├── CONTRIBUTING.md ├── LICENSE ├── README.md ├── cog.yaml ├── colab_inference_demo.ipynb ├── maxim ├── __init__.py ├── images │ ├── Deblurring │ │ └── input │ │ │ ├── 109fromGOPR1096.MP4.png │ │ │ ├── 110fromGOPR1087.MP4.png │ │ │ ├── 1fromGOPR0950.png │ │ │ └── 1fromGOPR1096.MP4.png │ ├── Dehazing │ │ └── input │ │ │ ├── 0003_0.8_0.2.png │ │ │ ├── 0010_0.95_0.16.png │ │ │ ├── 0014_0.8_0.12.png │ │ │ ├── 0048_0.9_0.2.png │ │ │ ├── 1440_10.png │ │ │ └── 1444_10.png │ ├── Denoising │ │ └── input │ │ │ ├── 0003_30.png │ │ │ ├── 0011_23.png │ │ │ ├── 0013_19.png │ │ │ └── 0039_04.png │ ├── Deraining │ │ └── input │ │ │ ├── 0.jpg │ │ │ ├── 1.png │ │ │ ├── 15.png │ │ │ └── 55.png │ ├── Enhancement │ │ └── input │ │ │ ├── 1.png │ │ │ ├── 111.png │ │ │ ├── 748.png │ │ │ └── a4541-DSC_0040-2.png │ └── overview.png ├── models │ ├── __init__.py │ └── maxim.py ├── predict.py ├── run_eval.py └── test_maxim.py ├── requirements.txt └── setup.py /CONTRIBUTING.md: -------------------------------------------------------------------------------- 1 | # How to Contribute 2 | 3 | We'd love to accept your patches and contributions to this project. There are 4 | just a few small guidelines you need to follow. 5 | 6 | ## Contributor License Agreement 7 | 8 | Contributions to this project must be accompanied by a Contributor License 9 | Agreement (CLA). You (or your employer) retain the copyright to your 10 | contribution; this simply gives us permission to use and redistribute your 11 | contributions as part of the project. Head over to 12 | to see your current agreements on file or 13 | to sign a new one. 14 | 15 | You generally only need to submit a CLA once, so if you've already submitted one 16 | (even if it was for a different project), you probably don't need to do it 17 | again. 18 | 19 | ## Code Reviews 20 | 21 | All submissions, including submissions by project members, require review. We 22 | use GitHub pull requests for this purpose. Consult 23 | [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more 24 | information on using pull requests. 25 | 26 | ## Community Guidelines 27 | 28 | This project follows 29 | [Google's Open Source Community 30 | Guidelines](https://opensource.google/conduct/). 31 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | 2 | Apache License 3 | Version 2.0, January 2004 4 | http://www.apache.org/licenses/ 5 | 6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 7 | 8 | 1. Definitions. 9 | 10 | "License" shall mean the terms and conditions for use, reproduction, 11 | and distribution as defined by Sections 1 through 9 of this document. 12 | 13 | "Licensor" shall mean the copyright owner or entity authorized by 14 | the copyright owner that is granting the License. 15 | 16 | "Legal Entity" shall mean the union of the acting entity and all 17 | other entities that control, are controlled by, or are under common 18 | control with that entity. For the purposes of this definition, 19 | "control" means (i) the power, direct or indirect, to cause the 20 | direction or management of such entity, whether by contract or 21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 22 | outstanding shares, or (iii) beneficial ownership of such entity. 23 | 24 | "You" (or "Your") shall mean an individual or Legal Entity 25 | exercising permissions granted by this License. 26 | 27 | "Source" form shall mean the preferred form for making modifications, 28 | including but not limited to software source code, documentation 29 | source, and configuration files. 30 | 31 | "Object" form shall mean any form resulting from mechanical 32 | transformation or translation of a Source form, including but 33 | not limited to compiled object code, generated documentation, 34 | and conversions to other media types. 35 | 36 | "Work" shall mean the work of authorship, whether in Source or 37 | Object form, made available under the License, as indicated by a 38 | copyright notice that is included in or attached to the work 39 | (an example is provided in the Appendix below). 40 | 41 | "Derivative Works" shall mean any work, whether in Source or Object 42 | form, that is based on (or derived from) the Work and for which the 43 | editorial revisions, annotations, elaborations, or other modifications 44 | represent, as a whole, an original work of authorship. For the purposes 45 | of this License, Derivative Works shall not include works that remain 46 | separable from, or merely link (or bind by name) to the interfaces of, 47 | the Work and Derivative Works thereof. 48 | 49 | "Contribution" shall mean any work of authorship, including 50 | the original version of the Work and any modifications or additions 51 | to that Work or Derivative Works thereof, that is intentionally 52 | submitted to Licensor for inclusion in the Work by the copyright owner 53 | or by an individual or Legal Entity authorized to submit on behalf of 54 | the copyright owner. For the purposes of this definition, "submitted" 55 | means any form of electronic, verbal, or written communication sent 56 | to the Licensor or its representatives, including but not limited to 57 | communication on electronic mailing lists, source code control systems, 58 | and issue tracking systems that are managed by, or on behalf of, the 59 | Licensor for the purpose of discussing and improving the Work, but 60 | excluding communication that is conspicuously marked or otherwise 61 | designated in writing by the copyright owner as "Not a Contribution." 62 | 63 | "Contributor" shall mean Licensor and any individual or Legal Entity 64 | on behalf of whom a Contribution has been received by Licensor and 65 | subsequently incorporated within the Work. 66 | 67 | 2. Grant of Copyright License. Subject to the terms and conditions of 68 | this License, each Contributor hereby grants to You a perpetual, 69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 70 | copyright license to reproduce, prepare Derivative Works of, 71 | publicly display, publicly perform, sublicense, and distribute the 72 | Work and such Derivative Works in Source or Object form. 73 | 74 | 3. Grant of Patent License. Subject to the terms and conditions of 75 | this License, each Contributor hereby grants to You a perpetual, 76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 77 | (except as stated in this section) patent license to make, have made, 78 | use, offer to sell, sell, import, and otherwise transfer the Work, 79 | where such license applies only to those patent claims licensable 80 | by such Contributor that are necessarily infringed by their 81 | Contribution(s) alone or by combination of their Contribution(s) 82 | with the Work to which such Contribution(s) was submitted. If You 83 | institute patent litigation against any entity (including a 84 | cross-claim or counterclaim in a lawsuit) alleging that the Work 85 | or a Contribution incorporated within the Work constitutes direct 86 | or contributory patent infringement, then any patent licenses 87 | granted to You under this License for that Work shall terminate 88 | as of the date such litigation is filed. 89 | 90 | 4. Redistribution. You may reproduce and distribute copies of the 91 | Work or Derivative Works thereof in any medium, with or without 92 | modifications, and in Source or Object form, provided that You 93 | meet the following conditions: 94 | 95 | (a) You must give any other recipients of the Work or 96 | Derivative Works a copy of this License; and 97 | 98 | (b) You must cause any modified files to carry prominent notices 99 | stating that You changed the files; and 100 | 101 | (c) You must retain, in the Source form of any Derivative Works 102 | that You distribute, all copyright, patent, trademark, and 103 | attribution notices from the Source form of the Work, 104 | excluding those notices that do not pertain to any part of 105 | the Derivative Works; and 106 | 107 | (d) If the Work includes a "NOTICE" text file as part of its 108 | distribution, then any Derivative Works that You distribute must 109 | include a readable copy of the attribution notices contained 110 | within such NOTICE file, excluding those notices that do not 111 | pertain to any part of the Derivative Works, in at least one 112 | of the following places: within a NOTICE text file distributed 113 | as part of the Derivative Works; within the Source form or 114 | documentation, if provided along with the Derivative Works; or, 115 | within a display generated by the Derivative Works, if and 116 | wherever such third-party notices normally appear. The contents 117 | of the NOTICE file are for informational purposes only and 118 | do not modify the License. You may add Your own attribution 119 | notices within Derivative Works that You distribute, alongside 120 | or as an addendum to the NOTICE text from the Work, provided 121 | that such additional attribution notices cannot be construed 122 | as modifying the License. 123 | 124 | You may add Your own copyright statement to Your modifications and 125 | may provide additional or different license terms and conditions 126 | for use, reproduction, or distribution of Your modifications, or 127 | for any such Derivative Works as a whole, provided Your use, 128 | reproduction, and distribution of the Work otherwise complies with 129 | the conditions stated in this License. 130 | 131 | 5. Submission of Contributions. Unless You explicitly state otherwise, 132 | any Contribution intentionally submitted for inclusion in the Work 133 | by You to the Licensor shall be under the terms and conditions of 134 | this License, without any additional terms or conditions. 135 | Notwithstanding the above, nothing herein shall supersede or modify 136 | the terms of any separate license agreement you may have executed 137 | with Licensor regarding such Contributions. 138 | 139 | 6. Trademarks. This License does not grant permission to use the trade 140 | names, trademarks, service marks, or product names of the Licensor, 141 | except as required for reasonable and customary use in describing the 142 | origin of the Work and reproducing the content of the NOTICE file. 143 | 144 | 7. Disclaimer of Warranty. Unless required by applicable law or 145 | agreed to in writing, Licensor provides the Work (and each 146 | Contributor provides its Contributions) on an "AS IS" BASIS, 147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 148 | implied, including, without limitation, any warranties or conditions 149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 150 | PARTICULAR PURPOSE. You are solely responsible for determining the 151 | appropriateness of using or redistributing the Work and assume any 152 | risks associated with Your exercise of permissions under this License. 153 | 154 | 8. Limitation of Liability. In no event and under no legal theory, 155 | whether in tort (including negligence), contract, or otherwise, 156 | unless required by applicable law (such as deliberate and grossly 157 | negligent acts) or agreed to in writing, shall any Contributor be 158 | liable to You for damages, including any direct, indirect, special, 159 | incidental, or consequential damages of any character arising as a 160 | result of this License or out of the use or inability to use the 161 | Work (including but not limited to damages for loss of goodwill, 162 | work stoppage, computer failure or malfunction, or any and all 163 | other commercial damages or losses), even if such Contributor 164 | has been advised of the possibility of such damages. 165 | 166 | 9. Accepting Warranty or Additional Liability. While redistributing 167 | the Work or Derivative Works thereof, You may choose to offer, 168 | and charge a fee for, acceptance of support, warranty, indemnity, 169 | or other liability obligations and/or rights consistent with this 170 | License. However, in accepting such obligations, You may act only 171 | on Your own behalf and on Your sole responsibility, not on behalf 172 | of any other Contributor, and only if You agree to indemnify, 173 | defend, and hold each Contributor harmless for any liability 174 | incurred by, or claims asserted against, such Contributor by reason 175 | of your accepting any such warranty or additional liability. 176 | 177 | END OF TERMS AND CONDITIONS 178 | 179 | APPENDIX: How to apply the Apache License to your work. 180 | 181 | To apply the Apache License to your work, attach the following 182 | boilerplate notice, with the fields enclosed by brackets "[]" 183 | replaced with your own identifying information. (Don't include 184 | the brackets!) The text should be enclosed in the appropriate 185 | comment syntax for the file format. We also recommend that a 186 | file or class name and description of purpose be included on the 187 | same "printed page" as the copyright notice for easier 188 | identification within third-party archives. 189 | 190 | Copyright [yyyy] [name of copyright owner] 191 | 192 | Licensed under the Apache License, Version 2.0 (the "License"); 193 | you may not use this file except in compliance with the License. 194 | You may obtain a copy of the License at 195 | 196 | http://www.apache.org/licenses/LICENSE-2.0 197 | 198 | Unless required by applicable law or agreed to in writing, software 199 | distributed under the License is distributed on an "AS IS" BASIS, 200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 201 | See the License for the specific language governing permissions and 202 | limitations under the License. -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-hide-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-hide-trained-on-gopro?p=maxim-multi-axis-mlp-for-image-processing) 2 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-gopro)](https://paperswithcode.com/sota/deblurring-on-gopro?p=maxim-multi-axis-mlp-for-image-processing) 3 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-realblur-j-1)](https://paperswithcode.com/sota/deblurring-on-realblur-j-1?p=maxim-multi-axis-mlp-for-image-processing) 4 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-realblur-r)](https://paperswithcode.com/sota/deblurring-on-realblur-r?p=maxim-multi-axis-mlp-for-image-processing) 5 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-realblur-j-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-realblur-j-trained-on-gopro?p=maxim-multi-axis-mlp-for-image-processing) 6 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/deblurring-on-realblur-r-trained-on-gopro)](https://paperswithcode.com/sota/deblurring-on-realblur-r-trained-on-gopro?p=maxim-multi-axis-mlp-for-image-processing) 7 | 8 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/low-light-image-enhancement-on-lol)](https://paperswithcode.com/sota/low-light-image-enhancement-on-lol?p=maxim-multi-axis-mlp-for-image-processing) 9 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/photo-retouching-on-mit-adobe-5k)](https://paperswithcode.com/sota/photo-retouching-on-mit-adobe-5k?p=maxim-multi-axis-mlp-for-image-processing) 10 | 11 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/single-image-deraining-on-rain100h)](https://paperswithcode.com/sota/single-image-deraining-on-rain100h?p=maxim-multi-axis-mlp-for-image-processing) 12 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/single-image-deraining-on-rain100l)](https://paperswithcode.com/sota/single-image-deraining-on-rain100l?p=maxim-multi-axis-mlp-for-image-processing) 13 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/single-image-deraining-on-test100)](https://paperswithcode.com/sota/single-image-deraining-on-test100?p=maxim-multi-axis-mlp-for-image-processing) 14 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/single-image-deraining-on-test2800)](https://paperswithcode.com/sota/single-image-deraining-on-test2800?p=maxim-multi-axis-mlp-for-image-processing) 15 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/single-image-deraining-on-test1200)](https://paperswithcode.com/sota/single-image-deraining-on-test1200?p=maxim-multi-axis-mlp-for-image-processing) 16 | 17 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/image-denoising-on-sidd)](https://paperswithcode.com/sota/image-denoising-on-sidd?p=maxim-multi-axis-mlp-for-image-processing) 18 | [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/maxim-multi-axis-mlp-for-image-processing/image-denoising-on-dnd)](https://paperswithcode.com/sota/image-denoising-on-dnd?p=maxim-multi-axis-mlp-for-image-processing) 19 | 20 | # MAXIM: Multi-Axis MLP for Image Processing (CVPR 2022 Oral, Best Paper Nomination) 21 | 22 | [![Paper](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2201.02973) 23 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/google-research/maxim/blob/master/colab_inference_demo.ipynb) 24 | [![slides](https://img.shields.io/badge/Presentation-Slides-B762C1)](https://docs.google.com/presentation/d/1NKT0PZrpmsCZTdgvsZztfNUJJ9Bvlr1r/edit?usp=sharing&ouid=103274492054041370194&rtpof=true&sd=true) 25 | [![Poster](https://img.shields.io/badge/Poster-Slide-87CEEB)](https://docs.google.com/presentation/d/1fd73qn_8Ymc5okFttQ3vzQm1SABbIeoI/edit?usp=sharing&ouid=103274492054041370194&rtpof=true&sd=true) 26 | 27 | This repo hosts the official implementation of the MAXIM models: 28 | 29 | ["MAXIM: Multi-Axis MLP for Image Processing"](https://arxiv.org/abs/2201.02973). CVPR 2022 Oral.\ 30 | [Zhengzhong Tu](https://www.linkedin.com/in/vztu/), [Hossein Talebi](https://scholar.google.com/citations?hl=en&user=UOX9BigAAAAJ), [Han Zhang](https://sites.google.com/view/hanzhang), [Feng Yang](https://sites.google.com/view/feng-yang), [Peyman Milanfar](https://sites.google.com/view/milanfarhome/), [Alan Bovik](https://www.ece.utexas.edu/people/faculty/alan-bovik), and [Yinxiao Li](https://scholar.google.com/citations?user=kZsIU74AAAAJ&hl=en)\ 31 | Google Research, University of Texas at Austin 32 | 33 | *Disclaimer: This is not an officially supported Google product.* 34 | 35 | **News**: 36 | 37 | - Jan 8, 2023: Released a pytorch implementation. Check it out here: [maxim-pytorch](https://github.com/vztu/maxim-pytorch/tree/main/maxim_pytorch). 38 | - Oct 21, 2022: MAXIM models have been ported to TensorFlow by [@sayakpaul](https://github.com/sayakpaul). Check it out here: [maxim-tf](https://github.com/sayakpaul/maxim-tf). He also created a couple of Hugging Face Spaces to allow users to quickly try out the different models: 39 | * [Denoising](https://huggingface.co/spaces/sayakpaul/sidd-denoising-maxim) 40 | * [Low-light enhancement](https://huggingface.co/spaces/sayakpaul/lol-enhancement-maxim) 41 | * [Image retouching](https://huggingface.co/spaces/sayakpaul/fivek-retouching-maxim) 42 | * [Dehazing indoors](https://huggingface.co/spaces/sayakpaul/sots-indoor-dehazing-maxim) 43 | * [Dehazing outdoors](https://huggingface.co/spaces/sayakpaul/sots-outdoor-dehazing-maxim) 44 | * [Image deraining](https://huggingface.co/spaces/sayakpaul/rain13k-deraining-maxim) 45 | * [Image deblurring](https://huggingface.co/spaces/sayakpaul/gopro-deblurring-maxim) 46 | - Sep 8, 2022: our Google AI blog covering both [MaxViT](https://arxiv.org/abs/2204.01697) and [MAXIM](https://github.com/google-research/maxim) is [live](https://ai.googleblog.com/2022/09/a-multi-axis-approach-for-vision.html). 47 | - Apr 25, 2022: Added demos. 48 | - Colab demo by [@deshwalmahesh](https://github.com/deshwalmahesh) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/google-research/maxim/blob/master/colab_inference_demo.ipynb) 49 | - Replicate web demo [![Replicate](https://replicate.com/google-research/maxim/badge)](https://replicate.com/google-research/maxim). 50 | - Jun 22, 2022: MAXIM selected as 1 of the best paper nomination! 51 | - Mar 29, 2022: MAXIM selected for an oral presentation at CVPR 2022! 52 | - Mar 28, 2022: initial push to Github. 53 | - Mar 3, 2022: paper accepted to CVPR 2022! 54 | - Jan 9, 2022: initial uploads to [Arxiv](https://arxiv.org/abs/2201.02973) 55 | 56 | ## Quick Demos 57 | Try the web demo for Image Denoising, Deblurring, Deraining, Dehazing and Enhancement with customized input image here [![Replicate](https://replicate.com/google-research/maxim/badge)](https://replicate.com/google-research/maxim) 58 | 59 | Try the Colab here using [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/google-research/maxim/blob/master/colab_inference_demo.ipynb) 60 | 61 | 62 | ## Architecture 63 | 64 | ![Model overview](maxim/images/overview.png) 65 | 66 | ## Installation 67 | 68 | Install dependencies: 69 | 70 | ``` 71 | pip install -r requirements.txt 72 | ``` 73 | 74 | Setup project: 75 | 76 | ``` 77 | pip install . 78 | ``` 79 | 80 | ## Results and Pre-trained models 81 | 82 | We provide the pre-trained models and visual results. 83 | Please contact us if you have any questions or requests. 84 | 85 | | Task | Dataset | PSNR | SSIM | Model | #params | FLOPs | ckpt | outputs | 86 | |:---:|:---:|:---:|:---:| :---:|:---:|:---:|:---:|:---:| 87 | | Denoising | SIDD | 39.96 | 0.960 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Denoising/SIDD/) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Denoising/SIDD/) | 88 | | Denoising | DND | 39.84 | 0.954 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Denoising/SIDD/) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Denoising/DND/) | 89 | | Deblurring | GoPro | 32.86 | 0.961 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deblurring/GoPro) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Deblurring/GoPro/) | 90 | | Deblurring | HIDE | 32.83 | 0.956 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deblurring/GoPro) | images | 91 | | Deblurring | REDS | 28.93 | 0.865 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deblurring/REDS) | images | 92 | | Deblurring | RealBlur-R | 39.45 | 0.962 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deblurring/RealBlur_R) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Deblurring/RealBlur/) | 93 | | Deblurring | RealBlur-J | 32.84 | 0.935 | MAXIM-3S | 22.2M | 339G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deblurring/RealBlur_J) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Deblurring/RealBlur/) | 94 | | Deraining | Rain13k | 33.24 | 0.933 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deraining/Rain13k) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Deraining/Rain13k/) | 95 | | Deraining | Raindrop | 31.87 | 0.935 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Deraining/Raindrop) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Deraining/Raindrop/) | 96 | | Dehazing | RESIDE-Indoor | 38.11 | 0.991 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Dehazing/SOTS-Indoor) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Dehazing/RESIDE-Indoor/) | 97 | | Dehazing | RESIDE-Outdoor | 34.19 | 0.985 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Dehazing/SOTS-Outdoor) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Dehazing/RESIDE-Outdoor/) | 98 | | Enhancement | LOL | 23.43 | 0.863 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Enhancement/LOL) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Enhancement/LOL/) | 99 | | Enhancement | FiveK | 26.15 | 0.945 | MAXIM-2S | 14.1M | 216G | [ckpt](https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Enhancement/FiveK) | [images](https://console.cloud.google.com/storage/browser/gresearch/maxim/results/Enhancement/FiveK/) | 100 | 101 | 102 | 103 | ## Demo 104 | 105 | First download corresponding checkpoints and then go ahead and run: 106 | 107 |
108 | Image Denoising (click to expand) 109 | 110 | ``` 111 | python3 maxim/run_eval.py --task Denoising --ckpt_path ${SIDD_CKPT_PATH} \ 112 | --input_dir maxim/images/Denoising --output_dir maxim/images/Results --has_target=False 113 | ``` 114 |
115 | 116 |
117 | Image Deblurring (click to expand) 118 | 119 | ``` 120 | python3 maxim/run_eval.py --task Deblurring --ckpt_path ${GOPRO_CKPT_PATH} \ 121 | --input_dir maxim/images/Deblurring --output_dir maxim/images/Results --has_target=False 122 | ``` 123 |
124 | 125 |
126 | Image Deraining (click to expand) 127 | 128 | Rain streak: 129 | ``` 130 | python3 maxim/run_eval.py --task Deraining --ckpt_path ${RAIN13K_CKPT_PATH} \ 131 | --input_dir maxim/images/Deraining --output_dir maxim/images/Results --has_target=False 132 | ``` 133 | 134 | Rain drop: 135 | ``` 136 | python3 maxim/run_eval.py --task Deraining --ckpt_path ${RAINDROP_CKPT_PATH} \ 137 | --input_dir maxim/images/Deraining --output_dir maxim/images/Results --has_target=False 138 | ``` 139 |
140 | 141 |
142 | Image Dehazing (click to expand) 143 | 144 | Indoor: 145 | ``` 146 | python3 maxim/run_eval.py --task Dehazing --ckpt_path ${REDISE_INDOOR_CKPT_PATH} \ 147 | --input_dir maxim/images/Dehazing --output_dir maxim/images/Results --has_target=False 148 | ``` 149 | 150 | Outdoor: 151 | ``` 152 | python3 maxim/run_eval.py --task Dehazing --ckpt_path ${REDISE_OUTDOOR_CKPT_PATH} \ 153 | --input_dir maxim/images/Dehazing --output_dir maxim/images/Results --has_target=False 154 | ``` 155 |
156 | 157 |
158 | Image Enhancement (click to expand) 159 | 160 | Low-light enhancement: 161 | ``` 162 | python3 maxim/run_eval.py --task Enhancement --ckpt_path ${LOL_CKPT_PATH} \ 163 | --input_dir maxim/images/Enhancement --output_dir maxim/images/Results --has_target=False 164 | ``` 165 | 166 | Retouching: 167 | ``` 168 | python3 maxim/run_eval.py --task Enhancement --ckpt_path ${FIVEK_CKPT_PATH} \ 169 | --input_dir maxim/images/Enhancement --output_dir maxim/images/Results --has_target=False 170 | ``` 171 |
172 | 173 | ## Results 174 | 175 |
176 | Image Denoising (click to expand) 177 | 178 | 179 |
180 | 181 |
182 | Image Deblurring (click to expand) 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 |

Synthetic blur

Realistic blur

194 |
195 | 196 |
197 | Image Deraining (click to expand) 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 |

Rain streak

Rain drop

209 |
210 | 211 |
212 | Image Dehazing (click to expand) 213 | 214 | 215 |
216 | 217 |
218 | Image Enhancement (click to expand) 219 | 220 | 221 |
222 | 223 | ## Citation 224 | Should you find this repository useful, please consider citing: 225 | ``` 226 | @article{tu2022maxim, 227 | title={MAXIM: Multi-Axis MLP for Image Processing}, 228 | author={Tu, Zhengzhong and Talebi, Hossein and Zhang, Han and Yang, Feng and Milanfar, Peyman and Bovik, Alan and Li, Yinxiao}, 229 | journal={CVPR}, 230 | year={2022}, 231 | } 232 | ``` 233 | 234 | ## Acknowledgement 235 | 236 | This repository is built on the [vision_transformer](https://github.com/google-research/vision_transformer) and [musiq](https://github.com/google-research/google-research/tree/master/musiq) repositories. Our work is also inspired by [HiT](https://github.com/google-research/hit-gan), [MPRNet](https://github.com/swz30/MPRNet), and [HINet](https://github.com/megvii-model/HINet). 237 | -------------------------------------------------------------------------------- /cog.yaml: -------------------------------------------------------------------------------- 1 | build: 2 | cuda: "11.2" 3 | gpu: true 4 | python_version: "3.8" 5 | system_packages: 6 | - "libgl1-mesa-glx" 7 | - "libglib2.0-0" 8 | python_packages: 9 | - "numpy==1.21.1" 10 | - "ipython==7.21.0" 11 | - "absl-py==1.0.0" 12 | - "chex==0.1.3" 13 | - "clu==0.0.6" 14 | - "einops==0.4.1" 15 | - "flax==0.4.1" 16 | - "ml-collections==0.1.1" 17 | - "pandas==1.4.2" 18 | - "tensorflow==2.8.0" 19 | run: 20 | - pip install --upgrade pip 21 | - pip install jax[cuda11_cudnn805] -f https://storage.googleapis.com/jax-releases/jax_releases.html 22 | 23 | predict: "maxim/predict.py:Predictor" -------------------------------------------------------------------------------- /colab_inference_demo.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "cSLfR2K1fRgR" 7 | }, 8 | "source": [ 9 | "# Inference Notebook\n", 10 | "\n", 11 | "[MAXIM: Multi-Axis MLP for Image Processing (CVPR 2022 Oral)](https://github.com/google-research/maxim)\n", 12 | "\n", 13 | "**This is just the inference code. Maximum you can do is to come in with your images and get results using trained models**" 14 | ] 15 | }, 16 | { 17 | "cell_type": "markdown", 18 | "metadata": { 19 | "id": "vXxVwI1SfJc-" 20 | }, 21 | "source": [ 22 | "# Clone repo and install dependencies" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": null, 28 | "metadata": { 29 | "colab": { 30 | "base_uri": "https://localhost:8080/" 31 | }, 32 | "id": "RbskPSxADHXM", 33 | "outputId": "35c15104-7636-4ef6-cfda-f8ffe0e7e3fe" 34 | }, 35 | "outputs": [ 36 | { 37 | "output_type": "stream", 38 | "name": "stdout", 39 | "text": [ 40 | "" 41 | ] 42 | } 43 | ], 44 | "source": [ 45 | "! git clone https://github.com/google-research/maxim/\n", 46 | "%cd ./maxim\n", 47 | "\n", 48 | "!pip install -r requirements.txt\n", 49 | "!pip install --upgrade jax\n", 50 | "! pip install gdown\n", 51 | "\n", 52 | "!python setup.py build\n", 53 | "! python setup.py install\n", 54 | "\n", 55 | "# https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Enhancement/FiveK;tab=objects?prefix=&forceOnObjectsSortingFiltering=false" 56 | ] 57 | }, 58 | { 59 | "cell_type": "markdown", 60 | "metadata": { 61 | "id": "l06nrsoVdFRA" 62 | }, 63 | "source": [ 64 | "# Imports and Defaults\n", 65 | "Imports from libraries and from the modules written by authors of the repo\n", 66 | "\n" 67 | ] 68 | }, 69 | { 70 | "cell_type": "code", 71 | "execution_count": null, 72 | "metadata": { 73 | "id": "LEbaNP5IdNOQ" 74 | }, 75 | "outputs": [], 76 | "source": [ 77 | "from google.colab import drive # works only for colab\n", 78 | "from PIL import Image\n", 79 | "\n", 80 | "import matplotlib.pyplot as plt\n", 81 | "import collections\n", 82 | "import importlib\n", 83 | "import io\n", 84 | "import os\n", 85 | "import math\n", 86 | "import requests\n", 87 | "from tqdm import tqdm\n", 88 | "import gdown # to download weights from Drive\n", 89 | "\n", 90 | "import flax\n", 91 | "import jax.numpy as jnp\n", 92 | "import ml_collections\n", 93 | "import numpy as np\n", 94 | "import tensorflow as tf\n", 95 | "from jax.experimental import jax2tf\n", 96 | "\n", 97 | "\n", 98 | "# below code lines are from run_eval.py\n", 99 | "_MODEL_FILENAME = 'maxim'\n", 100 | "\n", 101 | "_MODEL_VARIANT_DICT = {\n", 102 | " 'Denoising': 'S-3',\n", 103 | " 'Deblurring': 'S-3',\n", 104 | " 'Deraining': 'S-2',\n", 105 | " 'Dehazing': 'S-2',\n", 106 | " 'Enhancement': 'S-2',\n", 107 | "}\n", 108 | "\n", 109 | "_MODEL_CONFIGS = {\n", 110 | " 'variant': '',\n", 111 | " 'dropout_rate': 0.0,\n", 112 | " 'num_outputs': 3,\n", 113 | " 'use_bias': True,\n", 114 | " 'num_supervision_scales': 3,\n", 115 | "}\n" 116 | ] 117 | }, 118 | { 119 | "cell_type": "markdown", 120 | "metadata": { 121 | "id": "EILubkkjc1P5" 122 | }, 123 | "source": [ 124 | "# Link Google Drive for data input and output \n", 125 | "Not necessary but ease of use for Data input / Output" 126 | ] 127 | }, 128 | { 129 | "cell_type": "code", 130 | "execution_count": null, 131 | "metadata": { 132 | "id": "w4qz8CMTJonN" 133 | }, 134 | "outputs": [], 135 | "source": [ 136 | "# drive.mount('/content/gdrive/',)" 137 | ] 138 | }, 139 | { 140 | "cell_type": "markdown", 141 | "metadata": { 142 | "id": "54_eNSRJdUHz" 143 | }, 144 | "source": [ 145 | "# Helpers" 146 | ] 147 | }, 148 | { 149 | "cell_type": "code", 150 | "execution_count": null, 151 | "metadata": { 152 | "id": "36QlK8Rfk5ai" 153 | }, 154 | "outputs": [], 155 | "source": [ 156 | "def sizeof_fmt(size, suffix='B'):\n", 157 | " \"\"\"Get human readable file size.\n", 158 | " Args:\n", 159 | " size (int): File size.\n", 160 | " suffix (str): Suffix. Default: 'B'.\n", 161 | " Return:\n", 162 | " str: Formated file siz.\n", 163 | " \"\"\"\n", 164 | " for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:\n", 165 | " if abs(size) < 1024.0:\n", 166 | " return f'{size:3.1f} {unit}{suffix}'\n", 167 | " size /= 1024.0\n", 168 | " return f'{size:3.1f} Y{suffix}'\n", 169 | "\n", 170 | "\n", 171 | "def download_file_from_google_drive(file_id, save_path):\n", 172 | " \"\"\"Download files from google drive.\n", 173 | "\n", 174 | " Ref:\n", 175 | " https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501\n", 176 | "\n", 177 | " Args:\n", 178 | " file_id (str): File id.\n", 179 | " save_path (str): Save path.\n", 180 | " \"\"\"\n", 181 | "\n", 182 | " session = requests.Session()\n", 183 | " URL = 'https://docs.google.com/uc?export=download'\n", 184 | " params = {'id': file_id}\n", 185 | "\n", 186 | " response = session.get(URL, params=params, stream=True)\n", 187 | " token = get_confirm_token(response)\n", 188 | " if token:\n", 189 | " params['confirm'] = token\n", 190 | " response = session.get(URL, params=params, stream=True)\n", 191 | "\n", 192 | " # get file size\n", 193 | " response_file_size = session.get(\n", 194 | " URL, params=params, stream=True, headers={'Range': 'bytes=0-2'})\n", 195 | " if 'Content-Range' in response_file_size.headers:\n", 196 | " file_size = int(\n", 197 | " response_file_size.headers['Content-Range'].split('/')[1])\n", 198 | " else:\n", 199 | " file_size = None\n", 200 | "\n", 201 | " save_response_content(response, save_path, file_size)\n", 202 | "\n", 203 | "\n", 204 | "def get_confirm_token(response):\n", 205 | " for key, value in response.cookies.items():\n", 206 | " if key.startswith('download_warning'):\n", 207 | " return value\n", 208 | " return None\n", 209 | "\n", 210 | "\n", 211 | "def save_response_content(response,\n", 212 | " destination,\n", 213 | " file_size=None,\n", 214 | " chunk_size=32768):\n", 215 | " if file_size is not None:\n", 216 | " pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk')\n", 217 | "\n", 218 | " readable_file_size = sizeof_fmt(file_size)\n", 219 | " else:\n", 220 | " pbar = None\n", 221 | "\n", 222 | " with open(destination, 'wb') as f:\n", 223 | " downloaded_size = 0\n", 224 | " for chunk in response.iter_content(chunk_size):\n", 225 | " downloaded_size += chunk_size\n", 226 | " if pbar is not None:\n", 227 | " pbar.update(1)\n", 228 | " pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} '\n", 229 | " f'/ {readable_file_size}')\n", 230 | " if chunk: # filter out keep-alive new chunks\n", 231 | " f.write(chunk)\n", 232 | " if pbar is not None:\n", 233 | " pbar.close()" 234 | ] 235 | }, 236 | { 237 | "cell_type": "code", 238 | "execution_count": null, 239 | "metadata": { 240 | "id": "TY2GyIbn6j85" 241 | }, 242 | "outputs": [], 243 | "source": [ 244 | "\n", 245 | "def resize(path, new_width_height = 1280, save_image = False, convert_RGB = True, clip_full_hd = False, quality = 100):\n", 246 | " '''\n", 247 | " Resize and return Given Image\n", 248 | " args:\n", 249 | " path: Image Path\n", 250 | " new_width_height = Reshaped image's width and height. # If integer is given, it'll keep the aspect ratio as it is by shrinking the Bigger dimension (width or height) to the max of new_width_height and then shring the smaller dimension accordingly \n", 251 | " save_image = Whether to save the image or not\n", 252 | " convert_RGB: Whether to Convert the RGBA image to RGB (by default backgroud is white)\n", 253 | " '''\n", 254 | " image = Image.open(path)\n", 255 | " w, h = image.size\n", 256 | "\n", 257 | " fixed_size = new_width_height if isinstance(new_width_height, int) else False\n", 258 | "\n", 259 | " if fixed_size:\n", 260 | " if h > w:\n", 261 | " fixed_height = fixed_size\n", 262 | " height_percent = (fixed_height / float(h))\n", 263 | " width_size = int((float(w) * float(height_percent)))\n", 264 | " image = image.resize((width_size, fixed_height), Image.NEAREST)\n", 265 | "\n", 266 | " else:\n", 267 | " fixed_width = fixed_size\n", 268 | " width_percent = (fixed_width / float(w))\n", 269 | " height_size = int((float(h) * float(width_percent)))\n", 270 | " image = image.resize((fixed_width, height_size), Image.NEAREST) # Try Image.ANTIALIAS inplace of Image.NEAREST\n", 271 | "\n", 272 | " else:\n", 273 | " image = image.resize(new_width_height)\n", 274 | "\n", 275 | " if image.mode == \"RGBA\" and convert_RGB:\n", 276 | " # image.load() # required for png.split()\n", 277 | " # new = Image.new(\"RGB\", image.size, (255, 255, 255)) # White Background\n", 278 | " # image = new.paste(image, mask=image.split()[3]) # 3 is the alpha channel\n", 279 | "\n", 280 | " new = Image.new(\"RGBA\", image.size, \"WHITE\") # Create a white rgba background\n", 281 | " new.paste(image, (0, 0), image) # Paste the image on the background.\n", 282 | " image = new.convert('RGB')\n", 283 | "\n", 284 | " if save_image:\n", 285 | " image.save(path, quality = quality)\n", 286 | "\n", 287 | " return image\n", 288 | "\n", 289 | "\n", 290 | "class DummyFlags():\n", 291 | " def __init__(self, ckpt_path:str, task:str, input_dir: str = \"./maxim/images/Enhancement\", output_dir:str = \"./maxim/images/Results\", has_target:bool = False, save_images:bool = True, geometric_ensemble:bool = False):\n", 292 | " '''\n", 293 | " Builds the dummy flags which replicates the behaviour of Terminal CLI execution (same as ArgParse)\n", 294 | " args:\n", 295 | " ckpt_path: Saved Model CheckPoint: Find all the checkpoints for pre trained models at https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/\n", 296 | " task: Task for which the model waas trained. Each task uses different Data and Checkpoints. Find the details of tasks and respective checkpoints details at: https://github.com/google-research/maxim#results-and-pre-trained-models\n", 297 | " input_dir: Input Directory. We do not need it here as we are directly passing one image at a time\n", 298 | " output_dir: Also not needed in out code\n", 299 | " has_target: Used to calculate PSNR and SSIM calculation. Not needed in our case\n", 300 | " save_images: Used in CLI command where images were saved in loop. Not needed in our case\n", 301 | " geometric_ensemble: Was used in training part and as it is just an Inference part, it is not needed\n", 302 | "\n", 303 | " '''\n", 304 | " self.ckpt_path = ckpt_path\n", 305 | " self.task = task\n", 306 | " self.input_dir = input_dir\n", 307 | " self.output_dir = output_dir\n", 308 | " self.has_target = has_target\n", 309 | " self.save_images = save_images\n", 310 | " self.geometric_ensemble = geometric_ensemble\n" 311 | ] 312 | }, 313 | { 314 | "cell_type": "markdown", 315 | "metadata": { 316 | "id": "JkgUJDR0daUP" 317 | }, 318 | "source": [ 319 | "# Refactored code from authors (`run_eval.py`)\n", 320 | "\n", 321 | "**NOTE**: This is not my code. I just changed the structure, redirected dependencies within modules, removed redundant imports and code and bla bla bla...." 322 | ] 323 | }, 324 | { 325 | "cell_type": "code", 326 | "execution_count": null, 327 | "metadata": { 328 | "id": "9oUVYnXQK_WV" 329 | }, 330 | "outputs": [], 331 | "source": [ 332 | "# Copyright 2022 Google LLC.\n", 333 | "#\n", 334 | "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", 335 | "# you may not use this file except in compliance with the License.\n", 336 | "# You may obtain a copy of the License at\n", 337 | "#\n", 338 | "# http://www.apache.org/licenses/LICENSE-2.0\n", 339 | "#\n", 340 | "# Unless required by applicable law or agreed to in writing, software\n", 341 | "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", 342 | "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", 343 | "# See the License for the specific language governing permissions and\n", 344 | "# limitations under the License.\n", 345 | "\n", 346 | "\n", 347 | "def recover_tree(keys, values):\n", 348 | " \"\"\"Recovers a tree as a nested dict from flat names and values.\n", 349 | "\n", 350 | " This function is useful to analyze checkpoints that are saved by our programs\n", 351 | " without need to access the exact source code of the experiment. In particular,\n", 352 | " it can be used to extract an reuse various subtrees of the scheckpoint, e.g.\n", 353 | " subtree of parameters.\n", 354 | " Args:\n", 355 | " keys: a list of keys, where '/' is used as separator between nodes.\n", 356 | " values: a list of leaf values.\n", 357 | " Returns:\n", 358 | " A nested tree-like dict.\n", 359 | " \"\"\"\n", 360 | " tree = {}\n", 361 | " sub_trees = collections.defaultdict(list)\n", 362 | " for k, v in zip(keys, values):\n", 363 | " if '/' not in k:\n", 364 | " tree[k] = v\n", 365 | " else:\n", 366 | " k_left, k_right = k.split('/', 1)\n", 367 | " sub_trees[k_left].append((k_right, v))\n", 368 | " for k, kv_pairs in sub_trees.items():\n", 369 | " k_subtree, v_subtree = zip(*kv_pairs)\n", 370 | " tree[k] = recover_tree(k_subtree, v_subtree)\n", 371 | " return tree\n", 372 | "\n", 373 | "\n", 374 | "def mod_padding_symmetric(image, factor=64):\n", 375 | " \"\"\"Padding the image to be divided by factor.\"\"\"\n", 376 | " height, width = image.shape[0], image.shape[1]\n", 377 | " height_pad, width_pad = ((height + factor) // factor) * factor, (\n", 378 | " (width + factor) // factor) * factor\n", 379 | " padh = height_pad - height if height % factor != 0 else 0\n", 380 | " padw = width_pad - width if width % factor != 0 else 0\n", 381 | " image = jnp.pad(\n", 382 | " image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)],\n", 383 | " mode='reflect')\n", 384 | " return image\n", 385 | "\n", 386 | "\n", 387 | "def get_params(ckpt_path):\n", 388 | " \"\"\"Get params checkpoint.\"\"\"\n", 389 | "\n", 390 | " with tf.io.gfile.GFile(ckpt_path, 'rb') as f:\n", 391 | " data = f.read()\n", 392 | " values = np.load(io.BytesIO(data))\n", 393 | " params = recover_tree(*zip(*values.items()))\n", 394 | " params = params['opt']['target']\n", 395 | "\n", 396 | " return params\n", 397 | "\n", 398 | "\n", 399 | "def calculate_psnr(img1, img2, crop_border, test_y_channel=False):\n", 400 | " \"\"\"Calculate PSNR (Peak Signal-to-Noise Ratio).\n", 401 | "\n", 402 | " Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio\n", 403 | " Args:\n", 404 | " img1 (ndarray): Images with range [0, 255].\n", 405 | " img2 (ndarray): Images with range [0, 255].\n", 406 | " crop_border (int): Cropped pixels in each edge of an image. These\n", 407 | " pixels are not involved in the PSNR calculation.\n", 408 | " test_y_channel (bool): Test on Y channel of YCbCr. Default: False.\n", 409 | " Returns:\n", 410 | " float: psnr result.\n", 411 | " \"\"\"\n", 412 | " assert img1.shape == img2.shape, (\n", 413 | " f'Image shapes are differnet: {img1.shape}, {img2.shape}.')\n", 414 | " img1 = img1.astype(np.float64)\n", 415 | " img2 = img2.astype(np.float64)\n", 416 | "\n", 417 | " if crop_border != 0:\n", 418 | " img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]\n", 419 | " img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]\n", 420 | "\n", 421 | " if test_y_channel:\n", 422 | " img1 = to_y_channel(img1)\n", 423 | " img2 = to_y_channel(img2)\n", 424 | "\n", 425 | " mse = np.mean((img1 - img2)**2)\n", 426 | " if mse == 0:\n", 427 | " return float('inf')\n", 428 | " return 20. * np.log10(255. / np.sqrt(mse))\n", 429 | "\n", 430 | "\n", 431 | "def _convert_input_type_range(img):\n", 432 | " \"\"\"Convert the type and range of the input image.\n", 433 | "\n", 434 | " It converts the input image to np.float32 type and range of [0, 1].\n", 435 | " It is mainly used for pre-processing the input image in colorspace\n", 436 | " convertion functions such as rgb2ycbcr and ycbcr2rgb.\n", 437 | " Args:\n", 438 | " img (ndarray): The input image. It accepts:\n", 439 | " 1. np.uint8 type with range [0, 255];\n", 440 | " 2. np.float32 type with range [0, 1].\n", 441 | " Returns:\n", 442 | " (ndarray): The converted image with type of np.float32 and range of\n", 443 | " [0, 1].\n", 444 | " \"\"\"\n", 445 | " img_type = img.dtype\n", 446 | " img = img.astype(np.float32)\n", 447 | " if img_type == np.float32:\n", 448 | " pass\n", 449 | " elif img_type == np.uint8:\n", 450 | " img /= 255.\n", 451 | " else:\n", 452 | " raise TypeError('The img type should be np.float32 or np.uint8, '\n", 453 | " f'but got {img_type}')\n", 454 | " return img\n", 455 | "\n", 456 | "\n", 457 | "def _convert_output_type_range(img, dst_type):\n", 458 | " \"\"\"Convert the type and range of the image according to dst_type.\n", 459 | "\n", 460 | " It converts the image to desired type and range. If `dst_type` is np.uint8,\n", 461 | " images will be converted to np.uint8 type with range [0, 255]. If\n", 462 | " `dst_type` is np.float32, it converts the image to np.float32 type with\n", 463 | " range [0, 1].\n", 464 | " It is mainly used for post-processing images in colorspace convertion\n", 465 | " functions such as rgb2ycbcr and ycbcr2rgb.\n", 466 | " Args:\n", 467 | " img (ndarray): The image to be converted with np.float32 type and\n", 468 | " range [0, 255].\n", 469 | " dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it\n", 470 | " converts the image to np.uint8 type with range [0, 255]. If\n", 471 | " dst_type is np.float32, it converts the image to np.float32 type\n", 472 | " with range [0, 1].\n", 473 | " Returns:\n", 474 | " (ndarray): The converted image with desired type and range.\n", 475 | " \"\"\"\n", 476 | " if dst_type not in (np.uint8, np.float32):\n", 477 | " raise TypeError('The dst_type should be np.float32 or np.uint8, '\n", 478 | " f'but got {dst_type}')\n", 479 | " if dst_type == np.uint8:\n", 480 | " img = img.round()\n", 481 | " else:\n", 482 | " img /= 255.\n", 483 | "\n", 484 | " return img.astype(dst_type)\n", 485 | "\n", 486 | "\n", 487 | "def rgb2ycbcr(img, y_only=False):\n", 488 | " \"\"\"Convert a RGB image to YCbCr image.\n", 489 | "\n", 490 | " This function produces the same results as Matlab's `rgb2ycbcr` function.\n", 491 | " It implements the ITU-R BT.601 conversion for standard-definition\n", 492 | " television. See more details in\n", 493 | " https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.\n", 494 | " It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.\n", 495 | " In OpenCV, it implements a JPEG conversion. See more details in\n", 496 | " https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.\n", 497 | "\n", 498 | " Args:\n", 499 | " img (ndarray): The input image. It accepts:\n", 500 | " 1. np.uint8 type with range [0, 255];\n", 501 | " 2. np.float32 type with range [0, 1].\n", 502 | " y_only (bool): Whether to only return Y channel. Default: False.\n", 503 | " Returns:\n", 504 | " ndarray: The converted YCbCr image. The output image has the same type\n", 505 | " and range as input image.\n", 506 | " \"\"\"\n", 507 | " img_type = img.dtype\n", 508 | " img = _convert_input_type_range(img)\n", 509 | " if y_only:\n", 510 | " out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0\n", 511 | " else:\n", 512 | " out_img = np.matmul(img,\n", 513 | " [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],\n", 514 | " [24.966, 112.0, -18.214]]) + [16, 128, 128]\n", 515 | " out_img = _convert_output_type_range(out_img, img_type)\n", 516 | " return out_img\n", 517 | "\n", 518 | "\n", 519 | "def to_y_channel(img):\n", 520 | " \"\"\"Change to Y channel of YCbCr.\n", 521 | "\n", 522 | " Args:\n", 523 | " img (ndarray): Images with range [0, 255].\n", 524 | " Returns:\n", 525 | " (ndarray): Images with range [0, 255] (float type) without round.\n", 526 | " \"\"\"\n", 527 | " img = img.astype(np.float32) / 255.\n", 528 | " if img.ndim == 3 and img.shape[2] == 3:\n", 529 | " img = rgb2ycbcr(img, y_only=True)\n", 530 | " img = img[..., None]\n", 531 | " return img * 255.\n", 532 | "\n", 533 | "\n", 534 | "def augment_image(image, times=8):\n", 535 | " \"\"\"Geometric augmentation.\"\"\"\n", 536 | " if times == 4: # only rotate image\n", 537 | " images = []\n", 538 | " for k in range(0, 4):\n", 539 | " images.append(np.rot90(image, k=k))\n", 540 | " images = np.stack(images, axis=0)\n", 541 | " elif times == 8: # roate and flip image\n", 542 | " images = []\n", 543 | " for k in range(0, 4):\n", 544 | " images.append(np.rot90(image, k=k))\n", 545 | " image = np.fliplr(image)\n", 546 | " for k in range(0, 4):\n", 547 | " images.append(np.rot90(image, k=k))\n", 548 | " images = np.stack(images, axis=0)\n", 549 | " else:\n", 550 | " raise Exception(f'Error times: {times}')\n", 551 | " return images\n", 552 | "\n", 553 | "\n", 554 | "def deaugment_image(images, times=8):\n", 555 | " \"\"\"Reverse the geometric augmentation.\"\"\"\n", 556 | "\n", 557 | " if times == 4: # only rotate image\n", 558 | " image = []\n", 559 | " for k in range(0, 4):\n", 560 | " image.append(np.rot90(images[k], k=4-k))\n", 561 | " image = np.stack(image, axis=0)\n", 562 | " image = np.mean(image, axis=0)\n", 563 | " elif times == 8: # roate and flip image\n", 564 | " image = []\n", 565 | " for k in range(0, 4):\n", 566 | " image.append(np.rot90(images[k], k=4-k))\n", 567 | " for k in range(0, 4):\n", 568 | " image.append(np.fliplr(np.rot90(images[4+k], k=4-k)))\n", 569 | " image = np.mean(image, axis=0)\n", 570 | " else:\n", 571 | " raise Exception(f'Error times: {times}')\n", 572 | " return image\n", 573 | "\n", 574 | "\n", 575 | "def is_image_file(filename):\n", 576 | " \"\"\"Check if it is an valid image file by extension.\"\"\"\n", 577 | " return any(\n", 578 | " filename.endswith(extension)\n", 579 | " for extension in ['jpeg', 'JPEG', 'jpg', 'png', 'JPG', 'PNG', 'gif'])\n", 580 | "\n", 581 | "\n", 582 | "def save_img(img, pth):\n", 583 | " \"\"\"Save an image to disk.\n", 584 | "\n", 585 | " Args:\n", 586 | " img: jnp.ndarry, [height, width, channels], img will be clipped to [0, 1]\n", 587 | " before saved to pth.\n", 588 | " pth: string, path to save the image to.\n", 589 | " \"\"\"\n", 590 | " Image.fromarray(np.array(\n", 591 | " (np.clip(img, 0., 1.) * 255.).astype(jnp.uint8))).save(pth, 'PNG')\n", 592 | "\n", 593 | "\n", 594 | "def make_shape_even(image):\n", 595 | " \"\"\"Pad the image to have even shapes.\"\"\"\n", 596 | " height, width = image.shape[0], image.shape[1]\n", 597 | " padh = 1 if height % 2 != 0 else 0\n", 598 | " padw = 1 if width % 2 != 0 else 0\n", 599 | " image = jnp.pad(image, [(0, padh), (0, padw), (0, 0)], mode='reflect')\n", 600 | " return image\n", 601 | "\n", 602 | "\n", 603 | "# Refactored code --------------------------------------------------------------------------------------------------------------------\n", 604 | "\n", 605 | "def build_model(task = \"Enhancement\"):\n", 606 | " model_mod = importlib.import_module(f'maxim.models.{_MODEL_FILENAME}')\n", 607 | " model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS)\n", 608 | "\n", 609 | " model_configs.variant = _MODEL_VARIANT_DICT[task]\n", 610 | "\n", 611 | " model = model_mod.Model(**model_configs)\n", 612 | " return model\n", 613 | "\n", 614 | "\n", 615 | "def pre_process(input_file):\n", 616 | " '''\n", 617 | " Pre-process the image before sending to the model\n", 618 | " '''\n", 619 | " input_img = np.asarray(Image.open(input_file).convert('RGB'),np.float32) / 255.\n", 620 | " # Padding images to have even shapes\n", 621 | " height, width = input_img.shape[0], input_img.shape[1]\n", 622 | " input_img = make_shape_even(input_img)\n", 623 | " height_even, width_even = input_img.shape[0], input_img.shape[1]\n", 624 | "\n", 625 | " # padding images to be multiplies of 64\n", 626 | " input_img = mod_padding_symmetric(input_img, factor=64)\n", 627 | " input_img = np.expand_dims(input_img, axis=0)\n", 628 | "\n", 629 | " return input_img, height, width, height_even, width_even\n", 630 | "\n", 631 | "\n", 632 | "def predict(input_img):\n", 633 | " # handle multi-stage outputs, obtain the last scale output of last stage\n", 634 | " return model.apply({'params': flax.core.freeze(params)}, input_img)\n", 635 | "\n", 636 | "\n", 637 | "def post_process(preds, height, width, height_even, width_even):\n", 638 | " '''\n", 639 | " Post process the image coming out from prediction\n", 640 | " '''\n", 641 | " if isinstance(preds, list):\n", 642 | " preds = preds[-1]\n", 643 | " if isinstance(preds, list):\n", 644 | " preds = preds[-1]\n", 645 | "\n", 646 | " # De-ensemble by averaging inferenced results.\n", 647 | " preds = np.array(preds[0], np.float32)\n", 648 | "\n", 649 | " # unpad images to get the original resolution\n", 650 | " new_height, new_width = preds.shape[0], preds.shape[1]\n", 651 | " h_start = new_height // 2 - height_even // 2\n", 652 | " h_end = h_start + height\n", 653 | " w_start = new_width // 2 - width_even // 2\n", 654 | " w_end = w_start + width\n", 655 | " preds = preds[h_start:h_end, w_start:w_end, :]\n", 656 | " return np.array((np.clip(preds, 0., 1.) * 255.).astype(jnp.uint8))" 657 | ] 658 | }, 659 | { 660 | "cell_type": "markdown", 661 | "metadata": { 662 | "id": "JOfe8u7_Wxks" 663 | }, 664 | "source": [ 665 | "# Default Configs and Model Building\n", 666 | "**Steps**:\n", 667 | "1. Get the name of `task` and the respective `ckpt` (pre-trained saved model for that task) [Follow this link for task name and model](https://github.com/google-research/maxim#results-and-pre-trained-models)\n", 668 | "2. Pass in the proper `task` and `ckpt_path` to the `DummyFlags`\n", 669 | "3. Build Model" 670 | ] 671 | }, 672 | { 673 | "cell_type": "code", 674 | "execution_count": null, 675 | "metadata": { 676 | "id": "Fcp68HNFf2Fy", 677 | "colab": { 678 | "base_uri": "https://localhost:8080/" 679 | }, 680 | "outputId": "09761106-e8cd-4880-bea6-e6e0840effff" 681 | }, 682 | "outputs": [ 683 | { 684 | "output_type": "stream", 685 | "name": "stderr", 686 | "text": [ 687 | "Downloading...\n", 688 | "From: https://drive.google.com/uc?id=1-BRKozXh81PtwoMZ9QN3kCAieLzozHIq\n", 689 | "To: /content/maxim/adobe.npz\n", 690 | "100%|██████████| 172M/172M [00:01<00:00, 166MB/s]\n" 691 | ] 692 | } 693 | ], 694 | "source": [ 695 | "weight_drive_path = 'https://drive.google.com/uc?id=1-BRKozXh81PtwoMZ9QN3kCAieLzozHIq' # Path of the weights file which in the Google Drive\n", 696 | "MODEL_PATH = './adobe.npz' # name of the model to be saved as\n", 697 | "\n", 698 | "gdown.download(weight_drive_path, MODEL_PATH, quiet=False) # Download Model weights to your current instance\n", 699 | "\n", 700 | "\n", 701 | "FLAGS = DummyFlags(ckpt_path = MODEL_PATH, task = \"Enhancement\") # Path to your checkpoint and task name\n", 702 | "\n", 703 | "params = get_params(FLAGS.ckpt_path) # Parse the config\n", 704 | "\n", 705 | "model = build_model() # Build Model" 706 | ] 707 | }, 708 | { 709 | "cell_type": "markdown", 710 | "metadata": { 711 | "id": "c_zxNUE4TugU" 712 | }, 713 | "source": [ 714 | "# Inference\n", 715 | "For Inference, you just need to pasd the *Image Path* to the the `predict` function. Result will be a `Numpy` array. You can easily save that by converting to `PIL` image.\n", 716 | "\n", 717 | "\n", 718 | "**Note**: You might get `OOM` or Out of memory issue which is not a big deal if you image size is too big. In that case, you just need to use the `resize` function\n", 719 | "\n" 720 | ] 721 | }, 722 | { 723 | "cell_type": "code", 724 | "execution_count": null, 725 | "metadata": { 726 | "id": "jC35dD6ViBwZ" 727 | }, 728 | "outputs": [], 729 | "source": [ 730 | "# image_path = \"path/to/my/image.extension\" # your image path\n", 731 | "# enhanced_image_array = predict(image_path) # Get predictions\n", 732 | "\n", 733 | "# enhanced_pil_image = Image.fromarray(enhanced_image_array) # get PIL image from array\n", 734 | "# enhanced_pil_image.save(\"path/to/output/directory/image.extension\") # Save the image\n" 735 | ] 736 | }, 737 | { 738 | "cell_type": "markdown", 739 | "metadata": { 740 | "id": "7x5dCbuOvIDz" 741 | }, 742 | "source": [ 743 | "# Test Images from Drive and Save\n", 744 | "\n", 745 | "**Note**: For huge number of images (say 50 or more), copy all the images from Google Drive to the current machine's drive else it will make the process so slow. And also for saving the enhanced image to drive, Get predictions for all the images at once, Save them here first and them copy a zip file to the drive." 746 | ] 747 | }, 748 | { 749 | "cell_type": "code", 750 | "execution_count": null, 751 | "metadata": { 752 | "id": "W3YwEUHmtQSl" 753 | }, 754 | "outputs": [], 755 | "source": [ 756 | "# images = [\"../gdrive/My Drive/maxim/input/\"+i for i in os.listdir(\"../gdrive/My Drive/maxim/input/\") if i.endswith(('jpeg', 'png', 'jpg',\"PNG\",\"JPEG\",\"JPG\"))]\n", 757 | "\n", 758 | "# # _ = [resize(path, 1920, save_image=True) for path in images] # Resize Images to 1920 as the max dimension's size else it'll blow the GPU / CPU memory\n", 759 | "\n", 760 | "\n", 761 | "# for path in images:\n", 762 | "# im = Image.fromarray(predict(path))\n", 763 | "# im.save(\"../gdrive/My Drive/maxim/output/\"+path.split('/')[-1])\n", 764 | "\n" 765 | ] 766 | }, 767 | { 768 | "cell_type": "markdown", 769 | "metadata": { 770 | "id": "f9Wv9yIIamJL" 771 | }, 772 | "source": [ 773 | "# Visualization\n", 774 | "\n", 775 | "The below code demonstrates how to predict from Image URL. You can directly use `predict(image_path)`" 776 | ] 777 | }, 778 | { 779 | "cell_type": "code", 780 | "execution_count": null, 781 | "metadata": { 782 | "id": "Q1T544sZan4d", 783 | "colab": { 784 | "base_uri": "https://localhost:8080/", 785 | "height": 491 786 | }, 787 | "outputId": "17f4b919-c811-4659-a178-95d02d8660dc" 788 | }, 789 | "outputs": [ 790 | { 791 | "output_type": "stream", 792 | "text": [ 793 | "\u001b[1;30;43mThis cell output is too large and can only be displayed while logged in.\u001b[0m\n" 794 | ] 795 | } 796 | ], 797 | "source": [ 798 | "import requests\n", 799 | "from io import BytesIO\n", 800 | "\n", 801 | "url = \"https://phototraces.b-cdn.net/wp-content/uploads/2021/02/id_Free_RAW_Photos_for_Editing_09_Uneditedd.jpg\"\n", 802 | "# url = \"https://phototraces.b-cdn.net/wp-content/uploads/2021/03/Free_RAW_Photos_for_Editing_13_Unedited.jpg\"\n", 803 | "\n", 804 | "image_bytes = BytesIO(requests.get(url).content)\n", 805 | "\n", 806 | "input_img, height, width, height_even, width_even = pre_process(image_bytes)\n", 807 | "preds = predict(input_img)\n", 808 | "result = post_process(preds, height, width, height_even, width_even)\n", 809 | "\n", 810 | "f, ax = plt.subplots(1,2, figsize = (35,20))\n", 811 | "\n", 812 | "ax[0].imshow(np.array(Image.open(image_bytes))) # Original image\n", 813 | "ax[1].imshow(result) # retouched image\n", 814 | "\n", 815 | "ax[0].set_title(\"Original Image\")\n", 816 | "ax[1].set_title(\"Enhanced Image\")\n", 817 | "\n", 818 | "plt.show()" 819 | ] 820 | }, 821 | { 822 | "cell_type": "code", 823 | "source": [ 824 | "tf_predict = tf.function(\n", 825 | " jax2tf.convert(predict, enable_xla=False),\n", 826 | " input_signature=[\n", 827 | " tf.TensorSpec(shape=[1, 704, 1024, 3], dtype=tf.float32, name='input_image')\n", 828 | " ],\n", 829 | " autograph=False)" 830 | ], 831 | "metadata": { 832 | "id": "nZGyNC8pttv7" 833 | }, 834 | "execution_count": null, 835 | "outputs": [] 836 | }, 837 | { 838 | "cell_type": "code", 839 | "source": [ 840 | "converter = tf.lite.TFLiteConverter.from_concrete_functions(\n", 841 | " [tf_predict.get_concrete_function()], tf_predict)\n", 842 | "\n", 843 | "converter.target_spec.supported_ops = [\n", 844 | " tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n", 845 | " tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n", 846 | "]\n", 847 | "tflite_float_model = converter.convert()\n", 848 | "\n", 849 | "with open('./float_model.tflite', \"wb\") as f: f.write(tflite_float_model)" 850 | ], 851 | "metadata": { 852 | "colab": { 853 | "base_uri": "https://localhost:8080/" 854 | }, 855 | "id": "igxeGKfIyqLS", 856 | "outputId": "2c7d6ae3-8c84-421f-dc83-f6e0c69cc6c5" 857 | }, 858 | "execution_count": null, 859 | "outputs": [ 860 | { 861 | "output_type": "stream", 862 | "name": "stdout", 863 | "text": [ 864 | "WARNING:tensorflow:@custom_gradient grad_fn has 'variables' in signature, but no ResourceVariables were used on the forward pass.\n" 865 | ] 866 | }, 867 | { 868 | "output_type": "stream", 869 | "name": "stderr", 870 | "text": [ 871 | "WARNING:tensorflow:@custom_gradient grad_fn has 'variables' in signature, but no ResourceVariables were used on the forward pass.\n", 872 | "WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded\n" 873 | ] 874 | } 875 | ] 876 | }, 877 | { 878 | "cell_type": "code", 879 | "source": [ 880 | "converter.optimizations = [tf.lite.Optimize.DEFAULT]\n", 881 | "tflite_quantized_model = converter.convert()\n", 882 | "\n", 883 | "with open('./quantized.tflite', 'wb') as f: f.write(tflite_quantized_model)" 884 | ], 885 | "metadata": { 886 | "colab": { 887 | "base_uri": "https://localhost:8080/" 888 | }, 889 | "id": "pTbjUpn-yxl1", 890 | "outputId": "fcb29b97-825c-4d6b-b921-0452bcf003a0" 891 | }, 892 | "execution_count": null, 893 | "outputs": [ 894 | { 895 | "output_type": "stream", 896 | "name": "stderr", 897 | "text": [ 898 | "WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded\n" 899 | ] 900 | } 901 | ] 902 | }, 903 | { 904 | "cell_type": "code", 905 | "source": [ 906 | "# Load quantized TFLite model\n", 907 | "tflite_interpreter_quant = tf.lite.Interpreter(model_path='./maxim/quantized.tflite')\n", 908 | "\n", 909 | "# Learn about its input and output details\n", 910 | "input_details = tflite_interpreter_quant.get_input_details()\n", 911 | "output_details = tflite_interpreter_quant.get_output_details()\n", 912 | "\n", 913 | "# Resize input and output tensors to handle batch of desired size\n", 914 | "# tflite_interpreter_quant.resize_tensor_input(input_details[0]['index'], (1, 704, 1024, 3))\n", 915 | "# tflite_interpreter_quant.resize_tensor_input(output_details[0]['index'], (1, 176, 256, 3))\n", 916 | "tflite_interpreter_quant.allocate_tensors()\n", 917 | "\n", 918 | "input_details = tflite_interpreter_quant.get_input_details()\n", 919 | "output_details = tflite_interpreter_quant.get_output_details()\n", 920 | "\n", 921 | "\n", 922 | "# # Run inference\n", 923 | "val_image_batch = tf.random.normal(shape = (1, 704, 1024, 3), dtype = tf.float32)\n", 924 | "tflite_interpreter_quant.set_tensor(input_details[0]['index'], val_image_batch)\n", 925 | "\n", 926 | "tflite_interpreter_quant.invoke()\n", 927 | "\n", 928 | "tflite_q_model_predictions = tflite_interpreter_quant.get_tensor(output_details[0]['index'])\n", 929 | "print(\"\\nPrediction results shape:\", tflite_q_model_predictions.shape)" 930 | ], 931 | "metadata": { 932 | "id": "XY0M5SFg4Zw8" 933 | }, 934 | "execution_count": null, 935 | "outputs": [] 936 | }, 937 | { 938 | "cell_type": "code", 939 | "source": [], 940 | "metadata": { 941 | "id": "RgsmrC0U7v5h" 942 | }, 943 | "execution_count": null, 944 | "outputs": [] 945 | } 946 | ], 947 | "metadata": { 948 | "colab": { 949 | "collapsed_sections": [], 950 | "provenance": [] 951 | }, 952 | "kernelspec": { 953 | "display_name": "Python 3", 954 | "name": "python3" 955 | }, 956 | "language_info": { 957 | "name": "python" 958 | }, 959 | "gpuClass": "standard" 960 | }, 961 | "nbformat": 4, 962 | "nbformat_minor": 0 963 | } -------------------------------------------------------------------------------- /maxim/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | -------------------------------------------------------------------------------- /maxim/images/Deblurring/input/109fromGOPR1096.MP4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deblurring/input/109fromGOPR1096.MP4.png -------------------------------------------------------------------------------- /maxim/images/Deblurring/input/110fromGOPR1087.MP4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deblurring/input/110fromGOPR1087.MP4.png -------------------------------------------------------------------------------- /maxim/images/Deblurring/input/1fromGOPR0950.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deblurring/input/1fromGOPR0950.png -------------------------------------------------------------------------------- /maxim/images/Deblurring/input/1fromGOPR1096.MP4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deblurring/input/1fromGOPR1096.MP4.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/0003_0.8_0.2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/0003_0.8_0.2.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/0010_0.95_0.16.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/0010_0.95_0.16.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/0014_0.8_0.12.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/0014_0.8_0.12.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/0048_0.9_0.2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/0048_0.9_0.2.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/1440_10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/1440_10.png -------------------------------------------------------------------------------- /maxim/images/Dehazing/input/1444_10.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Dehazing/input/1444_10.png -------------------------------------------------------------------------------- /maxim/images/Denoising/input/0003_30.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Denoising/input/0003_30.png -------------------------------------------------------------------------------- /maxim/images/Denoising/input/0011_23.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Denoising/input/0011_23.png -------------------------------------------------------------------------------- /maxim/images/Denoising/input/0013_19.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Denoising/input/0013_19.png -------------------------------------------------------------------------------- /maxim/images/Denoising/input/0039_04.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Denoising/input/0039_04.png -------------------------------------------------------------------------------- /maxim/images/Deraining/input/0.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deraining/input/0.jpg -------------------------------------------------------------------------------- /maxim/images/Deraining/input/1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deraining/input/1.png -------------------------------------------------------------------------------- /maxim/images/Deraining/input/15.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deraining/input/15.png -------------------------------------------------------------------------------- /maxim/images/Deraining/input/55.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Deraining/input/55.png -------------------------------------------------------------------------------- /maxim/images/Enhancement/input/1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Enhancement/input/1.png -------------------------------------------------------------------------------- /maxim/images/Enhancement/input/111.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Enhancement/input/111.png -------------------------------------------------------------------------------- /maxim/images/Enhancement/input/748.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Enhancement/input/748.png -------------------------------------------------------------------------------- /maxim/images/Enhancement/input/a4541-DSC_0040-2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/Enhancement/input/a4541-DSC_0040-2.png -------------------------------------------------------------------------------- /maxim/images/overview.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/maxim/3c8265171ffccc80c3c9124844aef0d381609956/maxim/images/overview.png -------------------------------------------------------------------------------- /maxim/models/__init__.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | -------------------------------------------------------------------------------- /maxim/models/maxim.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | """Main file for the MAXIM model.""" 16 | 17 | import functools 18 | from typing import Any, Sequence, Tuple 19 | 20 | import einops 21 | import flax.linen as nn 22 | import jax 23 | import jax.numpy as jnp 24 | 25 | 26 | Conv3x3 = functools.partial(nn.Conv, kernel_size=(3, 3)) 27 | Conv1x1 = functools.partial(nn.Conv, kernel_size=(1, 1)) 28 | ConvT_up = functools.partial(nn.ConvTranspose, 29 | kernel_size=(2, 2), 30 | strides=(2, 2)) 31 | Conv_down = functools.partial(nn.Conv, 32 | kernel_size=(4, 4), 33 | strides=(2, 2)) 34 | 35 | weight_initializer = nn.initializers.normal(stddev=2e-2) 36 | 37 | 38 | class MlpBlock(nn.Module): 39 | """A 1-hidden-layer MLP block, applied over the last dimension.""" 40 | mlp_dim: int 41 | dropout_rate: float = 0.0 42 | use_bias: bool = True 43 | 44 | @nn.compact 45 | def __call__(self, x, deterministic=True): 46 | n, h, w, d = x.shape 47 | x = nn.Dense(self.mlp_dim, use_bias=self.use_bias, 48 | kernel_init=weight_initializer)(x) 49 | x = nn.gelu(x) 50 | x = nn.Dropout(rate=self.dropout_rate)(x, deterministic) 51 | x = nn.Dense(d, use_bias=self.use_bias, 52 | kernel_init=weight_initializer)(x) 53 | return x 54 | 55 | 56 | def block_images_einops(x, patch_size): 57 | """Image to patches.""" 58 | batch, height, width, channels = x.shape 59 | grid_height = height // patch_size[0] 60 | grid_width = width // patch_size[1] 61 | x = einops.rearrange( 62 | x, "n (gh fh) (gw fw) c -> n (gh gw) (fh fw) c", 63 | gh=grid_height, gw=grid_width, fh=patch_size[0], fw=patch_size[1]) 64 | return x 65 | 66 | 67 | def unblock_images_einops(x, grid_size, patch_size): 68 | """patches to images.""" 69 | x = einops.rearrange( 70 | x, "n (gh gw) (fh fw) c -> n (gh fh) (gw fw) c", 71 | gh=grid_size[0], gw=grid_size[1], fh=patch_size[0], fw=patch_size[1]) 72 | return x 73 | 74 | 75 | class UpSampleRatio(nn.Module): 76 | """Upsample features given a ratio > 0.""" 77 | features: int 78 | ratio: float 79 | use_bias: bool = True 80 | 81 | @nn.compact 82 | def __call__(self, x): 83 | n, h, w, c = x.shape 84 | x = jax.image.resize( 85 | x, 86 | shape=(n, int(h * self.ratio), int(w * self.ratio), c), 87 | method="bilinear") 88 | x = Conv1x1(features=self.features, use_bias=self.use_bias)(x) 89 | return x 90 | 91 | 92 | class CALayer(nn.Module): 93 | """Squeeze-and-excitation block for channel attention. 94 | 95 | ref: https://arxiv.org/abs/1709.01507 96 | """ 97 | features: int 98 | reduction: int = 4 99 | use_bias: bool = True 100 | 101 | @nn.compact 102 | def __call__(self, x): 103 | # 2D global average pooling 104 | y = jnp.mean(x, axis=[1, 2], keepdims=True) 105 | # Squeeze (in Squeeze-Excitation) 106 | y = Conv1x1(self.features // self.reduction, use_bias=self.use_bias)(y) 107 | y = nn.relu(y) 108 | # Excitation (in Squeeze-Excitation) 109 | y = Conv1x1(self.features, use_bias=self.use_bias)(y) 110 | y = nn.sigmoid(y) 111 | return x * y 112 | 113 | 114 | class RCAB(nn.Module): 115 | """Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer.""" 116 | features: int 117 | reduction: int = 4 118 | lrelu_slope: float = 0.2 119 | use_bias: bool = True 120 | 121 | @nn.compact 122 | def __call__(self, x): 123 | shortcut = x 124 | x = nn.LayerNorm(name="LayerNorm")(x) 125 | x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv1")(x) 126 | x = nn.leaky_relu(x, negative_slope=self.lrelu_slope) 127 | x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv2")(x) 128 | x = CALayer(features=self.features, reduction=self.reduction, 129 | use_bias=self.use_bias, name="channel_attention")(x) 130 | return x + shortcut 131 | 132 | 133 | class GridGatingUnit(nn.Module): 134 | """A SpatialGatingUnit as defined in the gMLP paper. 135 | 136 | The 'spatial' dim is defined as the second last. 137 | If applied on other dims, you should swapaxes first. 138 | """ 139 | use_bias: bool = True 140 | 141 | @nn.compact 142 | def __call__(self, x): 143 | u, v = jnp.split(x, 2, axis=-1) 144 | v = nn.LayerNorm(name="intermediate_layernorm")(v) 145 | n = x.shape[-3] # get spatial dim 146 | v = jnp.swapaxes(v, -1, -3) 147 | v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v) 148 | v = jnp.swapaxes(v, -1, -3) 149 | return u * (v + 1.) 150 | 151 | 152 | class GridGmlpLayer(nn.Module): 153 | """Grid gMLP layer that performs global mixing of tokens.""" 154 | grid_size: Sequence[int] 155 | use_bias: bool = True 156 | factor: int = 2 157 | dropout_rate: float = 0.0 158 | 159 | @nn.compact 160 | def __call__(self, x, deterministic=True): 161 | n, h, w, num_channels = x.shape 162 | gh, gw = self.grid_size 163 | fh, fw = h // gh, w // gw 164 | x = block_images_einops(x, patch_size=(fh, fw)) 165 | # gMLP1: Global (grid) mixing part, provides global grid communication. 166 | y = nn.LayerNorm(name="LayerNorm")(x) 167 | y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias, 168 | kernel_init=weight_initializer, name="in_project")(y) 169 | y = nn.gelu(y) 170 | y = GridGatingUnit(use_bias=self.use_bias, name="GridGatingUnit")(y) 171 | y = nn.Dense(num_channels, use_bias=self.use_bias, 172 | kernel_init=weight_initializer, name="out_project")(y) 173 | y = nn.Dropout(self.dropout_rate)(y, deterministic) 174 | x = x + y 175 | x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw)) 176 | return x 177 | 178 | 179 | class BlockGatingUnit(nn.Module): 180 | """A SpatialGatingUnit as defined in the gMLP paper. 181 | 182 | The 'spatial' dim is defined as the **second last**. 183 | If applied on other dims, you should swapaxes first. 184 | """ 185 | use_bias: bool = True 186 | 187 | @nn.compact 188 | def __call__(self, x): 189 | u, v = jnp.split(x, 2, axis=-1) 190 | v = nn.LayerNorm(name="intermediate_layernorm")(v) 191 | n = x.shape[-2] # get spatial dim 192 | v = jnp.swapaxes(v, -1, -2) 193 | v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v) 194 | v = jnp.swapaxes(v, -1, -2) 195 | return u * (v + 1.) 196 | 197 | 198 | class BlockGmlpLayer(nn.Module): 199 | """Block gMLP layer that performs local mixing of tokens.""" 200 | block_size: Sequence[int] 201 | use_bias: bool = True 202 | factor: int = 2 203 | dropout_rate: float = 0.0 204 | 205 | @nn.compact 206 | def __call__(self, x, deterministic=True): 207 | n, h, w, num_channels = x.shape 208 | fh, fw = self.block_size 209 | gh, gw = h // fh, w // fw 210 | x = block_images_einops(x, patch_size=(fh, fw)) 211 | # MLP2: Local (block) mixing part, provides within-block communication. 212 | y = nn.LayerNorm(name="LayerNorm")(x) 213 | y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias, 214 | kernel_init=weight_initializer, name="in_project")(y) 215 | y = nn.gelu(y) 216 | y = BlockGatingUnit(use_bias=self.use_bias, name="BlockGatingUnit")(y) 217 | y = nn.Dense(num_channels, use_bias=self.use_bias, 218 | kernel_init=weight_initializer, name="out_project")(y) 219 | y = nn.Dropout(self.dropout_rate)(y, deterministic) 220 | x = x + y 221 | x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw)) 222 | return x 223 | 224 | 225 | class ResidualSplitHeadMultiAxisGmlpLayer(nn.Module): 226 | """The multi-axis gated MLP block.""" 227 | block_size: Sequence[int] 228 | grid_size: Sequence[int] 229 | block_gmlp_factor: int = 2 230 | grid_gmlp_factor: int = 2 231 | input_proj_factor: int = 2 232 | use_bias: bool = True 233 | dropout_rate: float = 0.0 234 | 235 | @nn.compact 236 | def __call__(self, x, deterministic=True): 237 | shortcut = x 238 | n, h, w, num_channels = x.shape 239 | x = nn.LayerNorm(name="LayerNorm_in")(x) 240 | x = nn.Dense(num_channels * self.input_proj_factor, use_bias=self.use_bias, 241 | kernel_init=weight_initializer, name="in_project")(x) 242 | x = nn.gelu(x) 243 | 244 | u, v = jnp.split(x, 2, axis=-1) 245 | # GridGMLPLayer 246 | u = GridGmlpLayer( 247 | grid_size=self.grid_size, 248 | factor=self.grid_gmlp_factor, 249 | use_bias=self.use_bias, 250 | dropout_rate=self.dropout_rate, 251 | name="GridGmlpLayer")(u, deterministic) 252 | 253 | # BlockGMLPLayer 254 | v = BlockGmlpLayer( 255 | block_size=self.block_size, 256 | factor=self.block_gmlp_factor, 257 | use_bias=self.use_bias, 258 | dropout_rate=self.dropout_rate, 259 | name="BlockGmlpLayer")(v, deterministic) 260 | 261 | x = jnp.concatenate([u, v], axis=-1) 262 | 263 | x = nn.Dense(num_channels, use_bias=self.use_bias, 264 | kernel_init=weight_initializer, name="out_project")(x) 265 | x = nn.Dropout(self.dropout_rate)(x, deterministic) 266 | x = x + shortcut 267 | return x 268 | 269 | 270 | class RDCAB(nn.Module): 271 | """Residual dense channel attention block. Used in Bottlenecks.""" 272 | features: int 273 | reduction: int = 16 274 | use_bias: bool = True 275 | dropout_rate: float = 0.0 276 | 277 | @nn.compact 278 | def __call__(self, x, deterministic=True): 279 | y = nn.LayerNorm(name="LayerNorm")(x) 280 | y = MlpBlock( 281 | mlp_dim=self.features, 282 | dropout_rate=self.dropout_rate, 283 | use_bias=self.use_bias, 284 | name="channel_mixing")( 285 | y, deterministic=deterministic) 286 | y = CALayer( 287 | features=self.features, 288 | reduction=self.reduction, 289 | use_bias=self.use_bias, 290 | name="channel_attention")( 291 | y) 292 | x = x + y 293 | return x 294 | 295 | 296 | class BottleneckBlock(nn.Module): 297 | """The bottleneck block consisting of multi-axis gMLP block and RDCAB.""" 298 | features: int 299 | block_size: Sequence[int] 300 | grid_size: Sequence[int] 301 | num_groups: int = 1 302 | block_gmlp_factor: int = 2 303 | grid_gmlp_factor: int = 2 304 | input_proj_factor: int = 2 305 | channels_reduction: int = 4 306 | dropout_rate: float = 0.0 307 | use_bias: bool = True 308 | 309 | @nn.compact 310 | def __call__(self, x, deterministic): 311 | """Applies the Mixer block to inputs.""" 312 | assert x.ndim == 4 # Input has shape [batch, h, w, c] 313 | n, h, w, num_channels = x.shape 314 | 315 | # input projection 316 | x = Conv1x1(self.features, use_bias=self.use_bias, name="input_proj")(x) 317 | shortcut_long = x 318 | 319 | for i in range(self.num_groups): 320 | x = ResidualSplitHeadMultiAxisGmlpLayer( 321 | grid_size=self.grid_size, 322 | block_size=self.block_size, 323 | grid_gmlp_factor=self.grid_gmlp_factor, 324 | block_gmlp_factor=self.block_gmlp_factor, 325 | input_proj_factor=self.input_proj_factor, 326 | use_bias=self.use_bias, 327 | dropout_rate=self.dropout_rate, 328 | name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic) 329 | # Channel-mixing part, which provides within-patch communication. 330 | x = RDCAB( 331 | features=self.features, 332 | reduction=self.channels_reduction, 333 | use_bias=self.use_bias, 334 | name=f"channel_attention_block_1_{i}")( 335 | x) 336 | 337 | # long skip-connect 338 | x = x + shortcut_long 339 | return x 340 | 341 | 342 | class UNetEncoderBlock(nn.Module): 343 | """Encoder block in MAXIM.""" 344 | features: int 345 | block_size: Sequence[int] 346 | grid_size: Sequence[int] 347 | num_groups: int = 1 348 | lrelu_slope: float = 0.2 349 | block_gmlp_factor: int = 2 350 | grid_gmlp_factor: int = 2 351 | input_proj_factor: int = 2 352 | channels_reduction: int = 4 353 | dropout_rate: float = 0.0 354 | downsample: bool = True 355 | use_global_mlp: bool = True 356 | use_bias: bool = True 357 | use_cross_gating: bool = False 358 | 359 | @nn.compact 360 | def __call__(self, x: jnp.ndarray, skip: jnp.ndarray = None, 361 | enc: jnp.ndarray = None, dec: jnp.ndarray = None, *, 362 | deterministic: bool = True) -> jnp.ndarray: 363 | if skip is not None: 364 | x = jnp.concatenate([x, skip], axis=-1) 365 | 366 | # convolution-in 367 | x = Conv1x1(self.features, use_bias=self.use_bias)(x) 368 | shortcut_long = x 369 | 370 | for i in range(self.num_groups): 371 | if self.use_global_mlp: 372 | x = ResidualSplitHeadMultiAxisGmlpLayer( 373 | grid_size=self.grid_size, 374 | block_size=self.block_size, 375 | grid_gmlp_factor=self.grid_gmlp_factor, 376 | block_gmlp_factor=self.block_gmlp_factor, 377 | input_proj_factor=self.input_proj_factor, 378 | use_bias=self.use_bias, 379 | dropout_rate=self.dropout_rate, 380 | name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic) 381 | x = RCAB( 382 | features=self.features, 383 | reduction=self.channels_reduction, 384 | use_bias=self.use_bias, 385 | name=f"channel_attention_block_1{i}")(x) 386 | 387 | x = x + shortcut_long 388 | 389 | if enc is not None and dec is not None: 390 | assert self.use_cross_gating 391 | x, _ = CrossGatingBlock( 392 | features=self.features, 393 | block_size=self.block_size, 394 | grid_size=self.grid_size, 395 | dropout_rate=self.dropout_rate, 396 | input_proj_factor=self.input_proj_factor, 397 | upsample_y=False, 398 | use_bias=self.use_bias, 399 | name="cross_gating_block")( 400 | x, enc + dec, deterministic=deterministic) 401 | 402 | if self.downsample: 403 | x_down = Conv_down(self.features, use_bias=self.use_bias)(x) 404 | return x_down, x 405 | else: 406 | return x 407 | 408 | 409 | class UNetDecoderBlock(nn.Module): 410 | """Decoder block in MAXIM.""" 411 | features: int 412 | block_size: Sequence[int] 413 | grid_size: Sequence[int] 414 | num_groups: int = 1 415 | lrelu_slope: float = 0.2 416 | block_gmlp_factor: int = 2 417 | grid_gmlp_factor: int = 2 418 | input_proj_factor: int = 2 419 | channels_reduction: int = 4 420 | dropout_rate: float = 0.0 421 | downsample: bool = True 422 | use_global_mlp: bool = True 423 | use_bias: bool = True 424 | 425 | @nn.compact 426 | def __call__(self, x: jnp.ndarray, bridge: jnp.ndarray = None, 427 | deterministic: bool = True) -> jnp.ndarray: 428 | x = ConvT_up(self.features, use_bias=self.use_bias)(x) 429 | 430 | x = UNetEncoderBlock( 431 | self.features, 432 | num_groups=self.num_groups, 433 | lrelu_slope=self.lrelu_slope, 434 | block_size=self.block_size, 435 | grid_size=self.grid_size, 436 | block_gmlp_factor=self.block_gmlp_factor, 437 | grid_gmlp_factor=self.grid_gmlp_factor, 438 | channels_reduction=self.channels_reduction, 439 | use_global_mlp=self.use_global_mlp, 440 | dropout_rate=self.dropout_rate, 441 | downsample=False, 442 | use_bias=self.use_bias)(x, skip=bridge, deterministic=deterministic) 443 | return x 444 | 445 | 446 | class GetSpatialGatingWeights(nn.Module): 447 | """Get gating weights for cross-gating MLP block.""" 448 | features: int 449 | block_size: Sequence[int] 450 | grid_size: Sequence[int] 451 | input_proj_factor: int = 2 452 | dropout_rate: float = 0.0 453 | use_bias: bool = True 454 | 455 | @nn.compact 456 | def __call__(self, x, deterministic): 457 | n, h, w, num_channels = x.shape 458 | 459 | # input projection 460 | x = nn.LayerNorm(name="LayerNorm_in")(x) 461 | x = nn.Dense( 462 | num_channels * self.input_proj_factor, 463 | use_bias=self.use_bias, 464 | name="in_project")( 465 | x) 466 | x = nn.gelu(x) 467 | u, v = jnp.split(x, 2, axis=-1) 468 | 469 | # Get grid MLP weights 470 | gh, gw = self.grid_size 471 | fh, fw = h // gh, w // gw 472 | u = block_images_einops(u, patch_size=(fh, fw)) 473 | dim_u = u.shape[-3] 474 | u = jnp.swapaxes(u, -1, -3) 475 | u = nn.Dense( 476 | dim_u, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2), 477 | bias_init=nn.initializers.ones)(u) 478 | u = jnp.swapaxes(u, -1, -3) 479 | u = unblock_images_einops(u, grid_size=(gh, gw), patch_size=(fh, fw)) 480 | 481 | # Get Block MLP weights 482 | fh, fw = self.block_size 483 | gh, gw = h // fh, w // fw 484 | v = block_images_einops(v, patch_size=(fh, fw)) 485 | dim_v = v.shape[-2] 486 | v = jnp.swapaxes(v, -1, -2) 487 | v = nn.Dense( 488 | dim_v, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2), 489 | bias_init=nn.initializers.ones)(v) 490 | v = jnp.swapaxes(v, -1, -2) 491 | v = unblock_images_einops(v, grid_size=(gh, gw), patch_size=(fh, fw)) 492 | 493 | x = jnp.concatenate([u, v], axis=-1) 494 | x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project")(x) 495 | x = nn.Dropout(self.dropout_rate)(x, deterministic) 496 | return x 497 | 498 | 499 | class CrossGatingBlock(nn.Module): 500 | """Cross-gating MLP block.""" 501 | features: int 502 | block_size: Sequence[int] 503 | grid_size: Sequence[int] 504 | dropout_rate: float = 0.0 505 | input_proj_factor: int = 2 506 | upsample_y: bool = True 507 | use_bias: bool = True 508 | 509 | @nn.compact 510 | def __call__(self, x, y, deterministic=True): 511 | # Upscale Y signal, y is the gating signal. 512 | if self.upsample_y: 513 | y = ConvT_up(self.features, use_bias=self.use_bias)(y) 514 | 515 | x = Conv1x1(self.features, use_bias=self.use_bias)(x) 516 | n, h, w, num_channels = x.shape 517 | y = Conv1x1(num_channels, use_bias=self.use_bias)(y) 518 | 519 | assert y.shape == x.shape 520 | shortcut_x = x 521 | shortcut_y = y 522 | 523 | # Get gating weights from X 524 | x = nn.LayerNorm(name="LayerNorm_x")(x) 525 | x = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_x")(x) 526 | x = nn.gelu(x) 527 | gx = GetSpatialGatingWeights( 528 | features=num_channels, 529 | block_size=self.block_size, 530 | grid_size=self.grid_size, 531 | dropout_rate=self.dropout_rate, 532 | use_bias=self.use_bias, 533 | name="SplitHeadMultiAxisGating_x")( 534 | x, deterministic=deterministic) 535 | 536 | # Get gating weights from Y 537 | y = nn.LayerNorm(name="LayerNorm_y")(y) 538 | y = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_y")(y) 539 | y = nn.gelu(y) 540 | gy = GetSpatialGatingWeights( 541 | features=num_channels, 542 | block_size=self.block_size, 543 | grid_size=self.grid_size, 544 | dropout_rate=self.dropout_rate, 545 | use_bias=self.use_bias, 546 | name="SplitHeadMultiAxisGating_y")( 547 | y, deterministic=deterministic) 548 | 549 | # Apply cross gating: X = X * GY, Y = Y * GX 550 | y = y * gx 551 | y = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_y")(y) 552 | y = nn.Dropout(self.dropout_rate)(y, deterministic=deterministic) 553 | y = y + shortcut_y 554 | 555 | x = x * gy # gating x using y 556 | x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_x")(x) 557 | x = nn.Dropout(self.dropout_rate)(x, deterministic=deterministic) 558 | x = x + y + shortcut_x # get all aggregated signals 559 | return x, y 560 | 561 | 562 | class SAM(nn.Module): 563 | """Supervised attention module for multi-stage training. 564 | 565 | Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet 566 | """ 567 | features: int 568 | output_channels: int = 3 569 | use_bias: bool = True 570 | 571 | @nn.compact 572 | def __call__(self, x: jnp.ndarray, x_image: jnp.ndarray, *, 573 | train: bool) -> Tuple[jnp.ndarray, jnp.ndarray]: 574 | """Apply the SAM module to the input and features. 575 | 576 | Args: 577 | x: the output features from UNet decoder with shape (h, w, c) 578 | x_image: the input image with shape (h, w, 3) 579 | train: Whether it is training 580 | 581 | Returns: 582 | A tuple of tensors (x1, image) where (x1) is the sam features used for the 583 | next stage, and (image) is the output restored image at current stage. 584 | """ 585 | # Get features 586 | x1 = Conv3x3(self.features, use_bias=self.use_bias)(x) 587 | 588 | # Output restored image X_s 589 | if self.output_channels == 3: 590 | image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x) + x_image 591 | else: 592 | image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x) 593 | 594 | # Get attention maps for features 595 | x2 = nn.sigmoid(Conv3x3(self.features, use_bias=self.use_bias)(image)) 596 | 597 | # Get attended feature maps 598 | x1 = x1 * x2 599 | 600 | # Residual connection 601 | x1 = x1 + x 602 | return x1, image 603 | 604 | 605 | class MAXIM(nn.Module): 606 | """The MAXIM model function with multi-stage and multi-scale supervision. 607 | 608 | For more model details, please check the CVPR paper: 609 | MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973) 610 | 611 | Attributes: 612 | features: initial hidden dimension for the input resolution. 613 | depth: the number of downsampling depth for the model. 614 | num_stages: how many stages to use. It will also affects the output list. 615 | num_groups: how many blocks each stage contains. 616 | use_bias: whether to use bias in all the conv/mlp layers. 617 | num_supervision_scales: the number of desired supervision scales. 618 | lrelu_slope: the negative slope parameter in leaky_relu layers. 619 | use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each 620 | layer. 621 | use_cross_gating: whether to use the cross-gating MLP block (CGB) in the 622 | skip connections and multi-stage feature fusion layers. 623 | high_res_stages: how many stages are specificied as high-res stages. The 624 | rest (depth - high_res_stages) are called low_res_stages. 625 | block_size_hr: the block_size parameter for high-res stages. 626 | block_size_lr: the block_size parameter for low-res stages. 627 | grid_size_hr: the grid_size parameter for high-res stages. 628 | grid_size_lr: the grid_size parameter for low-res stages. 629 | num_bottleneck_blocks: how many bottleneck blocks. 630 | block_gmlp_factor: the input projection factor for block_gMLP layers. 631 | grid_gmlp_factor: the input projection factor for grid_gMLP layers. 632 | input_proj_factor: the input projection factor for the MAB block. 633 | channels_reduction: the channel reduction factor for SE layer. 634 | num_outputs: the output channels. 635 | dropout_rate: Dropout rate. 636 | 637 | Returns: 638 | The output contains a list of arrays consisting of multi-stage multi-scale 639 | outputs. For example, if num_stages = num_supervision_scales = 3 (the 640 | model used in the paper), the output specs are: outputs = 641 | [[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3], 642 | [output_stage2_scale1, output_stage2_scale2, output_stage2_scale3], 643 | [output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],] 644 | The final output can be retrieved by outputs[-1][-1]. 645 | """ 646 | features: int = 64 647 | depth: int = 3 648 | num_stages: int = 2 649 | num_groups: int = 1 650 | use_bias: bool = True 651 | num_supervision_scales: int = 1 652 | lrelu_slope: float = 0.2 653 | use_global_mlp: bool = True 654 | use_cross_gating: bool = True 655 | high_res_stages: int = 2 656 | block_size_hr: Sequence[int] = (16, 16) 657 | block_size_lr: Sequence[int] = (8, 8) 658 | grid_size_hr: Sequence[int] = (16, 16) 659 | grid_size_lr: Sequence[int] = (8, 8) 660 | num_bottleneck_blocks: int = 1 661 | block_gmlp_factor: int = 2 662 | grid_gmlp_factor: int = 2 663 | input_proj_factor: int = 2 664 | channels_reduction: int = 4 665 | num_outputs: int = 3 666 | dropout_rate: float = 0.0 667 | 668 | @nn.compact 669 | def __call__(self, x: jnp.ndarray, *, train: bool = False) -> Any: 670 | 671 | n, h, w, c = x.shape # input image shape 672 | shortcuts = [] 673 | shortcuts.append(x) 674 | # Get multi-scale input images 675 | for i in range(1, self.num_supervision_scales): 676 | shortcuts.append(jax.image.resize( 677 | x, shape=(n, h // (2**i), w // (2**i), c), method="nearest")) 678 | 679 | # store outputs from all stages and all scales 680 | # Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)], # Stage-1 outputs 681 | # [(64, 64, 3), (128, 128, 3), (256, 256, 3)],] # Stage-2 outputs 682 | outputs_all = [] 683 | sam_features, encs_prev, decs_prev = [], [], [] 684 | 685 | for idx_stage in range(self.num_stages): 686 | # Input convolution, get multi-scale input features 687 | x_scales = [] 688 | for i in range(self.num_supervision_scales): 689 | x_scale = Conv3x3( 690 | (2**i) * self.features, 691 | use_bias=self.use_bias, 692 | name=f"stage_{idx_stage}_input_conv_{i}")( 693 | shortcuts[i]) 694 | 695 | # If later stages, fuse input features with SAM features from prev stage 696 | if idx_stage > 0: 697 | # use larger blocksize at high-res stages 698 | if self.use_cross_gating: 699 | block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr 700 | grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr 701 | x_scale, _ = CrossGatingBlock( 702 | features=(2**i) * self.features, 703 | block_size=block_size, 704 | grid_size=grid_size, 705 | dropout_rate=self.dropout_rate, 706 | input_proj_factor=self.input_proj_factor, 707 | upsample_y=False, 708 | use_bias=self.use_bias, 709 | name=f"stage_{idx_stage}_input_fuse_sam_{i}")( 710 | x_scale, sam_features.pop(), deterministic=not train) 711 | else: 712 | x_scale = Conv1x1( 713 | (2**i) * self.features, 714 | use_bias=self.use_bias, 715 | name=f"stage_{idx_stage}_input_catconv_{i}")( 716 | jnp.concatenate( 717 | [x_scale, sam_features.pop()], axis=-1)) 718 | 719 | x_scales.append(x_scale) 720 | 721 | # start encoder blocks 722 | encs = [] 723 | x = x_scales[0] # First full-scale input feature 724 | 725 | for i in range(self.depth): # 0, 1, 2 726 | # use larger blocksize at high-res stages, vice versa. 727 | block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr 728 | grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr 729 | use_cross_gating_layer = True if idx_stage > 0 else False 730 | 731 | # Multi-scale input if multi-scale supervision 732 | x_scale = x_scales[i] if i < self.num_supervision_scales else None 733 | 734 | # UNet Encoder block 735 | enc_prev = encs_prev.pop() if idx_stage > 0 else None 736 | dec_prev = decs_prev.pop() if idx_stage > 0 else None 737 | 738 | x, bridge = UNetEncoderBlock( 739 | features=(2**i) * self.features, 740 | num_groups=self.num_groups, 741 | downsample=True, 742 | lrelu_slope=self.lrelu_slope, 743 | block_size=block_size, 744 | grid_size=grid_size, 745 | block_gmlp_factor=self.block_gmlp_factor, 746 | grid_gmlp_factor=self.grid_gmlp_factor, 747 | input_proj_factor=self.input_proj_factor, 748 | channels_reduction=self.channels_reduction, 749 | use_global_mlp=self.use_global_mlp, 750 | dropout_rate=self.dropout_rate, 751 | use_bias=self.use_bias, 752 | use_cross_gating=use_cross_gating_layer, 753 | name=f"stage_{idx_stage}_encoder_block_{i}")( 754 | x, 755 | skip=x_scale, 756 | enc=enc_prev, 757 | dec=dec_prev, 758 | deterministic=not train) 759 | 760 | # Cache skip signals 761 | encs.append(bridge) 762 | 763 | # Global MLP bottleneck blocks 764 | for i in range(self.num_bottleneck_blocks): 765 | x = BottleneckBlock( 766 | block_size=self.block_size_lr, 767 | grid_size=self.block_size_lr, 768 | features=(2**(self.depth - 1)) * self.features, 769 | num_groups=self.num_groups, 770 | block_gmlp_factor=self.block_gmlp_factor, 771 | grid_gmlp_factor=self.grid_gmlp_factor, 772 | input_proj_factor=self.input_proj_factor, 773 | dropout_rate=self.dropout_rate, 774 | use_bias=self.use_bias, 775 | channels_reduction=self.channels_reduction, 776 | name=f"stage_{idx_stage}_global_block_{i}")( 777 | x, deterministic=not train) 778 | # cache global feature for cross-gating 779 | global_feature = x 780 | 781 | # start cross gating. Use multi-scale feature fusion 782 | skip_features = [] 783 | for i in reversed(range(self.depth)): # 2, 1, 0 784 | # use larger blocksize at high-res stages 785 | block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr 786 | grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr 787 | 788 | # get additional multi-scale signals 789 | signal = jnp.concatenate([ 790 | UpSampleRatio( 791 | (2**i) * self.features, 792 | ratio=2**(j - i), 793 | use_bias=self.use_bias)(enc) for j, enc in enumerate(encs) 794 | ], 795 | axis=-1) 796 | 797 | # Use cross-gating to cross modulate features 798 | if self.use_cross_gating: 799 | skips, global_feature = CrossGatingBlock( 800 | features=(2**i) * self.features, 801 | block_size=block_size, 802 | grid_size=grid_size, 803 | input_proj_factor=self.input_proj_factor, 804 | dropout_rate=self.dropout_rate, 805 | upsample_y=True, 806 | use_bias=self.use_bias, 807 | name=f"stage_{idx_stage}_cross_gating_block_{i}")( 808 | signal, global_feature, deterministic=not train) 809 | else: 810 | skips = Conv1x1( 811 | (2**i) * self.features, use_bias=self.use_bias)( 812 | signal) 813 | skips = Conv3x3((2**i) * self.features, use_bias=self.use_bias)(skips) 814 | 815 | skip_features.append(skips) 816 | 817 | # start decoder. Multi-scale feature fusion of cross-gated features 818 | outputs, decs, sam_features = [], [], [] 819 | for i in reversed(range(self.depth)): 820 | # use larger blocksize at high-res stages 821 | block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr 822 | grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr 823 | 824 | # get multi-scale skip signals from cross-gating block 825 | signal = jnp.concatenate([ 826 | UpSampleRatio( 827 | (2**i) * self.features, 828 | ratio=2**(self.depth - j - 1 - i), 829 | use_bias=self.use_bias)(skip) 830 | for j, skip in enumerate(skip_features) 831 | ], 832 | axis=-1) 833 | 834 | # Decoder block 835 | x = UNetDecoderBlock( 836 | features=(2**i) * self.features, 837 | num_groups=self.num_groups, 838 | lrelu_slope=self.lrelu_slope, 839 | block_size=block_size, 840 | grid_size=grid_size, 841 | block_gmlp_factor=self.block_gmlp_factor, 842 | grid_gmlp_factor=self.grid_gmlp_factor, 843 | input_proj_factor=self.input_proj_factor, 844 | channels_reduction=self.channels_reduction, 845 | use_global_mlp=self.use_global_mlp, 846 | dropout_rate=self.dropout_rate, 847 | use_bias=self.use_bias, 848 | name=f"stage_{idx_stage}_decoder_block_{i}")( 849 | x, bridge=signal, deterministic=not train) 850 | 851 | # Cache decoder features for later-stage's usage 852 | decs.append(x) 853 | 854 | # output conv, if not final stage, use supervised-attention-block. 855 | if i < self.num_supervision_scales: 856 | if idx_stage < self.num_stages - 1: # not last stage, apply SAM 857 | sam, output = SAM( 858 | (2**i) * self.features, 859 | output_channels=self.num_outputs, 860 | use_bias=self.use_bias, 861 | name=f"stage_{idx_stage}_supervised_attention_module_{i}")( 862 | x, shortcuts[i], train=train) 863 | outputs.append(output) 864 | sam_features.append(sam) 865 | else: # Last stage, apply output convolutions 866 | output = Conv3x3(self.num_outputs, 867 | use_bias=self.use_bias, 868 | name=f"stage_{idx_stage}_output_conv_{i}")(x) 869 | output = output + shortcuts[i] 870 | outputs.append(output) 871 | # Cache encoder and decoder features for later-stage's usage 872 | encs_prev = encs[::-1] 873 | decs_prev = decs 874 | 875 | # Store outputs 876 | outputs_all.append(outputs) 877 | return outputs_all 878 | 879 | 880 | def Model(*, variant=None, **kw): 881 | """Factory function to easily create a Model variant like "S". 882 | 883 | Every model file should have this Model() function that returns the flax 884 | model function. The function name should be fixed. 885 | 886 | Args: 887 | variant: UNet model variants. Options: 'S-1' | 'S-2' | 'S-3' 888 | | 'M-1' | 'M-2' | 'M-3' 889 | **kw: Other UNet config dicts. 890 | 891 | Returns: 892 | The MAXIM() model function 893 | """ 894 | 895 | if variant is not None: 896 | config = { 897 | # params: 6.108515000000001 M, GFLOPS: 93.163716608 898 | "S-1": { 899 | "features": 32, 900 | "depth": 3, 901 | "num_stages": 1, 902 | "num_groups": 2, 903 | "num_bottleneck_blocks": 2, 904 | "block_gmlp_factor": 2, 905 | "grid_gmlp_factor": 2, 906 | "input_proj_factor": 2, 907 | "channels_reduction": 4, 908 | }, 909 | # params: 13.35383 M, GFLOPS: 206.743273472 910 | "S-2": { 911 | "features": 32, 912 | "depth": 3, 913 | "num_stages": 2, 914 | "num_groups": 2, 915 | "num_bottleneck_blocks": 2, 916 | "block_gmlp_factor": 2, 917 | "grid_gmlp_factor": 2, 918 | "input_proj_factor": 2, 919 | "channels_reduction": 4, 920 | }, 921 | # params: 20.599145 M, GFLOPS: 320.32194560000005 922 | "S-3": { 923 | "features": 32, 924 | "depth": 3, 925 | "num_stages": 3, 926 | "num_groups": 2, 927 | "num_bottleneck_blocks": 2, 928 | "block_gmlp_factor": 2, 929 | "grid_gmlp_factor": 2, 930 | "input_proj_factor": 2, 931 | "channels_reduction": 4, 932 | }, 933 | # params: 19.361219000000002 M, 308.495712256 GFLOPs 934 | "M-1": { 935 | "features": 64, 936 | "depth": 3, 937 | "num_stages": 1, 938 | "num_groups": 2, 939 | "num_bottleneck_blocks": 2, 940 | "block_gmlp_factor": 2, 941 | "grid_gmlp_factor": 2, 942 | "input_proj_factor": 2, 943 | "channels_reduction": 4, 944 | }, 945 | # params: 40.83911 M, 675.25541888 GFLOPs 946 | "M-2": { 947 | "features": 64, 948 | "depth": 3, 949 | "num_stages": 2, 950 | "num_groups": 2, 951 | "num_bottleneck_blocks": 2, 952 | "block_gmlp_factor": 2, 953 | "grid_gmlp_factor": 2, 954 | "input_proj_factor": 2, 955 | "channels_reduction": 4, 956 | }, 957 | # params: 62.317001 M, 1042.014666752 GFLOPs 958 | "M-3": { 959 | "features": 64, 960 | "depth": 3, 961 | "num_stages": 3, 962 | "num_groups": 2, 963 | "num_bottleneck_blocks": 2, 964 | "block_gmlp_factor": 2, 965 | "grid_gmlp_factor": 2, 966 | "input_proj_factor": 2, 967 | "channels_reduction": 4, 968 | }, 969 | }[variant] 970 | 971 | for k, v in config.items(): 972 | kw.setdefault(k, v) 973 | 974 | return MAXIM(**kw) 975 | -------------------------------------------------------------------------------- /maxim/predict.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | import os 16 | os.environ["XLA_FLAGS"] = "--xla_gpu_force_compilation_parallelism=1" 17 | 18 | import subprocess 19 | subprocess.call(["pip", "install", "."]) 20 | 21 | import numpy as np 22 | from PIL import Image 23 | import importlib 24 | import ml_collections 25 | import tempfile 26 | import jax.numpy as jnp 27 | import flax 28 | from cog import BasePredictor, Path, Input, BaseModel 29 | 30 | from maxim.run_eval import ( 31 | _MODEL_FILENAME, 32 | _MODEL_VARIANT_DICT, 33 | _MODEL_CONFIGS, 34 | get_params, 35 | mod_padding_symmetric, 36 | make_shape_even, 37 | augment_image, 38 | ) 39 | 40 | 41 | class Predictor(BasePredictor): 42 | def setup(self): 43 | 44 | self.params = { 45 | "Image Denoising": get_params("checkpoints/denoising-SIDD/checkpoint.npz"), 46 | "Image Deblurring (GoPro)": get_params( 47 | "checkpoints/debluring-GoPro/checkpoint.npz" 48 | ), 49 | "Image Deblurring (REDS)": get_params( 50 | "checkpoints/debluring-REDS/checkpoint.npz" 51 | ), 52 | "Image Deblurring (RealBlur_R)": get_params( 53 | "checkpoints/debluring-Real-Blur-R/checkpoint.npz" 54 | ), 55 | "Image Deblurring (RealBlur_J)": get_params( 56 | "checkpoints/debluring-Real-Blur-J/checkpoint.npz" 57 | ), 58 | "Image Deraining (Rain streak)": get_params( 59 | "checkpoints/deraining-Rain13k/checkpoint.npz" 60 | ), 61 | "Image Deraining (Rain drop)": get_params( 62 | "checkpoints/deraining-Raindrop/checkpoint.npz" 63 | ), 64 | "Image Dehazing (Indoor)": get_params( 65 | "checkpoints/dehazing-RESIDE-Indoor/checkpoint.npz" 66 | ), 67 | "Image Dehazing (Outdoor)": get_params( 68 | "checkpoints/dehazing-RESIDE-Outdoor/checkpoint.npz" 69 | ), 70 | "Image Enhancement (Low-light)": get_params( 71 | "checkpoints/enhancement-LOL/checkpoint.npz" 72 | ), 73 | "Image Enhancement (Retouching)": get_params( 74 | "checkpoints/enhancement-FiveK/checkpoint.npz" 75 | ), 76 | } 77 | 78 | model_mod = importlib.import_module(f"maxim.models.{_MODEL_FILENAME}") 79 | self.models = {} 80 | for task in _MODEL_VARIANT_DICT.keys(): 81 | model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS) 82 | model_configs.variant = _MODEL_VARIANT_DICT[task] 83 | self.models[task] = model_mod.Model(**model_configs) 84 | 85 | def predict( 86 | self, 87 | model: str = Input( 88 | choices=[ 89 | "Image Denoising", 90 | "Image Deblurring (GoPro)", 91 | "Image Deblurring (REDS)", 92 | "Image Deblurring (RealBlur_R)", 93 | "Image Deblurring (RealBlur_J)", 94 | "Image Deraining (Rain streak)", 95 | "Image Deraining (Rain drop)", 96 | "Image Dehazing (Indoor)", 97 | "Image Dehazing (Outdoor)", 98 | "Image Enhancement (Low-light)", 99 | "Image Enhancement (Retouching)", 100 | ], 101 | description="Choose a model.", 102 | ), 103 | image: Path = Input( 104 | description="Input image.", 105 | ), 106 | ) -> Path: 107 | 108 | params = self.params[model] 109 | task = model.split()[1] 110 | model = self.models[task] 111 | 112 | input_img = ( 113 | np.asarray(Image.open(str(image)).convert("RGB"), np.float32) / 255.0 114 | ) 115 | 116 | # Padding images to have even shapes 117 | height, width = input_img.shape[0], input_img.shape[1] 118 | input_img = make_shape_even(input_img) 119 | height_even, width_even = input_img.shape[0], input_img.shape[1] 120 | 121 | # padding images to be multiplies of 64 122 | input_img = mod_padding_symmetric(input_img, factor=64) 123 | input_img = np.expand_dims(input_img, axis=0) 124 | 125 | # handle multi-stage outputs, obtain the last scale output of last stage 126 | preds = model.apply({"params": flax.core.freeze(params)}, input_img) 127 | if isinstance(preds, list): 128 | preds = preds[-1] 129 | if isinstance(preds, list): 130 | preds = preds[-1] 131 | 132 | preds = np.array(preds[0], np.float32) 133 | 134 | # unpad images to get the original resolution 135 | new_height, new_width = preds.shape[0], preds.shape[1] 136 | h_start = new_height // 2 - height_even // 2 137 | h_end = h_start + height 138 | w_start = new_width // 2 - width_even // 2 139 | w_end = w_start + width 140 | preds = preds[h_start:h_end, w_start:w_end, :] 141 | 142 | # save files 143 | out_path = Path(tempfile.mkdtemp()) / "output.png" 144 | Image.fromarray( 145 | np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(jnp.uint8)) 146 | ).save(str(out_path)) 147 | 148 | return out_path -------------------------------------------------------------------------------- /maxim/run_eval.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | """Run evaluation.""" 16 | 17 | import collections 18 | import importlib 19 | import io 20 | import os 21 | 22 | from absl import app 23 | from absl import flags 24 | import flax 25 | import jax.numpy as jnp 26 | import ml_collections 27 | import numpy as np 28 | from PIL import Image 29 | import tensorflow as tf 30 | 31 | FLAGS = flags.FLAGS 32 | 33 | flags.DEFINE_enum( 34 | 'task', 'Denoising', 35 | ['Denoising', 'Deblurring', 'Deraining', 'Dehazing', 'Enhancement'], 36 | 'Task to run.') 37 | flags.DEFINE_string('ckpt_path', '', 'Path to checkpoint.') 38 | flags.DEFINE_string('input_dir', '', 'Input dir to the test set.') 39 | flags.DEFINE_string('output_dir', '', 'Output dir to store predicted images.') 40 | flags.DEFINE_boolean('has_target', True, 'Whether has corresponding gt image.') 41 | flags.DEFINE_boolean('save_images', True, 'Dump predicted images.') 42 | flags.DEFINE_boolean('geometric_ensemble', False, 43 | 'Whether use ensemble infernce.') 44 | 45 | _MODEL_FILENAME = 'maxim' 46 | 47 | _MODEL_VARIANT_DICT = { 48 | 'Denoising': 'S-3', 49 | 'Deblurring': 'S-3', 50 | 'Deraining': 'S-2', 51 | 'Dehazing': 'S-2', 52 | 'Enhancement': 'S-2', 53 | } 54 | 55 | _MODEL_CONFIGS = { 56 | 'variant': '', 57 | 'dropout_rate': 0.0, 58 | 'num_outputs': 3, 59 | 'use_bias': True, 60 | 'num_supervision_scales': 3, 61 | } 62 | 63 | 64 | def recover_tree(keys, values): 65 | """Recovers a tree as a nested dict from flat names and values. 66 | 67 | This function is useful to analyze checkpoints that are saved by our programs 68 | without need to access the exact source code of the experiment. In particular, 69 | it can be used to extract an reuse various subtrees of the scheckpoint, e.g. 70 | subtree of parameters. 71 | Args: 72 | keys: a list of keys, where '/' is used as separator between nodes. 73 | values: a list of leaf values. 74 | Returns: 75 | A nested tree-like dict. 76 | """ 77 | tree = {} 78 | sub_trees = collections.defaultdict(list) 79 | for k, v in zip(keys, values): 80 | if '/' not in k: 81 | tree[k] = v 82 | else: 83 | k_left, k_right = k.split('/', 1) 84 | sub_trees[k_left].append((k_right, v)) 85 | for k, kv_pairs in sub_trees.items(): 86 | k_subtree, v_subtree = zip(*kv_pairs) 87 | tree[k] = recover_tree(k_subtree, v_subtree) 88 | return tree 89 | 90 | 91 | def mod_padding_symmetric(image, factor=64): 92 | """Padding the image to be divided by factor.""" 93 | height, width = image.shape[0], image.shape[1] 94 | height_pad, width_pad = ((height + factor) // factor) * factor, ( 95 | (width + factor) // factor) * factor 96 | padh = height_pad - height if height % factor != 0 else 0 97 | padw = width_pad - width if width % factor != 0 else 0 98 | image = jnp.pad( 99 | image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)], 100 | mode='reflect') 101 | return image 102 | 103 | 104 | def get_params(ckpt_path): 105 | """Get params checkpoint.""" 106 | 107 | with tf.io.gfile.GFile(ckpt_path, 'rb') as f: 108 | data = f.read() 109 | values = np.load(io.BytesIO(data)) 110 | params = recover_tree(*zip(*values.items())) 111 | params = params['opt']['target'] 112 | 113 | return params 114 | 115 | 116 | def calculate_psnr(img1, img2, crop_border, test_y_channel=False): 117 | """Calculate PSNR (Peak Signal-to-Noise Ratio). 118 | 119 | Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio 120 | Args: 121 | img1 (ndarray): Images with range [0, 255]. 122 | img2 (ndarray): Images with range [0, 255]. 123 | crop_border (int): Cropped pixels in each edge of an image. These 124 | pixels are not involved in the PSNR calculation. 125 | test_y_channel (bool): Test on Y channel of YCbCr. Default: False. 126 | Returns: 127 | float: psnr result. 128 | """ 129 | assert img1.shape == img2.shape, ( 130 | f'Image shapes are differnet: {img1.shape}, {img2.shape}.') 131 | img1 = img1.astype(np.float64) 132 | img2 = img2.astype(np.float64) 133 | 134 | if crop_border != 0: 135 | img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] 136 | img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] 137 | 138 | if test_y_channel: 139 | img1 = to_y_channel(img1) 140 | img2 = to_y_channel(img2) 141 | 142 | mse = np.mean((img1 - img2)**2) 143 | if mse == 0: 144 | return float('inf') 145 | return 20. * np.log10(255. / np.sqrt(mse)) 146 | 147 | 148 | def _convert_input_type_range(img): 149 | """Convert the type and range of the input image. 150 | 151 | It converts the input image to np.float32 type and range of [0, 1]. 152 | It is mainly used for pre-processing the input image in colorspace 153 | convertion functions such as rgb2ycbcr and ycbcr2rgb. 154 | Args: 155 | img (ndarray): The input image. It accepts: 156 | 1. np.uint8 type with range [0, 255]; 157 | 2. np.float32 type with range [0, 1]. 158 | Returns: 159 | (ndarray): The converted image with type of np.float32 and range of 160 | [0, 1]. 161 | """ 162 | img_type = img.dtype 163 | img = img.astype(np.float32) 164 | if img_type == np.float32: 165 | pass 166 | elif img_type == np.uint8: 167 | img /= 255. 168 | else: 169 | raise TypeError('The img type should be np.float32 or np.uint8, ' 170 | f'but got {img_type}') 171 | return img 172 | 173 | 174 | def _convert_output_type_range(img, dst_type): 175 | """Convert the type and range of the image according to dst_type. 176 | 177 | It converts the image to desired type and range. If `dst_type` is np.uint8, 178 | images will be converted to np.uint8 type with range [0, 255]. If 179 | `dst_type` is np.float32, it converts the image to np.float32 type with 180 | range [0, 1]. 181 | It is mainly used for post-processing images in colorspace convertion 182 | functions such as rgb2ycbcr and ycbcr2rgb. 183 | Args: 184 | img (ndarray): The image to be converted with np.float32 type and 185 | range [0, 255]. 186 | dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it 187 | converts the image to np.uint8 type with range [0, 255]. If 188 | dst_type is np.float32, it converts the image to np.float32 type 189 | with range [0, 1]. 190 | Returns: 191 | (ndarray): The converted image with desired type and range. 192 | """ 193 | if dst_type not in (np.uint8, np.float32): 194 | raise TypeError('The dst_type should be np.float32 or np.uint8, ' 195 | f'but got {dst_type}') 196 | if dst_type == np.uint8: 197 | img = img.round() 198 | else: 199 | img /= 255. 200 | 201 | return img.astype(dst_type) 202 | 203 | 204 | def rgb2ycbcr(img, y_only=False): 205 | """Convert a RGB image to YCbCr image. 206 | 207 | This function produces the same results as Matlab's `rgb2ycbcr` function. 208 | It implements the ITU-R BT.601 conversion for standard-definition 209 | television. See more details in 210 | https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. 211 | It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`. 212 | In OpenCV, it implements a JPEG conversion. See more details in 213 | https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. 214 | 215 | Args: 216 | img (ndarray): The input image. It accepts: 217 | 1. np.uint8 type with range [0, 255]; 218 | 2. np.float32 type with range [0, 1]. 219 | y_only (bool): Whether to only return Y channel. Default: False. 220 | Returns: 221 | ndarray: The converted YCbCr image. The output image has the same type 222 | and range as input image. 223 | """ 224 | img_type = img.dtype 225 | img = _convert_input_type_range(img) 226 | if y_only: 227 | out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0 228 | else: 229 | out_img = np.matmul(img, 230 | [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], 231 | [24.966, 112.0, -18.214]]) + [16, 128, 128] 232 | out_img = _convert_output_type_range(out_img, img_type) 233 | return out_img 234 | 235 | 236 | def to_y_channel(img): 237 | """Change to Y channel of YCbCr. 238 | 239 | Args: 240 | img (ndarray): Images with range [0, 255]. 241 | Returns: 242 | (ndarray): Images with range [0, 255] (float type) without round. 243 | """ 244 | img = img.astype(np.float32) / 255. 245 | if img.ndim == 3 and img.shape[2] == 3: 246 | img = rgb2ycbcr(img, y_only=True) 247 | img = img[..., None] 248 | return img * 255. 249 | 250 | 251 | def augment_image(image, times=8): 252 | """Geometric augmentation.""" 253 | if times == 4: # only rotate image 254 | images = [] 255 | for k in range(0, 4): 256 | images.append(np.rot90(image, k=k)) 257 | images = np.stack(images, axis=0) 258 | elif times == 8: # roate and flip image 259 | images = [] 260 | for k in range(0, 4): 261 | images.append(np.rot90(image, k=k)) 262 | image = np.fliplr(image) 263 | for k in range(0, 4): 264 | images.append(np.rot90(image, k=k)) 265 | images = np.stack(images, axis=0) 266 | else: 267 | raise Exception(f'Error times: {times}') 268 | return images 269 | 270 | 271 | def deaugment_image(images, times=8): 272 | """Reverse the geometric augmentation.""" 273 | 274 | if times == 4: # only rotate image 275 | image = [] 276 | for k in range(0, 4): 277 | image.append(np.rot90(images[k], k=4-k)) 278 | image = np.stack(image, axis=0) 279 | image = np.mean(image, axis=0) 280 | elif times == 8: # roate and flip image 281 | image = [] 282 | for k in range(0, 4): 283 | image.append(np.rot90(images[k], k=4-k)) 284 | for k in range(0, 4): 285 | image.append(np.fliplr(np.rot90(images[4+k], k=4-k))) 286 | image = np.mean(image, axis=0) 287 | else: 288 | raise Exception(f'Error times: {times}') 289 | return image 290 | 291 | 292 | def is_image_file(filename): 293 | """Check if it is an valid image file by extension.""" 294 | return any( 295 | filename.endswith(extension) 296 | for extension in ['jpeg', 'JPEG', 'jpg', 'png', 'JPG', 'PNG', 'gif']) 297 | 298 | 299 | def save_img(img, pth): 300 | """Save an image to disk. 301 | 302 | Args: 303 | img: jnp.ndarry, [height, width, channels], img will be clipped to [0, 1] 304 | before saved to pth. 305 | pth: string, path to save the image to. 306 | """ 307 | Image.fromarray(np.array( 308 | (np.clip(img, 0., 1.) * 255.).astype(jnp.uint8))).save(pth, 'PNG') 309 | 310 | 311 | def make_shape_even(image): 312 | """Pad the image to have even shapes.""" 313 | height, width = image.shape[0], image.shape[1] 314 | padh = 1 if height % 2 != 0 else 0 315 | padw = 1 if width % 2 != 0 else 0 316 | image = jnp.pad(image, [(0, padh), (0, padw), (0, 0)], mode='reflect') 317 | return image 318 | 319 | 320 | def main(_): 321 | params = get_params(FLAGS.ckpt_path) 322 | 323 | if FLAGS.save_images: 324 | os.makedirs(FLAGS.output_dir, exist_ok=True) 325 | 326 | # sorted is important for continuning an inference job. 327 | filepath = sorted(os.listdir(os.path.join(FLAGS.input_dir, 'input'))) 328 | input_filenames = [ 329 | os.path.join(FLAGS.input_dir, 'input', x) 330 | for x in filepath 331 | if is_image_file(x) 332 | ] 333 | if FLAGS.has_target: 334 | target_filenames = [ 335 | os.path.join(FLAGS.input_dir, 'target', x) 336 | for x in filepath 337 | if is_image_file(x) 338 | ] 339 | num_images = len(input_filenames) 340 | 341 | model_mod = importlib.import_module(f'maxim.models.{_MODEL_FILENAME}') 342 | model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS) 343 | model_configs.variant = _MODEL_VARIANT_DICT[FLAGS.task] 344 | model = model_mod.Model(**model_configs) 345 | 346 | psnr_all = [] 347 | 348 | def _process_file(i): 349 | print(f'Processing {i + 1} / {num_images}...') 350 | input_file = input_filenames[i] 351 | input_img = np.asarray(Image.open(input_file).convert('RGB'), 352 | np.float32) / 255. 353 | if FLAGS.has_target: 354 | target_file = target_filenames[i] 355 | target_img = np.asarray(Image.open(target_file).convert('RGB'), 356 | np.float32) / 255. 357 | 358 | # Padding images to have even shapes 359 | height, width = input_img.shape[0], input_img.shape[1] 360 | input_img = make_shape_even(input_img) 361 | height_even, width_even = input_img.shape[0], input_img.shape[1] 362 | 363 | # padding images to be multiplies of 64 364 | input_img = mod_padding_symmetric(input_img, factor=64) 365 | 366 | if FLAGS.geometric_ensemble: 367 | input_img = augment_image(input_img, FLAGS.ensemble_times) 368 | else: 369 | input_img = np.expand_dims(input_img, axis=0) 370 | 371 | # handle multi-stage outputs, obtain the last scale output of last stage 372 | preds = model.apply({'params': flax.core.freeze(params)}, input_img) 373 | if isinstance(preds, list): 374 | preds = preds[-1] 375 | if isinstance(preds, list): 376 | preds = preds[-1] 377 | 378 | # De-ensemble by averaging inferenced results. 379 | if FLAGS.geometric_ensemble: 380 | preds = deaugment_image(preds, FLAGS.ensemble_times) 381 | else: 382 | preds = np.array(preds[0], np.float32) 383 | 384 | # unpad images to get the original resolution 385 | new_height, new_width = preds.shape[0], preds.shape[1] 386 | h_start = new_height // 2 - height_even // 2 387 | h_end = h_start + height 388 | w_start = new_width // 2 - width_even // 2 389 | w_end = w_start + width 390 | preds = preds[h_start:h_end, w_start:w_end, :] 391 | 392 | # print PSNR scores 393 | if FLAGS.has_target: 394 | psnr = calculate_psnr( 395 | target_img * 255., preds * 255., crop_border=0, test_y_channel=False) 396 | print(f'{i}th image: psnr = {psnr:.4f}') 397 | else: 398 | psnr = -1 399 | 400 | # save files 401 | basename = os.path.basename(input_file) 402 | if FLAGS.save_images: 403 | save_pth = os.path.join(FLAGS.output_dir, basename) 404 | save_img(preds, save_pth) 405 | 406 | return psnr 407 | 408 | for i in range(num_images): 409 | psnr = _process_file(i) 410 | psnr_all.append(psnr) 411 | 412 | psnr_all = np.asarray(psnr_all) 413 | 414 | print(f'average psnr = {np.sum(psnr_all)/num_images:.4f}') 415 | print(f'std psnr = {np.std(psnr_all):.4f}') 416 | 417 | 418 | if __name__ == '__main__': 419 | app.run(main) 420 | -------------------------------------------------------------------------------- /maxim/test_maxim.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | """Test maxim.""" 16 | from absl.testing import absltest 17 | 18 | if __name__ == '__main__': 19 | absltest.main() 20 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | absl-py>=0.12.0 2 | chex>=0.0.7 3 | clu>=0.0.3 4 | einops>=0.3.0 5 | flax>=0.3.3 6 | ml-collections==0.1.0 7 | numpy>=1.19.5 8 | pandas>=1.1.0 9 | tensorflow>=2.0.0-beta1 10 | jax>=0.1.55 11 | jaxlib>=0.1.37 12 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | # Copyright 2022 Google LLC. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | 15 | """Install MAXIM.""" 16 | 17 | import setuptools 18 | 19 | # Get install requirements from the REQUIREMENTS file. 20 | with open('requirements.txt') as fp: 21 | _REQUIREMENTS = fp.read().splitlines() 22 | 23 | # Get the long description from the README file. 24 | with open('README.md') as fp: 25 | _LONG_DESCRIPTION = fp.read() 26 | 27 | setuptools.setup( 28 | name='maxim', 29 | version='1.0.0', 30 | description='MAXIM: Multi-Axis MLP for Image Processing', 31 | long_description=_LONG_DESCRIPTION, 32 | long_description_content_type='text/markdown', 33 | author='Google Inc.', 34 | author_email='no-reply@google.com', 35 | url='http://github.com/google-research/maxim', 36 | license='Apache 2.0', 37 | packages=[ 38 | 'maxim', 'maxim.models', 39 | ], 40 | scripts=[], 41 | install_requires=_REQUIREMENTS, 42 | keywords='deeplearning machinelearning transformer mlp lowlevel imageprocessing', 43 | ) 44 | --------------------------------------------------------------------------------