1,1),new r("er",-1,1),new r("heter",12,1),new r("s",-1,2),new r("as",14,1),new r("es",14,1),new r("edes",16,1),new r("endes",16,1),new r("enes",16,1),new r("hetenes",19,1),new r("ens",14,1),new r("hetens",21,1),new r("ers",14,1),new r("ets",14,1),new r("et",-1,1),new r("het",25,1),new r("ert",-1,3),new r("ast",-1,1)],u=[new r("dt",-1,-1),new r("vt",-1,-1)],l=[new r("leg",-1,1),new r("eleg",0,1),new r("ig",-1,1),new r("eig",2,1),new r("lig",2,1),new r("elig",4,1),new r("els",-1,1),new r("lov",-1,1),new r("elov",7,1),new r("slov",7,1),new r("hetslov",9,1)],d=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,48,0,128],c=[119,125,149,1],w=new n;this.setCurrent=function(e){w.setCurrent(e)},this.getCurrent=function(){return w.getCurrent()},this.stem=function(){var r=w.cursor;return e(),w.limit_backward=r,w.cursor=w.limit,i(),w.cursor=w.limit,t(),w.cursor=w.limit,o(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}}(),e.Pipeline.registerFunction(e.no.stemmer,"stemmer-no"),e.no.stopWordFilter=e.generateStopWordFilter("alle at av bare begge ble blei bli blir blitt både båe da de deg dei deim deira deires dem den denne der dere deres det dette di din disse ditt du dykk dykkar då eg ein eit eitt eller elles en enn er et ett etter for fordi fra før ha hadde han hans har hennar henne hennes her hjå ho hoe honom hoss hossen hun hva hvem hver hvilke hvilken hvis hvor hvordan hvorfor i ikke ikkje ikkje ingen ingi inkje inn inni ja jeg kan kom korleis korso kun kunne kva kvar kvarhelst kven kvi kvifor man mange me med medan meg meget mellom men mi min mine mitt mot mykje ned no noe noen noka noko nokon nokor nokre nå når og også om opp oss over på samme seg selv si si sia sidan siden sin sine sitt sjøl skal skulle slik so som som somme somt så sånn til um upp ut uten var vart varte ved vere verte vi vil ville vore vors vort vår være være vært å".split(" ")),e.Pipeline.registerFunction(e.no.stopWordFilter,"stopWordFilter-no")}}); -------------------------------------------------------------------------------- /deepee/surgery.py: -------------------------------------------------------------------------------- 1 | r""" 2 | Several functions in this module reused directly from 3 | https://github.com/pytorch/opacus/blob/master/opacus/utils/module_modification.py 4 | under Apache-2.0 License terms. 5 | """ 6 | from typing import Callable, Type, Union 7 | import torch 8 | from torch import nn 9 | 10 | 11 | def _replace_child( 12 | root: nn.Module, child_name: str, converter: Callable[[nn.Module], nn.Module] 13 | ) -> None: 14 | parent = root 15 | nameList = child_name.split(".") 16 | for name in nameList[:-1]: 17 | parent = parent._modules[name] 18 | # set to identity 19 | parent._modules[nameList[-1]] = converter(parent._modules[nameList[-1]]) 20 | 21 | 22 | def replace_all_modules( 23 | root: nn.Module, 24 | target_class: Type[nn.Module], 25 | converter: Callable[[nn.Module], nn.Module], 26 | ) -> nn.Module: 27 | if isinstance(root, target_class): 28 | return converter(root) 29 | for name, obj in root.named_modules(): 30 | if isinstance(obj, target_class): 31 | _replace_child(root, name, converter) 32 | return root 33 | 34 | 35 | bn_to_in = { 36 | nn.BatchNorm1d: nn.InstanceNorm1d, 37 | nn.BatchNorm2d: nn.InstanceNorm2d, 38 | nn.BatchNorm3d: nn.InstanceNorm3d, 39 | } 40 | 41 | in_to_in = { 42 | nn.InstanceNorm1d: nn.InstanceNorm1d, 43 | nn.InstanceNorm2d: nn.InstanceNorm2d, 44 | nn.InstanceNorm3d: nn.InstanceNorm3d, 45 | } 46 | 47 | bn_to_bn_nostats = { 48 | nn.BatchNorm1d: nn.BatchNorm1d, 49 | nn.BatchNorm2d: nn.BatchNorm2d, 50 | nn.BatchNorm3d: nn.BatchNorm3d, 51 | } 52 | 53 | 54 | class SurgicalProcedures: 55 | @staticmethod 56 | def BN_to_IN(module: nn.modules.batchnorm._BatchNorm) -> nn.Module: 57 | """BatchNorm to InstanceNorm""" 58 | return bn_to_in.get(type(module))( 59 | module.num_features, track_running_stats=False 60 | ) 61 | 62 | @staticmethod 63 | def BN_to_BN_nostats(module: nn.modules.batchnorm._BatchNorm) -> nn.Module: 64 | """BatchNorm to BatchNorm without running stats (=InstanceNorm)""" 65 | return bn_to_bn_nostats.get(type(module))( 66 | module.num_features, track_running_stats=False 67 | ) 68 | 69 | @staticmethod 70 | def IN_to_IN_nostats(module: nn.modules.instancenorm._InstanceNorm) -> nn.Module: 71 | """InstanceNorm to InstanceNorm (without running stats)""" 72 | return in_to_in.get(type(module))( 73 | module.num_features, track_running_stats=False 74 | ) 75 | 76 | @staticmethod 77 | def BN_to_GN( 78 | module: nn.modules.batchnorm._BatchNorm, num_groups: Union[str, int] = "default" 79 | ) -> nn.Module: 80 | """BatchNorm to GroupNorm""" 81 | if num_groups == "default": 82 | return nn.GroupNorm(min(32, module.num_features), module.num_features) 83 | elif isinstance(num_groups, int): 84 | return nn.GroupNorm(num_groups, module.num_features) 85 | else: 86 | raise ValueError( 87 | "num_groups must either be set to 'default' or the number of groups" 88 | ) 89 | 90 | @staticmethod 91 | def BN_to_LN( 92 | module: nn.Module, 93 | normalized_shape: Union[int, list, torch.Size], 94 | ) -> nn.Module: 95 | """BatchNorm to LayerNorm""" 96 | return nn.LayerNorm(normalized_shape=normalized_shape) 97 | 98 | 99 | class ModelSurgeon: 100 | def __init__(self, converter: Callable): 101 | """Convenience class to replace privacy-incompatible 102 | normalisation layers (most commonly BatchNorm) in the model. 103 | Can be used to remedy BadModelError exceptions thrown by the 104 | ModelSnooper. 105 | 106 | Args: 107 | converter (Callable): The converter to be used. Options: 108 | - BN_to_BN_nostats : BatchNorm to BatchNorm without running stats. 109 | This is equivalent to InstanceNorm. 110 | - BN_to_IN : BatchNorm to InstanceNorm 111 | - BN_to_GN : BatchNorm to GroupNorm. By default will use min(32, model.num_features) 112 | groups. A different value can be bound to the function using functools.partial. 113 | - BN_to_LN : BatchNorm to LayerNorm. Requires a normalized_shape value to be passed 114 | using functools partial. 115 | - IN_to_IN_nostats : InstanceNorm with running stats to InstanceNorm without running stats. 116 | 117 | Example use: 118 | >> from functools import partial 119 | >> from deepee.surgery import BN_to_GN 120 | >> model = ... [Throws BadModuleError when the PrivacyWrapper is attached] 121 | >> surgeon = ModelSurgeon(partial(BN_to_GN, num_channels=32)) 122 | >> converted_model = surgeon.operate(model) 123 | """ 124 | self.converter = converter 125 | 126 | def operate(self, model: nn.Module) -> nn.Module: 127 | """Convert the model based on the defined converter.""" 128 | return replace_all_modules( 129 | model, 130 | target_class=nn.modules.batchnorm._BatchNorm, 131 | converter=self.converter, 132 | ) 133 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.nl.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Dutch` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(r,e){"function"==typeof define&&define.amd?define(e):"object"==typeof exports?module.exports=e():e()(r.lunr)}(this,function(){return function(r){if(void 0===r)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===r.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");r.nl=function(){this.pipeline.reset(),this.pipeline.add(r.nl.trimmer,r.nl.stopWordFilter,r.nl.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(r.nl.stemmer))},r.nl.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",r.nl.trimmer=r.trimmerSupport.generateTrimmer(r.nl.wordCharacters),r.Pipeline.registerFunction(r.nl.trimmer,"trimmer-nl"),r.nl.stemmer=function(){var e=r.stemmerSupport.Among,i=r.stemmerSupport.SnowballProgram,n=new function(){function r(){for(var r,e,i,o=C.cursor;;){if(C.bra=C.cursor,r=C.find_among(b,11))switch(C.ket=C.cursor,r){case 1:C.slice_from("a");continue;case 2:C.slice_from("e");continue;case 3:C.slice_from("i");continue;case 4:C.slice_from("o");continue;case 5:C.slice_from("u");continue;case 6:if(C.cursor>=C.limit)break;C.cursor++;continue}break}for(C.cursor=o,C.bra=o,C.eq_s(1,"y")?(C.ket=C.cursor,C.slice_from("Y")):C.cursor=o;;)if(e=C.cursor,C.in_grouping(q,97,232)){if(i=C.cursor,C.bra=i,C.eq_s(1,"i"))C.ket=C.cursor,C.in_grouping(q,97,232)&&(C.slice_from("I"),C.cursor=e);else if(C.cursor=i,C.eq_s(1,"y"))C.ket=C.cursor,C.slice_from("Y"),C.cursor=e;else if(n(e))break}else if(n(e))break}function n(r){return C.cursor=r,r>=C.limit||(C.cursor++,!1)}function o(){_=C.limit,d=_,t()||(_=C.cursor,_<3&&(_=3),t()||(d=C.cursor))}function t(){for(;!C.in_grouping(q,97,232);){if(C.cursor>=C.limit)return!0;C.cursor++}for(;!C.out_grouping(q,97,232);){if(C.cursor>=C.limit)return!0;C.cursor++}return!1}function s(){for(var r;;)if(C.bra=C.cursor,r=C.find_among(p,3))switch(C.ket=C.cursor,r){case 1:C.slice_from("y");break;case 2:C.slice_from("i");break;case 3:if(C.cursor>=C.limit)return;C.cursor++}}function u(){return _<=C.cursor}function c(){return d<=C.cursor}function a(){var r=C.limit-C.cursor;C.find_among_b(g,3)&&(C.cursor=C.limit-r,C.ket=C.cursor,C.cursor>C.limit_backward&&(C.cursor--,C.bra=C.cursor,C.slice_del()))}function l(){var r;w=!1,C.ket=C.cursor,C.eq_s_b(1,"e")&&(C.bra=C.cursor,u()&&(r=C.limit-C.cursor,C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-r,C.slice_del(),w=!0,a())))}function m(){var r;u()&&(r=C.limit-C.cursor,C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-r,C.eq_s_b(3,"gem")||(C.cursor=C.limit-r,C.slice_del(),a())))}function f(){var r,e,i,n,o,t,s=C.limit-C.cursor;if(C.ket=C.cursor,r=C.find_among_b(h,5))switch(C.bra=C.cursor,r){case 1:u()&&C.slice_from("heid");break;case 2:m();break;case 3:u()&&C.out_grouping_b(j,97,232)&&C.slice_del()}if(C.cursor=C.limit-s,l(),C.cursor=C.limit-s,C.ket=C.cursor,C.eq_s_b(4,"heid")&&(C.bra=C.cursor,c()&&(e=C.limit-C.cursor,C.eq_s_b(1,"c")||(C.cursor=C.limit-e,C.slice_del(),C.ket=C.cursor,C.eq_s_b(2,"en")&&(C.bra=C.cursor,m())))),C.cursor=C.limit-s,C.ket=C.cursor,r=C.find_among_b(k,6))switch(C.bra=C.cursor,r){case 1:if(c()){if(C.slice_del(),i=C.limit-C.cursor,C.ket=C.cursor,C.eq_s_b(2,"ig")&&(C.bra=C.cursor,c()&&(n=C.limit-C.cursor,!C.eq_s_b(1,"e")))){C.cursor=C.limit-n,C.slice_del();break}C.cursor=C.limit-i,a()}break;case 2:c()&&(o=C.limit-C.cursor,C.eq_s_b(1,"e")||(C.cursor=C.limit-o,C.slice_del()));break;case 3:c()&&(C.slice_del(),l());break;case 4:c()&&C.slice_del();break;case 5:c()&&w&&C.slice_del()}C.cursor=C.limit-s,C.out_grouping_b(z,73,232)&&(t=C.limit-C.cursor,C.find_among_b(v,4)&&C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-t,C.ket=C.cursor,C.cursor>C.limit_backward&&(C.cursor--,C.bra=C.cursor,C.slice_del())))}var d,_,w,b=[new e("",-1,6),new e("á",0,1),new e("ä",0,1),new e("é",0,2),new e("ë",0,2),new e("í",0,3),new e("ï",0,3),new e("ó",0,4),new e("ö",0,4),new e("ú",0,5),new e("ü",0,5)],p=[new e("",-1,3),new e("I",0,2),new e("Y",0,1)],g=[new e("dd",-1,-1),new e("kk",-1,-1),new e("tt",-1,-1)],h=[new e("ene",-1,2),new e("se",-1,3),new e("en",-1,2),new e("heden",2,1),new e("s",-1,3)],k=[new e("end",-1,1),new e("ig",-1,2),new e("ing",-1,1),new e("lijk",-1,3),new e("baar",-1,4),new e("bar",-1,5)],v=[new e("aa",-1,-1),new e("ee",-1,-1),new e("oo",-1,-1),new e("uu",-1,-1)],q=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],z=[1,0,0,17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],j=[17,67,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],C=new i;this.setCurrent=function(r){C.setCurrent(r)},this.getCurrent=function(){return C.getCurrent()},this.stem=function(){var e=C.cursor;return r(),C.cursor=e,o(),C.limit_backward=e,C.cursor=C.limit,f(),C.cursor=C.limit_backward,s(),!0}};return function(r){return"function"==typeof r.update?r.update(function(r){return n.setCurrent(r),n.stem(),n.getCurrent()}):(n.setCurrent(r),n.stem(),n.getCurrent())}}(),r.Pipeline.registerFunction(r.nl.stemmer,"stemmer-nl"),r.nl.stopWordFilter=r.generateStopWordFilter(" aan al alles als altijd andere ben bij daar dan dat de der deze die dit doch doen door dus een eens en er ge geen geweest haar had heb hebben heeft hem het hier hij hoe hun iemand iets ik in is ja je kan kon kunnen maar me meer men met mij mijn moet na naar niet niets nog nu of om omdat onder ons ook op over reeds te tegen toch toen tot u uit uw van veel voor want waren was wat werd wezen wie wil worden wordt zal ze zelf zich zij zijn zo zonder zou".split(" ")),r.Pipeline.registerFunction(r.nl.stopWordFilter,"stopWordFilter-nl")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.de.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `German` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.de=function(){this.pipeline.reset(),this.pipeline.add(e.de.trimmer,e.de.stopWordFilter,e.de.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.de.stemmer))},e.de.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.de.trimmer=e.trimmerSupport.generateTrimmer(e.de.wordCharacters),e.Pipeline.registerFunction(e.de.trimmer,"trimmer-de"),e.de.stemmer=function(){var r=e.stemmerSupport.Among,n=e.stemmerSupport.SnowballProgram,i=new function(){function e(e,r,n){return!(!v.eq_s(1,e)||(v.ket=v.cursor,!v.in_grouping(p,97,252)))&&(v.slice_from(r),v.cursor=n,!0)}function i(){for(var r,n,i,s,t=v.cursor;;)if(r=v.cursor,v.bra=r,v.eq_s(1,"ß"))v.ket=v.cursor,v.slice_from("ss");else{if(r>=v.limit)break;v.cursor=r+1}for(v.cursor=t;;)for(n=v.cursor;;){if(i=v.cursor,v.in_grouping(p,97,252)){if(s=v.cursor,v.bra=s,e("u","U",i))break;if(v.cursor=s,e("y","Y",i))break}if(i>=v.limit)return void(v.cursor=n);v.cursor=i+1}}function s(){for(;!v.in_grouping(p,97,252);){if(v.cursor>=v.limit)return!0;v.cursor++}for(;!v.out_grouping(p,97,252);){if(v.cursor>=v.limit)return!0;v.cursor++}return!1}function t(){m=v.limit,l=m;var e=v.cursor+3;0<=e&&e<=v.limit&&(d=e,s()||(m=v.cursor,m=v.limit)return;v.cursor++}}}function c(){return m<=v.cursor}function u(){return l<=v.cursor}function a(){var e,r,n,i,s=v.limit-v.cursor;if(v.ket=v.cursor,(e=v.find_among_b(w,7))&&(v.bra=v.cursor,c()))switch(e){case 1:v.slice_del();break;case 2:v.slice_del(),v.ket=v.cursor,v.eq_s_b(1,"s")&&(v.bra=v.cursor,v.eq_s_b(3,"nis")&&v.slice_del());break;case 3:v.in_grouping_b(g,98,116)&&v.slice_del()}if(v.cursor=v.limit-s,v.ket=v.cursor,(e=v.find_among_b(f,4))&&(v.bra=v.cursor,c()))switch(e){case 1:v.slice_del();break;case 2:if(v.in_grouping_b(k,98,116)){var t=v.cursor-3;v.limit_backward<=t&&t<=v.limit&&(v.cursor=t,v.slice_del())}}if(v.cursor=v.limit-s,v.ket=v.cursor,(e=v.find_among_b(_,8))&&(v.bra=v.cursor,u()))switch(e){case 1:v.slice_del(),v.ket=v.cursor,v.eq_s_b(2,"ig")&&(v.bra=v.cursor,r=v.limit-v.cursor,v.eq_s_b(1,"e")||(v.cursor=v.limit-r,u()&&v.slice_del()));break;case 2:n=v.limit-v.cursor,v.eq_s_b(1,"e")||(v.cursor=v.limit-n,v.slice_del());break;case 3:if(v.slice_del(),v.ket=v.cursor,i=v.limit-v.cursor,!v.eq_s_b(2,"er")&&(v.cursor=v.limit-i,!v.eq_s_b(2,"en")))break;v.bra=v.cursor,c()&&v.slice_del();break;case 4:v.slice_del(),v.ket=v.cursor,e=v.find_among_b(b,2),e&&(v.bra=v.cursor,u()&&1==e&&v.slice_del())}}var d,l,m,h=[new r("",-1,6),new r("U",0,2),new r("Y",0,1),new r("ä",0,3),new r("ö",0,4),new r("ü",0,5)],w=[new r("e",-1,2),new r("em",-1,1),new r("en",-1,2),new r("ern",-1,1),new r("er",-1,1),new r("s",-1,3),new r("es",5,2)],f=[new r("en",-1,1),new r("er",-1,1),new r("st",-1,2),new r("est",2,1)],b=[new r("ig",-1,1),new r("lich",-1,1)],_=[new r("end",-1,1),new r("ig",-1,2),new r("ung",-1,1),new r("lich",-1,3),new r("isch",-1,2),new r("ik",-1,2),new r("heit",-1,3),new r("keit",-1,4)],p=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32,8],g=[117,30,5],k=[117,30,4],v=new n;this.setCurrent=function(e){v.setCurrent(e)},this.getCurrent=function(){return v.getCurrent()},this.stem=function(){var e=v.cursor;return i(),v.cursor=e,t(),v.limit_backward=e,v.cursor=v.limit,a(),v.cursor=v.limit_backward,o(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}}(),e.Pipeline.registerFunction(e.de.stemmer,"stemmer-de"),e.de.stopWordFilter=e.generateStopWordFilter("aber alle allem allen aller alles als also am an ander andere anderem anderen anderer anderes anderm andern anderr anders auch auf aus bei bin bis bist da damit dann das dasselbe dazu daß dein deine deinem deinen deiner deines dem demselben den denn denselben der derer derselbe derselben des desselben dessen dich die dies diese dieselbe dieselben diesem diesen dieser dieses dir doch dort du durch ein eine einem einen einer eines einig einige einigem einigen einiger einiges einmal er es etwas euch euer eure eurem euren eurer eures für gegen gewesen hab habe haben hat hatte hatten hier hin hinter ich ihm ihn ihnen ihr ihre ihrem ihren ihrer ihres im in indem ins ist jede jedem jeden jeder jedes jene jenem jenen jener jenes jetzt kann kein keine keinem keinen keiner keines können könnte machen man manche manchem manchen mancher manches mein meine meinem meinen meiner meines mich mir mit muss musste nach nicht nichts noch nun nur ob oder ohne sehr sein seine seinem seinen seiner seines selbst sich sie sind so solche solchem solchen solcher solches soll sollte sondern sonst um und uns unse unsem unsen unser unses unter viel vom von vor war waren warst was weg weil weiter welche welchem welchen welcher welches wenn werde werden wie wieder will wir wird wirst wo wollen wollte während würde würden zu zum zur zwar zwischen über".split(" ")),e.Pipeline.registerFunction(e.de.stopWordFilter,"stopWordFilter-de")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.du.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Dutch` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");console.warn('[Lunr Languages] Please use the "nl" instead of the "du". The "nl" code is the standard code for Dutch language, and "du" will be removed in the next major versions.'),e.du=function(){this.pipeline.reset(),this.pipeline.add(e.du.trimmer,e.du.stopWordFilter,e.du.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.du.stemmer))},e.du.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.du.trimmer=e.trimmerSupport.generateTrimmer(e.du.wordCharacters),e.Pipeline.registerFunction(e.du.trimmer,"trimmer-du"),e.du.stemmer=function(){var r=e.stemmerSupport.Among,i=e.stemmerSupport.SnowballProgram,n=new function(){function e(){for(var e,r,i,o=C.cursor;;){if(C.bra=C.cursor,e=C.find_among(b,11))switch(C.ket=C.cursor,e){case 1:C.slice_from("a");continue;case 2:C.slice_from("e");continue;case 3:C.slice_from("i");continue;case 4:C.slice_from("o");continue;case 5:C.slice_from("u");continue;case 6:if(C.cursor>=C.limit)break;C.cursor++;continue}break}for(C.cursor=o,C.bra=o,C.eq_s(1,"y")?(C.ket=C.cursor,C.slice_from("Y")):C.cursor=o;;)if(r=C.cursor,C.in_grouping(q,97,232)){if(i=C.cursor,C.bra=i,C.eq_s(1,"i"))C.ket=C.cursor,C.in_grouping(q,97,232)&&(C.slice_from("I"),C.cursor=r);else if(C.cursor=i,C.eq_s(1,"y"))C.ket=C.cursor,C.slice_from("Y"),C.cursor=r;else if(n(r))break}else if(n(r))break}function n(e){return C.cursor=e,e>=C.limit||(C.cursor++,!1)}function o(){_=C.limit,f=_,t()||(_=C.cursor,_<3&&(_=3),t()||(f=C.cursor))}function t(){for(;!C.in_grouping(q,97,232);){if(C.cursor>=C.limit)return!0;C.cursor++}for(;!C.out_grouping(q,97,232);){if(C.cursor>=C.limit)return!0;C.cursor++}return!1}function s(){for(var e;;)if(C.bra=C.cursor,e=C.find_among(p,3))switch(C.ket=C.cursor,e){case 1:C.slice_from("y");break;case 2:C.slice_from("i");break;case 3:if(C.cursor>=C.limit)return;C.cursor++}}function u(){return _<=C.cursor}function c(){return f<=C.cursor}function a(){var e=C.limit-C.cursor;C.find_among_b(g,3)&&(C.cursor=C.limit-e,C.ket=C.cursor,C.cursor>C.limit_backward&&(C.cursor--,C.bra=C.cursor,C.slice_del()))}function l(){var e;w=!1,C.ket=C.cursor,C.eq_s_b(1,"e")&&(C.bra=C.cursor,u()&&(e=C.limit-C.cursor,C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-e,C.slice_del(),w=!0,a())))}function m(){var e;u()&&(e=C.limit-C.cursor,C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-e,C.eq_s_b(3,"gem")||(C.cursor=C.limit-e,C.slice_del(),a())))}function d(){var e,r,i,n,o,t,s=C.limit-C.cursor;if(C.ket=C.cursor,e=C.find_among_b(h,5))switch(C.bra=C.cursor,e){case 1:u()&&C.slice_from("heid");break;case 2:m();break;case 3:u()&&C.out_grouping_b(z,97,232)&&C.slice_del()}if(C.cursor=C.limit-s,l(),C.cursor=C.limit-s,C.ket=C.cursor,C.eq_s_b(4,"heid")&&(C.bra=C.cursor,c()&&(r=C.limit-C.cursor,C.eq_s_b(1,"c")||(C.cursor=C.limit-r,C.slice_del(),C.ket=C.cursor,C.eq_s_b(2,"en")&&(C.bra=C.cursor,m())))),C.cursor=C.limit-s,C.ket=C.cursor,e=C.find_among_b(k,6))switch(C.bra=C.cursor,e){case 1:if(c()){if(C.slice_del(),i=C.limit-C.cursor,C.ket=C.cursor,C.eq_s_b(2,"ig")&&(C.bra=C.cursor,c()&&(n=C.limit-C.cursor,!C.eq_s_b(1,"e")))){C.cursor=C.limit-n,C.slice_del();break}C.cursor=C.limit-i,a()}break;case 2:c()&&(o=C.limit-C.cursor,C.eq_s_b(1,"e")||(C.cursor=C.limit-o,C.slice_del()));break;case 3:c()&&(C.slice_del(),l());break;case 4:c()&&C.slice_del();break;case 5:c()&&w&&C.slice_del()}C.cursor=C.limit-s,C.out_grouping_b(j,73,232)&&(t=C.limit-C.cursor,C.find_among_b(v,4)&&C.out_grouping_b(q,97,232)&&(C.cursor=C.limit-t,C.ket=C.cursor,C.cursor>C.limit_backward&&(C.cursor--,C.bra=C.cursor,C.slice_del())))}var f,_,w,b=[new r("",-1,6),new r("á",0,1),new r("ä",0,1),new r("é",0,2),new r("ë",0,2),new r("í",0,3),new r("ï",0,3),new r("ó",0,4),new r("ö",0,4),new r("ú",0,5),new r("ü",0,5)],p=[new r("",-1,3),new r("I",0,2),new r("Y",0,1)],g=[new r("dd",-1,-1),new r("kk",-1,-1),new r("tt",-1,-1)],h=[new r("ene",-1,2),new r("se",-1,3),new r("en",-1,2),new r("heden",2,1),new r("s",-1,3)],k=[new r("end",-1,1),new r("ig",-1,2),new r("ing",-1,1),new r("lijk",-1,3),new r("baar",-1,4),new r("bar",-1,5)],v=[new r("aa",-1,-1),new r("ee",-1,-1),new r("oo",-1,-1),new r("uu",-1,-1)],q=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],j=[1,0,0,17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],z=[17,67,16,1,0,0,0,0,0,0,0,0,0,0,0,0,128],C=new i;this.setCurrent=function(e){C.setCurrent(e)},this.getCurrent=function(){return C.getCurrent()},this.stem=function(){var r=C.cursor;return e(),C.cursor=r,o(),C.limit_backward=r,C.cursor=C.limit,d(),C.cursor=C.limit_backward,s(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}}(),e.Pipeline.registerFunction(e.du.stemmer,"stemmer-du"),e.du.stopWordFilter=e.generateStopWordFilter(" aan al alles als altijd andere ben bij daar dan dat de der deze die dit doch doen door dus een eens en er ge geen geweest haar had heb hebben heeft hem het hier hij hoe hun iemand iets ik in is ja je kan kon kunnen maar me meer men met mij mijn moet na naar niet niets nog nu of om omdat onder ons ook op over reeds te tegen toch toen tot u uit uw van veel voor want waren was wat werd wezen wie wil worden wordt zal ze zelf zich zij zijn zo zonder zou".split(" ")),e.Pipeline.registerFunction(e.du.stopWordFilter,"stopWordFilter-du")}}); -------------------------------------------------------------------------------- /docs/examples.md: -------------------------------------------------------------------------------- 1 | # Examples 2 | 3 | This page shows the basic utilisation of `deepee` in a step by step MNIST example. 4 | 5 | Being by importing the relevant libraries: 6 | 7 | ```py 8 | from deepee import (PrivacyWrapper, PrivacyWatchdog, UniformDataLoader, 9 | ModelSurgeon, SurgicalProcedures) 10 | import torch 11 | from torch import nn 12 | from torchvision import datasets, transforms 13 | 14 | class args: 15 | batch_size = 200 16 | test_batch_size = 200 17 | log_interval = 1000 18 | num_epochs = 5 19 | device = "cuda" if torch.cuda.is_available() else "cpu" 20 | device = args.device 21 | ``` 22 | 23 | To train with DP guarantees, a special DataLoader is required. `deepee` provides this DataLoader with sensible presets: 24 | 25 | ```py 26 | train_loader = UniformDataLoader( 27 | datasets.MNIST( 28 | "./data", 29 | train=True, 30 | download=True, 31 | transform=transforms.Compose( 32 | [ 33 | transforms.ToTensor(), 34 | transforms.Normalize((0.1307,), (0.3081,)), 35 | ] 36 | ), 37 | ), 38 | batch_size=args.batch_size, 39 | ) 40 | test_loader = torch.utils.data.DataLoader( 41 | datasets.MNIST( 42 | "./data", 43 | train=False, 44 | transform=transforms.Compose( 45 | [ 46 | transforms.ToTensor(), 47 | transforms.Normalize((0.1307,), (0.3081,)), 48 | ] 49 | ), 50 | ), 51 | batch_size=args.test_batch_size, 52 | shuffle=True, 53 | ) 54 | ``` 55 | 56 | Next, define the network architecture: 57 | 58 | ```py 59 | class SimpleNet(nn.Module): 60 | def __init__(self): 61 | super().__init__() 62 | self.fc1 = nn.Linear(784, 256) 63 | self.bn1 = nn.BatchNorm1d(256) 64 | self.fc2 = nn.Linear(256, 64) 65 | self.fc3 = nn.Linear(64, 10) 66 | 67 | def forward(self, x): 68 | x = torch.flatten(x, 1) 69 | x = torch.sigmoid(self.fc1(x)) 70 | x = self.bn1(x) 71 | x = torch.sigmoid(self.fc2(x)) 72 | x = self.fc3(x) 73 | return x 74 | ``` 75 | 76 | To train with DP, we now attach the `PrivacyWrapper` to the model and set up a `PrivacyWatchDog` to monitor the privacy loss: 77 | 78 | ```py 79 | watchdog = PrivacyWatchdog( 80 | train_loader, 81 | target_epsilon=1.0, 82 | abort=False, 83 | target_delta=1e-5, 84 | fallback_to_rdp=False, 85 | ) 86 | 87 | model = PrivacyWrapper(SimpleNet(), args.batch_size, 1.0, 1.0, watchdog=watchdog).to( 88 | args.device 89 | ) 90 | optimizer = torch.optim.SGD(model.wrapped_model.parameters(), lr=0.1) 91 | ``` 92 | 93 | The `PrivacyWrapper` will throw an error now: 94 | 95 | ```py 96 | --------------------------------------------------------------------------- 97 | BadModuleError Traceback (most recent call last) 98 | in () 99 | 7 ) 100 | 8 101 | ----> 9 model = PrivacyWrapper(SimpleNet(), args.batch_size, 1.0, 1.0, watchdog=watchdog).to( 102 | 10 args.device 103 | 11 ) 104 | 105 | 1 frames 106 | /usr/local/lib/python3.7/dist-packages/deepee/snooper.py in snoop(self, model) 107 | 38 msg += validator.validate(model) 108 | 39 if msg != "": 109 | ---> 40 raise BadModuleError(msg) 110 | 41 111 | 42 112 | 113 | BadModuleError: BatchNorm Layers must have track_running_stats turned off, otherwise be replaced with InstanceNorm, LayerNorm or GroupNorm. 114 | ``` 115 | 116 | Luckily, this modification can be easily done using the `ModelSurgeon` (add this code after the definition of the watchdog above): 117 | 118 | ```py 119 | # change BatchNorm to GroupNorm 120 | surgeon = ModelSurgeon(SurgicalProcedures.BN_to_GN) 121 | model = surgeon.operate(SimpleNet()) 122 | 123 | # now wrap the model 124 | model = PrivacyWrapper(model, args.batch_size, 1.0, 1.0, watchdog=watchdog).to( 125 | args.device 126 | ) 127 | optimizer = torch.optim.SGD(model.wrapped_model.parameters(), lr=0.1) 128 | ``` 129 | 130 | We can now proceed with training as usual: 131 | 132 | ```py 133 | # Train 134 | for epoch in range(args.num_epochs): 135 | model.train() 136 | for batch_idx, (data, target) in enumerate(train_loader): 137 | data, target = data.to(device), target.to(device) 138 | optimizer.zero_grad() 139 | output = model(data) 140 | loss = torch.nn.CrossEntropyLoss()(output, target) 141 | loss.backward() 142 | model.clip_and_accumulate() 143 | model.noise_gradient() 144 | optimizer.step() 145 | model.prepare_next_batch() 146 | if batch_idx % args.log_interval == 0: 147 | print( 148 | "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( 149 | epoch, 150 | batch_idx * len(data), 151 | len(train_loader.dataset), 152 | 100.0 * batch_idx / len(train_loader), 153 | loss.item(), 154 | ) 155 | ) 156 | 157 | # Test 158 | model.eval() 159 | test_loss = 0 160 | correct = 0 161 | with torch.no_grad(): 162 | for data, target in test_loader: 163 | data, target = data.to(device), target.to(device) 164 | output = model(data) 165 | test_loss += torch.nn.CrossEntropyLoss(reduction="sum")( 166 | output, target 167 | ).item() # sum up batch loss 168 | pred = output.argmax( 169 | dim=1, keepdim=True 170 | ) # get the index of the max log-probability 171 | correct += pred.eq(target.view_as(pred)).sum().item() 172 | 173 | test_loss /= len(test_loader.dataset) 174 | 175 | print( 176 | "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)".format( 177 | test_loss, 178 | correct, 179 | len(test_loader.dataset), 180 | 100.0 * correct / len(test_loader.dataset), 181 | ) 182 | ) 183 | ``` 184 | 185 | ``` 186 | Train Epoch: 0 [0/60000 (0%)] Loss: 2.317095 187 | INFO:root:Privacy spent at 200 steps: 0.27 188 | INFO:root:Privacy spent at 300 steps: 0.34 189 | INFO:root:Privacy spent at 400 steps: 0.39 190 | 191 | Test set: Average loss: 1.6950, Accuracy: 5639/10000 (56%) 192 | Train Epoch: 1 [0/60000 (0%)] Loss: 1.667842 193 | INFO:root:Privacy spent at 500 steps: 0.44 194 | INFO:root:Privacy spent at 600 steps: 0.49 195 | ``` 196 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.ru.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Russian` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,n){"function"==typeof define&&define.amd?define(n):"object"==typeof exports?module.exports=n():n()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.ru=function(){this.pipeline.reset(),this.pipeline.add(e.ru.trimmer,e.ru.stopWordFilter,e.ru.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.ru.stemmer))},e.ru.wordCharacters="Ѐ-҄҇-ԯᴫᵸⷠ-ⷿꙀ-ꚟ︮︯",e.ru.trimmer=e.trimmerSupport.generateTrimmer(e.ru.wordCharacters),e.Pipeline.registerFunction(e.ru.trimmer,"trimmer-ru"),e.ru.stemmer=function(){var n=e.stemmerSupport.Among,r=e.stemmerSupport.SnowballProgram,t=new function(){function e(){for(;!W.in_grouping(S,1072,1103);){if(W.cursor>=W.limit)return!1;W.cursor++}return!0}function t(){for(;!W.out_grouping(S,1072,1103);){if(W.cursor>=W.limit)return!1;W.cursor++}return!0}function w(){b=W.limit,_=b,e()&&(b=W.cursor,t()&&e()&&t()&&(_=W.cursor))}function i(){return _<=W.cursor}function u(e,n){var r,t;if(W.ket=W.cursor,r=W.find_among_b(e,n)){switch(W.bra=W.cursor,r){case 1:if(t=W.limit-W.cursor,!W.eq_s_b(1,"а")&&(W.cursor=W.limit-t,!W.eq_s_b(1,"я")))return!1;case 2:W.slice_del()}return!0}return!1}function o(){return u(h,9)}function s(e,n){var r;return W.ket=W.cursor,!!(r=W.find_among_b(e,n))&&(W.bra=W.cursor,1==r&&W.slice_del(),!0)}function c(){return s(g,26)}function m(){return!!c()&&(u(C,8),!0)}function f(){return s(k,2)}function l(){return u(P,46)}function a(){s(v,36)}function p(){var e;W.ket=W.cursor,(e=W.find_among_b(F,2))&&(W.bra=W.cursor,i()&&1==e&&W.slice_del())}function d(){var e;if(W.ket=W.cursor,e=W.find_among_b(q,4))switch(W.bra=W.cursor,e){case 1:if(W.slice_del(),W.ket=W.cursor,!W.eq_s_b(1,"н"))break;W.bra=W.cursor;case 2:if(!W.eq_s_b(1,"н"))break;case 3:W.slice_del()}}var _,b,h=[new n("в",-1,1),new n("ив",0,2),new n("ыв",0,2),new n("вши",-1,1),new n("ивши",3,2),new n("ывши",3,2),new n("вшись",-1,1),new n("ившись",6,2),new n("ывшись",6,2)],g=[new n("ее",-1,1),new n("ие",-1,1),new n("ое",-1,1),new n("ые",-1,1),new n("ими",-1,1),new n("ыми",-1,1),new n("ей",-1,1),new n("ий",-1,1),new n("ой",-1,1),new n("ый",-1,1),new n("ем",-1,1),new n("им",-1,1),new n("ом",-1,1),new n("ым",-1,1),new n("его",-1,1),new n("ого",-1,1),new n("ему",-1,1),new n("ому",-1,1),new n("их",-1,1),new n("ых",-1,1),new n("ею",-1,1),new n("ою",-1,1),new n("ую",-1,1),new n("юю",-1,1),new n("ая",-1,1),new n("яя",-1,1)],C=[new n("ем",-1,1),new n("нн",-1,1),new n("вш",-1,1),new n("ивш",2,2),new n("ывш",2,2),new n("щ",-1,1),new n("ющ",5,1),new n("ующ",6,2)],k=[new n("сь",-1,1),new n("ся",-1,1)],P=[new n("ла",-1,1),new n("ила",0,2),new n("ыла",0,2),new n("на",-1,1),new n("ена",3,2),new n("ете",-1,1),new n("ите",-1,2),new n("йте",-1,1),new n("ейте",7,2),new n("уйте",7,2),new n("ли",-1,1),new n("или",10,2),new n("ыли",10,2),new n("й",-1,1),new n("ей",13,2),new n("уй",13,2),new n("л",-1,1),new n("ил",16,2),new n("ыл",16,2),new n("ем",-1,1),new n("им",-1,2),new n("ым",-1,2),new n("н",-1,1),new n("ен",22,2),new n("ло",-1,1),new n("ило",24,2),new n("ыло",24,2),new n("но",-1,1),new n("ено",27,2),new n("нно",27,1),new n("ет",-1,1),new n("ует",30,2),new n("ит",-1,2),new n("ыт",-1,2),new n("ют",-1,1),new n("уют",34,2),new n("ят",-1,2),new n("ны",-1,1),new n("ены",37,2),new n("ть",-1,1),new n("ить",39,2),new n("ыть",39,2),new n("ешь",-1,1),new n("ишь",-1,2),new n("ю",-1,2),new n("ую",44,2)],v=[new n("а",-1,1),new n("ев",-1,1),new n("ов",-1,1),new n("е",-1,1),new n("ие",3,1),new n("ье",3,1),new n("и",-1,1),new n("еи",6,1),new n("ии",6,1),new n("ами",6,1),new n("ями",6,1),new n("иями",10,1),new n("й",-1,1),new n("ей",12,1),new n("ией",13,1),new n("ий",12,1),new n("ой",12,1),new n("ам",-1,1),new n("ем",-1,1),new n("ием",18,1),new n("ом",-1,1),new n("ям",-1,1),new n("иям",21,1),new n("о",-1,1),new n("у",-1,1),new n("ах",-1,1),new n("ях",-1,1),new n("иях",26,1),new n("ы",-1,1),new n("ь",-1,1),new n("ю",-1,1),new n("ию",30,1),new n("ью",30,1),new n("я",-1,1),new n("ия",33,1),new n("ья",33,1)],F=[new n("ост",-1,1),new n("ость",-1,1)],q=[new n("ейше",-1,1),new n("н",-1,2),new n("ейш",-1,1),new n("ь",-1,3)],S=[33,65,8,232],W=new r;this.setCurrent=function(e){W.setCurrent(e)},this.getCurrent=function(){return W.getCurrent()},this.stem=function(){return w(),W.cursor=W.limit,!(W.cursor None: 35 | """The PrivacyWatchdog can be attached to a model and dataloader and supervises 36 | the training process. If an epsilon and delta are provided, it can either track 37 | the privacy spent during model training or abort the training when the privacy 38 | budget is exhausted. Optionally, it can preserve the final model weights before 39 | aborting. 40 | 41 | Args: 42 | target_epsilon (float): The target epsilon to warn or abort 43 | the training at. Must be a positive float. 44 | target_delta (float): The corresponding delta value. Must be positive 45 | and between 0 and 1. 46 | report_every_n_steps (int, optional): Outputs the privacy spent to STDERR 47 | every n steps. Defaults to 100. 48 | abort (Optional[bool], optional): Whether to abort the training at the set 49 | epsilon level. Defaults to False. 50 | save (Optional[bool], optional): Whether to save the last model before 51 | aborting training. Ignored if abort is set to False. Defaults to False. 52 | path (Optional[Union[str, Path]], optional): The path to save the final 53 | model state dictionary before aborting training. Ignored if abort or save 54 | are set to False. Defaults to None. 55 | fallback_to_rdp (Optional[bool], optional): Whether to fall back to Renyi 56 | DP accounting in case Gaussian DP accounting (default) fails. This is for 57 | convenience and will likely return a worse privacy guarantee which may also 58 | be incorrect. It should not be used for mission-critical work. If False, 59 | the PrivacyWatchdog will raise an error if privacy cannot be calculated with 60 | the given settings. 61 | 62 | """ 63 | self.dataloader = dataloader 64 | if not ( 65 | isinstance(self.dataloader, UniformDataLoader) 66 | or isinstance(self.dataloader.batch_sampler, UniformWORSubsampler) 67 | ): 68 | logging.critical( 69 | "Privacy accounting is only correct when using the UniformDataLoader or" 70 | " a custom DataLoader with a batch_sampler implementing uniform sampling" 71 | " without replacement." 72 | ) 73 | self.target_epsilon = target_epsilon 74 | if self.target_epsilon is None or (not self.target_epsilon >= 0.0): # type: ignore 75 | raise ValueError("Epsilon must be a positive float.") 76 | self.target_delta = target_delta 77 | if self.target_delta is None or (not (0 <= self.target_delta <= 1.0)): 78 | raise ValueError("Delta must be between 0.0 and 1.0") 79 | self.report_every_n_steps = report_every_n_steps 80 | self.abort = abort 81 | self.save = save 82 | self.path = path 83 | self.wrapper = None 84 | self.fallback_to_rdp = fallback_to_rdp 85 | 86 | if self.fallback_to_rdp: 87 | logging.critical( 88 | "Privacy accounting is set to fall back to RDP if privacy " 89 | " accounting using GDP fails. This estimate is potentially inaccurate and" 90 | " should not be used for mission-critical work!", 91 | ) 92 | 93 | if (not self.abort) and (self.save or self.path): 94 | logging.warning( 95 | "When setting 'save' or 'path' without setting 'abort=True', the" 96 | " settings are ignored." 97 | ) 98 | 99 | if (self.abort and self.save) and not self.path: 100 | raise ValueError("When setting 'save', a path to save to must be provided.") 101 | 102 | def calc_epsilon(self, steps_taken: int) -> float: 103 | if not self.wrapper: 104 | raise RuntimeError("WatchDog must be attached to a PrivacyWrapper.") 105 | batch_size = ( 106 | self.dataloader.batch_size or self.dataloader.batch_sampler.batch_size # type: ignore 107 | ) 108 | epoch = (steps_taken * batch_size) / len( # type: ignore 109 | self.dataloader.dataset # type: ignore 110 | ) 111 | try: 112 | spent = compute_eps_uniform( 113 | epoch=epoch, 114 | noise_multi=self.wrapper.noise_multiplier, # type: ignore 115 | n=len(self.dataloader.dataset), # type: ignore 116 | batch_size=batch_size, # type: ignore 117 | delta=self.target_delta, # type: ignore 118 | ) 119 | except ValueError as e: 120 | if self.fallback_to_rdp: 121 | approx_sample_rate = batch_size / len(self.dataloader.dataset) 122 | orders = [1 + x / 10.0 for x in range(1, 100)] + list(range(12, 64)) 123 | rdp = compute_rdp( 124 | q=approx_sample_rate, 125 | noise_multiplier=self.wrapper.noise_multiplier, 126 | steps=steps_taken, 127 | orders=orders, 128 | ) 129 | spent, _ = rdp_privacy_spent( 130 | orders=orders, rdp=rdp, delta=self.target_delta 131 | ) 132 | else: 133 | raise RuntimeError( 134 | "Epsilon could not be determined, likely because of implausible values" 135 | " for the L2 clip ratio and/or the noise multiplier. Try decreasing the " 136 | " L2 clip ratio or increasing the noise multiplier. If you are trying to" 137 | " 'disable' DP by setting these values, errors can be avoided by not" 138 | " attaching a WatchDog to your PrivacyWrapper." 139 | ) from e 140 | return spent 141 | 142 | def inform(self, steps_taken: int) -> None: 143 | spent = self.calc_epsilon(steps_taken) 144 | if steps_taken % self.report_every_n_steps == 0: 145 | logging.info(f"Privacy spent at {steps_taken} steps: {spent:.2f}") 146 | 147 | if spent >= self.target_epsilon: # type: ignore 148 | if self.abort: # type: ignore 149 | self.abort_training(epsilon_spent=spent, save=self.save, path=self.path) 150 | else: 151 | logging.warning( 152 | f"Privacy budget exhausted. Epsilon spent is {spent}, epsilon" 153 | f"allowed is {self.target_epsilon:.2f} at delta {self.target_delta:.2e}" 154 | ) 155 | 156 | def abort_training( 157 | self, 158 | epsilon_spent: float, 159 | save: Optional[bool] = False, 160 | path: Optional[Union[str, Path]] = None, 161 | ): 162 | error_message = f"Privacy budget exhausted. Epsilon spent is {epsilon_spent}," 163 | f"epsilon allowed is {self.target_epsilon:.2f} at delta {self.target_delta:e}" 164 | if not save: 165 | raise PrivacyBudgetExhausted(error_message) 166 | else: 167 | torch.save(self.wrapper.wrapped_model, path) # type: ignore 168 | raise PrivacyBudgetExhausted(error_message) 169 | -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.fi.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Finnish` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(i,e){"function"==typeof define&&define.amd?define(e):"object"==typeof exports?module.exports=e():e()(i.lunr)}(this,function(){return function(i){if(void 0===i)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===i.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");i.fi=function(){this.pipeline.reset(),this.pipeline.add(i.fi.trimmer,i.fi.stopWordFilter,i.fi.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(i.fi.stemmer))},i.fi.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",i.fi.trimmer=i.trimmerSupport.generateTrimmer(i.fi.wordCharacters),i.Pipeline.registerFunction(i.fi.trimmer,"trimmer-fi"),i.fi.stemmer=function(){var e=i.stemmerSupport.Among,r=i.stemmerSupport.SnowballProgram,n=new function(){function i(){f=A.limit,d=f,n()||(f=A.cursor,n()||(d=A.cursor))}function n(){for(var i;;){if(i=A.cursor,A.in_grouping(W,97,246))break;if(A.cursor=i,i>=A.limit)return!0;A.cursor++}for(A.cursor=i;!A.out_grouping(W,97,246);){if(A.cursor>=A.limit)return!0;A.cursor++}return!1}function t(){return d<=A.cursor}function s(){var i,e;if(A.cursor>=f)if(e=A.limit_backward,A.limit_backward=f,A.ket=A.cursor,i=A.find_among_b(h,10)){switch(A.bra=A.cursor,A.limit_backward=e,i){case 1:if(!A.in_grouping_b(x,97,246))return;break;case 2:if(!t())return}A.slice_del()}else A.limit_backward=e}function o(){var i,e,r;if(A.cursor>=f)if(e=A.limit_backward,A.limit_backward=f,A.ket=A.cursor,i=A.find_among_b(v,9))switch(A.bra=A.cursor,A.limit_backward=e,i){case 1:r=A.limit-A.cursor,A.eq_s_b(1,"k")||(A.cursor=A.limit-r,A.slice_del());break;case 2:A.slice_del(),A.ket=A.cursor,A.eq_s_b(3,"kse")&&(A.bra=A.cursor,A.slice_from("ksi"));break;case 3:A.slice_del();break;case 4:A.find_among_b(p,6)&&A.slice_del();break;case 5:A.find_among_b(g,6)&&A.slice_del();break;case 6:A.find_among_b(j,2)&&A.slice_del()}else A.limit_backward=e}function l(){return A.find_among_b(q,7)}function a(){return A.eq_s_b(1,"i")&&A.in_grouping_b(L,97,246)}function u(){var i,e,r;if(A.cursor>=f)if(e=A.limit_backward,A.limit_backward=f,A.ket=A.cursor,i=A.find_among_b(C,30)){switch(A.bra=A.cursor,A.limit_backward=e,i){case 1:if(!A.eq_s_b(1,"a"))return;break;case 2:case 9:if(!A.eq_s_b(1,"e"))return;break;case 3:if(!A.eq_s_b(1,"i"))return;break;case 4:if(!A.eq_s_b(1,"o"))return;break;case 5:if(!A.eq_s_b(1,"ä"))return;break;case 6:if(!A.eq_s_b(1,"ö"))return;break;case 7:if(r=A.limit-A.cursor,!l()&&(A.cursor=A.limit-r,!A.eq_s_b(2,"ie"))){A.cursor=A.limit-r;break}if(A.cursor=A.limit-r,A.cursor<=A.limit_backward){A.cursor=A.limit-r;break}A.cursor--,A.bra=A.cursor;break;case 8:if(!A.in_grouping_b(W,97,246)||!A.out_grouping_b(W,97,246))return}A.slice_del(),k=!0}else A.limit_backward=e}function c(){var i,e,r;if(A.cursor>=d)if(e=A.limit_backward,A.limit_backward=d,A.ket=A.cursor,i=A.find_among_b(P,14)){if(A.bra=A.cursor,A.limit_backward=e,1==i){if(r=A.limit-A.cursor,A.eq_s_b(2,"po"))return;A.cursor=A.limit-r}A.slice_del()}else A.limit_backward=e}function m(){var i;A.cursor>=f&&(i=A.limit_backward,A.limit_backward=f,A.ket=A.cursor,A.find_among_b(F,2)?(A.bra=A.cursor,A.limit_backward=i,A.slice_del()):A.limit_backward=i)}function w(){var i,e,r,n,t,s;if(A.cursor>=f){if(e=A.limit_backward,A.limit_backward=f,A.ket=A.cursor,A.eq_s_b(1,"t")&&(A.bra=A.cursor,r=A.limit-A.cursor,A.in_grouping_b(W,97,246)&&(A.cursor=A.limit-r,A.slice_del(),A.limit_backward=e,n=A.limit-A.cursor,A.cursor>=d&&(A.cursor=d,t=A.limit_backward,A.limit_backward=A.cursor,A.cursor=A.limit-n,A.ket=A.cursor,i=A.find_among_b(S,2))))){if(A.bra=A.cursor,A.limit_backward=t,1==i){if(s=A.limit-A.cursor,A.eq_s_b(2,"po"))return;A.cursor=A.limit-s}return void A.slice_del()}A.limit_backward=e}}function _(){var i,e,r,n;if(A.cursor>=f){for(i=A.limit_backward,A.limit_backward=f,e=A.limit-A.cursor,l()&&(A.cursor=A.limit-e,A.ket=A.cursor,A.cursor>A.limit_backward&&(A.cursor--,A.bra=A.cursor,A.slice_del())),A.cursor=A.limit-e,A.ket=A.cursor,A.in_grouping_b(y,97,228)&&(A.bra=A.cursor,A.out_grouping_b(W,97,246)&&A.slice_del()),A.cursor=A.limit-e,A.ket=A.cursor,A.eq_s_b(1,"j")&&(A.bra=A.cursor,r=A.limit-A.cursor,A.eq_s_b(1,"o")?A.slice_del():(A.cursor=A.limit-r,A.eq_s_b(1,"u")&&A.slice_del())),A.cursor=A.limit-e,A.ket=A.cursor,A.eq_s_b(1,"o")&&(A.bra=A.cursor,A.eq_s_b(1,"j")&&A.slice_del()),A.cursor=A.limit-e,A.limit_backward=i;;){if(n=A.limit-A.cursor,A.out_grouping_b(W,97,246)){A.cursor=A.limit-n;break}if(A.cursor=A.limit-n,A.cursor<=A.limit_backward)return;A.cursor--}A.ket=A.cursor,A.cursor>A.limit_backward&&(A.cursor--,A.bra=A.cursor,b=A.slice_to(),A.eq_v_b(b)&&A.slice_del())}}var k,b,d,f,h=[new e("pa",-1,1),new e("sti",-1,2),new e("kaan",-1,1),new e("han",-1,1),new e("kin",-1,1),new e("hän",-1,1),new e("kään",-1,1),new e("ko",-1,1),new e("pä",-1,1),new e("kö",-1,1)],p=[new e("lla",-1,-1),new e("na",-1,-1),new e("ssa",-1,-1),new e("ta",-1,-1),new e("lta",3,-1),new e("sta",3,-1)],g=[new e("llä",-1,-1),new e("nä",-1,-1),new e("ssä",-1,-1),new e("tä",-1,-1),new e("ltä",3,-1),new e("stä",3,-1)],j=[new e("lle",-1,-1),new e("ine",-1,-1)],v=[new e("nsa",-1,3),new e("mme",-1,3),new e("nne",-1,3),new e("ni",-1,2),new e("si",-1,1),new e("an",-1,4),new e("en",-1,6),new e("än",-1,5),new e("nsä",-1,3)],q=[new e("aa",-1,-1),new e("ee",-1,-1),new e("ii",-1,-1),new e("oo",-1,-1),new e("uu",-1,-1),new e("ää",-1,-1),new e("öö",-1,-1)],C=[new e("a",-1,8),new e("lla",0,-1),new e("na",0,-1),new e("ssa",0,-1),new e("ta",0,-1),new e("lta",4,-1),new e("sta",4,-1),new e("tta",4,9),new e("lle",-1,-1),new e("ine",-1,-1),new e("ksi",-1,-1),new e("n",-1,7),new e("han",11,1),new e("den",11,-1,a),new e("seen",11,-1,l),new e("hen",11,2),new e("tten",11,-1,a),new e("hin",11,3),new e("siin",11,-1,a),new e("hon",11,4),new e("hän",11,5),new e("hön",11,6),new e("ä",-1,8),new e("llä",22,-1),new e("nä",22,-1),new e("ssä",22,-1),new e("tä",22,-1),new e("ltä",26,-1),new e("stä",26,-1),new e("ttä",26,9)],P=[new e("eja",-1,-1),new e("mma",-1,1),new e("imma",1,-1),new e("mpa",-1,1),new e("impa",3,-1),new e("mmi",-1,1),new e("immi",5,-1),new e("mpi",-1,1),new e("impi",7,-1),new e("ejä",-1,-1),new e("mmä",-1,1),new e("immä",10,-1),new e("mpä",-1,1),new e("impä",12,-1)],F=[new e("i",-1,-1),new e("j",-1,-1)],S=[new e("mma",-1,1),new e("imma",0,-1)],y=[17,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8],W=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],L=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],x=[17,97,24,1,0,0,0,0,0,0,0,0,0,0,0,0,8,0,32],A=new r;this.setCurrent=function(i){A.setCurrent(i)},this.getCurrent=function(){return A.getCurrent()},this.stem=function(){var e=A.cursor;return i(),k=!1,A.limit_backward=e,A.cursor=A.limit,s(),A.cursor=A.limit,o(),A.cursor=A.limit,u(),A.cursor=A.limit,c(),A.cursor=A.limit,k?(m(),A.cursor=A.limit):(A.cursor=A.limit,w(),A.cursor=A.limit),_(),!0}};return function(i){return"function"==typeof i.update?i.update(function(i){return n.setCurrent(i),n.stem(),n.getCurrent()}):(n.setCurrent(i),n.stem(),n.getCurrent())}}(),i.Pipeline.registerFunction(i.fi.stemmer,"stemmer-fi"),i.fi.stopWordFilter=i.generateStopWordFilter("ei eivät emme en et ette että he heidän heidät heihin heille heillä heiltä heissä heistä heitä hän häneen hänelle hänellä häneltä hänen hänessä hänestä hänet häntä itse ja johon joiden joihin joiksi joilla joille joilta joina joissa joista joita joka joksi jolla jolle jolta jona jonka jos jossa josta jota jotka kanssa keiden keihin keiksi keille keillä keiltä keinä keissä keistä keitä keneen keneksi kenelle kenellä keneltä kenen kenenä kenessä kenestä kenet ketkä ketkä ketä koska kuin kuka kun me meidän meidät meihin meille meillä meiltä meissä meistä meitä mihin miksi mikä mille millä miltä minkä minkä minua minulla minulle minulta minun minussa minusta minut minuun minä minä missä mistä mitkä mitä mukaan mutta ne niiden niihin niiksi niille niillä niiltä niin niin niinä niissä niistä niitä noiden noihin noiksi noilla noille noilta noin noina noissa noista noita nuo nyt näiden näihin näiksi näille näillä näiltä näinä näissä näistä näitä nämä ole olemme olen olet olette oli olimme olin olisi olisimme olisin olisit olisitte olisivat olit olitte olivat olla olleet ollut on ovat poikki se sekä sen siihen siinä siitä siksi sille sillä sillä siltä sinua sinulla sinulle sinulta sinun sinussa sinusta sinut sinuun sinä sinä sitä tai te teidän teidät teihin teille teillä teiltä teissä teistä teitä tuo tuohon tuoksi tuolla tuolle tuolta tuon tuona tuossa tuosta tuota tähän täksi tälle tällä tältä tämä tämän tänä tässä tästä tätä vaan vai vaikka yli".split(" ")),i.Pipeline.registerFunction(i.fi.stopWordFilter,"stopWordFilter-fi")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.hu.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Hungarian` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,n){"function"==typeof define&&define.amd?define(n):"object"==typeof exports?module.exports=n():n()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.hu=function(){this.pipeline.reset(),this.pipeline.add(e.hu.trimmer,e.hu.stopWordFilter,e.hu.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.hu.stemmer))},e.hu.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.hu.trimmer=e.trimmerSupport.generateTrimmer(e.hu.wordCharacters),e.Pipeline.registerFunction(e.hu.trimmer,"trimmer-hu"),e.hu.stemmer=function(){var n=e.stemmerSupport.Among,r=e.stemmerSupport.SnowballProgram,i=new function(){function e(){var e,n=L.cursor;if(d=L.limit,L.in_grouping(W,97,252))for(;;){if(e=L.cursor,L.out_grouping(W,97,252))return L.cursor=e,L.find_among(g,8)||(L.cursor=e,e=L.limit)return void(d=e);L.cursor++}if(L.cursor=n,L.out_grouping(W,97,252)){for(;!L.in_grouping(W,97,252);){if(L.cursor>=L.limit)return;L.cursor++}d=L.cursor}}function i(){return d<=L.cursor}function a(){var e;if(L.ket=L.cursor,(e=L.find_among_b(h,2))&&(L.bra=L.cursor,i()))switch(e){case 1:L.slice_from("a");break;case 2:L.slice_from("e")}}function t(){var e=L.limit-L.cursor;return!!L.find_among_b(p,23)&&(L.cursor=L.limit-e,!0)}function s(){if(L.cursor>L.limit_backward){L.cursor--,L.ket=L.cursor;var e=L.cursor-1;L.limit_backward<=e&&e<=L.limit&&(L.cursor=e,L.bra=e,L.slice_del())}}function c(){var e;if(L.ket=L.cursor,(e=L.find_among_b(_,2))&&(L.bra=L.cursor,i())){if((1==e||2==e)&&!t())return;L.slice_del(),s()}}function o(){L.ket=L.cursor,L.find_among_b(v,44)&&(L.bra=L.cursor,i()&&(L.slice_del(),a()))}function w(){var e;if(L.ket=L.cursor,(e=L.find_among_b(z,3))&&(L.bra=L.cursor,i()))switch(e){case 1:L.slice_from("e");break;case 2:case 3:L.slice_from("a")}}function l(){var e;if(L.ket=L.cursor,(e=L.find_among_b(y,6))&&(L.bra=L.cursor,i()))switch(e){case 1:case 2:L.slice_del();break;case 3:L.slice_from("a");break;case 4:L.slice_from("e")}}function u(){var e;if(L.ket=L.cursor,(e=L.find_among_b(j,2))&&(L.bra=L.cursor,i())){if((1==e||2==e)&&!t())return;L.slice_del(),s()}}function m(){var e;if(L.ket=L.cursor,(e=L.find_among_b(C,7))&&(L.bra=L.cursor,i()))switch(e){case 1:L.slice_from("a");break;case 2:L.slice_from("e");break;case 3:case 4:case 5:case 6:case 7:L.slice_del()}}function k(){var e;if(L.ket=L.cursor,(e=L.find_among_b(P,12))&&(L.bra=L.cursor,i()))switch(e){case 1:case 4:case 7:case 9:L.slice_del();break;case 2:case 5:case 8:L.slice_from("e");break;case 3:case 6:L.slice_from("a")}}function f(){var e;if(L.ket=L.cursor,(e=L.find_among_b(F,31))&&(L.bra=L.cursor,i()))switch(e){case 1:case 4:case 7:case 8:case 9:case 12:case 13:case 16:case 17:case 18:L.slice_del();break;case 2:case 5:case 10:case 14:case 19:L.slice_from("a");break;case 3:case 6:case 11:case 15:case 20:L.slice_from("e")}}function b(){var e;if(L.ket=L.cursor,(e=L.find_among_b(S,42))&&(L.bra=L.cursor,i()))switch(e){case 1:case 4:case 5:case 6:case 9:case 10:case 11:case 14:case 15:case 16:case 17:case 20:case 21:case 24:case 25:case 26:case 29:L.slice_del();break;case 2:case 7:case 12:case 18:case 22:case 27:L.slice_from("a");break;case 3:case 8:case 13:case 19:case 23:case 28:L.slice_from("e")}}var d,g=[new n("cs",-1,-1),new n("dzs",-1,-1),new n("gy",-1,-1),new n("ly",-1,-1),new n("ny",-1,-1),new n("sz",-1,-1),new n("ty",-1,-1),new n("zs",-1,-1)],h=[new n("á",-1,1),new n("é",-1,2)],p=[new n("bb",-1,-1),new n("cc",-1,-1),new n("dd",-1,-1),new n("ff",-1,-1),new n("gg",-1,-1),new n("jj",-1,-1),new n("kk",-1,-1),new n("ll",-1,-1),new n("mm",-1,-1),new n("nn",-1,-1),new n("pp",-1,-1),new n("rr",-1,-1),new n("ccs",-1,-1),new n("ss",-1,-1),new n("zzs",-1,-1),new n("tt",-1,-1),new n("vv",-1,-1),new n("ggy",-1,-1),new n("lly",-1,-1),new n("nny",-1,-1),new n("tty",-1,-1),new n("ssz",-1,-1),new n("zz",-1,-1)],_=[new n("al",-1,1),new n("el",-1,2)],v=[new n("ba",-1,-1),new n("ra",-1,-1),new n("be",-1,-1),new n("re",-1,-1),new n("ig",-1,-1),new n("nak",-1,-1),new n("nek",-1,-1),new n("val",-1,-1),new n("vel",-1,-1),new n("ul",-1,-1),new n("nál",-1,-1),new n("nél",-1,-1),new n("ból",-1,-1),new n("ról",-1,-1),new n("tól",-1,-1),new n("bõl",-1,-1),new n("rõl",-1,-1),new n("tõl",-1,-1),new n("ül",-1,-1),new n("n",-1,-1),new n("an",19,-1),new n("ban",20,-1),new n("en",19,-1),new n("ben",22,-1),new n("képpen",22,-1),new n("on",19,-1),new n("ön",19,-1),new n("képp",-1,-1),new n("kor",-1,-1),new n("t",-1,-1),new n("at",29,-1),new n("et",29,-1),new n("ként",29,-1),new n("anként",32,-1),new n("enként",32,-1),new n("onként",32,-1),new n("ot",29,-1),new n("ért",29,-1),new n("öt",29,-1),new n("hez",-1,-1),new n("hoz",-1,-1),new n("höz",-1,-1),new n("vá",-1,-1),new n("vé",-1,-1)],z=[new n("án",-1,2),new n("én",-1,1),new n("ánként",-1,3)],y=[new n("stul",-1,2),new n("astul",0,1),new n("ástul",0,3),new n("stül",-1,2),new n("estül",3,1),new n("éstül",3,4)],j=[new n("á",-1,1),new n("é",-1,2)],C=[new n("k",-1,7),new n("ak",0,4),new n("ek",0,6),new n("ok",0,5),new n("ák",0,1),new n("ék",0,2),new n("ök",0,3)],P=[new n("éi",-1,7),new n("áéi",0,6),new n("ééi",0,5),new n("é",-1,9),new n("ké",3,4),new n("aké",4,1),new n("eké",4,1),new n("oké",4,1),new n("áké",4,3),new n("éké",4,2),new n("öké",4,1),new n("éé",3,8)],F=[new n("a",-1,18),new n("ja",0,17),new n("d",-1,16),new n("ad",2,13),new n("ed",2,13),new n("od",2,13),new n("ád",2,14),new n("éd",2,15),new n("öd",2,13),new n("e",-1,18),new n("je",9,17),new n("nk",-1,4),new n("unk",11,1),new n("ánk",11,2),new n("énk",11,3),new n("ünk",11,1),new n("uk",-1,8),new n("juk",16,7),new n("ájuk",17,5),new n("ük",-1,8),new n("jük",19,7),new n("éjük",20,6),new n("m",-1,12),new n("am",22,9),new n("em",22,9),new n("om",22,9),new n("ám",22,10),new n("ém",22,11),new n("o",-1,18),new n("á",-1,19),new n("é",-1,20)],S=[new n("id",-1,10),new n("aid",0,9),new n("jaid",1,6),new n("eid",0,9),new n("jeid",3,6),new n("áid",0,7),new n("éid",0,8),new n("i",-1,15),new n("ai",7,14),new n("jai",8,11),new n("ei",7,14),new n("jei",10,11),new n("ái",7,12),new n("éi",7,13),new n("itek",-1,24),new n("eitek",14,21),new n("jeitek",15,20),new n("éitek",14,23),new n("ik",-1,29),new n("aik",18,26),new n("jaik",19,25),new n("eik",18,26),new n("jeik",21,25),new n("áik",18,27),new n("éik",18,28),new n("ink",-1,20),new n("aink",25,17),new n("jaink",26,16),new n("eink",25,17),new n("jeink",28,16),new n("áink",25,18),new n("éink",25,19),new n("aitok",-1,21),new n("jaitok",32,20),new n("áitok",-1,22),new n("im",-1,5),new n("aim",35,4),new n("jaim",36,1),new n("eim",35,4),new n("jeim",38,1),new n("áim",35,2),new n("éim",35,3)],W=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,1,17,52,14],L=new r;this.setCurrent=function(e){L.setCurrent(e)},this.getCurrent=function(){return L.getCurrent()},this.stem=function(){var n=L.cursor;return e(),L.limit_backward=n,L.cursor=L.limit,c(),L.cursor=L.limit,o(),L.cursor=L.limit,w(),L.cursor=L.limit,l(),L.cursor=L.limit,u(),L.cursor=L.limit,k(),L.cursor=L.limit,f(),L.cursor=L.limit,b(),L.cursor=L.limit,m(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}}(),e.Pipeline.registerFunction(e.hu.stemmer,"stemmer-hu"),e.hu.stopWordFilter=e.generateStopWordFilter("a abban ahhoz ahogy ahol aki akik akkor alatt amely amelyek amelyekben amelyeket amelyet amelynek ami amikor amit amolyan amíg annak arra arról az azok azon azonban azt aztán azután azzal azért be belül benne bár cikk cikkek cikkeket csak de e ebben eddig egy egyes egyetlen egyik egyre egyéb egész ehhez ekkor el ellen elsõ elég elõ elõször elõtt emilyen ennek erre ez ezek ezen ezt ezzel ezért fel felé hanem hiszen hogy hogyan igen ill ill. illetve ilyen ilyenkor ismét ison itt jobban jó jól kell kellett keressünk keresztül ki kívül között közül legalább legyen lehet lehetett lenne lenni lesz lett maga magát majd majd meg mellett mely melyek mert mi mikor milyen minden mindenki mindent mindig mint mintha mit mivel miért most már más másik még míg nagy nagyobb nagyon ne nekem neki nem nincs néha néhány nélkül olyan ott pedig persze rá s saját sem semmi sok sokat sokkal szemben szerint szinte számára talán tehát teljes tovább továbbá több ugyanis utolsó után utána vagy vagyis vagyok valaki valami valamint való van vannak vele vissza viszont volna volt voltak voltam voltunk által általában át én éppen és így õ õk õket össze úgy új újabb újra".split(" ")),e.Pipeline.registerFunction(e.hu.stopWordFilter,"stopWordFilter-hu")}}); -------------------------------------------------------------------------------- /site/404.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | deepee 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 |
64 | 65 |
66 |
67 | 68 |
69 | 70 |
71 | 132 |
133 | 134 |
135 | 136 | 137 | 138 | 139 |
140 |
141 | 142 | 143 | 144 |
145 |
146 |
147 | 148 | 149 | 150 | 195 |
196 |
197 |
198 | 199 | 200 | 201 |
202 |
203 | 204 |

404 - Not found

205 | 206 | 207 |
208 |
209 |
210 | 211 |
212 | 213 | 214 | 230 | 231 |
232 |
233 |
234 |
235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | -------------------------------------------------------------------------------- /tests/test_privacy_wrapper.py: -------------------------------------------------------------------------------- 1 | from deepee import PrivacyWrapper 2 | import torch 3 | import pytest 4 | 5 | 6 | class MiniModel(torch.nn.Module): 7 | def __init__(self): 8 | super().__init__() 9 | self.lin = torch.nn.Linear(10, 1) 10 | self.lin2 = torch.nn.Linear(1, 1) 11 | 12 | def forward(self, x): 13 | return self.lin2(self.lin(x)) 14 | 15 | 16 | def test_wrap(): 17 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 18 | 19 | 20 | def test_forward(): 21 | data = torch.randn(2, 1, 10) 22 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 23 | output = wrapped(data) 24 | assert output.shape == (2, 1, 1) 25 | 26 | 27 | def test_clip_accum(): 28 | data = torch.randn(2, 1, 10) 29 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 30 | output = wrapped(data) 31 | loss = output.mean() 32 | loss.backward() 33 | wrapped.clip_and_accumulate() 34 | 35 | 36 | def test_noise_insecure(): 37 | data = torch.randn(2, 1, 10) 38 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0, secure_rng=False, seed=None) 39 | output = wrapped(data) 40 | loss = output.mean() 41 | loss.backward() 42 | wrapped.clip_and_accumulate() 43 | wrapped.noise_gradient() 44 | 45 | 46 | def test_noise_insecure_seed(): 47 | data = torch.randn(2, 1, 10) 48 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0, secure_rng=False, seed=42) 49 | output = wrapped(data) 50 | loss = output.mean() 51 | loss.backward() 52 | wrapped.clip_and_accumulate() 53 | wrapped.noise_gradient() 54 | 55 | 56 | def test_noise_secure(): 57 | data = torch.randn(2, 1, 10) 58 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0, secure_rng=True) 59 | output = wrapped(data) 60 | loss = output.mean() 61 | loss.backward() 62 | wrapped.clip_and_accumulate() 63 | wrapped.noise_gradient() 64 | 65 | 66 | def test_raise_reduce_error(): 67 | data = torch.randn(2, 1, 10) 68 | wrapped = PrivacyWrapper(MiniModel(), 2, 1000, 1e-12, secure_rng=True) 69 | output = wrapped(data) 70 | loss = output.mean() 71 | loss.backward() 72 | with pytest.raises(ValueError): 73 | wrapped.clip_and_accumulate(reduce="foo") 74 | 75 | 76 | def test_next_batch(): 77 | data = torch.randn(2, 1, 10) 78 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 79 | output = wrapped(data) 80 | loss = output.mean() 81 | loss.backward() 82 | wrapped.clip_and_accumulate() 83 | wrapped.noise_gradient() 84 | wrapped.prepare_next_batch() 85 | main_params = list(wrapped.wrapped_model.parameters()) 86 | copy_1_params = list(wrapped.models[0].parameters()) 87 | copy_2_params = list(wrapped.models[1].parameters()) 88 | for mp, c1, c2 in zip(main_params, copy_1_params, copy_2_params): 89 | assert (mp == c1).all() and (mp == c2).all() and (c1 == c2).all() 90 | 91 | 92 | def test_verification_and_steps_taken(): 93 | data = torch.randn(2, 1, 10) 94 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 95 | assert wrapped._steps_taken == 0 96 | assert ( 97 | wrapped._forward_succesful 98 | == wrapped._noise_succesful 99 | == wrapped._clip_succesful 100 | == False 101 | ) 102 | output = wrapped(data) 103 | assert wrapped._forward_succesful == True 104 | loss = output.mean() 105 | loss.backward() 106 | wrapped.clip_and_accumulate() 107 | assert wrapped._clip_succesful == True 108 | wrapped.noise_gradient() 109 | assert wrapped._noise_succesful == True 110 | wrapped.prepare_next_batch() 111 | assert wrapped._steps_taken == 1 112 | with pytest.raises(RuntimeError): 113 | wrapped.prepare_next_batch() # call a second time to raise error 114 | assert wrapped._steps_taken == 1 # steps should still be 1 115 | 116 | 117 | def test_steps_taken(): 118 | data = torch.randn(2, 1, 10) 119 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 120 | for _ in range(5): 121 | output = wrapped(data) 122 | loss = output.mean() 123 | loss.backward() 124 | wrapped.clip_and_accumulate() 125 | wrapped.noise_gradient() 126 | wrapped.prepare_next_batch() 127 | assert wrapped._steps_taken == 5 128 | 129 | 130 | def test_in_order(): 131 | """Case 1: forward not called before clip""" 132 | data = torch.randn(2, 1, 10) 133 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 134 | with pytest.raises(RuntimeError): 135 | wrapped.clip_and_accumulate() 136 | 137 | """Case 2: clip not called before noise""" 138 | data = torch.randn(2, 1, 10) 139 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 140 | output = wrapped(data) 141 | with pytest.raises(RuntimeError): 142 | wrapped.noise_gradient() 143 | 144 | """Case 3: noise not called before prepare """ 145 | data = torch.randn(2, 1, 10) 146 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 147 | output = wrapped(data) 148 | loss = output.mean() 149 | loss.backward() 150 | wrapped.clip_and_accumulate() 151 | with pytest.raises(RuntimeError): 152 | wrapped.prepare_next_batch() 153 | 154 | """Case 3: forward called without prepare """ 155 | data = torch.randn(2, 1, 10) 156 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 157 | output = wrapped(data) 158 | loss = output.mean() 159 | loss.backward() 160 | wrapped.clip_and_accumulate() 161 | wrapped.noise_gradient() 162 | with pytest.raises(RuntimeError): 163 | output = wrapped(data) 164 | 165 | 166 | def test_parameters(): 167 | m = MiniModel() 168 | for param in m.lin2.parameters(): 169 | param.requires_grad = False 170 | wrapped = PrivacyWrapper(m, 2, 1.0, 1.0) 171 | optim = torch.optim.SGD(wrapped.parameters(), lr=1) 172 | params = wrapped.parameters() 173 | assert all([a.shape == b.shape for a, b in zip(params, MiniModel().parameters())]) 174 | data = torch.randn(2, 1, 10) 175 | optim.zero_grad() 176 | output = wrapped(data) 177 | loss = output.mean() 178 | loss.backward() 179 | wrapped.clip_and_accumulate() 180 | wrapped.noise_gradient() 181 | optim.step() 182 | wrapped.prepare_next_batch() 183 | for param in wrapped.wrapped_model.parameters(): 184 | param.requires_grad = True 185 | optim.zero_grad() 186 | data = torch.randn(2, 1, 10) 187 | output = wrapped(data) 188 | loss = output.mean() 189 | loss.backward() 190 | with pytest.raises(RuntimeError): 191 | wrapped.clip_and_accumulate() 192 | 193 | # same procedure as last year miss sophie? 194 | m = MiniModel() 195 | for param in m.lin2.parameters(): 196 | param.requires_grad = False 197 | wrapped = PrivacyWrapper(m, 2, 1.0, 1.0) 198 | optim = torch.optim.SGD(wrapped.parameters(), lr=1) 199 | params = wrapped.parameters() 200 | assert all([a.shape == b.shape for a, b in zip(params, MiniModel().parameters())]) 201 | data = torch.randn(2, 1, 10) 202 | optim.zero_grad() 203 | output = wrapped(data) 204 | loss = output.mean() 205 | loss.backward() 206 | wrapped.clip_and_accumulate() 207 | wrapped.noise_gradient() 208 | optim.step() 209 | wrapped.prepare_next_batch() 210 | for param in wrapped.wrapped_model.parameters(): 211 | param.requires_grad = True 212 | wrapped.update_clones() 213 | optim.zero_grad() 214 | data = torch.randn(2, 1, 10) 215 | output = wrapped(data) 216 | loss = output.mean() 217 | loss.backward() 218 | wrapped.clip_and_accumulate() 219 | 220 | 221 | def test_update_error(): 222 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 223 | 224 | 225 | def test_check_device_cpu(): 226 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0).to("cpu") 227 | assert ( 228 | next( 229 | iter( 230 | set([param.device.type for param in wrapped.wrapped_model.parameters()]) 231 | ) 232 | ) 233 | == "cpu" 234 | ) 235 | for model in wrapped.models: 236 | assert ( 237 | next(iter(set([param.device.type for param in model.parameters()]))) 238 | == "cpu" 239 | ) 240 | 241 | 242 | def test_check_device_gpu(): 243 | if torch.cuda.is_available(): 244 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0).to("cuda") 245 | assert "cuda" in next( 246 | iter( 247 | set([param.device.type for param in wrapped.wrapped_model.parameters()]) 248 | ) 249 | ) 250 | for model in wrapped.models: 251 | assert "cuda" in next( 252 | iter(set([param.device.type for param in model.parameters()])) 253 | ) 254 | else: 255 | pass 256 | 257 | 258 | def test_raises_rng_collision(): 259 | with pytest.raises(ValueError): 260 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0, secure_rng=True, seed=42) 261 | 262 | 263 | def test_transfer_learning(): 264 | """Some model parameters do not require gradients""" 265 | 266 | class MiniModel(torch.nn.Module): 267 | def __init__(self): 268 | super().__init__() 269 | self.lin = torch.nn.Linear(10, 1) 270 | list(self.lin.parameters())[0].requires_grad_(False) 271 | 272 | def forward(self, x): 273 | return self.lin(x) 274 | 275 | data = torch.randn(2, 1, 10) 276 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0) 277 | output = wrapped(data) 278 | loss = output.mean() 279 | loss.backward() 280 | wrapped.clip_and_accumulate() 281 | wrapped.noise_gradient() 282 | wrapped.prepare_next_batch() -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.pt.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Portuguese` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.pt=function(){this.pipeline.reset(),this.pipeline.add(e.pt.trimmer,e.pt.stopWordFilter,e.pt.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.pt.stemmer))},e.pt.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.pt.trimmer=e.trimmerSupport.generateTrimmer(e.pt.wordCharacters),e.Pipeline.registerFunction(e.pt.trimmer,"trimmer-pt"),e.pt.stemmer=function(){var r=e.stemmerSupport.Among,s=e.stemmerSupport.SnowballProgram,n=new function(){function e(){for(var e;;){if(z.bra=z.cursor,e=z.find_among(k,3))switch(z.ket=z.cursor,e){case 1:z.slice_from("a~");continue;case 2:z.slice_from("o~");continue;case 3:if(z.cursor>=z.limit)break;z.cursor++;continue}break}}function n(){if(z.out_grouping(y,97,250)){for(;!z.in_grouping(y,97,250);){if(z.cursor>=z.limit)return!0;z.cursor++}return!1}return!0}function i(){if(z.in_grouping(y,97,250))for(;!z.out_grouping(y,97,250);){if(z.cursor>=z.limit)return!1;z.cursor++}return g=z.cursor,!0}function o(){var e,r,s=z.cursor;if(z.in_grouping(y,97,250))if(e=z.cursor,n()){if(z.cursor=e,i())return}else g=z.cursor;if(z.cursor=s,z.out_grouping(y,97,250)){if(r=z.cursor,n()){if(z.cursor=r,!z.in_grouping(y,97,250)||z.cursor>=z.limit)return;z.cursor++}g=z.cursor}}function t(){for(;!z.in_grouping(y,97,250);){if(z.cursor>=z.limit)return!1;z.cursor++}for(;!z.out_grouping(y,97,250);){if(z.cursor>=z.limit)return!1;z.cursor++}return!0}function a(){var e=z.cursor;g=z.limit,b=g,h=g,o(),z.cursor=e,t()&&(b=z.cursor,t()&&(h=z.cursor))}function u(){for(var e;;){if(z.bra=z.cursor,e=z.find_among(q,3))switch(z.ket=z.cursor,e){case 1:z.slice_from("ã");continue;case 2:z.slice_from("õ");continue;case 3:if(z.cursor>=z.limit)break;z.cursor++;continue}break}}function w(){return g<=z.cursor}function m(){return b<=z.cursor}function c(){return h<=z.cursor}function l(){var e;if(z.ket=z.cursor,!(e=z.find_among_b(F,45)))return!1;switch(z.bra=z.cursor,e){case 1:if(!c())return!1;z.slice_del();break;case 2:if(!c())return!1;z.slice_from("log");break;case 3:if(!c())return!1;z.slice_from("u");break;case 4:if(!c())return!1;z.slice_from("ente");break;case 5:if(!m())return!1;z.slice_del(),z.ket=z.cursor,e=z.find_among_b(j,4),e&&(z.bra=z.cursor,c()&&(z.slice_del(),1==e&&(z.ket=z.cursor,z.eq_s_b(2,"at")&&(z.bra=z.cursor,c()&&z.slice_del()))));break;case 6:if(!c())return!1;z.slice_del(),z.ket=z.cursor,e=z.find_among_b(C,3),e&&(z.bra=z.cursor,1==e&&c()&&z.slice_del());break;case 7:if(!c())return!1;z.slice_del(),z.ket=z.cursor,e=z.find_among_b(P,3),e&&(z.bra=z.cursor,1==e&&c()&&z.slice_del());break;case 8:if(!c())return!1;z.slice_del(),z.ket=z.cursor,z.eq_s_b(2,"at")&&(z.bra=z.cursor,c()&&z.slice_del());break;case 9:if(!w()||!z.eq_s_b(1,"e"))return!1;z.slice_from("ir")}return!0}function f(){var e,r;if(z.cursor>=g){if(r=z.limit_backward,z.limit_backward=g,z.ket=z.cursor,e=z.find_among_b(S,120))return z.bra=z.cursor,1==e&&z.slice_del(),z.limit_backward=r,!0;z.limit_backward=r}return!1}function d(){var e;z.ket=z.cursor,(e=z.find_among_b(W,7))&&(z.bra=z.cursor,1==e&&w()&&z.slice_del())}function v(e,r){if(z.eq_s_b(1,e)){z.bra=z.cursor;var s=z.limit-z.cursor;if(z.eq_s_b(1,r))return z.cursor=z.limit-s,w()&&z.slice_del(),!1}return!0}function p(){var e;if(z.ket=z.cursor,e=z.find_among_b(L,4))switch(z.bra=z.cursor,e){case 1:w()&&(z.slice_del(),z.ket=z.cursor,z.limit-z.cursor,v("u","g")&&v("i","c"));break;case 2:z.slice_from("c")}}function _(){if(!l()&&(z.cursor=z.limit,!f()))return z.cursor=z.limit,void d();z.cursor=z.limit,z.ket=z.cursor,z.eq_s_b(1,"i")&&(z.bra=z.cursor,z.eq_s_b(1,"c")&&(z.cursor=z.limit,w()&&z.slice_del()))}var h,b,g,k=[new r("",-1,3),new r("ã",0,1),new r("õ",0,2)],q=[new r("",-1,3),new r("a~",0,1),new r("o~",0,2)],j=[new r("ic",-1,-1),new r("ad",-1,-1),new r("os",-1,-1),new r("iv",-1,1)],C=[new r("ante",-1,1),new r("avel",-1,1),new r("ível",-1,1)],P=[new r("ic",-1,1),new r("abil",-1,1),new r("iv",-1,1)],F=[new r("ica",-1,1),new r("ância",-1,1),new r("ência",-1,4),new r("ira",-1,9),new r("adora",-1,1),new r("osa",-1,1),new r("ista",-1,1),new r("iva",-1,8),new r("eza",-1,1),new r("logía",-1,2),new r("idade",-1,7),new r("ante",-1,1),new r("mente",-1,6),new r("amente",12,5),new r("ável",-1,1),new r("ível",-1,1),new r("ución",-1,3),new r("ico",-1,1),new r("ismo",-1,1),new r("oso",-1,1),new r("amento",-1,1),new r("imento",-1,1),new r("ivo",-1,8),new r("aça~o",-1,1),new r("ador",-1,1),new r("icas",-1,1),new r("ências",-1,4),new r("iras",-1,9),new r("adoras",-1,1),new r("osas",-1,1),new r("istas",-1,1),new r("ivas",-1,8),new r("ezas",-1,1),new r("logías",-1,2),new r("idades",-1,7),new r("uciones",-1,3),new r("adores",-1,1),new r("antes",-1,1),new r("aço~es",-1,1),new r("icos",-1,1),new r("ismos",-1,1),new r("osos",-1,1),new r("amentos",-1,1),new r("imentos",-1,1),new r("ivos",-1,8)],S=[new r("ada",-1,1),new r("ida",-1,1),new r("ia",-1,1),new r("aria",2,1),new r("eria",2,1),new r("iria",2,1),new r("ara",-1,1),new r("era",-1,1),new r("ira",-1,1),new r("ava",-1,1),new r("asse",-1,1),new r("esse",-1,1),new r("isse",-1,1),new r("aste",-1,1),new r("este",-1,1),new r("iste",-1,1),new r("ei",-1,1),new r("arei",16,1),new r("erei",16,1),new r("irei",16,1),new r("am",-1,1),new r("iam",20,1),new r("ariam",21,1),new r("eriam",21,1),new r("iriam",21,1),new r("aram",20,1),new r("eram",20,1),new r("iram",20,1),new r("avam",20,1),new r("em",-1,1),new r("arem",29,1),new r("erem",29,1),new r("irem",29,1),new r("assem",29,1),new r("essem",29,1),new r("issem",29,1),new r("ado",-1,1),new r("ido",-1,1),new r("ando",-1,1),new r("endo",-1,1),new r("indo",-1,1),new r("ara~o",-1,1),new r("era~o",-1,1),new r("ira~o",-1,1),new r("ar",-1,1),new r("er",-1,1),new r("ir",-1,1),new r("as",-1,1),new r("adas",47,1),new r("idas",47,1),new r("ias",47,1),new r("arias",50,1),new r("erias",50,1),new r("irias",50,1),new r("aras",47,1),new r("eras",47,1),new r("iras",47,1),new r("avas",47,1),new r("es",-1,1),new r("ardes",58,1),new r("erdes",58,1),new r("irdes",58,1),new r("ares",58,1),new r("eres",58,1),new r("ires",58,1),new r("asses",58,1),new r("esses",58,1),new r("isses",58,1),new r("astes",58,1),new r("estes",58,1),new r("istes",58,1),new r("is",-1,1),new r("ais",71,1),new r("eis",71,1),new r("areis",73,1),new r("ereis",73,1),new r("ireis",73,1),new r("áreis",73,1),new r("éreis",73,1),new r("íreis",73,1),new r("ásseis",73,1),new r("ésseis",73,1),new r("ísseis",73,1),new r("áveis",73,1),new r("íeis",73,1),new r("aríeis",84,1),new r("eríeis",84,1),new r("iríeis",84,1),new r("ados",-1,1),new r("idos",-1,1),new r("amos",-1,1),new r("áramos",90,1),new r("éramos",90,1),new r("íramos",90,1),new r("ávamos",90,1),new r("íamos",90,1),new r("aríamos",95,1),new r("eríamos",95,1),new r("iríamos",95,1),new r("emos",-1,1),new r("aremos",99,1),new r("eremos",99,1),new r("iremos",99,1),new r("ássemos",99,1),new r("êssemos",99,1),new r("íssemos",99,1),new r("imos",-1,1),new r("armos",-1,1),new r("ermos",-1,1),new r("irmos",-1,1),new r("ámos",-1,1),new r("arás",-1,1),new r("erás",-1,1),new r("irás",-1,1),new r("eu",-1,1),new r("iu",-1,1),new r("ou",-1,1),new r("ará",-1,1),new r("erá",-1,1),new r("irá",-1,1)],W=[new r("a",-1,1),new r("i",-1,1),new r("o",-1,1),new r("os",-1,1),new r("á",-1,1),new r("í",-1,1),new r("ó",-1,1)],L=[new r("e",-1,1),new r("ç",-1,2),new r("é",-1,1),new r("ê",-1,1)],y=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,3,19,12,2],z=new s;this.setCurrent=function(e){z.setCurrent(e)},this.getCurrent=function(){return z.getCurrent()},this.stem=function(){var r=z.cursor;return e(),z.cursor=r,a(),z.limit_backward=r,z.cursor=z.limit,_(),z.cursor=z.limit,p(),z.cursor=z.limit_backward,u(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}}(),e.Pipeline.registerFunction(e.pt.stemmer,"stemmer-pt"),e.pt.stopWordFilter=e.generateStopWordFilter("a ao aos aquela aquelas aquele aqueles aquilo as até com como da das de dela delas dele deles depois do dos e ela elas ele eles em entre era eram essa essas esse esses esta estamos estas estava estavam este esteja estejam estejamos estes esteve estive estivemos estiver estivera estiveram estiverem estivermos estivesse estivessem estivéramos estivéssemos estou está estávamos estão eu foi fomos for fora foram forem formos fosse fossem fui fôramos fôssemos haja hajam hajamos havemos hei houve houvemos houver houvera houveram houverei houverem houveremos houveria houveriam houvermos houverá houverão houveríamos houvesse houvessem houvéramos houvéssemos há hão isso isto já lhe lhes mais mas me mesmo meu meus minha minhas muito na nas nem no nos nossa nossas nosso nossos num numa não nós o os ou para pela pelas pelo pelos por qual quando que quem se seja sejam sejamos sem serei seremos seria seriam será serão seríamos seu seus somos sou sua suas são só também te tem temos tenha tenham tenhamos tenho terei teremos teria teriam terá terão teríamos teu teus teve tinha tinham tive tivemos tiver tivera tiveram tiverem tivermos tivesse tivessem tivéramos tivéssemos tu tua tuas tém tínhamos um uma você vocês vos à às éramos".split(" ")),e.Pipeline.registerFunction(e.pt.stopWordFilter,"stopWordFilter-pt")}}); -------------------------------------------------------------------------------- /tests/test_watchdog.py: -------------------------------------------------------------------------------- 1 | from deepee.watchdog import PrivacyBudgetExhausted 2 | from deepee import PrivacyWatchdog, UniformDataLoader, PrivacyWrapper 3 | from deepee.dataloader import UniformWORSubsampler 4 | from torch.utils.data import DataLoader, Dataset 5 | import torch 6 | import pytest 7 | from testfixtures import LogCapture 8 | 9 | 10 | class DS(Dataset): 11 | def __getitem__(self, idx): 12 | return torch.rand( 13 | 1, 14 | ) 15 | 16 | def __len__(self): 17 | return 5 18 | 19 | 20 | dl = DataLoader(DS()) 21 | udl = UniformDataLoader(DS(), 1) 22 | bsdl = DataLoader(DS(), batch_sampler=UniformWORSubsampler(DS(), 5)) 23 | 24 | 25 | def test_uniform_dl(): 26 | with LogCapture() as l: 27 | watchdog = PrivacyWatchdog(udl, target_delta=1e-5, target_epsilon=1.0) 28 | watchdog2 = PrivacyWatchdog(bsdl, target_delta=1e-5, target_epsilon=1.0) 29 | watchdog2 = PrivacyWatchdog(dl, target_delta=1e-5, target_epsilon=1.0) 30 | assert "CRITICAL" and "replacement" in str(l) 31 | 32 | 33 | def test_epsilon_delta_positive(): 34 | with pytest.raises(ValueError): 35 | watchdog = PrivacyWatchdog(udl, target_delta=1e-5, target_epsilon=None) 36 | with pytest.raises(ValueError): 37 | watchdog = PrivacyWatchdog(udl, target_delta=None, target_epsilon=1.0) 38 | with pytest.raises(ValueError): 39 | watchdog = PrivacyWatchdog(udl, target_delta=1.2, target_epsilon=1.0) 40 | with pytest.raises(ValueError): 41 | watchdog = PrivacyWatchdog(udl, target_delta=1.2, target_epsilon=1.0) 42 | with pytest.raises(ValueError): 43 | watchdog = PrivacyWatchdog(udl, target_delta=1e-5, target_epsilon=-4) 44 | 45 | 46 | def test_warn_without_save_or_path(): 47 | with LogCapture() as l: 48 | watchdog = PrivacyWatchdog( 49 | udl, 50 | target_delta=1e-5, 51 | target_epsilon=1.0, 52 | abort=False, 53 | save=True, 54 | ) 55 | assert "WARNING" and "ignored" in str(l) 56 | 57 | with LogCapture() as l: 58 | watchdog = PrivacyWatchdog( 59 | udl, 60 | target_delta=1e-5, 61 | target_epsilon=1.0, 62 | abort=False, 63 | save=False, 64 | path="somepath", 65 | ) 66 | assert "WARNING" and "ignored" in str(l) 67 | 68 | 69 | def test_save_fails_without_path(): 70 | """User asked for save without specifying path""" 71 | with pytest.raises(ValueError): 72 | watchdog = PrivacyWatchdog( 73 | udl, target_delta=1e-5, target_epsilon=1.0, abort=True, save=True, path=None 74 | ) 75 | 76 | 77 | def test_inform(): 78 | """Test reporting of epsilon""" 79 | 80 | class BigDS(Dataset): 81 | def __getitem__(self, idx): 82 | return torch.rand( 83 | 1, 84 | ) 85 | 86 | def __len__(self): 87 | return 50_000 88 | 89 | dl = UniformDataLoader(BigDS(), batch_size=200) 90 | watchdog = PrivacyWatchdog( 91 | dl, 92 | report_every_n_steps=1, 93 | target_delta=1e-5, 94 | target_epsilon=1.0, 95 | ) 96 | 97 | class FakeWrapper: 98 | noise_multiplier = 1.0 99 | 100 | watchdog.wrapper = FakeWrapper 101 | with LogCapture() as l: 102 | watchdog.inform(1) 103 | assert "Privacy spent at 1 steps" in str(l) 104 | 105 | 106 | def test_orphan_watchdog(): 107 | """Watchdog not attached""" 108 | dl = UniformDataLoader(udl, batch_size=200) 109 | watchdog = PrivacyWatchdog( 110 | dl, 111 | report_every_n_steps=1, 112 | target_delta=1e-5, 113 | target_epsilon=1.0, 114 | ) 115 | with pytest.raises(RuntimeError): 116 | watchdog.inform(1) 117 | 118 | 119 | def test_abort_training(): 120 | class BigDS(Dataset): 121 | def __getitem__(self, idx): 122 | return torch.rand( 123 | 1, 124 | ) 125 | 126 | def __len__(self): 127 | return 50_000 128 | 129 | dl = UniformDataLoader(BigDS(), batch_size=200) 130 | watchdog = PrivacyWatchdog( 131 | dl, report_every_n_steps=1, target_delta=1e-5, target_epsilon=1.0, abort=True 132 | ) 133 | 134 | class FakeWrapper: 135 | noise_multiplier = 1.0 136 | 137 | watchdog.wrapper = FakeWrapper 138 | with pytest.raises(PrivacyBudgetExhausted): 139 | watchdog.inform(50000) 140 | 141 | 142 | def test_log_exhausted(): 143 | class BigDS(Dataset): 144 | def __getitem__(self, idx): 145 | return torch.rand( 146 | 1, 147 | ) 148 | 149 | def __len__(self): 150 | return 50_000 151 | 152 | dl = UniformDataLoader(BigDS(), batch_size=200) 153 | watchdog = PrivacyWatchdog( 154 | dl, report_every_n_steps=1, target_delta=1e-5, target_epsilon=1.0, abort=False 155 | ) 156 | 157 | class FakeWrapper: 158 | noise_multiplier = 1.0 159 | 160 | watchdog.wrapper = FakeWrapper 161 | with LogCapture() as l: 162 | watchdog.inform(50000) 163 | assert "WARNING" and "exhausted" in str(l) 164 | 165 | 166 | def test_wrapper_returns_epsilon(): 167 | class MiniModel(torch.nn.Module): 168 | def __init__(self): 169 | super().__init__() 170 | self.lin = torch.nn.Linear(10, 1) 171 | 172 | def forward(self, x): 173 | return self.lin(x) 174 | 175 | class BigDS(Dataset): 176 | def __getitem__(self, idx): 177 | return torch.rand( 178 | 1, 179 | ) 180 | 181 | def __len__(self): 182 | return 50_000 183 | 184 | dl = UniformDataLoader(BigDS(), batch_size=200) 185 | watchdog = PrivacyWatchdog( 186 | dl, report_every_n_steps=1, target_delta=1e-5, target_epsilon=1.0, abort=False 187 | ) 188 | 189 | data = torch.randn(2, 1, 10) 190 | wrapped = PrivacyWrapper(MiniModel(), 2, 1.0, 1.0, watchdog=watchdog) 191 | epsila = [] # this one's for you @a1302z 192 | for _ in range(5): 193 | output = wrapped(data) 194 | loss = output.mean() 195 | loss.backward() 196 | wrapped.clip_and_accumulate() 197 | wrapped.noise_gradient() 198 | wrapped.prepare_next_batch() 199 | epsila.append(wrapped.current_epsilon) 200 | assert len(epsila) == 5 and None not in epsila 201 | 202 | 203 | def test_fallback_warning(): 204 | class MiniModel(torch.nn.Module): 205 | def __init__(self): 206 | super().__init__() 207 | self.lin = torch.nn.Linear(10, 1) 208 | 209 | def forward(self, x): 210 | return self.lin(x) 211 | 212 | class BigDS(Dataset): 213 | def __getitem__(self, idx): 214 | return torch.rand( 215 | 1, 216 | ) 217 | 218 | def __len__(self): 219 | return 50_000 220 | 221 | dl = UniformDataLoader(BigDS(), batch_size=200) 222 | with LogCapture() as l: 223 | watchdog = PrivacyWatchdog( 224 | dl, 225 | report_every_n_steps=1, 226 | target_delta=1e-5, 227 | target_epsilon=1.0, 228 | abort=False, 229 | fallback_to_rdp=True, 230 | ) 231 | assert "CRITICAL" and "RDP" in str(l) 232 | 233 | 234 | def test_fallback_works(): 235 | class MiniModel(torch.nn.Module): 236 | def __init__(self): 237 | super().__init__() 238 | self.lin = torch.nn.Linear(10, 1) 239 | 240 | def forward(self, x): 241 | return self.lin(x) 242 | 243 | class BigDS(Dataset): 244 | def __getitem__(self, idx): 245 | return torch.rand( 246 | 1, 247 | ) 248 | 249 | def __len__(self): 250 | return 50_000 251 | 252 | dl = UniformDataLoader(BigDS(), batch_size=200) 253 | watchdog = PrivacyWatchdog( 254 | dl, 255 | report_every_n_steps=1, 256 | target_delta=1e-5, 257 | target_epsilon=1.0, 258 | abort=False, 259 | fallback_to_rdp=True, 260 | ) 261 | data = torch.randn(2, 1, 10) 262 | wrapped = PrivacyWrapper(MiniModel(), 2, 10, 0.001, watchdog=watchdog) 263 | epsila = [] # this one's for you @a1302z 264 | for _ in range(5): 265 | output = wrapped(data) 266 | loss = output.mean() 267 | loss.backward() 268 | wrapped.clip_and_accumulate() 269 | wrapped.noise_gradient() 270 | epsilon = wrapped.prepare_next_batch() 271 | epsila.append(epsilon) 272 | assert len(epsila) == 5 273 | 274 | 275 | def test_no_fallback_crashes(): 276 | class MiniModel(torch.nn.Module): 277 | def __init__(self): 278 | super().__init__() 279 | self.lin = torch.nn.Linear(10, 1) 280 | 281 | def forward(self, x): 282 | return self.lin(x) 283 | 284 | class BigDS(Dataset): 285 | def __getitem__(self, idx): 286 | return torch.rand( 287 | 1, 288 | ) 289 | 290 | def __len__(self): 291 | return 50_000 292 | 293 | dl = UniformDataLoader(BigDS(), batch_size=200) 294 | watchdog = PrivacyWatchdog( 295 | dl, 296 | report_every_n_steps=1, 297 | target_delta=1e-5, 298 | target_epsilon=1.0, 299 | abort=False, 300 | fallback_to_rdp=False, 301 | ) 302 | data = torch.randn(2, 1, 10) 303 | wrapped = PrivacyWrapper(MiniModel(), 2, 10, 0.001, watchdog=watchdog) 304 | with pytest.raises(RuntimeError): 305 | output = wrapped(data) 306 | loss = output.mean() 307 | loss.backward() 308 | wrapped.clip_and_accumulate() 309 | wrapped.noise_gradient() 310 | wrapped.prepare_next_batch() -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.fr.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `French` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.fr=function(){this.pipeline.reset(),this.pipeline.add(e.fr.trimmer,e.fr.stopWordFilter,e.fr.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.fr.stemmer))},e.fr.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.fr.trimmer=e.trimmerSupport.generateTrimmer(e.fr.wordCharacters),e.Pipeline.registerFunction(e.fr.trimmer,"trimmer-fr"),e.fr.stemmer=function(){var r=e.stemmerSupport.Among,s=e.stemmerSupport.SnowballProgram,i=new function(){function e(e,r,s){return!(!W.eq_s(1,e)||(W.ket=W.cursor,!W.in_grouping(F,97,251)))&&(W.slice_from(r),W.cursor=s,!0)}function i(e,r,s){return!!W.eq_s(1,e)&&(W.ket=W.cursor,W.slice_from(r),W.cursor=s,!0)}function n(){for(var r,s;;){if(r=W.cursor,W.in_grouping(F,97,251)){if(W.bra=W.cursor,s=W.cursor,e("u","U",r))continue;if(W.cursor=s,e("i","I",r))continue;if(W.cursor=s,i("y","Y",r))continue}if(W.cursor=r,W.bra=r,!e("y","Y",r)){if(W.cursor=r,W.eq_s(1,"q")&&(W.bra=W.cursor,i("u","U",r)))continue;if(W.cursor=r,r>=W.limit)return;W.cursor++}}}function t(){for(;!W.in_grouping(F,97,251);){if(W.cursor>=W.limit)return!0;W.cursor++}for(;!W.out_grouping(F,97,251);){if(W.cursor>=W.limit)return!0;W.cursor++}return!1}function u(){var e=W.cursor;if(q=W.limit,g=q,p=q,W.in_grouping(F,97,251)&&W.in_grouping(F,97,251)&&W.cursor=W.limit){W.cursor=q;break}W.cursor++}while(!W.in_grouping(F,97,251))}q=W.cursor,W.cursor=e,t()||(g=W.cursor,t()||(p=W.cursor))}function o(){for(var e,r;;){if(r=W.cursor,W.bra=r,!(e=W.find_among(h,4)))break;switch(W.ket=W.cursor,e){case 1:W.slice_from("i");break;case 2:W.slice_from("u");break;case 3:W.slice_from("y");break;case 4:if(W.cursor>=W.limit)return;W.cursor++}}}function c(){return q<=W.cursor}function a(){return g<=W.cursor}function l(){return p<=W.cursor}function w(){var e,r;if(W.ket=W.cursor,e=W.find_among_b(C,43)){switch(W.bra=W.cursor,e){case 1:if(!l())return!1;W.slice_del();break;case 2:if(!l())return!1;W.slice_del(),W.ket=W.cursor,W.eq_s_b(2,"ic")&&(W.bra=W.cursor,l()?W.slice_del():W.slice_from("iqU"));break;case 3:if(!l())return!1;W.slice_from("log");break;case 4:if(!l())return!1;W.slice_from("u");break;case 5:if(!l())return!1;W.slice_from("ent");break;case 6:if(!c())return!1;if(W.slice_del(),W.ket=W.cursor,e=W.find_among_b(z,6))switch(W.bra=W.cursor,e){case 1:l()&&(W.slice_del(),W.ket=W.cursor,W.eq_s_b(2,"at")&&(W.bra=W.cursor,l()&&W.slice_del()));break;case 2:l()?W.slice_del():a()&&W.slice_from("eux");break;case 3:l()&&W.slice_del();break;case 4:c()&&W.slice_from("i")}break;case 7:if(!l())return!1;if(W.slice_del(),W.ket=W.cursor,e=W.find_among_b(y,3))switch(W.bra=W.cursor,e){case 1:l()?W.slice_del():W.slice_from("abl");break;case 2:l()?W.slice_del():W.slice_from("iqU");break;case 3:l()&&W.slice_del()}break;case 8:if(!l())return!1;if(W.slice_del(),W.ket=W.cursor,W.eq_s_b(2,"at")&&(W.bra=W.cursor,l()&&(W.slice_del(),W.ket=W.cursor,W.eq_s_b(2,"ic")))){W.bra=W.cursor,l()?W.slice_del():W.slice_from("iqU");break}break;case 9:W.slice_from("eau");break;case 10:if(!a())return!1;W.slice_from("al");break;case 11:if(l())W.slice_del();else{if(!a())return!1;W.slice_from("eux")}break;case 12:if(!a()||!W.out_grouping_b(F,97,251))return!1;W.slice_del();break;case 13:return c()&&W.slice_from("ant"),!1;case 14:return c()&&W.slice_from("ent"),!1;case 15:return r=W.limit-W.cursor,W.in_grouping_b(F,97,251)&&c()&&(W.cursor=W.limit-r,W.slice_del()),!1}return!0}return!1}function f(){var e,r;if(W.cursor=q){if(s=W.limit_backward,W.limit_backward=q,W.ket=W.cursor,e=W.find_among_b(P,7))switch(W.bra=W.cursor,e){case 1:if(l()){if(i=W.limit-W.cursor,!W.eq_s_b(1,"s")&&(W.cursor=W.limit-i,!W.eq_s_b(1,"t")))break;W.slice_del()}break;case 2:W.slice_from("i");break;case 3:W.slice_del();break;case 4:W.eq_s_b(2,"gu")&&W.slice_del()}W.limit_backward=s}}function b(){var e=W.limit-W.cursor;W.find_among_b(U,5)&&(W.cursor=W.limit-e,W.ket=W.cursor,W.cursor>W.limit_backward&&(W.cursor--,W.bra=W.cursor,W.slice_del()))}function d(){for(var e,r=1;W.out_grouping_b(F,97,251);)r--;if(r<=0){if(W.ket=W.cursor,e=W.limit-W.cursor,!W.eq_s_b(1,"é")&&(W.cursor=W.limit-e,!W.eq_s_b(1,"è")))return;W.bra=W.cursor,W.slice_from("e")}}function k(){if(!w()&&(W.cursor=W.limit,!f()&&(W.cursor=W.limit,!m())))return W.cursor=W.limit,void _();W.cursor=W.limit,W.ket=W.cursor,W.eq_s_b(1,"Y")?(W.bra=W.cursor,W.slice_from("i")):(W.cursor=W.limit,W.eq_s_b(1,"ç")&&(W.bra=W.cursor,W.slice_from("c")))}var p,g,q,v=[new r("col",-1,-1),new r("par",-1,-1),new r("tap",-1,-1)],h=[new r("",-1,4),new r("I",0,1),new r("U",0,2),new r("Y",0,3)],z=[new r("iqU",-1,3),new r("abl",-1,3),new r("Ièr",-1,4),new r("ièr",-1,4),new r("eus",-1,2),new r("iv",-1,1)],y=[new r("ic",-1,2),new r("abil",-1,1),new r("iv",-1,3)],C=[new r("iqUe",-1,1),new r("atrice",-1,2),new r("ance",-1,1),new r("ence",-1,5),new r("logie",-1,3),new r("able",-1,1),new r("isme",-1,1),new r("euse",-1,11),new r("iste",-1,1),new r("ive",-1,8),new r("if",-1,8),new r("usion",-1,4),new r("ation",-1,2),new r("ution",-1,4),new r("ateur",-1,2),new r("iqUes",-1,1),new r("atrices",-1,2),new r("ances",-1,1),new r("ences",-1,5),new r("logies",-1,3),new r("ables",-1,1),new r("ismes",-1,1),new r("euses",-1,11),new r("istes",-1,1),new r("ives",-1,8),new r("ifs",-1,8),new r("usions",-1,4),new r("ations",-1,2),new r("utions",-1,4),new r("ateurs",-1,2),new r("ments",-1,15),new r("ements",30,6),new r("issements",31,12),new r("ités",-1,7),new r("ment",-1,15),new r("ement",34,6),new r("issement",35,12),new r("amment",34,13),new r("emment",34,14),new r("aux",-1,10),new r("eaux",39,9),new r("eux",-1,1),new r("ité",-1,7)],x=[new r("ira",-1,1),new r("ie",-1,1),new r("isse",-1,1),new r("issante",-1,1),new r("i",-1,1),new r("irai",4,1),new r("ir",-1,1),new r("iras",-1,1),new r("ies",-1,1),new r("îmes",-1,1),new r("isses",-1,1),new r("issantes",-1,1),new r("îtes",-1,1),new r("is",-1,1),new r("irais",13,1),new r("issais",13,1),new r("irions",-1,1),new r("issions",-1,1),new r("irons",-1,1),new r("issons",-1,1),new r("issants",-1,1),new r("it",-1,1),new r("irait",21,1),new r("issait",21,1),new r("issant",-1,1),new r("iraIent",-1,1),new r("issaIent",-1,1),new r("irent",-1,1),new r("issent",-1,1),new r("iront",-1,1),new r("ît",-1,1),new r("iriez",-1,1),new r("issiez",-1,1),new r("irez",-1,1),new r("issez",-1,1)],I=[new r("a",-1,3),new r("era",0,2),new r("asse",-1,3),new r("ante",-1,3),new r("ée",-1,2),new r("ai",-1,3),new r("erai",5,2),new r("er",-1,2),new r("as",-1,3),new r("eras",8,2),new r("âmes",-1,3),new r("asses",-1,3),new r("antes",-1,3),new r("âtes",-1,3),new r("ées",-1,2),new r("ais",-1,3),new r("erais",15,2),new r("ions",-1,1),new r("erions",17,2),new r("assions",17,3),new r("erons",-1,2),new r("ants",-1,3),new r("és",-1,2),new r("ait",-1,3),new r("erait",23,2),new r("ant",-1,3),new r("aIent",-1,3),new r("eraIent",26,2),new r("èrent",-1,2),new r("assent",-1,3),new r("eront",-1,2),new r("ât",-1,3),new r("ez",-1,2),new r("iez",32,2),new r("eriez",33,2),new r("assiez",33,3),new r("erez",32,2),new r("é",-1,2)],P=[new r("e",-1,3),new r("Ière",0,2),new r("ière",0,2),new r("ion",-1,1),new r("Ier",-1,2),new r("ier",-1,2),new r("ë",-1,4)],U=[new r("ell",-1,-1),new r("eill",-1,-1),new r("enn",-1,-1),new r("onn",-1,-1),new r("ett",-1,-1)],F=[17,65,16,1,0,0,0,0,0,0,0,0,0,0,0,128,130,103,8,5],S=[1,65,20,0,0,0,0,0,0,0,0,0,0,0,0,0,128],W=new s;this.setCurrent=function(e){W.setCurrent(e)},this.getCurrent=function(){return W.getCurrent()},this.stem=function(){var e=W.cursor;return n(),W.cursor=e,u(),W.limit_backward=e,W.cursor=W.limit,k(),W.cursor=W.limit,b(),W.cursor=W.limit,d(),W.cursor=W.limit_backward,o(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}}(),e.Pipeline.registerFunction(e.fr.stemmer,"stemmer-fr"),e.fr.stopWordFilter=e.generateStopWordFilter("ai aie aient aies ait as au aura aurai auraient aurais aurait auras aurez auriez aurions aurons auront aux avaient avais avait avec avez aviez avions avons ayant ayez ayons c ce ceci celà ces cet cette d dans de des du elle en es est et eu eue eues eurent eus eusse eussent eusses eussiez eussions eut eux eûmes eût eûtes furent fus fusse fussent fusses fussiez fussions fut fûmes fût fûtes ici il ils j je l la le les leur leurs lui m ma mais me mes moi mon même n ne nos notre nous on ont ou par pas pour qu que quel quelle quelles quels qui s sa sans se sera serai seraient serais serait seras serez seriez serions serons seront ses soi soient sois soit sommes son sont soyez soyons suis sur t ta te tes toi ton tu un une vos votre vous y à étaient étais était étant étiez étions été étée étées étés êtes".split(" ")),e.Pipeline.registerFunction(e.fr.stopWordFilter,"stopWordFilter-fr")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.ro.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Romanian` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,i){"function"==typeof define&&define.amd?define(i):"object"==typeof exports?module.exports=i():i()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.ro=function(){this.pipeline.reset(),this.pipeline.add(e.ro.trimmer,e.ro.stopWordFilter,e.ro.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.ro.stemmer))},e.ro.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.ro.trimmer=e.trimmerSupport.generateTrimmer(e.ro.wordCharacters),e.Pipeline.registerFunction(e.ro.trimmer,"trimmer-ro"),e.ro.stemmer=function(){var i=e.stemmerSupport.Among,r=e.stemmerSupport.SnowballProgram,n=new function(){function e(e,i){L.eq_s(1,e)&&(L.ket=L.cursor,L.in_grouping(W,97,259)&&L.slice_from(i))}function n(){for(var i,r;;){if(i=L.cursor,L.in_grouping(W,97,259)&&(r=L.cursor,L.bra=r,e("u","U"),L.cursor=r,e("i","I")),L.cursor=i,L.cursor>=L.limit)break;L.cursor++}}function t(){if(L.out_grouping(W,97,259)){for(;!L.in_grouping(W,97,259);){if(L.cursor>=L.limit)return!0;L.cursor++}return!1}return!0}function a(){if(L.in_grouping(W,97,259))for(;!L.out_grouping(W,97,259);){if(L.cursor>=L.limit)return!0;L.cursor++}return!1}function o(){var e,i,r=L.cursor;if(L.in_grouping(W,97,259)){if(e=L.cursor,!t())return void(h=L.cursor);if(L.cursor=e,!a())return void(h=L.cursor)}L.cursor=r,L.out_grouping(W,97,259)&&(i=L.cursor,t()&&(L.cursor=i,L.in_grouping(W,97,259)&&L.cursor=L.limit)return!1;L.cursor++}for(;!L.out_grouping(W,97,259);){if(L.cursor>=L.limit)return!1;L.cursor++}return!0}function c(){var e=L.cursor;h=L.limit,k=h,g=h,o(),L.cursor=e,u()&&(k=L.cursor,u()&&(g=L.cursor))}function s(){for(var e;;){if(L.bra=L.cursor,e=L.find_among(z,3))switch(L.ket=L.cursor,e){case 1:L.slice_from("i");continue;case 2:L.slice_from("u");continue;case 3:if(L.cursor>=L.limit)break;L.cursor++;continue}break}}function w(){return h<=L.cursor}function m(){return k<=L.cursor}function l(){return g<=L.cursor}function f(){var e,i;if(L.ket=L.cursor,(e=L.find_among_b(C,16))&&(L.bra=L.cursor,m()))switch(e){case 1:L.slice_del();break;case 2:L.slice_from("a");break;case 3:L.slice_from("e");break;case 4:L.slice_from("i");break;case 5:i=L.limit-L.cursor,L.eq_s_b(2,"ab")||(L.cursor=L.limit-i,L.slice_from("i"));break;case 6:L.slice_from("at");break;case 7:L.slice_from("aţi")}}function p(){var e,i=L.limit-L.cursor;if(L.ket=L.cursor,(e=L.find_among_b(P,46))&&(L.bra=L.cursor,m())){switch(e){case 1:L.slice_from("abil");break;case 2:L.slice_from("ibil");break;case 3:L.slice_from("iv");break;case 4:L.slice_from("ic");break;case 5:L.slice_from("at");break;case 6:L.slice_from("it")}return _=!0,L.cursor=L.limit-i,!0}return!1}function d(){var e,i;for(_=!1;;)if(i=L.limit-L.cursor,!p()){L.cursor=L.limit-i;break}if(L.ket=L.cursor,(e=L.find_among_b(F,62))&&(L.bra=L.cursor,l())){switch(e){case 1:L.slice_del();break;case 2:L.eq_s_b(1,"ţ")&&(L.bra=L.cursor,L.slice_from("t"));break;case 3:L.slice_from("ist")}_=!0}}function b(){var e,i,r;if(L.cursor>=h){if(i=L.limit_backward,L.limit_backward=h,L.ket=L.cursor,e=L.find_among_b(q,94))switch(L.bra=L.cursor,e){case 1:if(r=L.limit-L.cursor,!L.out_grouping_b(W,97,259)&&(L.cursor=L.limit-r,!L.eq_s_b(1,"u")))break;case 2:L.slice_del()}L.limit_backward=i}}function v(){var e;L.ket=L.cursor,(e=L.find_among_b(S,5))&&(L.bra=L.cursor,w()&&1==e&&L.slice_del())}var _,g,k,h,z=[new i("",-1,3),new i("I",0,1),new i("U",0,2)],C=[new i("ea",-1,3),new i("aţia",-1,7),new i("aua",-1,2),new i("iua",-1,4),new i("aţie",-1,7),new i("ele",-1,3),new i("ile",-1,5),new i("iile",6,4),new i("iei",-1,4),new i("atei",-1,6),new i("ii",-1,4),new i("ului",-1,1),new i("ul",-1,1),new i("elor",-1,3),new i("ilor",-1,4),new i("iilor",14,4)],P=[new i("icala",-1,4),new i("iciva",-1,4),new i("ativa",-1,5),new i("itiva",-1,6),new i("icale",-1,4),new i("aţiune",-1,5),new i("iţiune",-1,6),new i("atoare",-1,5),new i("itoare",-1,6),new i("ătoare",-1,5),new i("icitate",-1,4),new i("abilitate",-1,1),new i("ibilitate",-1,2),new i("ivitate",-1,3),new i("icive",-1,4),new i("ative",-1,5),new i("itive",-1,6),new i("icali",-1,4),new i("atori",-1,5),new i("icatori",18,4),new i("itori",-1,6),new i("ători",-1,5),new i("icitati",-1,4),new i("abilitati",-1,1),new i("ivitati",-1,3),new i("icivi",-1,4),new i("ativi",-1,5),new i("itivi",-1,6),new i("icităi",-1,4),new i("abilităi",-1,1),new i("ivităi",-1,3),new i("icităţi",-1,4),new i("abilităţi",-1,1),new i("ivităţi",-1,3),new i("ical",-1,4),new i("ator",-1,5),new i("icator",35,4),new i("itor",-1,6),new i("ător",-1,5),new i("iciv",-1,4),new i("ativ",-1,5),new i("itiv",-1,6),new i("icală",-1,4),new i("icivă",-1,4),new i("ativă",-1,5),new i("itivă",-1,6)],F=[new i("ica",-1,1),new i("abila",-1,1),new i("ibila",-1,1),new i("oasa",-1,1),new i("ata",-1,1),new i("ita",-1,1),new i("anta",-1,1),new i("ista",-1,3),new i("uta",-1,1),new i("iva",-1,1),new i("ic",-1,1),new i("ice",-1,1),new i("abile",-1,1),new i("ibile",-1,1),new i("isme",-1,3),new i("iune",-1,2),new i("oase",-1,1),new i("ate",-1,1),new i("itate",17,1),new i("ite",-1,1),new i("ante",-1,1),new i("iste",-1,3),new i("ute",-1,1),new i("ive",-1,1),new i("ici",-1,1),new i("abili",-1,1),new i("ibili",-1,1),new i("iuni",-1,2),new i("atori",-1,1),new i("osi",-1,1),new i("ati",-1,1),new i("itati",30,1),new i("iti",-1,1),new i("anti",-1,1),new i("isti",-1,3),new i("uti",-1,1),new i("işti",-1,3),new i("ivi",-1,1),new i("ităi",-1,1),new i("oşi",-1,1),new i("ităţi",-1,1),new i("abil",-1,1),new i("ibil",-1,1),new i("ism",-1,3),new i("ator",-1,1),new i("os",-1,1),new i("at",-1,1),new i("it",-1,1),new i("ant",-1,1),new i("ist",-1,3),new i("ut",-1,1),new i("iv",-1,1),new i("ică",-1,1),new i("abilă",-1,1),new i("ibilă",-1,1),new i("oasă",-1,1),new i("ată",-1,1),new i("ită",-1,1),new i("antă",-1,1),new i("istă",-1,3),new i("ută",-1,1),new i("ivă",-1,1)],q=[new i("ea",-1,1),new i("ia",-1,1),new i("esc",-1,1),new i("ăsc",-1,1),new i("ind",-1,1),new i("ând",-1,1),new i("are",-1,1),new i("ere",-1,1),new i("ire",-1,1),new i("âre",-1,1),new i("se",-1,2),new i("ase",10,1),new i("sese",10,2),new i("ise",10,1),new i("use",10,1),new i("âse",10,1),new i("eşte",-1,1),new i("ăşte",-1,1),new i("eze",-1,1),new i("ai",-1,1),new i("eai",19,1),new i("iai",19,1),new i("sei",-1,2),new i("eşti",-1,1),new i("ăşti",-1,1),new i("ui",-1,1),new i("ezi",-1,1),new i("âi",-1,1),new i("aşi",-1,1),new i("seşi",-1,2),new i("aseşi",29,1),new i("seseşi",29,2),new i("iseşi",29,1),new i("useşi",29,1),new i("âseşi",29,1),new i("işi",-1,1),new i("uşi",-1,1),new i("âşi",-1,1),new i("aţi",-1,2),new i("eaţi",38,1),new i("iaţi",38,1),new i("eţi",-1,2),new i("iţi",-1,2),new i("âţi",-1,2),new i("arăţi",-1,1),new i("serăţi",-1,2),new i("aserăţi",45,1),new i("seserăţi",45,2),new i("iserăţi",45,1),new i("userăţi",45,1),new i("âserăţi",45,1),new i("irăţi",-1,1),new i("urăţi",-1,1),new i("ârăţi",-1,1),new i("am",-1,1),new i("eam",54,1),new i("iam",54,1),new i("em",-1,2),new i("asem",57,1),new i("sesem",57,2),new i("isem",57,1),new i("usem",57,1),new i("âsem",57,1),new i("im",-1,2),new i("âm",-1,2),new i("ăm",-1,2),new i("arăm",65,1),new i("serăm",65,2),new i("aserăm",67,1),new i("seserăm",67,2),new i("iserăm",67,1),new i("userăm",67,1),new i("âserăm",67,1),new i("irăm",65,1),new i("urăm",65,1),new i("ârăm",65,1),new i("au",-1,1),new i("eau",76,1),new i("iau",76,1),new i("indu",-1,1),new i("ându",-1,1),new i("ez",-1,1),new i("ească",-1,1),new i("ară",-1,1),new i("seră",-1,2),new i("aseră",84,1),new i("seseră",84,2),new i("iseră",84,1),new i("useră",84,1),new i("âseră",84,1),new i("iră",-1,1),new i("ură",-1,1),new i("âră",-1,1),new i("ează",-1,1)],S=[new i("a",-1,1),new i("e",-1,1),new i("ie",1,1),new i("i",-1,1),new i("ă",-1,1)],W=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,2,32,0,0,4],L=new r;this.setCurrent=function(e){L.setCurrent(e)},this.getCurrent=function(){return L.getCurrent()},this.stem=function(){var e=L.cursor;return n(),L.cursor=e,c(),L.limit_backward=e,L.cursor=L.limit,f(),L.cursor=L.limit,d(),L.cursor=L.limit,_||(L.cursor=L.limit,b(),L.cursor=L.limit),v(),L.cursor=L.limit_backward,s(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}}(),e.Pipeline.registerFunction(e.ro.stemmer,"stemmer-ro"),e.ro.stopWordFilter=e.generateStopWordFilter("acea aceasta această aceea acei aceia acel acela acele acelea acest acesta aceste acestea aceşti aceştia acolo acord acum ai aia aibă aici al ale alea altceva altcineva am ar are asemenea asta astea astăzi asupra au avea avem aveţi azi aş aşadar aţi bine bucur bună ca care caut ce cel ceva chiar cinci cine cineva contra cu cum cumva curând curînd când cât câte câtva câţi cînd cît cîte cîtva cîţi că căci cărei căror cărui către da dacă dar datorită dată dau de deci deja deoarece departe deşi din dinaintea dintr- dintre doi doilea două drept după dă ea ei el ele eram este eu eşti face fata fi fie fiecare fii fim fiu fiţi frumos fără graţie halbă iar ieri la le li lor lui lângă lîngă mai mea mei mele mereu meu mi mie mine mult multă mulţi mulţumesc mâine mîine mă ne nevoie nici nicăieri nimeni nimeri nimic nişte noastre noastră noi noroc nostru nouă noştri nu opt ori oricare orice oricine oricum oricând oricât oricînd oricît oriunde patra patru patrulea pe pentru peste pic poate pot prea prima primul prin puţin puţina puţină până pînă rog sa sale sau se spate spre sub sunt suntem sunteţi sută sînt sîntem sînteţi să săi său ta tale te timp tine toate toată tot totuşi toţi trei treia treilea tu tăi tău un una unde undeva unei uneia unele uneori unii unor unora unu unui unuia unul vi voastre voastră voi vostru vouă voştri vreme vreo vreun vă zece zero zi zice îi îl îmi împotriva în înainte înaintea încotro încât încît între întrucât întrucît îţi ăla ălea ăsta ăstea ăştia şapte şase şi ştiu ţi ţie".split(" ")),e.Pipeline.registerFunction(e.ro.stopWordFilter,"stopWordFilter-ro")}}); -------------------------------------------------------------------------------- /site/assets/stylesheets/palette.f1a3b89f.min.css: -------------------------------------------------------------------------------- 1 | [data-md-color-accent=red]{--md-accent-fg-color:#ff1947;--md-accent-fg-color--transparent:rgba(255,25,71,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=pink]{--md-accent-fg-color:#f50056;--md-accent-fg-color--transparent:rgba(245,0,86,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=purple]{--md-accent-fg-color:#df41fb;--md-accent-fg-color--transparent:rgba(223,65,251,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=deep-purple]{--md-accent-fg-color:#7c4dff;--md-accent-fg-color--transparent:rgba(124,77,255,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=indigo]{--md-accent-fg-color:#526cfe;--md-accent-fg-color--transparent:rgba(82,108,254,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=blue]{--md-accent-fg-color:#4287ff;--md-accent-fg-color--transparent:rgba(66,135,255,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=light-blue]{--md-accent-fg-color:#0091eb;--md-accent-fg-color--transparent:rgba(0,145,235,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=cyan]{--md-accent-fg-color:#00bad6;--md-accent-fg-color--transparent:rgba(0,186,214,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=teal]{--md-accent-fg-color:#00bda4;--md-accent-fg-color--transparent:rgba(0,189,164,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=green]{--md-accent-fg-color:#00c753;--md-accent-fg-color--transparent:rgba(0,199,83,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=light-green]{--md-accent-fg-color:#63de17;--md-accent-fg-color--transparent:rgba(99,222,23,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-accent=lime]{--md-accent-fg-color:#b0eb00;--md-accent-fg-color--transparent:rgba(176,235,0,0.1);--md-accent-bg-color:rgba(0,0,0,0.87);--md-accent-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-accent=yellow]{--md-accent-fg-color:#ffd500;--md-accent-fg-color--transparent:rgba(255,213,0,0.1);--md-accent-bg-color:rgba(0,0,0,0.87);--md-accent-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-accent=amber]{--md-accent-fg-color:#fa0;--md-accent-fg-color--transparent:rgba(255,170,0,0.1);--md-accent-bg-color:rgba(0,0,0,0.87);--md-accent-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-accent=orange]{--md-accent-fg-color:#ff9100;--md-accent-fg-color--transparent:rgba(255,145,0,0.1);--md-accent-bg-color:rgba(0,0,0,0.87);--md-accent-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-accent=deep-orange]{--md-accent-fg-color:#ff6e42;--md-accent-fg-color--transparent:rgba(255,110,66,0.1);--md-accent-bg-color:#fff;--md-accent-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=red]{--md-primary-fg-color:#ef5552;--md-primary-fg-color--light:#e57171;--md-primary-fg-color--dark:#e53734;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=pink]{--md-primary-fg-color:#e92063;--md-primary-fg-color--light:#ec417a;--md-primary-fg-color--dark:#c3185d;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=purple]{--md-primary-fg-color:#ab47bd;--md-primary-fg-color--light:#bb69c9;--md-primary-fg-color--dark:#8c24a8;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=deep-purple]{--md-primary-fg-color:#7e56c2;--md-primary-fg-color--light:#9574cd;--md-primary-fg-color--dark:#673ab6;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=indigo]{--md-primary-fg-color:#4051b5;--md-primary-fg-color--light:#5d6cc0;--md-primary-fg-color--dark:#303fa1;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=blue]{--md-primary-fg-color:#2094f3;--md-primary-fg-color--light:#42a5f5;--md-primary-fg-color--dark:#1975d2;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=light-blue]{--md-primary-fg-color:#02a6f2;--md-primary-fg-color--light:#28b5f6;--md-primary-fg-color--dark:#0287cf;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=cyan]{--md-primary-fg-color:#00bdd6;--md-primary-fg-color--light:#25c5da;--md-primary-fg-color--dark:#0097a8;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=teal]{--md-primary-fg-color:#009485;--md-primary-fg-color--light:#26a699;--md-primary-fg-color--dark:#007a6c;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=green]{--md-primary-fg-color:#4cae4f;--md-primary-fg-color--light:#68bb6c;--md-primary-fg-color--dark:#398e3d;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=light-green]{--md-primary-fg-color:#8bc34b;--md-primary-fg-color--light:#9ccc66;--md-primary-fg-color--dark:#689f38;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=lime]{--md-primary-fg-color:#cbdc38;--md-primary-fg-color--light:#d3e156;--md-primary-fg-color--dark:#b0b52c;--md-primary-bg-color:rgba(0,0,0,0.87);--md-primary-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-primary=yellow]{--md-primary-fg-color:#ffec3d;--md-primary-fg-color--light:#ffee57;--md-primary-fg-color--dark:#fbc02d;--md-primary-bg-color:rgba(0,0,0,0.87);--md-primary-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-primary=amber]{--md-primary-fg-color:#ffc105;--md-primary-fg-color--light:#ffc929;--md-primary-fg-color--dark:#ffa200;--md-primary-bg-color:rgba(0,0,0,0.87);--md-primary-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-primary=orange]{--md-primary-fg-color:#ffa724;--md-primary-fg-color--light:#ffa724;--md-primary-fg-color--dark:#fa8900;--md-primary-bg-color:rgba(0,0,0,0.87);--md-primary-bg-color--light:rgba(0,0,0,0.54)}[data-md-color-primary=deep-orange]{--md-primary-fg-color:#ff6e42;--md-primary-fg-color--light:#ff8a66;--md-primary-fg-color--dark:#f4511f;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=brown]{--md-primary-fg-color:#795649;--md-primary-fg-color--light:#8d6e62;--md-primary-fg-color--dark:#5d4037;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=grey]{--md-primary-fg-color:#757575;--md-primary-fg-color--light:#9e9e9e;--md-primary-fg-color--dark:#616161;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=blue-grey]{--md-primary-fg-color:#546d78;--md-primary-fg-color--light:#607c8a;--md-primary-fg-color--dark:#455a63;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7)}[data-md-color-primary=white]{--md-primary-fg-color:#fff;--md-primary-fg-color--light:hsla(0,0%,100%,0.7);--md-primary-fg-color--dark:rgba(0,0,0,0.07);--md-primary-bg-color:rgba(0,0,0,0.87);--md-primary-bg-color--light:rgba(0,0,0,0.54);--md-typeset-a-color:#4051b5}@media screen and (min-width:60em){[data-md-color-primary=white] .md-search__input{background-color:rgba(0,0,0,.07)}[data-md-color-primary=white] .md-search__input+.md-search__icon{color:rgba(0,0,0,.87)}[data-md-color-primary=white] .md-search__input::-webkit-input-placeholder{color:rgba(0,0,0,.54)}[data-md-color-primary=white] .md-search__input::-moz-placeholder{color:rgba(0,0,0,.54)}[data-md-color-primary=white] .md-search__input::-ms-input-placeholder{color:rgba(0,0,0,.54)}[data-md-color-primary=white] .md-search__input::placeholder{color:rgba(0,0,0,.54)}[data-md-color-primary=white] .md-search__input:hover{background-color:rgba(0,0,0,.32)}}@media screen and (min-width:76.25em){[data-md-color-primary=white] .md-tabs{border-bottom:.05rem solid rgba(0,0,0,.07)}}[data-md-color-primary=black]{--md-primary-fg-color:#000;--md-primary-fg-color--light:rgba(0,0,0,0.54);--md-primary-fg-color--dark:#000;--md-primary-bg-color:#fff;--md-primary-bg-color--light:hsla(0,0%,100%,0.7);--md-typeset-a-color:#4051b5}[data-md-color-primary=black] .md-header{background-color:#000}@media screen and (max-width:59.9375em){[data-md-color-primary=black] .md-nav__source{background-color:rgba(0,0,0,.87)}}@media screen and (min-width:60em){[data-md-color-primary=black] .md-search__input{background-color:hsla(0,0%,100%,.12)}[data-md-color-primary=black] .md-search__input:hover{background-color:hsla(0,0%,100%,.3)}}@media screen and (max-width:76.1875em){html [data-md-color-primary=black] .md-nav--primary .md-nav__title[for=__drawer]{background-color:#000}}@media screen and (min-width:76.25em){[data-md-color-primary=black] .md-tabs{background-color:#000}}@media screen{[data-md-color-scheme=slate]{--md-hue:232;--md-default-fg-color:hsla(var(--md-hue),75%,95%,1);--md-default-fg-color--light:hsla(var(--md-hue),75%,90%,0.62);--md-default-fg-color--lighter:hsla(var(--md-hue),75%,90%,0.32);--md-default-fg-color--lightest:hsla(var(--md-hue),75%,90%,0.12);--md-default-bg-color:hsla(var(--md-hue),15%,21%,1);--md-default-bg-color--light:hsla(var(--md-hue),15%,21%,0.54);--md-default-bg-color--lighter:hsla(var(--md-hue),15%,21%,0.26);--md-default-bg-color--lightest:hsla(var(--md-hue),15%,21%,0.07);--md-code-fg-color:hsla(var(--md-hue),18%,86%,1);--md-code-bg-color:hsla(var(--md-hue),15%,15%,1);--md-code-hl-color:rgba(66,135,255,0.15);--md-code-hl-number-color:#e6695b;--md-code-hl-special-color:#f06090;--md-code-hl-function-color:#c973d9;--md-code-hl-constant-color:#9383e2;--md-code-hl-keyword-color:#6791e0;--md-code-hl-string-color:#2fb170;--md-code-hl-name-color:var(--md-code-fg-color);--md-code-hl-operator-color:var(--md-default-fg-color--light);--md-code-hl-punctuation-color:var(--md-default-fg-color--light);--md-code-hl-comment-color:var(--md-default-fg-color--light);--md-code-hl-generic-color:var(--md-default-fg-color--light);--md-code-hl-variable-color:var(--md-default-fg-color--light);--md-typeset-color:var(--md-default-fg-color);--md-typeset-a-color:var(--md-primary-fg-color);--md-typeset-mark-color:rgba(66,135,255,0.3);--md-typeset-kbd-color:hsla(var(--md-hue),15%,94%,0.12);--md-typeset-kbd-accent-color:hsla(var(--md-hue),15%,94%,0.2);--md-typeset-kbd-border-color:hsla(var(--md-hue),15%,14%,1);--md-admonition-bg-color:hsla(var(--md-hue),0%,100%,0.025);--md-footer-bg-color:hsla(var(--md-hue),15%,12%,0.87);--md-footer-bg-color--dark:hsla(var(--md-hue),15%,10%,1)}[data-md-color-scheme=slate][data-md-color-primary=black],[data-md-color-scheme=slate][data-md-color-primary=white]{--md-typeset-a-color:#5d6cc0}} 2 | /*# sourceMappingURL=palette.f1a3b89f.min.css.map */ -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.it.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Italian` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.it=function(){this.pipeline.reset(),this.pipeline.add(e.it.trimmer,e.it.stopWordFilter,e.it.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.it.stemmer))},e.it.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.it.trimmer=e.trimmerSupport.generateTrimmer(e.it.wordCharacters),e.Pipeline.registerFunction(e.it.trimmer,"trimmer-it"),e.it.stemmer=function(){var r=e.stemmerSupport.Among,n=e.stemmerSupport.SnowballProgram,i=new function(){function e(e,r,n){return!(!x.eq_s(1,e)||(x.ket=x.cursor,!x.in_grouping(L,97,249)))&&(x.slice_from(r),x.cursor=n,!0)}function i(){for(var r,n,i,o,t=x.cursor;;){if(x.bra=x.cursor,r=x.find_among(h,7))switch(x.ket=x.cursor,r){case 1:x.slice_from("à");continue;case 2:x.slice_from("è");continue;case 3:x.slice_from("ì");continue;case 4:x.slice_from("ò");continue;case 5:x.slice_from("ù");continue;case 6:x.slice_from("qU");continue;case 7:if(x.cursor>=x.limit)break;x.cursor++;continue}break}for(x.cursor=t;;)for(n=x.cursor;;){if(i=x.cursor,x.in_grouping(L,97,249)){if(x.bra=x.cursor,o=x.cursor,e("u","U",i))break;if(x.cursor=o,e("i","I",i))break}if(x.cursor=i,x.cursor>=x.limit)return void(x.cursor=n);x.cursor++}}function o(e){if(x.cursor=e,!x.in_grouping(L,97,249))return!1;for(;!x.out_grouping(L,97,249);){if(x.cursor>=x.limit)return!1;x.cursor++}return!0}function t(){if(x.in_grouping(L,97,249)){var e=x.cursor;if(x.out_grouping(L,97,249)){for(;!x.in_grouping(L,97,249);){if(x.cursor>=x.limit)return o(e);x.cursor++}return!0}return o(e)}return!1}function s(){var e,r=x.cursor;if(!t()){if(x.cursor=r,!x.out_grouping(L,97,249))return;if(e=x.cursor,x.out_grouping(L,97,249)){for(;!x.in_grouping(L,97,249);){if(x.cursor>=x.limit)return x.cursor=e,void(x.in_grouping(L,97,249)&&x.cursor=x.limit)return;x.cursor++}k=x.cursor}function a(){for(;!x.in_grouping(L,97,249);){if(x.cursor>=x.limit)return!1;x.cursor++}for(;!x.out_grouping(L,97,249);){if(x.cursor>=x.limit)return!1;x.cursor++}return!0}function u(){var e=x.cursor;k=x.limit,p=k,g=k,s(),x.cursor=e,a()&&(p=x.cursor,a()&&(g=x.cursor))}function c(){for(var e;;){if(x.bra=x.cursor,!(e=x.find_among(q,3)))break;switch(x.ket=x.cursor,e){case 1:x.slice_from("i");break;case 2:x.slice_from("u");break;case 3:if(x.cursor>=x.limit)return;x.cursor++}}}function w(){return k<=x.cursor}function l(){return p<=x.cursor}function m(){return g<=x.cursor}function f(){var e;if(x.ket=x.cursor,x.find_among_b(C,37)&&(x.bra=x.cursor,(e=x.find_among_b(z,5))&&w()))switch(e){case 1:x.slice_del();break;case 2:x.slice_from("e")}}function v(){var e;if(x.ket=x.cursor,!(e=x.find_among_b(S,51)))return!1;switch(x.bra=x.cursor,e){case 1:if(!m())return!1;x.slice_del();break;case 2:if(!m())return!1;x.slice_del(),x.ket=x.cursor,x.eq_s_b(2,"ic")&&(x.bra=x.cursor,m()&&x.slice_del());break;case 3:if(!m())return!1;x.slice_from("log");break;case 4:if(!m())return!1;x.slice_from("u");break;case 5:if(!m())return!1;x.slice_from("ente");break;case 6:if(!w())return!1;x.slice_del();break;case 7:if(!l())return!1;x.slice_del(),x.ket=x.cursor,e=x.find_among_b(P,4),e&&(x.bra=x.cursor,m()&&(x.slice_del(),1==e&&(x.ket=x.cursor,x.eq_s_b(2,"at")&&(x.bra=x.cursor,m()&&x.slice_del()))));break;case 8:if(!m())return!1;x.slice_del(),x.ket=x.cursor,e=x.find_among_b(F,3),e&&(x.bra=x.cursor,1==e&&m()&&x.slice_del());break;case 9:if(!m())return!1;x.slice_del(),x.ket=x.cursor,x.eq_s_b(2,"at")&&(x.bra=x.cursor,m()&&(x.slice_del(),x.ket=x.cursor,x.eq_s_b(2,"ic")&&(x.bra=x.cursor,m()&&x.slice_del())))}return!0}function b(){var e,r;x.cursor>=k&&(r=x.limit_backward,x.limit_backward=k,x.ket=x.cursor,e=x.find_among_b(W,87),e&&(x.bra=x.cursor,1==e&&x.slice_del()),x.limit_backward=r)}function d(){var e=x.limit-x.cursor;if(x.ket=x.cursor,x.in_grouping_b(y,97,242)&&(x.bra=x.cursor,w()&&(x.slice_del(),x.ket=x.cursor,x.eq_s_b(1,"i")&&(x.bra=x.cursor,w()))))return void x.slice_del();x.cursor=x.limit-e}function _(){d(),x.ket=x.cursor,x.eq_s_b(1,"h")&&(x.bra=x.cursor,x.in_grouping_b(U,99,103)&&w()&&x.slice_del())}var g,p,k,h=[new r("",-1,7),new r("qu",0,6),new r("á",0,1),new r("é",0,2),new r("í",0,3),new r("ó",0,4),new r("ú",0,5)],q=[new r("",-1,3),new r("I",0,1),new r("U",0,2)],C=[new r("la",-1,-1),new r("cela",0,-1),new r("gliela",0,-1),new r("mela",0,-1),new r("tela",0,-1),new r("vela",0,-1),new r("le",-1,-1),new r("cele",6,-1),new r("gliele",6,-1),new r("mele",6,-1),new r("tele",6,-1),new r("vele",6,-1),new r("ne",-1,-1),new r("cene",12,-1),new r("gliene",12,-1),new r("mene",12,-1),new r("sene",12,-1),new r("tene",12,-1),new r("vene",12,-1),new r("ci",-1,-1),new r("li",-1,-1),new r("celi",20,-1),new r("glieli",20,-1),new r("meli",20,-1),new r("teli",20,-1),new r("veli",20,-1),new r("gli",20,-1),new r("mi",-1,-1),new r("si",-1,-1),new r("ti",-1,-1),new r("vi",-1,-1),new r("lo",-1,-1),new r("celo",31,-1),new r("glielo",31,-1),new r("melo",31,-1),new r("telo",31,-1),new r("velo",31,-1)],z=[new r("ando",-1,1),new r("endo",-1,1),new r("ar",-1,2),new r("er",-1,2),new r("ir",-1,2)],P=[new r("ic",-1,-1),new r("abil",-1,-1),new r("os",-1,-1),new r("iv",-1,1)],F=[new r("ic",-1,1),new r("abil",-1,1),new r("iv",-1,1)],S=[new r("ica",-1,1),new r("logia",-1,3),new r("osa",-1,1),new r("ista",-1,1),new r("iva",-1,9),new r("anza",-1,1),new r("enza",-1,5),new r("ice",-1,1),new r("atrice",7,1),new r("iche",-1,1),new r("logie",-1,3),new r("abile",-1,1),new r("ibile",-1,1),new r("usione",-1,4),new r("azione",-1,2),new r("uzione",-1,4),new r("atore",-1,2),new r("ose",-1,1),new r("ante",-1,1),new r("mente",-1,1),new r("amente",19,7),new r("iste",-1,1),new r("ive",-1,9),new r("anze",-1,1),new r("enze",-1,5),new r("ici",-1,1),new r("atrici",25,1),new r("ichi",-1,1),new r("abili",-1,1),new r("ibili",-1,1),new r("ismi",-1,1),new r("usioni",-1,4),new r("azioni",-1,2),new r("uzioni",-1,4),new r("atori",-1,2),new r("osi",-1,1),new r("anti",-1,1),new r("amenti",-1,6),new r("imenti",-1,6),new r("isti",-1,1),new r("ivi",-1,9),new r("ico",-1,1),new r("ismo",-1,1),new r("oso",-1,1),new r("amento",-1,6),new r("imento",-1,6),new r("ivo",-1,9),new r("ità",-1,8),new r("istà",-1,1),new r("istè",-1,1),new r("istì",-1,1)],W=[new r("isca",-1,1),new r("enda",-1,1),new r("ata",-1,1),new r("ita",-1,1),new r("uta",-1,1),new r("ava",-1,1),new r("eva",-1,1),new r("iva",-1,1),new r("erebbe",-1,1),new r("irebbe",-1,1),new r("isce",-1,1),new r("ende",-1,1),new r("are",-1,1),new r("ere",-1,1),new r("ire",-1,1),new r("asse",-1,1),new r("ate",-1,1),new r("avate",16,1),new r("evate",16,1),new r("ivate",16,1),new r("ete",-1,1),new r("erete",20,1),new r("irete",20,1),new r("ite",-1,1),new r("ereste",-1,1),new r("ireste",-1,1),new r("ute",-1,1),new r("erai",-1,1),new r("irai",-1,1),new r("isci",-1,1),new r("endi",-1,1),new r("erei",-1,1),new r("irei",-1,1),new r("assi",-1,1),new r("ati",-1,1),new r("iti",-1,1),new r("eresti",-1,1),new r("iresti",-1,1),new r("uti",-1,1),new r("avi",-1,1),new r("evi",-1,1),new r("ivi",-1,1),new r("isco",-1,1),new r("ando",-1,1),new r("endo",-1,1),new r("Yamo",-1,1),new r("iamo",-1,1),new r("avamo",-1,1),new r("evamo",-1,1),new r("ivamo",-1,1),new r("eremo",-1,1),new r("iremo",-1,1),new r("assimo",-1,1),new r("ammo",-1,1),new r("emmo",-1,1),new r("eremmo",54,1),new r("iremmo",54,1),new r("immo",-1,1),new r("ano",-1,1),new r("iscano",58,1),new r("avano",58,1),new r("evano",58,1),new r("ivano",58,1),new r("eranno",-1,1),new r("iranno",-1,1),new r("ono",-1,1),new r("iscono",65,1),new r("arono",65,1),new r("erono",65,1),new r("irono",65,1),new r("erebbero",-1,1),new r("irebbero",-1,1),new r("assero",-1,1),new r("essero",-1,1),new r("issero",-1,1),new r("ato",-1,1),new r("ito",-1,1),new r("uto",-1,1),new r("avo",-1,1),new r("evo",-1,1),new r("ivo",-1,1),new r("ar",-1,1),new r("ir",-1,1),new r("erà",-1,1),new r("irà",-1,1),new r("erò",-1,1),new r("irò",-1,1)],L=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,128,128,8,2,1],y=[17,65,0,0,0,0,0,0,0,0,0,0,0,0,0,128,128,8,2],U=[17],x=new n;this.setCurrent=function(e){x.setCurrent(e)},this.getCurrent=function(){return x.getCurrent()},this.stem=function(){var e=x.cursor;return i(),x.cursor=e,u(),x.limit_backward=e,x.cursor=x.limit,f(),x.cursor=x.limit,v()||(x.cursor=x.limit,b()),x.cursor=x.limit,_(),x.cursor=x.limit_backward,c(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return i.setCurrent(e),i.stem(),i.getCurrent()}):(i.setCurrent(e),i.stem(),i.getCurrent())}}(),e.Pipeline.registerFunction(e.it.stemmer,"stemmer-it"),e.it.stopWordFilter=e.generateStopWordFilter("a abbia abbiamo abbiano abbiate ad agl agli ai al all alla alle allo anche avemmo avendo avesse avessero avessi avessimo aveste avesti avete aveva avevamo avevano avevate avevi avevo avrai avranno avrebbe avrebbero avrei avremmo avremo avreste avresti avrete avrà avrò avuta avute avuti avuto c che chi ci coi col come con contro cui da dagl dagli dai dal dall dalla dalle dallo degl degli dei del dell della delle dello di dov dove e ebbe ebbero ebbi ed era erano eravamo eravate eri ero essendo faccia facciamo facciano facciate faccio facemmo facendo facesse facessero facessi facessimo faceste facesti faceva facevamo facevano facevate facevi facevo fai fanno farai faranno farebbe farebbero farei faremmo faremo fareste faresti farete farà farò fece fecero feci fosse fossero fossi fossimo foste fosti fu fui fummo furono gli ha hai hanno ho i il in io l la le lei li lo loro lui ma mi mia mie miei mio ne negl negli nei nel nell nella nelle nello noi non nostra nostre nostri nostro o per perché più quale quanta quante quanti quanto quella quelle quelli quello questa queste questi questo sarai saranno sarebbe sarebbero sarei saremmo saremo sareste saresti sarete sarà sarò se sei si sia siamo siano siate siete sono sta stai stando stanno starai staranno starebbe starebbero starei staremmo staremo stareste staresti starete starà starò stava stavamo stavano stavate stavi stavo stemmo stesse stessero stessi stessimo steste stesti stette stettero stetti stia stiamo stiano stiate sto su sua sue sugl sugli sui sul sull sulla sulle sullo suo suoi ti tra tu tua tue tuo tuoi tutti tutto un una uno vi voi vostra vostre vostri vostro è".split(" ")),e.Pipeline.registerFunction(e.it.stopWordFilter,"stopWordFilter-it")}}); -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.es.min.js: -------------------------------------------------------------------------------- 1 | /*! 2 | * Lunr languages, `Spanish` language 3 | * https://github.com/MihaiValentin/lunr-languages 4 | * 5 | * Copyright 2014, Mihai Valentin 6 | * http://www.mozilla.org/MPL/ 7 | */ 8 | /*! 9 | * based on 10 | * Snowball JavaScript Library v0.3 11 | * http://code.google.com/p/urim/ 12 | * http://snowball.tartarus.org/ 13 | * 14 | * Copyright 2010, Oleg Mazko 15 | * http://www.mozilla.org/MPL/ 16 | */ 17 | 18 | !function(e,s){"function"==typeof define&&define.amd?define(s):"object"==typeof exports?module.exports=s():s()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.es=function(){this.pipeline.reset(),this.pipeline.add(e.es.trimmer,e.es.stopWordFilter,e.es.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.es.stemmer))},e.es.wordCharacters="A-Za-zªºÀ-ÖØ-öø-ʸˠ-ˤᴀ-ᴥᴬ-ᵜᵢ-ᵥᵫ-ᵷᵹ-ᶾḀ-ỿⁱⁿₐ-ₜKÅℲⅎⅠ-ↈⱠ-ⱿꜢ-ꞇꞋ-ꞭꞰ-ꞷꟷ-ꟿꬰ-ꭚꭜ-ꭤff-stA-Za-z",e.es.trimmer=e.trimmerSupport.generateTrimmer(e.es.wordCharacters),e.Pipeline.registerFunction(e.es.trimmer,"trimmer-es"),e.es.stemmer=function(){var s=e.stemmerSupport.Among,r=e.stemmerSupport.SnowballProgram,n=new function(){function e(){if(A.out_grouping(x,97,252)){for(;!A.in_grouping(x,97,252);){if(A.cursor>=A.limit)return!0;A.cursor++}return!1}return!0}function n(){if(A.in_grouping(x,97,252)){var s=A.cursor;if(e()){if(A.cursor=s,!A.in_grouping(x,97,252))return!0;for(;!A.out_grouping(x,97,252);){if(A.cursor>=A.limit)return!0;A.cursor++}}return!1}return!0}function i(){var s,r=A.cursor;if(n()){if(A.cursor=r,!A.out_grouping(x,97,252))return;if(s=A.cursor,e()){if(A.cursor=s,!A.in_grouping(x,97,252)||A.cursor>=A.limit)return;A.cursor++}}g=A.cursor}function a(){for(;!A.in_grouping(x,97,252);){if(A.cursor>=A.limit)return!1;A.cursor++}for(;!A.out_grouping(x,97,252);){if(A.cursor>=A.limit)return!1;A.cursor++}return!0}function t(){var e=A.cursor;g=A.limit,p=g,v=g,i(),A.cursor=e,a()&&(p=A.cursor,a()&&(v=A.cursor))}function o(){for(var e;;){if(A.bra=A.cursor,e=A.find_among(k,6))switch(A.ket=A.cursor,e){case 1:A.slice_from("a");continue;case 2:A.slice_from("e");continue;case 3:A.slice_from("i");continue;case 4:A.slice_from("o");continue;case 5:A.slice_from("u");continue;case 6:if(A.cursor>=A.limit)break;A.cursor++;continue}break}}function u(){return g<=A.cursor}function w(){return p<=A.cursor}function c(){return v<=A.cursor}function m(){var e;if(A.ket=A.cursor,A.find_among_b(y,13)&&(A.bra=A.cursor,(e=A.find_among_b(q,11))&&u()))switch(e){case 1:A.bra=A.cursor,A.slice_from("iendo");break;case 2:A.bra=A.cursor,A.slice_from("ando");break;case 3:A.bra=A.cursor,A.slice_from("ar");break;case 4:A.bra=A.cursor,A.slice_from("er");break;case 5:A.bra=A.cursor,A.slice_from("ir");break;case 6:A.slice_del();break;case 7:A.eq_s_b(1,"u")&&A.slice_del()}}function l(e,s){if(!c())return!0;A.slice_del(),A.ket=A.cursor;var r=A.find_among_b(e,s);return r&&(A.bra=A.cursor,1==r&&c()&&A.slice_del()),!1}function d(e){return!c()||(A.slice_del(),A.ket=A.cursor,A.eq_s_b(2,e)&&(A.bra=A.cursor,c()&&A.slice_del()),!1)}function b(){var e;if(A.ket=A.cursor,e=A.find_among_b(S,46)){switch(A.bra=A.cursor,e){case 1:if(!c())return!1;A.slice_del();break;case 2:if(d("ic"))return!1;break;case 3:if(!c())return!1;A.slice_from("log");break;case 4:if(!c())return!1;A.slice_from("u");break;case 5:if(!c())return!1;A.slice_from("ente");break;case 6:if(!w())return!1;A.slice_del(),A.ket=A.cursor,e=A.find_among_b(C,4),e&&(A.bra=A.cursor,c()&&(A.slice_del(),1==e&&(A.ket=A.cursor,A.eq_s_b(2,"at")&&(A.bra=A.cursor,c()&&A.slice_del()))));break;case 7:if(l(P,3))return!1;break;case 8:if(l(F,3))return!1;break;case 9:if(d("at"))return!1}return!0}return!1}function f(){var e,s;if(A.cursor>=g&&(s=A.limit_backward,A.limit_backward=g,A.ket=A.cursor,e=A.find_among_b(W,12),A.limit_backward=s,e)){if(A.bra=A.cursor,1==e){if(!A.eq_s_b(1,"u"))return!1;A.slice_del()}return!0}return!1}function _(){var e,s,r,n;if(A.cursor>=g&&(s=A.limit_backward,A.limit_backward=g,A.ket=A.cursor,e=A.find_among_b(L,96),A.limit_backward=s,e))switch(A.bra=A.cursor,e){case 1:r=A.limit-A.cursor,A.eq_s_b(1,"u")?(n=A.limit-A.cursor,A.eq_s_b(1,"g")?A.cursor=A.limit-n:A.cursor=A.limit-r):A.cursor=A.limit-r,A.bra=A.cursor;case 2:A.slice_del()}}function h(){var e,s;if(A.ket=A.cursor,e=A.find_among_b(z,8))switch(A.bra=A.cursor,e){case 1:u()&&A.slice_del();break;case 2:u()&&(A.slice_del(),A.ket=A.cursor,A.eq_s_b(1,"u")&&(A.bra=A.cursor,s=A.limit-A.cursor,A.eq_s_b(1,"g")&&(A.cursor=A.limit-s,u()&&A.slice_del())))}}var v,p,g,k=[new s("",-1,6),new s("á",0,1),new s("é",0,2),new s("í",0,3),new s("ó",0,4),new s("ú",0,5)],y=[new s("la",-1,-1),new s("sela",0,-1),new s("le",-1,-1),new s("me",-1,-1),new s("se",-1,-1),new s("lo",-1,-1),new s("selo",5,-1),new s("las",-1,-1),new s("selas",7,-1),new s("les",-1,-1),new s("los",-1,-1),new s("selos",10,-1),new s("nos",-1,-1)],q=[new s("ando",-1,6),new s("iendo",-1,6),new s("yendo",-1,7),new s("ándo",-1,2),new s("iéndo",-1,1),new s("ar",-1,6),new s("er",-1,6),new s("ir",-1,6),new s("ár",-1,3),new s("ér",-1,4),new s("ír",-1,5)],C=[new s("ic",-1,-1),new s("ad",-1,-1),new s("os",-1,-1),new s("iv",-1,1)],P=[new s("able",-1,1),new s("ible",-1,1),new s("ante",-1,1)],F=[new s("ic",-1,1),new s("abil",-1,1),new s("iv",-1,1)],S=[new s("ica",-1,1),new s("ancia",-1,2),new s("encia",-1,5),new s("adora",-1,2),new s("osa",-1,1),new s("ista",-1,1),new s("iva",-1,9),new s("anza",-1,1),new s("logía",-1,3),new s("idad",-1,8),new s("able",-1,1),new s("ible",-1,1),new s("ante",-1,2),new s("mente",-1,7),new s("amente",13,6),new s("ación",-1,2),new s("ución",-1,4),new s("ico",-1,1),new s("ismo",-1,1),new s("oso",-1,1),new s("amiento",-1,1),new s("imiento",-1,1),new s("ivo",-1,9),new s("ador",-1,2),new s("icas",-1,1),new s("ancias",-1,2),new s("encias",-1,5),new s("adoras",-1,2),new s("osas",-1,1),new s("istas",-1,1),new s("ivas",-1,9),new s("anzas",-1,1),new s("logías",-1,3),new s("idades",-1,8),new s("ables",-1,1),new s("ibles",-1,1),new s("aciones",-1,2),new s("uciones",-1,4),new s("adores",-1,2),new s("antes",-1,2),new s("icos",-1,1),new s("ismos",-1,1),new s("osos",-1,1),new s("amientos",-1,1),new s("imientos",-1,1),new s("ivos",-1,9)],W=[new s("ya",-1,1),new s("ye",-1,1),new s("yan",-1,1),new s("yen",-1,1),new s("yeron",-1,1),new s("yendo",-1,1),new s("yo",-1,1),new s("yas",-1,1),new s("yes",-1,1),new s("yais",-1,1),new s("yamos",-1,1),new s("yó",-1,1)],L=[new s("aba",-1,2),new s("ada",-1,2),new s("ida",-1,2),new s("ara",-1,2),new s("iera",-1,2),new s("ía",-1,2),new s("aría",5,2),new s("ería",5,2),new s("iría",5,2),new s("ad",-1,2),new s("ed",-1,2),new s("id",-1,2),new s("ase",-1,2),new s("iese",-1,2),new s("aste",-1,2),new s("iste",-1,2),new s("an",-1,2),new s("aban",16,2),new s("aran",16,2),new s("ieran",16,2),new s("ían",16,2),new s("arían",20,2),new s("erían",20,2),new s("irían",20,2),new s("en",-1,1),new s("asen",24,2),new s("iesen",24,2),new s("aron",-1,2),new s("ieron",-1,2),new s("arán",-1,2),new s("erán",-1,2),new s("irán",-1,2),new s("ado",-1,2),new s("ido",-1,2),new s("ando",-1,2),new s("iendo",-1,2),new s("ar",-1,2),new s("er",-1,2),new s("ir",-1,2),new s("as",-1,2),new s("abas",39,2),new s("adas",39,2),new s("idas",39,2),new s("aras",39,2),new s("ieras",39,2),new s("ías",39,2),new s("arías",45,2),new s("erías",45,2),new s("irías",45,2),new s("es",-1,1),new s("ases",49,2),new s("ieses",49,2),new s("abais",-1,2),new s("arais",-1,2),new s("ierais",-1,2),new s("íais",-1,2),new s("aríais",55,2),new s("eríais",55,2),new s("iríais",55,2),new s("aseis",-1,2),new s("ieseis",-1,2),new s("asteis",-1,2),new s("isteis",-1,2),new s("áis",-1,2),new s("éis",-1,1),new s("aréis",64,2),new s("eréis",64,2),new s("iréis",64,2),new s("ados",-1,2),new s("idos",-1,2),new s("amos",-1,2),new s("ábamos",70,2),new s("áramos",70,2),new s("iéramos",70,2),new s("íamos",70,2),new s("aríamos",74,2),new s("eríamos",74,2),new s("iríamos",74,2),new s("emos",-1,1),new s("aremos",78,2),new s("eremos",78,2),new s("iremos",78,2),new s("ásemos",78,2),new s("iésemos",78,2),new s("imos",-1,2),new s("arás",-1,2),new s("erás",-1,2),new s("irás",-1,2),new s("ís",-1,2),new s("ará",-1,2),new s("erá",-1,2),new s("irá",-1,2),new s("aré",-1,2),new s("eré",-1,2),new s("iré",-1,2),new s("ió",-1,2)],z=[new s("a",-1,1),new s("e",-1,2),new s("o",-1,1),new s("os",-1,1),new s("á",-1,1),new s("é",-1,2),new s("í",-1,1),new s("ó",-1,1)],x=[17,65,16,0,0,0,0,0,0,0,0,0,0,0,0,0,1,17,4,10],A=new r;this.setCurrent=function(e){A.setCurrent(e)},this.getCurrent=function(){return A.getCurrent()},this.stem=function(){var e=A.cursor;return t(),A.limit_backward=e,A.cursor=A.limit,m(),A.cursor=A.limit,b()||(A.cursor=A.limit,f()||(A.cursor=A.limit,_())),A.cursor=A.limit,h(),A.cursor=A.limit_backward,o(),!0}};return function(e){return"function"==typeof e.update?e.update(function(e){return n.setCurrent(e),n.stem(),n.getCurrent()}):(n.setCurrent(e),n.stem(),n.getCurrent())}}(),e.Pipeline.registerFunction(e.es.stemmer,"stemmer-es"),e.es.stopWordFilter=e.generateStopWordFilter("a al algo algunas algunos ante antes como con contra cual cuando de del desde donde durante e el ella ellas ellos en entre era erais eran eras eres es esa esas ese eso esos esta estaba estabais estaban estabas estad estada estadas estado estados estamos estando estar estaremos estará estarán estarás estaré estaréis estaría estaríais estaríamos estarían estarías estas este estemos esto estos estoy estuve estuviera estuvierais estuvieran estuvieras estuvieron estuviese estuvieseis estuviesen estuvieses estuvimos estuviste estuvisteis estuviéramos estuviésemos estuvo está estábamos estáis están estás esté estéis estén estés fue fuera fuerais fueran fueras fueron fuese fueseis fuesen fueses fui fuimos fuiste fuisteis fuéramos fuésemos ha habida habidas habido habidos habiendo habremos habrá habrán habrás habré habréis habría habríais habríamos habrían habrías habéis había habíais habíamos habían habías han has hasta hay haya hayamos hayan hayas hayáis he hemos hube hubiera hubierais hubieran hubieras hubieron hubiese hubieseis hubiesen hubieses hubimos hubiste hubisteis hubiéramos hubiésemos hubo la las le les lo los me mi mis mucho muchos muy más mí mía mías mío míos nada ni no nos nosotras nosotros nuestra nuestras nuestro nuestros o os otra otras otro otros para pero poco por porque que quien quienes qué se sea seamos sean seas seremos será serán serás seré seréis sería seríais seríamos serían serías seáis sido siendo sin sobre sois somos son soy su sus suya suyas suyo suyos sí también tanto te tendremos tendrá tendrán tendrás tendré tendréis tendría tendríais tendríamos tendrían tendrías tened tenemos tenga tengamos tengan tengas tengo tengáis tenida tenidas tenido tenidos teniendo tenéis tenía teníais teníamos tenían tenías ti tiene tienen tienes todo todos tu tus tuve tuviera tuvierais tuvieran tuvieras tuvieron tuviese tuvieseis tuviesen tuvieses tuvimos tuviste tuvisteis tuviéramos tuviésemos tuvo tuya tuyas tuyo tuyos tú un una uno unos vosotras vosotros vuestra vuestras vuestro vuestros y ya yo él éramos".split(" ")),e.Pipeline.registerFunction(e.es.stopWordFilter,"stopWordFilter-es")}}); -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. -------------------------------------------------------------------------------- /site/assets/javascripts/lunr/min/lunr.ar.min.js: -------------------------------------------------------------------------------- 1 | !function(e,r){"function"==typeof define&&define.amd?define(r):"object"==typeof exports?module.exports=r():r()(e.lunr)}(this,function(){return function(e){if(void 0===e)throw new Error("Lunr is not present. Please include / require Lunr before this script.");if(void 0===e.stemmerSupport)throw new Error("Lunr stemmer support is not present. Please include / require Lunr stemmer support before this script.");e.ar=function(){this.pipeline.reset(),this.pipeline.add(e.ar.trimmer,e.ar.stopWordFilter,e.ar.stemmer),this.searchPipeline&&(this.searchPipeline.reset(),this.searchPipeline.add(e.ar.stemmer))},e.ar.wordCharacters="ء-ٛٱـ",e.ar.trimmer=e.trimmerSupport.generateTrimmer(e.ar.wordCharacters),e.Pipeline.registerFunction(e.ar.trimmer,"trimmer-ar"),e.ar.stemmer=function(){var e=this;return e.result=!1,e.preRemoved=!1,e.sufRemoved=!1,e.pre={pre1:"ف ك ب و س ل ن ا ي ت",pre2:"ال لل",pre3:"بال وال فال تال كال ولل",pre4:"فبال كبال وبال وكال"},e.suf={suf1:"ه ك ت ن ا ي",suf2:"نك نه ها وك يا اه ون ين تن تم نا وا ان كم كن ني نن ما هم هن تك ته ات يه",suf3:"تين كهم نيه نهم ونه وها يهم ونا ونك وني وهم تكم تنا تها تني تهم كما كها ناه نكم هنا تان يها",suf4:"كموه ناها ونني ونهم تكما تموه تكاه كماه ناكم ناهم نيها وننا"},e.patterns=JSON.parse('{"pt43":[{"pt":[{"c":"ا","l":1}]},{"pt":[{"c":"ا,ت,ن,ي","l":0}],"mPt":[{"c":"ف","l":0,"m":1},{"c":"ع","l":1,"m":2},{"c":"ل","l":2,"m":3}]},{"pt":[{"c":"و","l":2}],"mPt":[{"c":"ف","l":0,"m":0},{"c":"ع","l":1,"m":1},{"c":"ل","l":2,"m":3}]},{"pt":[{"c":"ا","l":2}]},{"pt":[{"c":"ي","l":2}],"mPt":[{"c":"ف","l":0,"m":0},{"c":"ع","l":1,"m":1},{"c":"ا","l":2},{"c":"ل","l":3,"m":3}]},{"pt":[{"c":"م","l":0}]}],"pt53":[{"pt":[{"c":"ت","l":0},{"c":"ا","l":2}]},{"pt":[{"c":"ا,ن,ت,ي","l":0},{"c":"ت","l":2}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ت","l":2},{"c":"ع","l":3,"m":3},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"ا","l":0},{"c":"ا","l":2}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ع","l":2,"m":3},{"c":"ل","l":3,"m":4},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"ا","l":0},{"c":"ا","l":3}],"mPt":[{"c":"ف","l":0,"m":1},{"c":"ع","l":1,"m":2},{"c":"ل","l":2,"m":4}]},{"pt":[{"c":"ا","l":3},{"c":"ن","l":4}]},{"pt":[{"c":"ت","l":0},{"c":"ي","l":3}]},{"pt":[{"c":"م","l":0},{"c":"و","l":3}]},{"pt":[{"c":"ا","l":1},{"c":"و","l":3}]},{"pt":[{"c":"و","l":1},{"c":"ا","l":2}]},{"pt":[{"c":"م","l":0},{"c":"ا","l":3}]},{"pt":[{"c":"م","l":0},{"c":"ي","l":3}]},{"pt":[{"c":"ا","l":2},{"c":"ن","l":3}]},{"pt":[{"c":"م","l":0},{"c":"ن","l":1}],"mPt":[{"c":"ا","l":0},{"c":"ن","l":1},{"c":"ف","l":2,"m":2},{"c":"ع","l":3,"m":3},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"م","l":0},{"c":"ت","l":2}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ت","l":2},{"c":"ع","l":3,"m":3},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"م","l":0},{"c":"ا","l":2}]},{"pt":[{"c":"م","l":1},{"c":"ا","l":3}]},{"pt":[{"c":"ي,ت,ا,ن","l":0},{"c":"ت","l":1}],"mPt":[{"c":"ف","l":0,"m":2},{"c":"ع","l":1,"m":3},{"c":"ا","l":2},{"c":"ل","l":3,"m":4}]},{"pt":[{"c":"ت,ي,ا,ن","l":0},{"c":"ت","l":2}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ت","l":2},{"c":"ع","l":3,"m":3},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"ا","l":2},{"c":"ي","l":3}]},{"pt":[{"c":"ا,ي,ت,ن","l":0},{"c":"ن","l":1}],"mPt":[{"c":"ا","l":0},{"c":"ن","l":1},{"c":"ف","l":2,"m":2},{"c":"ع","l":3,"m":3},{"c":"ا","l":4},{"c":"ل","l":5,"m":4}]},{"pt":[{"c":"ا","l":3},{"c":"ء","l":4}]}],"pt63":[{"pt":[{"c":"ا","l":0},{"c":"ت","l":2},{"c":"ا","l":4}]},{"pt":[{"c":"ا,ت,ن,ي","l":0},{"c":"س","l":1},{"c":"ت","l":2}],"mPt":[{"c":"ا","l":0},{"c":"س","l":1},{"c":"ت","l":2},{"c":"ف","l":3,"m":3},{"c":"ع","l":4,"m":4},{"c":"ا","l":5},{"c":"ل","l":6,"m":5}]},{"pt":[{"c":"ا,ن,ت,ي","l":0},{"c":"و","l":3}]},{"pt":[{"c":"م","l":0},{"c":"س","l":1},{"c":"ت","l":2}],"mPt":[{"c":"ا","l":0},{"c":"س","l":1},{"c":"ت","l":2},{"c":"ف","l":3,"m":3},{"c":"ع","l":4,"m":4},{"c":"ا","l":5},{"c":"ل","l":6,"m":5}]},{"pt":[{"c":"ي","l":1},{"c":"ي","l":3},{"c":"ا","l":4},{"c":"ء","l":5}]},{"pt":[{"c":"ا","l":0},{"c":"ن","l":1},{"c":"ا","l":4}]}],"pt54":[{"pt":[{"c":"ت","l":0}]},{"pt":[{"c":"ا,ي,ت,ن","l":0}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ع","l":2,"m":2},{"c":"ل","l":3,"m":3},{"c":"ر","l":4,"m":4},{"c":"ا","l":5},{"c":"ر","l":6,"m":4}]},{"pt":[{"c":"م","l":0}],"mPt":[{"c":"ا","l":0},{"c":"ف","l":1,"m":1},{"c":"ع","l":2,"m":2},{"c":"ل","l":3,"m":3},{"c":"ر","l":4,"m":4},{"c":"ا","l":5},{"c":"ر","l":6,"m":4}]},{"pt":[{"c":"ا","l":2}]},{"pt":[{"c":"ا","l":0},{"c":"ن","l":2}]}],"pt64":[{"pt":[{"c":"ا","l":0},{"c":"ا","l":4}]},{"pt":[{"c":"م","l":0},{"c":"ت","l":1}]}],"pt73":[{"pt":[{"c":"ا","l":0},{"c":"س","l":1},{"c":"ت","l":2},{"c":"ا","l":5}]}],"pt75":[{"pt":[{"c":"ا","l":0},{"c":"ا","l":5}]}]}'),e.execArray=["cleanWord","removeDiacritics","cleanAlef","removeStopWords","normalizeHamzaAndAlef","removeStartWaw","removePre432","removeEndTaa","wordCheck"],e.stem=function(){var r=0;for(e.result=!1,e.preRemoved=!1,e.sufRemoved=!1;r=0)return!0},e.normalizeHamzaAndAlef=function(){return e.word=e.word.replace("ؤ","ء"),e.word=e.word.replace("ئ","ء"),e.word=e.word.replace(/([\u0627])\1+/gi,"ا"),!1},e.removeEndTaa=function(){return!(e.word.length>2)||(e.word=e.word.replace(/[\u0627]$/,""),e.word=e.word.replace("ة",""),!1)},e.removeStartWaw=function(){return e.word.length>3&&"و"==e.word[0]&&"و"==e.word[1]&&(e.word=e.word.slice(1)),!1},e.removePre432=function(){var r=e.word;if(e.word.length>=7){var t=new RegExp("^("+e.pre.pre4.split(" ").join("|")+")");e.word=e.word.replace(t,"")}if(e.word==r&&e.word.length>=6){var c=new RegExp("^("+e.pre.pre3.split(" ").join("|")+")");e.word=e.word.replace(c,"")}if(e.word==r&&e.word.length>=5){var l=new RegExp("^("+e.pre.pre2.split(" ").join("|")+")");e.word=e.word.replace(l,"")}return r!=e.word&&(e.preRemoved=!0),!1},e.patternCheck=function(r){for(var t=0;t3){var t=new RegExp("^("+e.pre.pre1.split(" ").join("|")+")");e.word=e.word.replace(t,"")}return r!=e.word&&(e.preRemoved=!0),!1},e.removeSuf1=function(){var r=e.word;if(0==e.sufRemoved&&e.word.length>3){var t=new RegExp("("+e.suf.suf1.split(" ").join("|")+")$");e.word=e.word.replace(t,"")}return r!=e.word&&(e.sufRemoved=!0),!1},e.removeSuf432=function(){var r=e.word;if(e.word.length>=6){var t=new RegExp("("+e.suf.suf4.split(" ").join("|")+")$");e.word=e.word.replace(t,"")}if(e.word==r&&e.word.length>=5){var c=new RegExp("("+e.suf.suf3.split(" ").join("|")+")$");e.word=e.word.replace(c,"")}if(e.word==r&&e.word.length>=4){var l=new RegExp("("+e.suf.suf2.split(" ").join("|")+")$");e.word=e.word.replace(l,"")}return r!=e.word&&(e.sufRemoved=!0),!1},e.wordCheck=function(){for(var r=(e.word,[e.removeSuf432,e.removeSuf1,e.removePre1]),t=0,c=!1;e.word.length>=7&&!e.result&&t