├── readme_pics ├── jax_logo.png ├── going_deeper.jpg ├── tpu_jit_speed.PNG └── api_onion_structure.jpg ├── .gitignore ├── LICENCE ├── README.md ├── Tutorial_3_JAX_Neural_Network_from_Scratch_Colab.ipynb └── Tutorial_4_Flax_Zero2Hero_Colab.ipynb /readme_pics/jax_logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gordicaleksa/get-started-with-JAX/HEAD/readme_pics/jax_logo.png -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # PyCharm IDE 2 | .idea 3 | __pycache__ 4 | 5 | # Jupyter notebook checkpoints 6 | .ipynb_checkpoints 7 | 8 | -------------------------------------------------------------------------------- /readme_pics/going_deeper.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gordicaleksa/get-started-with-JAX/HEAD/readme_pics/going_deeper.jpg -------------------------------------------------------------------------------- /readme_pics/tpu_jit_speed.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gordicaleksa/get-started-with-JAX/HEAD/readme_pics/tpu_jit_speed.PNG -------------------------------------------------------------------------------- /readme_pics/api_onion_structure.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gordicaleksa/get-started-with-JAX/HEAD/readme_pics/api_onion_structure.jpg -------------------------------------------------------------------------------- /LICENCE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Aleksa Gordić 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## Get started with JAX! :computer: :zap: 2 | 3 | The goal of this repo is to make it easier to get started with [JAX](https://github.com/google/jax), [Flax](https://github.com/google/flax), and [Haiku](https://github.com/deepmind/dm-haiku)! 4 | 5 | `JAX` ecosystem is becoming an increasingly popular alternative to `PyTorch` and `TensorFlow`. :sunglasses: 6 | 7 |
8 |
9 | 10 |

11 | 12 |

13 | 14 |
15 |
16 | 17 | *Note: I'm only going to recommend content that I've personally analyzed and found useful here. 18 | If you want a comprehensive list check out the [awesome-jax repo](https://github.com/n2cholas/awesome-jax).* 19 | 20 | ## Table of Contents 21 | * [Machine Learning with JAX](#my-machine-learning-with-jax-tutorials) 22 | + [Tutorial #1: From Zero to Hero](#tutorial-1-from-zero-to-hero) 23 | + [Tutorial #2: From Hero to Hero Pro+](#tutorial-2-from-hero-to-heropro) 24 | + [Tutorial #3: Coding a Neural Network from Scratch in Pure JAX](#tutorial-3-building-a-neural-network-from-scratch) 25 | + [Tutorial #4: Flax From Zero to Hero](#tutorial-4-machine-learning-with-flax---from-zero-to-hero) 26 | + [Tutorial #5: Haiku From Zero to Hero (coming soon)](#tutorial-5-coming-up-machine-learning-with-haiku---from-zero-to-hero) 27 | * [Other useful JAX resources](#other-useful-content) 28 | 29 | ## My Machine Learning with JAX Tutorials 30 | 31 | *Tip on how to use notebooks: just open the notebook directly in Google Colab 32 | (you'll see a button on top of the Jupyter file which will direct you to Colab). 33 | This way you can avoid having to setup the Python env! (This was especially convenient for me since I'm on Windows which is still not supported)* 34 | 35 | ### Tutorial #1: From Zero to Hero 36 | 37 | In this video, we start from the basics and then gradually dig into the nitty-gritty details 38 | of `jit`, `grad`, `vmap`, and various other idiosyncrasies of JAX. 39 | 40 | [YouTube Video (Tutorial #1)](https://youtu.be/SstuvS-tVc0)
41 | [Accompanying Jupyter Notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_1_JAX_Zero2Hero_Colab.ipynb)
42 | 43 |

44 | JAX from zero to hero! 46 |

47 | 48 | ### Tutorial #2: From Hero to HeroPro+ 49 | 50 | In this video, we learn all additional components needed to train ML models (such as NNs) on multiple machines! 51 | We'll train a simple MLP model and we'll even train an ML model on 8 TPU cores! 52 | 53 | [YouTube Video (Tutorial #2)](https://www.youtube.com/watch?v=CQQaifxuFcs)
54 | [Accompanying Jupyter Notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_2_JAX_HeroPro%2B_Colab.ipynb)
55 | 56 |

57 | JAX from Hero to HeroPro+! 59 |

60 | 61 | ### Tutorial #3: Building a Neural Network from Scratch 62 | 63 | Watch me code a Neural Network from scratch! :partying_face: In this 3rd video of the JAX tutorials series. 64 | 65 | In this video, I build an [MLP](https://en.wikipedia.org/wiki/Multilayer_perceptron) and train it as a classifier on MNIST 66 | using PyTorch's data loader (although it's trivial to use a more complex dataset) - all this in "pure" JAX (no Flax/Haiku/Optax). 67 | 68 | I then do an additional analysis: 69 | * Visualize MLP's learned weights 70 | * Visualize embeddings of a batch of images using t-SNE 71 | * Finally, I analyze whether we have too many dead ReLU neurons in our network 72 | 73 | [YouTube Video (Tutorial #3)](https://www.youtube.com/watch?v=6_PqUPxRmjY)
74 | [Accompanying Jupyter Notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_3_JAX_Neural_Network_from_Scratch_Colab.ipynb) (Note: I'll soon refactor it but I'll link the original)
75 | 76 |

77 | Building a Neural Network from Scratch in pure JAX! 79 |

80 | 81 | --- 82 | 83 | ### Tutorial #4: Machine Learning with Flax - From Zero to Hero 84 | 85 | In this video, I cover everything you need to know to get started with [Flax](https://github.com/google/flax)! 86 | 87 | We cover `init`, `apply`, `TrainState`, etc. and other idiosyncrasies like the usage of `mutable` and `rngs` keywords. 88 | 89 | [YouTube Video (Tutorial #4)](https://www.youtube.com/watch?v=5eUSmJvK8WA)
90 | [Accompanying Jupyter Notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_4_Flax_Zero2Hero_Colab.ipynb)
91 | 92 |

93 | Flax from Zero to Hero! 95 |

96 | 97 | --- 98 | 99 | ### Tutorial #5 (coming up): Machine Learning with Haiku - From Zero to Hero 100 | 101 | todo 102 | 103 | ## Other useful content 104 | 105 | Aside from the [official docs](https://jax.readthedocs.io/) here are some resources that helped me. 106 | 107 | ### Videos 108 | 109 | * [Introduction to JAX](https://www.youtube.com/watch?v=0mVmRHMaOJ4&ab_channel=GoogleCloudTech) (gives a very high-level overview) 110 | * [JAX: Accelerated Machine Learning Research | SciPy 2020 | VanderPlas](https://www.youtube.com/watch?v=z-WSrQDXkuM&ab_channel=Enthought) (many more details) 111 | * [NeurIPS 2020: JAX Ecosystem Meetup](https://www.youtube.com/watch?v=iDxJxIyzSiM&t=1s&ab_channel=DeepMind) (DeepMind team about the ecosystem of libs around JAX) 112 | * [Introduction to JAX for Machine Learning and More](https://www.youtube.com/watch?v=QkmKfzxbCLQ&ab_channel=UWaterlooDataScience) (nice, hands-on workshop) 113 | * [Day 1 Talks: JAX, Flax & Transformers | HuggingFace](https://www.youtube.com/watch?v=fuAyUQcVzTY&ab_channel=HuggingFace) (all 4 talks are good) 114 | * [Day 2 Talks: JAX, Flax & Transformers | HuggingFace](https://www.youtube.com/watch?v=__eG63ZP_5g&ab_channel=HuggingFace) (only the first 2 talks are relevant) 115 | 116 | ### Blogs 117 | 118 | * [Using JAX to accelerate our research | DeepMind](https://deepmind.com/blog/article/using-jax-to-accelerate-our-research) (similar info as the NeuroIPS 2020 video) 119 | * [You don't know JAX | Colin Raffel](https://colinraffel.com/blog/you-don-t-know-jax.html) 120 | 121 | ## Acknowledgements 122 | 123 | * The notebooks were heavily inspired by the official [JAX](https://jax.readthedocs.io/), [Flax](https://flax.readthedocs.io/en/latest/), and [Haiku](https://dm-haiku.readthedocs.io/en/latest/) docs. 124 | 125 | ## Citation 126 | 127 | If you find this content useful, please cite the following: 128 | 129 | ``` 130 | @misc{Gordic2021GetStartedWithJAX, 131 | author = {Gordić, Aleksa}, 132 | title = {Get started with JAX}, 133 | year = {2021}, 134 | publisher = {GitHub}, 135 | journal = {GitHub repository}, 136 | howpublished = {\url{https://github.com/gordicaleksa/get-started-with-JAX}}, 137 | } 138 | ``` 139 | 140 | ## Connect With Me 141 | 142 | If you'd love to have some more AI-related content in your life :nerd_face:, consider: 143 | * Subscribing to my YouTube channel [The AI Epiphany](https://www.youtube.com/c/TheAiEpiphany) :bell: 144 | * Follow me on [LinkedIn](https://www.linkedin.com/in/aleksagordic/) and [Twitter](https://twitter.com/gordic_aleksa) :bulb: 145 | * Follow me on [Medium](https://gordicaleksa.medium.com/) :books: :heart: 146 | * Join the [Discord](https://discord.gg/peBrCpheKE) community! :family: 147 | 148 | ## Licence 149 | 150 | [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/gordicaleksa/get-started-with-JAX/blob/master/LICENCE) -------------------------------------------------------------------------------- /Tutorial_3_JAX_Neural_Network_from_Scratch_Colab.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "Tutorial 3: JAX - Building a Neural Network from Scratch.ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "authorship_tag": "ABX9TyMpTL6XC+tcxSqZ2FePUhlZ", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | } 19 | }, 20 | "cells": [ 21 | { 22 | "cell_type": "markdown", 23 | "metadata": { 24 | "id": "view-in-github", 25 | "colab_type": "text" 26 | }, 27 | "source": [ 28 | "\"Open" 29 | ] 30 | }, 31 | { 32 | "cell_type": "markdown", 33 | "metadata": { 34 | "id": "XZuyP-M3KPUR" 35 | }, 36 | "source": [ 37 | "# MLP training on MNIST" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "metadata": { 43 | "id": "8-SzJ0NTKRP1" 44 | }, 45 | "source": [ 46 | "import numpy as np\n", 47 | "import jax.numpy as jnp\n", 48 | "from jax.scipy.special import logsumexp\n", 49 | "import jax\n", 50 | "from jax import jit, vmap, pmap, grad, value_and_grad\n", 51 | "\n", 52 | "from torchvision.datasets import MNIST\n", 53 | "from torch.utils.data import DataLoader" 54 | ], 55 | "execution_count": 1, 56 | "outputs": [] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "metadata": { 61 | "colab": { 62 | "base_uri": "https://localhost:8080/" 63 | }, 64 | "id": "G4NrxSVjKt8f", 65 | "outputId": "6bb8bef6-3098-4fd5-8ffe-62f4b0b1aa79" 66 | }, 67 | "source": [ 68 | "seed = 0\n", 69 | "mnist_img_size = (28, 28)\n", 70 | "\n", 71 | "def init_MLP(layer_widths, parent_key, scale=0.01):\n", 72 | "\n", 73 | " params = []\n", 74 | " keys = jax.random.split(parent_key, num=len(layer_widths)-1)\n", 75 | "\n", 76 | " for in_width, out_width, key in zip(layer_widths[:-1], layer_widths[1:], keys):\n", 77 | " weight_key, bias_key = jax.random.split(key)\n", 78 | " params.append([\n", 79 | " scale*jax.random.normal(weight_key, shape=(out_width, in_width)),\n", 80 | " scale*jax.random.normal(bias_key, shape=(out_width,))\n", 81 | " ]\n", 82 | " )\n", 83 | "\n", 84 | " return params\n", 85 | "\n", 86 | "# test\n", 87 | "key = jax.random.PRNGKey(seed)\n", 88 | "MLP_params = init_MLP([784, 512, 256, 10], key)\n", 89 | "print(jax.tree_map(lambda x: x.shape, MLP_params))" 90 | ], 91 | "execution_count": 4, 92 | "outputs": [ 93 | { 94 | "output_type": "stream", 95 | "name": "stdout", 96 | "text": [ 97 | "[[(512, 784), (512,)], [(256, 512), (256,)], [(10, 256), (10,)]]\n" 98 | ] 99 | } 100 | ] 101 | }, 102 | { 103 | "cell_type": "code", 104 | "metadata": { 105 | "colab": { 106 | "base_uri": "https://localhost:8080/" 107 | }, 108 | "id": "U_z7eLxINv9x", 109 | "outputId": "e9909f9f-6778-4977-91f1-f5b14dd9ecd4" 110 | }, 111 | "source": [ 112 | "def MLP_predict(params, x):\n", 113 | " hidden_layers = params[:-1]\n", 114 | "\n", 115 | " activation = x\n", 116 | " for w, b in hidden_layers:\n", 117 | " activation = jax.nn.relu(jnp.dot(w, activation) + b)\n", 118 | "\n", 119 | " w_last, b_last = params[-1]\n", 120 | " logits = jnp.dot(w_last, activation) + b_last\n", 121 | "\n", 122 | " # log(exp(o1)) - log(sum(exp(o1), exp(o2), ..., exp(o10)))\n", 123 | " # log( exp(o1) / sum(...) )\n", 124 | " return logits - logsumexp(logits)\n", 125 | "\n", 126 | "# tests\n", 127 | "\n", 128 | "# test single example\n", 129 | "\n", 130 | "dummy_img_flat = np.random.randn(np.prod(mnist_img_size))\n", 131 | "print(dummy_img_flat.shape)\n", 132 | "\n", 133 | "prediction = MLP_predict(MLP_params, dummy_img_flat)\n", 134 | "print(prediction.shape)\n", 135 | "\n", 136 | "# test batched function\n", 137 | "batched_MLP_predict = vmap(MLP_predict, in_axes=(None, 0))\n", 138 | "\n", 139 | "dummy_imgs_flat = np.random.randn(16, np.prod(mnist_img_size))\n", 140 | "print(dummy_imgs_flat.shape)\n", 141 | "predictions = batched_MLP_predict(MLP_params, dummy_imgs_flat)\n", 142 | "print(predictions.shape)" 143 | ], 144 | "execution_count": 5, 145 | "outputs": [ 146 | { 147 | "output_type": "stream", 148 | "name": "stdout", 149 | "text": [ 150 | "(784,)\n", 151 | "(10,)\n", 152 | "(16, 784)\n", 153 | "(16, 10)\n" 154 | ] 155 | } 156 | ] 157 | }, 158 | { 159 | "cell_type": "code", 160 | "metadata": { 161 | "colab": { 162 | "base_uri": "https://localhost:8080/" 163 | }, 164 | "id": "5pPM1dZ4QyYe", 165 | "outputId": "3317666b-e167-46b7-8cf4-b8592adc065a" 166 | }, 167 | "source": [ 168 | "def custom_transform(x):\n", 169 | " return np.ravel(np.array(x, dtype=np.float32))\n", 170 | "\n", 171 | "def custom_collate_fn(batch):\n", 172 | " transposed_data = list(zip(*batch))\n", 173 | "\n", 174 | " labels = np.array(transposed_data[1])\n", 175 | " imgs = np.stack(transposed_data[0])\n", 176 | "\n", 177 | " return imgs, labels\n", 178 | "\n", 179 | "batch_size = 128\n", 180 | "train_dataset = MNIST(root='train_mnist', train=True, download=True, transform=custom_transform)\n", 181 | "test_dataset = MNIST(root='test_mnist', train=False, download=True, transform=custom_transform)\n", 182 | "\n", 183 | "train_loader = DataLoader(train_dataset, batch_size, shuffle=True, collate_fn=custom_collate_fn, drop_last=True)\n", 184 | "test_loader = DataLoader(test_dataset, batch_size, shuffle=False, collate_fn=custom_collate_fn, drop_last=True)\n", 185 | "\n", 186 | "# test\n", 187 | "batch_data = next(iter(train_loader))\n", 188 | "imgs = batch_data[0]\n", 189 | "lbls = batch_data[1]\n", 190 | "print(imgs.shape, imgs[0].dtype, lbls.shape, lbls[0].dtype)\n", 191 | "\n", 192 | "# optimization - loading the whole dataset into memory\n", 193 | "train_images = jnp.array(train_dataset.data).reshape(len(train_dataset), -1)\n", 194 | "train_lbls = jnp.array(train_dataset.targets)\n", 195 | "\n", 196 | "test_images = jnp.array(test_dataset.data).reshape(len(test_dataset), -1)\n", 197 | "test_lbls = jnp.array(test_dataset.targets)" 198 | ], 199 | "execution_count": null, 200 | "outputs": [ 201 | { 202 | "output_type": "stream", 203 | "name": "stdout", 204 | "text": [ 205 | "(128, 784) float32 (128,) int64\n" 206 | ] 207 | } 208 | ] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "metadata": { 213 | "id": "YQEYcSNzVeim" 214 | }, 215 | "source": [ 216 | "num_epochs = 5\n", 217 | "\n", 218 | "def loss_fn(params, imgs, gt_lbls):\n", 219 | " predictions = batched_MLP_predict(params, imgs)\n", 220 | "\n", 221 | " return -jnp.mean(predictions * gt_lbls)\n", 222 | "\n", 223 | "def accuracy(params, dataset_imgs, dataset_lbls):\n", 224 | " pred_classes = jnp.argmax(batched_MLP_predict(params, dataset_imgs), axis=1)\n", 225 | " return jnp.mean(dataset_lbls == pred_classes)\n", 226 | "\n", 227 | "@jit\n", 228 | "def update(params, imgs, gt_lbls, lr=0.01):\n", 229 | " loss, grads = value_and_grad(loss_fn)(params, imgs, gt_lbls)\n", 230 | "\n", 231 | " return loss, jax.tree_multimap(lambda p, g: p - lr*g, params, grads)\n", 232 | "\n", 233 | "# Create a MLP\n", 234 | "MLP_params = init_MLP([np.prod(mnist_img_size), 512, 256, len(MNIST.classes)], key)\n", 235 | "\n", 236 | "for epoch in range(num_epochs):\n", 237 | "\n", 238 | " for cnt, (imgs, lbls) in enumerate(train_loader):\n", 239 | "\n", 240 | " gt_labels = jax.nn.one_hot(lbls, len(MNIST.classes))\n", 241 | " \n", 242 | " loss, MLP_params = update(MLP_params, imgs, gt_labels)\n", 243 | " \n", 244 | " if cnt % 50 == 0:\n", 245 | " print(loss)\n", 246 | "\n", 247 | " print(f'Epoch {epoch}, train acc = {accuracy(MLP_params, train_images, train_lbls)} test acc = {accuracy(MLP_params, test_images, test_lbls)}')\n" 248 | ], 249 | "execution_count": null, 250 | "outputs": [] 251 | }, 252 | { 253 | "cell_type": "code", 254 | "metadata": { 255 | "colab": { 256 | "base_uri": "https://localhost:8080/", 257 | "height": 316 258 | }, 259 | "id": "YmdBRBvU1wuA", 260 | "outputId": "efcfa75e-d0bb-4f16-9fb2-e85e82a53bcf" 261 | }, 262 | "source": [ 263 | "imgs, lbls = next(iter(test_loader))\n", 264 | "img = imgs[0].reshape(mnist_img_size)\n", 265 | "gt_lbl = lbls[0]\n", 266 | "print(img.shape)\n", 267 | "\n", 268 | "import matplotlib.pyplot as plt\n", 269 | "\n", 270 | "pred = jnp.argmax(MLP_predict(MLP_params, np.ravel(img)))\n", 271 | "print('pred', pred)\n", 272 | "print('gt', gt_lbl)\n", 273 | "\n", 274 | "plt.imshow(img); plt.show()" 275 | ], 276 | "execution_count": null, 277 | "outputs": [ 278 | { 279 | "output_type": "stream", 280 | "name": "stdout", 281 | "text": [ 282 | "(28, 28)\n", 283 | "pred 7\n", 284 | "gt 7\n" 285 | ] 286 | }, 287 | { 288 | "output_type": "display_data", 289 | "data": { 290 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANiklEQVR4nO3df4wc9XnH8c8n/kV8QGtDcF3j4ISQqE4aSHWBRNDKESUFImSiJBRLtVyJ5lALElRRW0QVBalVSlEIok0aySluHESgaQBhJTSNa6W1UKljg4yxgdaEmsau8QFOaxPAP/DTP24cHXD7vWNndmft5/2SVrs7z87Oo/F9PLMzO/t1RAjA8e9tbTcAoD8IO5AEYQeSIOxAEoQdSGJ6Pxc207PiBA31c5FAKq/qZzoYBzxRrVbYbV8s6XZJ0yT9bUTcXHr9CRrSeb6wziIBFGyIdR1rXe/G254m6auSLpG0WNIy24u7fT8AvVXnM/u5kp6OiGci4qCkeyQtbaYtAE2rE/YFkn4y7vnOatrr2B6xvcn2pkM6UGNxAOro+dH4iFgZEcMRMTxDs3q9OAAd1An7LkkLxz0/vZoGYADVCftGSWfZfpftmZKulLSmmbYANK3rU28Rcdj2tZL+SWOn3lZFxLbGOgPQqFrn2SPiQUkPNtQLgB7i67JAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJGoN2Wx7h6T9kl6TdDgihptoCkDzaoW98rGIeKGB9wHQQ+zGA0nUDXtI+oHtR2yPTPQC2yO2N9nedEgHai4OQLfq7sZfEBG7bJ8maa3tpyJi/fgXRMRKSSsl6WTPjZrLA9ClWlv2iNhV3Y9Kul/SuU00BaB5XYfd9pDtk44+lvRxSVubagxAs+rsxs+TdL/to+/zrYj4fiNdAWhc12GPiGcknd1gLwB6iFNvQBKEHUiCsANJEHYgCcIOJNHEhTApvPjZj3asvXP508V5nxqdV6wfPDCjWF9wd7k+e+dLHWtHNj9RnBd5sGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4zz5Ff/xH3+pY+9TQT8szn1lz4UvK5R2HX+5Yu/35j9Vc+LHrR6NndKwN3foLxXmnr3uk6XZax5YdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JwRP8GaTnZc+M8X9i35TXpZ58+r2PthQ+W/8+c82R5Hf/0V1ysz/zg/xbrt3zgvo61i97+SnHe7718YrH+idmdr5Wv65U4WKxvODBUrC854VDXy37P964u1t87srHr927ThlinfbF3wj8otuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATXs0/R0Hc2FGr13vvkerPrr39pScfan5+/qLzsfy3/5v0tS97TRUdTM/2VI8X60Jbdxfop6+8t1n91Zuff25+9o/xb/MejSbfstlfZHrW9ddy0ubbX2t5e3c/pbZsA6prKbvw3JF38hmk3SFoXEWdJWlc9BzDAJg17RKyXtPcNk5dKWl09Xi3p8ob7AtCwbj+zz4uIox+onpPUcTAz2yOSRiTpBM3ucnEA6qp9ND7GrqTpeKVHRKyMiOGIGJ6hWXUXB6BL3YZ9j+35klTdjzbXEoBe6DbsayStqB6vkPRAM+0A6JVJP7Pbvltjv1x+qu2dkr4g6WZJ37Z9laRnJV3RyyZRdvi5PR1rQ/d2rknSa5O899B3Xuyio2bs+b2PFuvvn1n+8/3S3vd1rC36u2eK8x4uVo9Nk4Y9IpZ1KB2bv0IBJMXXZYEkCDuQBGEHkiDsQBKEHUiCS1zRmulnLCzWv3LjV4r1GZ5WrP/D7b/ZsXbK7oeL8x6P2LIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKcZ0drnvrDBcX6h2eVh7LedrA8HPXcJ15+yz0dz9iyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASnGdHTx34xIc71h799G2TzF0eQej3r7uuWH/7v/1okvfPhS07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBeXb01H9f0nl7cqLL59GX/ddFxfrs7z9WrEexms+kW3bbq2yP2t46btpNtnfZ3lzdLu1tmwDqmspu/DckXTzB9Nsi4pzq9mCzbQFo2qRhj4j1kvb2oRcAPVTnAN21trdUu/lzOr3I9ojtTbY3HdKBGosDUEe3Yf+apDMlnSNpt6RbO70wIlZGxHBEDM+Y5MIGAL3TVdgjYk9EvBYRRyR9XdK5zbYFoGldhd32/HFPPylpa6fXAhgMk55nt323pCWSTrW9U9IXJC2xfY7GTmXukHR1D3vEAHvbSScV68t//aGOtX1HXi3OO/rFdxfrsw5sLNbxepOGPSKWTTD5jh70AqCH+LoskARhB5Ig7EAShB1IgrADSXCJK2rZftP7i/Xvnvo3HWtLt3+qOO+sBzm11iS27EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOfZUfR/v/ORYn3Lb/9Vsf7jw4c61l76y9OL887S7mIdbw1bdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgvPsyU1f8MvF+vWf//tifZbLf0JXPra8Y+0d/8j16v3Elh1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkuA8+3HO08v/xGd/d2ex/pkTXyzW79p/WrE+7/OdtydHinOiaZNu2W0vtP1D20/Y3mb7umr6XNtrbW+v7uf0vl0A3ZrKbvxhSZ+LiMWSPiLpGtuLJd0gaV1EnCVpXfUcwICaNOwRsTsiHq0e75f0pKQFkpZKWl29bLWky3vVJID63tJndtuLJH1I0gZJ8yLi6I+EPSdpXod5RiSNSNIJmt1tnwBqmvLReNsnSrpX0vURsW98LSJCUkw0X0SsjIjhiBieoVm1mgXQvSmF3fYMjQX9roi4r5q8x/b8qj5f0mhvWgTQhEl3421b0h2SnoyIL48rrZG0QtLN1f0DPekQ9Zz9vmL5z067s9bbf/WLnynWf/Gxh2u9P5ozlc/s50taLulx25uraTdqLOTftn2VpGclXdGbFgE0YdKwR8RDktyhfGGz7QDoFb4uCyRB2IEkCDuQBGEHkiDsQBJc4nocmLb4vR1rI/fU+/rD4lXXFOuL7vz3Wu+P/mHLDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJcJ79OPDUH3T+Yd/LZu/rWJuK0//lYPkFMeEPFGEAsWUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4z34MePWyc4v1dZfdWqgy5BbGsGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSSmMj77QknflDRPUkhaGRG3275J0mclPV+99MaIeLBXjWb2P+dPK9bfOb37c+l37T+tWJ+xr3w9O1ezHzum8qWaw5I+FxGP2j5J0iO211a12yLiS71rD0BTpjI++25Ju6vH+20/KWlBrxsD0Ky39Jnd9iJJH5K0oZp0re0ttlfZnvC3kWyP2N5ke9MhHajVLIDuTTnstk+UdK+k6yNin6SvSTpT0jka2/JP+AXtiFgZEcMRMTxDsxpoGUA3phR22zM0FvS7IuI+SYqIPRHxWkQckfR1SeWrNQC0atKw27akOyQ9GRFfHjd9/riXfVLS1ubbA9CUqRyNP1/SckmP295cTbtR0jLb52js7MsOSVf3pEPU8hcvLi7WH/6tRcV67H68wW7QpqkcjX9IkicocU4dOIbwDTogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Drl7sufGeb6wb8sDstkQ67Qv9k50qpwtO5AFYQeSIOxAEoQdSIKwA0kQdiAJwg4k0dfz7Lafl/TsuEmnSnqhbw28NYPa26D2JdFbt5rs7YyIeMdEhb6G/U0LtzdFxHBrDRQMam+D2pdEb93qV2/sxgNJEHYgibbDvrLl5ZcMam+D2pdEb93qS2+tfmYH0D9tb9kB9AlhB5JoJey2L7b9H7aftn1DGz10YnuH7cdtb7a9qeVeVtketb113LS5ttfa3l7dTzjGXku93WR7V7XuNtu+tKXeFtr+oe0nbG+zfV01vdV1V+irL+ut75/ZbU+T9J+SLpK0U9JGScsi4om+NtKB7R2ShiOi9S9g2P4NSS9J+mZEfKCadoukvRFxc/Uf5ZyI+JMB6e0mSS+1PYx3NVrR/PHDjEu6XNLvqsV1V+jrCvVhvbWxZT9X0tMR8UxEHJR0j6SlLfQx8CJivaS9b5i8VNLq6vFqjf2x9F2H3gZCROyOiEerx/slHR1mvNV1V+irL9oI+wJJPxn3fKcGa7z3kPQD24/YHmm7mQnMi4jd1ePnJM1rs5kJTDqMdz+9YZjxgVl33Qx/XhcH6N7sgoj4NUmXSLqm2l0dSDH2GWyQzp1OaRjvfplgmPGfa3PddTv8eV1thH2XpIXjnp9eTRsIEbGruh+VdL8GbyjqPUdH0K3uR1vu5+cGaRjviYYZ1wCsuzaHP28j7BslnWX7XbZnSrpS0poW+ngT20PVgRPZHpL0cQ3eUNRrJK2oHq+Q9ECLvbzOoAzj3WmYcbW87lof/jwi+n6TdKnGjsj/WNKfttFDh77eLemx6rat7d4k3a2x3bpDGju2cZWkUyStk7Rd0j9LmjtAvd0p6XFJWzQWrPkt9XaBxnbRt0jaXN0ubXvdFfrqy3rj67JAEhygA5Ig7EAShB1IgrADSRB2IAnCDiRB2IEk/h9BCfQTVPflJQAAAABJRU5ErkJggg==\n", 291 | "text/plain": [ 292 | "
" 293 | ] 294 | }, 295 | "metadata": { 296 | "needs_background": "light" 297 | } 298 | } 299 | ] 300 | }, 301 | { 302 | "cell_type": "markdown", 303 | "metadata": { 304 | "id": "TwgI3fZbKRqM" 305 | }, 306 | "source": [ 307 | "# Visualizations" 308 | ] 309 | }, 310 | { 311 | "cell_type": "code", 312 | "metadata": { 313 | "colab": { 314 | "base_uri": "https://localhost:8080/", 315 | "height": 299 316 | }, 317 | "id": "jddJj8zo4D1e", 318 | "outputId": "fb157d1c-4fbe-45a5-c84d-6abe38355a5e" 319 | }, 320 | "source": [ 321 | "w = MLP_params[0][0]\n", 322 | "print(w.shape)\n", 323 | "\n", 324 | "w_single = w[500, :].reshape(mnist_img_size)\n", 325 | "print(w_single.shape)\n", 326 | "plt.imshow(w_single); plt.show()" 327 | ], 328 | "execution_count": null, 329 | "outputs": [ 330 | { 331 | "output_type": "stream", 332 | "name": "stdout", 333 | "text": [ 334 | "(512, 784)\n", 335 | "(28, 28)\n" 336 | ] 337 | }, 338 | { 339 | "output_type": "display_data", 340 | "data": { 341 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAa60lEQVR4nO2deZBddZXHv6f3NZ3u7EtnT4BAWJslLIIgVEAFBEUWKRzR6BSO4qijpVXKTJU1ztSAS80UY1jGaCGog0BURBjAYRXTYUtIAp2EbJ3eknTS3en1vT7zRx5WxP59b9udfq/H3/dT1dWv73m/+/vd373fd1/f8zvnmLtDCPHXT16uByCEyA4SuxCRILELEQkSuxCRILELEQkFWe2spNyLK2qCdqsZoO1ThwrD++7lfaeLuN0TPvaK2/rD+67gO7cpCcfVET4uABgsSvCYuJHGvCmK+BuK2xK6ziN9A0iVhe2D/LCRx6cNBd18XryA9J1w5Q9W8HmZVtpB7a1tE6ndyNB9Qpq2ZQy0HkCqo3vIAx+V2M1sBYDvAcgHcLe7f5u9v7iiBkvf/4Ww/WPNtL+WtdODtkkb+InvmMfVnCqlZiy8a0fQdmD5bNq2aCU/rtanZlF799wUtef1hI8tr4+L0Wv5p+T8/6RmDFTwS2jvSWFFd8/ggipv5Ods0nr+adBflR/uewrfd+95ndR+6wlPUfudP7iC2vPIKU297wBt6+TD/e0vrQr3SfdKMLN8AP8B4FIASwFcZ2ZLR7o/IcTYMpr/2c8AsMXdt7l7P4AHAPCPMyFEzhiN2GcB2HXE37sz2/4EM1tpZvVmVp/qPTSK7oQQo2HMn8a7+yp3r3P3uoKS8rHuTggRYDRibwRQe8TfszPbhBDjkNGIfS2AxWY238yKAFwLYM3RGZYQ4mhjo4l6M7PLAHwXh11v97r7t9j7SxfN9IV3fDJo793EfZNTXgmPdfBvuEN436tTqb3oIHdRlbaE+2Y+UwDoWMDt1Zv4DvIHuL3x4rALq3xKN21rL1ZR+6SL91B7y3Mzqf3qq54N2l7cO5+2rSrqofb3TGqg9u89e0nQdsXpL9O2T/70DGovbeXnpKyFu0t3fDB8vdX+ljZF6efC5+Slz/wEHW+2HH0/u7s/CuDR0exDCJEdtFxWiEiQ2IWIBIldiEiQ2IWIBIldiEiQ2IWIhKzGs3tvPvreCPvSFzzEwwpbzpoQtBX+lPvRS2q4H73ggn3UvndfRbjvZh7PXtLG+z54NT/uno4Sai9qDIeRTn+gmLbdsYL7i8+csp3aHyqbQe331Z8ZNg7yeTl96TZqn1LA561iS/jy/t/13I/eVddH7YfmculMquf2wurw+oeW08to2/Kf1wZtqfbwtag7uxCRILELEQkSuxCRILELEQkSuxCRILELEQlZdb1ZSRqFx4VT8O46NmEH9WFTqiQhpXHYcwYASA/wqZg27WDQNnsRzwb6+vOLqX2gnae2PWnJTmrfsC8cQ9tZy11v837Fs8v+4ak6ardP8FRjSz/fErQdPGcebXtwIZ+Xb6y9nNorifesq5a7HJPcqemErLz24S5qz39pStCWKuNjm7QhHPpb0BMOd9adXYhIkNiFiASJXYhIkNiFiASJXYhIkNiFiASJXYhIyKqffXAgD4dawlVhCg+Eq24CgC8LhwVOeYSHgfZWcz98xxJeP3j2v4Q/F9d9hqfArjyW++HzX6mm9h2vLaT2hR8K++G7lnF/8daGsL8XACZu5PeDKT/n52zLZ8NrAIrb+TlpWRcO5QSA8mbePk3c9GVDZ1v+Iz1Tua97+hq+fmHPhfx6soVhP33hTr7vgq5w+XBLh8etO7sQkSCxCxEJErsQkSCxCxEJErsQkSCxCxEJErsQkZBVPzvyAJSkg+aBydy3uWTa3qBtT+0c2jZ9VjiOHgBm/pin7337qrA/ubCVNkVXVzgFNgAUc5cvOhaEY5QBYODx8LF3L+Vx10Xt/PM+b4Casee8hMFXhX3CeceEbQBQ8btKas9LKGVdelU4lr55/TTatqyJH9dp/0CSKwCYcPMiam8+L7y2onIXL/fcfE54XcfA7vB1Oiqxm9l2AJ0A0gBS7s4zHQghcsbRuLO/193Dt1whxLhA/7MLEQmjFbsDeNzM1pnZyqHeYGYrzazezOrTnTxfmRBi7Bjt1/hz3b3RzKYCeMLMNrv7M0e+wd1XAVgFAMXzZ/MnKkKIMWNUd3Z3b8z8bgXwEABeLU8IkTNGLHYzKzezyndeA7gEwIajNTAhxNFlNF/jpwF4yMze2c9P3P0x2iJtsC7SZUIJ320kvnnhZTto2537ecx481k8Lnv6Kc3htuum07aVW/m+B7gbHvkzwnnCAaC7MBzLb6SELwBUbud9J1HYxc9Z+eZw/0UdPOa7h4fa48CJ3B896edhX/rEhOUB++r4vh97nHuZCy7nHfQfGz6nqYt4uWh7Nuxnd3L7HrHY3X0bgJNG2l4IkV3kehMiEiR2ISJBYhciEiR2ISJBYhciErIb4moOLwgvorN+7q5g4ZY7n55L25566UZqx0xufvGlcD1pr+QhqIPt3PVWsZMvLCx/D09F3fbarKBtxvPcbbfzEp6C2xLcof013EVVvSl8P+mcy+81cx/m8VWeN5nay/aFx9a0nJ+TRffz2N6dl/D2l175e2p/dNvxQZsZvx4q9oSvt3wybN3ZhYgEiV2ISJDYhYgEiV2ISJDYhYgEiV2ISJDYhYiErPrZ8/oN5dvDXc65k4fDN/2YOMOfqKFtu1M8nPKVzfOovWZT2N/s+dwXveiGN6l9y31LqP3Aw2E/OgD0kwRAe84ldYsBpMv4GoHShLLIBd38EqpZG86z3V/JY1i3fZT70Y0PHXvOC9/LPJ/7snefz+dt/i8OUvsjxTyPS8GccIq24jW8BHjzinAK7oEXVbJZiOiR2IWIBIldiEiQ2IWIBIldiEiQ2IWIBIldiEgw9+wVaSmeU+szvnxr0F65nX/2dCwL+xeLd3M/emEH9xdXN/C47IPzw/7kgXN5OWhbx3NFT9rE+953HPdl9xxDUg938rZlpMQvACz9IF8jsOMHfI1A79XhWPz833J/ckE3NSf62buuDJ+Xikf4OWk9O1xaHACQx3VjA/xaLm4Lz3v/Qp6DYOGd4QP/w6t3oqOrcciLXXd2ISJBYhciEiR2ISJBYhciEiR2ISJBYhciEiR2ISIhq/Hs+b1A9cawv7v97F7a/pjalqCt4WC4nDMADC7mTtvWynJqf/8HwnnAH3maxy4X8qrJaEooF52ayP3wee1kjUHCMopDi8NrFwCgKI/7m1PX7KP2jtawP7uigq99aD+Nj614D19b4ZvDfe9bRpuiYiuXRsn5PKf9wU4eD1/wdvh6q/llMW3bOS9sS5M8/Yl3djO718xazWzDEdtqzOwJM2vI/ObFz4UQOWc4X+N/CGDFu7Z9FcCT7r4YwJOZv4UQ45hEsbv7MwD2v2vzFQBWZ16vBnDlUR6XEOIoM9IHdNPcvSnzuhnAtNAbzWylmdWbWX2qJ5x3Swgxtoz6abwfjqQJPgZy91XuXufudQWl/CGYEGLsGKnYW8xsBgBkfodTiAohxgUjFfsaADdlXt8E4JGjMxwhxFiR6Gc3s/sBXABgspntBvBNAN8G8DMzuxnADgDXDKs3A9LFYd/qtovvpc0X3f+ZoM0n8Xrak37J/Z7lTdzH//LZYT9+5WJeP73kAR63nT/AneGNF1IzrXk/c3Ebbdv16HRqb5tfQe1F9/N8/bY8PLb0mTwPwJwfllF7/y38C2XrvrCf3VP8PtfrfHHE4As8p31hwvqG/onhNxzq42Pre09n0JZ+MRzrnih2d78uYLooqa0QYvyg5bJCRILELkQkSOxCRILELkQkSOxCREJWQ1wLO1KY+WQ4JPKUi66l7Vl54Vm/5IdiCSmzp39rG7W/efdxQVv3AtoUZWne9/5r+TJia+TurwUPhUNBd366krYt4VGieKuBlMkG8Nt/vp3a33//l4K23ia+orJ/Ag+BTf90KrXb8WHbrOd56G7bDV3UPriez2thwsrwM64Ilyd/484T+L4fDV8P+QdHEeIqhPjrQGIXIhIkdiEiQWIXIhIkdiEiQWIXIhIkdiEiIbslm2trfdatXwjaFzzMS9Xai+uDti23n07bTn+Rj61sDw9x3frRcHrfqjd5KuhDs/kcD9byvvPfLqH2dGl4/4PFvG9PKD18zD3cYXxwCfc3t9WFbTOe430fWMzntfotnmL7xK+/FrS9cM+pvO9lvB501Rt8bGl+yjBI1jccms+Pi6W53rb6DvQ071LJZiFiRmIXIhIkdiEiQWIXIhIkdiEiQWIXIhIkdiEiIavx7JYGig6EY5QLG99dUu5P2Ux86dNe4n23nsZjowuO5WmLQUoXF3Vwf3He8bys8f6mKmpf8GtebnrnpeGxFzXyz3NLWGbRfA4fW9IagnyyhKBnMj8nJW0JKbYv4Me2a91JQVvhBQk5BPbw66FzIffD5w3wY5t5alPQdmj7FNq2a3E4bfpgSXjOdGcXIhIkdiEiQWIXIhIkdiEiQWIXIhIkdiEiQWIXIhKy62d3IJ9UVm47fxZtP1ga9nV3T+WHUtXAfbbt5/NY+pmPhEv4dnO3KCZ+j8d8H/g4j1/unM/LTePYcI7z3i0853xxe4Kv+6K91J7ex/dvxeFjm31uC227836ekH+whPu6J24IXxMHTuElmcvaEsomn8Cvl7nT+bxtXzs7aJv+Gr9WUzeE16PsLQxrJPHObmb3mlmrmW04YtttZtZoZq9mfi5L2o8QIrcM52v8DwGsGGL7d9z95MzPo0d3WEKIo02i2N39GQB8HasQYtwzmgd0nzWz1zNf86tDbzKzlWZWb2b16e6EAlhCiDFjpGK/E8BCACcDaAIQrO7n7qvcvc7d6/LLeCE/IcTYMSKxu3uLu6fdfRDAXQDOOLrDEkIcbUYkdjObccSfHwIQrj8rhBgXJPrZzex+ABcAmGxmuwF8E8AFZnYyAAewHcCnh9uhE7dub0J8M4hb1S9sp007Nk2k9qoqHjO+5wPhz8Xj/onHq7efPp3aF97J88bvO4HPS2F92I9/qJbXIS9r5vnP/eFJ1I5zw7XhAaCudlfQtu7pY2nb/EkJMeHzuC+7a3N43if9nhem37ecH9dpc8LHBQBbfraE2qtXtAVt+1OTaduCF8L2wa6wpBPF7u7XDbH5nqR2QojxhZbLChEJErsQkSCxCxEJErsQkSCxCxEJWQ1xLdo/gLk/awzaq+87SNuv/+nS8L7Xctda7U3bqf3N38+j9tKDYTfQthtn0rY3XP0Utd/79AXUXryfu6DOvvT1oO2V1cto24s+xWtZP3vHmdSeX8Rde688flzQVtPAQ1RbVvRRe1s7Dx3GWeHQX3ueh+YiIcV2yx0LefM5vP3+jWH3GbvWAODQ7PC8sVLQurMLEQkSuxCRILELEQkSuxCRILELEQkSuxCRILELEQnmnuBQPIqUTan1Y6/8QtB+8BjenpX/7avlIYkY4J9reV081LOsOdy+IOzOBQD01XB7WRM/B11zuN+1b3b42Ceu4ymTu+bwvit2877z+3j7faeHU0kXVXE/+uB2ntlo8omt1D6hKLz/ho08bXnhAX69zF4eXi8CANubE0KDCdN+WUztrSRVTOMd30Xfrl1DnjTd2YWIBIldiEiQ2IWIBIldiEiQ2IWIBIldiEiQ2IWIhKzGs6dLuC89VcVLFxcvCqd7Htw8gfddmrCeICGLNZYfCJp6X0lIU30W9wf3/WoqtVdu52P3/HAQc/cs3raogx94T0I56lQZt1dsCY8tVcbTOZfyDN3o3D+N2puPCa8/yK/h6zL6C/nYSm7m81pyPS+zXdoWbj/zsw20bfsT4TTVRtIL6M4uRCRI7EJEgsQuRCRI7EJEgsQuRCRI7EJEgsQuRCRk1c8+sfIQLr/opaD96bt4jvIZv+kI2rZfX0XbVi7jTtveF3mZ3L4Z4alKLeBx2akHubO6/CPN1J7/73xs/RPDY+vjSwBQsYv7iw/wysNIVw9Qe3dheGxL/ovXCdhyAx98xU6+RmDJJ+qDtvabltO2ztMbYPO3+DnxQV6Gu6C3JGh7cw2f9NQp4fUmXhLOKZ94ZzezWjN72sw2mtkbZvb5zPYaM3vCzBoyv6uT9iWEyB3D+RqfAvBFd18K4CwAt5jZUgBfBfCkuy8G8GTmbyHEOCVR7O7e5O4vZ153AtgEYBaAKwCszrxtNYArx2qQQojR8xc9oDOzeQBOAfASgGnu3pQxNQMYcqGyma00s3ozq+9p5//bCiHGjmGL3cwqADwI4FZ3/5MnZX44a+WQT3rcfZW717l7XWk1T6QnhBg7hiV2MyvEYaHf5+6/yGxuMbMZGfsMADy0SwiRUxJdb2ZmAO4BsMnd7zjCtAbATQC+nfn9SNK+ercVY9N184P20u+30PZ9m8MurKkX8tS+fgcPI+04n7ugil8Jl/hdvHorbdtw6wJqx4M8VLOgio+tc17Y3TJxM3dPFXbzssn9U3jfcx7m94tdl4TbF39/P21bczd3vbWez8NUDz1wYrjv+oR56eLHPevnPAR27zIurdS53O3IKHg97Ga2XpLyfBj7PgfAjQDWm9mrmW1fw2GR/8zMbgawA8A1wx2sECL7JIrd3Z9DOLXDRUd3OEKIsULLZYWIBIldiEiQ2IWIBIldiEiQ2IWIhKyGuPZPLMCuy8M+5bzf8vZ7/zZcG7ngKV6CdyDBj17WlJBSeXm47+YD3I9eeJDve/8J3Nc95zGSHxhAaXPY55sU4to5l3/el08NhxUDwIFFPLS4bE/Y9noVP2cnfPJtak//OLxmAwD2nxee17Ou3kDbPvfycdTeOT8hBtb49Zb/Rjj1+d99+Fe07Xf7wk6wUYW4CiH+OpDYhYgEiV2ISJDYhYgEiV2ISJDYhYgEiV2ISMiqnx0GDBaFzc7dzThpVjhmvXIuT3n19jeOpfams8nAAFQ9Xh60pcq4Hz0/IRuXJRx3xVd2U/vutfOCthPP3ELb9l3Pj3vHx+ZSe8cSXma7qD3sj654LZxOGQD2PMP96NVv9lC7pcNlk7f+einfdzU/p7XXb6P2zn+cTe07Lg3P++1PXUbbljaG5zSvJ3z/1p1diEiQ2IWIBIldiEiQ2IWIBIldiEiQ2IWIBIldiEjIrp8d3Kdc1sxjgOtfXhS0zfod77esg/tkJ2zjecD3n0CMs8MldAGg+vGwvxcAihLi3Qe+yOtvlH8u7I9uWLOYtu2/PRynDwBTH+Cx9NVv8bG3fCQ8N+mu8NoFAOicR82JfZftDY+98QJ+nytt5vve+ALPYZD6OF9ckUdKJJS08Fj5hFD5cJ8jayaE+P+GxC5EJEjsQkSCxC5EJEjsQkSCxC5EJEjsQkTCcOqz1wL4EYBpABzAKnf/npndBuBTANoyb/2auz/K9jWh+hDe95E/BO2/eex0OpbivWH/Y2kL93W3nhaurw4AxQcTgso97HeteK6MNs0b4Pu+8cu/ofbvnM+L5RYUHgraau/mp7ipmM8LjPvZ2xdzn/Dkh8NrDPorucM4Xcx93Ttu4WNL7ykO2ioW8Proh6bzWHs0hfcNAMVbefuZ54VzFGzbMZW2LWoKrwlxcvsezqKaFIAvuvvLZlYJYJ2ZPZGxfcfd/20Y+xBC5Jjh1GdvAtCUed1pZpsA8FIeQohxx1/0P7uZzQNwCoCXMps+a2avm9m9ZlYdaLPSzOrNrL6nPSE/kxBizBi22M2sAsCDAG519w4AdwJYCOBkHL7z3z5UO3df5e517l5XWs3/zxFCjB3DEruZFeKw0O9z918AgLu3uHva3QcB3AXgjLEbphBitCSK3cwMwD0ANrn7HUdsn3HE2z4EgJfFFELklOE8jT8HwI0A1pvZq5ltXwNwnZmdjMPuuO0APp20o4795XjygfAXgIHj+f/01ZM6g7bOhhre90Lu/iqbz0sToyec+nf5hZtp0423LaP2uxvOpvayN7gbh4U87riUH3f1Ru7+ajkj4X4wN+z2A4DyS/YHbU1vzQjaAKBsasK+n+blogu6w8eW2jLkI6Y/UpXm81LRyN1+O6/iKbbf3hQ+9qIDfM6nvBY+p00kkns4T+OfAzCUw5P61IUQ4wutoBMiEiR2ISJBYhciEiR2ISJBYhciEiR2ISIhq6mk81JAaVvYf+mb+HLa0q3h4badwsMhZz/F/aK7L5xA7fPX9Adtz59yKm3b9T7u6656bCK1Y0U7NU+8uzJo25fHT3F+Px9bxQ4+r+01vORz0d8PBG21CWsuO+ZwP/qUl7kf/u3Lw6HHZU2875IP8vTdPYP8Ppm/aRK1L/zvcEj27vfysOPe6nDfgyTiWHd2ISJBYhciEiR2ISJBYhciEiR2ISJBYhciEiR2ISLB3EdY/3UknZm1AdhxxKbJAPZmbQB/GeN1bON1XIDGNlKO5tjmuvuUoQxZFfufdW5W7+51ORsAYbyObbyOC9DYRkq2xqav8UJEgsQuRCTkWuyrctw/Y7yObbyOC9DYRkpWxpbT/9mFENkj13d2IUSWkNiFiISciN3MVpjZm2a2xcy+mosxhDCz7Wa23sxeNbP6HI/lXjNrNbMNR2yrMbMnzKwh85snQM/u2G4zs8bM3L1qZpflaGy1Zva0mW00szfM7POZ7TmdOzKurMxb1v9nN7N8AG8BuBjAbgBrAVzn7huzOpAAZrYdQJ2753wBhpm9B0AXgB+5+wmZbf8KYL+7fzvzQVnt7l8ZJ2O7DUBXrst4Z6oVzTiyzDiAKwF8HDmcOzKua5CFecvFnf0MAFvcfZu79wN4AMAVORjHuMfdnwHw7pIqVwBYnXm9GocvlqwTGNu4wN2b3P3lzOtOAO+UGc/p3JFxZYVciH0WgF1H/L0b46veuwN43MzWmdnKXA9mCKa5+ztJlZoBTMvlYIYgsYx3NnlXmfFxM3cjKX8+WvSA7s85191PBXApgFsyX1fHJX74f7Dx5DsdVhnvbDFEmfE/ksu5G2n589GSC7E3Aqg94u/ZmW3jAndvzPxuBfAQxl8p6pZ3KuhmfvPMiFlkPJXxHqrMOMbB3OWy/HkuxL4WwGIzm29mRQCuBbAmB+P4M8ysPPPgBGZWDuASjL9S1GsA3JR5fROAR3I4lj9hvJTxDpUZR47nLuflz9096z8ALsPhJ/JbAXw9F2MIjGsBgNcyP2/kemwA7sfhr3UDOPxs42YAkwA8CaABwP8AqBlHY/sxgPUAXsdhYc3I0djOxeGv6K8DeDXzc1mu546MKyvzpuWyQkSCHtAJEQkSuxCRILELEQkSuxCRILELEQkSuxCRILELEQn/ByEtCrqpk9g4AAAAAElFTkSuQmCC\n", 342 | "text/plain": [ 343 | "
" 344 | ] 345 | }, 346 | "metadata": { 347 | "needs_background": "light" 348 | } 349 | } 350 | ] 351 | }, 352 | { 353 | "cell_type": "code", 354 | "metadata": { 355 | "colab": { 356 | "base_uri": "https://localhost:8080/", 357 | "height": 484 358 | }, 359 | "id": "AZxm7G3j4iOS", 360 | "outputId": "521c3ad2-147d-4076-eea0-6537f32dafa0" 361 | }, 362 | "source": [ 363 | "# todo: visualize embeddings using t-SNE\n", 364 | "\n", 365 | "from sklearn.manifold import TSNE\n", 366 | "\n", 367 | "def fetch_activations(params, x):\n", 368 | " hidden_layers = params[:-1]\n", 369 | "\n", 370 | " activation = x\n", 371 | " for w, b in hidden_layers:\n", 372 | " activation = jax.nn.relu(jnp.dot(w, activation) + b)\n", 373 | "\n", 374 | " return activation\n", 375 | "\n", 376 | "batched_fetch_activations = vmap(fetch_activations, in_axes=(None, 0))\n", 377 | "imgs, lbls = next(iter(test_loader))\n", 378 | "\n", 379 | "batch_activations = batched_fetch_activations(MLP_params, imgs)\n", 380 | "print(batch_activations.shape) # (128, 2)\n", 381 | "\n", 382 | "t_sne_embeddings = TSNE(n_components=2, perplexity=30,).fit_transform(batch_activations)\n", 383 | "cora_label_to_color_map = {0: \"red\", 1: \"blue\", 2: \"green\", 3: \"orange\", 4: \"yellow\", 5: \"pink\", 6: \"gray\"}\n", 384 | "\n", 385 | "for class_id in range(10):\n", 386 | " plt.scatter(t_sne_embeddings[lbls == class_id, 0], t_sne_embeddings[lbls == class_id, 1], s=20, color=cora_label_to_color_map[class_id])\n", 387 | "plt.show()" 388 | ], 389 | "execution_count": null, 390 | "outputs": [ 391 | { 392 | "output_type": "stream", 393 | "name": "stdout", 394 | "text": [ 395 | "(128, 256)\n" 396 | ] 397 | }, 398 | { 399 | "output_type": "error", 400 | "ename": "KeyError", 401 | "evalue": "ignored", 402 | "traceback": [ 403 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 404 | "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", 405 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 22\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 23\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mclass_id\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 24\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mscatter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt_sne_embeddings\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlbls\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mclass_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mt_sne_embeddings\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlbls\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mclass_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcora_label_to_color_map\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mclass_id\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 25\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", 406 | "\u001b[0;31mKeyError\u001b[0m: 7" 407 | ] 408 | }, 409 | { 410 | "output_type": "display_data", 411 | "data": { 412 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaiklEQVR4nO3dUWwcx3kH8P+nE08miAp07IPsKhGPCGwXjuAKKWU/NAicloqdoADjAAnMJwM5QHmIH9K3BHmI0b4YAQK7CNIgSs+wEaDn5iUgkbhJKvfBKNDYogBVkhPIEZITYsKRzk6pFAdKJE9fH3bPPlJ35O3uzO7M7P8HEEvukbdzJO/b2W++mRVVBRERhWlf0Q0gIiJ7GOSJiALGIE9EFDAGeSKigDHIExEFbH/RDRh09913a71eL7oZREReOXv27LuqWhv2mFNBvl6vY2VlpehmEBF5RUSujHqM6RoiooAxyBMRBYxBnogoYAzyREQBY5AnIgoYg7xXOgDOxFsior0xyHujBWAGwIl42yq2OUTkBSNBXkReEJFrInJxYN8zIrIqIufij8+aOFY5dQA0AKwDuB5vG2CPnoj2Yqon/yKAx4fsf05Vj8Ufrxg6Vgm1AVR37JuI9xMRjWYkyKvqawD+aOK5aJg6gI0d+zbj/UREo9nOyT8tIufjdM6dlo8VsBqAJoBJAAfjbTPeT0Q0ms0g/z0AHwVwDMA7AL497JtE5KSIrIjISqfDHPNoiwCuADgdbxeLbQ4RecFakFfVq6raU9VbAH4A4OER33dKVedUda5WY8/0A8PKJWsAjoM9eCIal7UgLyL3Dnz5BICLo76XdmK5JBGZYWSpYRFpAXgUwN0i8jaAbwJ4VESOAVBEZSBfNnGs8A2WS67H+xoA5sEePBElZSTIq+qwBHHTxHOXTxtRueT6wL5+uSSDPBElwxmvzqmD5ZJEZAqDvDVp15lhuSQRmcMgb0XWgdO8yiW54BlR6BjkjTO1zoztcklW8BCVAYO8cW24v84MFzwjKgsGeePqcH/gtA33T0REZAKDvHE+DJzW4f6JiIhMYJC3wvV1Znw4ERGRCUYmQ9EwNbgdNBcRzaJtI+rBu9xWIkqLQb7UXD8REVFWTNcQEQWMQZ6IKGAM8kREAWOQJyIKGIO8s7iuDBFlxyDvJK4rQ0RmMMg7h+vKEJE5DPLOaYPryhCRKQzyzqmD68oQkSkM8s7hujJEZA6XNXAS15UhIjMY5J3FdWWIKDuma4iIAsYgX6i0E544UYqIxsMgX5i0E544UYqIxscgX4i0E544UYqIkmGQL0Qb6SY8pf05IiorBvlC1JFuwlPanyOismKQL0TaCU+cKEVEyRipkxeRFwD8HYBrqno03vchAP+GqJvZBvBFVf1fE8cLQ9oJT5woRUTjM9WTfxHA4zv2fQ3Aq6p6H4BX469pmxqA40geqNP+HBGVjZEgr6qvAfjjjt0LAF6KP38JwOdMHItYI09E47OZkz+kqu/En/8BwKFh3yQiJ0VkRURWOh0Grt3ZrJHnyYMoRLkMvKqqAtARj51S1TlVnavVypJ+SBNQbdbIc4IVUahsBvmrInIvAMTbaxaP5ZG0AbUNOzXynGBFFDKbQX4ZwFPx508BWLJ4LE9kCah12KmRb8P/CVZMNRGNYiTIi0gLwH8DeEBE3haRBoBnAZwQkd8gqvl71sSx/NZG+oBqq0a+Dr8nWDHVRLQbI3Xyqro44qG/NfH84agjW0C1USPfP3k0EJ1wNuHPBKvBK6P1eF8D0e/Ih/YT2cebhuTKREAd52YiHSQ7Efg6waqN6MpofWBf/8rIl9dAZBeDfO5sB9QWopNIFdFVQzM+5l58vBNVHX6nmojs49o1hbA1Y7VslTJcy4doL+zJB6UN++mLpKkg23xNNRHlgz35oNRhN33haiUL1/IhGoVBPig20xdlSwXRbTY2gT91oy15g+ma4NhKX7RhJxXkWvqHhrr6HvBWGxABVIH768Chu4puFY2BPfkg2Uhf1GE+FeRq+ocGddfWsLpyDt0bN4DeLeCWRgGfPXovsCdPYzI9aYoTmXxw4cIFLC8vo6JAT29h4YGHcPTQ4ahHf2MDqE4U3UTaA3vylMAigCsATsfbcervR2nD/zVzwtbtdrG8vIytrS3c7G1h69YtLF06j+7GzShlc8fOvx+5iD15SsjUpKk6OJHJbWtra6hUKtja2np/X0X2YW3jBqYe+gv24j3BnnxpFb1yIycyuW56ehq9Xm/bvp4A03/9Vxx09QiDfCm5MuBpMv1Dpk1NTWFhYQH79+/HgQMHsH//fiwsLGBqerroplECEt20yQ1zc3O6srJSdDMC10EU2AdLIScRBVn2oul23W4Xa2trmJ6extTUVNHNoSFE5Kyqzg17jDn50mmDKzeWS9YgPTU1xeDuMQb50qmjvAOe5Zt49X4JZKWCXq+HhYUFHD16tOhmUY6Yky8dnwc8swwWuzIOkZ9tJZA3b2JrawtLS0vodrtFN41yxCBfSj4OeGYJ0uVcd6dfAjmoUqlgbW2toBZRERjkS8unlRuzBuk2yjjxamgJZK+HaVbHlAqDPHmgjWxBuo4yjkOMLIE0OIja7XaxurrKFJDDOPBKHqgjW5D2+Wbl2Rw9ehSzs7NWSiA5qOsH9uTJAyYGi30chzBjamoKhw8fNt6D56CuH9iTJ0+YWCffx5uVu2noujbxoC5r6t3CIE8eYZC2bdyJUxzU9QeDPBWgfJOS8pJldmuSHHt/UHdpaWnb97MX7x4GecpZC9EAaBXRYGoTZcqP25RlIHQwx95PwSwtLWF2dnZk4LY5qEvmcOCVclTOSUl5yDoQmnbilI1BXTKLQZ5y1EYZJyXlIevsVubYw2U9yItIW0QuiMg5EeE6wqVWRxknJeUha5DOY+IUFSOvnPynVPXdnI5FzirvpCTbTAyEMsceJg68Us5M1LvTMMOCdNJqG64dH548grwC+IWIKIDvq+qpwQdF5CSAkwBw5MiRHJpDxWO9uy2DQZrLDhCQz8DrJ1T14wA+A+ArIvLJwQdV9ZSqzqnqXK3GN355FX1j8bBw2QHqsx7kVXU13l4D8GMAD9s+JvmmfDf0sM3mWvJcedIvVtM1IjIFYJ+q/l/8+acB/IPNY5JvBmvn+/edbSDK2/PKLi1bJZFMAfnHdk/+EID/EpH/AfAGgJ+q6s8sH5O80gZr582zURLJFJCfrPbkVfW3AP7S5jHId3Wwdt4O0yWRXHnSTyyhpIKxdt4mkyWRnBXrJy5rQA4o7w09fMJZsX5iT54cwdp5H+Q9KzbL0skUYZAnokTymhXLSh4zmK4hIuewksccBnkiys24E6lsTuYqG6ZriGhXpvLiSdIvrOQxh0GeiEYylRdPentB3kPWHAZ5IhoqzX1fR0kzkYrr25vBIE9EQ5mc4Zo2/cL17bPjwCsRDWUyL86JVMVhT56IhjKdF2f6pRgM8kQ0kunAzPRL/hjkiWhXDMx+Y06eiIYaZ+IS7xLlPvbkieg249THc20ZP7AnT0TbjLNuDNeW8QeDPJFpG5vAn7rR1kPjrBvDtWX8Uap0TafbQXutjfp0HbUprl1OFlx9D3irDYgAqsD9deDQXUW3KpFx6uO5tow/StOTb11oYeb5GZz44QnMPD+D1sVW0U2i0GxsRgH+lgK9W9H2rbZ3PfpxJi5xcpM/RFWLbsP75ubmdGVlxfjzdrodzDw/g/Wt9ff3Te6fxJWvXmGPnsz5Uxc4fykK8H2VfcBDDwAH/Qt+46w+yTs3uUFEzqrq3LDHSpGuaa+1Ua1UtwX5icoE2mttBnky545qlKIZpBrt99A49fGsoXdfKdI19ek6Nnob2/Zt9jZRn64X0yDy126DqtWJKAe/T6Ie/D6Jvq5O5N3KAHQAnIm3lEUpevK1qRqaC000lhqYqExgs7eJ5kKTvXhKZpxB1UN3AXceBG5sRD14BvgUWgAaAKoANgA0ASwW2iKflSIn38fqGkptYxN4/Xw0mNq3T4BHHmIgN6oDYAbA+sC+SQBXAPA9O0rpc/J9takag7tNG5vh9mBvbEQ9eAwEeZFof2ivtVBtRD34wSA/Ee/nezeNUgV5siiA+vBd2RpUDfnEmEodUYpm0Ga8n9IoxcArWRZIffiubAyqXn0vSgGdvxRtr75nqrUeqyHKwU8COBhvm2AvPj325Cm7UFMZO3vZJgdVB0+M/d/bW+3o+X3+nRmxCGAeUYqmDgb4bKwHeRF5HMA/AagA+BdVfdb2MSlngdWHAxidfqpOmAnCoZ4YjamBwd0Mq+kaEakA+C6AzwB4EMCiiDxo85hUgNDqw/NIP4V4YiQn2e7JPwzgsqr+FgBE5GUACwB+ZfIgLI10gIlUhiuDkHn0svsnxp1XC76eGMlZtoP8YQC/H/j6bQCPDH6DiJwEcBIAjhw5kvgArQstNJYbqFaq2OhtoLnQxOJRTpwoRJZUhkvVOXn1sjlxinJQeHWNqp5S1TlVnavVkvXCO90OGssNrG+t4/rN61jfWkdjqYFOl1OhveJadU6e6afqRLR4WXXC+3XoyU22e/KrAD4y8PWH431GcOGxQLg4CJl3L9ulKxkKiu2e/BkA94nIrIhUATwJYNnUk3PhsUC4Ogg52Mu2ybUrGQqK1SCvqlsAngbwcwC/BvAjVX3T1PP3Fx6b3D+JgwcOYnL/JBce81Fo1TlJvX8lM6B/JUOUkfU6eVV9BcArtp5/8egi5mfnWV3ju1HpEVcqbmxy9UqGghDEjFcuPBaIndU5ZclTs5ySLAoiyFOAyjbtn+WUZAmDPLnJxYob20wtmUA0oPA6eaKhmKceD2vraQ/syZObmKfeW1nGLCgTBnlyF/PUo5VtzIJSY5AntzFPPVwZxywoFebkiXzEMQsaE4M8kY/KPkuYxsZ0DZGvOGZBY2CQJ/IZxyxoD0zXEBEFjEHeM50OcOZMtKWEbnSA985EW6KSYJD3SKsFzMwAJ05E21ar6BZ5pN0ClmaA/zwRbdv85dEIgfWkGOQ90ekAjQawvg5cvx5tG41g/g/tutEBXm8AvXVg83q0fb3BHj3dLsCeFIN8AdJ0FNptoLqjBHpiItqfVxu81W0D+3b88vZNRPuJ+gLtSTHI5yxtR6FeBzZ23ChoczPan1cbvDVVB27t+OXd2oz2p2Eyt89xAneY7kk5gkE+R1k6CrUa0GwCk5PAwYPRttmM9ufVBm/dUQMeaQKVSWDiYLR9pBntT8pkbp/jBG4x2ZNyCIN8jrJ2FBYXgStXgNOno+38fPFpH2/UF4GFK8DfnI629cXkz2Eyt5/mudjrt8tUT8oxnAyVIxMdhVot+mi1oh54tRo9Z7MZnQTyaIO37qil67339XP7vfUP9vVz+0mfN+lztVvRSWBfNUo9PdJMd6Ki3S0uRr2ndjt6U3ge4AH25HPlQsol0M7K7Wz0ek3m9pM8F6uD8lWrAcePj/+mcLyKgUE+ZztTLuP0vncynfZJ0wan2cp1m8ztJ3kuVgfZkzVAe1DFILpzudICzc3N6crKStHNcF6nE/0/rQ9c6U9ORgE7uB55Ujc6UWAfTINUJqM8fJZUzc5jdNtRrzvrc47zXHm8pjJKm/Psc+iNKCJnVXVu2GPsyXuoNCmXNPLo9d5RA+46bibAjvNcJq8gKGKizCztJXXO6R0OvHoqwPEhM0zXxA9jsic/rvoicM98/scNVT9AD/bC+wF63DdTmiqGrFcPKbAnb5nNk3bS8aFSsN3rLbK23eQVRNmZKnVLckld0CQVBnmL0o7JOD5Y7z4TNfHDsMolHKZynkmqGAqapMJ0jSWDJ+3+FWGjEaVYdvs/KuBqLkxZa+KHMVknT8XpdKLAOj8fBeasOc/+5JW9FDRJxVpPXkSeEZFVETkXf3zW1rFclOakXcolB3ySR76f7Np5eX36dH45z4IqJmyna55T1WPxxyuWj+WUNCft0i45kLe0E6VY5eI3F3pRBUxSYbrGkv5Ju9GIAvXm5t4n7byu5vpXq+NcoSb5XmfsVv2SdXkAVrn4y0RFjQnjpncMsd2Tf1pEzovICyJy57BvEJGTIrIiIiudwPISSU/aeVzNJRkM9mAy3+12q34xNXCatMqFC4u5oaQLN2Wa8SoipwHcM+ShbwD4JYB3ASiAfwRwr6p+abfn44zXiK3ec5IJeg5N5hvfXjND3zsTBf/N6x88PnEwqsK567idNnFhMfuSvGH6lQ2Dl9cBVDbsNuM1U7pGVefHbMAPAPwky7HKxNbVXJKrVVeubBPZq/ol74HTwSuHfpteb0TpHqZ5zEhajlbCWYQ2q2vuHfjyCQAXbR2LxpPkatXLK9u9gnjeA6dcWMyutAOpJZtFaDMn/y0RuSAi5wF8CsDfWzwWjSFJzt/L9XHGCeK2JkoNw5JLu0yWoxU9A9Hi8bkKZQmVuromb+/n5CeiAM+cvDmmBo6KnoFo4Pi75eQZ5MltLgXstEJ4Da7KOpBq6kSRtjdk6Phcapj8FMqNrrmwmD1ZJxeZSPlkqTXOYQYkgzy5yefFwFgXn68sA6lZKwyyzqLNocKBQT5wRY8npeZrZUooVx8uM/lPnbXCIGtPPIcKBwb5gHk5Y7XPx8oUn68+fGHjnzpLysdET9zyejYM8gWz1dN2YS2mTHxcDMzXqw9f2PynTpvyMdUTt1i7zwXKCmSzcsvLGas7+bYYmI9XHz5x9Z/a8Vm07MkXxHZP28sZq8P4VJni49WHT1z+p3Z4Fi2DfEFsV055OWM1BHnOqC0b/lOnwslQBclrlUcvZ6wS7Yb/1LextgolpZfmpiJA8v/vnO9PQGQf/6kTYbqmQEkrp/IsifS2vp6ItmGQL9i44zV5lkR6XV9PRNswyHsir5t8e19fT0TbMMh7Iq/qsbxOJkSUDwZ5T+RVPeZyKTIRJccg7xHLS1wAYCkyUWhYQumZPKrHHJ+lTUQJMMjTUCxFLk6n20F7rY36dB21Kf4RKBuma4gc0rrQwszzMzjxwxOYeX4GrYusX6VsGOQt4oSi8XW6HZxZPYNOt7y/rE63g8ZyA+tb67h+8zrWt9bRWGqU+ndC2THIJ5AkaLswociXkwx7r5H2WhvVyvb61YnKBNpr7WIaREFgkB9TkqDtwoQiF04y42Dv9QP16To2etvrVzd7m6hP14tpEAWBQX4MSYN20ROKXDjJjMu53muBN+GuTdXQXGhicv8kDh44iMn9k2guNDn4SpmwumYMSW9IU/SEIldvoDOMU73Xdiu6J+u+anSHp0eaua8Hv3h0EfOz86yuIWPYkx9D0qBd9ISiok8ySTjTe3XoJty1qRqOHz7OAE9GsCc/hjRrvxc5oSjtWvVF2a33mlvNeP8m3L2By5/+Tbh5+z7yGO8MlYBvN6Txrb07tS600FhuoFqpYqO3geZCE4tHLaVPbnSApZntQb4yGd3CL+Agz4lXYdjtzlCZ0jUi8gUReVNEbonI3I7Hvi4il0Xkkog8luU4rnD4Xr1D+dbeQblX3ZTwJtwsXS2HrOmaiwA+D+D7gztF5EEATwL4GIA/B3BaRO5X1V7G41FJ9Ktu1rc+6Fn3q26s9Tjri8A981GKZqqee4BP0qvO2gMfPIn2f8eNpQbmZ+fZow9Mpp68qv5aVS8NeWgBwMuqelNVfwfgMoCHsxyLyqWwqps7asBdx3MP8El61SZ64M6VrpI1tqprDgP4/cDXb8f7iMbiTNVNDpKkpkylsZwqXSWr9kzXiMhpAPcMeegbqrqUtQEichLASQA4cuRI1qejgJSlZjxJaspUGqt/Em0sNTBRmcBmbzPYk2jZ7RnkVXU+xfOuAvjIwNcfjvcNe/5TAE4BUXVNimNRwGpTteADT5JetckeeFlOomVnK12zDOBJETkgIrMA7gPwhqVjEXktSWrKdBqLE6/Cl6lOXkSeAPAdADUAawDOqepj8WPfAPAlAFsAvqqq/77X87leJ09kU57VNRSW3erkORmKyGEM5jQOa5OhiOh2pm6AwslKZAKDPJFBpgIz19knUxjkiQwxGZg5WYlMYZAnMsRkYOZkJTKFQZ7IEJOBuUwzfskuridPZIjpWaScrEQmsISSyDCWPVLediuhZE+eyLAyLMVA/mBOnogoYAzyREQBY5AnIgoYgzwRUcAY5ImIAuZUCaWIdABcsXyYuwG8a/kYLinT6y3TawX4ekOW9LXOqOrQki6ngnweRGRlVD1piMr0esv0WgG+3pCZfK1M1xARBYxBnogoYGUM8qeKbkDOyvR6y/RaAb7ekBl7raXLyRMRlUkZe/JERKXBIE9EFLBSBHkR+YKIvCkit0RkbsdjXxeRyyJySUQeK6qNtojIMyKyKiLn4o/PFt0mG0Tk8fhveFlEvlZ0e2wTkbaIXIj/psGtzy0iL4jINRG5OLDvQyLyHyLym3h7Z5FtNGXEazX2vi1FkAdwEcDnAbw2uFNEHgTwJICPAXgcwD+LSCX/5ln3nKoeiz9eKboxpsV/s+8C+AyABwEsxn/b0H0q/puGWDv+IqL35KCvAXhVVe8D8Gr8dQhexO2vFTD0vi1FkFfVX6vqpSEPLQB4WVVvqurvAFwG8HC+rSMDHgZwWVV/q6obAF5G9LclT6nqawD+uGP3AoCX4s9fAvC5XBtlyYjXakwpgvwuDgP4/cDXb8f7QvO0iJyPLwuDuMTdoSx/x0EK4BciclZEThbdmJwcUtV34s//AOBQkY3JgZH3bTBBXkROi8jFIR/B9+j2eO3fA/BRAMcAvAPg24U2lkz5hKp+HFGK6isi8smiG5QnjWq/Q67/Nva+Deb2f6o6n+LHVgF8ZODrD8f7vDLuaxeRHwD4ieXmFCGIv2MSqroab6+JyI8Rpaxe2/2nvHdVRO5V1XdE5F4A14pukC2qerX/edb3bTA9+ZSWATwpIgdEZBbAfQDeKLhNRsVvhr4nEA1Ch+YMgPtEZFZEqogG05cLbpM1IjIlIn/W/xzApxHm33WnZQBPxZ8/BWCpwLZYZfJ9G0xPfjci8gSA7wCoAfipiJxT1cdU9U0R+RGAXwHYAvAVVe0V2VYLviUixxBd2rYBfLnY5pinqlsi8jSAnwOoAHhBVd8suFk2HQLwYxEBovfwv6rqz4ptklki0gLwKIC7ReRtAN8E8CyAH4lIA9GS5F8sroXmjHitj5p633JZAyKigJU9XUNEFDQGeSKigDHIExEFjEGeiChgDPJERAFjkCciChiDPBFRwP4fl43MCXiPACAAAAAASUVORK5CYII=\n", 413 | "text/plain": [ 414 | "
" 415 | ] 416 | }, 417 | "metadata": { 418 | "needs_background": "light" 419 | } 420 | } 421 | ] 422 | }, 423 | { 424 | "cell_type": "code", 425 | "metadata": { 426 | "colab": { 427 | "base_uri": "https://localhost:8080/" 428 | }, 429 | "id": "MHL27HumNgwf", 430 | "outputId": "d44b1e9c-33d6-4dd3-cf05-b3a1e19f0194" 431 | }, 432 | "source": [ 433 | "# todo: dead neurons\n", 434 | "\n", 435 | "def fetch_activations2(params, x):\n", 436 | " hidden_layers = params[:-1]\n", 437 | " collector = []\n", 438 | "\n", 439 | " activation = x\n", 440 | " for w, b in hidden_layers:\n", 441 | " activation = jax.nn.relu(jnp.dot(w, activation) + b)\n", 442 | " collector.append(activation)\n", 443 | "\n", 444 | " return collector\n", 445 | "\n", 446 | "batched_fetch_activations2 = vmap(fetch_activations2, in_axes=(None, 0))\n", 447 | "\n", 448 | "imgs, lbls = next(iter(test_loader))\n", 449 | "\n", 450 | "MLP_params2 = init_MLP([np.prod(mnist_img_size), 512, 256, len(MNIST.classes)], key)\n", 451 | "\n", 452 | "batch_activations = batched_fetch_activations2(MLP_params2, imgs)\n", 453 | "print(batch_activations[1].shape) # (128, 512/256)\n", 454 | "\n", 455 | "dead_neurons = [np.ones(act.shape[1:]) for act in batch_activations]\n", 456 | "\n", 457 | "for layer_id, activations in enumerate(batch_activations):\n", 458 | " dead_neurons[layer_id] = np.logical_and(dead_neurons[layer_id], (activations == 0).all(axis=0))\n", 459 | "\n", 460 | "for layers in dead_neurons:\n", 461 | " print(np.sum(layers))" 462 | ], 463 | "execution_count": null, 464 | "outputs": [ 465 | { 466 | "output_type": "stream", 467 | "name": "stdout", 468 | "text": [ 469 | "(128, 256)\n", 470 | "0\n", 471 | "7\n" 472 | ] 473 | } 474 | ] 475 | }, 476 | { 477 | "cell_type": "markdown", 478 | "metadata": { 479 | "id": "jMmOX-VSKTjQ" 480 | }, 481 | "source": [ 482 | "# Parallelization" 483 | ] 484 | }, 485 | { 486 | "cell_type": "code", 487 | "metadata": { 488 | "id": "1aCkdHuhKUqV" 489 | }, 490 | "source": [ 491 | "" 492 | ], 493 | "execution_count": null, 494 | "outputs": [] 495 | } 496 | ] 497 | } -------------------------------------------------------------------------------- /Tutorial_4_Flax_Zero2Hero_Colab.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "attachments": {}, 5 | "cell_type": "markdown", 6 | "metadata": {}, 7 | "source": [ 8 | "[](https://deepnote.com/launch?url=https%3A%2F%2Fgithub.com%2Fgordicaleksa%2Fget-started-with-JAX%2Fblob%2Fmain%2FTutorial_4_Flax_Zero2Hero_Colab.ipynb)" 9 | ] 10 | }, 11 | { 12 | "cell_type": "markdown", 13 | "metadata": {}, 14 | "source": [ 15 | "\"Open" 16 | ] 17 | }, 18 | { 19 | "cell_type": "markdown", 20 | "metadata": { 21 | "id": "TbMr3-5oun69" 22 | }, 23 | "source": [ 24 | "# Flax: From Zero to Hero!\n", 25 | "\n", 26 | "This notebook heavily relies on the [official Flax docs](https://flax.readthedocs.io/en/latest/) and [examples](https://github.com/google/flax/blob/main/examples/) + some additional code/modifications, comments/notes, etc." 27 | ] 28 | }, 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "C1qve53yeof5" 33 | }, 34 | "source": [ 35 | "### Enter Flax - the basics ❤️\n", 36 | "\n", 37 | "Before you jump into the Flax world I strongly recommend you check out my JAX tutorials, as I won't be covering the details of JAX here.\n", 38 | "\n", 39 | "* (Tutorial 1) ML with JAX: From Zero to Hero ([video](https://www.youtube.com/watch?v=SstuvS-tVc0), [notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_1_JAX_Zero2Hero_Colab.ipynb))\n", 40 | "* (Tutorial 2) ML with JAX: from Hero to Hero Pro+ ([video](https://www.youtube.com/watch?v=CQQaifxuFcs), [notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_2_JAX_HeroPro%2B_Colab.ipynb))\n", 41 | "* (Tutorial 3) ML with JAX: Coding a Neural Network from Scratch in Pure JAX ([video](https://www.youtube.com/watch?v=6_PqUPxRmjY), [notebook](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_3_JAX_Neural_Network_from_Scratch_Colab.ipynb))\n", 42 | "\n", 43 | "That out of the way - let's start with the basics!" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": 1, 49 | "metadata": { 50 | "id": "GHcasJkggdZN" 51 | }, 52 | "outputs": [], 53 | "source": [ 54 | "# Install Flax and JAX\n", 55 | "!pip install --upgrade -q \"jax[cuda11_cudnn805]\" -f https://storage.googleapis.com/jax-releases/jax_releases.html\n", 56 | "!pip install --upgrade -q git+https://github.com/google/flax.git\n", 57 | "!pip install --upgrade -q git+https://github.com/deepmind/dm-haiku # Haiku is here just for comparison purposes" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": 2, 63 | "metadata": { 64 | "id": "HmVx7EjigrEZ" 65 | }, 66 | "outputs": [], 67 | "source": [ 68 | "import jax\n", 69 | "from jax import lax, random, numpy as jnp\n", 70 | "\n", 71 | "# NN lib built on top of JAX developed by Google Research (Brain team)\n", 72 | "# Flax was \"designed for flexibility\" hence the name (Flexibility + JAX -> Flax)\n", 73 | "import flax\n", 74 | "from flax.core import freeze, unfreeze\n", 75 | "from flax import linen as nn # nn notation also used in PyTorch and in Flax's older API\n", 76 | "from flax.training import train_state # a useful dataclass to keep train state\n", 77 | "\n", 78 | "# DeepMind's NN JAX lib - just for comparison purposes, we're not learning Haiku here\n", 79 | "import haiku as hk \n", 80 | "\n", 81 | "# JAX optimizers - a separate lib developed by DeepMind\n", 82 | "import optax\n", 83 | "\n", 84 | "# Flax doesn't have its own data loading functions - we'll be using PyTorch dataloaders\n", 85 | "from torchvision.datasets import MNIST\n", 86 | "from torch.utils.data import DataLoader\n", 87 | "\n", 88 | "# Python libs\n", 89 | "import functools # useful utilities for functional programs\n", 90 | "from typing import Any, Callable, Sequence, Optional\n", 91 | "\n", 92 | "# Other important 3rd party libs\n", 93 | "import numpy as np\n", 94 | "import matplotlib.pyplot as plt" 95 | ] 96 | }, 97 | { 98 | "cell_type": "markdown", 99 | "metadata": { 100 | "id": "aSDyQLgOesZp" 101 | }, 102 | "source": [ 103 | "The goal of this notebook is to get you started with Flax!\n", 104 | "\n", 105 | "I'll only cover the most essential parts of Flax (and Optax) - just as much as needed to get you started with training NNs!" 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": null, 111 | "metadata": { 112 | "id": "y1kdq0P_g7LU" 113 | }, 114 | "outputs": [], 115 | "source": [ 116 | "# Let's start with the simplest model possible: a single feed-forward layer (linear regression)\n", 117 | "model = nn.Dense(features=5)\n", 118 | "\n", 119 | "# All of the Flax NN layers inherit from the Module class (similarly to PyTorch)\n", 120 | "print(nn.Dense.__bases__)" 121 | ] 122 | }, 123 | { 124 | "cell_type": "markdown", 125 | "metadata": { 126 | "id": "ux9Okie5PWpw" 127 | }, 128 | "source": [ 129 | "So how can we do inference with this simple model? 2 steps: init and apply!" 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "execution_count": 4, 135 | "metadata": { 136 | "id": "QViTvJhFite2" 137 | }, 138 | "outputs": [], 139 | "source": [ 140 | "# Step 1: init\n", 141 | "seed = 23\n", 142 | "key1, key2 = random.split(random.PRNGKey(seed))\n", 143 | "x = random.normal(key1, (10,)) # create a dummy input, a 10-dimensional random vector\n", 144 | "\n", 145 | "# Initialization call - this gives us the actual model weights \n", 146 | "# (remember JAX handles state externally!)\n", 147 | "y, params = model.init_with_output(key2, x) \n", 148 | "print(y)\n", 149 | "print(jax.tree_map(lambda x: x.shape, params))\n", 150 | "\n", 151 | "# Note1: automatic shape inference\n", 152 | "# Note2: immutable structure (hence FrozenDict)\n", 153 | "# Note3: init_with_output if you care, for whatever reason, about the output here" 154 | ] 155 | }, 156 | { 157 | "cell_type": "code", 158 | "execution_count": null, 159 | "metadata": { 160 | "id": "b3yFAqeTjdLj" 161 | }, 162 | "outputs": [], 163 | "source": [ 164 | "# Step 2: apply\n", 165 | "y = model.apply(params, x) # this is how you run prediction in Flax, state is external!\n", 166 | "print(y)" 167 | ] 168 | }, 169 | { 170 | "cell_type": "code", 171 | "execution_count": null, 172 | "metadata": { 173 | "id": "31O_mx-Smalq" 174 | }, 175 | "outputs": [], 176 | "source": [ 177 | "try:\n", 178 | " y = model(x) # this doesn't work anymore (bye bye PyTorch syntax)\n", 179 | "except Exception as e:\n", 180 | " print(e)" 181 | ] 182 | }, 183 | { 184 | "cell_type": "code", 185 | "execution_count": null, 186 | "metadata": { 187 | "id": "fQYyv76sCJ25" 188 | }, 189 | "outputs": [], 190 | "source": [ 191 | "# todo: a small coding exercise - let's contrast Flax with Haiku" 192 | ] 193 | }, 194 | { 195 | "cell_type": "code", 196 | "execution_count": null, 197 | "metadata": { 198 | "cellView": "form", 199 | "id": "UWr3hdpmFBng" 200 | }, 201 | "outputs": [], 202 | "source": [ 203 | "#@title Haiku vs Flax solution\n", 204 | "model = hk.transform(lambda x: hk.Linear(output_size=5)(x))\n", 205 | "\n", 206 | "seed = 23\n", 207 | "key1, key2 = random.split(random.PRNGKey(seed))\n", 208 | "x = random.normal(key1, (10,)) # create a dummy input, a 10-dimensional random vector\n", 209 | "\n", 210 | "params = model.init(key2, x)\n", 211 | "out = model.apply(params, None, x)\n", 212 | "print(out)\n", 213 | "\n", 214 | "print(hk.Linear.__bases__)" 215 | ] 216 | }, 217 | { 218 | "cell_type": "markdown", 219 | "metadata": { 220 | "id": "wWBxTShUiLzW" 221 | }, 222 | "source": [ 223 | "All of this might (initially!) be overwhelming if you're used to stateful, object-oriented paradigm.\n", 224 | "\n", 225 | "What Flax offers is high performance and flexibility (similarly to JAX).\n", 226 | "\n", 227 | "Here are some [benchmark numbers](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) from the HuggingFace team.\n", 228 | "\n", 229 | "![image.png]()" 230 | ] 231 | }, 232 | { 233 | "cell_type": "markdown", 234 | "metadata": { 235 | "id": "eUBYtd40krx1" 236 | }, 237 | "source": [ 238 | "Now that we have a an answer to \"why should I learn Flax?\" - let's start our descent into Flaxlandia!\n", 239 | "\n", 240 | "### A toy example 🚚 - training a linear regression model\n", 241 | "\n", 242 | "We'll first implement a pure-JAX appoach and then we'll do it the Flax-way." 243 | ] 244 | }, 245 | { 246 | "cell_type": "code", 247 | "execution_count": null, 248 | "metadata": { 249 | "id": "53-TXcbYkt9D" 250 | }, 251 | "outputs": [], 252 | "source": [ 253 | "# Defining a toy dataset\n", 254 | "n_samples = 150\n", 255 | "x_dim = 2 # putting small numbers here so that we can visualize the data easily\n", 256 | "y_dim = 1\n", 257 | "noise_amplitude = 0.1\n", 258 | "\n", 259 | "# Generate (random) ground truth W and b\n", 260 | "# Note: we could get W, b from a randomely initialized nn.Dense here, being closer to JAX for now \n", 261 | "key, w_key, b_key = random.split(random.PRNGKey(seed), num=3)\n", 262 | "W = random.normal(w_key, (x_dim, y_dim)) # weight\n", 263 | "b = random.normal(b_key, (y_dim,)) # bias\n", 264 | "\n", 265 | "# This is the structure that Flax expects (recall from the previous section!)\n", 266 | "true_params = freeze({'params': {'bias': b, 'kernel': W}})\n", 267 | "\n", 268 | "# Generate samples with additional noise\n", 269 | "key, x_key, noise_key = random.split(key, num=3)\n", 270 | "xs = random.normal(x_key, (n_samples, x_dim))\n", 271 | "ys = jnp.dot(xs, W) + b\n", 272 | "ys += noise_amplitude * random.normal(noise_key, (n_samples, y_dim))\n", 273 | "print(f'xs shape = {xs.shape} ; ys shape = {ys.shape}')" 274 | ] 275 | }, 276 | { 277 | "cell_type": "code", 278 | "execution_count": 9, 279 | "metadata": { 280 | "colab": { 281 | "base_uri": "https://localhost:8080/", 282 | "height": 266 283 | }, 284 | "id": "lc4-xoIapKCs", 285 | "outputId": "52656571-0aa5-4c6f-f522-83b0158c1b97" 286 | }, 287 | "outputs": [ 288 | { 289 | "data": { 290 | "text/plain": [ 291 | "" 292 | ] 293 | }, 294 | "execution_count": 9, 295 | "metadata": {}, 296 | "output_type": "execute_result" 297 | }, 298 | { 299 | "data": { 300 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eZQb93Xn+6kq7EDv+8Jmr9wXUSQlynZkWZYtS0pke0aRkonsTJaZvMxkJplkEisvYzuTE+Upy3he3tNxnDeyLfs4iaI4ieVxItmWHUuyJZMiKYqbSPa+L+hGY18Ktbw/wIIKaACNpbvJlvA5h4dkN1AFFArfunV/936voOs6VapUqVJlaxBv9AuoUqVKlXcTVdGtUqVKlS2kKrpVqlSpsoVURbdKlSpVtpCq6FapUqXKFmJZ5/fV0oYqVapUKR0h3y+qkW6VKlWqbCFV0a1SpUqVLaQqulWqVKmyhVRFt0qVKlW2kKroVqlSpcoWUhXdKlWqVNlCqqJbpUqVKltIVXSrVKlSZQupim6VKlWqbCFV0a1SpUqVLaQqulWqVKmyhVRFt0qVKlW2kKroVqlSpcoWsp7LWJUqedF1HU3TSCQSKIqCxWJBFEUkSUIURURRRBDymi1VqfKuRFhnMGXV2rHKGnRdR1VVFEXJ+LfxO7PQGiJs/KmKcZV3CXlP8KroVikas8CeO3eOW265BUEQUBQFRVEQRXHN481/zELr9/tpaWmpinGVdyp5T+RqeqHKuui6jqIoqKqaFs9YLLauQAqCkPMxuq4zOjpKQ0MDyWQy43fVyLjKO52q6FbJiyG2RupAEIQ10Ww5GGKcKzIGUBSFZDKZER0LgoAkSem8sSHOVTGust2oim6VNWialpGnzRexGmyU8JkF1owhxuY8siAI6LpeMDKuCnKVm5Gq6FZJo2laOo0A64ttpWTnefNRrBhnP0cURSwWS1WMq9xUVEX3XY6xyJVMJtE0Ddh8sTXvu5L9rCfGRjnb5OQkDQ0N1NbWpsU4O1VRFeMqW0VVdN+lGDW2iqJUJLayLDMxMUE8Hsfj8eB2u3G73Vit1i1JSRTatvG3EQVLkpR+36qqIstyxvPMaQojOq6KcZWNpiq67zIM0VleXgagrq6uLGHRNI0rV67g8/no7u6mrq6OaDTK8vIyExMTJJNJLBZLWoRdLhcejyctxkZOdqswC3G+igpDjLMj8Fw542pFRZVyqYruu4TshoZgMAhAfX19SduJRqOMj48TjUapq6tj9+7daJpGMpmkoaEh47HJZJJoNEokEmFlZYWpqSlkWUaSJGKxGLOzs+no2Gaz3VARK0eMq+VtVcqhKrrvcLLF1shpiqKYXjArhnA4zNjYGLFYjL6+Pvx+Px0dHQWfY7Vaqauro66uLuPniqJw9uxZBEFIi3EikSCsiFgcLlrr3bQ11N70YmzkwmVZrjZ+VCmaqui+Q8nV0GCuixVFcU1jQi6CwSBjY2Mkk0n6+/tpbGxEEARGRkbKXgizWCxYrVba29uxWq3ous4b0wEWF0IkYzJXAzH2h2K4SaQjYyNNYfy5mcW42vhRpRBV0X2HUWxDgyiKBXOqq6urjI2NAdDf378mdWDkZDdioWk1muTqUoT2Oiei4CKhaCzKCh8/3J5uMzbSFD6fj+npaRKJBJIkpXPFxt+5xLjSKolSKLbxw4whvtXGj3cHVdF9h1BOQ4NRtWCg6zorKyuMj49jtVoZGhqitrY27/MrWQgzPz+p6kiCgHj99dotIv6YjqqDRUhFxrW1tWtei1mMV1dXmZmZyRBjIyo2Uis3kmrjRxWDquhuc8ptaBBFMS26uq7j9XoZHx/H5XKxd+9ePB5PwedvpOjWOi1YJIFwQsFlk1iJyLTX2rGIhd9HPjFWVZVIJJIW40AgQDAYxGq1rklT2O32G56mMP9tUG38eOdSFd1tiLGibvgTQOk1tsZC2vz8PBMTE9TV1XHw4EFcLlfRz9+o6NFplbhrqIlTE35WIkk66xwc7alb/4l5kCQpQ4xVVaW9vR2Px5MhxrOzs8TjcURRzBBil8uFw+G4qcXYaPwAGBkZoa+vL8PPuNr4cfNSFd1thLmhYXl5Ga/Xy549e8qqsV1eXmZ+fh5BEDhy5AgOh6OkbeRKT5T6fLNoN7ptfGR/a9nbK4ZsMTZQVTWdpvD7/RlibE5TuN3um1KMQ6EQFosl/ZlUGz9ubqqiuw3I7h4zHLdKXSBSVZWZmRlmZmaora2lubmZPXv2lPWaNqK5YavyrOsdJ0mSqKmpoaamJuPnZjEOBALMzc3dlGJsXtAsttbY+Lva+LH1VEX3JiZXja3xR5KkoiNNRVGYmppifn6ejo4Obr/9dqLRKJOTk2W/to3I6d7slCvGiUSC5eXlLRXj9RZNq40fNw9V0b0JydfQYKaY5gZZlpmcnGRpaYnu7m5OnDiBJEnp529keqDUL+NWtwFvJOuJsd/vJxgMMj8/TywWS4uxOTp2Op0bJmDlHsdyGj8M4RVFEZvNVhXjMqiK7k3Eeg0NZgqJZjweZ2JiAp/PR09PD3fccUdO0a5E9CoV7a1kq8TdaOKw2Wz09/enf65pWjoyDoVCLCwsEI/HAdakKTZSjMulkBhDquNufn6eXbt2pX9XjYyLpyq6NwHlTGjIlV6IxWKMj48TCATo7e1l9+7deU/6jVoISyQSjI+Ps7q6muEyZojPes/fKrbqy58rfyyKIh6PZ00Z3kaJ8VY2fkDqPRrlasb/Yf3Gj6oYp6iK7g2k1IYGM+b0QjgcZnx8nEgkQn9/P3v37l13O5VGqpqmMTY2RiQSoaenh+7ubmKxGOFwGK/Xm3YaM9fGGqJsrLRv1/RCIUpZ3NwIMS616mQjUFU1LbhQWeOHubTt3VJRURXdG4Cmafj9fkRRTBfnl3qiiaKILMucO3eOZDJJX18fTU1NJX3hyxHdeDzO2NgYKysr9Pb2cujQISCVP7bZbGvMbWRZTtfGLiwsEIlEUBQlXdJUX1+fbuO1WLb/6bgRLceFxDgWixGJRAiHwywuLqb/f/HixTWR8UbMs8tFtujmo9r4kZvtf5ZvE7InNMzPz+PxeGhvby95W4YvQjweZ//+/Wt8EYqhVNGNxWKMjY0RDAbp6+tD1/W0+U2hiNVms2Gz2TJeo67rXLp0ibq6OlRVZW5ujkgkgqqq2O32jKjY5XIV9QW/WdhMnwdzE4eBpmmcPn2avr6+9MVtaWmJWCwGgNPp3HAxLlZ081FK44eBcaGur6/f9o0fVdHdZPJNaLBYLCWJnq7r+Hw+xsbG0r4IFy9eLEtwofiFtGg0ytjYGOFwmP7+fvbt24cgCKyurla0am5UAJgbFYwcsSEePp+PaDSKpmlrxMPlchUtHluZxthKcx1jf2YXNjPmyHgjxbhS0c1HPjGGlNvd0tISLperYOOHEdTk8wy5GaiK7iaRq6HBfFUWRXHNrVW+7Ri+CE6nsyhfhGJYL0KNRCLpnO3AwAD79+/P+DJsRp2uIAg4HA4cDgdNTU3pn+u6TjweT99WLy8vE41GgeLFY6uE0PistwpN0wpWuBQS42g0ms7B5zqeRplb9vZVVS24SLoZqKqasXhnYK41Bvj2t7/Nm2++yR/90R9t6esrharobjCFGhrMGFflQttZWFhgYmKC2traknwRKsFsVj4wMJA3T7yRhjfFPNbpdOJ0Omlubk7/XNM04vE44XB4TSR3o1zGjEWiraKQ6ObDLMYtLS0Z2zIubpFIJC3Guq5niHEsFtuSc9GMIbrZZH+3AoHAmnWFm42q6G4QxTQ0mJEkKb0ibUbTNObm5piamqKxsbEsX4RyCIVCjI6OIssyAwMD6XxtPjaiuaJSzE0HZrJX/0OhEJcuXcJisaR9dzfLZWyr0wvliG4+zMfTLMa6rmekKQKBAIFAgImJiYrSPqWgKEpRC62BQKDkEVRbTVV0K6SUhgYzkiRldJSZfRFaW1s5duzYltzCBYNBRkdHURQlLbbFcDN7L2Sv/sfjcXp6enA6nRnGNtn+u2YxLncyxXYW3XwIgpAhxvF4nM7OTmpqajLE2Ej7ZEfGGyHGiqJgt9vXfVwgEGDnzp1l72crqIpumZTT0GDGEN1cvgillE6V+yUPBAJEo1GGh4dzToZYj61ML1SKsZ987btmM3TzAE3zNONiGj6Mfb3TRDcbYyEtW4wNjMjYyBmvrKxkLIiaUz/FVqcoirImN52LaqT7DsRYhPD5fDQ3N5ddsqJpGj6fj5MnT67xRSgW4xa/lOf5/X5GR0cRBAG73c7Ro0dLfenAzR3p5qLQZ5TPDN2YZlxswwcUJ7qKprMcTiAJAs2eyma93UjRzYdZjM05ePOCaHZ1isPhWBMZm/eRL6ebTTAYrIruOwXzhIZ4PM7s7CytraX7vyYSCSYmJlhaWsJisXD77beX/aUpRXRXV1cZHR1FkqT0GJ5XX321rP0a+36nu4zlm2acr+HDZrNhsViQZZlgMJiz4SOcUPiLlyeZWo2hA8d21PHo7d3rTsnIx80ouvnItyBajBiHQqF0XXehfQeDwepC2nYmu6EBUieOzWYraXw5ZPoi7Ny5kx07dnD16tWKvjDr2Ttm1/bu3r17za11uWyUd8N2JF/DhyzLLC4u4vV68zZ8PD8SYWIlSnudHR04OelnV5ub9/QXl0vP5kaJ7kbusxgx9nq9LC0tMT09nSHG5sGkkiQRCATKrl3fKqqim4N8DQ1GdCZJUlE1tpDpi9DX15f2RZBlueht5COfvaMxYHJsbAy73V6wtrfcHGS2aBq33dshgt0MjHRNTU0NiUSCoaEhYG3Dx1szKySjSbyJVFojqQi8NeXlUKutrMWmGyG6W1UWZxbjqakp9uzZg9VqXXNMZ2ZmGBkZ4TOf+QyKovAnf/InHDp0iFtvvZUDBw4Uvb8XXniBX//1X0dVVX75l3+Zxx57LOfj/v7v/56HHnqI119/nWPHjpX8vqqia8Io+1JVNWdDg0Ex5VLBYJCxsbG8vggbYY2YvQ1d11leXmZsbAyn08n+/fsLLj6UkxM2METX5/Olqx+MWz9zFYDH48FqteZ9/lawGfsJJxRiskq9y4pVeluAsi9i2Q0fR5Ykfji6SkuNDUVVCfiiNNo1JicnS274gBsjurD16SFzTjdXE83evXt54IEHuPPOO7nnnnu4fPkyL7/8ctGiq6oq//E//ke++93v0t3dzfHjx3nwwQfZt29fxuNCoRB//ud/zu233172e6mKLsU3NBgUOuGMhSqgYFVAdslYORiiaXStjY2N4fF4im6kqER0o9Eoi4uL1NbWsmfPnnSJlaIo6c4xo5POyHeaF56M171VbKRIvDS8wrff8iIAjS4rP39iB82eVFXDencODx5sYy4QZ3wlBjq8f3cbD97WhXQ9p1tsw4fH48HhcNww0d1qirkjM76z9957Lx/5yEdK2v6pU6cYHBxM+yD/zM/8DM8999wa0f30pz/Npz71Kf70T/+0tDdg4l0tuqU2NBTajpE7tVgs6YWqQmxUc4DX6+XSpUvU1tZy+PBhnE5nSc8vVfhWV1cZGRlBURRaW1vZs2dPOp8JqVvm7MUn4/fG7eDs7Cw+n4+lpaW08Y8hJJvpjrURTPliPH/ZS5vHhkUSWY7IfP2Nef6Pn0jVhq4nDm67hd/4QD/LYRlJFGhyW9fcARXT8LGwsEAsFktf0HRd37Kx8jdrLt54XeW899nZWXbs2JH+f3d3NydPnsx4zNmzZ5menuaBBx6oim6pVFpja97OZvgiFLPfhYUFFhcXqa+vL7trrZQUh7n6Yc+ePYTD4XQEBuvP6LLb7djt9nTzhdHNVFtbm47qvF5vRlRnTlPc6Cm8Br6ojABYrqcUGp1WZvxvdxYWE5FJokBb7fqF/mby2T1OTk6iaRo2m23TGj7M3KyCC6kmmM1qT9Y0jd/8zd/k6aefrnhb7yrR1XU9HW3V1taWXWNrVDT8+Mc/3lJfBE3T0n4MDQ0NtLe309LSUnabcDEVCH6/n5GRESRJyqh+iEQiG/IFNBZKsj0AjPpY8+BHs5uWISZbbbxS70wt5CiajkUU8MeSdNa9LaBb3RwBqQtUW1tbxs+Mhg+jOaGShg8zN3O1hN/vL9tdrKuri+np6fT/Z2Zm6OrqSv8/FApx8eJF7rrrLgAWFhZ48MEH+eY3v1nyYtq7QnTNExqMW7NyCqjNvgi6rnPo0KGiumQqxfDfnZycpKmpiaNHj2K32xkdHa0oL1wo0jWL7a5du9aczJvpvZAvqjPyxUZUbG5WMKco3G53Rp56I6OznY1OPrS3hRevLCMKUOuw8NNHOtK/32pRyre/Sho+jD+5FkA3y9axEMU2RlTSjXb8+HGGh4cZHx+nq6uLZ555hr/+679O/76uro7l5eX0/++66y7+7M/+rFq9kI25oQFSX3Sr1VpyqVYuX4QLFy5syMlXKDIyRH5ycpKWlpY1fgyVCl+u55s71nKJrUF29UGpEV451Qu58sWQalYwUhSzs7NEIpGMWs54PE4sFsPhcFQsiIIg8MHdzRzdUUdcUWl02bBZ8lcvbDalinwxDR+Li4sZDR/muwtjzM5WUorZTbmNERaLhSeffJJ7770XVVX5xV/8Rfbv389nPvMZjh07xoMPPljWdnPua8O2dJOQr6HB+CJYLJaiRVdRFKanp5mbm1vji1DKdvJhVDBkn1CapjEzM8P09DStra0cP3485y3gRoiuIXyBQICRkREEQSh6IfBmaQO22Ww0NjZmmPWYC+uXl5eZmZlhbGwMeLsKwIiKy8kX17uswNpI8GYX3XwUavgwL4CGQiHi8Thvvvnmlk34UBSlqG37/f6KWoDvv/9+7r///oyf/cEf/EHOx/7gBz8oez/vGNFdr6HBoBixlGWZqakpFhcX6erqyumLsJElXwbmiLq9vZ3bbrst5y3eRr0GQRAIhUJpsR0cHCw6UsgluqUIzmYKk6brCLydL56fn2dwcBCn05lRBWDOFxses+Y0RTn54u0qurnItQAaDAaZnZ3NGA+0URM+8vFOsnWEd4DoFtvQYFBIdA1fhOXlZXp6erjjjjvynjAbIboWiyX92qenp5mdnS3JaUwUxYJG6IUIBAJ4vV6CwSB79+4t+bbMHCUbx7uUyHUzmiM0Xef5S15+MLwCwD27m/jw3paMx5jzxebFp+yFp8nJyYxcp7kKoNBnsx1MzCvBuDPbrAkfhfa5HtvB7Aa2seiW2tBgkOv32b4IQ0ND654QG5FegFTJz8rKCp2dnSXbOpaTXggGg4yMjKDrOg0NDXR0dJSVB6vUe2EzeHVsle+85aWjzgG6zj9f8lLvsuEsQtzzLTwZt9fhcJj5+fm0n4LZFcvo/TcuRO+USDcXhRbSCk34yDerLVfDR/bxKyXS7ejoWPdxN5ptJ7ob1dAAmXPAzL4IxWBEqeWgKAqTk5P4fL686YtiWM/wxoxZbAcGBqivr0//vxxuRj/dq4thahyW645dAm67xNXFMLc4y09n5Mt1miM6wy/W+J3T6cRiseQVkY1kq2eylWN2U2hWW66GD6NBxBBiYxF0ParphU1CVVWSyWRFYquqKufOnUOWZfr7+/POAStEKaY3BslkksnJSRYXF9mxYwcdHR20traWvQCRz/DGjDEZQlVVBgcHM07KSqLVjRDdjY6UG1w2Li+EqXem8uDxpEaDywobXM9fKKIbHR1F13VCoRDz8/N588UbZQ5kTAPeKjayZCxfaaCqqhkTPpaWltB1nfn5+YINH1XR3SSMefflYJRDJRIJ9u3bl5GPKhXDN7UYZFlmcnKSpaWljFzxtWvXNq3O1lggyyW2xTx/PcyiG4lEmJiYSNfLejyeTW9FzcUHdzdxeSHEfCCOjk6Lx85dQ02MX1vckv2LoojVasXlcmV4LauqmhEVG/liIxrOZYZeLKqqbnk6Y7NFPnvCh67rNDY2Ultbm7PhA+ALX/gCKysrDA8PMzQ0lHExLIb1HMY+97nP8dRTT2GxWGhpaeFLX/pS2WOBtp3olkq2L8Lg4CDDw8MV+8oWE+nKssz4+DjLy8vs3LlzzcJcpYtxudILZrEdGBgo6C1aiegai3gXL14kEonQ3d2NqqoEAgFmZ2dJJBLp7idDiM2ishnphTqnld+8u5/x5dStfn+LC6d14wRC13V+MLzCP1/yomk6H9rbzL17WzJEL1dOV5KkvI0KRn2xOV9st9szxLhQBcCNyOkWqqjZDIycbr68eywW4+d+7uf44z/+Y15++WW++tWv0tTUxN/+7d8Wtf1iHMaOHDnC6dOncblc/MVf/AW/8zu/U/T2s3nHim4hXwSLxUIymayohbSQYCYSCcbHx/H5fAUX5ioVXXN6wZjmm0wmGRwcLMrIuVzRjcfjjIyM4Pf7OXjwIC0tLSSTyTWCk0wm0xHewsIC4XA4vQil6zoWi4VIJJJ3JTuhaCiqhssmFR3NuWwS+zszL6gbtbh1ZjrAX52ao9FtwSIJ/N3Zedw2Cz8xmFkfnG9fiqbzlR/P8L2ry1glgZ892slH9reuyRcnEom0GPt8PiKRCPB2BYAhyE6nc8urJW5ER9p6C2lOp5MPfvCDPP744zz55JMlt8UX4zD2gQ98IP3vEydO8LWvfa3Ed/E220501/vyGGYwExMTeX0RNqLyINc24vE44+PjrK6u0tvby+7du9dtd61UdGVZ5ty5cyWJrfn5pZScJRIJxsbG8Pv9dHV1pZ3G8mG1Wqmvr89IbRiLUDMzM0QiEcbHx4nFYum5WkZk99psgpdGA+g67O+o4d8c78SxgVFrOZybDuKwiunX4bFLnJ0OFC26Xz87zz9fWqLBZUXVdP7Xq9M0e2wc25mZZzfKsfJVAJgXnaLRKFevXl3jR7FZKYebUXQNkslkURODsynGYczMF7/4Re67776S92Ow7UQ3H2ZfhMbGxoLOWxvZTQaZJWd9fX3s2bOnqJO+lLxwNuFwmKtXrxIMBjly5EjRo9PNFHuLb6RJVlZW6O3tZc+ePSQSCbxeb8nbMhahamtrsdls6byYpmnpqPjU6CL/cMFPvV3HIoq8di2EIIf517d2rfFV2EpqHBZk9e07A1nRqbFnvpZContq0o/bJmERBSyigCTAGzPBDNHNh7kCwHyhO3XqFF1dXemo2Gxsk20mX2q+OBc3SnTX2+dWuZ997Wtf4/Tp07z00ktlb2PbiW72Ca2qKrOzs+mW2Wx/glxsVKQryzKXLl0iGAzS399fUskZlBfphsNhRkdHkWWZnTt3oqpqWYJr7L9QeiGZTKaHaGanSTZi8oX5iyKKYnrx5OyKREuzSFuNPZXjjMaZWE1k+CqYb7UNH97NXlD60J5mTk8FmAskEACPw8IDBzLdvQqJboPLypw/jsuWEhBVT/2sEgRByJsvNi5ii4uL6QoW87w2Q5BLSU9s9Hy0Yiglb13OObCew5jBiy++yOOPP85LL71UVkRtsO1EF1IHNplMpn0RimmZNVOp6EajUYaHh/H7/fT09LBv376yPuxScrqG2CYSCQYGBmhqakJV1bSfQDnkE06jjnhhYYEdO3bk7MzbiJKxfDS5rchJLV0OJWPhQGcDe/d2AylhM261DVEx6js3opU3H41uG//tI4Ncmg+h67Cvo2aNaBbKsX7iti4+/a1rLEdSdzcdtXbuzeqY2yjypXbM5kDm9t3sJoV8F7EbEenC+mIaj8fLFsL1HMYA3njjDX7lV36FF154oawp4Ga2peiOjo4yPz9fdmNBuaIbiUQYHR0lFoule88r+QCKEd1cYmuw0S5jqqoyNTXF3Nzcusd2M5sjjvbUcXEuxFsLYURRoMFp4acOtmU815iuYPbhzVeaFY/H0zl+8+TYcqhzWgtO7i0U6fY2ufjcv9rLhbkQFknkWE9dOurdCsxeCtntu7FYLC3G5ouYuS7W4/EUbT6z1Wy2w9hv//ZvEw6H+emf/mkAenp6+OY3v1ne/sp61g2moaGB3t7esm9zLBYLiUSi6MdnC19jYyOCIDAyMlLW/g0Kia5Z4AcHB9P7NFPp7bQhfJqmMT09zczMDJ2dnUVdyERRRFY0FoNxJFGg1laeGXwurJLIL9yxg7lAnKSq01lnL2oRLV9p1tmzZ2loaCAejzM9PU00Gk13jplTFBvRPbZeh1hLjZ27d5d/a7oZmC9iZowmhXA4zOrqKjMzMwSDQS5cuLCmvnizysiKrTyptDFiPYexF198sextZ7MtRbepqamiCK/YSNdchmWI7UaSS3SLEduNJBgM8tprr9He3l6S90MwrvD9KZkLyhyqpjPU4uL9gw1IJbiMeSMKw5eXADjUVZvyTLiOJArsaCh+3lshRFGkvr4+I9Wg63pGC6rRPWZMp8juHiuWrfRe2OzFo+wmBUgt3B08eDB97LK9d7PriyuNiotNZwSDwbIj3a1mW4pupawnuubW2fUaDCrBLLpmsTXSCJv15dV1nbm5ufTMs1Ly4QY/GvUhq9Be60DTdS7Ph+htcNDfUtwkDW9E4Z+Hw7Q1p4TwrYUwjxztzBDezUQQhNRUYslOWPTQ2izSXuvIO83YvABVqGFhq0X3RsyNM/woCuWLjTuK7EVPw+6x2NddbLmY3++viu5mUumJlk90DSNvIG0Ks5lIkoQsy1y4cIFoNLolYruwsMD4+DhNTU0cOHCAmZmZsm4NfREZ5/WzRxQErJJAKFF8nvytpRgWEZrcKdFdicicnw1uiujmiwinV2M8/eMZkqqGpum8d6CR+/a35p1mHA6HCYfDGQ0LZmMWj8ezpQY0N9P49fXyxcaFzOwwlj3vLlfr+DvNSxe2qehWSrboGpNuRVEs2ci73BM/Go0yMjJCOBxmYGCA5ubmTRXbpaUlxsbGqK+vT89YC4fDZd+idjc4uXgt9VxF1VC0twW0GLLfqq7rRGWVWFLd0Nbdt/e39tg+e3YemyTS7Lah6To/HPWxr6OGnY3ONc/NJSjZhuhXxqb5/OkQC985TXuNld+8s4OhjoayPBWK4UaIbqnnaKFFT+PYGfliY4qxuZytWC/dSqdGbCXbUnQrFSdjTprP52N0dBSr1Zox6bZYDHvHUk78aDTK2NgY4doSJ10AACAASURBVHCY/v5+QqFQxslYDvluM3VdZ3l5mdHRUWpqatY0jFRS/fCe/kbeuCAyH4gjAMc6HQTDYV6YC2K3SBzsqqXZk1+E97a6ODfpYzksIysal+ZDeMMyw94odw42cqJvc1I6Bpqu448m6bg+Cl0UBCRRIBwvPlo3StROzcY5MwXfuhgnGAOrJHDVp/Bfn5/lf9wTBTmGqqrY7HZOLQm8Pp+kxmnj5+/o4XB3+bfEWy26G5lDzpUvBtakd1ZXV5FlmWg0uqa+2JzrDQaDDA4Obtjr20y2pehWgq7rrK6uEgwGmZ6eZs+ePWWb3ximN8XcnpvFdmBggP37929IBUQ+4+yVlRVGRkZwuVwcOnQo54j4ckU3KqsshRL01oncvr+RuakxZhcSfGdJw6on0XSBk29ZeWBfE13NdTnrZdtqbHxk0E3Y7uHUxCo7Gp0MNLtRNJ1/ubZCR51jTcS5kYiCQG+Tk6nVOO01duJJFR1oqSmtrvfr5xb4+zfm0TSN1WgSgVT1hRUIyxo+awsfOtiCrus88/o0/3h1DquoM+uP8TtfP8+vHraxq61mTW1xMYHFjRDdzU6dZA8fNcrXOjo60mKc3STzjW98g+npadra2opOR5hZz2EskUjwyU9+kjNnzqSNdHp7e8t/j2U/c5uh6zorKyuMjo7idDpxOBwcPny4om0WY2Qei8UYHR1NR7aG2G4URleb8eVbXV1lZGQEm83GgQMHCo6IL0d0Q3GF7761SDCSYGwhzuQrF3n4vbuZFRMM2mVqnFZ0TWdmJcRSVMdhqpc1Vrc9Hg/+mMIVb4LG1tTx21GfEti5QJyzU358EZlffm8Pu9s8OV/DhbkgSVVnT5uHttrySrAeOtLB35yeY9YfxyoJPHJrB601xW9L13W+dWGRRpeVhKIhCKDroOp6uorDKqb+FgSB7w/7qXFY0+VvvqhMyNXBjh316dvs6enpjDZes0ObJEmoms74SpSkqtPiuHmmRmwWRlCTPasN3s4X7969mzNnzvD1r3+dp556ivr6+qJLvIpxGPviF79IQ0MDIyMjPPPMM3zqU58q22EMtqnoliJahtvY2NgYbrc7LUSvvvpqxa+jkL1jLBZjbGyMUCi0KWJrYAhnIBBgeHgYSZKKjt7Nc86K5fzUCjMzc1i0OC0uCy07evElbQiCjHZ9U4IoYLXZaW6pZ6jr7ZpZwz1rYsnP516ZJxDTsF8NEFJEuupsdNQ6eHk8iKIJ+KNJ/us/vMWf/au9GcIbjCv8398fZ8YfIxhXsIgC/+Xufo725L9Nz/UeIwmFUELhE7d1pXK2FhFJLKfWGARS7mZum0QooSKrGgICbbX2jDSJzSKmj5HxXLvVkvM227B9DIfDzM3NEYlEiCcVnhnWGQ9oWCSJRpeFf39oa6o94MaJbr5OMyNf/PDDD/PCCy/w2c9+lgMHDpTUWl+Mw9hzzz3H7//+7wPw0EMP8Wu/9msVRf3bUnSLwVg8Gh8fp6amJuctdqW3S7nqbA2xDQaDDAwMlN0iXCyapnH+/HlEUWTXrl3rjk43U0qkm0wmGR8f5+JbC9TVt9DdtpOrV65gtQjEFY0j3XV88/w8SU1H08BhFelvyjzedrsdi9XGP51cwS9bkCwa8zEddI0r3gSXFxPo6NTZwCNphBIaT/9whP/zwwNpj4DXJ/3M+GOshJOIIoTjCv/jxVE+99B+2gtEvObP4PxskC+8Momi6UiiwK+8r4db1smtJhSNN2eCyKrGrlY3rTWplfb797fyjfMLOK0SPQ0O5v0RWmtd9Le4+d0PD2Y0dTx6vJMnvjPKalRDR6feaeXuXbmN9K1WKw0NDRnlis+dX2AiPEW9K+WjPO+P8jdvRrCopze1/dngRoluobs1g0AgkD5WpbzGYhzGzI8x0h8rKyslG6UbbEvRLSRiuq6zuLjI+Pg4dXV1HD58GKdzbW7QEMxKVpXN6QWz2Pb395cktuWIfzgcZmRkhEgkwp49e8oayFfMyByzD8POnTv58Htv5YejPhKKRkLVicka3fUOWjxWfupgK5O+OFZJZKjVTY1j7bH1RWS8YRmXTcIbVrCKIqou0eKxshSWcVhE2utTo9Jj4QTxZGpSslGiNbwisRRIIIkSdosFSbCQVHXOzwRo35e/JXsxmCAkx3HbJL7wyiQOi4jTJhFLqvzlD6f404/vxWO3EEko/PXpOa4uRtjR4OATt3XhtEk88Z1RJlaiiALYLBKf+tAA/c0uHj7aQaPbytnpAE1uGwOCzvtvP5Lzi39HfyOPP2jlR6M+nDaJ+/a1FFxszGbOn8AqidhtqTUERRcJ6RpHjhxJD33MnmRsTlFU2qxwI8xuiv2OmkX3Zmdbim4uzDWoDQ0NBa0d4e2ysUpEV5IkotEoly9fJhAIlCy2xjZKEX+jiSIejzM4OJjuoCqHQq/T3Brc1dWVNr3RdR1NF3hrPgTATww20VHvRFEU2mrsdNQVXvwSBCHltrUaIa5oWC0Cqg7tdakWXG9IJhRPpm7DRZGPHd3JvqHm9Gtyzvh4fnyUmJxEScrEkjptboHZ+QXmG9Sc4nJmIcnrV0aRRIFEUiOaVBloTkXhTqtEOKGyGk3itkn8yXdHubwQxm2zML0aY2w5ygMHWphYjtJel4qk/bEkf/X6LJ++bwhREPjw3pb0qPfXX18seFwPdNZwoLO8hduhVhcvvJWqvBCAWFLlcKs9b/uzuVnB8C82m9uU2v58M3vpJhKJnMHVehTjMGY8pru7G0VRCAQClY36KvuZNwmapqVNyxsbG9M1qOtRqdNYPB7H6/USjUbZu3dvybaOBsVO9DUW5CKRSEYTxcLCQkVG6NkYvsSTk5M5W4MFQWCgxc1Ai5tXw2PsvJ5CKPa9N7mtuGwSYVlD1SCRUOlpdFJ/PSq+d28zJyf8iILAxw+38f6ht2/hRFHkQE8z/+H9Gl94ZQpRgF3Ndpo9Fk4MNqAoyQxvBZfLhSw6+N6kzI5WF067jUhcYXQ5QluNDY/dQiypIompC8FKJMmVxQjN7lT1gMsmsRRKMOmLZ9QVOywigVhu8/dcdy2KpiMJlZc63r27mWtLEb57ZRkB2NXs4GN78wu4zWajsbEx5+JTOBzOMEMvpv35ZhXdSkrZinEYe/DBB/nKV77CHXfcwde//nXuvvvuij7LbSm6xm2xYVre1NRUlI+umXJFNx6PMzY2lu6AaW5upq2tbf0n5mE9pzHz/gYGBmhpyZzJtRG+tvB2WmZsbIzm5uaiW4NLTY3MBxOsRpMc6PDgC4QIqFZiSQ1Z07lrqJG+ZjcfO9xRsCLh3n2tDLV6ODMVQBLhtt56uuszoxxj0sKl6RVAJxYJEwlqCKJAk13HF4oRiknogkiTy8rvPneFVo+NpKqhk1ocS0X1MNDs4kdjq8SSKlZRZDWqcN++3LXVgiCkj4esaHz+lUleGfEhiQI/c7STjx9uK/sLKwoC/+HOXh69rZukqiEHV0qa/GG8PqNZweyQZ9THRiKRvO3PsixveXqhFFezco5rMQ5jv/RLv8QnPvGJtBfKM888U/J+MvZZ0bNvELquc+bMGerr60sWW4NSRdcYxeP3++nr62Pv3r14vV4CgUDJ+zaTz8jcGI2zurpa0CC9UtE1qjtGR0epra0t+k4B3nYpK+Vk90eTWCSRNredGuI0NTczvRpnV6ub8ZUYU744OvDwrR30Nq2tLTbob3bRfz1FMB+I8+RLEwRiSW7vreeDu5vTjQt7eu1YpWns7lo8diurEZkeh8q/O1rH3EqIv70YYCkG9S4Lk14JXdNYCsWxWVLlWbd013LXriacVom/OTNHMKFw9+4mHrp1/Rz6X78+y0vDKzS5U+N5vvb6DF31dm7vrSz3WHv9rmAusHF1s9n1sbDWT8Hr9RKPx1leXl6Totis6c/FpN6M/HW5rOcw5nA4+Lu/+7uyt5/NthRdQRA4fvx4RdsoVnTNc8/6+/szRvFUOlgy1zZyjcYpdDIXm57IxerqKtFolPn5+bwNFGYuzAb41oUFEorGkR31NOml39o1uW2g6yRV0AFfNIndIrIclum+7ioWiiv8YHiFf1tAdA1WIjL/7X9fJSpr2CwCb86GCCdUPna4HUgJ1McHrby0orMYSlDntPBr7x9gR4OTuuYYjolRempsqVXyZBJFjXNLs44vFqPNbeGuXo2F+Xn2N3v4n/9qT0m312/MBPHYJURBQJQERAQuzIUqFl2DzR5Kmd3+LIoioijS3t6eTlEEAgHm5ubSDm3muuKNGBFUzEU9EAiUVLVzo9mWoguVR3jria450sw396yY5oj1MES30GicQpQz8icYDDI8PIwoijgcDg4dOrTuc6ZXYzzz+ixNbhs1disnx3206SonShTdtlo7H7+lg78/M0MwqtJXL3Gsp46Tk2/fMVhFSCSL+2zPzQQJJ1Rar3eS2S0a/3RxKS26ADvrJP7kJ/YQV3Q8dku6HtdlldB0HVUDi8UKogWXS+QXPrSHOqc1Y0T63Nwc4XC4pIWoZo+NuWACp9VIVeg0l+BPsR6apm2Kp0M+jKjTPK/NnFozt/BmjwgyV1Hkm/5cLtvJ7Aa2sehWijGGPRvz+PT1hkwWao4oFkEQmJmZIRQK5R2NU4hSLj6RSITh4WEURWFoaIi6urqim0RmfFEEAZzXJx20eOxMzWllXfiO9dTRXydyZWSc2470448mOTMdxBeRmfRFGV+J0Vnn4FsXFjm2s75g/W0ucpnpWESBOmfm6d7otnF8Zz3fuezFahFwWiU+eridOmfqVjVXrax5ISoYDDI7N4dsMmqRZZlAIIDH4+Hfnujm0//7KqvRJLqemhzx4Q0cz6Oq6qbU4xbaX6FIP1+KwmiKCYfDLC8vE41GgUyXsVLan7OpZGrEjWDbiu5GmN4YFnOQKba9RYxPh8oiXfNonJaWlrLGDkFx6QVz5cPQ0NAaM/ZibuFcdguqqZ0qllTx2N4euaNpWtrIuhicNgs1ttRU3GaPjZ852skXXplkLpigo87O+EqU/+cHE3TX2/m527r54O7chehHd9RR77TiDctYJYGEovNvT3QX9RpeG1vlh6M+ECAiaxzqqs27QGZgLESdmYvzV69HiSfhtt5WPnG8AzURY3l5mfn5eSKRCKqq8u/321lIuKh1OznW34LTunER3manF7Ipp3qh0Ej57KkUiUQio/252GGj28lhDLax6FaKJEkkk0kSiQQTExPpHGoxYmveRqmRbvZonN7eXux2e9mlOKIo5ozYNU3njckVzl6bRJCjfPjWoZytyMUuhu1tr2Gw1c2YN4oggl0SuaMrNa13ZmaGiYmJdNTtdDozbifz3X6b88Fd9Q5aamy01tp58coybptEQtGwWUT+4dw8h/O4ltW7rDz+4G6eO79AKK5wbGc97+1fmzPNVcb19I9nqHNaaa2xp4zYF8KMr8TSC3T5uLYU4alXp6h3WvHYJX487sdhkfjF9+zAZrOxZ8+e9PszouJwOMzU+Oia3KeR/ywnTVC2rais8uZsEIsocEt3LVapuG1omrZhJWOiKKbfvxlzSmd+fp5YLMapU6dwOBxrUhTGZ7qdGiPgXSy6kHLiWl1dpbe3l127dpUcPZeykKZpGrOzs0xNTWXUv05PT1eUF86VXkgmk/zDq5d5bWyVzpYGLM4OXp5J8nCbjs0i5Hz+el9em0Xkkyd6GFuOklQ1uuocXDl/hrNnz9La2srx48fT4m2uAzXG4JgjmJqampxf3jqHhRl/PDUFWEz5FDitFhRNIxhXMkRX13WCcQVV02lyW/ml9/SUdNwSSZWkpmGTUl8BURAQBYFIEUbsI94IOmC3pI5Zg8vKudngmsetV54VDodZWFggHA6jqmrJY+XLEd2FYJyfe/ocUVlF16G7wcFXP3lLUQMyt6JO15zSMSZP7N+/n3g8nr54GUbogiDwzW9+k4WFBRobG1laWip7UKzP5+ORRx5hYmKC3t5enn322TVCfu7cOX71V3+VYDCIJEn83u/9Ho888kjJ+9q2oltuesGoDvB6vYiiyIkTJ8q+RSvGMMYYjTMxMUFra+ua+ldjekS5mNMLqqoyOTnJ7NwcV3wuju3tx3I9ipn1x1gMxtnRmBnFlWJ6Y5VEdrd58Pl8XLv4BrIsc+jQIRoaGtA0DVmW8wqN2cBlenqacDicqqO9dCktMh8YrOevzyzijyaZ86faiR0WgY56R4bgKprO//rRFD8a9QECh7tq+E939RY1vNLAZZPoaXAy44/T7LYSTqhYJSFdQVGIWocFXX87LRNPqiVNvMiX+zQLi2FpaG5aMP4YUXE5ovuHL4ywEkmiaTo6MLEc44uvTvOf7upd97lb3Rxh1OgKgoDT6cTpdK4xQtc0jS9/+cuMjY3x6KOP4vV6efXVV0vuTnviiSf44Ac/yGOPPcYTTzzBE088wR//8R9nPMblcvHVr36VoaEh5ubmOHr0KPfee2/JqY1tK7qlYojt8vIyvb297Ny5kwsXLmxaTix7NM7x48dz5jvLqT7Ifr6iKExNTTE9PU1XVxe3336C0y9PZFyYNC1VXlXrtKYXioznF7sYZlQ9SJLEgQMHeP3CVf72nJdgcpkdDQ7uGWqgzpU7p2u1Wqmvr2c2ZmFUseJ0N+ARUn4ORl4vFAphj0ZxWzQEHUBjIZjgvv0t6dpUgBeveHllZCVlOkOqNOsbby7wM8e6cu4710VFEAT+8129/OUPpxj2RmhyWfn379tJgyuz3nMhmOD7V5eJJTVu3VHLLd213LaznpeGV7i2FEEQwCaJfPL24vLI+cgnLPkqAhwOB/F4HIfDgdVqLTr/OeWLoWqpNmIBSKgaY8uRol7jjRDdQmkXY77f888/z8MPP8yDDz5Y9r6ee+45fvCDHwDw8z//89x1111rRHfXrl3pf3d2dtLa2orX6333iG6xka4sy0xMTOD1eunt7U2XYhkLPxtNvtE4+aik1tfwCJ6bm2Pnzp0ZLbtHe+o5Ob6KRYJri2EWAzLLoTjNtXZO9DXy3oEmri2FubKSxL0cYU9X/tcYjUYZHh5GlmV27dpFXV0dMVnluxNx6uocNNe6mVqJ8o1ogk+e2JH3szk14edfhleosVuIJpLEAgmO3OKk3ZTX+1FwnL54CJdFJ5ZIEorLXBuf4bTNm474Lk1HsIqpdACA2yZxbak44TDT6Lbxu/cO5s1pL4dl/uf3x1BUHYsk8MZ0gEdv6+JEXwO/86EBLs2HSCgaA83ukoxrSqFQVHz58uV0aWM0Gk2XctXU1ORt5T3UVcusP46spi5ETqvI4e7ialy3WnSL9SQJBoMVL6QtLi6mTaPa29tZXFws+PhTp04hyzIDAwMl72vbiu56mMV2586da0qxyvGSzYexnUKjcfJRjugawj46OorH46G5uXnNqJL3DTRhswj84xvzhOMqTR4rIVmlQYNXx1a4thRmfDnKqi/JhdAMHz2ScsEyk0gkGB0dxe/3E3J2cMGvcPKNFe4/YMEmiSQUqHOm6l7bah3M+CJEZRW3Pfdp9eMJP+21dqySSK1d5LxXZ2Y1zlDr24Y9bTV2zmlBGhwO7A4HCSHB4d1NHDnSno74PMTxhyKQCCOIIvNRsOgKJ0e9HO9rynn3Uugine93l+ZDRGWVrvrU52iTRL53dZkTfQ1YJXGNHeRmj0Q3MKJim83Gjh070rfSqqrmnWRspCb+83s7GF+OcnUpgq7r3DnYyCduKy5K3+pJFRs9lPKee+5hYWFhzc8ff/zxjP+bW7lzMT8/zyc+8Qm+8pWvlHU83nGim91kUGrda6mIopieSFFoNE4+ShFdI7IdGRmhpqaGW2+9FUVRGB0dzfG6BFo8DobaPMSSKi6rBQ2dxWCCOpeFc9MBDnTWYpUt1NRY+c7lJY721GOzpNIVRt67r68Pn7WVfzg5Ta3DQlLT+Z8vhvh37+tFAzQ1lZqQFQ1RoOBKeK7TOPvcvm9/KxfmQswHEgC019p54EBbhpPWz7e04dXGuLIYZno1hqLqLIUSPPHta9zdLfCeLnvGot2GXVwpXOWx1SPRs0Uwl9tYdp1s2Ovl1/cnCQzZqPW46WyqIRjw54yKc7GV768U0S2meqHQNIm2tjbm5+fp6Ohgfn4+74JcMBjkgQce4PHHH+fEiRPr7jMX21Z0sz/8rRZbSLXRRiIRpqen1x2Nk49iRdcYw2O32zOE3VjhzYUopL50jS4by2E5vdCUVDXsFil9RbcIApquk1AU5mbm0qbNtxw9jsNq4cvnrlHvsuK5HsHOB+JMrERodIr8aCJArTNOs8fGT+5vxmbJf8zv6G/g+1eXcdstxOQkNTaB7vrMuwGP3cLvfWSIUW8qXdDf7FqzQOawSvzuvYN89y0vX3xtiq56BwICiqZxNqDxK/ftI2qapxWNRnn99ddxuVxpIS6mGP9AZw0vXPayGEzVAEdllY8eas/7+Bstut5Qgj99cYyJlSi72jz81gf7aXBZc9bJFhMVZ3ePbVUkb1BoaoSZYDBYccmY4ST22GOP8ZWvfIWPfvSjax4jyzIf//jH+eQnP8lDDz1U9r62regamMW2p6enZLEt54tiHo1TW1vL7t27S4puzawnuqFQiGvXriEIQs4xPIUWwrrqnTS77SQUDW9YZjEUp7fJxb372vjxuI/lcAJFhflgnHa3xJunT9HR0cHQgSP8zZk5vG8MY7eIRBJKRmOEqsOIN0pYhl3NTmQkGtzWnPPMzBzrqcNtkxhfieGyClhrAzkrDuwWkX0dhT1nJVGgyWPFIgi8tRAhklARBJ0mtw1BlKivr0/fcoZCIY4dO0YsFiMUCmXMIjOMvg0hdrlc6fOnyW3jv9zdx0vDPqKywpEddRws4IV7I0U3oWj8h7+9yEIwgUUUWAiuMOmL8eVPHMaSYwxRvqhYlmVCoVBG95hRkSLLMj6fb9MmU2RTbE43Go2W5aVr5rHHHuPhhx/mi1/8Ijt37uTZZ58F4PTp03zhC1/gqaee4tlnn+Xll19mZWWFp59+GoCnn36aW265paR9bVvR1XWdkZERFhcXyxJbeNt/oViHolAoxPDwMLqup0fjnD9/vqLqg3yiG4lEGBkZQZZlhoaG8uasCom2zSJy/4E2Rpcj3N7bQJ3TRneDE5dNYk+7h2+dX+DiskKT7ufOrlb2776NKb/Mf372AgtBGbtFpLvBgSSKqJpOQtFQNJ0au4SsqLS6Jerq7HjcbmZWYywEE/Q15z+lBEFgX0cN+zpqUFWVc+emyjpmmq7zwmUv37nsZXg5mp5TltR0onKcH42tctdQpsm02S/AjOGiFQqFWFlZyWhRNYT4YwebmfTL/NPFJb53dZl7djdzsGvt4tONFN2x5Si+aBLn9YuYRdSZ9ceZ88fpKXKqstngJjsqjkajrK6uZkymMA8azb5gbQSleOlWut+mpia+973vrfn5sWPHeOqppwB49NFHefTRRyvaD2xj0RUEgZqaGvr7+8s+4MWKrjEaR1EUBgcHMwSwUjP07DbeeDyeHsMzODi4rkP9eiVfdqvEvo61AmFRYuyzLDLYB319Q3R1deGPJvnKj6eYDyTQBUgoKhO+GI0uKx/a08pSKEGD28bDt3byN6dnSSYF9OsRsI6eM2ebD6MTrhBJVWPWH0cUBDrrHemI7dWxVZ6/tERrjQ2nVSIYVxBImYvrwB8+P8x8IM4HdjXTXlvYcjCX0bchMqFQCK/Xyw/Pj/KX56LIuoBVknj56hKPfbif2/ozvY23WnTh7TSb3SKiaTqi+PbPVF0vmO4pFqNW2G63MzQ0BGTaPobD4TUXLLMYlxsVlzLZZauPeyVsa9Ftb2+vKM+0nmBmj8bJ9iyAyu0djTpdWZbTrma5zMoLPb8U05lwOMy1a9cA2Lt3LwsLC+kvxUIwzuhSmGBCQQQcVgs6Ot6QzI8nVmmvdRD0xfjhmI87+hv5x5MraGKSoBqnvdZBZ31pk2kLfXahuML/+4NxLs6H8EWSNLlt/PY9/XTVO3jqR1PMBxMsBOLYpFTpmE0SsFtFQnGFYEzhH84t8KPRVX733kGSqs7YchSnVVxXhCH1mZon9D47NsxCPIYoCOi6isOi8TevjcLyOG94dc4uCzjtVj5+sJkb5QDQ2+TkaE8dr08GUDUNSRR4/1ATbTUbkwbIno+WbftooGlaOldcaVRcjOiWYnJ+s7BtRXcjyCe6+Ubj5NtGJaKrqirxeJzXX3+dvr6+krwfoPgrfCwWY2RkhFgsxtDQUHrhYWlpKS3aY94IgbhCvdNGOJEkmlSwqAIem4W+JhcNbhuarvP6hJ+f+GATH+h341es7Gxv4kCnBy2ZADbG5f+fLi1xaT7ESiQJus7ocoRPfeMK+zs8qLqOXUrNVrNZRHRSEx6isoYkpMS3rdaOrGj8/bl5Tl6V0S5fQdPhA7ua+JX39ZR0jF8dW0XXwSIJ6DrEkjqKtYZgXRvfPjeJXdJZiSf5sx9M80ifykr4JPUeJ031tZtu8m0gCgL/10f38Nz5RcaWo+xuc/OTB8qfUpFNsTW6oijmHClvjoqnpqbSg0aNxU3zcTIoRlCDweC28tKFbS66xdyiFsJqtWaI7nqjcXJRrr2j2WVMFMVNq7ZYL4I2TwRWdZ1dbR5GliIkVQ2LqtFe58Blk9JdbKIgIAipVtz+RgdutxurVePNs6fT78tYATdyorm6pdY7rvOBOJGESlJRWYkqKbGTEwTiST6yr4VL82HiSRVF1TnUUcNqTCEQT5JUdVo8NmodFvwxhR+NrhJN6OyoS10wvnd1mSM7akszEtdTlSDK9U4uDdjd5ua7by3jskm47SlhWAjEeXZMp6MpNc34wT0q+9UAs7OzaQct45gYRjcb+ZlbJZGHjpQ+FboYKm2MyJXGyXYay17cTCQSRCIRPB5P3uO03bx0YZuLbqUYkW6xo3HybaOUSFfTrVSxgAAAIABJREFUNGZmZpienqazs5MTJ05w8uTJDRdcVVWZmJhgYWEhbegz6YsxPeWn3mmlr9mNKAoZ6YnOOgfNHjv9zW5WwgkWgzLv39WENySzEEzQ4LYSiCVp8dho8thYnZNZWFjA4/Fw6NCh9K2gsQIeCoUyPATMQrxeed1As5sXryzjuy64gpASvlhSY3o1zm299ayEZVajST77wC6Sqs73ry7z/OUl2mvtRBIq8aSKjo7R2Wt0sC0EEyUdy4NdNbwxrZNUVTQdai0Sd+9q5pkzc6imi/5KJInbotNak4qy//fVCLfcN8ThAWf6uJj9J4xob6NyoJvJRjqMGeRzGjOO0+LiIjMzMxmDRrOP03bz0oVtLrobces0MzPD+Ph4UaNxclGsYY2u68zPzzMxMUFLS8uaKbsbhVnUzaPTfzzm443pAHaLSFxR2ddRw/uHmjM6827ZUc9SSObN2QAOm4X7DzZw3/424kmNb12YZ8QbpcVj4749jbx16SJ+vz9VYjY0lF5YyV4BjyVVTo778UXitOngVBRmZ2fTQxAvXbqUFuKgauX5t3yEEgpHums50VvP372R6iAyGi90YCUqsxyW0XX42WNddF43m/mFO3awt93Dd97yAvBzxzv5zpVlTg5HcSVVpnwxorLKhdkg9+9vLdrS8LfvGeAz37rG9GrKf/mX3rOD/Z01PEInf/D8MCsRGU1P3SnsqE19pjaLiCCkBN6oHsgX7eXKgWbXy7pcrhu6WLSVLcDGcbLZbOzbtw/I7b/7pS99idOnT2Oz2fjyl7/M4cOHOXjwYMnz0opxGDMIBoPs27ePj33sYzz55JNlvb9tLbrlYtT2zs7Opv0RKqmAKBTpmgc/NjQ05B2kWenKt3mab7aoR2WV87MBOusd1xeDdK4uhrmluz4j0pVEgfsOtHHn9XIro53XDoQSKi8PewlGZf7x9CT/5lgn9/TtKHiCy4rGl16bZtYfxy6JnEqq3LuvlQ/sTdkwnjx5kp07dxIKhbgytcgfvLRMWNaxWwROjS7x0KFmuutsLEcVbJKIKIKi6vy79/TQ0+CkwW1dMwX4RF8DJ/oaWAgm+NJr00ytxIgkdRbmQmi6jiDAN84vcn4uzP/3swepd63/BW322Hjykf0EYgpOq5iuLT7QWcPjP7WbH476sEkCr436CEdT0auqpfLM2QY62eTKgWbXy3q93rS3gjk1sZXNClvtu5D9fcgVFf/5n/85f/VXf8Wrr75KIBDgySef5LOf/Sw7d+4saV/FOIwZfPrTn+bOO+8s701dZ1uLbqkipSgKk5OTLCwssGPHDvbu3UsgEKjo1r5QTtdo2XW73QW9GIwKiHIjX0VROHnyZN5pvppRy3j9eAmCkMpNXj+xs6sfsr0TXhle5uuvTxKJJ2lw2pB1kX+6GqCnVmRfW/7XPLUaY3Y1nvYuUFSNf7m2zPuHGq/nhoX0F+lzr63ilwXcNitJVcMb1fj+sJ9fOmDlL8/KhBUNTRO4d1cdd+50FcyHRmWVP3x+mEBcSQ2GBCRBRxQEtOv52ZGlCP/9n6/xP/71vvRxKYQoCDkFdKjVnfaOONxu53MvjrIcllF1nXv3NjPYUnrTTKF62Wzrx1OnThVtGl8JN8Lsppj9qarKkSNH+I3f+I2y91WMwxjAmTNnWFxc5CMf+QinT58ue3/bWnSLxbxo1dXVlR6Ns7q6WrHTWK5I1+/3Mzw8jM1mK6o9uNyJvoFAgGvXrpFMJrn11lvX5MYM3DaJ7gYn06tx6p1WQvEkLTV2ah0WErlM0FWN7761xPmZIJocZWVllYQq0FDjSvnzKhqJpMpSRGFvgWhL0zO9FYTroqfrZBgxJFWNK0sRbJKIJApIokRUVsFq5yffd4CL0RHemg8hojMXlDlzZQI38dR7MzUxGP4B06sxgnGFJndKJD1WWJVTopuqQNCRRBhZjhKMKUVFu8XQU2/nP91Wh6e1B49dKsljtxgkSUo7jimKQjQa5ciRI+uaxhuRcSWiebPZOhr4/X66unJbehZLMQ5jmqbxW7/1W3zta18r6OFQDO9o0c0ejZM9h6zSxgbIjHTNHWu5WnYLbaOUxTjzgMndu3dz5cqVgj3qgiBwz55WTk/5WQzE2d3m4ejOBiySmNNt7YVLi3zv0jxSIgQWGytCDQ5bgrii4RYFkqqGyybR7LYVvFjsaHDgtktcXYzgtqcmQbxvoDE9jddAFARq7BYiCZWEoiIgoOo6PzHQyMmJVaauO5EJgsBKROZsyM1v3n0wnQ8NhUJcmVzg/GwIEZXOOgfRWAKXpKW8Zq1gkURkRU/fthpWjBvRPGCg6zpum5ThmrZZGAtbxZjGGzn0XItRxXgbwNo63c2mWNENBoPs379/3cdV6jD2+c9/nvvvv5/u7sp8k2Gbi26+W6h8o3Gy2SjRlWWZ8+fPk0gkGBwcLNl8o1jRjcfjjI6OEgqFGBoaShel52uQuDQX5OJcEI/NwnsHm3hP/9rmjuznhkIhvn1mmBq7RGtXO1arFWklSovHzhszQXyRVKvpAwfbOdhhI1lgEdEXSeINycwH4yQUjUOdNTmn4UqiwCNHO/naqRnCcRVF09jXUcsjRzt54bIXi/D2Z+2ySayE5fRrr6mpYS4q8Cen5pAVAImuOoHDHW7OzoXRtShJRefBPonzKzATUrFZRCyiwMO3dvD1N+Y5OeGnxmHhF050r+sfUQhN07ZssUtV1YL7yjXJOHsxampqqujGBU3TtrSqotimh2AwWFT1QqUOY6+99hqvvPIKn//85wmHw8iyjMfj4Yknnlh339lsa9HNZr3RONlUKrpGy24gEKC/v79gE0Uh1psekUwm01Mv+vv7+f/ZO/M4Oeo6/b+r7+7pue87c08SkpBMQrhE5BQFUURRV0EFj134iRtFTl1kV4Ku67HoCuouUVfXGwUVAUHuXOQgCZn7vu++76r6/dGpSvVMz0z33Al5Xq+84JVjqqq76qnv9/N5Ps+zbt26mOPEI+29nRP8dE8vFoOOkCSzr3uSOy6vwW6J/cqVmq7f76e1tZVgMEhhbhZ6owmj8UR+mE7gQ1tLue0dRkbcQYrSo9NnQ0NDhGYoL/hCIvc80cSgM0iO3cT6AjujnjBNwx42aXwLRt1BBl1BtpWlUZReRdOQhxy7iXfUZmMy6KjOtSHKUd3uhDeMPyLy3ilOX99/qRtRkkm3GpFlmV5HiHedVcYlZxUz4g7iG+nm+rdvxun28ELzKAOTHnKMEVo7ezg4KpNhNTLh0fHAX1r45nXr5l0WWM4x4PkkAc8k0dJaP46Pj+P1elWvCuXvh0KhBZvKJINEexyLodNNxGHs5z//ufr/u3bt4vXXX58X4cIpTrrKDZ5oNM5UzJd0leif8fFxKisrcTqdMQ2PZDHTSldbiy4rK5sxzy3eSvepN4fJTjGpgYO9Dj9vDrrYXhG72h12BWnqGWVgZJyz6mvIyckhfcTLrt09OH1hJFmmIjuFdYWpmAw6yrNPNoZmGk6RZJkHn26jZSSa8NAz4cfpD7Mm24bTfzK5+NiYyL//6pj6bz55XhkfmxJ7s64wlbOLU/n5/gFkooGVTx4b5tyKDDYWR1c4Dl8Y0wn5l5oQ64/w3k1Rct6/vw+z2Uye2cwHc06OrN70k8Pkpckgi+giEcbdYf7w0iEuXHNST5yamjqnBaSC5STdxTQUjzfOO9X6cXR0lJGREQYHB2dM5V1MLLaX7mxIxGFsMXFKk65WJpVINM5UzEf90NXVxfDwsDpwIAgCHR0dyZ56DKaSrizL9Pf3093dTWFh4bRa9FTEI11RlGNqpzqisewn/1zkJy8c59nGEYwGPUX5uVTro3XTyhwb56zJpHPMQ3l2CldvKIhb+1SOK0kSR/pdtA+7yEwxUZJhpmnIQ6bVgDsoYjIIOP1h/CFRlXj5QiK/a4uQmWbBbNARFqPysnPK08lNjf0OO8b9VOVYGXAGkYAxd5ivPdXG19+3ljXZNs5Zk8Ffjo1g0AlEJBmdAJtK5q6nW0x6wqKE9cRuyE+I9WvLqSqy4na7cTqd9PX1qVNSWiKOp5s9VUk3HqZaP8qyTH5+PmazWV0VDw0NTYuUV6KCFtp0W07STcRhTIuPf/zjfPzjH5/38U5p0hVFkcnJyYSjcRZynN7eXtXce7FHdhXS1cbwZGdnz1ke0f77qaT79tocHj88SLrFQCAiYTMZqCtIVYc0XjvWzsu9eqqLc/D7vCDDrt293HNVLTufbuVQjwOAV9onsJn0vHN9/rTjBiMyvzrq4MDf9uEKRNhQZCfTZiLFpEeSo5NZohzEFxKJSPDus/KozImulB3+MLJ8MsbcqNchCBJj3vA00pVkGVdAROKEm9YJL8dnGsf49IVl3HJ+Kd6gyMvtE5gNOm57+5qYKJ2Z9Kw3bi/mP//ehScY/exLM61sLcvAZtJjs9nIzz95zdotuOIzK8oC9lQ7WelRj4W56qyLieWOzlG2+zOFZ05t2kmSFNO0S2bHoPzMRBZQHo9nRtXOasUpTbpGo5H6+vol+/nahlwiK875Qq/X43K56O7uJiUlhS1btsR9iXgCEQZdUavD0kwrphMrxB6XyKTgZq3Rht1sYG/nBE5/mIbyDDyBCKkWA+9cn48ccLP3aCvp6emUVtWTNjmI0aDHJ8ukWw0MuIK8OeDijV4nuanRByQUkXjstR4uX5s3TXXw+LFxDg/6CUgGUkx63hz0cFl9Dt5QhLp8O43DHuwmHUa9wLoCO+87+2QtNifFhEkP3qBIilmPPyyiEwQK06Y/aFety+Wbz3UQkSTkMBh0Arl2E6ETUUEWo547r6jic6FyjAZ9XNPueLigMossm4ljAy7SLAbeVp2tlmOmQrsFD4sS33i2nZfaJpAlJ5dWRrimyoXT4VC35VPLE4uNlSDdmY5nMBhiTOMBtU/g8Xim7Ri0RDyT21gkEplTarlYXrrLjVOadGHhpjdKI0n7xWlrxLm5uQmtOOe7tXS73fT19SEIAps2bZrxrT3hDfHbgwMEItFVWV6qhWs25vPbg4McbvdiNUd4odOHzaxnxBXEatLjD4mcV5nFOyrtNDcfQ0RPKKOcIcGAVYiuRsMRCVmWGfOGqMi2EoxIMZ6sRn00BiciSuh1sYT05pCXDLMOX+CEA1cIxtwBUkwGbtpWwBsDHh4/MkJQFBnxhNm1p4+btpeg1wmYDDo+WGvgyX6BSV8Yk0HHnZdXxtXMXrE2lwlvmMf29GExCpRlWhFlOL8yuq30BCM88JdWDve50Anw8XNL+dDWIvXfz/a9rC2ws7YguZXSz/b28VLbBGlmA7IMf+/ysWFNBQ2VWfj9fnJzc9WECkUhoB3rTU1NxWi28OgrPbzQOk52iokvXVZJVW7iUrOVIN1kFhxa03jtjkHrP9Hd3R3Xgzc1NTWpYaFTyUsXTgPSXSiUZprJZIoZ2U2mRqxs75O5KX0+H21tbQSDQQoKClQx+0zY3TGBLMuqz0CfI8Czx0fpHPNSlGbCZDLiiEi82ubgkvro1i8UCvPXg+1k+kzU1dbwx0YnQ8POaJKvKLF9TQZ/OTZM73iI9BQ3F1VnU5Vjw2zQ4/SHsZn0THrDbCpJxxwnVifdamDA7yc7xcKIK4Aoy/jCUJ5tpiw7hYN9bswGgbIMGzLwYssY5ZkW3lGbzQut47w2IFKXZyPLZuJj5xSTmRJ/RSgIAh/eVszGkjSeaRxFlODimiw2n4gOf/iFLg71uUg165FkeGxPLxU5VtVJzB2SGXVHVRSL8YAe7HNh0utOaDqj53e438WWHHvchIqpY70jIyM8esDF7kGRkAQCXv5h1yF+d8sWijMTm2Bb7aQ7E+bynxgbG6Orq0sd9sjIyJjRrW45JXqLiVOedBfL3tHj8dDa2kpKSgpnn312UvIYZUAikZsyFAqpsebV1dXk5OQwMjKCx+OZ9d95gyIW48mHzKQTcAfC6AUBAQFZlrAYTIQlGUmUmJicwOv1YbWlcfbmDfQ7Agw5A5RmRq/LHxI5PujBZtRTk6mnMC896tCVbuH+q+v5wYudjHqCXFCVzWfetibmXGRZRpIkPra9lH978hihgBMiArlWI+cVm7h0fQ52q5muyRBpFqP6uZgNOjrHvBSnm3j2+DCpRpmCVBNDriDPNo1y/ebCaUTiCkT46d4+moc95KeZ+cS5pepYsYLDfS6sxigJ6oWo78GbAx62lWfwH8928NSxAPajRzirKJV7r6yeMSI+URSkmmkb8XHC7RJJlilIM8+424k31rv7zy8TOlGGl4n6VPzv39/gklIDNpstpjwRb5e13KS7FC5jCrT+E8pk2BtvvEF5eTmRSCTGrU6RvSnRQYkOIM2ERM1uenp6uOWWW+jt7UUQBP7yl7+wZs2aeR3zlCfdhUKSJI4cOYLFYmH9+vXzKsonYu+oVT5UVFTEOJrNpdMFqM5L4cXWMUyGaF5ZSJTYUJxF14SfQFjGLEh4xDD5FnijrYe8zHR0qblsK00n1WLEE/Qw7AoSikhk26PNrgFngAyrgQm/TJ8jQEiUeLV9gh2XVbPzfevwhUTsZoNay1VebkrTb21RBt/96Dl0jPrQySKlKTJ+n4fBnk7am3xIbokxh4w+zYLBYCAsQUmmjcbOftwuJzVFueh0OrJSTPRO+hFFUf0clM/m4b930jLqJdNqpGvcx0PPtLHz2no1mRggN9VE64g36kJ2wtQmN9XEf77QyS8ODCAArlAAX0hk154+bn37mqS/Yy0+dUEZbw66cQUiyEBpppUPbC7EPTGS8Mor6vdwcrGg1+moKC+nYXOBGhWkdR2zWCzTtt/LSbrLHUUkiuIJr2ZjjBwzEong9Xrp7OzkF7/4Bc3NzWzevJmqqiruu+++pEMiEzW7ufHGG7n33nu5/PLL8Xg8C/rsT3nSne+NoKxs3W43FRUVlJWVzfscZjO90Y4il5SUxFU+JDKRtqkknVBE5I1+F0adwFXr86krSCXFrOdXu1sZdvgosYa5fnshveEyxrxhyrNsXFidjTcYYX/XJOPeEBO+EB1jXvJTTdTmp3Ck38WgU8QeCeELRTjY4+DVtjF27emNEnSKiR2XVVOcYVHlYcqopCAI5NrN5Nq1JZiTXe3a9X4eerqFvkkfkYifQquIfngSBBsWqw1BF12dekIyVbkpaolHOY4rEKZp2I3dpCcYEUmzGJjwheka83GWZsDin99RwRd+34g/LCLJMmsLUrmgMpOdz7QhECVhBJjwhTk64E76+52K/DQzP/zIRo4NutELAhuLU7EY9biSIKaPbS/mZ/v6CYQl9AJYjDouq8+JO8AgyzLBYFAtTwwNDeF2u9HpdPh8vhip1qnWVJoJM9V0DQYD6enpXHXVVRQVFfHDH/6Qxx57TFX8JItEzG6OHz9OJBLh8ssvB1iwWuKUJ91kodRSA4EANTU1jI+PL1huFm+lq0izOjs7yc/Pn9U/NxHS1esEzq3M5tzK2Bsr2xDi7VkezIVmNm+O2kZOfde3jXgIRCSuWJdH85AHVzBMlt3Mpy6s4MbHDiDKMhFRIsVswGzQ8e3nOyhMM5NpMzLhDfGtv7Wy89p61RlsKrGIksy+rkmGXEFKM6NZXYIgkJ1m5WvXbeBY5yC9PT3UlxSwprwMv9+P9/AAB3oduP1hQqJEppRCU1uI/Ox00tLSMJvNWNEx6ArhD0sIAtiMOnLtJoy6k969AGuyLPz4HzZwfNCN1WTg7JI0+h0BjDodAUECWUanExAlmUzb4tzyqRYD51XEbkOTmRL7f29fQ1G6hb+3jJOTYuQfL1pD1iw1bYvFgsViUaVaPT096PVRaVs8U/SpJkCnGhJZWSsG5nq9ntra2nkdJxGzm5aWFjIyMrjuuuvo7Ozksssu46GHHpp3ueUtQ7rBYJD29nacTqdaSxUEAafTSTgcnvsHzALtSleWZcbGxmhrayMjIyOh6bj5hFu63W5aWlrQ6/Vq7Wum40hy1GHLbjbQUJ6BPySe2IKbObskjZ7BAPm5qeSkmmkbjRqjWI16ZDk6IjviDuILSaRZpz+8sizz3692s7tzEqM+KmG7cl0eH9parO4mjAYDV5x3sk5uNpu56eIMajom+PZzHWCQeaFf4sjEOJ/dHETq7CQcDnNoXAeSqK6uHX6JkgwrtYXp6ARBLXPIsky6Wcd5a6LaXFmMkGWNxugEIyLBiIwsShh0Oj51wfx3NHMhmS24IAhcv7lw3vE6kiRhsVji+isoJkCjo6N0dnYSiUSwWCwxdeKlzmxbDiQ6ArxQs5tIJMLLL7/MoUOHKCsr44YbbmDXrl3cfPPN8zrvU55057pxpvoWTI3iWSzTG1EUVUtHs9mcVDMuGdLVBkzW1dWRnp7OyMgITqdz2t+d8IYYcQcx6HWY9QJjniAmgw6HP8wV9VFTjyvW5/M/QyOkWo04A2EybUYCYZGwGE2U9YdELEY9NnP8t/qAM8j+bgfFGVEPV1GS+VvjCFVGB4R81NTUzPhg/OnoMCkmnUrmQ64gQ0IW79q6FlmW2fdcG9kpY+TIEt5QBFGUMIk+Ojs6SE1NJS0tTe1oK8MhSmnCppP5yjureOCpVtz+EGaTiTsvr6A807JkTajVMJE2kyl6IBBQI5S09o9Tp+zi/czVqhJYLrObkpISzj77bCorKwF473vfy549e966pDsTtIbl5eXlM/oWGAwGgsHkMrOmQhRFOjo6MJvNSVk6KkiEdMPhMB0dHYyPj1NTU6Ou1Gf6902DLv77tR4kWUaU4dw1mWTYDATDMudXZlN/Qpt6cW0OHS0G5EwrdrOBi2uyeK1jgj+8MYROENDp4P9dXIHhhAWkDDGm32HxZI03Ikp0Dk8y4g7R4irihvMbov67M8AbjMSMFwvA0QFX1G0sKFKSYUbW6clNTSEXGPOEaKjOJCMjTe1o+3w+DAYDaWlpKtmkpKQgSRJ5OLm3QU9aQR0VBVlYjSfHpbUNO+XXQol4ORUFyRxLEAR1kmyq/aNSJ1Y0s4IgTCtPAMvqpZvotTkcjpjJuPkgEbObbdu24XA4GB0dJTc3l+eff56tW7fO+5inPOlOfQNLkkRPTw/9/f0zNq60WMhKV3EZm5iYIDc3l7Vr187r58xmYq69nvLyctXvQYup3guSJPPTvX3YzXpsJgOiJLOna5IvXlZNSWbs6lsQBNZmG9i+vVRd0bxnYwFbyzNx+sMUpJnJSjGxr2uSJ44MEYrIbC1P571nF2LS6yhKt5CXaqJn1EnfpA9PWCAjxcyLPQEEywAf2Taz/+gFVdn89uAAmSlRj96QKPHUsRHVevH4kIeCVDMT3hCCALX5KXzsvHJSTIaYh00hD5fLRVdXFw6Hg1AoRFpaGhVlxaSlpWDXSNckSYpp2C0WEa+GlW4yMBqN0zSzWqOb4eFh2tvbiUQiasTVfEZ6k0UyXrrV1dULOlYiZjd6vZ5vfvObXHrppciyTENDA5/61KfmfcxTnnQVSJLEwMAA3d3ds3roTsV8SDccDtPe3k5L/zhFpWWUVWQihgLzPfW4kjFtI66goGDWEeSppBuMSPjDIpm2aINQr4vqVz3B2OtUiMdsNrN3716COgujYRPpqXa2V+dTnBFdsbePevnVgX5y7GYyrAJ7OiexGvVcs7EAv9fNpTlu/uKW6dGZqMw1U51nxyAIvNI2wbUbC2bUxb5/cyGiJPFS6wRpFiN1eXaeOj6iZpDZBAFPSGTne9fyzWfbebV9gk/85DD3vauWjRr1gkIeer2e0dFR8vLyKC8vV7fU/f39eDweJElSSUP5pQy/aIlY+S8Q873oTqgtlP+filONdONhqtENnDTNt9lsOJ0nI+UTMQGaD1aj2c3ll1/OkSNHFnQsBac86Sojux0dHeTk5CRsEqMgGdIVRZHu7m76BwY45Emj3ZmKbtyBWYjwvloLVfO8hqk36vj4OK2tUY+ERBtxWtK1GHUUppsZ8wTJsZvxhSLoBIG8E0Yy2lUewKZNm+gY8/KtZ1sZdk3iDY6S8UoHV6/R45YtDPl1BAJgTDOj0wlk200c6XNQoRsjFAqxdcNa1tTq+fe/tVGYZlGPgRCN7JnxvHUCH95WwodPrIafPDrE0yeSfCGaqZaVYuTfn2mj3xkg3WrAFQhz1x+O87OPbyH7RLdf2XGEQiHWrVunToNZLJZpfgBKk0kxFopEIuowglIn1hIxENOwm/p7Op1OJb/TgXRnOpbZbCYvLy+mPKGdshsbG8Pv98fk3imEnGxpItFBo8Xw0l0JnPKkGwqFmJycTNrWUUEipKs1vikuLsZWso6W3b2UZEabOH3jLp5udbF903yvIgqtImHjxo3YbHOPhAbDIvt7XDR2+9DnuFhXmIogCHzy/HL+57VuBpwBzAYd29dksL9rguJ0C/UFdpUgFJJ44sgwY34RZ0jAoDfR6QrxyHHIs4tMev0EIyKGsBujTsAZksk2Sdjqy6mpqYlOW9kkitMt9DsD2E1RctxcmoF9hgZcPFxSl8OvDwzQN+lHJmpsc9P2Ur71XAdpJ8zXrSY9gbBE24iXjDI9PT09DA8PU1VVFVPnjgdtk6moqIg3+pz8em8f/lCYSypENogOent7CQaDmM3mmDpxvIadQsIKAXu9XtLS0ohEIotWJ54Jy0m6M40Am0wmsrOzp/nwKt4Kg4OD6g5DcRxTPs/ZFhLLudJdCZzypGuxWOZdS4XZSXdqrLmyim5vHEGvP0lY6VYjY+75lxf8fj9+v5/GxkZVkZAIwqLEL1/vo3PUg9sRZvTgAJfU5fC2mhxy7GbuuLwGb0jkdwf6OdTrxKQXCIQlLl+bw9trYxsQk74QA5MBTAYdkgBhSSYUjDB+IijSH5FocugotEmk26zccE4+kUiQo0ePEg6HsdlsvKcihT2DJhwhHRdWZ/HOdXlJrfxSTAYe+chGnmsawxOMsKU0g4ocK99+voO9OiZIAAAgAElEQVSIKGHQR20dI5KM6Hezf38zBQUFnHPOOdMIyOEPIxD9buLh+KCbO35/HPGEnK5xxMfdV9Zw2ZaamGEEl8vF4OAgfr9f3U4rK2KbzYbRaGRycpKWlhaysrLIzMyMIWftingxiXi5o4ESPWdteKYCWZbVKbvJyUl6e3sJhUKYTKaY8oTyYkvU7CZR9cJqwylPugu98WZSDihb/Hix5kUZViRJPuG8JeDwi5SkJP8gaRUJBoOBbdu2JXU9g84AvZMBSrNs9PsnKcow80rbBOdXZaPXRR/wCU+I1lGP6lcgihIvtE6wbU0m7aM+wqJEbb79xGRYBLOkQ5ZOqBKI+iXokbHoJXSCjpsvXsvG0swYMpNlGb/fj9vt5mK9C7fbTdA7zptHB1WCUrbtc11fisnAe6bE8dx2cQXfe6GTYCSq2T07B9IkFzWbN0/b3YQiEl/43Zu81jEBwAVVWXzz/evVZAkFfzk2TFiS1RW0PyTy20MDXFafG3cY4figm28808qoe5x1OW4+UDtKJOAlFAqh1+spLi4mOzsbg8GQcMMOTtaJkyViWZaXTVGwULMbRRExmwnQ6OgoPp9PDds0mUy4XK5ZDdHdbvcZ0l0pLMT0ZioJuFwuWlpaMBgMbNiwIa6nZ32Bnas3FvDUsRFApjovhQZ74s24eIqE3bt3J33uoiSrLleSJKFDQEI+UX+MHicUia74hOjFoj8xwPCvf2mhbdQbfSBMerJsRoozrCd0vQImWSAiQSgYRAYsZhMVeanUFKRNWz1qE2kVGz9ltehyudRmViAQwGw2q0SsXd3MhvdsLKAq28LuNzuxyEGu3l4/Yy3vkZe72NM5iXI77O6Y5Icvd3PbxRUxf0+nE0Bzz8iAfobzGHIF2PHbNwmJEia9wP7BIL6wxMdqdNTX12OxWHC5XPT19eHxeJBlGbvdHlOemKlhpy1RKJ+bQjzR84xPxsvpvbAU8evxTIAgWlro6OggHA5PSzFWVsUpKSmYzeYlNeFZSpwWpLsY8Pl8tLS0EIlEqKmpmfUNKggCV67L5+01OYRFGasBDhw4MOcxZlMkKCvuRD1EAYrSLWTZTAy7gnhDEr2OAOesyUBAJhKJPsQFaRYyU0wMu4PYzQYmfWF0OoE3Bz3k2Y0IgsCoJ8SYN8SVa3NpGfEy7g3i9fqJiCJ+2UCaxUhhuoXSTIvavJoL2tWitvmiJeKhoSF8Ph9Go1ElKGXbrpCOUk939fXx7g1rKCgomJWkD/Y6CWuiisKizMHe6YMj124s4JnGUVz+sDre/NFz4svbjva7CUvR2HlJFNGLId4YEvnWh87HfCK8c2rDTrEmHB4epq2tDVEUpzXslLpmsg07nU637E275SI3g8GA0WgkIyNDvW+0Kcbj4+M8++yz7Ny5k2AwyJe//GU2b97M+eefr47zJopEHca+9KUv8ec//xlJkrj88sv57ne/u6DP/rQg3YWsdIPBIH6/nyNHjsTEmicCi1GPxRgl07mGG+ZSJMym1Z0JZqOej24v5ZW2cV53DHFJXTYN5ekxpjRWk46bzi3l+aYxRj1BzipKo2vcR+OgW71x7GY97oDMkCtApiFCWPaxqSKDG99Ww+NvDNE3GaAk08INDcUYZxl2SOiczWZyc3NjdLbKNtPtdtPe3q5uM41GI263m+zsbBoaGhJKYCjPsnKk3wUoXgjR35uKqtwUHv7gBn53aIBgROLdZ+WztTz+6tlm0iNL0akuATCYLOgAk2FmCd9U2ZVS13S5XExMTNDd3U0oFFLHc5WXjsViiXnhTG3YQbQsFQqF1PtlKRt2ECX+5Yxfn7r40JoAFRQUUFNTw/vf/34uuugitm/fzuHDh7HZbEmTbiIOY6+99hqvvvqqKhe78MILefHFF7n44ovnfX2nBenOB5FIhM7OTkZHRzGZTDQ0NMzbGGS2t16iigTFvyHZmzsaxZNHykQzBToXbiekpaXF3LQZViPXaWb8d3dM8NSbI0QkGb0A7kCE80ptpIQn8JpSaGio5tK1edjNBv7poop4h11UTO2C+/1+mpqaCIfDFBYWEggEOHjwYIz6IC0tmks2lWw+f0klr3c7mPCGkRHITjFx+zsq4x63Ji+Fu66smfXclMm2XHOEQb8OBAGDJHPbxRVJrXa0dU2FHKaO5yolGKXBpJ2wU46lvLwLCwtj9NlL1bBTfvZybuMTUS/4fD4yMjK45ppruOaaa+Z1nEQcxgRBIBAIEAqFkGWZcDgck4QxH7zlSFdbT1VizQ8dOoQoiovqxhQIBGhtbcXv91NbWzunnnA+K11tk2bTpk04nU5Vf6r4kWobWcqNfG5FJtdvKeTxw4NEIhJrUsJcWmxjXd1WLBYLY54QQ64gOSly3PicpYIoimq0fU1NTcyklPLnCkH19vaqxu/a+mlaaiq//fQ2DvU6EYCzS9Oxxkm9SAQKweXn57Prlgv4W/MYY54QG4vTaChbuD50pvFcZeXvcrnUBpMgCEQiEXQ6nSqPU0g1mcGO+RDxcnv3JkK6TqczZicxHyTiMHbeeefxjne8g8LCQmRZ5rbbbluQWgpOE9JNZMUhyzIDAwN0dXVNC5lcDNMbBVpFQnV1Nbm5uQmdXyJG5gqmDjdoBekKlDqYy+WKIWKbzUZaWhqXlllZazLjC4TYsHategPv7pjgd4cGT/xc+Nj2EjYWL22HWJZlnjnUwU/29iEYzFxzdgnb4tTW9Hr9tABERRfqdrsZGBhQdaFpJ2RIAY+AMTU1qVp5IBCgubkZiA6OKMZF12womO2fLRq0K39ZlmPCUfV6PSMjI3R2dgKocitl5a8sHBarYQerc6Wr2DrOhYU6jLW1tdHY2EhfXx8QnUx7+eWXedvb3jbnsWfCaUG6s0Gbe5aVlRW3nroYpCvLMl1dXbN6JMyGRExv4pHtTMfQ1sGKiorUf6/4E3R1dWEymdAJAl1dXaSlpSEZrfzmwAg5djMmgw5/WOTn+/qpvdqujuYuBiZ9IQ70RJtb1Rk6Dhxv49E3glgtFoyyjp/u60OnE/hgQ/GcPyueLlSZPHO5XNMaWdqG3dSdjSRJdHd3Mzw8nHR9fyngdrtpamoiLS2Nc845ZxoRKT4JipbY7Xargwha5cTUht3UWrHysyC2Pqz8dyVId67jORyOhKbRFuow9vjjj3PuueeqC5qrrrqK3bt3nyHdmYhHEa2npKSwefPmGc3KF0K6yhiyz+cjHA7PO6Z9NtKdumKZjWznOs+uri6Ki4vZsGGD2gVXRmObB8ZwOBzgkzEajZhMJnxhAYc3QEHG3Em1sixzoMfBnk4HVqOOK9blqZlsCkbcQe75YyOT3hDBYBCLXmZ7VS4Go5NUy0kSfLZxNCHSjYd49oaiJDE66UYKehkbG6PzhGevoihQBmGKioriDlssJxTZlNPppK6ubsZtdDyfBGWH43a7Y67TarVOG3WO17DTNoWV/yoTdss1BZfIcRZjBDgRh7GysjJ+9KMfcffddyPLMi+++CKf//znF3Tc04J0p8LtdtPa2oogCAnlns2XdLWKhIyMDEpLS+e9IpiJdJWHQCHb+dz0k5OT6nlu3bo1ZoWnLU2kZeXydG8LJoMOi05mzO1HJ4bpajlOpxhRV1DKKmrqjmF35wQ/2dOH3WwgIkocHXBz15XVFKSdfNn94fAgo04vKboImekpuMLQNh6M8WiISPKirqxfbR/nX/7UQjAikpdq5j/ev566OhuyLKsvZqVDPzg4yOTkZMyKeDkNv5VSUGlpKTU1NUkfV7vDmdqwc7lcuFyumIaddkU8VaoXiURob28nHA5jNBrVDLulathpkUhqxEJJNxGHseuvv57nn3+eDRs2IAgC73znO+fduFNwWpGu3++ntbWVQCCQUPNKQbKkq1UkKAMUhw8fTir9YcgZ4M0BF3q9jrNL0qeR7mylBEmWCYuSGgM+E3w+H62trciyzPr16+MOemiRYjbwyfPL+MmeXsaCEmn2FD55fhmlmdYYydP4+HjMSlF5cP/WOEaG1aiGRg44AxzudfHO9VHSHR0dpamzB4MuWpsVBAGzHCE31Yw7KDLuDQFRz4WPn1ea8Gc5GwadAb78ZHNUYG/SM+IO8c+/Pcavb95Cb08PIyMj1NbWqk07raJAS1DzGepIBn6/n+bmZgwGA1u2bJmXj8hM0DbstJ13ZdR5qjdxamrUv2NsbIyysjI1RHWpG3bJYDFINxGHMb1ez6OPPrqg40zFaUG64XCYpqammFjzZB4Ig8GQUGTPbIqEZIi7d8LHd55vJxSRkIFnG0f48DoraTpxzrrt0X4n//1aL76QSHmWlc9etGbawIKSlqF8HlNVALOhJs/O/VfX4QuJpJhOJgFrJU95+QUMOqOa1TSjiNfjYWJigonxMZx+kYDViMlkJBgSkKRo3bGlpQWj0ci7Gmp45NU+QhEJhGgyxcW12fzzpVU82zhK85CbllEv336ugwuqsrj5/LIYo/Nk0T7qRQCMJ36GzaRjzB3k76/tp7ascFopYSZFgXaoQ/Fi0Eq7pg51JApFTTM0NBRD/suBeBNhPp+PxsZGQqEQdrud/v5+BgYGpk3YxRt1XmjDTvn7iXyGLpeLNfOMQF9pnBakK4oi6enpMbHmycBgMOD3+2f880QUCclE7jz15ggCAsUZ0XpnvyPAoQE/F5RaVOKOV7cddQf5wUvdpJgNFKQZ6HcGeOSlLu69KhrKp0xv9fX1UVZWNq/tKYBBpyPNEv/h8IVEHnq6ldYRLzKwsTiVL1xWRUFBATdZ83j05W5EQWYiEMYgh5GGW9gzEiEtLY309HQ2pRr42DlFPHlsFFmGj24v4dK66OfZUJbO7w4NYjXqMOkFnm0cxagXuOWC8qSvQUGO3Rw1tZEBGfzBECBwXsMmUlPmdnFTMNtQh1bapdfrY2R6M0XgwMmeg2KmtJJ1ZGVasru7m6qqqpgXzkwKEa0kcT4Nu3jliUSbdqeqrSOcJqRrs9nUDv18MNMqdapHQk1NzYwPRjIr3UBYxKSPkmHUwhBknZHBwUGGh4djHlptrPaAM4BMdJsMkJNionvCTzAs4nZO0tbWRk5ODtu2bUtKIpUMfntogKZhD7n26AN2qNfFn48Nc93ZRWwuzeBz79DxereDoNdNsc7J2XU1FBQUqFt2h8NBieji5qpQtLlj9zE2NkZaWhrHBtyI0snry7Aa2NM5uSDSrS+wc82GfB4/NACyiF5v5N531SZFuDMhnrWhkmLhdrvp7OzE6/VOG+owmUy0t7cTDAbZsGFDQhaeSwlldZuSkhL33plNIaIEYCp+CdpR56kBmHOVJwRBIBgMJkS6LpfrDOmeyphKmFpj9LlSGxQks9I9Z00GP93TdyIWPBpTc05VHjX5leoAgMvloru7G4/Ho46V+iUzwVBE7e76wxJmncyxI4fVMMyFxsnPhc4xH1bjye2i2aCjc+zkLqHIKlGvGyKzLJOKipMyp3iGOEpzx+FwRF9uvX4m3WGGnTokBGxGPeuL5y+AV+SCF9jH2HRpATpbBlV5dsqzlo7k4kXgRCIRPB4PTqeTpqYm3G43ZrOZzMxMxsfHCYfD8zL7XigUidzIyAh1dXVJkdhMAZiK25zDEetNPFM9XEvA4XCYnp4erFarWu6baUV8qnrpwmlCugttaGhJV2vpmEhqg/ZnJE66mYQiIi+1jmPQGfjgliJq8k8GAE4dAIhEIrjdbixOJ+szRPb2jhBdKMtcXaGnuLiG/Pz8ZemwV+XYeHPQrZqTB0WJqlybWu+e8IYYNeQzFrRQKILdEH0YeycDBCMS5VlWTAZd3OaOvcTN/7UdJiSKIEtMhkVEzwSHDh1KWk3g8/lobm7GaDSyOY4F5HLCYDBgMBgYHR0lPT2dLVu2RK00T2zZp8YJaWunS7VjcTqdNDc3qzujxShtzOY2p6z+h4aG8Pv9asNO+RUKhWhtbaWkpERVXczWsBseHj5lV7rCHEYx83ORWQEsJNE3FApx8OBBjMZoeGFNTc2cnf6p6O/vJxwOz1rcT2a4YSZEIhH2vNlB18AI9aV55NhNuN1uvF5vjG5zvo2dueAPi3zj6TYahz2AzMaiNN5frWdyfBRrbimf/X0HYVECBFLNen51y1a+/2Inr7VPotNBrt3Mtz+wnkybkQFHEKM+6oQmCAJ/bx7jv1/rxqDTIcoyKWY9kgTfva5WXf27XK6ovldjFKMlYu0ocW1t7YqvhpSkaIfDMavmFmKHOhSSmjrOnZqauqBxdUUG5vF4qK+vT/o+XywoZRiHw8Hg4CDBYHDa8Ip29a88M4FAgG9961v89Kc/5fjx4wseBV5CzPjgnTakqxhSJItAIEBLSwvDw8Ns27Zt3m/P4eFhPB4PVVXTk9IWg2wV8X5nZyeFhYWUlZVNW51oU3FdLldMPLnyazGkTpIsM+gIMDExjns4GmFUWlrKrb88ysvtE6rm1qAT2FaeTvuYj3AkWkYREDi/MpPWUS89kwFAZl1BKj/7+GYO9br43oudFKRFCdQTjGAz6vnm+9dP+ywUNYGWiBVzktzcXCoqKhZd1pUsFM1tSUkJJSUl8zoX7fCKQsZTpXpam8jZMDo6SltbG6WlpRQXF6/oZwMwNjZGa2sr5eXlFBYWIkmS+rJRzM2Vht0TTzxBXl4eu3bt4rrrruOuu+5aVK+UJcAZ0p0KRVY1NjZGdXU1ra2tXHDBBfM+/tjYGOPj49TV1am/p5XQzHeSDKJbwZaWFux2O1VVVUk5kYXD4RhyUmJntESstRNMBIpO2Wq1Ul1drZ7P+x7dR/OwN+bvlmVZGXQGEDXTD4qhuuHEISOSzLWbCvjKu+v492faaB72IAjR4MovXFrN+qJUZoPX66WpqQmj0Uh2drZaK1b0tVpySvZa5wNFc6vX66mtrV300oY2/kYh41AopE6dKderrP6DwaDqJVFXV7eipRaI3pMtLS2Ew2HWrl076/lIksTo6Ch33303R48exWKxIIoi119/Pffdd98ynnXSmPEmOy1qupC4p248lzGdTkdbW9uCjj+1prsYk2R+v5+2tjYikQhr166dc7IuHhQi0nbYQ6GQSsJazelcRBwKhWhvb8fr9VJbWztta3d+ZRbd434CkeiK3mLUUZ1to2/SH02vEAQkSUYEDIKMoHwmsswbfS5Meh13XFHNG71OfCGR6rwUVVYXD8rWfXJycsZhGO2gw8DAwLRBh8UkYq3mdim9G7Sa6YKCqAmPtjHpdDrVJpYSi1NcXExJScmy+uLGg7L6r6ioSKgP8cYbb3D77bdz3XXX8bOf/Qyj0YgkSdFx9VMUpw3pzoWpioTt27cvapNC8cNdrLptV1eXqgte7IfXZDKRk5MTI4rXbte15KSsmjweD8PDw1RWVs6oh779kkoGnQGeaRxFEATeu6mA684uZHfXJMGwBIKMXgeCrEnKOaGfLUiPqi5Meh3b1sxeh5VlmZGRETo6OigpKZk1W25q1tlM16p96cxn4szhcNDc3LximtupjUmv10tjYyNWq5Xs7Gy8Xi/Nzc0xQx3KtS5F7X8qQqEQTU1NAAkZ0geDQR566CFeeeUVdu3axVlnnaX+mU6nW9YhksXGaUO6s900iSoSFhKBotfrCQQC6vZ9vnXb/v5+ent7KS0tXbSuciKIJ/4PBAL09/fT1NSEXq9Hr9czODioRo0rDSwFJr2Ob11/VjTUUogOWUQkiY3FaTQPR71vdYJATV4Kbw66CYSjL6Y0q5H7312b0HkqpQSr1ZpwmkQi1zrTxJm2NBGPiJWu+2rR3GplYPX19XHtD5WdjjL+6/f71SasdrpuMe49bS9i6tDFTDhw4ACf//zn+cAHPsCLL764ZAqOlcJpU9ONRCLTJFtaj4S5FAn79u1j8+bNSRfnlZWt1hkqEomQkpJCenq6eiPPdeOMj4/T1tZGVlYWFRUVK36jKZlxOp2OmpoarFbrjA0sbS0xPT19GhF6gxF+/GoPbaNe1hba+eR5ZQQiEs8cH0WvE7isPpt06+zkqXy+igpgOVJgtTHsSj1cO/obCAQYHByksrJy2SR7s0HRAefl5VFeXp4UaWqbsIoaRtHiKvdwvKSO2RAMBmlqasJgMFBbWzvnsxUIBNi5cye7d+/m0UcfZf369bP+/VWO07+RpiXdZFMbAA4ePMjatWtVw+q5MFuTTOk4a8lJ0WAqRKzIYTweD62treqLIdHjLxZkWea1jkmO9rvISjFxWW0m40N9TE5OUlNTM6fkaqqDlbapo60Rz7eWqF0prYaueygUYnh4mK6uLgRBULPctKWJ5diuaxGJRGhra8Pr9S6qDEzRhytk7PV6VVe6eLIuBdqR4pqampgy1kzYv38/O3bs4IYbbmDHjh0rvuhYBJz+pCuKIn6/P0aRkGhqA8CRI0eoqKiImbCZCVObZIkcQ0mIVRodbrdb1RYXFRVRUFAQM/K7XHjyyBC/OtCP2aDD6w9iJcg9l1dQvaZ03sShTCYpqyaXy6V6umqJeK6Vj8fjobm5eZpKYqWgbdzV19erjUStB4Mi1TMajdM8GJaCiBUZWFlZGUVFRUtO9ooPg1ZLrI2cN5vN9Pf3Y7VaqampmZM8/X4/Dz74IPv37+fRRx9dcBTOKsLpT7ojIyMcO3aMsrIyiouLkyav48ePU1hYOOvKbjGaZEqHe3BwkLKyMmw2m/rAejyeGMOU9PT0JV01ybLMp/73Dcx6iYDXi9FoxCsb+dw7KudsZs3nWIrMSSGnSGS6R6/RaFQF/C6Xi9ra2mUpJcwFhdwS1dwuNRErMjBBEJZElpYMFH1tb28vY2Nj0UQSnW7OoY69e/fyxS9+kY985CPcfvvtp8PqVovTn3RDoRDhcHjeX1xLSwuZmZkxzRUFizXcoGRb5efnU1ZWxpg3gicYoSDdTIopet6RSCRmq+49QYbKg5qenj6rxEmSZXom/IRFieIMq2oeEw+BQIAbH3udFL1MRkYaBoORYXeAWy+qYHvF0k9yaT16lV+BQIBIJEJ2djYlJSXTko2XG0pemk6nWzC5aTXTbrdbdSXTNrC0yb/xoG22Kru5lYZimGO326murlZDVpXvVnn5RCIRmpubaWpqYnh4mJ6eHnbt2hWjbT+NcPqTrmKYMV90dHRgtVrVuW9YHLKFqCNSS0sLNptNHW743eFB/vrmCHpBwGrSs+PSKsqy4tdztbpapaGjyLm0WlNRknn0lW4OdDvQCZBuNfKlK6rJS40lCm0W2FF/Bi92ebGbjQTCIqkWA1+7tp40y/JO+7jdbpqbm1XHOO0DK4qiun1VCGqpzWGWS3Mbb4pwqj2kQsSKDCw1NZWqqqoVXxnKskxvby8DAwPU19fP2TuRZZknn3yS73//+5hMJmRZZnx8nP/6r/9a0GDSKsXpT7qKCHy+6OnpQRAESktLF22SLBAI0NbWRjAYpLa2Vq0Xv9I+wVf/1IROgDSriSybkdxUE//2nsTrWVObV8FgkA6vgSfbwxRnWDGZTEz4ItQV2NlxaXQ0WXHdUrTKZWVlyAg8c3yEw30uMm1G3r+5kNzU5duqKl7FLpdrRm8CrSeBQsRac5jFJmJFc5uTk8OaNWuW3f1rKhF7vV4ikai7XHFxMfn5+StS/9dCeQGkp6dTWVk552fk8/l44IEHOHLkCD/84Q+prY1KBJX+yEq/QJYAZ0h3LgwMDBAMBlmzZk3STbKpEEWRrq4uRkdHqaqqikmy8IYifOn3x2kccpNuNRIMS5gNOrJSTPz4o5sW1Lx6/EAvvz88SKYZQuEQgbCE0WDgvkuLMRqNDA0NYbFYqK6uXvFRUG2HW5m9T+baFSJ2Op1qPVzb0Jmpsz4bwuGwGvdUV1e3YmYwWigvgOzsbDIzM9XmlSLpmlqaWGoiTkQHrIUsy+zevZs77riDT3ziE9x6663L/hJbIZz+Y8ALhcFgYHx8nEAggMFgmHfdViGS4uLiuJNJo+4Qep2AQadDksBi1DPpC7GhOG1BDTNBEKgqSMdoGsdmN5GqExh2BdlQYGV8fByPx4PJZFKJZTm36lOhlBLsdvu0oMxEEc/PVasQ6e/vx+12A8Rs1eNpTbXfW6LjqUuNSCRCa2srPp8vZuhCW+ZQJF0ul4uurq5p2trFJmK3201jYyPZ2dkJDe54vV6++tWvcvz4cX7zm99QXV29KOeRCAKBABdddBHBYJBIJML111/PV7/61WU7/mw4bVa6MD97R6WMEAwG6ejoULeuWgVBIqLwiYkJ2trayMjIoKKiYkYiGXYF+c7z7fjDEo1DbiQ5mhzxo4+eTcksPgOJXssTR4d58sgQAAUWiUvyA6ytrqCgoEANF9SuEBMlpsVAOBxWbQXr6uoSkuctFFqJk7IiVrSmimytt7dXNRNaDc5Vij/BfHYAWiJWnLoWOuQgSZJql7l27do5vzdZlnnllVe48847ueWWW/jHf/zHZX+xK1p5u91OOBzmwgsv5Lvf/S7nnnvucp3C6V9egOScxmZN2z0hgVE0tdr0BmW4QZH7KIm7ADU1NXOOgcqyzFNvjvBi6ziyLBGWZD68tZhz1izeLPnA8BjNbe2U5CU23aYQk3arrlzv1GbOfCDLMgMDA/T09LBmzRr1BbBSEEURp9NJZ2cnbrcbo9E4Tc61EjVTrVKirq5u0XTJSnKF9sWjRLXP9aJ1uVw0NjYmPOXm8Xj4l3/5F1paWvjhD38Y1+p0ueHz+bjwwgv5wQ9+wPbt25frsGdIV8F8m2RaKZfT6cTr9aq135KSEoqKihKOypFlme4JP05/mNxUM0XpixOxo0TQS5JEbW3tgnwApkrX5uvN63K5aG5uJi0tbVV03CGquW1vb1edtxTzc23zaqpmeqEvntmgyMD6+vrUNOulRrzr1RJxSkoKo6OjOJ1O1q1bN2d9W5ZlXn75Ze666y4+/elP89nPfnZFG30QvcaGhgba2iFT/aIAABafSURBVNq49dZb+frXv76ch39rkG44HFZXrvEwn0myqZAkib6+Pvr7+ykuLsZisUzzIVBWw4lMXS0GlMadMom3lPIm7YtH8SLQXq/i4RoOh2lra8Pn81FXVzcvW8rFhrKSFAQhIV9Z7VZdUREsdjqHx+OhqalJfSmtZJNJIeLh4WEGBgYwGAzTYuZTU1Onkanb7eYrX/kKHR0d/OhHP5o1PWUl4HA4eN/73sfDDz8c41a2xHhrk+5iDTeMjY3R3t5Obm5uXCmRdvxV2aorcSta85vFerC0vgTKqm25VxeKAY5yvUpdPRQKUVhYSHl5+YorJSRJore3l8HBwQVrbmdL59A6dM11f2nrpNqR4pWEKIq0tbXh8XhYu3YtNpstbk0coi+kV199lbS0NB577DFuvfVWPv3pT6/46nYmPPDAA9hsNr74xS8u1yHfmqS7WMMNiluZxWKhqqoqqcTd2RpXWvObZM9LGbhISUlJOk1iqaCEHdrtdjIyMlRtbSgUUsd909PTF5zzlQwcDgctLS1kZ2cvmeZ2pnQObWlCW4qZnJykublZ1UqvBqKamJigpaWFkpKSOU2FRFGktbWV+++/X30ujEYjn/nMZ7jllluW8axnxujoKEajkYyMDPx+P1dccQV33nknV1999XKdwluDdBWnscUi22AwSFtbm+pWtlirEW09TakPK9tWhYhnqpeGQqGYc1oOBcBc0J5TvFJCvHFfZQegJeLFJMSV1txqpwiVkV/FV0KWZerq6sjMzFw10jS/35+Qy54sy7zwwgvcc8893Hbbbdx8883odDp1WCcRv9zlwJEjR7jpppsQRRFJkvjgBz/IV77yleU8hbcG6YbDYXVyZ6HDDYoAvLKyMim3svlCWS0pK2Jl1FdblhgeHmZwcJCKigry8vJW/IGVZZm+vj76+vqS1rfONGWmXR3Gqx8mck6K5nY1KCUUDA8P09bWRm5uLnq9HrfbHXecO5F4+cXC1GDIRJqi9913H/39/Tz66KOUlZUty3meonhrkO4dd9yhCu4bGhpITU1N6gZWIn26urooKiqitLR0xbZ+WsPwoaEhxsbG0Ov1pKenk5GRoT6kK6UGULbtmZmZi2a6rpXqKUQ8Vew/WylGSZVQSi6rQXOrNO+UkMqpZSBthpti+GOxWKYR8WIimWBIiN6Lzz//PPfeey+33347n/jEJ5btuejt7eXGG29keHgYQRD49Kc/ze23374sx14g3hqk29zczJ49e9i7dy8HDx4kFApx1lln0dDQwLZt21i/fv2MD6LD4aC1tZXU1FQqKytXRY3U6/XS0tKCwWCgpqYGs9mMz+dTV8OKOfpCV4fJQBtPsxzb9kQUBGazma6uLiYmJpYtVWIuKLuA/v7+pJp3M6VzLBYRJxsM6XQ6ueeeexgZGeGRRx6htLR0XsedLwYHBxkcHGTLli243W4aGhr4wx/+wLp165b1POaBtwbpTkUgEODw4cPs2bOH/fv38+abb2Kz2WhoaGDr1q1s3boVv9/PoUOHWLduHbW1tati3l4bTTNX8oUy+qpt1GkHGxbLk1dbSqisrFzR8oa2cTU6Oorb7VbDJ5VyzHJErc8Ej8dDY2MjGRkZCZnBzIXFSOfQBkPW19fPuaiQZZlnn32Wr3zlK+zYsYMbb7xxVTT8rr32Wm677TYuv/zylT6VufDWJN2pkGWZiYkJ9u/fzwsvvMBvfvMbvF4vDQ0NbNmyRSXjlWpwaCe3FpIEEM+TV5t2m56enlTtUCklKPltq8GwRKu5ra2tRRCEab68S71NnwpRFOns7GRiYmLJZWAzEbHWFF4pPyUbDOlwOLj77ruZmJjgkUceobi4eMmuIxl0dXVx0UUXcezYsVUhsZsDZ0h3Knbs2MH69eu58cYb6e3tZe/evezdu5fXX38dt9vN2rVrVRLetGlTUjKx+UAhtrm8G+aLUCgUU5YIBALqSklZHU49ZjAYpLW1lXA4vGp2AVrN7WzTW8o2XXvN8UhpsT5nRQZWWFi4Yr0ArU7c5XLhcDjwer0YDAaKiorIzMycVa4nyzJPP/00999/P1/84hf56Ec/uipWtxDdPbz97W/n3nvv5brrrlvp00kEZ0g3GYTDYY4ePaoS8ZEjRzAYDGzZsoUtW7awdetWampqFmXFp4RoRiKRZSU2ZaWkkJLT6VRlXErS7cTERNJZc0sJRQc83xW3QkpaIhZFEZvNllRysxZaaVoywaZLCa2Co7q6GpvNFleupxCwIk+86667cLlc/OAHP6CoqGilL0NFOBzm6quv5sorr2THjh0rfTqJ4gzpLgSyLON2u3n99dfZu3cv+/bto62tjby8vJj6cDKSKa0sbbnm7eeC8rC2t7djNBrVa9E6rq2EEYx2pHgx024hNrlZCQyd2pycKfF2ZGSEjo6OVSVNCwQCNDY2Yjabqa2tjfsC0V7z/v37eeCBB1R/3Ouvv553vvOdqyYgUpZlbrrpJrKysvjOd76z0qeTDM6Q7mJDqb8qq+F9+/YxNjZGTU2NKlnbsmXLtCaW9mFdaVmaFsFgkJaWFiKRCHV1dapZzkxGMNr6cCLGN/OBVsK3nMQ2NblZGX1ViNhisdDb24vJZKKmpmZVKF20pjm1tbVkZc3tWjcxMcGdd96J3+/nu9/9Lg6Hg9dff53S0lIuu+yyZTjrufHKK6/wtre9jQ0bNqjPyYMPPsi73vWuFT6zOXGGdJcDoijS2NjI3r172b9/PwcPHkQURTZu3MjWrVtJSUnhpZde4p/+6Z9WRaQ4xNZIq6qqEgo6jGd8o4j8lW36QptWiubWZrNRXV294ppbURRxuVz09PQwMTGB0WjEbDYvW3LzbIgXDDkbZFnmz3/+M//6r//KPffcw4c+9KFVsUo/zXCGdFcCSg3x+eefZ+fOnXR1dVFeXo5er1e1w1u3bp1XZPxiYGJigtbW1kXJAtN20p1O5zS/hUQHObQKgNWiuYWo/0ZTU1OMDCxelpmS3Lwc0rVkgyEBxsfHueOOO4hEInz/+98nPz9/Sc4tHj75yU/ypz/9iby8PI4dO7Zsx10hnCHdlcRTTz2F0+nkhhtuAKLjl9qyRH9/P2vWrFFrw1u2bCE9PX3JHtZAIEBLSwuSJFFXV7ckzZ+Z/BbsdntM00r7shkbG6OtrY2ioqIVcUyLB+UlMDk5SX19/ZxeF1rPBafTSSAQiBn1VeR6C0WywZCyLPPEE0/w4IMPcu+993LDDTcs++r2pZdewm63c+ONN54h3VlwhnSXAZIk0dbWppLwgQMH8Pl8rF+/XiXis846a8EPqzZWfCWad/FqpYIgYLPZ1FXialEAwEnnLaX2Pl+SipfcnMxggxbKdzg8PJxQMCREX2Zf+MIXEASB733veytqStPV1cXVV199hnRnwRnSXSGEQiEOHz6sEvGxY8ewWCxs3rxZJeLKysqEV4Pj4+O0traqsSurYcBBIZC+vj6ysrKIRCKqP63WGH25p8sUb4JQKER9ff2ivwSm6mldLhfhcFh1XZvJV0MbDFlRUTHndy/LMn/4wx946KGH+PKXv8wHPvCBFa/dniHdM6R7ykCWZRwOB/v371cbdR0dHRQXF7Nlyxa2bdtGQ0NDTNw7nCwlyLJMbW3tqllFzqa5Vbboip5WO12mkPFSNCG1pvDLnQqslXFpfTXsdjupqal4PB48Hg/r1q1LyM5zZGSEL3zhCxiNRh5++OGEGqTLgTOke4Z0T2koyoM9e/awb98+9u/fj8PhoK6ujk2bNtHe3k5eXh633nrrqtABw/w0t9qRV4WIlZWhdkW8kNW73++nqakJk8lEbW3tiqslIPr9KpaQ2pfMbMnNsizz+9//nm984xvcf//9XHfddSu+utXiDOmeId3TDpFIhB//+Mfs3LmTNWvW4PP5ADj77LPVQY66uroVicReTM1tvKEGWZZjGnWJRI1rFQCJ6luXA6IoqqZHa9euVY3hZwqUfP7559Hr9bzyyivk5OTw8MMPr5oXrRZnSPcM6Z6W+NnPfsbFF19MaWkpsizj8Xg4cOCAWpZQ4msaGhpoaGjgnHPOWdLBg+XS3Gr9eJVG3WxBkooMTPEEXg11boj6cDQ1NVFYWEhZWdmc30soFOI73/kOf/3rXzEYDHi9XtLT0/n973+/al4iAB/+8Id54YUXGBsbIz8/n69+9avcfPPNK31aS4W3NunecccdPPnkk5hMJqqqqnjssccS0jSerlBWnfv27VNtLxVFg6If3rx587yy27RQUorHx8fntKhcKihaWqUsocTmSJKkTt8tVXpysogXDDkXhoaG2LFjB6mpqXznO99Rr2ViYoKMjIxVIbt7i+KtTbrPPPMMl1xyCQaDgTvvvBOAr3/96yt8VqsLoijS0tKi1ocPHTpEKBRiw4YNKhGvW7cu4VWqopZYSdeteBgfH6e5uZmMjAxMJpMq4Voq97FEocjTlFTnRNKEf/3rX/Ptb3+bf/u3f+M973nPstZu//rXv3L77bcjiiK33HILd91117Id+xTBW5t0tXj88cf57W9/y89//vOVPpVVj0AgwKFDh2JM4O12e4zJz9Q022AwSHNzsxq+uNSWmIlCSbwIh8PU19fHnNdM7mN2u11VTMQzvVkMJBsMCdHV7e23305WVhbf/va3l72EIIoitbW1PPvss5SUlLBt2zb+7//+71RIc1hOzEi6KxOwtYL4n//5H3Uy7Axmh8Vi4bzzzuO8884DouQ0Pj7O/v372bNnD7/85S9Vw/UtW7YwMjKCLMvcd999q0aipG3gzZR4oQxo2Gw2CgsLgZPBmU6nk/7+ftxuN4IgTHNcW8jqUhsMWV9fn9Dq9pe//CX/+Z//yYMPPsi73/3uFVEm7Nu3j+rqaiorKwH40Ic+xB//+MczpJsgThvSveyyyxgaGpr2+1/72te49tpr1f83GAz8wz/8w3Kf3mkBQRDIycnhqquu4qqrrgKiRPDEE0/wpS99SZ10es973sO6devUFfHGjRtXZMXr9/tpbGzEYrGwdevWpEoGSiCmVhOrKAecTiednZ2qQXiyXgvaYMjNmzcn9NkMDg5y++23k5uby4svvkhmZmbC17LY6O/vj8lKKykpYe/evSt2PqcaThvS/dvf/jbrn+/atYs//elPPPfcc6tKt3iqQ6fTodfr+eMf/6h6sIZCIdUE/rHHHuPo0aMYjUY2b96s1oerq6uXrM6rdU6rq6tbNILS6/VkZGTENAQVxzWn08nAwMC0mKD09PQYjW2ywZCSJPGLX/yC733ve+zcuZN3vetdZ+7fUxxviZruX//6V3bs2MGLL764LNve3/zmN9x///00Njayb98+tm7duuTHXM2QZRmXyxVjAt/e3k5+fn5MfXgxwi5dLhdNTU0Jj8ouNmaKCbJarQQCAQwGA+vXr0+odjswMMDnPvc5CgsL+Y//+I9Vo7jZvXs3999/P08//TQAO3fuBODuu+9eydNabXhrN9Kqq6sJBoOqnObcc8/lkUceWbLjNTY2otPp+MxnPsM3v/nNtzzpxoNiur137161UadIyxQT+M2bNyfsUSuKIu3t7TidzphhgpWGUlPu6OhQ7z+Xy6UOcmgbdcoLQpIk/vd//5cf/OAHfP3rX+fKK69cVatbJVrqueeeo7i4mG3btvGLX/yC9evXr/SprSa8tUl3pXDxxRefId0kIIoix48fV1fDhw4dQpZl1QR+69at1NfXTzOCUeRpicqtlgvBYJCmpib0ej11dXUxNWXtIIfL5cLtdvPEE0/Q29tLd3c3FRUV/P/27jek6TwO4Pj7tzA4LpYWVxy7Bxr0w8y14dQsWFKxdkQQix7UEwN7UMHGReCjPUmIIMHQHqVi7YgKjlhCUsJR1x+NrYyOqLhBoDRhYD1QMjBq+90D3S+7s7uZm7/fts8LBIfgPo8+fPl+P3+6u7sNvbv9Lzdv3uT48eMkk0mam5sJBoNGh2Q2knSNIEl3cdIzeZ88ecKjR4+IRqPEYjHKyspwuVyoqsqNGzc4duwYW7duNU152tzFkOvXr8+oHTeVStHT08O1a9fYsGEDk5OTvHr1inPnzuF2u5cgapFlknSzLZNqCUm62ZfeMXfmzBmuXLmC3W4nkUhQUVHxxRB4q9VqyIk3k8WQ/xSPxwkEAqxbt462tjasVqv+N03TTHNyFwsidbrZ9n/VEiI3FEWhrKwMq9VKLBZj5cqV+hD4SCTCrVu3OHXqFNPT0/8aAp/LnXTfshgylUoRCoXo6emhvb2dnTt3zltDvBTk8XfpSNLNU8Xchrl8+XJOnjypf7ZYLKiqiqqqNDU1ATP3qekh8F1dXfoQ+JqaGj0RZ6u6Ye5iyLq6uow6116/fo3f70dVVYaGhgx/+KuuriYcDnPkyBFD4ygGcr2QA9evXycQCPDmzRtKS0txOp16eU02SBvmwqWHwKfvhh8/fszIyAg2m01Pwi6Xi9WrV2d8uvyWxZCpVIre3l4uXrxIe3s7O3bsMNX1gVyJZY1cLywln8+Hz+fL2f+XNsyFS19LeL1evF4v8HldUCQS4cGDB5w9e5bJyUkqKyv1Jg6HwzFvTe379+95+fIlpaWlGZ9uR0dH8fv9VFVVMTg4aPjpVhhDkm4ekjbM7LBYLJSXl1NeXs6BAweAmQ6zFy9eEIlEuHz5Mi0tLVgsFr2bzuFwEA6H2bJlCw0NDRkthkwmk/T29hIKhejo6KCxsdGQ020mj78i9yTpCjFHSUkJTqcTp9PJ0aNHvxgC39fXRzAYpKKiguHhYR4+fEhtbS11dXVfbekdGRkhEAhgt9sZGhrKaD1RrsjjrzlI0s1DNpuNeDyufx4bG8NmsxkYUeFKTxZzu92cP3+eO3fu6GVq6SHw3d3djI+P60Pga2trcTgcXL16lUuXLtHZ2Ynb7TbV3a0wjjyk5SEj2jCbm5vp7+9nzZo1xbDfasGSySSxWIxoNEo0GmVgYID6+npCoVBGGyCMluvH3yIkzRGFZqnbMO/fv8+KFStoamqSpJsBaWooepJ0xeIV0SZXIRbrq0nXHIurhBCL1tLSQmVlJZs2bcLn8zExMWF0SGIeknSFKBAej4fnz5/z7NkzVFXV59wKc5GkK0SB2LVrlz5gp6GhgbGxMYMjEvORpCtMKR6Ps337dqqqqti4cSOdnZ1Gh5RXLly4oO+xE+YiD2kiIwcPHuTu3bu8ffuWtWvX0trayuHDh3P2fYlEgkQiQU1NDe/evcPlctHX11f0rc6ZLmAdHh4mHA5LBYVxpHpB5Le9e/fi9/vxeDxGh2JqoVCIrq4ubt++nRf1wQVMBt6I/DU6OsrTp0/ZvHmz0aGY2sDAAG1tbdy7d08SronJSVeY2tTUFI2NjQSDQfbt22d0OKa21AtYxX+S6wWRfz5+/MiePXvwer2cOHHC6HCEWAhJuiK/aJrGoUOHWLVqFR0dHUaHI8RCSdIV+WVwcBC3243dbtdX6pw+fZrdu3fn7Dunp6fZtm0bHz584NOnT+zfv5/W1tacfZ8oaN+cdIUoGspMfdX3mqZNKYpSAgwCv2iaFjE4NFFApHpBiFnazAlkavZjyeyPnEpEVklHmhBzKIqyTFGUP4Fx4HdN02QPksgqSbpCzKFpWlLTNCfwE1CvKEq10TGJwiJJV4h5aJo2AfwB/Gx0LKKwSNIVYpaiKD8oilI6+/t3gAf4y9ioRKGRhzQhPvsR+FVRlGXMHEh+0zSt3+CYRIH5G2jZRF0H9CwCAAAAAElFTkSuQmCC\n", 301 | "text/plain": [ 302 | "
" 303 | ] 304 | }, 305 | "metadata": { 306 | "needs_background": "light" 307 | }, 308 | "output_type": "display_data" 309 | } 310 | ], 311 | "source": [ 312 | "# Let's visualize our data (becoming one with the data paradigm <3)\n", 313 | "fig = plt.figure()\n", 314 | "ax = fig.add_subplot(111, projection='3d')\n", 315 | "assert xs.shape[-1] == 2 and ys.shape[-1] == 1 # low dimensional data so that we can plot it\n", 316 | "ax.scatter(xs[:, 0], xs[:, 1], zs=ys)\n", 317 | "\n", 318 | "# todo: exercise - let's show that our data lies on the 2D plane embedded in 3D\n", 319 | "# option 1: analytic approach\n", 320 | "# option 2: data-driven approach" 321 | ] 322 | }, 323 | { 324 | "cell_type": "code", 325 | "execution_count": 22, 326 | "metadata": { 327 | "id": "mKiCOyoikxcM" 328 | }, 329 | "outputs": [], 330 | "source": [ 331 | "def make_mse_loss(xs, ys):\n", 332 | " \n", 333 | " def mse_loss(params):\n", 334 | " \"\"\"Gives the value of the loss on the (xs, ys) dataset for the given model (params).\"\"\"\n", 335 | " \n", 336 | " # Define the squared loss for a single pair (x,y)\n", 337 | " def squared_error(x, y):\n", 338 | " pred = model.apply(params, x)\n", 339 | " # Inner because 'y' could have in general more than 1 dims\n", 340 | " return jnp.inner(y-pred, y-pred) / 2.0\n", 341 | "\n", 342 | " # Batched version via vmap\n", 343 | " return jnp.mean(jax.vmap(squared_error)(xs, ys), axis=0)\n", 344 | "\n", 345 | " return jax.jit(mse_loss) # and finally we jit the result (mse_loss is a pure function)\n", 346 | "\n", 347 | "mse_loss = make_mse_loss(xs, ys)\n", 348 | "value_and_grad_fn = jax.value_and_grad(mse_loss)" 349 | ] 350 | }, 351 | { 352 | "cell_type": "code", 353 | "execution_count": null, 354 | "metadata": { 355 | "id": "phLYjH5ZkzLn" 356 | }, 357 | "outputs": [], 358 | "source": [ 359 | "# Let's reuse the simple feed-forward layer since it trivially implements linear regression\n", 360 | "model = nn.Dense(features=y_dim)\n", 361 | "params = model.init(key, xs)\n", 362 | "print(f'Initial params = {params}')\n", 363 | "\n", 364 | "# Let's set some reasonable hyperparams\n", 365 | "lr = 0.3\n", 366 | "epochs = 20\n", 367 | "log_period_epoch = 5\n", 368 | "\n", 369 | "print('-' * 50)\n", 370 | "for epoch in range(epochs):\n", 371 | " loss, grads = value_and_grad_fn(params)\n", 372 | " # SGD (closer to JAX again, but we'll progressively go towards how stuff is done in Flax)\n", 373 | " params = jax.tree_multimap(lambda p, g: p - lr * g, params, grads)\n", 374 | "\n", 375 | " if epoch % log_period_epoch == 0:\n", 376 | " print(f'epoch {epoch}, loss = {loss}')\n", 377 | "\n", 378 | "print('-' * 50)\n", 379 | "print(f'Learned params = {params}')\n", 380 | "print(f'Gt params = {true_params}')" 381 | ] 382 | }, 383 | { 384 | "cell_type": "markdown", 385 | "metadata": { 386 | "id": "rvy6Oow2lLHu" 387 | }, 388 | "source": [ 389 | "Now let's do the same thing but this time with dedicated optimizers!\n", 390 | "\n", 391 | "Enter DeepMind's optax! ❤️🔥" 392 | ] 393 | }, 394 | { 395 | "cell_type": "code", 396 | "execution_count": null, 397 | "metadata": { 398 | "id": "5hhcFZ7UlCov" 399 | }, 400 | "outputs": [], 401 | "source": [ 402 | "opt_sgd = optax.sgd(learning_rate=lr)\n", 403 | "opt_state = opt_sgd.init(params) # always the same pattern - handling state externally\n", 404 | "print(opt_state)\n", 405 | "# todo: exercise - compare Adam's and SGD's states" 406 | ] 407 | }, 408 | { 409 | "cell_type": "code", 410 | "execution_count": null, 411 | "metadata": { 412 | "id": "t_EHHjy_lFGN" 413 | }, 414 | "outputs": [], 415 | "source": [ 416 | "params = model.init(key, xs) # let's start with fresh params again\n", 417 | "\n", 418 | "for epoch in range(epochs):\n", 419 | " loss, grads = value_and_grad_fn(params)\n", 420 | " updates, opt_state = opt_sgd.update(grads, opt_state) # arbitrary optim logic!\n", 421 | " params = optax.apply_updates(params, updates)\n", 422 | "\n", 423 | " if epoch % log_period_epoch == 0:\n", 424 | " print(f'epoch {epoch}, loss = {loss}')\n", 425 | "\n", 426 | "# Note 1: as expected we get the same loss values\n", 427 | "# Note 2: we'll later see more concise ways to handle all of these state components (hint: TrainState)" 428 | ] 429 | }, 430 | { 431 | "cell_type": "markdown", 432 | "metadata": { 433 | "id": "QF1gAYSzxQ1R" 434 | }, 435 | "source": [ 436 | "In this toy SGD example Optax may not seem that useful but it's very powerful.\n", 437 | "\n", 438 | "You can build arbitrary optimizers with arbitrary hyperparam schedules, chaining, param freezing, etc. You can check the [official docs here](https://optax.readthedocs.io/en/latest/)." 439 | ] 440 | }, 441 | { 442 | "cell_type": "code", 443 | "execution_count": 8, 444 | "metadata": { 445 | "cellView": "form", 446 | "id": "rKbis5O0KQYH" 447 | }, 448 | "outputs": [], 449 | "source": [ 450 | "#@title Optax Advanced Examples\n", 451 | "# This cell won't \"compile\" (no ml_collections package) and serves just as an example\n", 452 | "\n", 453 | "# Example from Flax (ImageNet example)\n", 454 | "# https://github.com/google/flax/blob/main/examples/imagenet/train.py#L88\n", 455 | "def create_learning_rate_fn(\n", 456 | " config: ml_collections.ConfigDict,\n", 457 | " base_learning_rate: float,\n", 458 | " steps_per_epoch: int):\n", 459 | " \"\"\"Create learning rate schedule.\"\"\"\n", 460 | " warmup_fn = optax.linear_schedule(\n", 461 | " init_value=0., end_value=base_learning_rate,\n", 462 | " transition_steps=config.warmup_epochs * steps_per_epoch)\n", 463 | " cosine_epochs = max(config.num_epochs - config.warmup_epochs, 1)\n", 464 | " cosine_fn = optax.cosine_decay_schedule(\n", 465 | " init_value=base_learning_rate,\n", 466 | " decay_steps=cosine_epochs * steps_per_epoch)\n", 467 | " schedule_fn = optax.join_schedules(\n", 468 | " schedules=[warmup_fn, cosine_fn],\n", 469 | " boundaries=[config.warmup_epochs * steps_per_epoch])\n", 470 | " return schedule_fn\n", 471 | "\n", 472 | "tx = optax.sgd(\n", 473 | " learning_rate=learning_rate_fn,\n", 474 | " momentum=config.momentum,\n", 475 | " nesterov=True,\n", 476 | ")\n", 477 | "\n", 478 | "# Example from Haiku (ImageNet example)\n", 479 | "# https://github.com/deepmind/dm-haiku/blob/main/examples/imagenet/train.py#L116\n", 480 | "def make_optimizer() -> optax.GradientTransformation:\n", 481 | " \"\"\"SGD with nesterov momentum and a custom lr schedule.\"\"\"\n", 482 | " return optax.chain(\n", 483 | " optax.trace(\n", 484 | " decay=FLAGS.optimizer_momentum,\n", 485 | " nesterov=FLAGS.optimizer_use_nesterov),\n", 486 | " optax.scale_by_schedule(lr_schedule), optax.scale(-1))" 487 | ] 488 | }, 489 | { 490 | "cell_type": "markdown", 491 | "metadata": { 492 | "id": "WFAeHIEwL0ZH" 493 | }, 494 | "source": [ 495 | "Now let's go beyond these extremely simple models!" 496 | ] 497 | }, 498 | { 499 | "cell_type": "markdown", 500 | "metadata": { 501 | "id": "7_33y-bTl6bd" 502 | }, 503 | "source": [ 504 | "### Creating custom models ⭐" 505 | ] 506 | }, 507 | { 508 | "cell_type": "code", 509 | "execution_count": null, 510 | "metadata": { 511 | "id": "JOrJHqTSl75M" 512 | }, 513 | "outputs": [], 514 | "source": [ 515 | "class MLP(nn.Module):\n", 516 | " num_neurons_per_layer: Sequence[int] # data field (nn.Module is Python's dataclass)\n", 517 | "\n", 518 | " def setup(self): # because dataclass is implicitly using the __init__ function... :')\n", 519 | " self.layers = [nn.Dense(n) for n in self.num_neurons_per_layer]\n", 520 | "\n", 521 | " def __call__(self, x):\n", 522 | " activation = x\n", 523 | " for i, layer in enumerate(self.layers):\n", 524 | " activation = layer(activation)\n", 525 | " if i != len(self.layers) - 1:\n", 526 | " activation = nn.relu(activation)\n", 527 | " return activation\n", 528 | "\n", 529 | "x_key, init_key = random.split(random.PRNGKey(seed))\n", 530 | "\n", 531 | "model = MLP(num_neurons_per_layer=[16, 8, 1]) # define an MLP model\n", 532 | "x = random.uniform(x_key, (4,4)) # dummy input\n", 533 | "params = model.init(init_key, x) # initialize via init\n", 534 | "y = model.apply(params, x) # do a forward pass via apply\n", 535 | "\n", 536 | "print(jax.tree_map(jnp.shape, params))\n", 537 | "print(f'Output: {y}')\n", 538 | "\n", 539 | "# todo: exercise - use @nn.compact pattern instead\n", 540 | "# todo: check out https://realpython.com/python-data-classes/" 541 | ] 542 | }, 543 | { 544 | "cell_type": "markdown", 545 | "metadata": { 546 | "id": "TEhC-WdPnAYp" 547 | }, 548 | "source": [ 549 | "Great! \n", 550 | "\n", 551 | "Now that we know how to build more complex models let's dive deeper and understand how the 'nn.Dense' module is designed itself.\n", 552 | "\n", 553 | "#### Introducing \"param\"" 554 | ] 555 | }, 556 | { 557 | "cell_type": "code", 558 | "execution_count": null, 559 | "metadata": { 560 | "id": "Z9YhSgxjnBQg" 561 | }, 562 | "outputs": [], 563 | "source": [ 564 | "class MyDenseImp(nn.Module):\n", 565 | " num_neurons: int\n", 566 | " weight_init: Callable = nn.initializers.lecun_normal()\n", 567 | " bias_init: Callable = nn.initializers.zeros\n", 568 | "\n", 569 | " @nn.compact\n", 570 | " def __call__(self, x):\n", 571 | " weight = self.param('weight', # parametar name (as it will appear in the FrozenDict)\n", 572 | " self.weight_init, # initialization function, RNG passed implicitly through init fn\n", 573 | " (x.shape[-1], self.num_neurons)) # shape info\n", 574 | " bias = self.param('bias', self.bias_init, (self.num_neurons,))\n", 575 | "\n", 576 | " return jnp.dot(x, weight) + bias\n", 577 | "\n", 578 | "x_key, init_key = random.split(random.PRNGKey(seed))\n", 579 | "\n", 580 | "model = MyDenseImp(num_neurons=3) # initialize the model\n", 581 | "x = random.uniform(x_key, (4,4)) # dummy input\n", 582 | "params = model.init(init_key, x) # initialize via init\n", 583 | "y = model.apply(params, x) # do a forward pass via apply\n", 584 | "\n", 585 | "print(jax.tree_map(jnp.shape, params))\n", 586 | "print(f'Output: {y}')\n", 587 | "\n", 588 | "# todo: exercise - check out the source code:\n", 589 | "# https://github.com/google/flax/blob/main/flax/linen/linear.py\n", 590 | "# https://github.com/google/jax/blob/main/jax/_src/nn/initializers.py#L150 <- to see why lecun_normal() vs zeros (no brackets)" 591 | ] 592 | }, 593 | { 594 | "cell_type": "code", 595 | "execution_count": null, 596 | "metadata": { 597 | "id": "AqCPhl9fBI_Z" 598 | }, 599 | "outputs": [], 600 | "source": [ 601 | "from inspect import signature\n", 602 | "\n", 603 | "# You can see it expects a PRNG key and it is passed implicitly through the init fn (same for zeros)\n", 604 | "print(signature(nn.initializers.lecun_normal()))" 605 | ] 606 | }, 607 | { 608 | "cell_type": "markdown", 609 | "metadata": { 610 | "id": "MWB8HvLHn6g0" 611 | }, 612 | "source": [ 613 | "So far we've only seen **trainable** params. \n", 614 | "\n", 615 | "ML models often times have variables which are part of the state but are not optimized via gradient descent.\n", 616 | "\n", 617 | "Let's see how we can handle them using a simple (and contrived) example!\n", 618 | "\n", 619 | "#### Introducing \"variable\"\n", 620 | "\n", 621 | "*Note on terminology: variable is a broader term and it includes both params (trainable variables) as well as non-trainable vars.*" 622 | ] 623 | }, 624 | { 625 | "cell_type": "code", 626 | "execution_count": null, 627 | "metadata": { 628 | "id": "oGE6qTHHngYh" 629 | }, 630 | "outputs": [], 631 | "source": [ 632 | "class BiasAdderWithRunningMean(nn.Module):\n", 633 | " decay: float = 0.99\n", 634 | "\n", 635 | " @nn.compact\n", 636 | " def __call__(self, x):\n", 637 | " is_initialized = self.has_variable('batch_stats', 'ema')\n", 638 | "\n", 639 | " # 'batch_stats' is not an arbitrary name!\n", 640 | " # Flax uses that name in its implementation of BatchNorm (hard-coded, probably not the best of designs?)\n", 641 | " ema = self.variable('batch_stats', 'ema', lambda shape: jnp.zeros(shape), x.shape[1:])\n", 642 | "\n", 643 | " # self.param will by default add this variable to 'params' collection (vs 'batch_stats' above)\n", 644 | " # Again some idiosyncrasies here we need to pass a key even though we don't actually use it...\n", 645 | " bias = self.param('bias', lambda key, shape: jnp.zeros(shape), x.shape[1:])\n", 646 | "\n", 647 | " if is_initialized:\n", 648 | " # self.variable returns a reference hence .value\n", 649 | " ema.value = self.decay * ema.value + (1.0 - self.decay) * jnp.mean(x, axis=0, keepdims=True)\n", 650 | "\n", 651 | " return x - ema.value + bias\n", 652 | "\n", 653 | "x_key, init_key = random.split(random.PRNGKey(seed))\n", 654 | "\n", 655 | "model = BiasAdderWithRunningMean()\n", 656 | "x = random.uniform(x_key, (10,4)) # dummy input\n", 657 | "variables = model.init(init_key, x)\n", 658 | "print(f'Multiple collections = {variables}') # we can now see a new collection 'batch_stats'\n", 659 | "\n", 660 | "# We have to use mutable since regular params are not modified during the forward\n", 661 | "# pass, but these variables are. We can't keep state internally (because JAX) so we have to return it.\n", 662 | "y, updated_non_trainable_params = model.apply(variables, x, mutable=['batch_stats'])\n", 663 | "print(updated_non_trainable_params)" 664 | ] 665 | }, 666 | { 667 | "cell_type": "code", 668 | "execution_count": null, 669 | "metadata": { 670 | "id": "PuzwVt8RoHvY" 671 | }, 672 | "outputs": [], 673 | "source": [ 674 | "# Let's see how we could train such model!\n", 675 | "def update_step(opt, apply_fn, x, opt_state, params, non_trainable_params):\n", 676 | "\n", 677 | " def loss_fn(params):\n", 678 | " y, updated_non_trainable_params = apply_fn(\n", 679 | " {'params': params, **non_trainable_params}, \n", 680 | " x, mutable=list(non_trainable_params.keys()))\n", 681 | " \n", 682 | " loss = ((x - y) ** 2).sum() # not doing anything really, just for the demo purpose\n", 683 | "\n", 684 | " return loss, updated_non_trainable_params\n", 685 | "\n", 686 | " (loss, non_trainable_params), grads = jax.value_and_grad(loss_fn, has_aux=True)(params)\n", 687 | " updates, opt_state = opt.update(grads, opt_state)\n", 688 | " params = optax.apply_updates(params, updates)\n", 689 | " \n", 690 | " return opt_state, params, non_trainable_params # all of these represent the state - ugly, for now\n", 691 | "\n", 692 | "model = BiasAdderWithRunningMean()\n", 693 | "x = jnp.ones((10,4)) # dummy input, using ones because it's easier to see what's going on\n", 694 | "\n", 695 | "variables = model.init(random.PRNGKey(seed), x)\n", 696 | "non_trainable_params, params = variables.pop('params')\n", 697 | "del variables # delete variables to avoid wasting resources (this pattern is used in the official code)\n", 698 | "\n", 699 | "sgd_opt = optax.sgd(learning_rate=0.1) # originally you'll see them use the 'tx' naming (from opTaX)\n", 700 | "opt_state = sgd_opt.init(params)\n", 701 | "\n", 702 | "for _ in range(3):\n", 703 | " # We'll later see how TrainState abstraction will make this step much more elegant!\n", 704 | " opt_state, params, non_trainable_params = update_step(sgd_opt, model.apply, x, opt_state, params, non_trainable_params)\n", 705 | " print(non_trainable_params)" 706 | ] 707 | }, 708 | { 709 | "cell_type": "markdown", 710 | "metadata": { 711 | "id": "gzWUq5vBrWMe" 712 | }, 713 | "source": [ 714 | "Let's go a level up in abstraction again now that we understand params and variables!\n", 715 | "\n", 716 | "Certain layers like BatchNorm will use variables in the background.\n", 717 | "\n", 718 | "Let's see a last example that is conceptually as complicated as it gets when it comes to Flax's idiosyncrasies, and high-level at the same time." 719 | ] 720 | }, 721 | { 722 | "cell_type": "code", 723 | "execution_count": null, 724 | "metadata": { 725 | "id": "rDw2986orY0a" 726 | }, 727 | "outputs": [], 728 | "source": [ 729 | "class DDNBlock(nn.Module):\n", 730 | " \"\"\"Dense, dropout + batchnorm combo.\n", 731 | "\n", 732 | " Contains trainable variables (params), non-trainable variables (batch stats),\n", 733 | " and stochasticity in the forward pass (because of dropout).\n", 734 | " \"\"\"\n", 735 | " num_neurons: int\n", 736 | " training: bool\n", 737 | "\n", 738 | " @nn.compact\n", 739 | " def __call__(self, x):\n", 740 | " x = nn.Dense(self.num_neurons)(x)\n", 741 | " x = nn.Dropout(rate=0.5, deterministic=not self.training)(x)\n", 742 | " x = nn.BatchNorm(use_running_average=not self.training)(x)\n", 743 | " return x\n", 744 | "\n", 745 | "key1, key2, key3, key4 = random.split(random.PRNGKey(seed), 4)\n", 746 | "\n", 747 | "model = DDNBlock(num_neurons=3, training=True)\n", 748 | "x = random.uniform(key1, (3,4,4))\n", 749 | "\n", 750 | "# New: because of Dropout we now have to include its unique key - kinda weird, but you get used to it\n", 751 | "variables = model.init({'params': key2, 'dropout': key3}, x)\n", 752 | "print(variables)\n", 753 | "\n", 754 | "# And same here, everything else remains the same as the previous example\n", 755 | "y, non_trainable_params = model.apply(variables, x, rngs={'dropout': key4}, mutable=['batch_stats'])\n", 756 | "\n", 757 | "# Let's run these model variables during \"evaluation\":\n", 758 | "eval_model = DDNBlock(num_neurons=3, training=False)\n", 759 | "# Because training=False we don't have stochasticity in the forward pass neither do we update the stats\n", 760 | "y = eval_model.apply(variables, x)" 761 | ] 762 | }, 763 | { 764 | "cell_type": "markdown", 765 | "metadata": { 766 | "id": "Ys1y-yM8vzT8" 767 | }, 768 | "source": [ 769 | "### A fully-fledged CNN on MNIST example in Flax! 💥\n", 770 | "\n", 771 | "Modified the official MNIST example here: https://github.com/google/flax/tree/main/examples/mnist\n", 772 | "\n", 773 | "We'll be using PyTorch dataloading instead of TFDS.\n", 774 | "\n", 775 | "Let's start by defining a model:" 776 | ] 777 | }, 778 | { 779 | "cell_type": "code", 780 | "execution_count": 3, 781 | "metadata": { 782 | "id": "MD8t9K2Nv0yC" 783 | }, 784 | "outputs": [], 785 | "source": [ 786 | "class CNN(nn.Module): # lots of hardcoding, but it serves a purpose for a simple demo\n", 787 | " @nn.compact\n", 788 | " def __call__(self, x):\n", 789 | " x = nn.Conv(features=32, kernel_size=(3, 3))(x)\n", 790 | " x = nn.relu(x)\n", 791 | " x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))\n", 792 | " x = nn.Conv(features=64, kernel_size=(3, 3))(x)\n", 793 | " x = nn.relu(x)\n", 794 | " x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))\n", 795 | " x = x.reshape((x.shape[0], -1)) # flatten\n", 796 | " x = nn.Dense(features=256)(x)\n", 797 | " x = nn.relu(x)\n", 798 | " x = nn.Dense(features=10)(x)\n", 799 | " x = nn.log_softmax(x)\n", 800 | " return x" 801 | ] 802 | }, 803 | { 804 | "cell_type": "markdown", 805 | "metadata": { 806 | "id": "rVgWLMhiSAYv" 807 | }, 808 | "source": [ 809 | "Let's add the data loading support in PyTorch!\n", 810 | "\n", 811 | "I'll be reusing code from [tutorial #3](https://github.com/gordicaleksa/get-started-with-JAX/blob/main/Tutorial_3_JAX_Neural_Network_from_Scratch_Colab.ipynb):" 812 | ] 813 | }, 814 | { 815 | "cell_type": "code", 816 | "execution_count": 4, 817 | "metadata": { 818 | "id": "UZ-og2UOUUWD" 819 | }, 820 | "outputs": [], 821 | "source": [ 822 | "def custom_transform(x):\n", 823 | " # A couple of modifications here compared to tutorial #3 since we're using a CNN\n", 824 | " # Input: (28, 28) uint8 [0, 255] torch.Tensor, Output: (28, 28, 1) float32 [0, 1] np array\n", 825 | " return np.expand_dims(np.array(x, dtype=np.float32), axis=2) / 255.\n", 826 | "\n", 827 | "def custom_collate_fn(batch):\n", 828 | " \"\"\"Provides us with batches of numpy arrays and not PyTorch's tensors.\"\"\"\n", 829 | " transposed_data = list(zip(*batch))\n", 830 | "\n", 831 | " labels = np.array(transposed_data[1])\n", 832 | " imgs = np.stack(transposed_data[0])\n", 833 | "\n", 834 | " return imgs, labels\n", 835 | "\n", 836 | "mnist_img_size = (28, 28, 1)\n", 837 | "batch_size = 128\n", 838 | "\n", 839 | "train_dataset = MNIST(root='train_mnist', train=True, download=True, transform=custom_transform)\n", 840 | "test_dataset = MNIST(root='test_mnist', train=False, download=True, transform=custom_transform)\n", 841 | "\n", 842 | "train_loader = DataLoader(train_dataset, batch_size, shuffle=True, collate_fn=custom_collate_fn, drop_last=True)\n", 843 | "test_loader = DataLoader(test_dataset, batch_size, shuffle=False, collate_fn=custom_collate_fn, drop_last=True)\n", 844 | "\n", 845 | "# optimization - loading the whole dataset into memory\n", 846 | "train_images = jnp.array(train_dataset.data)\n", 847 | "train_lbls = jnp.array(train_dataset.targets)\n", 848 | "\n", 849 | "# np.expand_dims is to convert shape from (10000, 28, 28) -> (10000, 28, 28, 1)\n", 850 | "# We don't have to do this for training images because custom_transform does it for us.\n", 851 | "test_images = np.expand_dims(jnp.array(test_dataset.data), axis=3)\n", 852 | "test_lbls = jnp.array(test_dataset.targets)" 853 | ] 854 | }, 855 | { 856 | "cell_type": "code", 857 | "execution_count": 5, 858 | "metadata": { 859 | "colab": { 860 | "base_uri": "https://localhost:8080/", 861 | "height": 282 862 | }, 863 | "id": "2HeXX51NU0k6", 864 | "outputId": "43dad5bf-20c2-4c5a-9705-12b2e422f915" 865 | }, 866 | "outputs": [ 867 | { 868 | "name": "stdout", 869 | "output_type": "stream", 870 | "text": [ 871 | "7\n" 872 | ] 873 | }, 874 | { 875 | "data": { 876 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAANiklEQVR4nO3df4wc9XnH8c8n/kV8QGtDcF3j4ISQqE4aSHWBRNDKESUFImSiJBRLtVyJ5lALElRRW0QVBalVSlEIok0aySluHESgaQBhJTSNa6W1UKljg4yxgdaEmsau8QFOaxPAP/DTP24cHXD7vWNndmft5/2SVrs7z87Oo/F9PLMzO/t1RAjA8e9tbTcAoD8IO5AEYQeSIOxAEoQdSGJ6Pxc207PiBA31c5FAKq/qZzoYBzxRrVbYbV8s6XZJ0yT9bUTcXHr9CRrSeb6wziIBFGyIdR1rXe/G254m6auSLpG0WNIy24u7fT8AvVXnM/u5kp6OiGci4qCkeyQtbaYtAE2rE/YFkn4y7vnOatrr2B6xvcn2pkM6UGNxAOro+dH4iFgZEcMRMTxDs3q9OAAd1An7LkkLxz0/vZoGYADVCftGSWfZfpftmZKulLSmmbYANK3rU28Rcdj2tZL+SWOn3lZFxLbGOgPQqFrn2SPiQUkPNtQLgB7i67JAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQIO5AEYQeSIOxAEoQdSIKwA0kQdiAJwg4kQdiBJGoN2Wx7h6T9kl6TdDgihptoCkDzaoW98rGIeKGB9wHQQ+zGA0nUDXtI+oHtR2yPTPQC2yO2N9nedEgHai4OQLfq7sZfEBG7bJ8maa3tpyJi/fgXRMRKSSsl6WTPjZrLA9ClWlv2iNhV3Y9Kul/SuU00BaB5XYfd9pDtk44+lvRxSVubagxAs+rsxs+TdL/to+/zrYj4fiNdAWhc12GPiGcknd1gLwB6iFNvQBKEHUiCsANJEHYgCcIOJNHEhTApvPjZj3asvXP508V5nxqdV6wfPDCjWF9wd7k+e+dLHWtHNj9RnBd5sGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4zz5Ff/xH3+pY+9TQT8szn1lz4UvK5R2HX+5Yu/35j9Vc+LHrR6NndKwN3foLxXmnr3uk6XZax5YdSIKwA0kQdiAJwg4kQdiBJAg7kARhB5JwRP8GaTnZc+M8X9i35TXpZ58+r2PthQ+W/8+c82R5Hf/0V1ysz/zg/xbrt3zgvo61i97+SnHe7718YrH+idmdr5Wv65U4WKxvODBUrC854VDXy37P964u1t87srHr927ThlinfbF3wj8otuxAEoQdSIKwA0kQdiAJwg4kQdiBJAg7kATXs0/R0Hc2FGr13vvkerPrr39pScfan5+/qLzsfy3/5v0tS97TRUdTM/2VI8X60Jbdxfop6+8t1n91Zuff25+9o/xb/MejSbfstlfZHrW9ddy0ubbX2t5e3c/pbZsA6prKbvw3JF38hmk3SFoXEWdJWlc9BzDAJg17RKyXtPcNk5dKWl09Xi3p8ob7AtCwbj+zz4uIox+onpPUcTAz2yOSRiTpBM3ucnEA6qp9ND7GrqTpeKVHRKyMiOGIGJ6hWXUXB6BL3YZ9j+35klTdjzbXEoBe6DbsayStqB6vkPRAM+0A6JVJP7Pbvltjv1x+qu2dkr4g6WZJ37Z9laRnJV3RyyZRdvi5PR1rQ/d2rknSa5O899B3Xuyio2bs+b2PFuvvn1n+8/3S3vd1rC36u2eK8x4uVo9Nk4Y9IpZ1KB2bv0IBJMXXZYEkCDuQBGEHkiDsQBKEHUiCS1zRmulnLCzWv3LjV4r1GZ5WrP/D7b/ZsXbK7oeL8x6P2LIDSRB2IAnCDiRB2IEkCDuQBGEHkiDsQBKcZ0drnvrDBcX6h2eVh7LedrA8HPXcJ15+yz0dz9iyA0kQdiAJwg4kQdiBJAg7kARhB5Ig7EASnGdHTx34xIc71h799G2TzF0eQej3r7uuWH/7v/1okvfPhS07kARhB5Ig7EAShB1IgrADSRB2IAnCDiTBeXb01H9f0nl7cqLL59GX/ddFxfrs7z9WrEexms+kW3bbq2yP2t46btpNtnfZ3lzdLu1tmwDqmspu/DckXTzB9Nsi4pzq9mCzbQFo2qRhj4j1kvb2oRcAPVTnAN21trdUu/lzOr3I9ojtTbY3HdKBGosDUEe3Yf+apDMlnSNpt6RbO70wIlZGxHBEDM+Y5MIGAL3TVdgjYk9EvBYRRyR9XdK5zbYFoGldhd32/HFPPylpa6fXAhgMk55nt323pCWSTrW9U9IXJC2xfY7GTmXukHR1D3vEAHvbSScV68t//aGOtX1HXi3OO/rFdxfrsw5sLNbxepOGPSKWTTD5jh70AqCH+LoskARhB5Ig7EAShB1IgrADSXCJK2rZftP7i/Xvnvo3HWtLt3+qOO+sBzm11iS27EAShB1IgrADSRB2IAnCDiRB2IEkCDuQBOfZUfR/v/ORYn3Lb/9Vsf7jw4c61l76y9OL887S7mIdbw1bdiAJwg4kQdiBJAg7kARhB5Ig7EAShB1IgvPsyU1f8MvF+vWf//tifZbLf0JXPra8Y+0d/8j16v3Elh1IgrADSRB2IAnCDiRB2IEkCDuQBGEHkuA8+3HO08v/xGd/d2ex/pkTXyzW79p/WrE+7/OdtydHinOiaZNu2W0vtP1D20/Y3mb7umr6XNtrbW+v7uf0vl0A3ZrKbvxhSZ+LiMWSPiLpGtuLJd0gaV1EnCVpXfUcwICaNOwRsTsiHq0e75f0pKQFkpZKWl29bLWky3vVJID63tJndtuLJH1I0gZJ8yLi6I+EPSdpXod5RiSNSNIJmt1tnwBqmvLReNsnSrpX0vURsW98LSJCUkw0X0SsjIjhiBieoVm1mgXQvSmF3fYMjQX9roi4r5q8x/b8qj5f0mhvWgTQhEl3421b0h2SnoyIL48rrZG0QtLN1f0DPekQ9Zz9vmL5z067s9bbf/WLnynWf/Gxh2u9P5ozlc/s50taLulx25uraTdqLOTftn2VpGclXdGbFgE0YdKwR8RDktyhfGGz7QDoFb4uCyRB2IEkCDuQBGEHkiDsQBJc4nocmLb4vR1rI/fU+/rD4lXXFOuL7vz3Wu+P/mHLDiRB2IEkCDuQBGEHkiDsQBKEHUiCsANJcJ79OPDUH3T+Yd/LZu/rWJuK0//lYPkFMeEPFGEAsWUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSQ4z34MePWyc4v1dZfdWqgy5BbGsGUHkiDsQBKEHUiCsANJEHYgCcIOJEHYgSSmMj77QknflDRPUkhaGRG3275J0mclPV+99MaIeLBXjWb2P+dPK9bfOb37c+l37T+tWJ+xr3w9O1ezHzum8qWaw5I+FxGP2j5J0iO211a12yLiS71rD0BTpjI++25Ju6vH+20/KWlBrxsD0Ky39Jnd9iJJH5K0oZp0re0ttlfZnvC3kWyP2N5ke9MhHajVLIDuTTnstk+UdK+k6yNin6SvSTpT0jka2/JP+AXtiFgZEcMRMTxDsxpoGUA3phR22zM0FvS7IuI+SYqIPRHxWkQckfR1SeWrNQC0atKw27akOyQ9GRFfHjd9/riXfVLS1ubbA9CUqRyNP1/SckmP295cTbtR0jLb52js7MsOSVf3pEPU8hcvLi7WH/6tRcV67H68wW7QpqkcjX9IkicocU4dOIbwDTogCcIOJEHYgSQIO5AEYQeSIOxAEo4+Drl7sufGeb6wb8sDstkQ67Qv9k50qpwtO5AFYQeSIOxAEoQdSIKwA0kQdiAJwg4k0dfz7Lafl/TsuEmnSnqhbw28NYPa26D2JdFbt5rs7YyIeMdEhb6G/U0LtzdFxHBrDRQMam+D2pdEb93qV2/sxgNJEHYgibbDvrLl5ZcMam+D2pdEb93qS2+tfmYH0D9tb9kB9AlhB5JoJey2L7b9H7aftn1DGz10YnuH7cdtb7a9qeVeVtketb113LS5ttfa3l7dTzjGXku93WR7V7XuNtu+tKXeFtr+oe0nbG+zfV01vdV1V+irL+ut75/ZbU+T9J+SLpK0U9JGScsi4om+NtKB7R2ShiOi9S9g2P4NSS9J+mZEfKCadoukvRFxc/Uf5ZyI+JMB6e0mSS+1PYx3NVrR/PHDjEu6XNLvqsV1V+jrCvVhvbWxZT9X0tMR8UxEHJR0j6SlLfQx8CJivaS9b5i8VNLq6vFqjf2x9F2H3gZCROyOiEerx/slHR1mvNV1V+irL9oI+wJJPxn3fKcGa7z3kPQD24/YHmm7mQnMi4jd1ePnJM1rs5kJTDqMdz+9YZjxgVl33Qx/XhcH6N7sgoj4NUmXSLqm2l0dSDH2GWyQzp1OaRjvfplgmPGfa3PddTv8eV1thH2XpIXjnp9eTRsIEbGruh+VdL8GbyjqPUdH0K3uR1vu5+cGaRjviYYZ1wCsuzaHP28j7BslnWX7XbZnSrpS0poW+ngT20PVgRPZHpL0cQ3eUNRrJK2oHq+Q9ECLvbzOoAzj3WmYcbW87lof/jwi+n6TdKnGjsj/WNKfttFDh77eLemx6rat7d4k3a2x3bpDGju2cZWkUyStk7Rd0j9LmjtAvd0p6XFJWzQWrPkt9XaBxnbRt0jaXN0ubXvdFfrqy3rj67JAEhygA5Ig7EAShB1IgrADSRB2IAnCDiRB2IEk/h9BCfQTVPflJQAAAABJRU5ErkJggg==\n", 877 | "text/plain": [ 878 | "
" 879 | ] 880 | }, 881 | "metadata": { 882 | "needs_background": "light" 883 | }, 884 | "output_type": "display_data" 885 | } 886 | ], 887 | "source": [ 888 | "# Visualize a single image\n", 889 | "imgs, lbls = next(iter(test_loader))\n", 890 | "img = imgs[0].reshape(mnist_img_size)[:, :, 0]\n", 891 | "gt_lbl = lbls[0]\n", 892 | "\n", 893 | "print(gt_lbl)\n", 894 | "plt.imshow(img); plt.show()" 895 | ] 896 | }, 897 | { 898 | "cell_type": "markdown", 899 | "metadata": { 900 | "id": "TsGPQKx0SPL-" 901 | }, 902 | "source": [ 903 | "Great - we have our data pipeline ready and the model architecture defined.\n", 904 | "\n", 905 | "Now let's define core training functions:" 906 | ] 907 | }, 908 | { 909 | "cell_type": "code", 910 | "execution_count": 6, 911 | "metadata": { 912 | "id": "qD8ztbEsVM43" 913 | }, 914 | "outputs": [], 915 | "source": [ 916 | "@jax.jit\n", 917 | "def train_step(state, imgs, gt_labels):\n", 918 | " def loss_fn(params):\n", 919 | " logits = CNN().apply({'params': params}, imgs)\n", 920 | " one_hot_gt_labels = jax.nn.one_hot(gt_labels, num_classes=10)\n", 921 | " loss = -jnp.mean(jnp.sum(one_hot_gt_labels * logits, axis=-1))\n", 922 | " return loss, logits\n", 923 | " \n", 924 | " (_, logits), grads = jax.value_and_grad(loss_fn, has_aux=True)(state.params)\n", 925 | " state = state.apply_gradients(grads=grads) # this is the whole update now! concise!\n", 926 | " metrics = compute_metrics(logits=logits, gt_labels=gt_labels) # duplicating loss calculation but it's a bit cleaner\n", 927 | " return state, metrics\n", 928 | "\n", 929 | "@jax.jit\n", 930 | "def eval_step(state, imgs, gt_labels):\n", 931 | " logits = CNN().apply({'params': state.params}, imgs)\n", 932 | " return compute_metrics(logits=logits, gt_labels=gt_labels)" 933 | ] 934 | }, 935 | { 936 | "cell_type": "code", 937 | "execution_count": 7, 938 | "metadata": { 939 | "id": "v5VblVs2VWxo" 940 | }, 941 | "outputs": [], 942 | "source": [ 943 | "def train_one_epoch(state, dataloader, epoch):\n", 944 | " \"\"\"Train for 1 epoch on the training set.\"\"\"\n", 945 | " batch_metrics = []\n", 946 | " for cnt, (imgs, labels) in enumerate(dataloader):\n", 947 | " state, metrics = train_step(state, imgs, labels)\n", 948 | " batch_metrics.append(metrics)\n", 949 | "\n", 950 | " # Aggregate the metrics\n", 951 | " batch_metrics_np = jax.device_get(batch_metrics) # pull from the accelerator onto host (CPU)\n", 952 | " epoch_metrics_np = {\n", 953 | " k: np.mean([metrics[k] for metrics in batch_metrics_np])\n", 954 | " for k in batch_metrics_np[0]\n", 955 | " }\n", 956 | "\n", 957 | " return state, epoch_metrics_np\n", 958 | "\n", 959 | "def evaluate_model(state, test_imgs, test_lbls):\n", 960 | " \"\"\"Evaluate on the validation set.\"\"\"\n", 961 | " metrics = eval_step(state, test_imgs, test_lbls)\n", 962 | " metrics = jax.device_get(metrics) # pull from the accelerator onto host (CPU)\n", 963 | " metrics = jax.tree_map(lambda x: x.item(), metrics) # np.ndarray -> scalar\n", 964 | " return metrics" 965 | ] 966 | }, 967 | { 968 | "cell_type": "code", 969 | "execution_count": 8, 970 | "metadata": { 971 | "id": "xiV5yiA4BKEk" 972 | }, 973 | "outputs": [], 974 | "source": [ 975 | "# This one will keep things nice and tidy compared to our previous examples\n", 976 | "def create_train_state(key, learning_rate, momentum):\n", 977 | " cnn = CNN()\n", 978 | " params = cnn.init(key, jnp.ones([1, *mnist_img_size]))['params']\n", 979 | " sgd_opt = optax.sgd(learning_rate, momentum)\n", 980 | " # TrainState is a simple built-in wrapper class that makes things a bit cleaner\n", 981 | " return train_state.TrainState.create(apply_fn=cnn.apply, params=params, tx=sgd_opt)\n", 982 | "\n", 983 | "def compute_metrics(*, logits, gt_labels):\n", 984 | " one_hot_gt_labels = jax.nn.one_hot(gt_labels, num_classes=10)\n", 985 | "\n", 986 | " loss = -jnp.mean(jnp.sum(one_hot_gt_labels * logits, axis=-1))\n", 987 | " accuracy = jnp.mean(jnp.argmax(logits, -1) == gt_labels)\n", 988 | "\n", 989 | " metrics = {\n", 990 | " 'loss': loss,\n", 991 | " 'accuracy': accuracy,\n", 992 | " }\n", 993 | " return metrics" 994 | ] 995 | }, 996 | { 997 | "cell_type": "code", 998 | "execution_count": 9, 999 | "metadata": { 1000 | "colab": { 1001 | "base_uri": "https://localhost:8080/" 1002 | }, 1003 | "id": "s8EFriHnVcJO", 1004 | "outputId": "cb40714f-6150-44d6-e1e0-290b72a23eda" 1005 | }, 1006 | "outputs": [ 1007 | { 1008 | "name": "stdout", 1009 | "output_type": "stream", 1010 | "text": [ 1011 | "Train epoch: 1, loss: 0.2903152406215668, accuracy: 91.86198115348816\n", 1012 | "Test epoch: 1, loss: 44.35035705566406, accuracy: 94.77999806404114\n", 1013 | "Train epoch: 2, loss: 0.058339256793260574, accuracy: 98.23551177978516\n", 1014 | "Test epoch: 2, loss: 17.13631820678711, accuracy: 97.33999967575073\n" 1015 | ] 1016 | } 1017 | ], 1018 | "source": [ 1019 | "# Finally let's define the high-level training/val loops\n", 1020 | "seed = 0 # needless to say these should be in a config or defined like flags\n", 1021 | "learning_rate = 0.1\n", 1022 | "momentum = 0.9\n", 1023 | "num_epochs = 2\n", 1024 | "batch_size = 32\n", 1025 | "\n", 1026 | "train_state = create_train_state(jax.random.PRNGKey(seed), learning_rate, momentum)\n", 1027 | "\n", 1028 | "for epoch in range(1, num_epochs + 1):\n", 1029 | " train_state, train_metrics = train_one_epoch(train_state, train_loader, epoch)\n", 1030 | " print(f\"Train epoch: {epoch}, loss: {train_metrics['loss']}, accuracy: {train_metrics['accuracy'] * 100}\")\n", 1031 | "\n", 1032 | " test_metrics = evaluate_model(train_state, test_images, test_lbls)\n", 1033 | " print(f\"Test epoch: {epoch}, loss: {test_metrics['loss']}, accuracy: {test_metrics['accuracy'] * 100}\")\n", 1034 | "\n", 1035 | "# todo: exercise - how would we go about adding dropout? What about BatchNorm? What would have to change?" 1036 | ] 1037 | }, 1038 | { 1039 | "cell_type": "markdown", 1040 | "metadata": { 1041 | "id": "6U-BIjQ1v4ff" 1042 | }, 1043 | "source": [ 1044 | "Bonus point: a walk-through the \"non-toy\", distributed ImageNet CNN training example.\n", 1045 | "\n", 1046 | "Head over to https://github.com/google/flax/tree/main/examples/imagenet\n", 1047 | "\n", 1048 | "You'll keep seeing the same pattern/structure in all official Flax examples." 1049 | ] 1050 | }, 1051 | { 1052 | "cell_type": "markdown", 1053 | "metadata": { 1054 | "id": "6Q4C2M2tv_0J" 1055 | }, 1056 | "source": [ 1057 | "### Further learning resources 📚\n", 1058 | "\n", 1059 | "Aside from the [official docs](https://flax.readthedocs.io/en/latest/) and [examples](https://github.com/google/flax/tree/main/examples) I found [HuggingFace's Flax examples](https://github.com/huggingface/transformers/tree/master/examples/flax) and the resources from their [\"community week\"](https://github.com/huggingface/transformers/tree/master/examples/research_projects/jax-projects) useful as well.\n", 1060 | "\n", 1061 | "Finally, [source code](https://github.com/google/flax) is also your friend, as the library is still evolving." 1062 | ] 1063 | }, 1064 | { 1065 | "cell_type": "markdown", 1066 | "metadata": { 1067 | "id": "T5DqxlZ-SD3e" 1068 | }, 1069 | "source": [ 1070 | "### Connect with me ❤️\n", 1071 | "\n", 1072 | "Last but not least I regularly post AI-related stuff (paper summaries, AI news, etc.) on my Twitter/LinkedIn. We also have an ever increasing Discord community (1600+ members at the time of writing this). If you care about any of these I encourage you to connect! \n", 1073 | "\n", 1074 | "Social:
\n", 1075 | "💼 LinkedIn - https://www.linkedin.com/in/aleksagordic/
\n", 1076 | "🐦 Twitter - https://twitter.com/gordic_aleksa
\n", 1077 | "👨‍👩‍👧‍👦 Discord - https://discord.gg/peBrCpheKE
\n", 1078 | "🙏 Patreon - https://www.patreon.com/theaiepiphany
\n", 1079 | "\n", 1080 | "Content:
\n", 1081 | "📺 YouTube - https://www.youtube.com/c/TheAIEpiphany/
\n", 1082 | "📚 Medium - https://gordicaleksa.medium.com/
\n", 1083 | "💻 GitHub - https://github.com/gordicaleksa
\n", 1084 | "📢 AI Newsletter - https://aiepiphany.substack.com/
" 1085 | ] 1086 | } 1087 | ], 1088 | "metadata": { 1089 | "accelerator": "GPU", 1090 | "colab": { 1091 | "collapsed_sections": [], 1092 | "name": "Tutorial 4: Flax Zero2Hero.ipynb", 1093 | "provenance": [] 1094 | }, 1095 | "kernelspec": { 1096 | "display_name": "Python 3 (ipykernel)", 1097 | "language": "python", 1098 | "name": "python3" 1099 | }, 1100 | "language_info": { 1101 | "codemirror_mode": { 1102 | "name": "ipython", 1103 | "version": 3 1104 | }, 1105 | "file_extension": ".py", 1106 | "mimetype": "text/x-python", 1107 | "name": "python", 1108 | "nbconvert_exporter": "python", 1109 | "pygments_lexer": "ipython3", 1110 | "version": "3.9.0" 1111 | } 1112 | }, 1113 | "nbformat": 4, 1114 | "nbformat_minor": 1 1115 | } 1116 | --------------------------------------------------------------------------------