├── LICENSE ├── MANIFEST.in ├── README.md ├── mcsolver with GUI run on Windows platform.zip ├── mcsolver ├── Lattice.py ├── WannierKit.py ├── __init__.py ├── auxiliary.py ├── fileio.py ├── guiMain.py ├── heisenbergLib.c ├── input.py ├── interface2swt.py ├── isingLib.c ├── mcMain.py ├── toolbox.py ├── win.py └── xyLib.c ├── samples ├── CrI3With2NNCoupling ├── SkyrmionOnHexLattice ├── SkyrmionOnSqaureLattice ├── Square_XY_isotropic ├── sim_XYmodel_under_Linux.py └── sim_XYmodel_under_Windows.py └── setup.py /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /MANIFEST.in: -------------------------------------------------------------------------------- 1 | include ./mcsolver/*.py ./mcsolver/*.c ./mcsolver/*.so LICENSE README.md -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # mcsolver 2 | A user friendly and efficient tool implementing Monte Carlo simulations to estimate Curie/Neel temperature 3 | 4 | Support multiple ocassions, e.g. standard ferromangetic/anti-ferromagnetic systems, DMI, Kiteav non-diagonal exchange interactions, dipole-dipole long-range couplings, with external fields. 5 | 6 | The newest version is 3, which supports the calculations on topological charges (the number of (anti-)Skyrmions and (anti-)Merons). 7 | 8 | Original version contributor: Dr. Liang Liu* 1.Shenzheng University 2.Shandong University 9 | Email: liangliu@mail.sdu.edu.cn 10 | 11 | You can download the packed .exe (only tested in Windows 10 platform) from the following link. Wish it can find something helpful for you. And if it was used for publication, please cite: 12 | [1] Magnetic switches via electric field in BN nanoribbons. Applied Surface Science 480(2019) 13 | 14 | Link for exe: https://pan.baidu.com/s/1kRtvPFXDBANga1StRxG7Wg?pwd=1234 15 | 16 | 17 | Brief tutorial: 18 | 19 | A. using mcsolver via .exe, e.g., in Windows platform 20 | 21 | NOTE: the mcsolver.exe maybe reported to be virus and removed by some anti-virus software. I still have no ideal about this and maybe you need add it into white list. Otherwise you can use mcsolver as a python package (see Section B below). 22 | 23 | Download and extract file from upper link (or download the .zip from https://github.com/golddoushi/mcsolver/raw/master/mcsolver.20.10.10update.zip), then open .exe (maybe wait 10+ sec.), fill out all parameters, click startMC Btn, then wait for the results. 24 | 25 | How to define parameters? 26 | 27 | Style I Define parameters via GUI: 28 | 29 | 1. Define the three lattice vectors of primitive cell. 30 | 31 | 2. Define all basic spins in primitive cell, note that the fractional coordinates are supposed. Ani represents the single-ion anisotropies in xyz directions (It is useless in Ising model, and only former two are used in XY model). As well as, note that the units of anisotropies are in Kelvin. 32 | 33 | 3. Define all exchange interactions (bonds). There are nine matrix elements for one J including Jxx, Jyy, Jzz, Jxy, Jxz, Jyz, Jyx, Jzx, Jzy, respectively. Each element discribes the coupling between two components of spins. For example, a basic bond term can be expressed as 34 | $$S1\dot J\dot S2 = S_{1x}J_{xx}S_{2x} + S_{1y}J_{yy}S_{2y} + S_{1z}J_{zz}S_{2z} + S_{1x}J_{xy}S_{2y} + ...$$ 35 | For Ising model, since only one component is available for each spin, only the first element Jxx is used. As well as for XY model, only Jxx, Jyy, Jxy, Jyz are used. 36 | In this step, you can click one of the bonds to review the actual linking in lattice on view pannel. Activated bond is depicted with bold and yellow line while others are green. You may drag left/right mouse Btn to rotate and expand/shrink the model shown in view pannel. 37 | By the way, these parameters can be obtained via fitting experimental spin-wave spectra or DFT calculations. One of the general method for calculating anisotropic bonds and orbitals was introduced in dio: 10.1021/acs.jpclett.0c01911. 38 | 39 | 4. Define other parameters, including 40 | the start and end temperatures, number of temperature interpolations (for the temperature scanning) 41 | the start, end and number of samplings for external field (for the magnetic field scanning) 42 | nthermal is the total steps to make system enter balanced states, nsweep is the total steps involved in mesearing, tau denotes the MC updates for each step 43 | xAxis denote the physical quantity put in x-axis of right-hand Result viewer, it can be either T(for illustration of M-T curv) or H (for illustration of hysteresis loop). 44 | model type, algorithm (only Metropolis and Wolff are supported now) 45 | nFrame is the num. of output spin configurations, using for illustrating spin configurations in equilibrium or non-equilibrium states. 46 | 47 | 5. Set spin_i and spin_j and the lattice vector between them, for correlation mesearments. (if spin_i=spin_j and overLat=0 0 0, then you will get susceptibility for spin_i) 48 | 49 | 6. Set the core resources for parallel calc. 50 | 51 | 7. (Optional) Save current parameters into file. 52 | 53 | 8. Click startMC Btn to start. 54 | 55 | 9. Wait for the diagram update in right pannel. Afterwards, you can find a file result.txt in the root directory of mcsolver, there are many useful informations including the averaged spin (on spin_i and j defined in step 5), correlation between spin_i and j, internal energy, specific heat capacith, and Binder cumulant U4, etc. If you handle the sims with more than one cores then the results may not be ordered according to temperature, however, the correspondences in every line are ok. 56 | 57 | Style II Define parameters via loading file 58 | 59 | 1. click load Btn to load settings, and here I prepared the setting for CrI3 with exchanges up to 2nd nearest neiboring. You can modify the sample file for your own purposes, with any txt editor. 60 | 61 | 2. You can define the Topological section to compute the (thermally averaged) topological charges. Every circuits are made by three orbitals enclosing the triangle anti-clockwisely. And all the circuits should cover the zone with exactly the same area of unit cell. 62 | 63 | 3. Click startMC Btn to start. 64 | 65 | B. using mcsolver as a python package 66 | 67 | Style I Build form binary file in Windows platform 68 | 69 | Install the package via command: 70 | 71 | pip install mcsolver 72 | 73 | Note that python>=3, matplotlib, numpy, tkinter are prerequisite 74 | 75 | Afterwards, you can import mcsolver into your own python code and use function: 76 | 77 | mcsolver.loadMC("parameterfile") 78 | 79 | to start simulation. Preparation of parameterfile is the same as in section A. 80 | 81 | There are one sample file sim_XYmodel_under_Windows.py in sample folder. To use this, change your current path (in console) into sample folder, and type command: python sim_XYmodel_under_Windows.py 82 | 83 | NOTE: since mcsolver employ python-parallel you have to use freeze_support() before calling loadMC(...). 84 | 85 | Style II Build from source in Linux platform 86 | 87 | Download all codes presented here, use install command: 88 | 89 | python setup.py install 90 | 91 | Afterwards, you can import mcsolver into your own python code and use function: 92 | 93 | mcsolver.loadMC("parameterfile") 94 | 95 | to start simulation. Preparation of parameterfile is the same as in section A. 96 | 97 | There are one sample file sim_XYmodel_under_Linux.py in sample folder. To use this, cd to sample folder, and type command: python sim_XYmodel_under_Linux.py 98 | 99 | Note that the parallelization of mcsolver is not perfect. Now it cannot parallelize between multiple machines but amongst mutiple cores in a single machine (that is, only SMP mode is efficient). Therefore submit the job into one node if you are working with clusters. 100 | 101 | C. using code mode (not recommend) 102 | 103 | Download all codes, compile all .c files inito .so files the dynamic libraries. And run cmd: "python win.py" to load GUI and go on. 104 | -------------------------------------------------------------------------------- /mcsolver with GUI run on Windows platform.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/golddoushi/mcsolver/671a44d8275839ea453147db129ae35b84f46d8a/mcsolver with GUI run on Windows platform.zip -------------------------------------------------------------------------------- /mcsolver/Lattice.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from matplotlib.figure import Figure 3 | try: 4 | from .auxiliary import improveTheMatrixRankToThree 5 | except: 6 | from auxiliary import improveTheMatrixRankToThree 7 | 8 | class Orbital: 9 | ''' 10 | represent the orbital, it is linked to many other orbitals 11 | ''' 12 | def __init__(self,id,spin=1.,D=[],x=0.,y=0.,z=0.,R=np.array([0,0,0])): 13 | self.id=id 14 | self.linkedOrb=[] 15 | self.linkStrength=[] 16 | self.linkDistance=[] 17 | self.spin=spin 18 | self.D=D 19 | self.inBlock=False 20 | 21 | #use to plot on screen 22 | self.x=x 23 | self.y=y 24 | self.z=z 25 | 26 | self.r=np.array([x,y,z]) 27 | 28 | # mark for renormalization 29 | self.chosen=False 30 | self.orb_cluster=[] 31 | self.linkedOrb_rnorm=[] 32 | self.linkStrength_rnorm=[] 33 | 34 | def addLinking(self,targetOrb,strength,distance,quiet=False,forceAdd=False): 35 | # check redundancy 36 | for iorb, orb in enumerate(self.linkedOrb): 37 | if forceAdd: 38 | break 39 | if targetOrb.id==orb.id: 40 | if not quiet: print('Warning: maybe redundant bonding between orb: %d and %d'%(self.id, orb.id)) 41 | # check if they are equal 42 | existed_bond_strength=self.linkStrength[iorb] 43 | diff_bond_strength=abs(existed_bond_strength-strength) 44 | if type(strength) is float and diff_bond_strength<1e-5: 45 | if not quiet: print("the difference between this bond and existed bond is negligible (<1e-5), therefore we skip it") 46 | return 47 | if type(strength) is np.ndarray and sum(diff_bond_strength)<1e-5: 48 | if not quiet: print("the difference between this bond and existed bond is negligible (<1e-5), therefore we skip it") 49 | return 50 | if not quiet: print('Since the two bond strength is different, now try to add the strength to existed one') 51 | self.linkStrength[iorb]+=strength 52 | return 53 | self.linkedOrb.append(targetOrb) 54 | self.linkStrength.append(strength) 55 | self.linkDistance.append(distance) 56 | #print(strength) 57 | #exit() 58 | 59 | 60 | def addLinking_rnorm(self,targetOrb,strength): 61 | for orb in self.linkedOrb_rnorm: 62 | if targetOrb.id==orb.id: 63 | print('Warning: redundant renormalizing bonding between orb: %d and %d'%(self.id, orb.id)) 64 | return 65 | self.linkedOrb_rnorm.append(targetOrb) 66 | self.linkStrength_rnorm.append(strength) 67 | 68 | def classifyTheLinking(self,On=False): 69 | initialType=-1 70 | self.classStrength=[] 71 | self.linkedOrbType=[] 72 | for linkStrength in self.linkStrength: 73 | #print(linkStrength) 74 | findType=False 75 | for itype, StrengthType in enumerate(self.classStrength): 76 | condition=sum(abs(linkStrength-StrengthType)) if On else abs(linkStrength-StrengthType) 77 | if condition<0.0001:#abs(linkStrength-StrengthType).all()<0.0001: 78 | self.linkedOrbType.append(itype) 79 | findType=True 80 | break 81 | if not findType: 82 | initialType+=1 83 | self.linkedOrbType.append(initialType) 84 | self.classStrength.append(linkStrength) 85 | self.totLinkingTypes=initialType+1 86 | 87 | def getCorrEnergy(self,corrList=[]): 88 | corr=0. 89 | for targetOrb, bondStrengh in zip(self.linkedOrb,self.linkStrength): 90 | excluded=True 91 | for corrOrb in corrList: 92 | if targetOrb.id==corrOrb.id: 93 | excluded=False 94 | break 95 | if excluded: 96 | continue 97 | corr+=self.spin*targetOrb.spin*bondStrengh 98 | return corr 99 | 100 | def getCorrEnergyDirect(self): 101 | corr=0. 102 | for targetOrb, bondStrengh in zip(self.linkedOrb,self.linkStrength): 103 | corr+=self.spin*targetOrb.spin*bondStrengh 104 | return corr 105 | 106 | def getCorrEnergyWithBlock(self): 107 | corr=0. 108 | for targetOrb, bondStrengh in zip(self.linkedOrb,self.linkStrength): 109 | if targetOrb.inBlock: 110 | corr+=self.spin*targetOrb.spin*bondStrengh 111 | return corr 112 | 113 | def addOrbIntoCluster(self,orb_trial): 114 | newOrb=True 115 | for orb in self.orb_cluster: 116 | if orb.id==orb_trial.id: 117 | newOrb=False 118 | break 119 | if newOrb: 120 | self.orb_cluster.append(orb_trial) 121 | return 122 | 123 | class Bond: 124 | ''' 125 | represent the bond 126 | ''' 127 | def __init__(self,source,target,overLat,Jxx,Jyy=0,Jzz=0,Jxy=0,Jxz=0,Jyz=0,Jyx=0,Jzx=0,Jzy=0,On=False): 128 | self.source=source 129 | self.target=target 130 | self.overLat=overLat 131 | self.strength=Jxx 132 | self.invStrength=Jxx 133 | 134 | self.On=On 135 | if On: 136 | self.strength=np.array([Jxx,Jyy,Jzz,Jxy,Jxz,Jyz,Jyx,Jzx,Jzy]) 137 | self.invStrength=np.array([Jxx,Jyy,Jzz,Jyx,Jzx,Jzy,Jxy,Jxz,Jyz]) 138 | #print('new bond') 139 | #print(self.invStrength) 140 | 141 | def renormWithT(self,T): 142 | if T<1e-4: 143 | print("Error: Lattice::Bond::renormWithT: Temperature is too low (<1e-4)") 144 | exit() 145 | #print(T,self.strength) 146 | self.strength=(1/T)*self.strength 147 | self.invStrength=(1/T)*self.invStrength 148 | 149 | def copy(self): 150 | bond=Bond(self.source,self.target,self.overLat,0,0,0,self.On) 151 | bond.strength=np.array(list(self.strength)) if self.On else self.strength 152 | bond.invStrength=np.array(list(self.invStrength)) if self.On else self.invStrength 153 | return bond 154 | 155 | def establishLattice(Lx=1,Ly=1,Lz=1,norb=1, 156 | Lmatrix=np.array([[1,0,0],[0,1,0],[0,0,1]]),bmatrix=[np.array([0.,0.,0.])], 157 | SpinList=[1],DList=[0.,0.,0.],orbGroupList=[],groupInSC=False, 158 | localCircuitList=[]): 159 | ''' 160 | create a Lx X Ly X Lz lattice, and create norb orbitals 161 | for each cell 162 | ''' 163 | # pre-checking if bmatrix is not consistent with norb 164 | if len(bmatrix)>>>>>") 215 | for orb in lattice_flatten: 216 | if orb.chosen: 217 | print("orb%d is chosen, involving:"%orb.id) 218 | for sub_orb in orb.orb_cluster: 219 | print(" orb%d"%sub_orb.id) 220 | print("<<<<<<")''' 221 | 222 | # construct circuits 223 | circuitList=[] 224 | for x in range(Lx): 225 | for y in range(Ly): 226 | for z in range(Lz): 227 | for circuit in localCircuitList: 228 | s1Info, s2Info, s3Info= circuit 229 | orb1, lat1= s1Info 230 | orb2, lat2= s2Info 231 | orb3, lat3= s3Info 232 | circuitList.append((lattice[(x+lat1[0])%Lx][(y+lat1[1])%Ly][(z+lat1[2])%Lz][orb1], 233 | lattice[(x+lat2[0])%Lx][(y+lat2[1])%Ly][(z+lat2[2])%Lz][orb2], 234 | lattice[(x+lat3[0])%Lx][(y+lat3[1])%Ly][(z+lat3[2])%Lz][orb3])) 235 | return lattice, lattice_flatten, orbGroup, circuitList 236 | 237 | def establishLinking(lattice,bondList,ki_s=0,ki_t=0,ki_overLat=[0,0,0], 238 | Lmatrix=np.array([[1,0,0],[0,1,0],[0,0,1]]),bmatrix=[np.array([0.,0.,0.])], 239 | dipoleAlpha=0,periodic=True): 240 | Lx=len(lattice) 241 | Ly=len(lattice[0]) 242 | Lz=len(lattice[0][0]) 243 | Lo=len(lattice[0][0][0]) 244 | 245 | correlatedOrbitalPair=[] 246 | # uncode every orbitals 247 | for x in range(Lx): 248 | for y in range(Ly): 249 | for z in range(Lz): 250 | for o in range(Lo): 251 | # start linking type1: normal bond 252 | sourceOrb=lattice[x][y][z][o] 253 | for bond in bondList: 254 | if o==bond.source: 255 | if not periodic: 256 | if (x+bond.overLat[0])%Lx!=x+bond.overLat[0] or (y+bond.overLat[1])%Ly!=y+bond.overLat[1] or (z+bond.overLat[2])%Lz!=z+bond.overLat[2]: 257 | continue 258 | targetOrb=lattice[(x+bond.overLat[0])%Lx][(y+bond.overLat[1])%Ly][(z+bond.overLat[2])%Lz][bond.target] 259 | distance=(bond.overLat+bmatrix[bond.target]-bmatrix[o])@Lmatrix 260 | sourceOrb.addLinking(targetOrb,bond.strength,distance) 261 | if sourceOrb.id!=targetOrb.id: 262 | targetOrb.addLinking(sourceOrb,bond.invStrength,-distance) 263 | # type2: bond in renormalized system 264 | 265 | if sourceOrb.chosen: 266 | for bond in bondList: 267 | if o==bond.source: 268 | targetOrb=lattice[(x+bond.overLat[0]*2)%Lx][(y+bond.overLat[1]*2)%Ly][(z+bond.overLat[2]*2)%Lz][bond.target] 269 | sourceOrb.addLinking_rnorm(targetOrb,bond.strength) 270 | if sourceOrb.id!=targetOrb.id: 271 | targetOrb.addLinking_rnorm(sourceOrb,bond.invStrength) 272 | # save the correlated orbital pairs 273 | correlatedOrbitalPair.append([lattice[x][y][z][ki_s].id, lattice[(x+ki_overLat[0])%Lx][(y+ki_overLat[1])%Ly][(z+ki_overLat[2])%Lz][ki_t].id]) 274 | 275 | # after process 276 | ''' 277 | On=bondList[0].On 278 | for x in range(Lx): 279 | for y in range(Ly): 280 | for z in range(Lz): 281 | for o in range(Lo): 282 | lattice[x][y][z][o].classifyTheLinking(On=On) 283 | ''' 284 | return correlatedOrbitalPair 285 | 286 | def generateDipoleBondings(lattice,dipoleAlpha,On=1): 287 | # long-range dipole coupling 288 | print("Dipole interaction factor %.6f larger than 1e-5, try to construct dipole couplings, note open border condition is employed for dipole interactions"%dipoleAlpha) 289 | for sourceOrb in lattice: 290 | for targetOrb in lattice: 291 | if sourceOrb.id==targetOrb.id: 292 | continue 293 | r12=sourceOrb.r-targetOrb.r 294 | r12_len=np.sqrt(np.dot(r12,r12)) 295 | r12_n=r12/r12_len 296 | if On==1: # Ising type only AFM part 297 | dipole_AFM=dipoleAlpha/r12_len**3 298 | sourceOrb.addLinking(targetOrb,dipole_AFM,forceAdd=True) 299 | continue 300 | x,y,z=r12_n 301 | dipole_AFM=(dipoleAlpha/r12_len**3)*np.eye(3) 302 | dipole_FM=(-3*dipoleAlpha/r12_len**3)*np.array([[x*x,x*y,x*z], 303 | [y*x,y*y,y*z], 304 | [z*x,z*y,z*z]]) 305 | sourceOrb.addLinking(targetOrb,dipole_AFM+dipole_FM,forceAdd=True) 306 | print("Error reported by Lattice.py::establishLinking Now dipole interaction for On(2/3) model consists of non-diagonal coupling elements, which is still in development. Therefore, let's stop here.") 307 | exit() 308 | print("dipole coupling established") 309 | 310 | def plotLattice(lattice): 311 | ''' 312 | uncode the lattice pack and print each orbital on screen 313 | ''' 314 | f=Figure() 315 | ax=f.add_subplot(111) 316 | for x in lattice: 317 | for y in x: 318 | for z in y: 319 | for o in z: 320 | ax.scatter(o.x,o.y,color='blue') 321 | ax.annotate(o.id,(o.x,o.y),size=10.5) 322 | for target in o.linkedSite: 323 | ax.plot([o.x,target.x],[o.y,target.y],color='red') 324 | f.show() 325 | 326 | -------------------------------------------------------------------------------- /mcsolver/WannierKit.py: -------------------------------------------------------------------------------- 1 | ''' 2 | Created on 2018 12 8 3 | 4 | @author: Andrew 5 | ''' 6 | import numpy as np 7 | from time import time 8 | from matplotlib.figure import Figure 9 | import matplotlib.pyplot as plt 10 | try: 11 | from . import auxiliary as aux 12 | except: 13 | import auxiliary as aux 14 | 15 | class TBmodel(object): 16 | Ham=[] 17 | Ham_k=[] 18 | lattice=[] 19 | reci_lattice=[] 20 | norbital=0 21 | orbital_coor=[] 22 | spin_list=[] 23 | onsite_energy=[] 24 | 25 | nhoppings=0 26 | hopping=[] 27 | 28 | kpath=[] 29 | kmesh=[] 30 | 31 | wcc_path=[] 32 | wcc_polar_direction=-1 33 | nelectrons=-1 34 | 35 | def __init__(self): 36 | pass 37 | 38 | def make_supercell(self,sc_dir0=[1.,1.,0.],sc_dir1=[1.,-1.,0.],sc_dir2=[0.,0.,1.],toHome=True): 39 | ''' 40 | construct a supercell model. 41 | often used with slab fun. to get slab model with chosen border. 42 | ''' 43 | Tmatrix=np.array([sc_dir0,sc_dir1,sc_dir2]) # sc_lat = T dot lat 44 | invTmatrix=np.linalg.inv(Tmatrix) # lat = invT dot sc_lat 45 | # construct lattice matrix for supercell 46 | sc_lattice=np.dot(Tmatrix,self.lattice) 47 | 48 | # construct orbitals for supercell 49 | R0max=int(np.max(abs(Tmatrix[:,0]))) 50 | R1max=int(np.max(abs(Tmatrix[:,1]))) 51 | R2max=int(np.max(abs(Tmatrix[:,2]))) 52 | 53 | ### find which sub-cell is interior, just check the origins 54 | interior_cell_list=[] 55 | interior_cell_coor=[] 56 | for a0 in range(-R0max,R0max+1): 57 | for a1 in range(-R1max,R1max+1): 58 | for a2 in range(-R2max,R2max+1): 59 | ori_lat=np.array([a0,a1,a2]) 60 | ori_sc_lat=np.dot(ori_lat,invTmatrix) 61 | interior=True 62 | for ori_coor in ori_sc_lat: 63 | if(ori_coor<0 or ori_coor>=1): 64 | interior=False 65 | if(interior): 66 | interior_cell_list.append(ori_lat) 67 | interior_cell_coor.append(ori_sc_lat) 68 | 69 | ### now add every orbs and their attributes 70 | sc_orbital_coor=[] 71 | onsite_energy=[] 72 | norbital=0 73 | 74 | hopping=[] 75 | nhoppings=0 76 | for iinter_cell, interior_cell in enumerate(interior_cell_list): 77 | for iorb0, orb0 in enumerate(self.orbital_coor): 78 | # add coordinates 79 | orb_sc=np.dot(orb0[0]+interior_cell,invTmatrix) 80 | sc_orbital_coor.append([orb_sc,orb0[1],orb0[2],orb0[3]]) 81 | norbital+=1 82 | # add hopping 83 | for hopping_ele in self.hopping: 84 | if(hopping_ele[0]==iorb0): 85 | iorb0_sc=iinter_cell*self.norbital+iorb0 86 | #hopping_orb0=[iorb0_sc] 87 | iorb1, aug_vec, amplify, color, linewidth= hopping_ele[1], hopping_ele[2], hopping_ele[3], hopping_ele[4], hopping_ele[5] 88 | #print('iorb0, iorb1:', iorb0, iorb1, 'aug_vec:',aug_vec) 89 | orb1_cell_ori=interior_cell+aug_vec # the origin coordinates (a1,a2,a3 lattice) 90 | orb1_cell_ori_sc=np.dot(orb1_cell_ori,invTmatrix) # in supercell lattice 91 | orb1_cell_ori_sc_reduced=orb1_cell_ori_sc%1 # reduced by 1 92 | aug_vec_sc=orb1_cell_ori_sc-orb1_cell_ori_sc_reduced # aug vector in supercell frame 93 | # check which level is reached 94 | for iori_coor, ori_coor in enumerate(interior_cell_coor): 95 | if(ori_coor==orb1_cell_ori_sc_reduced).all(): 96 | iorb1_sc=iori_coor*self.norbital+iorb1 97 | break 98 | #print('SC: iorb0, iorb1:', iorb0_sc, iorb1_sc, 'aug_vec:',aug_vec_sc) 99 | hopping_orb0=[iorb0_sc, iorb1_sc, aug_vec_sc, amplify, color, linewidth] 100 | hopping.append(hopping_orb0) 101 | nhoppings+=1 102 | 103 | self.lattice=sc_lattice 104 | self.orbital_coor=sc_orbital_coor 105 | self.norbital=norbital 106 | self.onsite_energy=onsite_energy 107 | self.nhoppings=nhoppings 108 | self.hopping=hopping 109 | if toHome: 110 | self.toHome() 111 | 112 | def toHome(self): 113 | '''move all coordinates to the home cell''' 114 | for iorb, orb in enumerate(self.orbital_coor): 115 | orb_reduced=orb[0]%1 116 | orb_shift=orb_reduced-orb[0] 117 | if (orb_shift).any(): 118 | #print(orb,orb_shift) 119 | # update orb 120 | orb[0]%=1 121 | # update the hoppings 122 | for hopping in self.hopping: 123 | # hopping start with orb 124 | if(hopping[0]==iorb): 125 | hopping[2]+=orb_shift 126 | if(hopping[1]==iorb): 127 | hopping[2]-=orb_shift 128 | 129 | def viewStructure(self): 130 | '''visualize the orbital and bonding's spatial configuration''' 131 | f=Figure(figsize=(3,3)) 132 | ax=f.add_subplot(111,projection='3d') 133 | 134 | def dragLineWithTwoPoints(pt0, pt1, c='black', linewidth=2): 135 | ax.plot([pt0[0],pt1[0]],[pt0[1],pt1[1]],[pt0[2],pt1[2]],c=c, linewidth=linewidth) 136 | 137 | # draw the boder of unit cell 138 | pt0=np.zeros(3) 139 | a1,a2,a3=self.lattice[0],self.lattice[1],self.lattice[2] 140 | ax.text(a1[0],a1[1],a1[2],'$a_1$') 141 | ax.text(a2[0],a2[1],a2[2],'$a_2$') 142 | ax.text(a3[0],a3[1],a3[2],'$a_3$') 143 | 144 | dragLineWithTwoPoints(pt0,a1) 145 | #dragLineWithTwoPoints(a1,a1+a2) 146 | #dragLineWithTwoPoints(a1+a2,a2) 147 | dragLineWithTwoPoints(pt0,a2) 148 | 149 | #dragLineWithTwoPoints(a3,a1+a3) 150 | #dragLineWithTwoPoints(a1+a3,a1+a2+a3) 151 | #dragLineWithTwoPoints(a1+a2+a3,a2+a3) 152 | #dragLineWithTwoPoints(a3,a2+a3) 153 | 154 | dragLineWithTwoPoints(pt0,a3) 155 | #dragLineWithTwoPoints(a1,a1+a3) 156 | #dragLineWithTwoPoints(a2,a2+a3) 157 | #dragLineWithTwoPoints(a1+a2,a1+a2+a3) 158 | 159 | for iorb, orb in enumerate(self.orbital_coor): 160 | if iorb>=50: 161 | print('num. of orb >=50, some orbs will not be illustrated') 162 | break 163 | orb_xyz=np.dot(orb[0],self.lattice) 164 | ax.scatter(orb_xyz[0],orb_xyz[1],orb_xyz[2],c=orb[2],s=orb[1]) 165 | #ax.text(orb_xyz[0],orb_xyz[1],orb_xyz[2],str(iorb)) 166 | 167 | for ihopping, hopping in enumerate(self.hopping): 168 | if ihopping>=200: 169 | print('num. of hopping >=200, some hoppings will not be illustrated') 170 | break 171 | iorb0, iorb1, Rextra, amp, color, linewidth=hopping[0], hopping[1], hopping[2], hopping[3], hopping[4], hopping[5] 172 | if np.dot(Rextra,Rextra)>0: 173 | continue 174 | orb0_xyz=np.dot(self.orbital_coor[iorb0][0],self.lattice) 175 | orb1_xyz=np.dot((self.orbital_coor[iorb1][0]+Rextra),self.lattice) 176 | dragLineWithTwoPoints(orb0_xyz,orb1_xyz,c=color,linewidth=linewidth) 177 | 178 | ax.set_xticks([]) 179 | ax.set_yticks([]) 180 | ax.set_zticks([]) 181 | ax.grid(False) 182 | ax.axis('off') 183 | return f, ax 184 | 185 | def viewStructure_maya(self,ax): 186 | '''visualize the orbital and bonding's spatial configuration''' 187 | 188 | def dragLineWithTwoPoints(pt0, pt1, c=(0,0,0), linewidth=None): 189 | ax.plot3d([pt0[0],pt1[0]],[pt0[1],pt1[1]],[pt0[2],pt1[2]], color=c, tube_radius=linewidth) 190 | 191 | # draw the boder of unit cell 192 | pt0=np.zeros(3) 193 | a1,a2,a3=self.lattice[0],self.lattice[1],self.lattice[2] 194 | 195 | ax.quiver3d(*pt0,*a1,color=(0,0,0),line_width=20,mode='2darrow') 196 | ax.quiver3d(*pt0,*a2,color=(0,0,0),line_width=20,mode='2darrow') 197 | ax.quiver3d(*pt0,*a3,color=(0,0,0),line_width=20,mode='2darrow') 198 | time0=time() 199 | for iorb, orb in enumerate(self.orbital_coor): 200 | #if iorb>=50: 201 | # print('num. of orb >=50, some orbs will not be illustrated') 202 | # break 203 | orb_xyz=orb[0]@self.lattice 204 | ax.points3d(orb_xyz[0],orb_xyz[1],orb_xyz[2],color=orb[2],scale_factor=orb[1],mode='sphere')#,s=orb[1]) 205 | ax.quiver3d(*orb_xyz,*orb[3],color=(0,0,1),mode='arrow') 206 | #ax.text(orb_xyz[0],orb_xyz[1],orb_xyz[2],str(iorb)) 207 | print("Draw orbitals and mag.moms.: %.3fs"%(time()-time0)) 208 | time0=time() 209 | for ihopping, hopping in enumerate(self.hopping): 210 | #if ihopping>=200: 211 | # print('num. of hopping >=200, some hoppings will not be illustrated') 212 | # break 213 | iorb0, iorb1, Rextra, amp, color, linewidth=hopping[0], hopping[1], hopping[2], hopping[3], hopping[4], hopping[5] 214 | if np.dot(Rextra,Rextra)>0: 215 | continue 216 | orb0_xyz=np.dot(self.orbital_coor[iorb0][0],self.lattice) 217 | orb1_xyz=np.dot((self.orbital_coor[iorb1][0]+Rextra),self.lattice) 218 | dragLineWithTwoPoints(orb0_xyz,orb1_xyz,c=color,linewidth=linewidth) 219 | print("Draw couplings: %.3fs"%(time()-time0)) 220 | 221 | def genReciLattice(self): 222 | # generate the 3rd lattice vector if input 2D model 223 | def antiSymmMatrix(a): 224 | return np.array([ 225 | [ 0 ,-a[2], a[1]], 226 | [ a[2], 0 ,-a[0]], 227 | [-a[1], a[0], 0 ] 228 | ]) 229 | 230 | if(len(self.lattice)==2): 231 | a1=np.concatenate((self.lattice[0],[0.])) 232 | a2=np.concatenate((self.lattice[1],[0.])) 233 | a3=np.array([0.,0.,1.]) 234 | self.lattice=np.array([a1,a2,a3]) 235 | a1=self.lattice[0] 236 | a2=self.lattice[1] 237 | a3=self.lattice[2] 238 | 239 | V=np.abs(np.dot(np.dot(antiSymmMatrix(a1),a2),a3)) 240 | 241 | b1=np.dot(antiSymmMatrix(a2),a3) 242 | b2=np.dot(antiSymmMatrix(a3),a1) 243 | b3=np.dot(antiSymmMatrix(a1),a2) 244 | 245 | b1*=2*np.pi/V 246 | b2*=2*np.pi/V 247 | b3*=2*np.pi/V 248 | self.reci_lattice=np.array([b1,b2,b3]) 249 | 250 | def fixHopping(self): 251 | ''' 252 | throw redundant hoppings and add hoppings accordingto time-reversal-symmetry (TRS) 253 | ''' 254 | perfect_hoppings=[] 255 | def redundantless(hop_check): 256 | for hop_ref in perfect_hoppings: 257 | if(hop_check[0]==hop_ref[0] and hop_check[1]==hop_ref[1] and\ 258 | (hop_check[2]==hop_ref[2]).all()): 259 | if(abs(hop_check[3]-hop_ref[3])>0.01): 260 | print ('WARNING: hoppings brreaks time-reversal symmetry!') 261 | return False 262 | return True 263 | for hopping in self.hopping: 264 | if redundantless(hopping): 265 | perfect_hoppings.append(hopping) 266 | # TRS 267 | hasTRS=False 268 | if(hopping[0]!=hopping[1]): 269 | hasTRS=True 270 | elif(np.dot(hopping[2],hopping[2])>0.01): 271 | hasTRS=True 272 | if(hasTRS): 273 | tr_hopping=[hopping[1],hopping[0],-hopping[2],hopping[3]] 274 | if redundantless(tr_hopping): 275 | perfect_hoppings.append(tr_hopping) 276 | self.hopping=perfect_hoppings 277 | 278 | def constructHam(self): 279 | ''' 280 | construct real-space Hamiltonian''' 281 | # firstly, construct the architecture 282 | self.Ham=[] 283 | for origin_orbital_index in range(self.norbital): 284 | hopping_tmp=[] 285 | for destiny_orbital_index in range(self.norbital): 286 | hopping_tmp.append([]) 287 | self.Ham.append(hopping_tmp) 288 | 289 | # then import all hoppings 290 | for hopping in self.hopping: 291 | # source # target # overlat # t 292 | self.Ham[hopping[0]][hopping[1]].append([hopping[2],hopping[3]]) 293 | 294 | def constructHk(self,kpt=[0.,0.,0.],debug=False): 295 | "Construct Hamiltonian for a certain k-point with reduced coordinates" 296 | if len(kpt)==2: 297 | kpt=list(kpt) 298 | kpt.append(0) 299 | kpt=np.array(kpt) 300 | 301 | Ham_k=[] 302 | for ibloch in range(self.norbital): 303 | Hk_tmp=[] 304 | for jbloch in range(self.norbital): 305 | matrix_element=0. 306 | for hopping in self.Ham[ibloch][jbloch]: 307 | matrix_element+=hopping[1]*np.exp(-2j*np.pi*np.dot(kpt,hopping[0]),dtype=complex) 308 | 309 | Hk_tmp.append(matrix_element) 310 | Ham_k.append(Hk_tmp) 311 | #if debug: 312 | # print(Ham_k) 313 | #print(self.onsite_energy) 314 | Ham_k=np.array(Ham_k)+self.onsite_energy*np.eye(self.norbital,dtype=complex) 315 | 316 | #if debug: 317 | # print(Ham_k) 318 | # exit() 319 | return Ham_k 320 | 321 | def solveHk(self,kpt=[0.,0.,0.],return_orb=False,debug=False): 322 | '''solve the eigen-values for a k-point with reduced coordinates, 323 | and return the eigen-vectors optionally 324 | ''' 325 | #if debug: 326 | # print(kpt) 327 | # print(self.Ham) 328 | # exit() 329 | Ham_k=self.constructHk(kpt=kpt,debug=debug) 330 | #print(Ham_k) 331 | eig, vec = np.linalg.eigh(Ham_k,'U') 332 | #if debug: exit() 333 | 334 | if return_orb: 335 | return eig, vec 336 | else: 337 | return eig 338 | 339 | def genKPath(self,highSymK,nikpt): 340 | ''' 341 | generate kpath between high-symmetry kpoints 342 | ''' 343 | kpath=[] 344 | npath=len(highSymK)-1 345 | for ipath in range(npath): 346 | dk=(highSymK[ipath+1]-highSymK[ipath])/nikpt[ipath] 347 | for ikpt in range(nikpt[ipath]): 348 | kpath.append(ikpt*dk+highSymK[ipath]) 349 | kpath.append(highSymK[npath]) 350 | return kpath 351 | 352 | def autoGenerateKpath2D(self,nikpt=20): 353 | ''' 354 | generate k-path automatically, 355 | only for 2D case, temporally 356 | Parameter(s): 357 | nikpt: represents the number of interval KPs between two high-symmetric KP 358 | ''' 359 | b1=self.reci_lattice[0][:2]/2 360 | b2=self.reci_lattice[1][:2]/2 361 | b1b2=b1+b2 362 | # calc. coordinates of edge 363 | # in cartesian coor. 364 | factor=np.array([b1,b2]) 365 | res=np.array([np.dot(b1,b1),np.dot(b2,b2)]) 366 | K_cart=np.dot(np.linalg.inv(factor),res) 367 | # in reci-fractional coor. 368 | K0=np.dot(np.array([K_cart[0],K_cart[1],0.]),np.linalg.inv(self.reci_lattice)) 369 | 370 | # another possible 371 | factor=np.array([b1,b1b2]) 372 | res=np.array([np.dot(b1,b1),np.dot(b1b2,b1b2)]) 373 | K_cart=np.dot(np.linalg.inv(factor),res) 374 | K1=np.dot(np.array([K_cart[0],K_cart[1],0.]),np.linalg.inv(self.reci_lattice)) 375 | 376 | # chose the short one 377 | K=K0[:2] if np.dot(K0,K0)0 then only plot bands above and underneath half-filling for nfermi" 395 | "e.g., nfermi=1 then only the top valence band and lowest conducting band are plotted" 396 | self.constructHam() 397 | plt.figure() 398 | kpath=np.linspace(0,1,len(self.kpath)) 399 | eig=[] 400 | for kpt in self.kpath: 401 | eig_list = self.solveHk(kpt=kpt,debug=True) 402 | eig.append(eig_list) 403 | #for eig in eig_list: 404 | # plt.scatter(ikpt,eig,color='black') 405 | eig=np.array(eig) 406 | if(nfermi==-1): 407 | for iband in range(self.norbital): 408 | plt.plot(kpath,eig[:,iband],color='black') 409 | else: 410 | lower=int(self.norbital/2-nfermi) 411 | higher=int(self.norbital/2+nfermi) 412 | for iband in range(lower,higher): 413 | plt.plot(kpath,eig[:,iband],color='black') 414 | plt.xlim(0,1) 415 | #plt.ylim(0,1.1*np.max(eig.flatten())) 416 | plt.xticks([]) 417 | plt.savefig(path+'spectra.png',dpi=300) 418 | plt.close() 419 | 420 | def plot2DStructure(self,vec,Lx=1,Ly=1,kpt=np.array([0,0,0]),S=1.5): 421 | #print(self.orbital_coor) 422 | #print(self.lattice) 423 | #plt.figure() 424 | fout=open('./spinWave.txt','w') 425 | fout.write('#X Y Z dX dY dZ\n') 426 | for x in range(Lx): 427 | for y in range(Ly): 428 | R=np.array([x,y,0]) 429 | blochPhase=2*np.pi*((kpt.dot(R))%1) 430 | #print('%d %d %.3f'%(x,y,blochPhase)) 431 | for iorb, orb in enumerate(self.orbital_coor): 432 | subOrbPos=(orb[0]+R).dot(self.lattice) 433 | 434 | subOrbPhase=np.log(vec[iorb]/abs(vec[iorb])).imag if abs(vec[iorb])>1e-5 else 0 435 | #phi=(subOrbPhase+blochPhase)#*np.pi*2 436 | wycoffPhase=orb[0].dot(kpt)*2*np.pi 437 | phi=subOrbPhase+blochPhase+wycoffPhase 438 | theta=abs(vec[iorb])*0.5/S*np.pi*0.5 439 | nS=(np.sin(theta)*np.cos(phi),np.sin(theta)*np.sin(phi),np.cos(theta)) 440 | #print('theta %.3f phi %.3f'%(theta,phi)) 441 | #print(vec) 442 | fout.write('%.6f %.6f %.6f %.6f %.6f %.6f\n'%(*subOrbPos,*nS)) 443 | #fout.write('%.6f %.6f %.6f %.6f\n'%(*subOrbPos,phi)) 444 | #plt.scatter(subOrbPos[0],subOrbPos[1],c='black') 445 | #plt.annotate('%.3f'%(totalPhase/np.pi/2),(subOrbPos[0],subOrbPos[1])) 446 | #exit() 447 | #plt.show() 448 | fout.close() 449 | -------------------------------------------------------------------------------- /mcsolver/__init__.py: -------------------------------------------------------------------------------- 1 | __version__="3.0.2" 2 | from . import win 3 | import os 4 | 5 | libpath=os.path.join(os.path.dirname(__file__),'lib') 6 | for lib in os.listdir(libpath): 7 | if 'ising' in lib: 8 | isingLibPath=os.path.join(libpath,lib) 9 | if 'xy' in lib: 10 | xyLibPath=os.path.join(libpath,lib) 11 | if 'heisenberg' in lib: 12 | heisenbergLibPath=os.path.join(libpath,lib) 13 | 14 | win.libPool=[isingLibPath,xyLibPath,heisenbergLibPath] 15 | 16 | def loadMC(rpath): # interface to core codes avoiding GUI 17 | win.startSimulation(updateGUI=False,rpath=rpath) 18 | 19 | -------------------------------------------------------------------------------- /mcsolver/auxiliary.py: -------------------------------------------------------------------------------- 1 | ''' 2 | Created on 2019 7 6 3 | 4 | @author: Andrew 5 | ''' 6 | import numpy as np 7 | import os 8 | import shutil 9 | 10 | def getMSD(input,overavg=True,bestChoice=True,verbose=False): 11 | ''' 12 | ''' 13 | #check the shape 14 | shape=input.shape 15 | if(len(shape)==1): 16 | # the case of one line of data 17 | dim=int(shape[0]) 18 | avg=1.*np.sum(input)/dim 19 | sd=0. 20 | diffList=[] 21 | for ele in input: 22 | diff=(ele-avg)*(ele-avg) 23 | diffList.append(diff) 24 | sd+=diff 25 | rmsd=np.sqrt(sd)/dim/abs(avg) if overavg else np.sqrt(sd)/dim 26 | if verbose: 27 | print('dimension is: %d'%dim) 28 | print('average is: %.6f'%avg) 29 | print('relative mean-squared-diff is: %.6f'%rmsd) 30 | if bestChoice: 31 | sortList=quicksort(diffList) 32 | if verbose: 33 | print('the best chois is:',input[sortList[0]],' with derviation: ', diffList[sortList[0]]) 34 | return rmsd,sortList[0] 35 | 36 | elif(len(shape)==2): 37 | # the case of 2x2 matrix 38 | ncol=int(shape[1]) 39 | rmsdList=[] 40 | bestChoiceList=[] 41 | for icol in range(ncol): 42 | rmsd,bestChoiceID=getMSD(input[:,icol],bestChoice=True,verbose=verbose) 43 | rmsdList.append(rmsd) 44 | bestChoiceList.append(bestChoiceID) 45 | if bestChoice: 46 | return rmsdList,bestChoiceList 47 | else: 48 | return rmsdList 49 | else: 50 | print('cannot handle data dimension >2') 51 | exit() 52 | 53 | def getCombination(inputList=[],ncomb=1): 54 | ''' 55 | This function can generate combinations from extracted elements in 56 | inputList, e.g., if we want to select two elements from [1,2,3], 57 | they maybe either [1,2], [1,3] or [2,3], thus we can use this facility as 58 | comb=getCombination(inputList=[1,2,3],ncomb=2) 59 | then we can get a list of: [ [1,2], [1,3], [2,3] ] 60 | 61 | params definition: 62 | inputList: the pool of elements 63 | ncomb : num. of elements in combination 64 | ''' 65 | #print 'conduct function' 66 | #print 'input:', inputList 67 | ntot=len(inputList) 68 | if(ncomb==1): 69 | result=[] 70 | for ele in inputList: 71 | result.append([ele]) 72 | return result 73 | else: 74 | if(ncomb>ntot): 75 | print('Error: num. of combinations larger than input!') 76 | exit() 77 | else: 78 | result=[] 79 | for ihead in range(0,ntot-ncomb+1): 80 | headele=inputList[ihead] 81 | #print 'head element:',headele 82 | resList=list(inputList[ihead+1:ntot]) 83 | #print 'reside list:',resList 84 | resCombList=getCombination(resList,ncomb=ncomb-1) 85 | for ele in resCombList: 86 | ele.insert(0,headele) 87 | #print 'ele',ele 88 | result.append(list(ele)) 89 | #print 'ele',ele 90 | #result.append(result_head) 91 | return result 92 | 93 | def doesTheTwoListHaveSameNumber(list1,list2): 94 | for n1 in list1: 95 | for n2 in list2: 96 | if n1==n2: 97 | return True 98 | return False 99 | 100 | def findTheFirstSameNumberAmongTwoList(list1,list2): # if no same element presented, return -1 101 | for n1 in list1: 102 | for n2 in list2: 103 | if n1==n2: 104 | return n1 105 | return -1 106 | 107 | def improveTheMatrixRankToThree(mat:np.ndarray): 108 | if np.linalg.matrix_rank(mat)==3: return mat 109 | 110 | if np.linalg.matrix_rank(mat)==2: 111 | # try to fill one of the dimension 112 | for idim in range(3): 113 | mat_trial=np.array(list(mat)) 114 | mat_trial[idim,idim]=1 115 | if np.linalg.matrix_rank(mat_trial)==3: return mat_trial 116 | raise('Fail to improve the matrix rank') 117 | 118 | if np.linalg.matrix_rank(mat)==1: 119 | for idim in range(2): 120 | for jdim in range(idim+1,3): 121 | mat_trial=np.array(list(mat)) 122 | mat_trial[idim,idim]=1 123 | mat_trial[jdim,jdim]=1 124 | if np.linalg.matrix_rank(mat_trial)==3: return mat_trial 125 | raise('Fail to improve the matrix rank') 126 | 127 | class Node: 128 | def __init__(self,value=0,maxValue=9,leftNode=False): 129 | self.value=value 130 | self.maxValue=maxValue 131 | self.leftNode=leftNode 132 | def addone(self): 133 | self.value+=1 134 | if self.value>self.maxValue: 135 | # carry site 136 | if self.leftNode and self.leftNode.addone(): 137 | self.value=self.leftNode.value+1 138 | else: 139 | return False 140 | if self.leftNode: 141 | self.leftNode.maxValue=self.value-1 142 | return True 143 | 144 | def getCombinationLoop(input_list=[],ncomb=1,maxComb=-1): 145 | totInput=len(input_list) 146 | index_list=[i for i in range(totInput)] 147 | # create linked list 148 | rootNode=Node(value=0,maxValue=totInput-1) 149 | for i in range(1,ncomb): 150 | node_i=Node(value=i,maxValue=totInput-1,leftNode=rootNode) 151 | rootNode=node_i 152 | # generate combination numbers in one loop 153 | def getTree(remoteNode): 154 | tree=[remoteNode.value] 155 | while(remoteNode.leftNode): 156 | tree.insert(0,remoteNode.leftNode.value) 157 | remoteNode=remoteNode.leftNode 158 | return tree 159 | comb_list=[[input_list[i] for i in getTree(rootNode)]] 160 | ncount=0 161 | while(rootNode.addone()): 162 | comb_list.append([input_list[i] for i in getTree(rootNode)]) 163 | #print(getTree(rootNode)) 164 | ncount+=1 165 | if maxComb>0 and ncount>=maxComb: 166 | break 167 | return comb_list 168 | 169 | 170 | def quicksort(input_list=[]): 171 | ''' 172 | Sort the input list and return a sort index list 173 | e.g. we want to sort input_list = [1, 3, 2, 5, 0] 174 | then the function will return the sorted INDEX: 175 | output = [4, 0, 2, 1, 3] 176 | its first element is 4, since the lowest num. 0 177 | is at 4th position in original input_list, and so on 178 | 179 | WARNING: the input_list will also be changed forever. 180 | ''' 181 | def __firstSort(input_list,sort_list,low,high): 182 | l=low;h=high 183 | split=input_list[low] 184 | 185 | while(lsplit): 187 | h-=1 188 | 189 | if(llow : 213 | __firstSort(input_list,sort_list,low,h-1) 214 | 215 | if h dir %s exist, skip'%path) 235 | #print('WARNING: %s exist'%path) 236 | 237 | def ls(path): 238 | try: 239 | return os.listdir(path) 240 | except OSError as err: 241 | print(err, '--> cannot find %s, stop'%path) 242 | exit() 243 | 244 | def cp(file_src, file_des): 245 | try: 246 | shutil.copy2(file_src,file_des) 247 | except IOError as err: 248 | print(err, '--> copy file %s to %s failed, stop'%(file_src,file_des)) 249 | exit() 250 | #except FileNotFoundError as err: 251 | # print(err, '--> cannot find %s, stop'%file_src) 252 | # exit() 253 | #except shutil.SameFileError as err: 254 | # print(err, '--> %s and %s are the same file, skip'%(file_src,file_des)) 255 | 256 | def rm(path,quiet=False): 257 | try: 258 | os.remove(path) 259 | except OSError as err: 260 | if not quiet: print(err, '--> remove file %s failed, skip'%path) 261 | -------------------------------------------------------------------------------- /mcsolver/fileio.py: -------------------------------------------------------------------------------- 1 | from tkinter import filedialog 2 | from re import findall 3 | try: 4 | from . import guiMain as gui 5 | from . import win 6 | except: 7 | import guiMain as gui 8 | import win 9 | 10 | global LMatrix, LPack, pos, S, DList, h, H0, H1, nH, dipoleAlpha, bondList, T0, T1, nT, nthermal, nsweep, ninterval, xAxisType, modelType, algorithm, GcOrb, ncores, spinFrame 11 | global orbGroupList, groupInSC 12 | global localCircuitList # local circuit used to calculate the local topological charge 13 | # initial value 14 | xAxisType='T' 15 | orbGroupList=[] 16 | groupInSC=True 17 | GcOrb=[0,0,[0,0,0]] 18 | h=0 19 | H0,H1,nH=0,0,1 20 | dipoleAlpha=0 21 | spinFrame=0 22 | localCircuitList=[] 23 | 24 | def collectParam(): 25 | global LMatrix, LPack, pos, S, DList, h, H0, H1, nH, dipoleAlpha, bondList, T0, T1, nT, nthermal, nsweep, ninterval, xAxisType, modelType, algorithm, GcOrb, ncores, spinFrame, localCircuitList 26 | # get lattice 27 | a1=gui.latticeGui[0].report() 28 | a2=gui.latticeGui[1].report() 29 | a3=gui.latticeGui[2].report() 30 | LMatrix=[a1,a2,a3] 31 | print('Lattice matrix:') 32 | print(a1) 33 | print(a2) 34 | print(a3) 35 | 36 | # get supercell size 37 | LPack=[int(x) for x in gui.supercellGui.report()] 38 | print('supercell:') 39 | print(LPack[0],LPack[1],LPack[2]) 40 | 41 | # get oribtal position and spin state and onsite-anisotropy 42 | pos=[ele[3] for ele in gui.OrbListBox.infoData] 43 | S=[ele[2] for ele in gui.OrbListBox.infoData] 44 | DList=[ele[4] for ele in gui.OrbListBox.infoData] 45 | for ipos, iS, iD in zip(pos,S,DList): 46 | print('positions:',ipos,'Spin:',iS,'onsite-Anisotropy:',iD) 47 | 48 | # set field 49 | print('isotropic magnetic field is set to %.3f'%h) 50 | 51 | # get bonds 52 | bondList=[ 53 | [bond_data[2][0],bond_data[2][1],\ 54 | bond_data[2][2],\ 55 | bond_data[1][0],bond_data[1][1],bond_data[1][2],bond_data[1][3],bond_data[1][4],bond_data[1][5],bond_data[1][6],bond_data[1][7],bond_data[1][8]] 56 | for bond_data in gui.BondBox.infoData 57 | ] 58 | 59 | print('bonds:') 60 | for ibond, bond in enumerate(bondList): 61 | print("ID %d: orb%d-orb%d [%d %d %d] J:"%(ibond,bond[0],bond[1],bond[2][0],bond[2][1],bond[2][2])) 62 | print(bond[3:]) 63 | #print(bondList) 64 | 65 | # get TList 66 | T0, T1, nT=gui.TListGui.report() 67 | nT=int(nT) 68 | print('Temperature range: %.2f ~ %.2f with %d sampling points'%(T0, T1, nT)) 69 | 70 | # get HList 71 | H0, H1, nH=gui.HListGui.report() 72 | nH=int(nH) 73 | print('Magnetic field range: %.2f ~ %.2f with %d sampling points'%(H0, H1, nH)) 74 | 75 | # topological info. 76 | print('Local circuits per cell: %d'%len(localCircuitList)) 77 | for icircuit, circuit in enumerate(localCircuitList): 78 | print("ID %d, enclosed by orb %d [%d %d %d], orb %d [%d %d %d], and orb %d [%d %d %d]"%(icircuit,circuit[0][0],*circuit[0][1],circuit[1][0],*circuit[1][1],circuit[2][0],*circuit[2][1])) 79 | 80 | # get thermalizations and sweeps 81 | nthermal, nsweep, ninterval= [int(x) for x in gui.MCparamGui.report()] 82 | print('thermalizations, sweeps and tau:') 83 | print(nthermal, nsweep, ninterval) 84 | 85 | # get model and algorithm 86 | xAxisType=gui.xAxisGui.get() 87 | print('X Axis is',xAxisType) 88 | modelType = gui.modelGui.get() 89 | print('Model:',modelType) 90 | algorithm = gui.algorithmGui.get() 91 | print('Algorithm:',algorithm) 92 | 93 | # get orb. info. for Gc calc. 94 | #print(gui.corrGui.report()) 95 | s, t, v1, v2, v3 = [int(x) for x in gui.corrGui.report()] 96 | GcOrb=[[s,t],[v1,v2,v3]] 97 | print('Measure correlation between orb%d and orb%d with overLat: (%d, %d, %d)'%(s,t,v1,v2,v3)) 98 | 99 | # get num. of output spin frames 100 | spinFrame=int(gui.spinFrameGui.report()[0]) 101 | print('For each setting, %d frames of spin distribution in real space would be output'%spinFrame) 102 | 103 | # get ncores 104 | ncores= int(gui.coreGui.report()[0]) 105 | print('using %d cores'%ncores) 106 | 107 | def saveParam(): 108 | global LMatrix, LPack, pos, S, DList, h, H0, H1, nH, dipoleAlpha, bondList, T0, T1, nT, nthermal, nsweep, ninterval, xAxisType, modelType, algorithm, GcOrb, ncores, spinFrame 109 | collectParam() 110 | # write into files 111 | filePath=filedialog.asksaveasfilename() 112 | f=open(filePath,'w') 113 | f.write("This is mcsolver's save file, version: 3.0\n") 114 | f.write("Lattice:\n") 115 | a1, a2, a3= LMatrix 116 | f.write("%.9f %.9f %.9f\n"%(a1[0],a1[1],a1[2])) 117 | f.write("%.9f %.9f %.9f\n"%(a2[0],a2[1],a2[2])) 118 | f.write("%.9f %.9f %.9f\n"%(a3[0],a3[1],a3[2])) 119 | f.write("Supercell used in MC simulations:\n") 120 | Lx, Ly, Lz=LPack 121 | f.write("%d %d %d\n"%(Lx,Ly,Lz)) 122 | f.write("Orbitals in cell:\n") 123 | f.write("%d\n"%len(pos)) 124 | f.write("Positions, initial spin states and onsite-anisotropy of every orbital:\n") 125 | for ele in gui.OrbListBox.infoData: 126 | f.write("orb %d: type %d spin %.9f pos [%.9f %.9f %.9f] Dx %.9f Dy %.9f Dz %.9f h %.9f\n"%(ele[0],ele[1],ele[2],\ 127 | ele[3][0],ele[3][1],ele[3][2],\ 128 | ele[4][0],ele[4][1],ele[4][2],h)) 129 | f.write("Bonds:\n") 130 | f.write("%d\n"%len(bondList)) 131 | f.write("id, source, target, overLat, exchange matrix elements of each bond:\n") 132 | for bond_data in gui.BondBox.infoData: 133 | f.write("bond %d: Jx %.9f Jy %.9f Jz %.9f Jxy %.9f Jxz %.9f Jyz %.9f Jyx %.9f Jzx %.9f Jzy %.9f orb %d to orb %d over [%d %d %d]\n"%\ 134 | (bond_data[0],\ 135 | bond_data[1][0],bond_data[1][1],bond_data[1][2],bond_data[1][3],bond_data[1][4],bond_data[1][5],bond_data[1][6],bond_data[1][7],bond_data[1][8],\ 136 | bond_data[2][0],bond_data[2][1],bond_data[2][2][0],bond_data[2][2][1],bond_data[2][2][2]\ 137 | )) 138 | 139 | f.write("Temperature scanning region:\n") 140 | f.write("Tmin %.9f Tmax %.9f nT %d\n"%(T0, T1, nT)) 141 | f.write("Field scanning region (in unit 1.48872 T, only if Kelvin and uB is used for energy and spin):\n") 142 | f.write("Hmin %.9f Hmax %.9f nH %d\n"%(H0, H1, nH)) 143 | f.write("Dipole long-range coupling:\n") 144 | f.write("alpha %.6f\n"%dipoleAlpha) 145 | f.write("Measurement:\n") 146 | f.write("measure the correlation function between orb%d and orb%d over [%d %d %d]\n"%(GcOrb[0][0],GcOrb[0][1],GcOrb[1][0],GcOrb[1][1],GcOrb[1][2])) 147 | f.write("Supergroup\n") 148 | f.write("OrbGroup:1\n") 149 | f.write("Supergroup\n") 150 | f.write("group0 orb0-orb0\n") 151 | f.write(">>> Topological section <<<\n") 152 | f.write("LocalCircuit per cell: %d (set to 0 to skip the calc. for topo. Q)\n"%len(localCircuitList)) 153 | for icircuit, circuit in enumerate(localCircuitList): 154 | f.write("Circuit %d enclosed by orb %d [%d %d %d], orb %d [%d %d %d], and orb %d [%d %d %d]\n"%(icircuit,circuit[0][0],*circuit[0][1],circuit[1][0],*circuit[1][1],circuit[2][0],*circuit[2][1])) 155 | f.write(">>> End of Topological section <<<\n") 156 | f.write("Distribution output frame: %d\n"%spinFrame) 157 | f.write("Sweeps for thermalization and statistics, and relaxiation step for each sweep:\n") 158 | f.write("%d %d %d\n"%(nthermal, nsweep, ninterval)) 159 | f.write("XAxis type:\n") 160 | f.write(xAxisType+'\n') 161 | f.write("Model type:\n") 162 | f.write(modelType+'\n') 163 | f.write("Algorithm:\n") 164 | f.write(algorithm+'\n') 165 | f.write("Ncores:\n") 166 | f.write("%d\n"%ncores) 167 | f.close() 168 | 169 | def loadParam(updateGUI=True,rpath='./mcInput'): 170 | global LMatrix, LPack, pos, S, DList, h, bondList, T0, T1, nT, H0, H1, nH, dipoleAlpha, nthermal, nsweep, ninterval, xAxisType, modelType, algorithm, GcOrb, ncores, spinFrame 171 | global orbGroupList, groupInSC, localCircuitList 172 | filePath=filedialog.askopenfilename() if updateGUI else rpath 173 | f=open(filePath,'r') 174 | data=[line for line in f.read().split('\n') if line] 175 | f.close() 176 | # load version info. 177 | version=findall(r"[0-9\.]+",data[0])[0] 178 | if version!=str(win.settingFileVersion): 179 | print("unknown file or version (only support v%s)"%str(win.settingFileVersion)) 180 | return False 181 | 182 | # decide position of each tag 183 | tagLattice=tagSupercell=tagOrbitals=tagBonds=tagTemperature=tagSweeps=tagModel=tagAlgorithm=tagNcores=tagDipole=tagField=tagTopo=0 184 | for iline, line in enumerate(data): 185 | keyword=findall(r"[a-zA-Z]+",line) 186 | if len(keyword)==0: 187 | continue 188 | if keyword[0]=='Lattice': 189 | tagLattice=iline 190 | if keyword[0]=='Supercell': 191 | tagSupercell=iline 192 | if keyword[0]=='Orbitals': 193 | tagOrbitals=iline 194 | if keyword[0]=='Bonds': 195 | tagBonds=iline 196 | if keyword[0]=='Temperature': 197 | tagTemperature=iline 198 | if keyword[0]=='Field': 199 | tagField=iline 200 | if keyword[0]=='Dipole': 201 | tagDipole=iline 202 | if keyword[0]=='Sweeps': 203 | tagSweeps=iline 204 | if keyword[0]=='Model': 205 | tagModel=iline 206 | if keyword[0]=='Algorithm': 207 | tagAlgorithm=iline 208 | if keyword[0]=='Measurement': 209 | tagMesurement=iline 210 | if keyword[0]=='OrbGroup': 211 | tagOrbGroup=iline 212 | if keyword[0]=='Ncores': 213 | tagNcores=iline 214 | if keyword[0]=='Distribution': 215 | tagDistribution=iline 216 | if keyword[0]=='XAxis': 217 | tagXAxis=iline 218 | if keyword[0]=='LocalCircuit': 219 | tagTopo=iline 220 | 221 | if tagLattice*tagSupercell*tagOrbitals*tagBonds*tagTemperature*tagSweeps*tagModel*tagAlgorithm*tagNcores*tagField*tagDipole*tagDistribution*tagXAxis*tagOrbGroup*tagTopo==0: 222 | print("cannot find some tags") 223 | return False 224 | 225 | # load lattice 226 | LMatrix=[[float(x) for x in findall(r"[0-9\.\-]+",data[tagLattice+1+i])] for i in range(3)] 227 | # load supercell 228 | LPack=[int(x) for x in findall(r"[0-9]+",data[tagSupercell+1])] 229 | # load orbitals 230 | norb=int(findall(r"[0-9]+",data[tagOrbitals+1])[0]) 231 | orbInfo=[] 232 | pos=[] 233 | S=[] 234 | DList=[] 235 | for i in range(norb): 236 | ele=findall(r"[0-9\.\-]+",data[tagOrbitals+3+i]) 237 | orbInfo.append([int(ele[0]),int(ele[1]),float(ele[2]),\ 238 | (float(ele[3]),float(ele[4]),float(ele[5])),\ 239 | (float(ele[6]),float(ele[7]),float(ele[8]))]) 240 | pos.append([float(ele[3]),float(ele[4]),float(ele[5])]) 241 | S.append(float(ele[2])) 242 | DList.append([float(ele[6]),float(ele[7]),float(ele[8])]) 243 | 244 | # load bonds 245 | nbonds=int(findall(r"[0-9]+",data[tagBonds+1])[0]) 246 | bondInfo=[] 247 | bondList=[] 248 | for i in range(nbonds): 249 | ele=findall(r"[0-9\.\-]+",data[tagBonds+3+i]) 250 | bondInfo.append([int(ele[0]), 251 | [float(ele[1]),float(ele[2]),float(ele[3]),float(ele[4]),float(ele[5]),float(ele[6]),float(ele[7]),float(ele[8]),float(ele[9])], 252 | [int(ele[10]),int(ele[11]),(int(ele[12]),int(ele[13]),int(ele[14]))] 253 | ]) 254 | # source target [overlat. ] Jz Jx Jy Jxy Jxz Jyz Jyx Jzy Jzx 255 | bondList.append([int(ele[10]),int(ele[11]),[int(ele[12]),int(ele[13]),int(ele[14])],float(ele[1]),float(ele[2]),float(ele[3]),float(ele[4]),float(ele[5]),float(ele[6]),float(ele[7]),float(ele[8]),float(ele[9])]) 256 | 257 | # load mesurements 258 | GcPack=findall(r'[0-9\-]+',data[tagMesurement+1]) 259 | s, t, v1, v2, v3 = [int(x) for x in GcPack] 260 | GcOrb=[[s,t],[v1,v2,v3]] 261 | 262 | nOrbGroup=int(findall(r"[0-9]+",data[tagOrbGroup])[0]) 263 | groupInSC=True if data[tagOrbGroup+1]=='Supergroup' else False 264 | orbGroupList=[] 265 | for i in range(nOrbGroup): 266 | _, orbID0, orbID1 = findall(r"[0-9]+",data[tagOrbGroup+i+2]) 267 | orbGroupList.append([j for j in range(int(orbID0),int(orbID1)+1)]) 268 | 269 | # load topological circuits 270 | # load bonds 271 | nCircuits=int(findall(r"[0-9]+",data[tagTopo])[0]) 272 | localCircuitList=[] 273 | for icircuit in range(nCircuits): 274 | ele=[int(x) for x in findall(r"[0-9\-]+",data[tagTopo+1+icircuit])] 275 | # S1 id S1 overLat S2 id S2 overLat S3 id S3 overLat 276 | circuit_data_packed=[(ele[1],(ele[2],ele[3],ele[4],)),(ele[5],(ele[6],ele[7],ele[8],)),(ele[9],(ele[10],ele[11],ele[12],)),] 277 | localCircuitList.append(circuit_data_packed) 278 | 279 | # load other parameters 280 | Tpack=findall(r"[0-9\.]+",data[tagTemperature+1]) 281 | T0, T1, nT = float(Tpack[0]), float(Tpack[1]), int(Tpack[2]) 282 | Hpack=findall(r'[0-9\.\-]+',data[tagField+1]) 283 | H0, H1, nH = float(Hpack[0]), float(Hpack[1]), int(Hpack[2]) 284 | dipoleAlpha=float(findall(r'[0-9\.\-]+',data[tagDipole+1])[0]) 285 | spinFrame=int(findall(r'[0-9]+',data[tagDistribution])[0]) 286 | nTermSweep=findall(r"[0-9\.\-]+",data[tagSweeps+1]) 287 | nthermal, nsweep, ninterval=[int(x) for x in nTermSweep] 288 | xAxisType=data[tagXAxis+1] 289 | modelType=data[tagModel+1] 290 | algorithm=data[tagAlgorithm+1] 291 | _ncores=[int(data[tagNcores+1])] 292 | ncores=_ncores[0] 293 | 294 | if not updateGUI: 295 | return True 296 | # update gui window 297 | for i in range(3): 298 | gui.latticeGui[i].setValue([float(x) for x in LMatrix[i]]) 299 | gui.updateLatticeData() 300 | gui.supercellGui.setValue(LPack) 301 | gui.OrbListBox.updateInfo(orbInfo) 302 | gui.BondBox.updateInfo(bondInfo) 303 | gui.TListGui.setValue(Tpack) 304 | gui.HListGui.setValue(Hpack) 305 | gui.corrGui.setValue(GcPack) 306 | gui.MCparamGui.setValue(nTermSweep) 307 | gui.xaxisStr.set(xAxisType) 308 | gui.modelStr.set(modelType) 309 | gui.algoStr.set(algorithm) 310 | gui.spinFrameGui.setValue([spinFrame]) 311 | gui.coreGui.setValue(_ncores) 312 | gui.updateStructureViewer() 313 | return True 314 | -------------------------------------------------------------------------------- /mcsolver/guiMain.py: -------------------------------------------------------------------------------- 1 | from tkinter import Label, LabelFrame, Frame, Spinbox, Button, END, VERTICAL, N, S, W, E, StringVar, filedialog, Toplevel 2 | from multiprocessing import cpu_count 3 | from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg#,NavigationToolbar2Tk 4 | from matplotlib.figure import Figure 5 | from mpl_toolkits.mplot3d.axes3d import Axes3D 6 | from re import findall, match 7 | import numpy as np 8 | try: 9 | from . import toolbox as toolbox 10 | from . import WannierKit as wan 11 | from . import fileio as io 12 | except: 13 | import toolbox as toolbox 14 | import WannierKit as wan 15 | import fileio as io 16 | 17 | global gui # root gui 18 | global latticeGui, supercellGui, latticeData # read lattice matrix 19 | global nOrbnBondGui, nOrb, nBonds # read number of orbitals and bonds 20 | 21 | global OrbListBox, IDandTypeNote, PosNote, AnisotropyNote 22 | global BondBox, IDandTypeOfBondNote, BondDetailNote 23 | 24 | global TlistGui, HListGui, MCparamGui, xaxisStr, xAxisGui, modelGui, modelStr, algorithmGui, algoStr, corrGui, spinFrameGui, coreGui 25 | global resultViewerBase, resultViewer, structureFrame, structureViewer, structureAxis 26 | global submitBtn 27 | 28 | #gui=tk.Tk(className='mc solver v0.0.1') 29 | 30 | ################### 31 | # latice settings # 32 | ################### 33 | 34 | def loadLatticePannel(): 35 | global gui, latticeGui, supercellGui 36 | LatticeFrame=LabelFrame(gui,text='Lattice') 37 | LatticeFrame.grid(row=0,column=0) 38 | 39 | f=Figure(figsize=(3.2,0.4)) 40 | ax=f.add_subplot(1,1,1) 41 | ax.axis('off') 42 | ax.text(-0.15,0.4,r"$H=\sum_{m\neq n,\alpha\beta}J_{mn}^{\alpha\beta} S_m^\alpha S_n^\beta + \sum_{m\alpha} D_m^\alpha(S_m^\alpha S_m^\alpha)$") 43 | Hamiltonian=FigureCanvasTkAgg(f,LatticeFrame) 44 | Hamiltonian.draw() 45 | Hamiltonian.get_tk_widget().grid(row=0,column=0,columnspan=2) 46 | 47 | #HamiltonianLable=Label(LatticeFrame,text=r"$H=\sum_{ij}J_{i,j}S_i\dotS_j + \sum_i D_i(S_i\dot S_i)$") 48 | #HamiltonianLable.grid(row=0,column=0,columnspan=2) 49 | 50 | a0_base=Frame(LatticeFrame) 51 | noteFrame0=toolbox.NoteFrm(a0_base, init_notes=['a1:','',''],init_data=[1,0,0],row=True) 52 | a0_base.grid(row=1,column=0) 53 | 54 | a1_base=Frame(LatticeFrame) 55 | noteFrame1=toolbox.NoteFrm(a1_base, init_notes=['a2:','',''],init_data=[0,1,0],row=True) 56 | a1_base.grid(row=2,column=0) 57 | 58 | a2_base=Frame(LatticeFrame) 59 | noteFrame2=toolbox.NoteFrm(a2_base, init_notes=['a3:','',''],init_data=[0,0,1],row=True) 60 | a2_base.grid(row=3,column=0) 61 | 62 | latticeGui=[noteFrame0,noteFrame1,noteFrame2] 63 | 64 | supercell_base=Frame(LatticeFrame) 65 | supercellGui=toolbox.NoteFrm(supercell_base,init_notes=['SC:','x','x'],init_data=[16,16,1],row=True,entryWidth=3) 66 | supercell_base.grid(row=1,column=1,sticky='SE') 67 | 68 | def updateLatticeData(): 69 | global latticeGui, latticeData 70 | latticeData=[] 71 | for reporter in latticeGui: 72 | latticeData.append(reporter.report()) 73 | latticeData=np.array(latticeData) 74 | 75 | #################### 76 | # orbital settings # 77 | #################### 78 | 79 | def correspondToOrbList(*arg): 80 | global OrbListBox, IDandTypeNote, PosNote, AnisotropyNote 81 | data=OrbListBox.report() 82 | if len(data)>0: 83 | IDandTypeNote.entry_list[0].config(state='normal') 84 | IDandTypeNote.setValue([data[0],data[1],data[2]]) # id, type, spin 85 | IDandTypeNote.entry_list[0].config(state='disabled') 86 | PosNote.setValue(data[3]) # fractional coordinates 87 | AnisotropyNote.setValue(data[4]) 88 | updateStructureViewer(lightOrb=data[0]) 89 | 90 | def addOrb(): 91 | global OrbListBox, IDandTypeNote, PosNote, AnisotropyNote 92 | newData=list(OrbListBox.infoData) 93 | idAndType=IDandTypeNote.report() 94 | pos=PosNote.report() 95 | ani=AnisotropyNote.report() 96 | newData.append([len(newData),int(idAndType[1]),idAndType[2],tuple(pos),tuple(ani)]) 97 | OrbListBox.updateInfo(newData) 98 | updateStructureViewer() 99 | 100 | def deletOrb(): 101 | global OrbListBox, IDandTypeNote, PosNote 102 | newData=list(OrbListBox.infoData) 103 | if len(newData)==0: 104 | return 105 | idAndType=IDandTypeNote.report() 106 | idxs=int(idAndType[0]) 107 | newData.pop(idxs) 108 | OrbListBox.updateInfo(newData) 109 | updateStructureViewer() 110 | 111 | def resetOrb(): 112 | global OrbListBox, IDandTypeNote, PosNote, AnisotropyNote 113 | newData=list(OrbListBox.infoData) 114 | if len(newData)==0: 115 | return 116 | idAndType=IDandTypeNote.report() 117 | pos=PosNote.report() 118 | ani=AnisotropyNote.report() 119 | idxs=int(idAndType[0]) 120 | #print(idxs) 121 | newData.pop(idxs) 122 | newData.insert(idxs,[int(idAndType[0]),int(idAndType[1]),idAndType[2],tuple(pos),tuple(ani)]) 123 | OrbListBox.updateInfo(newData) 124 | updateStructureViewer() 125 | 126 | def orbitalDataFormat(info): 127 | return 'ID: %d Spin: %.1f FracX: %.3f %.3f %.3f Ani: %.2f %.2f %.2f'%(info[0],info[2],info[3][0],info[3][1],info[3][2],info[4][0],info[4][1],info[4][2]) 128 | 129 | def loadOrbitals(): 130 | global gui, OrbListBox, IDandTypeNote, PosNote, AnisotropyNote 131 | OrbFrame=LabelFrame(gui,text='Orbital list') 132 | OrbFrame.grid(row=1,column=0,columnspan=1) 133 | 134 | list_base=Frame(OrbFrame) 135 | list_base.grid(row=0,column=0,columnspan=2) 136 | OrbListBox=toolbox.InfoList(list_base, correspondToOrbList, orbitalDataFormat, initialInfo=[[0,0,1,(0.,0.,0.),(0.,0.,0.)]],width=45,height=5) 137 | 138 | addOrbFrameBase=Frame(OrbFrame) 139 | addOrbFrameBase.grid(row=1,column=0) 140 | 141 | id_base=Frame(addOrbFrameBase) 142 | id_base.grid(row=0,column=0) 143 | IDandTypeNote=toolbox.NoteFrm(id_base, init_notes=['ID:','Type:','Init spin:'],init_data=[0,0,1],row=True,entryWidth=5) 144 | IDandTypeNote.entry_list[0].config(state='disabled') 145 | pos_base=Frame(addOrbFrameBase) 146 | pos_base.grid(row=1,column=0,sticky='W') 147 | PosNote=toolbox.NoteFrm(pos_base, init_notes=['pos','',''],init_data=[0.,0.,0.],row=True,entryWidth=6) 148 | 149 | anis_base=Frame(addOrbFrameBase) 150 | anis_base.grid(row=2,column=0,sticky=(W,E)) 151 | AnisotropyNote=toolbox.NoteFrm(anis_base, init_notes=['Ani: Dx','Dy','Dz'],init_data=[0,0,0],row=True,entryWidth=6) 152 | 153 | addBtn=Button(addOrbFrameBase,text='add',command=addOrb) 154 | addBtn.grid(row=0,column=1,rowspan=3) 155 | resetBtn=Button(addOrbFrameBase,text='reset',command=resetOrb) 156 | resetBtn.grid(row=0,column=2,rowspan=3) 157 | delBtn=Button(addOrbFrameBase,text='delet',command=deletOrb) 158 | delBtn.grid(row=0,column=3,rowspan=3) 159 | 160 | 161 | ################## 162 | # Bonds settings # 163 | ################## 164 | 165 | def correspondToBondList(*arg): 166 | global BondBox, IDandTypeOfBondNote, BondDetailNote 167 | data=BondBox.report() 168 | if len(data)>0: 169 | IDandTypeOfBondNote.entry_list[0].config(state='normal') 170 | IDandTypeOfBondNote.setValue([data[0],data[1][0],data[1][1],data[1][2],data[1][3],data[1][4],data[1][5],data[1][6],data[1][7],data[1][8]]) # id, [Jz, Jx, Jy, Jxy, Jxz, Jyz, Jyx, Jzx, Jzy] 171 | IDandTypeOfBondNote.entry_list[0].config(state='disabled') 172 | BondDetailNote.setValue([data[2][0],data[2][1],int(data[2][2][0]),int(data[2][2][1]),int(data[2][2][2])]) # fractional coordinates 173 | updateStructureViewer(lightID=data[0]) 174 | 175 | def reviewBond(): 176 | bondPannel=Toplevel() 177 | bondPannel.title('bond setting') 178 | 179 | def addBond(): 180 | global BondBox, IDandTypeOfBondNote, BondDetailNote 181 | newData=list(BondBox.infoData) 182 | idAndType=IDandTypeOfBondNote.report() 183 | bondDetail=BondDetailNote.report() 184 | newData.append([len(newData), 185 | [idAndType[1],idAndType[2],idAndType[3],idAndType[4],idAndType[5],idAndType[6],idAndType[7],idAndType[8],idAndType[9]], 186 | [int(bondDetail[0]),int(bondDetail[1]),[int(bondDetail[2]),int(bondDetail[3]),int(bondDetail[4])]]]) 187 | BondBox.updateInfo(newData) 188 | updateStructureViewer() 189 | 190 | def deletBond(): 191 | global BondBox, IDandTypeOfBondNote, BondDetailNote 192 | newData=list(BondBox.infoData) 193 | if len(newData)==0: 194 | return 195 | idAndType=IDandTypeOfBondNote.report() 196 | idxs=int(idAndType[0]) 197 | newData.pop(idxs) 198 | BondBox.updateInfo(newData) 199 | updateStructureViewer() 200 | 201 | def resetBond(): 202 | global BondBox, IDandTypeOfBondNote, BondDetailNote 203 | newData=list(BondBox.infoData) 204 | if len(newData)==0: 205 | return 206 | idAndType=IDandTypeOfBondNote.report() 207 | bondDetail=BondDetailNote.report() 208 | idxs=int(idAndType[0]) 209 | newData.pop(idxs) 210 | newData.insert(idxs,[len(newData), 211 | [idAndType[1],idAndType[2],idAndType[3],idAndType[4],idAndType[5],idAndType[6],idAndType[7],idAndType[8],idAndType[9]], 212 | [int(bondDetail[0]),int(bondDetail[1]),[int(bondDetail[2]),int(bondDetail[3]),int(bondDetail[4])]]]) 213 | BondBox.updateInfo(newData) 214 | updateStructureViewer() 215 | 216 | def bondDataFormat(info): 217 | return 'ID%d orb%d-orb%d [%d %d %d] J: xx %.2f yy %.2f zz %.2f xy %.2f xz %.2f yz %.2f yx %.2f zx%.2f zy%.2f'%(info[0],info[2][0],info[2][1],info[2][2][0],info[2][2][1],info[2][2][2],info[1][0],info[1][1],info[1][2],info[1][3],info[1][4],info[1][5],info[1][6],info[1][7],info[1][8]) 218 | 219 | def loadBonds(): 220 | global gui, BondBox, IDandTypeOfBondNote, BondDetailNote 221 | BondFrame=LabelFrame(gui,text='Bond list') 222 | BondFrame.grid(row=2,column=0,columnspan=1) 223 | 224 | list_base=Frame(BondFrame) 225 | list_base.grid(row=0,column=0,columnspan=2) 226 | BondBox=toolbox.InfoList(list_base, correspondToBondList, bondDataFormat, 227 | initialInfo=[[0,[-1,-1,-1,0,0,0,0,0,0],[0,0,(1,0,0)]],[1,[-1,-1,-1,0,0,0,0,0,0],[0,0,(0,1,0)]]], 228 | width=45,height=5) 229 | 230 | addBondFrameBase=Frame(BondFrame) 231 | addBondFrameBase.grid(row=1,column=0) 232 | 233 | #note1=Label(addBondFrameBase, text='xx yy zz xy xz yz yx zx zy') 234 | #note1.grid(row=0,column=0,columnspan=5,sticky=(E)) 235 | 236 | id_base=Frame(addBondFrameBase) 237 | id_base.grid(row=1,column=0,columnspan=5,sticky=(W,E)) 238 | 239 | IDandTypeOfBondNote=toolbox.NoteFrm(id_base, init_notes=['ID:','J:','','','','','','','',''],init_data=[1,-1,-1,-1,0,0,0,0,0,0],row=True,entryWidth=3) 240 | IDandTypeOfBondNote.entry_list[0].config(state='disabled') 241 | 242 | detail_base=Frame(addBondFrameBase) 243 | detail_base.grid(row=2,column=0,sticky=(W,E)) 244 | BondDetailNote=toolbox.NoteFrm(detail_base, init_notes=['s','t','over lat.','',''],init_data=[0,0,1,0,0],row=True,entryWidth=3) 245 | 246 | unitLabel=Label(BondFrame,text='Note all energy units are in Kelvin (1meV=11.604609K)') 247 | unitLabel.grid(row=3,column=0,sticky=(W,E)) 248 | 249 | #reviewBtn=Button(addBondFrameBase,text='review',command=reviewBond) 250 | #reviewBtn.grid(row=1,column=1,sticky='E') 251 | addBtn=Button(addBondFrameBase,text='add',command=addBond) 252 | addBtn.grid(row=2,column=2,rowspan=1,sticky='E') 253 | resetBtn=Button(addBondFrameBase,text='reset',command=resetBond) 254 | resetBtn.grid(row=2,column=3,rowspan=1,sticky='E') 255 | delBtn=Button(addBondFrameBase,text='delet',command=deletBond) 256 | delBtn.grid(row=2,column=4,rowspan=1,sticky='E') 257 | 258 | ############### 259 | # MC settings # 260 | ############### 261 | 262 | def loadMCSettings(): 263 | global gui, TListGui, HListGui, MCparamGui, xaxisStr, xAxisGui, modelGui, modelStr, algorithmGui, algoStr, corrGui, spinFrameGui, coreGui 264 | SettingFrame=LabelFrame(gui,text='Other settings') 265 | SettingFrame.grid(row=3,column=0,sticky=(W,E)) 266 | 267 | temp_base=Frame(SettingFrame) 268 | temp_base.grid(row=0,column=0) 269 | TListGui=toolbox.NoteFrm(temp_base, init_notes=['T start:','T end','total points:'], init_data=[0.9,1.2,8],row=True,entryWidth=6) 270 | 271 | field_base=Frame(SettingFrame) 272 | field_base.grid(row=1,column=0) 273 | HListGui=toolbox.NoteFrm(field_base, init_notes=['H start:','H end','total points:'], init_data=[0,0.1,1],row=True,entryWidth=6) 274 | 275 | MCparam_base=Frame(SettingFrame) 276 | MCparam_base.grid(row=2,column=0,sticky='W') 277 | MCparamGui=toolbox.NoteFrm(MCparam_base, init_notes=['nthermal:','nsweep:','tau:'], init_data=[40000,80000,1],row=True) 278 | 279 | model_base=Frame(SettingFrame) 280 | model_base.grid(row=3,column=0,sticky='W') 281 | 282 | label0=Label(model_base,text='xAxis:') 283 | label0.grid(row=0,column=0) 284 | xaxisStr=StringVar() 285 | xAxisGui=Spinbox(model_base,from_=1, to=2, values=['T','H'],textvariable=xaxisStr,width=2) 286 | xAxisGui.grid(row=0,column=1) 287 | 288 | label1=Label(model_base,text='Model:') 289 | label1.grid(row=0,column=2) 290 | modelStr=StringVar() 291 | modelGui=Spinbox(model_base,from_=1, to=3, values=['Ising','XY','Heisenberg'],textvariable=modelStr,width=6) 292 | modelGui.grid(row=0,column=3) 293 | modelStr.set('XY') 294 | 295 | label2=Label(model_base,text='Algorithm:') 296 | label2.grid(row=0,column=4) 297 | algoStr=StringVar() 298 | algorithmGui=Spinbox(model_base,from_=1, to=3, values=['Wolff','Metropolis','Swedsen-Wang'],textvariable=algoStr,width=6) 299 | algorithmGui.grid(row=0,column=5) 300 | 301 | corr_base=Frame(SettingFrame) 302 | corr_base.grid(row=4,column=0,sticky='W') 303 | corrGui=toolbox.NoteFrm(corr_base, init_notes=['Measure corr. si','sj','overLat:','',''], init_data=[0,0,0,0,0],entryWidth=3,row=True) 304 | 305 | lastline=Frame(SettingFrame) 306 | lastline.grid(row=5,column=0,sticky='W') 307 | 308 | spinFrame_base=Frame(lastline) 309 | spinFrame_base.grid(row=0,column=0,sticky='W') 310 | spinFrameGui=toolbox.NoteFrm(spinFrame_base, init_notes=['nFrame:'], init_data=[0],entryWidth=3) 311 | 312 | core_base=Frame(lastline) 313 | core_base.grid(row=0,column=1,sticky='W') 314 | coreGui=toolbox.NoteFrm(core_base, init_notes=['core:'], init_data=[np.max([1,int(cpu_count()/2)])],entryWidth=3) 315 | 316 | ######################## 317 | # Structure visualizer # 318 | ######################## 319 | 320 | def loadStructureViewer(): 321 | global gui, latticeGui, OrbListBox, BondBox, supercellGui, structureFrame, structureViewer, structureAxis 322 | structureFrame=LabelFrame(gui, text='Structure viewer') 323 | structureFrame.grid(row=0,column=1,rowspan=2) 324 | 325 | tb=wan.TBmodel() 326 | a1=latticeGui[0].report() 327 | a2=latticeGui[1].report() 328 | a3=latticeGui[2].report() 329 | tb.lattice=np.array([a1,a2,a3]) 330 | tb.orbital_coor=[[np.array(ele[3]),50,'red',(0,0,ele[2])] for ele in OrbListBox.infoData] 331 | tb.norbital=len(tb.orbital_coor) 332 | tb.hopping=[[bond_data[2][0],bond_data[2][1],np.array(bond_data[2][2]),bond_data[1][0],'green', 2] for bond_data in BondBox.infoData] 333 | tb.nhoppings=len(tb.hopping) 334 | Lx, Ly, Lz=[4 if x>1 else 1 for x in supercellGui.report() ] 335 | tb.make_supercell([Lx,0,0],[0,Ly,0],[0,0,Lz]) 336 | f, structureAxis=tb.viewStructure() 337 | 338 | x0, x1 = structureAxis.get_xlim() 339 | y0, y1 = structureAxis.get_ylim() 340 | z0, z1 = structureAxis.get_zlim() 341 | 342 | ox=(x0+x1)/2;oy=(y0+y1)/2;oz=(z0+z1)/2 343 | xlen=abs(x1-x0);ylen=abs(y1-y0);zlen=abs(z1-z0) 344 | lenMax_half=np.max([xlen,ylen,zlen])/2 345 | structureAxis.set_xlim(ox-lenMax_half,ox+lenMax_half) 346 | structureAxis.set_ylim(oy-lenMax_half,oy+lenMax_half) 347 | structureAxis.set_zlim(oz-lenMax_half,oz+lenMax_half) 348 | #structureAxis.view_init(elev=0,azim=0) 349 | 350 | structureViewer=FigureCanvasTkAgg(f,structureFrame) 351 | structureViewer.draw() 352 | structureViewer.get_tk_widget().grid(row=0,column=0) 353 | structureAxis.figure.canvas=structureViewer 354 | structureAxis.mouse_init() 355 | 356 | def updateStructureViewer(lightID=-1,lightOrb=-1): 357 | global gui, latticeGui, OrbListBox, BondBox, supercellGui, structureFrame, structureViewer, structureAxis 358 | elev, azim = structureAxis.elev, structureAxis.azim 359 | x0, x1 = structureAxis.get_xlim() 360 | y0, y1 = structureAxis.get_ylim() 361 | z0, z1 = structureAxis.get_zlim() 362 | 363 | tb=wan.TBmodel() 364 | a1=latticeGui[0].report() 365 | a2=latticeGui[1].report() 366 | a3=latticeGui[2].report() 367 | tb.lattice=np.array([a1,a2,a3]) 368 | tb.orbital_coor=[[np.array(ele[3]),100 if ele[0]==lightOrb else 50,'yellow' if ele[0]==lightOrb else 'red',(0,0,ele[2]) ] for ele in OrbListBox.infoData] 369 | tb.norbital=len(tb.orbital_coor) 370 | tb.hopping=[[bond_data[2][0],bond_data[2][1],np.array(bond_data[2][2]),bond_data[1][0],'yellow' if bond_data[0]==lightID else 'green', 6 if bond_data[0]==lightID else 2] for bond_data in BondBox.infoData] 371 | tb.nhoppings=len(tb.hopping) 372 | Lx, Ly, Lz=[4 if x>1 else 1 for x in supercellGui.report() ] 373 | tb.make_supercell([Lx,0,0],[0,Ly,0],[0,0,Lz]) 374 | f, structureAxis=tb.viewStructure() 375 | structureAxis.view_init(elev=elev,azim=azim) 376 | structureAxis.set_xlim(x0,x1) 377 | structureAxis.set_ylim(y0,y1) 378 | structureAxis.set_zlim(z0,z1) 379 | 380 | structureViewer.get_tk_widget().destroy() 381 | structureViewer=FigureCanvasTkAgg(f,structureFrame) 382 | structureViewer.draw() 383 | structureViewer.get_tk_widget().pack() 384 | structureAxis.figure.canvas=structureViewer 385 | structureAxis.mouse_init() 386 | 387 | ##################### 388 | # Resutl visualizer # 389 | ##################### 390 | 391 | def loadResultViewer(): 392 | global gui, resultViewerBase, resultViewer 393 | resultViewerBase=LabelFrame(gui, text='Result viewer') 394 | resultViewerBase.grid(row=2,column=1,rowspan=2) 395 | 396 | f=Figure(figsize=(4,3)) 397 | f.add_subplot(111).plot([0,2],[0,0],color='black') 398 | resultViewer=FigureCanvasTkAgg(f,resultViewerBase) 399 | resultViewer.draw() 400 | resultViewer.get_tk_widget().pack() 401 | 402 | def updateResultViewer(TList=[],magList=[], susList=[]): 403 | global gui, resultViewerBase, resultViewer 404 | #print('updating:',TList,magList) 405 | f=Figure(figsize=(4,3)) 406 | ax=f.add_subplot(111,label=0) 407 | ax.scatter(TList,magList,color='red',label='') 408 | 409 | ax2=ax.twinx() 410 | ax2.scatter(TList,susList,color='blue',label=r'Capa') 411 | ax2.set_ylim(min(susList),max(susList)) 412 | 413 | f.legend() 414 | 415 | resultViewer.get_tk_widget().destroy() 416 | resultViewer=FigureCanvasTkAgg(f,resultViewerBase) 417 | resultViewer.draw() 418 | resultViewer.get_tk_widget().pack() 419 | 420 | ############# 421 | # Func btn # 422 | ############# 423 | 424 | def loadStartBtn(submitFunc): 425 | global gui, saveBtn, loadBtn, submitBtn 426 | submit_base=Frame(gui) 427 | submit_base.grid(row=4,column=0,columnspan=2) 428 | 429 | saveBtn=Button(submit_base,text='Save',command=io.saveParam) 430 | saveBtn.grid(row=0,column=0,rowspan=3) 431 | 432 | loadBtn=Button(submit_base,text='Load',command=io.loadParam) 433 | loadBtn.grid(row=0,column=1,rowspan=3) 434 | 435 | submitBtn=Button(submit_base,text='StartMC',command=submitFunc) 436 | submitBtn.grid(row=0,column=2,rowspan=3) 437 | 438 | note1=Label(submit_base, text='Thanks for your attention and I wish you would find sth. helpful.', width=80) 439 | note1.grid(row=0,column=3) 440 | 441 | note2=Label(submit_base, text='Please cite: Magnetic switches via electric field in BN nanoribbons. Appl. Surf. Sci. 480(2019)', width=80) 442 | note2.grid(row=1,column=3) 443 | 444 | #note3=Label(submit_base, text='Thank you very much!', width=80) 445 | #note3.grid(row=2,column=3) 446 | 447 | def loadEverything(root,submitFunc): 448 | global gui 449 | gui=root 450 | loadLatticePannel() 451 | updateLatticeData() 452 | 453 | loadOrbitals() 454 | loadBonds() 455 | loadMCSettings() 456 | loadStructureViewer() 457 | loadResultViewer() 458 | loadStartBtn(submitFunc) 459 | -------------------------------------------------------------------------------- /mcsolver/input.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import Lattice as lat 3 | import mcMain as mc 4 | import matplotlib.pyplot as plt 5 | import time 6 | 7 | ## magnetic crystal part 8 | LMatrix=[[1,0,0], 9 | [0,1,0], 10 | [0,0,1]] 11 | # magnetic orbitals in fractional coordinates 12 | pos=[[0,0,0]] 13 | # spin number 14 | Spin=[1] 15 | # single ion anisotropy 16 | D=np.array([[0.0,0.0,-0.0]]) 17 | # couplings #source #target #edge #J(meV) negative for FM coupling 18 | bond1=lat.Bond(0,0,np.array([1,0,0]),-1,-1,-1, 0, 0, 0, 0, 0, 0, True) 19 | bond2=lat.Bond(0,0,np.array([0,1,0]),-1,-1,-1, 0, 0, 0, 0, 0, 0, True) 20 | 21 | bondList=[bond1,bond2] 22 | 23 | time0=time.time() 24 | mcslave=mc.MC(0,LMatrix,pos=pos,S=Spin,D=D,bondList=bondList, 25 | Lx=16,Ly=16,Lz=1, 26 | T=0.2,ki_s=0,ki_t=0,ki_overLat=[2,0,0], 27 | orbGroupList=[[0]],groupInSC=True,h=0.0,dipoleAlpha=0.0,On=1,spinFrame=0) 28 | # Check MC part 29 | data=mcslave.mainLoopViaCLib_On(nsweep=80000,nthermal=40000,ninterval=1,algo='Wolff',On=3,flunc=0.0) 30 | 31 | 32 | # Spin-wave part 33 | 34 | print('time elapsed: %.3f s'%(time.time()-time0)) 35 | 36 | -------------------------------------------------------------------------------- /mcsolver/interface2swt.py: -------------------------------------------------------------------------------- 1 | ''' 2 | Created on 2019 7 22 3 | 4 | @author: Andrew 5 | ''' 6 | #import matplotlib 7 | #matplotlib.use('Agg') 8 | import matplotlib.pyplot as plt 9 | import numpy as np 10 | import auxiliary as aux 11 | import WannierKit 12 | import scipy.optimize as opt 13 | import fileio as io 14 | 15 | global tb # tight-binding model (for spin-wave calc.) 16 | global S # local spin 17 | global Jz_eff, Jxy, A_eff # the coupling constants extracted from DFT calc. 18 | global hBZ # half the Brillouin zone 19 | global dhBZ # double the BZ 20 | global norb # number of mag. ions in cell 21 | global eig0_set # the eigenvalues on the hBZ 22 | global magList_HF # store the MT curv calc. by Hatree-Fock 23 | global magList_MF # MT by mean-field 24 | global eig0_HF, jka, bka, twojka, JB0ab, B0, JBkaa, fourA, twoA # Hatree-Fock needed 25 | global Jekn, onsite, Jkaa, JBkaa_db 26 | global x0 27 | global Tc, Tc_MF 28 | 29 | def mainLoop(rpath): 30 | global tb,eig0_set,Tc,Tc_MF,magList_HF,magList_MF,S 31 | # create mc main directory 32 | print('start renormalized spin-wave theoretical calculations') 33 | io.loadParam(updateGUI=False,rpath=rpath) 34 | # initialize tight-binding model 35 | tb=WannierKit.TBmodel() 36 | __tbInit() 37 | tb.plotbands() 38 | eig0_min=np.min(eig0_set) 39 | print('spin-wave gap at 0K is: %.6f'%eig0_min) 40 | if(eig0_min>0): 41 | Sigma=0 42 | for eig in eig0_set: 43 | Sigma+=1./eig 44 | Tc_=(S+1)*len(eig0_set)/3./Sigma 45 | print('mean field estimation for Tc: %.3f'%Tc_) 46 | #exit() 47 | 48 | print('start scf procedure for each temperature, to get M-T curv') 49 | # calc M-T curv 50 | Tc, magList_HF = __MTCurv(path='./',draw=True,algo='HF_longWave') 51 | print('Hatree-Fock and long wave approximation give Tc:',Tc,'(Kelvin)') 52 | print 53 | #exit() 54 | Tc_MF,magList_MF=__MTCurv(path='./',draw=True,algo='meanfield') 55 | print('Mean-field approximation give Tc:',Tc_MF,'(Kelvin)') 56 | print('Spin-wave theory Tc (Hatree-Fock long wave limit): {:.1f}\n'.format(Tc)) 57 | print('Spin-wave theory Tc (Mean-field approximation): {:.1f}\n'.format(Tc_MF)) 58 | #__spinWave_T_vs_Occ('./',algo='HF_longWave') 59 | #__spinWave_T_vs_Occ('./',algo='Mean_Field') 60 | return Tc 61 | else: 62 | print('find zero or negative spin-wave gap!') 63 | print('Spin-wave theory find no Tc!\n') 64 | return 0 65 | 66 | def drawSpinWave(rpath,kpt,ibnd,Lx=5,Ly=5): 67 | global tb,eig0_set,Tc,Tc_MF,magList_HF,magList_MF,S 68 | # create mc main directory 69 | print('output spin waves on band%d at kpt %.3f %.3f %.3f'%(ibnd,*kpt)) 70 | io.loadParam(updateGUI=False,rpath=rpath) 71 | # initialize tight-binding model 72 | tb=WannierKit.TBmodel() 73 | __tbInit() 74 | 75 | eig,vec=tb.solveHk(kpt=kpt,return_orb=True) 76 | #print(vec[:,ibnd]) 77 | tb.plot2DStructure(vec[:,ibnd],kpt=np.array(kpt),Lx=Lx,Ly=Ly,S=io.S[0]) 78 | 79 | def __tbInit(): 80 | global tb, hBZ, dhBZ, S, norb 81 | # parameters for Hatree-Fock calc. 82 | global eig0_set, fourA, twoA, A 83 | 84 | global eig0_HF, Jekn, onsite, Jkaa, JBkaa_db, x0 85 | 86 | 87 | # set lattice 88 | tb.lattice=np.array(io.LMatrix) 89 | # set kpath for test 90 | tb.genReciLattice() 91 | #print('high') 92 | tb.autoGenerateKpath2D(20) 93 | # get coupling constants 94 | S=io.S[0] 95 | A=io.DList[0][0]-(io.DList[0][1]+io.DList[0][2])/2 96 | # set tb hoppings and diagonal terms according to eq. (S9) 97 | tb.orbital_coor=[[np.array(pos),50,'red'] for pos in io.pos] 98 | tb.norbital=len(io.S) 99 | #print(io.S) 100 | norb=tb.norbital 101 | onsite=np.ones(tb.norbital)*2*A 102 | #print(onsite) 103 | hopping=[] 104 | 105 | Jrab, Brab=[], [] 106 | for bond in io.bondList: 107 | sourceID, targetID=bond[0], bond[1] 108 | overLat=bond[2] 109 | Jz, Jx, Jy= bond[3], bond[4], bond[5] 110 | J=(Jx+Jy)/2. 111 | B=Jz-J 112 | # onsite energy 113 | onsite[sourceID]+=Jz 114 | onsite[targetID]+=Jz 115 | # hopping 116 | hopping.append([sourceID,targetID,np.array(overLat),J]) 117 | Jrab.append([sourceID,targetID,np.array(overLat),J]) 118 | Brab.append([sourceID,targetID,np.array(overLat),B]) 119 | 120 | #for j, b in zip(Jrab,Brab): 121 | # print(j) 122 | # print(b) 123 | # set half Brillouin zone 124 | hBZ=[] 125 | dk=1./io.LPack[0] 126 | for ikptx in range(io.LPack[0]): 127 | for ikpty in range(int(io.LPack[0]/2)): 128 | hBZ.append([ikptx*dk,ikpty*dk]) 129 | dhBZ=list(hBZ) 130 | dhBZ.extend(hBZ) 131 | 132 | # get Jekn 133 | tb.onsite_energy=np.zeros(tb.norbital) 134 | tb.hopping=hopping 135 | tb.fixHopping() 136 | tb.constructHam() 137 | Jekn=np.array([tb.solveHk(kpt=kpt) for kpt in hBZ]) 138 | 139 | # jkaa in hBZ 140 | Jkaa=np.array([np.diag(tb.constructHk(kpt))[0] for kpt in hBZ]).real 141 | 142 | # produce eig0_HF 143 | eig0_HF=S*(Jekn-onsite) 144 | 145 | # j(k1-k,aa) in double hBZ 146 | Jkaa_db=np.array([np.diag(tb.constructHk(kpt))[0] for kpt in dhBZ]) 147 | 148 | # B(k1-k,aa) in double hBZ 149 | tb.hopping=Brab 150 | tb.fixHopping() 151 | tb.constructHam() 152 | Bkaa_db=[np.diag(tb.constructHk(kpt))[0] for kpt in dhBZ] 153 | 154 | # J + B 155 | JBkaa_db=(Jkaa_db+Bkaa_db).real 156 | 157 | # x0 initial occ. 158 | x0=np.array([0.]*len(eig0_HF)) 159 | 160 | fourA=4*A 161 | twoA=2*A 162 | 163 | # get eig0_set 164 | #print(onsite) 165 | #exit() 166 | tb.onsite_energy=-S*onsite/11.58875 167 | #print(tb.onsite_energy) 168 | #exit() 169 | tb.hopping=hopping 170 | for hop in tb.hopping: 171 | hop[3]*=S/11.58875 172 | tb.fixHopping() 173 | tb.constructHam() 174 | 175 | __getEigen0() 176 | 177 | def __getEigen0(): 178 | global tb, hBZ, eig0_set, eig0_HF 179 | #eig0_HF=np.array([tb.solveHk(kpt=kpt) for kpt in hBZ]) 180 | eig0_set=np.array(list(eig0_HF)).flatten() 181 | #print(eig0_set) 182 | 183 | def __spinWaveSCF(T=1.,getGap=False): 184 | '''mean field approximation''' 185 | global S, eig0_set 186 | beta=1./T 187 | global eig_ren 188 | def bzSum(eigList,beta): 189 | ntot=0. 190 | for eig in eigList: 191 | ntot+=1./(np.exp(beta*eig)-1.) 192 | return ntot 193 | 194 | N=len(eig0_set) 195 | #n_avg=0 196 | 197 | def scf_meanfield(n_avg): 198 | global eig_ren 199 | eigList=(1-n_avg/2/S)*eig0_set 200 | ntot=bzSum(eigList,beta) 201 | eig_ren=np.min(eigList) 202 | return (ntot/N-n_avg)**2 203 | 204 | out=opt.minimize_scalar(scf_meanfield,bounds=(0,S)) 205 | if getGap: 206 | return out['fun'], out['x'], eig_ren 207 | return out['fun'], out['x'] 208 | 209 | def __spinWaveSCF_HF(T=1.,getGap=False): 210 | '''Hatree-Fock level discussed in H1 expression''' 211 | global S, eig0_HF, Jkaa, JBkaa_db, Jekn, onsite, norb, A, twoA, fourA 212 | global x0 213 | global eig_ren 214 | beta=1./T 215 | N=len(eig0_HF) 216 | 217 | def scf_Hatree_Fock(nk_avg): 218 | global eig_ren 219 | ntot=np.sum(nk_avg) 220 | # independent contribution 221 | contr_ind=A+ntot/N*(-Jekn+onsite+twoA) # 222 | # dependent contribution 223 | contr_dep=1./N*np.array([np.dot((JBkaa_db[N-ik:2*N-ik]-Jkaa),nk_avg) for ik in range(N)]) 224 | # renormalized eig 225 | eig_ren=(eig0_HF+contr_ind).T+contr_dep 226 | 227 | # occ renorm 228 | nk_renorm=[np.sum(nk)/norb for nk in 1./(np.exp(beta*eig_ren.T)-1.)] 229 | diff_nk=np.array(nk_renorm)-nk_avg 230 | return np.dot(diff_nk,diff_nk) 231 | 232 | out=opt.minimize(scf_Hatree_Fock,x0,bounds=[(0,None) for i in range(N)]) 233 | # update x0 234 | x0=out['x'] 235 | if getGap: 236 | return out['fun'], np.sum(out['x'])*norb/N, np.min(eig_ren) 237 | return out['fun'], np.sum(out['x'])*norb/N 238 | 239 | def __spinWaveSCF_HF_longWave(T=1., getGap=False): 240 | '''Hatree-Fock level using long-wave approximation''' 241 | global S, eig0_HF, Jkaa, JBkaa_db, Jekn, onsite, norb, A, twoA, fourA 242 | beta=1./T 243 | N=len(eig0_HF) 244 | global eig_ren, nk_renorm, contr_ind, contr_dep 245 | def scf_HF_longwave(nk_avg): 246 | global eig_ren, nk_renorm, contr_ind, contr_dep 247 | # independent contribution 248 | contr_ind=A+nk_avg*(-Jekn+onsite+twoA) # modified ignore the A term 249 | # dependent contribution 250 | contr_dep=nk_avg*(JBkaa_db[0:N]-Jkaa[0]) 251 | # renormalized eig 252 | eig_ren=(eig0_HF+contr_ind).T+contr_dep 253 | 254 | # occ renorm 255 | nk_renorm=np.sum([np.sum(nk) for nk in 1./(np.exp(beta*eig_ren.T)-1.)])/norb/N 256 | diff_nk=nk_renorm-nk_avg 257 | return diff_nk*diff_nk 258 | 259 | out=opt.minimize_scalar(scf_HF_longwave,bounds=(0,S/norb),method='Bounded') 260 | #print(nk_renorm) 261 | #print(np.min(eig_ren),np.max(eig_ren)) 262 | #print(contr_dep) 263 | #print(contr_ind.T+contr_dep) 264 | #print(twoA) 265 | #exit() 266 | if getGap: 267 | return out['fun'], out['x']*norb, np.min(eig_ren) 268 | return out['fun'], out['x']*norb 269 | 270 | def __spinWave_T_vs_Occ(path,algo='HF_longWave'): 271 | '''Draw the T vs Occ. phase''' 272 | global S, Tc, Tc_MF, eig0_HF, eig0_set, Jkaa, JBkaa_db, Jekn, onsite, norb, A, twoA, fourA 273 | N=len(eig0_HF) 274 | 275 | def scf_HF_longwave(nk_avg,beta): 276 | # independent contribution 277 | contr_ind=A+nk_avg*(-Jekn+onsite+twoA) # modified ignore the A term 278 | # dependent contribution 279 | contr_dep=nk_avg*(JBkaa_db[0:N]-Jkaa[0]) 280 | # renormalized eig 281 | eig_ren=(eig0_HF+contr_ind).T+contr_dep 282 | 283 | # occ renorm 284 | nk_renorm=np.sum([np.sum(nk) for nk in 1./(np.exp(beta*eig_ren.T)-1.)])/norb/N 285 | diff_nk=nk_renorm-nk_avg 286 | return np.min([-np.log(np.max([diff_nk*diff_nk,1E-10])),10]) 287 | 288 | def scf_meanfield(n_avg,beta): 289 | eigList=(1-n_avg/2/S)*eig0_set 290 | ntot=np.sum(1./(np.exp(beta*eigList)-1.)) 291 | diff=ntot/len(eigList)-n_avg 292 | return np.min([-np.log(np.max([diff*diff,1E-10])),10]) 293 | 294 | T=np.linspace(1,Tc*1.2,101) 295 | T_mf=np.linspace(1,Tc_MF*1.2,101) 296 | Occ=np.linspace(0,S/norb,101) 297 | Occ_tot=np.linspace(0,S,101) 298 | phase=[] 299 | if algo=='HF_longWave': 300 | for t in T: 301 | phase.append([scf_HF_longwave(nk_avg,beta=1./t) for nk_avg in Occ]) 302 | xlabel=[int(num) for num in np.linspace(1,Tc*1.2,6)] 303 | else: 304 | for t in T_mf: 305 | phase.append([scf_meanfield(n_avg,beta=1./t) for n_avg in Occ_tot]) 306 | xlabel=[int(num) for num in np.linspace(1,Tc_MF*1.2,6)] 307 | plt.figure(figsize=(6,6)) 308 | plt.imshow(np.array(phase).T,origin='low',extent=(0,10,0,10)) 309 | #plt.colorbar() 310 | ylabel=['%.2f'%num for num in np.linspace(0,S,6)] 311 | plt.xticks(range(0,12,2),xlabel) 312 | plt.yticks(range(0,12,2),ylabel) 313 | #plt.xlabel(r'Temperature (K)') 314 | #plt.ylabel(r'Spin-wave occ.') 315 | plt.tick_params(labelsize=20) 316 | plt.savefig(path+algo+'OT.png',dpi=300) 317 | plt.close() 318 | 319 | def __MTCurv(path='./',draw=False,algo='HF_longWave'): 320 | global S, eig0_set, norb 321 | global eig0_HF 322 | global twoA,fourA,A 323 | global JBkaa_db, Jekn, Jkaa, onsite 324 | 325 | magList=[] 326 | TList=[] 327 | T=1. 328 | mag0=-5 329 | while(True): 330 | if(algo=='HF_longWave'): 331 | fun, n_avg, gap = __spinWaveSCF_HF_longWave(T,getGap=True) 332 | elif(algo=='HF'): 333 | fun, n_avg, gap = __spinWaveSCF_HF(T,getGap=True) 334 | else: 335 | fun, n_avg, gap = __spinWaveSCF(T,getGap=True) 336 | mag=2*(S-n_avg) 337 | print(T, fun, mag, mag-mag0, gap) 338 | mag0=mag 339 | if(fun>1e-8): 340 | break 341 | if(mag<0): 342 | break 343 | magList.append(mag) 344 | TList.append(T) 345 | T+=1 346 | if(draw): 347 | plt.figure() 348 | plt.scatter(TList,magList) 349 | plt.xlim(0,T) 350 | plt.savefig(path+algo+'MT.png',dpi=300) 351 | plt.close() 352 | return T, magList 353 | 354 | #mainLoop('./spg8Co8Gd4H.txt') 355 | #drawSpinWave('./samples/CrI3With2NNCoupling',[1./5,1./5,0.],0,Lx=6,Ly=6) -------------------------------------------------------------------------------- /mcsolver/isingLib.c: -------------------------------------------------------------------------------- 1 | #define PY_SSIZE_T_CLEAN 2 | #include "Python.h" 3 | #include 4 | #include 5 | #include 6 | 7 | typedef struct Orb 8 | { 9 | int id; 10 | double spin; 11 | double h; 12 | int nlink; 13 | double *linkStrength; 14 | int inBlock; 15 | struct Orb **linkedOrb; 16 | 17 | int chosen; 18 | struct Orb **linkedOrb_rnorm; 19 | int nOrbInCluster; 20 | struct Orb **orb_cluster; 21 | }Orb; 22 | 23 | void establishLattice(Orb *lattice, int totOrbs, double initSpin[totOrbs], double h, int maxNLinking, int nlink[maxNLinking], double linkStrength[totOrbs*maxNLinking], 24 | int totOrb_rnorm, int nOrbInCluster, int rOrb[totOrb_rnorm], int rOrbCluster[totOrb_rnorm*nOrbInCluster]){ 25 | for(int i=0;iid); 49 | } 50 | } 51 | } 52 | 53 | void establishLinking(Orb *lattice, int totOrbs, int maxNLinking, int nlink[maxNLinking], int linkedOrb[totOrbs*maxNLinking], 54 | int totOrb_rnorm, int rOrb[totOrb_rnorm], int linkedOrb_rnorm[totOrb_rnorm*maxNLinking]){ 55 | for(int iorb=0;iorbid,lattice[iorb].linkStrength[ilink]); 66 | // } 67 | //} 68 | for(int i=0;iid,lattice[iorb].linkStrength[ilink]); 115 | } 116 | } 117 | lattice[totOrbs-1].linkedOrb=(Orb**)malloc((totOrbs-1)*sizeof(Orb*)); 118 | for(int i=0;inlink;i++){ 124 | corr+=(source->linkStrength[i])*(source->spin)*(source->linkedOrb[i]->spin); 125 | } 126 | return corr; 127 | } 128 | 129 | double getDeltaOnsiteEnergy(Orb *source){ // Only field term contributes, 130 | return 2*source->h*source->spin; 131 | } 132 | 133 | double getMajoritySpin(Orb *_orb){ 134 | //printf("start calc majority spin in block, %d orbs in total, centering orb%d\n",_orb->nOrbInCluster,_orb->id); 135 | double avg_spin=0.0; 136 | for(int ispin=0;ispin<_orb->nOrbInCluster;ispin++){ 137 | avg_spin+=_orb->orb_cluster[ispin]->spin; 138 | } 139 | if (avg_spin>0){ 140 | return fabs(_orb->spin); 141 | }else if (avg_spin<0){ 142 | return -fabs(_orb->spin); 143 | }else{ 144 | if (rand()/(double) RAND_MAX>0.5){ 145 | return fabs(_orb->spin); 146 | }else{ 147 | return -fabs(_orb->spin); 148 | } 149 | } 150 | } 151 | 152 | double getCorrEnergy_rnorm(Orb *source){ 153 | //printf("now we are calc. the corr. energy to orb%d\n",source->id); 154 | double corr=0; 155 | double avg_spin_source=getMajoritySpin(source); 156 | for(int i=0;inlink;i++){ 157 | //printf("link to orb%d\n",source->linkedOrb_rnorm[i]->id); 158 | double avg_spin_target=getMajoritySpin(source->linkedOrb_rnorm[i]); 159 | corr+=(source->linkStrength[i])*avg_spin_source*avg_spin_target; 160 | } 161 | //printf("Ecorr=%.3f\n",corr); 162 | return corr; 163 | } 164 | 165 | int expandBlock(int*beginIndex, int*endIndex, Orb *buffer[], int*blockLen, Orb *block[]){ 166 | //printf(" Buffer: now start and end pt is %d, %d.\n",*beginIndex, *endIndex); 167 | if(*beginIndex>*endIndex) return 0; 168 | 169 | // FIFO 170 | Orb *outOrb=buffer[*beginIndex]; 171 | *beginIndex+=1; // pop out the first element 172 | 173 | //FILO 174 | //Orb *outOrb=buffer[*endIndex]; 175 | //*endIndex-=1; // pop out the last element 176 | 177 | int i; 178 | //printf("there are %d linked orbs\n",outOrb->nlink); 179 | for(i=0;inlink;i++){ 180 | Orb *linkedOrb=outOrb->linkedOrb[i]; 181 | //printf(" considering the %d orb which is linking to %d orb, it is %d in block \n", linkedOrb->id, outOrb->id, linkedOrb->inBlock); 182 | if(linkedOrb->inBlock==0){ 183 | double corr=(outOrb->linkStrength[i])*(outOrb->spin)*(linkedOrb->spin); // bond strength 184 | //printf(" since it is not in block thus we calc. the correlation energy is %f\n",corr); 185 | if(corr<0 && (1-exp(2*corr))>rand()/(double) RAND_MAX){ 186 | //printf(" -->>fortunately it is added to block, Padd=%f\n",(1-exp(2*corr))); 187 | // update block 188 | *blockLen+=1; 189 | block[*blockLen-1]=linkedOrb; 190 | linkedOrb->inBlock=1; // register into block 191 | // update buffer 192 | *endIndex+=1; 193 | buffer[*endIndex]=linkedOrb; 194 | }//else{ 195 | // printf(" -->>unfortunately it is not added to block, Padd=%f\n",(1-exp(2*corr))); 196 | //} 197 | } 198 | } 199 | return 1; 200 | } 201 | 202 | void blockUpdate(int totOrbs, Orb lattice[], double*p_energy, double*p_totSpin){ 203 | //printf("one block update step is initializaing...\n"); 204 | for(int i=0;iinBlock=1; 213 | int beginIndex=0, endIndex=0, blockLen=1, i; 214 | int *p_beginIndex=&beginIndex, *p_endIndex=&endIndex, *p_blockLen=&blockLen; 215 | 216 | //printf("the seed Orb is %d\n",block[0]->id); 217 | while (expandBlock(p_beginIndex, p_endIndex, buffer, p_blockLen, block)==1) 218 | { 219 | //printf(" Block size is %d\n",*p_blockLen); 220 | } 221 | 222 | double tot_d_onsiteEnergy=0; // case field on 223 | // single-ion anisotropy 224 | for(i=0;i<*p_blockLen;i++) tot_d_onsiteEnergy+=getDeltaOnsiteEnergy(block[i]); 225 | if(tot_d_onsiteEnergy<=0 || exp(-tot_d_onsiteEnergy)>rand()/(double) RAND_MAX){ 226 | for(i=0;i<*p_blockLen;i++){ 227 | block[i]->spin*=-1; 228 | if(block[i]->idspin*2); 229 | } 230 | *p_energy=0.; 231 | for(i=0;ih*(lattice+i)->spin; 233 | } 234 | } 235 | free(block);free(buffer); 236 | } 237 | 238 | void localUpdate(int totOrbs, Orb lattice[], double *p_energy, double *p_totSpin){ 239 | unsigned long long r1=(unsigned long long)rand(); 240 | unsigned long long r2=(unsigned long long)rand(); 241 | unsigned long long seedID=(r1*RAND_MAX+r2)%totOrbs; // chose one orb 242 | double corr=2*(getCorrEnergy(lattice+seedID)-lattice[seedID].h*lattice[seedID].spin); 243 | //printf("local update: try to flip orb%d, corr=%.6f\n",lattice[seedID].id,corr); 244 | if(corr>=0){ 245 | lattice[seedID].spin*=-1; 246 | *p_totSpin+=(lattice[seedID].spin*2); 247 | *p_energy-=corr; 248 | }else if (exp(corr)>rand()/(double) RAND_MAX){ 249 | lattice[seedID].spin*=-1; 250 | *p_totSpin+=(lattice[seedID].spin*2); 251 | *p_energy-=corr; 252 | } 253 | //printf("local update finished\n"); 254 | } 255 | 256 | // interface to block update and local update algorithm 257 | void (*p_mcUpdate)(int totOrbs, Orb lattice[], double *p_energy, double *p_totSpin); 258 | 259 | PyObject * MCMainFunction(PyObject* self, PyObject* args){ 260 | // read in all parameters 261 | PyObject* py_algorithm; 262 | PyObject* py_initSpin; 263 | PyObject* py_nthermal; 264 | PyObject* py_nsweep; 265 | PyObject* py_maxNLinking; 266 | PyObject* py_ninterval; 267 | PyObject* py_nlink; 268 | PyObject* py_linkStrength; 269 | PyObject* py_linkedOrb; 270 | PyObject* py_corrOrbPair; 271 | PyObject* py_h; 272 | PyObject* py_rOrb; 273 | PyObject* py_rOrbCluster; 274 | PyObject* py_linkedOrb_rnorm; 275 | PyObject* py_spinFrame; 276 | PyObject* callback; // callback function 277 | PyArg_ParseTuple(args,"OOOOOOOOOOOOOOOO", 278 | &py_algorithm,&py_initSpin,&py_nthermal,&py_nsweep,&py_ninterval, 279 | &py_maxNLinking,&py_nlink,&py_linkStrength,&py_linkedOrb, 280 | &py_corrOrbPair, 281 | &py_h, 282 | &py_rOrb,&py_rOrbCluster,&py_linkedOrb_rnorm, 283 | &py_spinFrame, 284 | &callback); 285 | 286 | int algorithm=(int)PyLong_AsLong(py_algorithm); 287 | //printf("%d\n",algorithm); 288 | int nthermal=(int)PyLong_AsLong(py_nthermal); 289 | int nsweep=(int)PyLong_AsLong(py_nsweep); 290 | int maxNLinking=(int)PyLong_AsLong(py_maxNLinking); 291 | int ninterval=(int)PyLong_AsLong(py_ninterval); 292 | int spinFrame=(int)PyLong_AsLong(py_spinFrame); 293 | 294 | int totOrbs=(int)PyTuple_Size(py_initSpin); 295 | double *initSpin=(double*)malloc(totOrbs*sizeof(double)); 296 | for(int iorb=0;iorb0){ 370 | output_per_sweep=nsweep/spinFrame; 371 | spinFrameData=PyTuple_New(spinFrame); 372 | }else{ 373 | spinFrameData=PyFloat_FromDouble(0.0); 374 | } 375 | for(int i=0;i0 & i%output_per_sweep==0){ 382 | PyObject *spinDistribution=PyTuple_New(totOrbs); 383 | for(int j=0;j0) *p_energy_rnorm+=getCorrEnergy_rnorm(lattice+j)/2-(lattice+j)->h*(lattice+j)->spin; 391 | } 392 | //printf("calc. energy for renormalized lattice done\n"); 393 | 394 | // spin statistics over space in each frame 395 | double spin_i_avg=0; 396 | double spin_j_avg=0; 397 | double corrAvg=0.0; 398 | for(int j=0;j=norb or ki_t>=norb: 34 | print("ERROR: index out of range ki_S=%d, ki_t=%d, norb=%d\n"%(ki_s,ki_t,norb)) 35 | raise("Input Error!") 36 | self.correlatedOrbitalPair=lat.establishLinking(self.lattice_array,bondList,ki_s=ki_s,ki_t=ki_t,ki_overLat=ki_overLat,Lmatrix=np.array(LMatrix),bmatrix=np.array(pos),dipoleAlpha=dipoleAlpha) 37 | self.dipoleCorrection = False 38 | if abs(dipoleAlpha)>1e-5: 39 | self.dipoleCorrection=True 40 | lat.generateDipoleBondings(self.lattice,dipoleAlpha/T,On=On) 41 | self.ID=ID 42 | self.T=T 43 | self.Sz=Lx*Ly*Lz*sum(S) 44 | self.Energy=0. 45 | self.blockLen=0 46 | self.ki_s=ki_s 47 | self.ki_t=ki_t 48 | self.h=h 49 | self.spinFrame=spinFrame 50 | 51 | def mainLoopViaCLib(self,nsweep=1000,nthermal=500,ninterval=-1,algo='Wolff'): 52 | self.nsweep=nsweep 53 | self.nthermal=nthermal 54 | ninterval=self.totOrbs if ninterval<=0 else ninterval 55 | 56 | # initial spin 57 | initSpin=[] 58 | nlinking=[] 59 | nlinking_list=[] 60 | for iorb, orb in enumerate(self.lattice): 61 | initSpin.append(orb.spin) 62 | nlinking.append(len(orb.linkedOrb)) 63 | nlinking_list.append(len(orb.linkedOrb)) 64 | 65 | # link strength 66 | maxNLinking=max(nlinking_list) 67 | #nlinking=len(orb.linkedOrb) 68 | linkStrength,linkData=[],[] 69 | #linkStrength_rnorm=(c_double*(self.totOrbs*maxNLinking))() # linking for renormalization 70 | for iorb, orb in enumerate(self.lattice): 71 | for ilinking in range(maxNLinking): 72 | if ilinking>=nlinking_list[iorb]: 73 | linkData.append(-1) 74 | linkStrength.append(0.) 75 | #linkStrength_rnorm[cnt]=c_double(0.) 76 | else: 77 | linkData.append(orb.linkedOrb[ilinking].id) 78 | linkStrength.append(orb.linkStrength[ilinking]) 79 | 80 | #-------------------------------------------------------------------------------# 81 | # linking info. for renormalized lattice 82 | # count total sites in shrinked lat. 83 | 84 | #print("total %d orbs in renormalized lattice"%totOrb_rnorm) 85 | rOrb,rOrbCluster,linkData_rnorm=[],[],[] # store id of renormalized orbs in cluster 86 | for orb in self.lattice: 87 | if orb.chosen: 88 | rOrb.append(orb.id) 89 | #print("orb%d is chosen"%orb.id) 90 | for orbInCluster in orb.orb_cluster: 91 | rOrbCluster.append(orbInCluster.id) 92 | 93 | for iorb in range(maxNLinking): 94 | if iorb0: 134 | self.outputSpinDistributionForIsing(spinDistributionList) 135 | return spin_i, spin_j, spin_ij, autoCorr, E, E2, U4 136 | 137 | def mainLoopViaCLib_On(self,nsweep=1000,nthermal=5000,ninterval=-1,algo='Metroplis',On=3,flunc=0.0,h=0.,binGraph=False): 138 | def callback(k): 139 | print("callbak function of python is reporting, recived parameter is:") 140 | print(k) 141 | return 142 | 143 | self.nsweep=nsweep 144 | self.nthermal=nthermal 145 | ninterval=self.totOrbs if ninterval<=0 else ninterval 146 | 147 | updateAlgorithm=0 # default Metropolis algorithm 148 | if algo=='Wolff': updateAlgorithm=1 149 | 150 | initSpin,initD,nlinking=[],[],[] 151 | for orb in self.lattice: 152 | initSpin.append(orb.spin) 153 | for i in range(3): 154 | initD.append(orb.D[i]) 155 | nlinking.append(len(orb.linkedOrb)) 156 | 157 | # link strength 158 | ignoreNonDiagonalJ=1 159 | maxNLinking=max(nlinking) 160 | linkStrength,linkData=[],[] # thus the nlinking of every orbs are the same 161 | 162 | for iorb, orb in enumerate(self.lattice): 163 | #print("orb%d"%orb.id) 164 | for ilinking in range(maxNLinking): 165 | if ilinking>=nlinking[iorb]: 166 | linkData.append(-1) 167 | for i in range(9): # set the redundant bond strength to zero 168 | linkStrength.append(0.) 169 | else: 170 | linkData.append(orb.linkedOrb[ilinking].id) 171 | #print("link %d :"%ilinking,orb.linkStrength[ilinking]) 172 | for i in range(9): # set the bond strength 173 | linkStrength.append(orb.linkStrength[ilinking][i]) 174 | if abs(orb.linkStrength[ilinking][i]) > 1e-6 and i>=3: ignoreNonDiagonalJ=0 175 | 176 | # topological circuits 177 | localCircuits=[] 178 | for circuit in self.localCircuit: 179 | for orb in circuit: localCircuits+=[orb.id] 180 | 181 | # correlated info. 182 | corrOrbitalPair=[] 183 | for pair in self.correlatedOrbitalPair:corrOrbitalPair+=pair 184 | 185 | # orb group 186 | nOrbGroup=len(self.orbGroup) 187 | maxOrbGroupSize=1 188 | if nOrbGroup>0: 189 | maxOrbGroupSize=len(self.orbGroup[0]) 190 | if nOrbGroup>1: 191 | maxOrbGroupSize=np.max([len(subGroup) for subGroup in self.orbGroup]) 192 | orbGroupList=[] 193 | for subGroup in self.orbGroup: 194 | for iorb in range(maxOrbGroupSize): 195 | if iorb>>>") 209 | for orb in self.lattice: 210 | if orb.chosen: 211 | #print("orb%d is chosen"%orb.id) 212 | rOrb.append(orb.id) 213 | for orbInCluster in orb.orb_cluster: 214 | rOrbCluster.append(orbInCluster.id) 215 | #print(" orb%d"%orbInCluster.id) 216 | 217 | for iorb in range(maxNLinking): 218 | if iorb C C_v 261 | print('T=%.3f h=%.3f =%.3f =%.3f =%.3f =%.3f =%.3f =%.3f =%.3f =%.3f =%.3f =%.6f =%.3f =%.3f =%.3f r=%.3f rr=%.3f =%.3f =%.3f =%.3f'%( 262 | self.T,self.h,spin_i_tot_z,spin_j_tot_z,spin_tot_z,spin_i_h,spin_j_h,spin_tot_h,spin_i_len,spin_j_len,spin_ij,np.dot(spin_i,spin_j),E,E2, U4,spin_ij_r,np.dot(spin_i_r,spin_j_r), E_r, E2_r, topologicalQ)) 263 | with open('./out','a') as fout: 264 | fout.write('T= %.6E h= %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E = %.6E r= %.6E rr= %.6E = %.6E = %.6E = %.6E\n'%( 265 | self.T,self.h,spin_i_tot_z,spin_j_tot_z,spin_tot_z,spin_i_h,spin_j_h,spin_tot_h,spin_i_len,spin_j_len,spin_ij,np.dot(spin_i,spin_j),E,E2, U4,spin_ij_r,np.dot(spin_i_r,spin_j_r), E_r, E2_r, topologicalQ)) 266 | # FFT on the MC random data makes no sense 267 | #if self.spinFrame==nsweep:self.outputSpinWaveSpetra(spinDistributionList) 268 | 269 | if self.spinFrame>0:self.outputSpinDistributionForOn(spinDistributionList) 270 | 271 | if len(self.orbGroup)>0:self.outputSpinGroup(spinDotSpinBetweenGroups) 272 | return spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, topologicalQ 273 | 274 | def outputSpinGroup(self,spinDotSpinData): 275 | with open('./spinDotSpin.txt','a') as fout: 276 | # title 277 | fout.write('%.3f %.3f '%(self.T,self.h)) 278 | cnt=0 279 | for i in range(len(self.orbGroup)+1): 280 | for j in range(len(self.orbGroup)+1): 281 | #keyword1='group_%d'%i if i!=self.orbGroup else 'Total' 282 | #keyword2='group_%d'%j if j!=self.orbGroup else 'Total' 283 | #title='#'+keyword1+'_'+keyword2+' ' 284 | fout.write('%.6f '%spinDotSpinData[cnt]) 285 | cnt+=1 286 | for i in range(len(self.orbGroup)+1): 287 | fout.write('%.6f '%spinDotSpinData[cnt]) 288 | cnt+=1 289 | fout.write('\n') 290 | 291 | def outputSpinDistributionForIsing(self,distributionList): 292 | for iframe in range(self.spinFrame): 293 | with open('./IsingSpinDistribution.T%.3f.H%.3f.%d.txt'%(self.T,self.h,iframe),'w') as fout: 294 | fout.write("#x #y #z #spin\n") 295 | for orb in self.lattice: 296 | fout.write('%.6f %.6f %.6f %.3f\n'%(orb.x,orb.y,orb.z, 297 | distributionList[iframe][orb.id])) 298 | 299 | def outputSpinWaveSpetra(self,distributionList): 300 | print("start FFT") 301 | time0=time.time() 302 | # get the 1st orb on gamma-K 303 | cnt=0 304 | id_list=[] 305 | for i in range(self.Lx): 306 | id_list.append(self.lattice_array[i][i][0][0].id) 307 | cnt+=1 308 | if cnt>=self.Ly: 309 | break 310 | T_R_x_data=np.array(distributionList)[:,id_list,0] 311 | amplitude=np.log(abs(fft.fft2(T_R_x_data)))[:50,:] 312 | print("end FFT, time elapsed %.3fs"%(time.time()-time0)) 313 | plt.imshow(amplitude,origin='lower',extent=(0,1,0,1)) 314 | plt.show() 315 | exit() 316 | 317 | def outputSpinDistributionForOn(self,distributionList): 318 | for iframe in range(self.spinFrame): 319 | with open('./OnSpinDistribution.T%.3f.H%.3f.%d.txt'%(self.T,self.h,iframe),'w') as fout: 320 | fout.write("#x #y #z #spinx #spiny #spinz\n") 321 | for orb in self.lattice: 322 | fout.write('%.6f %.6f %.6f %.6f %.6f %.6f\n'%(orb.x,orb.y,orb.z, 323 | distributionList[iframe][orb.id][0],distributionList[iframe][orb.id][1],distributionList[iframe][orb.id][2])) 324 | 325 | def mainLoop(self,nsweep=10000,nthermal=5000): 326 | self.nsweep=nsweep 327 | self.nthermal=nthermal 328 | sAvgData=[] 329 | EnergyData=[] 330 | blockData=[] 331 | 332 | process=0 333 | for ithermal in range(nthermal): 334 | if ithermal>=nthermal*0.01*process: 335 | #print('thermalization %2d percent'%process) 336 | process+=1 337 | #print('thermalization:',ithermal) 338 | for imcStep in range(self.totOrbs): 339 | #self.LocalUpdate() 340 | self.BlockUpdate() 341 | 342 | print('sweep started') 343 | process=0 344 | for isweep in range(nsweep): 345 | if isweep>=nsweep*0.01*process: 346 | print('simulation has done %2d percent'%process) 347 | process+=1 348 | sAvgSweep=energySweep=blockSweep=0 349 | for imcStep in range(self.totOrbs): 350 | #self.LocalUpdate() 351 | self.BlockUpdate() 352 | sAvgSweep+=np.abs(self.Sz) 353 | energySweep+=self.Energy 354 | blockSweep+=self.blockLen 355 | 356 | #print(sAvgSweep/self.totOrbs) 357 | sAvgData.append(sAvgSweep/self.totOrbs) 358 | EnergyData.append(energySweep/self.totOrbs) 359 | blockData.append(blockSweep/self.totOrbs) 360 | 361 | self.sAvgData=sAvgData 362 | self.EnergyData=EnergyData 363 | print(np.mean(sAvgData)/self.totOrbs, np.std(sAvgData)/self.totOrbs, np.mean(blockData)/self.totOrbs/self.T) 364 | return np.mean(sAvgData), np.mean(EnergyData), np.std(sAvgData), np.std(EnergyData) 365 | 366 | def saveData(self): 367 | data=open('./task'+str(self.ID),'w') 368 | data.write('Temperature:%.3f \n'%self.T) 369 | data.write('Energy List, %5d total lines:\n'%self.nsweep) 370 | for energy in self.EnergyData: 371 | data.write('%.6f \n'%(energy/self.totOrbs)) 372 | data.write('spin List, %5d total lines: \n'%self.nsweep) 373 | for spin in self.sAvgData: 374 | data.write('%.6f \n'%abs(spin/self.totOrbs)) 375 | data.close() 376 | 377 | def LocalUpdate(self): 378 | seedOrb=self.lattice[randint(0,self.totOrbs-1)] 379 | corr=seedOrb.getCorrEnergyDirect() 380 | if corr>=0: 381 | seedOrb.spin*=-1 382 | self.Sz+=(seedOrb.spin*2) 383 | self.Energy-=corr*2 384 | elif np.exp(2*corr)>random(): 385 | seedOrb.spin*=-1 386 | self.Sz+=(seedOrb.spin*2) 387 | self.Energy-=corr*2 388 | return 389 | 390 | def BlockUpdate(self): 391 | seedOrb=self.lattice[randint(0,self.totOrbs-1)] 392 | seedOrb.inBlock=True 393 | block=[seedOrb] 394 | buffer=[seedOrb] 395 | 396 | def expandBuffer(): 397 | #print(len(buffer)) 398 | if len(buffer)==0: 399 | return False 400 | outOrb=buffer.pop(0) 401 | for ilinkedOrb, linkedOrb in enumerate(outOrb.linkedOrb): 402 | if linkedOrb.inBlock: 403 | continue 404 | corr=outOrb.linkStrength[ilinkedOrb]*outOrb.spin*linkedOrb.spin 405 | if corr<0 and (1-np.exp(2*corr))>random.random(): 406 | linkedOrb.inBlock=True 407 | block.append(linkedOrb) 408 | buffer.append(linkedOrb) 409 | return True 410 | 411 | while(expandBuffer()): 412 | pass 413 | 414 | for blockOrb in block: 415 | blockOrb.spin*=-1 416 | blockOrb.inBlock=False 417 | self.Sz+=(blockOrb.spin*2) 418 | #print(len(block)) 419 | self.blockLen=len(block) 420 | return 421 | 422 | 423 | 424 | -------------------------------------------------------------------------------- /mcsolver/toolbox.py: -------------------------------------------------------------------------------- 1 | from tkinter import Label, Entry, Listbox,Scrollbar, END, VERTICAL, N, S, StringVar 2 | 3 | class NoteFrm: 4 | frm_base=None 5 | 6 | label_list=[] 7 | entry_list=[] 8 | data_list=[] 9 | 10 | totn=2 11 | row=False 12 | 13 | def __init__(self,frm_base,init_notes=[],init_data=[0,0],totn=2,row=False,entryWidth=8,labelWidth=8): 14 | self.frm_base=frm_base 15 | self.totn=len(init_data) 16 | self.row=row 17 | self.entryWidth=entryWidth 18 | self.labelWidth=labelWidth 19 | self.loadlabel(frm_base,init_notes) 20 | self.loadentries(frm_base,init_data) 21 | 22 | 23 | 24 | def loadlabel(self,frm_base,init_notes): 25 | self.label_list=[] 26 | for i in range(self.totn): 27 | label=Label(frm_base,text=init_notes[i]) 28 | self.label_list.append(label) 29 | 30 | if self.row: 31 | for i in range(self.totn): 32 | self.label_list[i].grid(row=0,column=2*i) 33 | #self.label_list[i+1].grid(row=0,column=3*i+2) 34 | else: 35 | for i in range(self.totn): 36 | self.label_list[i].grid(row=i,column=0) 37 | #self.label_list[2*i+1].grid(row=i,column=2) 38 | 39 | 40 | def loadentries(self,frm_base,init_data): 41 | self.entry_list=[] 42 | for i in range(self.totn): 43 | entry=Entry(frm_base,width=self.entryWidth) 44 | entry.insert(0,init_data[i]) 45 | self.entry_list.append(entry) 46 | 47 | if self.row: 48 | for i in range(self.totn): 49 | self.entry_list[i].grid(row=0,column=2*i+1) 50 | 51 | else: 52 | for i in range(self.totn): 53 | self.entry_list[i].grid(row=i,column=1) 54 | 55 | def setValue(self,data=[1,600]): 56 | #print data 57 | for i in range(self.totn): 58 | self.entry_list[i].delete(0,END) 59 | self.entry_list[i].insert(0,data[i]) 60 | 61 | def report(self,strrep=False): 62 | self.data_list=[] 63 | if strrep: 64 | for ele in self.entry_list: 65 | value=ele.get() 66 | #value=value if value else '0' 67 | self.data_list.append(value) 68 | else: 69 | for ele in self.entry_list: 70 | value=ele.get() 71 | self.data_list.append(float(value)) 72 | return self.data_list 73 | 74 | class InfoList: 75 | 76 | def __init__(self,baseFrame, selectEvent, dataFormat, initialInfo=[],width=30,height=5): 77 | self.infoData=initialInfo 78 | self.dataFormat=dataFormat 79 | self.infoList=Listbox(baseFrame,width=width,height=height,listvariable=StringVar(value=[ele[0] for ele in self.infoData])) 80 | self.infoList.bind('<>',selectEvent) 81 | self.infoList.grid(row=0,column=0) 82 | 83 | self.scrollbar=Scrollbar(baseFrame,orient=VERTICAL, command=self.infoList.yview) 84 | self.scrollbar.grid(row=0,column=1,sticky=(N,S)) 85 | self.infoList['yscrollcommand']=self.scrollbar.set 86 | 87 | self.updateInfo(self.infoData) 88 | 89 | def updateInfo(self,infoData=[]): 90 | self.infoList.delete(0,len(self.infoData)-1) 91 | self.infoData=infoData 92 | for iinfo, info in enumerate(self.infoData): 93 | info[0]=iinfo 94 | self.infoList.insert(iinfo,self.dataFormat(info)) 95 | for i in range(0,len(self.infoData),2): 96 | self.infoList.itemconfigure(i, background='#f0f0ff') 97 | 98 | def report(self): 99 | idxs = self.infoList.curselection() 100 | if len(idxs)==1: 101 | return self.infoData[idxs[0]] 102 | return [] -------------------------------------------------------------------------------- /mcsolver/win.py: -------------------------------------------------------------------------------- 1 | from tkinter import Tk 2 | from multiprocessing import Pool, freeze_support 3 | import numpy as np 4 | import time 5 | 6 | try: 7 | from . import guiMain as gui 8 | from . import Lattice as lat 9 | from . import mcMain as mc 10 | from . import fileio as io 11 | except: 12 | import guiMain as gui 13 | import Lattice as lat 14 | import mcMain as mc 15 | import fileio as io 16 | 17 | global path, settingFileVersion 18 | libPool=[None,None,None] 19 | settingFileVersion=3.0 20 | 21 | def startMC(param): # start MC for Ising model 22 | # unzip all global parameters for every processing 23 | ID, T, bondList,LMatrix,pos,S,DList,h,nsweep,nthermal,ninterval,Lx,Ly,Lz,algorithm,GcOrb,orbGroupList,groupInSC,dipoleAlpha,spinFrame=param 24 | mcslave=mc.MC(ID,LMatrix,pos=pos,S=S,D=DList,bondList=bondList,T=T,Lx=Lx,Ly=Ly,Lz=Lz,ki_s=GcOrb[0][0],ki_t=GcOrb[0][1],ki_overLat=GcOrb[1],orbGroupList=orbGroupList,groupInSC=groupInSC,h=h,dipoleAlpha=dipoleAlpha,spinFrame=spinFrame) 25 | spin_i, spin_j, spin_ij, autoCorr, E, E2, U4=mcslave.mainLoopViaCLib(nsweep=nsweep,nthermal=nthermal,ninterval=ninterval,algo=algorithm) 26 | #mData=abs(mData)/Lx/Ly/Lz 27 | #eData/=(Lx*Ly*Lz) 28 | #print("=",np.mean(corr)) 29 | return ID, T, h, spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, mcslave.totOrbs 30 | 31 | def startMCForOn(param): # start MC for O(n) model 32 | # unzip all global parameters for every processing 33 | ID, T, bondList,LMatrix,pos,S,DList,h,nsweep,nthermal,ninterval,Lx,Ly,Lz,algorithm,On,GcOrb,orbGroupList,groupInSC,dipoleAlpha,spinFrame,localCircuit=param 34 | mcslave=mc.MC(ID,LMatrix,pos=pos,S=S,D=DList,bondList=bondList,T=T,Lx=Lx,Ly=Ly,Lz=Lz,ki_s=GcOrb[0][0],ki_t=GcOrb[0][1],ki_overLat=GcOrb[1],orbGroupList=orbGroupList,groupInSC=groupInSC,h=h,dipoleAlpha=dipoleAlpha,On=On,spinFrame=spinFrame,localCircuitList=localCircuit) 35 | spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, topologicalQ = mcslave.mainLoopViaCLib_On(nsweep=nsweep,nthermal=nthermal,ninterval=ninterval,algo=algorithm,On=On) 36 | #mData=abs(mData)/Lx/Ly/Lz 37 | #eData/=(Lx*Ly*Lz) 38 | return ID, T, h, spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, topologicalQ, mcslave.totOrbs 39 | 40 | def startSimulation(updateGUI=True, rpath=''): 41 | time0=time.time() 42 | # clean possible existed files 43 | with open('./out','w') as fout: 44 | fout.write('#T #H\n') 45 | with open('./spinDotSpin.txt','w') as fout: 46 | fout.write('#T #H\n') 47 | 48 | if updateGUI: 49 | gui.submitBtn.config(state='disabled') 50 | io.collectParam() 51 | else: 52 | if not io.loadParam(updateGUI=False, rpath=rpath): 53 | 'Error: win::startSimulation load file failed. stop this function.' 54 | return 55 | 56 | TList=np.linspace(io.T0,io.T1,io.nT) 57 | HList=np.linspace(io.H0,io.H1,io.nH) 58 | bondList=[lat.Bond(bond_data[0],bond_data[1], # source and target 59 | np.array([int(x) for x in bond_data[2]]), # over lat. 60 | bond_data[3],bond_data[4],bond_data[5], # strength Jxx, Jyy, Jzz 61 | bond_data[6],bond_data[7],bond_data[8], # strength Jxy, Jxz, Jyz 62 | bond_data[9],bond_data[10],bond_data[11], # strength Jyx, Jzx, Jzy 63 | True if io.modelType!='Ising' else False) # On 64 | for bond_data in io.bondList] # ergodic 65 | LMatrix=np.array(io.LMatrix) 66 | pos=np.array(io.pos) 67 | 68 | if(io.modelType=='Ising'): 69 | if io.algorithm!='Metropolis' and io.algorithm!='Wolff': 70 | print('For now, only Metropolis and Wolff algorithm is supported for Ising model') 71 | if updateGUI: gui.submitBtn.config(state='normal') 72 | return 73 | 74 | paramPack=[] 75 | for iH, H in enumerate(HList): 76 | for iT, T in enumerate(TList): 77 | paramPack.append([iH*len(TList)+iT,T,bondList,LMatrix,pos,io.S,io.DList,H,io.nsweep,io.nthermal,io.ninterval,io.LPack[0],io.LPack[1],io.LPack[2],io.algorithm, 78 | io.GcOrb,io.orbGroupList,io.groupInSC,io.dipoleAlpha,io.spinFrame]) 79 | 80 | TResult=[];HResult=[];SpinIResult=[];SpinJResult=[];susResult=[];energyResult=[];capaResult=[];u4Result=[];QResult=[];autoCorrResult=[] 81 | while(True): # using pump strategy to reduce the costs of RAM 82 | if len(paramPack)==0: 83 | break 84 | # pump tasks 85 | paramPack_tmp=[] 86 | for index in range(io.ncores): 87 | paramPack_tmp.append(paramPack.pop(0)) 88 | if len(paramPack)==0: 89 | break 90 | pool=Pool(processes=io.ncores) 91 | for result in pool.imap_unordered(startMC,paramPack_tmp): 92 | ID, T, h, spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, N=result 93 | TResult.append(T) 94 | HResult.append(h) 95 | SpinIResult.append(spin_i) 96 | SpinJResult.append(spin_j) 97 | susResult.append((spin_ij-spin_i*spin_j)/T) 98 | QResult.append(0.) 99 | autoCorrResult.append(autoCorr) 100 | energyResult.append(E) 101 | capaResult.append((E2-E*E)/T**2*N) 102 | u4Result.append(U4) 103 | pool.close() 104 | if updateGUI: gui.updateResultViewer(TList=TResult if io.xAxisType=='T' else HResult, magList=[(si+sj)/2 for si,sj in zip(SpinIResult,SpinJResult)], susList=capaResult) 105 | # continuous model settings 106 | elif(io.modelType=='XY' or io.modelType=='Heisenberg'): 107 | for bond in bondList: 108 | bond.On=True # switch on the vector type bonding 109 | if io.algorithm!='Metropolis' and io.algorithm!='Wolff': 110 | print('For now, only Metropolis and Wolff algorithm is supported for O(n) model') 111 | if updateGUI: gui.submitBtn.config(state='normal') 112 | return 113 | 114 | On=2 if io.modelType=='XY' else 3 115 | paramPack=[] 116 | for iH, H in enumerate(HList): 117 | for iT, T in enumerate(TList): 118 | paramPack.append([iH*len(TList)+iT,T,bondList,LMatrix,pos,io.S,io.DList,H,io.nsweep,io.nthermal,io.ninterval,io.LPack[0],io.LPack[1],io.LPack[2],io.algorithm,On, 119 | io.GcOrb,io.orbGroupList,io.groupInSC,io.dipoleAlpha,io.spinFrame,io.localCircuitList]) 120 | 121 | TResult=[];HResult=[];SpinIResult=[];SpinJResult=[];susResult=[];energyResult=[];capaResult=[];u4Result=[];QResult=[];autoCorrResult=[] 122 | while(True): # using pump strategy to reduce the costs of RAM 123 | if len(paramPack)==0: 124 | break 125 | # pump tasks 126 | paramPack_tmp=[] 127 | for index in range(io.ncores): 128 | paramPack_tmp.append(paramPack.pop(0)) 129 | if len(paramPack)==0: 130 | break 131 | pool=Pool(processes=io.ncores) 132 | for result in pool.imap_unordered(startMCForOn,paramPack_tmp): 133 | ID, T, h, spin_i, spin_j, spin_ij, autoCorr, E, E2, U4, topologicalQ, N =result 134 | TResult.append(T) 135 | HResult.append(h) 136 | SpinIResult.append(np.sqrt(sum(spin_i*spin_i))) 137 | SpinJResult.append(np.sqrt(sum(spin_j*spin_j))) 138 | susResult.append((spin_ij-np.dot(spin_i,spin_j))/T) 139 | QResult.append(topologicalQ) 140 | autoCorrResult.append(autoCorr) 141 | energyResult.append(E) 142 | capaResult.append((E2-E*E)/T**2*N) 143 | u4Result.append(U4) 144 | pool.close() 145 | if updateGUI: gui.updateResultViewer(TList=TResult if io.xAxisType=='T' else HResult, magList=SpinIResult, susList=capaResult) 146 | else: 147 | print("for now only Ising, XY and Heisenberg model is supported") 148 | if updateGUI: gui.submitBtn.config(state='normal') 149 | return 150 | 151 | # writting result file 152 | f=open('./result.txt','w') 153 | f.write('#Temp #Field # # #Susc #Energy(K) #Capacity(K/K) #Topo.Q #U4 #Auto-corr. \n') 154 | for T, H, si, sj, sus, energy, capa, topo_q, u4, autoCorr in zip(TResult, HResult, SpinIResult, SpinJResult, susResult, energyResult, capaResult, QResult, u4Result, autoCorrResult): 155 | f.write('%15.6E%15.6E%15.6E%15.6E%15.6E%15.6E%15.6E%15.6E%15.6E%15.6E\n'%(T, H, si, sj, sus, energy, capa, topo_q, u4, autoCorr)) 156 | f.close() 157 | if updateGUI: gui.submitBtn.config(state='normal') 158 | print("time elapsed %.3f s"%(time.time()-time0)) 159 | return 160 | 161 | if __name__ == '__main__': # crucial for multiprocessing in Windows 162 | freeze_support() 163 | app=Tk(className='mc solver v3.0') 164 | gui.loadEverything(app,startSimulation) 165 | app.mainloop() -------------------------------------------------------------------------------- /samples/CrI3With2NNCoupling: -------------------------------------------------------------------------------- 1 | This is mcsolver's save file, version: 3.0 2 | Lattice: 3 | 1.000000000 0.000000000 0.000000000 4 | -0.500000000 0.866025404 0.000000000 5 | 0.000000000 0.000000000 1.000000000 6 | Supercell used in MC simulations: 7 | 32 32 1 8 | Orbitals in cell: 9 | 2 10 | Positions, initial spin states and onsite-anisotropy of every orbital: 11 | orb 0: type 0 spin 1.500000000 pos [0.333333333 0.666666667 0.000000000] Dz -3.12276251875 Dx 0.000000000 Dy 0.000000000 12 | orb 1: type 0 spin 1.500000000 pos [0.666666667 0.333333333 0.000000000] Dz -3.12276251875 Dx 0.000000000 Dy 0.000000000 13 | Bonds: 14 | 12 15 | id, source, target, overLat, Jz, Jx, Jy of each bond: 16 | bond 0: Jz -19.49182553875 Jx -18.47237479 Jy -18.47237479 0 0 0 0 0 0 orb 0 to orb 1 over [0 0 0] 17 | bond 1: Jz -19.49182553875 Jx -18.47237479 Jy -18.47237479 0 0 0 0 0 0 orb 0 to orb 1 over [-1 0 0] 18 | bond 2: Jz -19.49182553875 Jx -18.47237479 Jy -18.47237479 0 0 0 0 0 0 orb 0 to orb 1 over [0 1 0] 19 | bond 3: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 0 to orb 0 over [1 0 0] 20 | bond 4: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 0 to orb 0 over [1 1 0] 21 | bond 5: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 0 to orb 0 over [0 1 0] 22 | bond 6: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 1 to orb 1 over [1 0 0] 23 | bond 7: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 1 to orb 1 over [1 1 0] 24 | bond 8: Jz -5.7387258225 Jx -6.1364053675 Jy -6.1364053675 0 0 0 0 0 0 orb 1 to orb 1 over [0 1 0] 25 | bond 9: Jz 4.57737083 Jx 4.474132450625 Jy 4.474132450625 0 0 0 0 0 0 orb 0 to orb 1 over [-1 1 0] 26 | bond 10: Jz 4.57737083 Jx 4.474132450625 Jy 4.474132450625 0 0 0 0 0 0 orb 0 to orb 1 over [1 1 0] 27 | bond 11: Jz 4.57737083 Jx 4.474132450625 Jy 4.474132450625 0 0 0 0 0 0 orb 0 to orb 1 over [-1 -1 0] 28 | Dipole long range correction: 29 | alpha 0.0 30 | Temperature scanning region: 31 | Tmin 30.000000000 Tmax 50.000000000 nT 21 32 | Field scanning region (in unit 1.48872 T, only if Kelvin and uB is used for energy and spin): 33 | Hmin 0 Hmax 0.1 nH 1 34 | Measurement: 35 | measure the correlation function between orb0 and orb0 over [0 0 0] 36 | OrbGroup: 2 37 | Supergroup 38 | group0 orb0-orb0 39 | group1 orb1-orb1 40 | >>> Topological section <<< 41 | LocalCircuit per cell: 0 (set to 0 to skip the calc. for topo. Q) 42 | >>> End of Topological section <<< 43 | Sweeps for thermalization and statistics, and relaxiation step for each sweep: 44 | 80000 640000 0 45 | Model type: 46 | Heisenberg 47 | Algorithm: 48 | Metropolis 49 | XAxis type: 50 | T 51 | Distribution output frame: 0 52 | Ncores: 53 | 6 54 | -------------------------------------------------------------------------------- /samples/SkyrmionOnHexLattice: -------------------------------------------------------------------------------- 1 | This is mcsolver's save file, version: 3.0 2 | Lattice: 3 | 1 0 0 4 | -0.5 0.8660254 0 5 | 0 0 1 6 | Supercell used in MC simulations: 7 | 16 16 1 8 | Orbitals in cell: 9 | 2 10 | Positions, initial spin states and onsite-anisotropy of every orbital: 11 | orb 0: type 0 spin 1 pos [0.3333333 0.6666667 0] Dx 0 Dy 0 Dz -0.1 h 0 12 | orb 1: type 0 spin 1 pos [0.6666667 0.3333333 0] Dx 0 Dy 0 Dz -0.1 h 0 13 | Bonds: 14 | 3 15 | id, source, target, overLat, exchange matrix elements of each bond: 16 | bond 0: Jx -1 Jy -1 Jz -1 Jxy 0 Jxz -0.8660254 Jyz 0.5 Jyx 0 Jzx 0.8660254 Jzy -0.5 orb 0 to orb 1 over [ 0 0 0] 17 | bond 1: Jx -1 Jy -1 Jz -1 Jxy 0 Jxz 0 Jyz -1 Jyx 0 Jzx 0 Jzy 1 orb 0 to orb 1 over [ 0 1 0] 18 | bond 2: Jx -1 Jy -1 Jz -1 Jxy 0 Jxz 0.8660254 Jyz 0.5 Jyx 0 Jzx -0.8660254 Jzy -0.5 orb 0 to orb 1 over [-1 0 0] 19 | Temperature scanning region: 20 | Tmin 0.3 Tmax 0.3 nT 1 21 | Field scanning region (in unit 1.48872 T, only if Kelvin and uB is used for energy and spin): 22 | Hmin 0 Hmax 0.7 nH 16 23 | Dipole long-range coupling: 24 | alpha 0 25 | Measurement: 26 | measure the correlation function between orb0 and orb0 over [0 0 0] 27 | Supergroup 28 | OrbGroup:1 29 | Supergroup 30 | group0 orb0-orb0 31 | >>> Topological section <<< 32 | LocalCircuit per cell: 4 (set to 0 to skip the calc. for topo. Q) 33 | Circuit 0 enclosed by orb 1 [0 0 0], orb 1 [1 0 0], and orb 0 [1 0 0] 34 | Circuit 1 enclosed by orb 1 [1 0 0], orb 1 [1 1 0], and orb 0 [1 0 0] 35 | Circuit 2 enclosed by orb 1 [0 0 0], orb 0 [1 0 0], and orb 1 [1 1 0] 36 | Circuit 3 enclosed by orb 1 [0 0 0], orb 1 [1 1 0], and orb 1 [0 1 0] 37 | >>> End of Topological section <<< 38 | Distribution output frame: 1 39 | Sweeps for thermalization and statistics, and relaxiation step for each sweep: 40 | 40000 80000 0 41 | XAxis type: 42 | H 43 | Model type: 44 | Heisenberg 45 | Algorithm: 46 | Metropolis 47 | Ncores: 48 | 16 49 | -------------------------------------------------------------------------------- /samples/SkyrmionOnSqaureLattice: -------------------------------------------------------------------------------- 1 | This is mcsolver's save file, version: 3.0 2 | Lattice: 3 | 1 0 0 4 | 0 1 0 5 | 0 0 1 6 | Supercell used in MC simulations: 7 | 16 16 1 8 | Orbitals in cell: 9 | 1 10 | Positions, initial spin states and onsite-anisotropy of every orbital: 11 | orb 0: type 0 spin 1 pos [0 0 0] Dx 0 Dy 0 Dz -0.1 h 0 12 | Bonds: 13 | 2 14 | id, source, target, overLat, exchange matrix elements of each bond: 15 | bond 0: Jx -1 Jy -1 Jz -1 Jxy 0 Jxz 1 Jyz 0 Jyx 0 Jzx -1 Jzy 0 orb 0 to orb 0 over [1 0 0] 16 | bond 1: Jx -1 Jy -1 Jz -1 Jxy 0 Jxz 0 Jyz 1 Jyx 0 Jzx 0 Jzy -1 orb 0 to orb 0 over [0 1 0] 17 | Temperature scanning region: 18 | Tmin 0.3 Tmax 0.3 nT 1 19 | Field scanning region (in unit 1.48872 T, only if Kelvin and uB is used for energy and spin): 20 | Hmin 0 Hmax 0.7 nH 8 21 | Dipole long-range coupling: 22 | alpha 0 23 | Measurement: 24 | measure the correlation function between orb0 and orb0 over [0 0 0] 25 | Supergroup 26 | OrbGroup:1 27 | Supergroup 28 | group0 orb0-orb0 29 | >>> Topological section <<< 30 | LocalCircuit per cell: 2 (set to 0 to skip the calc. for topo. Q) 31 | Circuit 0 enclosed by orb 0 [0 0 0], orb 0 [1 0 0], and orb 0 [1 1 0] 32 | Circuit 1 enclosed by orb 0 [0 0 0], orb 0 [1 1 0], and orb 0 [0 1 0] 33 | >>> End of Topological section <<< 34 | Distribution output frame: 0 35 | Sweeps for thermalization and statistics, and relaxiation step for each sweep: 36 | 40000 80000 0 37 | XAxis type: 38 | H 39 | Model type: 40 | Heisenberg 41 | Algorithm: 42 | Metropolis 43 | Ncores: 44 | 4 45 | -------------------------------------------------------------------------------- /samples/Square_XY_isotropic: -------------------------------------------------------------------------------- 1 | This is mcsolver's save file, version: 3.0 2 | Lattice: 3 | 1.000000000 0.000000000 0.000000000 4 | 0.000000000 1.000000000 0.000000000 5 | 0.000000000 0.000000000 1.000000000 6 | Supercell used in MC simulations: 7 | 16 16 1 8 | Orbitals in cell: 9 | 1 10 | Positions, initial spin states and onsite-anisotropy of every orbital: 11 | orb 0: type 0 spin 1.000000000 pos [0.000000000 0.000000000 0.000000000] Dx 0.000000000 Dy 0.000000000 Dz 0.000000000 h 0.000000000 12 | Bonds: 13 | 2 14 | id, source, target, overLat, exchange matrix elements of each bond: 15 | bond 0: Jx -1.000000000 Jy -1.000000000 Jz -1.000000000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [1 0 0] 16 | bond 1: Jx -1.000000000 Jy -1.000000000 Jz -1.000000000 Jxy 0.000000000 Jxz 0.000000000 Jyz 0.000000000 Jyx 0.000000000 Jzx 0.000000000 Jzy 0.000000000 orb 0 to orb 0 over [0 1 0] 17 | Temperature scanning region: 18 | Tmin 0.900000000 Tmax 1.200000000 nT 8 19 | Field scanning region (in unit 1.48872 T, only if Kelvin and uB is used for energy and spin): 20 | Hmin 0.000000000 Hmax 0.100000000 nH 1 21 | Dipole long-range coupling: 22 | alpha 0.000000 23 | Measurement: 24 | measure the correlation function between orb0 and orb0 over [0 0 0] 25 | Supergroup 26 | OrbGroup:1 27 | Supergroup 28 | group0 orb0-orb0 29 | >>> Topological section <<< 30 | LocalCircuit per cell: 0 (set to 0 to skip the calc. for topo. Q) 31 | >>> End of Topological section <<< 32 | Distribution output frame: 0 33 | Sweeps for thermalization and statistics, and relaxiation step for each sweep: 34 | 40000 80000 1 35 | XAxis type: 36 | T 37 | Model type: 38 | XY 39 | Algorithm: 40 | Wolff 41 | Ncores: 42 | 4 43 | -------------------------------------------------------------------------------- /samples/sim_XYmodel_under_Linux.py: -------------------------------------------------------------------------------- 1 | import mcsolver 2 | 3 | mcsolver.loadMC("./Square_XY_isotropic") 4 | -------------------------------------------------------------------------------- /samples/sim_XYmodel_under_Windows.py: -------------------------------------------------------------------------------- 1 | from multiprocessing import freeze_support 2 | import mcsolver 3 | 4 | if __name__ == '__main__': # crucial for multiprocessing in Windows 5 | freeze_support() 6 | mcsolver.loadMC("./Square_XY_isotropic") -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | # -*- coding: UTF-8 -*- 2 | from distutils.core import setup, Extension 3 | 4 | with open("README.md", "r") as fh: 5 | long_description = fh.read() 6 | 7 | isingLib=Extension('isinglib',sources=['./mcsolver/isingLib.c'],language='c',extra_compile_args=['-std=c99','-fPIC','-O3']) 8 | xyLib=Extension('xylib',sources=['./mcsolver/xyLib.c'],language='c',extra_compile_args=['-std=c99','-fPIC','-O3']) 9 | heisenbergLib=Extension('heisenberglib',sources=['./mcsolver/heisenbergLib.c'],language='c',extra_compile_args=['-std=c99','-fPIC','-O3']) 10 | 11 | setup( 12 | name="mcsolver", 13 | version="3.1.1", 14 | author="Liang Liu", 15 | author_email="liangliu@main.sdu.edu.cn", 16 | description="A user friendly program to do Monte Carlo sims for magnetic systems", 17 | long_description=long_description, 18 | #long_description_content_type="text/markdown", 19 | url="https://github.com/golddoushi/mcsolver", 20 | packages=["mcsolver"], 21 | #include_package_data=True, 22 | ext_package="mcsolver.lib", 23 | ext_modules=[isingLib,xyLib,heisenbergLib], 24 | classifiers=[ 25 | "Programming Language :: Python :: 3", 26 | "License :: OSI Approved :: GNU General Public License v3 (GPLv3)", 27 | "Development Status :: 4 - Beta", 28 | "Operating System :: OS Independent", 29 | "Topic :: Scientific/Engineering :: Physics", 30 | "Topic :: Scientific/Engineering :: Visualization", 31 | ], 32 | ) --------------------------------------------------------------------------------