├── CONTRIBUTING.md ├── LICENSE ├── README.md ├── colabs ├── distillation_self_training.ipynb ├── finetuning.ipynb ├── intriguing_properties │ ├── README.md │ ├── digits_on_tf_flowers.ipynb │ ├── generalized_contrastive_loss.ipynb │ └── randbits_mnist.ipynb └── load_and_inference.ipynb ├── data.py ├── data_util.py ├── imagenet_subsets ├── 10percent.txt └── 1percent.txt ├── lars_optimizer.py ├── model.py ├── model_util.py ├── objective.py ├── requirements.txt ├── resnet.py ├── run.py └── tf2 ├── README.md ├── colabs ├── distillation_self_training.ipynb ├── finetuning.ipynb ├── imagenet_results.ipynb └── load_and_inference.ipynb ├── data.py ├── data_util.py ├── lars_optimizer.py ├── metrics.py ├── model.py ├── objective.py ├── requirements.txt ├── resnet.py └── run.py /CONTRIBUTING.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/CONTRIBUTING.md -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/LICENSE -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/README.md -------------------------------------------------------------------------------- /colabs/distillation_self_training.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/distillation_self_training.ipynb -------------------------------------------------------------------------------- /colabs/finetuning.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/finetuning.ipynb -------------------------------------------------------------------------------- /colabs/intriguing_properties/README.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/intriguing_properties/README.md -------------------------------------------------------------------------------- /colabs/intriguing_properties/digits_on_tf_flowers.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/intriguing_properties/digits_on_tf_flowers.ipynb -------------------------------------------------------------------------------- /colabs/intriguing_properties/generalized_contrastive_loss.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/intriguing_properties/generalized_contrastive_loss.ipynb -------------------------------------------------------------------------------- /colabs/intriguing_properties/randbits_mnist.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/intriguing_properties/randbits_mnist.ipynb -------------------------------------------------------------------------------- /colabs/load_and_inference.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/colabs/load_and_inference.ipynb -------------------------------------------------------------------------------- /data.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/data.py -------------------------------------------------------------------------------- /data_util.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/data_util.py -------------------------------------------------------------------------------- /imagenet_subsets/10percent.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/imagenet_subsets/10percent.txt -------------------------------------------------------------------------------- /imagenet_subsets/1percent.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/imagenet_subsets/1percent.txt -------------------------------------------------------------------------------- /lars_optimizer.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/lars_optimizer.py -------------------------------------------------------------------------------- /model.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/model.py -------------------------------------------------------------------------------- /model_util.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/model_util.py -------------------------------------------------------------------------------- /objective.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/objective.py -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/requirements.txt -------------------------------------------------------------------------------- /resnet.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/resnet.py -------------------------------------------------------------------------------- /run.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/run.py -------------------------------------------------------------------------------- /tf2/README.md: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/README.md -------------------------------------------------------------------------------- /tf2/colabs/distillation_self_training.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/colabs/distillation_self_training.ipynb -------------------------------------------------------------------------------- /tf2/colabs/finetuning.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/colabs/finetuning.ipynb -------------------------------------------------------------------------------- /tf2/colabs/imagenet_results.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/colabs/imagenet_results.ipynb -------------------------------------------------------------------------------- /tf2/colabs/load_and_inference.ipynb: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/colabs/load_and_inference.ipynb -------------------------------------------------------------------------------- /tf2/data.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/data.py -------------------------------------------------------------------------------- /tf2/data_util.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/data_util.py -------------------------------------------------------------------------------- /tf2/lars_optimizer.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/lars_optimizer.py -------------------------------------------------------------------------------- /tf2/metrics.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/metrics.py -------------------------------------------------------------------------------- /tf2/model.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/model.py -------------------------------------------------------------------------------- /tf2/objective.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/objective.py -------------------------------------------------------------------------------- /tf2/requirements.txt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/requirements.txt -------------------------------------------------------------------------------- /tf2/resnet.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/resnet.py -------------------------------------------------------------------------------- /tf2/run.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/google-research/simclr/HEAD/tf2/run.py --------------------------------------------------------------------------------