├── .gitignore ├── LICENSE ├── README.md ├── anthropic.js ├── anthropic_test.js ├── gemini.js ├── gemini_test.js ├── index.d.ts ├── index.js ├── package-lock.json ├── package.json ├── samples ├── anthropic-tools.txt ├── anthropic-tools2.txt ├── anthropic.txt ├── errors.txt ├── gemini-tools.txt ├── gemini-tools2.txt ├── gemini.txt ├── openai-responses-tools.txt ├── openai-responses-tools2.txt ├── openai-responses.txt ├── openai-tools.txt ├── openai-tools2.txt ├── openai.txt ├── openrouter.txt └── output.txt └── test.js /.gitignore: -------------------------------------------------------------------------------- 1 | dist/ 2 | node_modules/ 3 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright 2024 Anand S 2 | 3 | Permission is hereby granted, free of charge, to any person obtaining 4 | a copy of this software and associated documentation files (the 5 | "Software"), to deal in the Software without restriction, including 6 | without limitation the rights to use, copy, modify, merge, publish, 7 | distribute, sublicense, and/or sell copies of the Software, and to 8 | permit persons to whom the Software is furnished to do so, subject to 9 | the following conditions: 10 | 11 | The above copyright notice and this permission notice shall be 12 | included in all copies or substantial portions of the Software. 13 | 14 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 15 | EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 16 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 17 | NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 18 | LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 19 | OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 20 | WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 21 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # asyncLLM 2 | 3 | [![npm version](https://img.shields.io/npm/v/asyncllm.svg)](https://www.npmjs.com/package/asyncllm) 4 | [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) 5 | 6 | Fetch LLM responses across multiple providers as an async iterable. 7 | 8 | ## Features 9 | 10 | - 🚀 Lightweight (~2KB) and dependency-free 11 | - 🔄 Works with multiple LLM providers (OpenAI, Anthropic, Gemini, and more) 12 | - 🌐 Browser and Node.js compatible 13 | - 📦 Easy to use with ES modules 14 | 15 | ## Installation 16 | 17 | ```bash 18 | npm install asyncllm 19 | ``` 20 | 21 | ## Anthropic and Gemini Adapters 22 | 23 | Adapters convert OpenAI chat completions request bodies to the [Anthropic](https://docs.anthropic.com/en/api/messages) or [Gemini](https://ai.google.dev/gemini-api/docs/text-generation?lang=rest) formats. For example: 24 | 25 | ```javascript 26 | import { anthropic } from "https://cdn.jsdelivr.net/npm/asyncllm@2/dist/anthropic.js"; 27 | import { gemini } from "https://cdn.jsdelivr.net/npm/asyncllm@2/dist/gemini.js"; 28 | 29 | // Create an OpenAI chat completions request 30 | const body = { 31 | messages: [{ role: "user", content: "Hello, world!" }], 32 | temperature: 0.5, 33 | }; 34 | 35 | // Fetch request with the Anthropic API 36 | const anthropicResponse = await fetch("https://api.anthropic.com/v1/messages", { 37 | method: "POST", 38 | headers: { "Content-Type": "application/json", "x-api-key": "YOUR_API_KEY" }, 39 | // anthropic() converts the OpenAI chat completions request to Anthropic's format 40 | body: JSON.stringify(anthropic({ ...body, model: "claude-3-haiku-20240307" })), 41 | }).then((r) => r.json()); 42 | 43 | // Fetch request with the Gemini API 44 | const geminiResponse = await fetch( 45 | "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-8b:generateContent", 46 | { 47 | method: "POST", 48 | headers: { "Content-Type": "application/json", Authorization: `Bearer YOUR_API_KEY` }, 49 | // gemini() converts the OpenAI chat completions request to Gemini's format 50 | body: JSON.stringify(gemini(body)), 51 | }, 52 | ).then((r) => r.json()); 53 | ``` 54 | 55 | Here are the parameters supported by each provider. 56 | 57 | | OpenAI Parameter | Anthropic | Gemini | 58 | | ----------------------------------- | --------- | ------ | 59 | | messages | Y | Y | 60 | | system message | Y | Y | 61 | | temperature | Y | Y | 62 | | max_tokens | Y | Y | 63 | | top_p | Y | Y | 64 | | stop sequences | Y | Y | 65 | | stream | Y | Y | 66 | | presence_penalty | | Y | 67 | | frequency_penalty | | Y | 68 | | logprobs | | Y | 69 | | top_logprobs | | Y | 70 | | n (multiple candidates) | | Y | 71 | | metadata.user_id | Y | | 72 | | tools/functions | Y | Y | 73 | | tool_choice | Y | Y | 74 | | parallel_tool_calls | Y | | 75 | | response_format.type: "json_object" | | Y | 76 | | response_format.type: "json_schema" | | Y | 77 | 78 | Content types: 79 | 80 | | OpenAI | Anthropic | Gemini | 81 | | ------ | --------- | ------ | 82 | | Text | Y | Y | 83 | | Images | Y | Y | 84 | | Audio | | Y | 85 | 86 | Image Sources 87 | 88 | | OpenAI Parameter | Anthropic | Gemini | 89 | | ---------------- | --------- | ------ | 90 | | Data URI | Y | Y | 91 | | External URLs | | Y | 92 | 93 | ## Streaming 94 | 95 | Call `asyncLLM()` just like you would use `fetch` with any LLM provider with streaming responses. 96 | 97 | - [OpenAI Chat Completion Streaming](https://platform.openai.com/docs/api-reference/chat-streaming). Many providers like Azure, Groq, OpenRouter, etc. follow the OpenAI Chat Completion API. 98 | - [OpenAI Responses API Streaming](https://platform.openai.com/docs/api-reference/responses-streaming). 99 | - [Anthropic Streaming](https://docs.anthropic.com/en/api/messages-streaming) 100 | - [Gemini Streaming](https://ai.google.dev/gemini-api/docs/text-generation?lang=rest#generate-a-text-stream) 101 | 102 | The result is an async generator that yields objects with `content`, `tool`, and `args` properties. 103 | 104 | For example, to update the DOM with the LLM's response: 105 | 106 | ```html 107 | 108 | 109 | 110 |
111 | 112 | 113 | 136 | 137 | ``` 138 | 139 | ### Node.js or bundled projects 140 | 141 | ```javascript 142 | import { asyncLLM } from "asyncllm"; 143 | 144 | // Usage is the same as in the browser example 145 | ``` 146 | 147 | ## Examples 148 | 149 | ### OpenAI streaming 150 | 151 | ```javascript 152 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 153 | 154 | const body = { 155 | model: "gpt-4.1-nano", 156 | // You MUST enable streaming, else the API will return an {error} 157 | stream: true, 158 | messages: [{ role: "user", content: "Hello, world!" }], 159 | }; 160 | 161 | for await (const data of asyncLLM("https://api.openai.com/v1/chat/completions", { 162 | method: "POST", 163 | headers: { "Content-Type": "application/json", Authorization: `Bearer ${apiKey}` }, 164 | body: JSON.stringify(body), 165 | })) { 166 | console.log(data); 167 | } 168 | ``` 169 | 170 | This will log something like this on the console: 171 | 172 | ```js 173 | { content: "", message: { "id": "chatcmpl-...", ...} } 174 | { content: "Hello", message: { "id": "chatcmpl-...", ...} } 175 | { content: "Hello!", message: { "id": "chatcmpl-...", ...} } 176 | { content: "Hello! How", message: { "id": "chatcmpl-...", ...} } 177 | ... 178 | { content: "Hello! How can I assist you today?", message: { "id": "chatcmpl-...", ...} } 179 | ``` 180 | 181 | ## OpenAI Responses API streaming 182 | 183 | ```javascript 184 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 185 | 186 | const body = { 187 | model: "gpt-4.1-mini", 188 | // You MUST enable streaming, else the API will return an {error} 189 | stream: true, 190 | input: "Hello, world!", 191 | }; 192 | 193 | for await (const data of asyncLLM("https://api.openai.com/v1/responses", { 194 | method: "POST", 195 | headers: { "Content-Type": "application/json", Authorization: `Bearer ${apiKey}` }, 196 | body: JSON.stringify(body), 197 | })) { 198 | console.log(data); 199 | } 200 | ``` 201 | 202 | This will log something like this on the console: 203 | 204 | ```js 205 | { content: "Hello", message: { "item_id": "msg_...", ...} } 206 | { content: "Hello!", message: { "item_id": "msg_...", ...} } 207 | { content: "Hello! How", message: { "item_id": "msg_...", ...} } 208 | ... 209 | { content: "Hello! How can I assist you today?", message: { "item_id": "msg_...", ...} } 210 | ``` 211 | 212 | ### Anthropic streaming 213 | 214 | The package includes an Anthropic adapter that converts OpenAI chat completions requests to Anthropic's format, 215 | allowing you to use the same code structure across providers. 216 | 217 | ```javascript 218 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 219 | import { anthropic } from "https://cdn.jsdelivr.net/npm/asyncllm@2/dist/anthropic.js"; 220 | 221 | // You can use the anthropic() adapter to convert OpenAI chat completions requests to Anthropic's format. 222 | const body = anthropic({ 223 | // Same as OpenAI example above 224 | }); 225 | 226 | // Or you can use the asyncLLM() function directly with the Anthropic API endpoint. 227 | const body = { 228 | model: "claude-3-haiku-20240307", 229 | // You MUST enable streaming, else the API will return an {error} 230 | stream: true, 231 | max_tokens: 10, 232 | messages: [{ role: "user", content: "What is 2 + 2" }], 233 | }; 234 | 235 | for await (const data of asyncLLM("https://api.anthropic.com/v1/messages", { 236 | headers: { "Content-Type": "application/json", "x-api-key": apiKey }, 237 | body: JSON.stringify(body), 238 | })) { 239 | console.log(data); 240 | } 241 | ``` 242 | 243 | ### Gemini streaming 244 | 245 | The package includes a Gemini adapter that converts OpenAI chat completions requests to Gemini's format, 246 | allowing you to use the same code structure across providers. 247 | 248 | ```javascript 249 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 250 | import { gemini } from "https://cdn.jsdelivr.net/npm/asyncllm@2/dist/gemini.js"; 251 | 252 | // You can use the gemini() adapter to convert OpenAI chat completions requests to Gemini's format. 253 | const body = gemini({ 254 | // Same as OpenAI example above 255 | }); 256 | 257 | // Or you can use the asyncLLM() function directly with the Gemini API endpoint. 258 | const body = { 259 | contents: [{ role: "user", parts: [{ text: "What is 2+2?" }] }], 260 | }; 261 | 262 | for await (const data of asyncLLM( 263 | // You MUST use a streaming endpoint, else the API will return an {error} 264 | "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-8b:streamGenerateContent?alt=sse", 265 | { 266 | method: "POST", 267 | headers: { 268 | "Content-Type": "application/json", 269 | Authorization: `Bearer ${apiKey}`, 270 | }, 271 | body: JSON.stringify(body), 272 | }, 273 | )) { 274 | console.log(data); 275 | } 276 | ``` 277 | 278 | ### Function Calling 279 | 280 | asyncLLM supports function calling (aka tools). Here's an example with OpenAI chat completions: 281 | 282 | ```javascript 283 | for await (const { tools } of asyncLLM("https://api.openai.com/v1/chat/completions", { 284 | method: "POST", 285 | headers: { 286 | "Content-Type": "application/json", 287 | Authorization: `Bearer ${apiKey}`, 288 | }, 289 | body: JSON.stringify({ 290 | model: "gpt-4.1-nano", 291 | stream: true, 292 | messages: [ 293 | { role: "system", content: "Get delivery date for order" }, 294 | { role: "user", content: "Order ID: 123456" }, 295 | ], 296 | tool_choice: "required", 297 | tools: [ 298 | { 299 | type: "function", 300 | function: { 301 | name: "get_delivery_date", 302 | parameters: { type: "object", properties: { order_id: { type: "string" } }, required: ["order_id"] }, 303 | }, 304 | }, 305 | ], 306 | }), 307 | })) { 308 | console.log(JSON.stringify(tools)); 309 | } 310 | ``` 311 | 312 | `tools` is an array of objects with `name`, `id` (for Anthropic and OpenAI, not Gemini), and `args` properties. It streams like this: 313 | 314 | ```json 315 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":""}] 316 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\""}] 317 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order"}] 318 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order_id"}] 319 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order_id\":\""}] 320 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order_id\":\"123"}] 321 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order_id\":\"123456"}] 322 | [{"name":"get_delivery_date","id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","args":"{\"order_id\":\"123456\"}"}] 323 | ``` 324 | 325 | Use a library like [partial-json](https://www.npmjs.com/package/partial-json) to parse the `args` incrementally. 326 | 327 | ### Streaming Config 328 | 329 | asyncLLM accepts a `config` object with the following properties: 330 | 331 | - `fetch`: Custom fetch implementation (defaults to global `fetch`). 332 | - `onResponse`: Async callback function that receives the Response object before streaming begins. If the callback returns a promise, it will be awaited before continuing the stream. 333 | 334 | Here's how you can use a custom fetch implementation: 335 | 336 | ```javascript 337 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 338 | 339 | const body = { 340 | // Same as OpenAI example above 341 | }; 342 | 343 | // Optional configuration. You can ignore it for most use cases. 344 | const config = { 345 | onResponse: async (response) => { 346 | console.log(response.status, response.headers); 347 | }, 348 | // You can use a custom fetch implementation if needed 349 | fetch: fetch, 350 | }; 351 | 352 | for await (const { content } of asyncLLM( 353 | "https://api.openai.com/v1/chat/completions", 354 | { 355 | method: "POST", 356 | headers: { "Content-Type": "application/json", Authorization: `Bearer ${apiKey}` }, 357 | body: JSON.stringify(body), 358 | }, 359 | config, 360 | )) { 361 | console.log(content); 362 | } 363 | ``` 364 | 365 | ## Streaming from text 366 | 367 | You can parse streamed SSE events from a text string (e.g. from a cached response) using the provided `fetchText` helper: 368 | 369 | ```javascript 370 | import { asyncLLM } from "https://cdn.jsdelivr.net/npm/asyncllm@2"; 371 | import { fetchText } from "https://cdn.jsdelivr.net/npm/asyncsse@1/dist/fetchtext.js"; 372 | 373 | const text = ` 374 | data: {"candidates": [{"content": {"parts": [{"text": "2"}],"role": "model"}}]} 375 | 376 | data: {"candidates": [{"content": {"parts": [{"text": " + 2 = 4\\n"}],"role": "model"}}]} 377 | 378 | data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"}}]} 379 | `; 380 | 381 | // Stream events from text 382 | for await (const event of asyncLLM(text, {}, { fetch: fetchText })) { 383 | console.log(event); 384 | } 385 | ``` 386 | 387 | This outputs: 388 | 389 | ``` 390 | { data: "Hello" } 391 | { data: "World" } 392 | ``` 393 | 394 | This is particularly useful for testing SSE parsing without making actual HTTP requests. 395 | 396 | ### Error handling 397 | 398 | If an error occurs, it will be yielded in the `error` property. For example: 399 | 400 | ```javascript 401 | for await (const { content, error } of asyncLLM("https://api.openai.com/v1/chat/completions", { 402 | method: "POST", 403 | // ... 404 | })) { 405 | if (error) console.error(error); 406 | else console.log(content); 407 | } 408 | ``` 409 | 410 | The `error` property is set if: 411 | 412 | - The underlying API (e.g. OpenAI, Anthropic, Gemini) returns an error in the response (e.g. `error.message` or `message.error` or `error`) 413 | - The fetch request fails (e.g. network error) 414 | - The response body cannot be parsed as JSON 415 | 416 | ### `asyncLLM(request: string | Request, options?: RequestInit, config?: SSEConfig): AsyncGenerator` 417 | 418 | Fetches streaming responses from LLM providers and yields events. 419 | 420 | - `request`: The URL or Request object for the LLM API endpoint 421 | - `options`: Optional [fetch options](https://developer.mozilla.org/en-US/docs/Web/API/fetch#parameters) 422 | - `config`: Optional configuration object for SSE handling 423 | - `fetch`: Custom fetch implementation (defaults to global fetch) 424 | - `onResponse`: Async callback function that receives the Response object before streaming begins. If the callback returns a promise, it will be awaited before continuing the stream. 425 | 426 | Returns an async generator that yields [`LLMEvent` objects](#llmevent). 427 | 428 | #### LLMEvent 429 | 430 | - `content`: The text content of the response 431 | - `tools`: Array of tool call objects with: 432 | - `name`: The name of the tool being called 433 | - `args`: The arguments for the tool call as a JSON-encoded string, e.g. `{"order_id":"123456"}` 434 | - `id`: Optional unique identifier for the tool call (e.g. OpenAI's `call_F8YHCjnzrrTjfE4YSSpVW2Bc` or Anthropic's `toolu_01T1x1fJ34qAmk2tNTrN7Up6`. Gemini does not return an id.) 435 | - `message`: The raw message object from the LLM provider (may include id, model, usage stats, etc.) 436 | - `error`: Error message if the request fails 437 | 438 | ## Setup 439 | 440 | ```bash 441 | git clone https://github.com/sanand0/asyncllm 442 | cd asyncllm 443 | npm install 444 | 445 | # Run all tests 446 | npm test 447 | # ... or specific tests 448 | npm test -- --filter 'OpenAI' 449 | 450 | # Deploy: update package.json version, then: 451 | npm publish 452 | ``` 453 | 454 | ## Changelog 455 | 456 | - 2.2.0: Added [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses-streaming) 457 | - 2.1.2: Update repo links 458 | - 2.1.1: Document standalone adapter usage 459 | - 2.1.0: Added `id` to tools to support unique tool call identifiers from providers 460 | - 2.0.1: Multiple tools support. 461 | - Breaking change: `tool` and `args` are not part of the response. Instead, it has `tools`, an array of `{ name, args }` 462 | - Fixed Gemini adapter to return `toolConfig` instead of `toolsConfig` 463 | - 1.2.2: Added streaming from text documentation via `config.fetch`. Upgrade to asyncSSE 1.3.1 (bug fix). 464 | - 1.2.1: Added `config.fetch` for custom fetch implementation 465 | - 1.2.0: Added `config.onResponse(response)` that receives the Response object before streaming begins 466 | - 1.1.3: Ensure `max_tokens` for Anthropic. Improve error handling 467 | - 1.1.1: Added [Anthropic adapter](#anthropic) 468 | - 1.1.0: Added [Gemini adapter](#gemini) 469 | - 1.0.0: Initial release with [asyncLLM](#asyncllm) and [LLMEvent](#llmevent) 470 | 471 | ## Contributing 472 | 473 | Contributions are welcome! Please feel free to submit a Pull Request. 474 | 475 | ## License 476 | 477 | This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. 478 | -------------------------------------------------------------------------------- /anthropic.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Convert an OpenAI body to an Anthropic body 3 | * @param {Object} body 4 | * @returns {Object} 5 | */ 6 | export function anthropic(body) { 7 | // System messages are specified at the top level in Anthropic 8 | const system = body.messages.find((msg) => msg.role === "system"); 9 | 10 | // Convert messages 11 | const messages = body.messages 12 | .filter((msg) => msg.role !== "system") 13 | .map((msg) => ({ 14 | role: msg.role, 15 | // Handle both text and binary content (images) 16 | content: Array.isArray(msg.content) 17 | ? msg.content.map(({ type, text, image_url }) => { 18 | if (type === "text") return { type: "text", text }; 19 | else if (type === "image_url") 20 | return { 21 | type: "image", 22 | source: anthropicSourceFromURL(image_url.url), 23 | }; 24 | // Anthropic doesn't support audio 25 | }) 26 | : msg.content, 27 | })); 28 | 29 | const parallel_tool_calls = 30 | typeof body.parallel_tool_calls == "boolean" ? { disable_parallel_tool_use: !body.parallel_tool_calls } : {}; 31 | // Map OpenAI parameters to Anthropic equivalents, only including if defined 32 | const params = { 33 | model: body.model, 34 | max_tokens: body.max_tokens ?? 4096, 35 | ...(body.metadata?.user_id ? { metadata: { user_id: body.metadata?.user_id } } : {}), 36 | ...(typeof body.stream == "boolean" ? { stream: body.stream } : {}), 37 | ...(typeof body.temperature == "number" ? { temperature: body.temperature } : {}), 38 | ...(typeof body.top_p == "number" ? { top_p: body.top_p } : {}), 39 | // Convert single string or array of stop sequences 40 | ...(typeof body.stop == "string" 41 | ? { stop_sequences: [body.stop] } 42 | : Array.isArray(body.stop) 43 | ? { stop_sequences: body.stop } 44 | : {}), 45 | // Anthropic does not support JSON mode 46 | // Convert OpenAI tool_choice to Anthropic's tools_choice 47 | ...(body.tool_choice == "auto" 48 | ? { tool_choice: { type: "auto", ...parallel_tool_calls } } 49 | : body.tool_choice == "required" 50 | ? { tool_choice: { type: "any", ...parallel_tool_calls } } 51 | : body.tool_choice == "none" 52 | ? {} 53 | : typeof body.tool_choice == "object" 54 | ? { 55 | tool_choice: { 56 | type: "tool", 57 | name: body.tool_choice.function?.name, 58 | ...parallel_tool_calls, 59 | }, 60 | } 61 | : {}), 62 | }; 63 | 64 | // Convert function definitions to Anthropic's tool format 65 | const tools = body.tools?.map((tool) => ({ 66 | name: tool.function.name, 67 | description: tool.function.description, 68 | input_schema: tool.function.parameters, 69 | })); 70 | 71 | // Only include optional configs if they exist 72 | return { 73 | ...(system ? { system: system.content } : {}), 74 | messages, 75 | ...params, 76 | ...(body.tools ? { tools } : {}), 77 | }; 78 | } 79 | 80 | // Handle data URIs in Anthropic's format. External URLs are not supported. 81 | const anthropicSourceFromURL = (url) => { 82 | if (url.startsWith("data:")) { 83 | const [base, base64Data] = url.split(","); 84 | return { 85 | type: "base64", 86 | media_type: base.replace("data:", "").replace(";base64", ""), 87 | data: base64Data, 88 | }; 89 | } 90 | }; 91 | -------------------------------------------------------------------------------- /anthropic_test.js: -------------------------------------------------------------------------------- 1 | import { anthropic } from "./anthropic.js"; 2 | 3 | function assertEquals(actual, expected, message) { 4 | if (JSON.stringify(actual) === JSON.stringify(expected)) return; 5 | throw new Error( 6 | message || `Expected:\n${JSON.stringify(expected, null, 2)}. Actual:\n${JSON.stringify(actual, null, 2)}`, 7 | ); 8 | } 9 | 10 | // 1. System message handling 11 | Deno.test("anthropic - system message handling", () => { 12 | const input = { 13 | messages: [ 14 | { role: "system", content: "You are helpful" }, 15 | { role: "user", content: "Hi" }, 16 | ], 17 | }; 18 | 19 | const expected = { 20 | system: "You are helpful", 21 | messages: [{ role: "user", content: "Hi" }], 22 | max_tokens: 4096, 23 | }; 24 | 25 | assertEquals(anthropic(input), expected); 26 | }); 27 | 28 | // 2. Basic message conversion 29 | Deno.test("anthropic - basic message conversion", () => { 30 | const input = { 31 | messages: [{ role: "user", content: "Hello" }], 32 | }; 33 | 34 | const expected = { 35 | messages: [{ role: "user", content: "Hello" }], 36 | max_tokens: 4096, 37 | }; 38 | 39 | assertEquals(anthropic(input), expected); 40 | }); 41 | 42 | // 2b. Multimodal content handling 43 | Deno.test("anthropic - multimodal content", () => { 44 | const input = { 45 | messages: [ 46 | { 47 | role: "user", 48 | content: [ 49 | { type: "text", text: "What's in this image?" }, 50 | { 51 | type: "image_url", 52 | image_url: { url: "" }, 53 | }, 54 | ], 55 | }, 56 | ], 57 | }; 58 | 59 | const expected = { 60 | messages: [ 61 | { 62 | role: "user", 63 | content: [ 64 | { type: "text", text: "What's in this image?" }, 65 | { 66 | type: "image", 67 | source: { 68 | type: "base64", 69 | media_type: "image/jpeg", 70 | data: "abc123", 71 | }, 72 | }, 73 | ], 74 | }, 75 | ], 76 | max_tokens: 4096, 77 | }; 78 | 79 | assertEquals(anthropic(input), expected); 80 | }); 81 | 82 | // 3. Parameter conversion 83 | Deno.test("anthropic - parameter conversion", () => { 84 | const input = { 85 | messages: [{ role: "user", content: "Hi" }], 86 | model: "claude-3-5-sonnet-20241002", 87 | max_tokens: 100, 88 | metadata: { user_id: "123" }, 89 | stream: true, 90 | temperature: 0.7, 91 | top_p: 0.9, 92 | stop: ["END"], 93 | }; 94 | 95 | const expected = { 96 | messages: [{ role: "user", content: "Hi" }], 97 | model: "claude-3-5-sonnet-20241002", 98 | max_tokens: 100, 99 | metadata: { user_id: "123" }, 100 | stream: true, 101 | temperature: 0.7, 102 | top_p: 0.9, 103 | stop_sequences: ["END"], 104 | }; 105 | 106 | assertEquals(anthropic(input), expected); 107 | }); 108 | 109 | // 3b. Array stop sequences 110 | Deno.test("anthropic - array stop sequences", () => { 111 | const input = { 112 | messages: [{ role: "user", content: "Hi" }], 113 | stop: ["STOP", "END"], 114 | }; 115 | 116 | const expected = { 117 | messages: [{ role: "user", content: "Hi" }], 118 | max_tokens: 4096, 119 | stop_sequences: ["STOP", "END"], 120 | }; 121 | 122 | assertEquals(anthropic(input), expected); 123 | }); 124 | 125 | // 4. Tool handling 126 | Deno.test("anthropic - tool calling configurations", () => { 127 | const input = { 128 | messages: [{ role: "user", content: "Hi" }], 129 | tool_choice: "auto", 130 | parallel_tool_calls: true, 131 | tools: [ 132 | { 133 | function: { 134 | name: "get_weather", 135 | description: "Get weather info", 136 | parameters: { 137 | type: "object", 138 | properties: { location: { type: "string" } }, 139 | }, 140 | }, 141 | }, 142 | ], 143 | }; 144 | 145 | const expected = { 146 | messages: [{ role: "user", content: "Hi" }], 147 | max_tokens: 4096, 148 | tool_choice: { type: "auto", disable_parallel_tool_use: false }, 149 | tools: [ 150 | { 151 | name: "get_weather", 152 | description: "Get weather info", 153 | input_schema: { 154 | type: "object", 155 | properties: { location: { type: "string" } }, 156 | }, 157 | }, 158 | ], 159 | }; 160 | 161 | assertEquals(anthropic(input), expected); 162 | }); 163 | 164 | // 4b. Specific tool choice 165 | Deno.test("anthropic - specific tool choice", () => { 166 | const input = { 167 | messages: [{ role: "user", content: "Hi" }], 168 | tool_choice: { function: { name: "get_weather" } }, 169 | }; 170 | 171 | const expected = { 172 | messages: [{ role: "user", content: "Hi" }], 173 | max_tokens: 4096, 174 | tool_choice: { type: "tool", name: "get_weather" }, 175 | }; 176 | 177 | assertEquals(anthropic(input), expected); 178 | }); 179 | -------------------------------------------------------------------------------- /gemini.js: -------------------------------------------------------------------------------- 1 | /** 2 | * Convert an OpenAI body to a Gemini body 3 | * @param {Object} body 4 | * @returns {Object} 5 | */ 6 | export function gemini(body) { 7 | // System messages live in a separate object in Gemini 8 | const systemMessage = body.messages.find((msg) => msg.role === "system"); 9 | const systemInstruction = systemMessage ? { systemInstruction: { parts: [{ text: systemMessage.content }] } } : {}; 10 | 11 | // Convert messages: Gemini uses "model" instead of "assistant" and has different content structure 12 | const contents = body.messages 13 | .filter((msg) => msg.role !== "system") 14 | .map((msg) => ({ 15 | role: msg.role == "assistant" ? "model" : msg.role, 16 | // Handle both text and binary content (images/audio) 17 | parts: Array.isArray(msg.content) 18 | ? msg.content.map(({ type, text, image_url, input_audio }) => { 19 | if (type === "text") return { text }; 20 | else if (type === "image_url") return geminiPartFromURL(image_url.url); 21 | else if (type == "input_audio") return geminiPartFromURL(input_audio.data); 22 | }) 23 | : [{ text: msg.content }], 24 | })); 25 | 26 | // Map OpenAI parameters to Gemini equivalents, only including if defined 27 | const generationConfig = { 28 | ...(typeof body.temperature == "number" ? { temperature: body.temperature } : {}), 29 | ...(typeof body.max_tokens == "number" ? { maxOutputTokens: body.max_tokens } : {}), 30 | ...(typeof body.max_completion_tokens == "number" ? { maxOutputTokens: body.max_completion_tokens } : {}), 31 | ...(typeof body.top_p == "number" ? { topP: body.top_p } : {}), 32 | ...(typeof body.presence_penalty == "number" ? { presencePenalty: body.presence_penalty } : {}), 33 | ...(typeof body.frequency_penalty == "number" ? { frequencyPenalty: body.frequency_penalty } : {}), 34 | ...(typeof body.logprobs == "boolean" ? { responseLogprobs: body.logprobs } : {}), 35 | ...(typeof body.top_logprobs == "number" ? { logprobs: body.top_logprobs } : {}), 36 | ...(typeof body.n == "number" ? { candidateCount: body.n } : {}), 37 | // Convert single string or array of stop sequences 38 | ...(typeof body.stop == "string" 39 | ? { stopSequences: [body.stop] } 40 | : Array.isArray(body.stop) 41 | ? { stopSequences: body.stop } 42 | : {}), 43 | // Handle JSON response formatting and schemas 44 | ...(body.response_format?.type == "json_object" 45 | ? { responseMimeType: "application/json" } 46 | : body.response_format?.type == "json_schema" 47 | ? { 48 | responseMimeType: "application/json", 49 | responseSchema: geminiSchema(structuredClone(body.response_format?.json_schema?.schema)), 50 | } 51 | : {}), 52 | }; 53 | 54 | // Convert OpenAI tool_choice to Gemini's function calling modes 55 | const toolConfig = 56 | body.tool_choice == "auto" 57 | ? { function_calling_config: { mode: "AUTO" } } 58 | : body.tool_choice == "required" 59 | ? { function_calling_config: { mode: "ANY" } } 60 | : body.tool_choice == "none" 61 | ? { function_calling_config: { mode: "NONE" } } 62 | : typeof body.tool_choice == "object" 63 | ? { 64 | function_calling_config: { 65 | mode: "ANY", 66 | allowed_function_names: [body.tool_choice.function?.name], 67 | }, 68 | } 69 | : {}; 70 | 71 | // Convert function definitions to Gemini's tool format 72 | const tools = body.tools 73 | ? { 74 | functionDeclarations: body.tools.map((tool) => ({ 75 | name: tool.function.name, 76 | description: tool.function.description, 77 | parameters: geminiSchema(structuredClone(tool.function.parameters)), 78 | })), 79 | } 80 | : {}; 81 | 82 | // Only include optional configs if they exist 83 | return { 84 | ...systemInstruction, 85 | contents, 86 | ...(Object.keys(generationConfig).length > 0 ? { generationConfig } : {}), 87 | ...(body.tool_choice ? { toolConfig } : {}), 88 | ...(body.tools ? { tools } : {}), 89 | }; 90 | } 91 | 92 | // Handle both data URIs and external URLs in Gemini's required format 93 | const geminiPartFromURL = (url) => { 94 | if (url.startsWith("data:")) { 95 | const [base, base64Data] = url.split(","); 96 | return { 97 | inlineData: { 98 | mimeType: base.replace("data:", "").replace(";base64", ""), 99 | data: base64Data, 100 | }, 101 | }; 102 | } 103 | return { fileData: { fileUri: url } }; 104 | }; 105 | 106 | // Gemini doesn't support additionalProperties in schemas. Recursively remove it. 107 | function geminiSchema(obj) { 108 | if (Array.isArray(obj)) obj.forEach(geminiSchema); 109 | else if (obj && typeof obj === "object") { 110 | for (const key in obj) { 111 | if (key === "additionalProperties") delete obj[key]; 112 | else geminiSchema(obj[key]); 113 | } 114 | } 115 | return obj; 116 | } 117 | -------------------------------------------------------------------------------- /gemini_test.js: -------------------------------------------------------------------------------- 1 | import { gemini } from "./gemini.js"; 2 | 3 | function assertEquals(actual, expected, message) { 4 | if (JSON.stringify(actual) === JSON.stringify(expected)) return; 5 | throw new Error( 6 | message || `Expected:\n${JSON.stringify(expected, null, 2)}. Actual:\n${JSON.stringify(actual, null, 2)}`, 7 | ); 8 | } 9 | 10 | Deno.test("gemini - basic message conversion", () => { 11 | const input = { 12 | messages: [{ role: "user", content: "Hello" }], 13 | }; 14 | 15 | const expected = { 16 | contents: [{ role: "user", parts: [{ text: "Hello" }] }], 17 | }; 18 | 19 | assertEquals(gemini(input), expected); 20 | }); 21 | 22 | Deno.test("gemini - system message handling", () => { 23 | const input = { 24 | messages: [ 25 | { role: "system", content: "You are helpful" }, 26 | { role: "user", content: "Hi" }, 27 | ], 28 | }; 29 | 30 | const expected = { 31 | systemInstruction: { parts: [{ text: "You are helpful" }] }, 32 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 33 | }; 34 | 35 | assertEquals(gemini(input), expected); 36 | }); 37 | 38 | Deno.test("gemini - assistant message conversion", () => { 39 | const input = { 40 | messages: [ 41 | { role: "user", content: "Hi" }, 42 | { role: "assistant", content: "Hello" }, 43 | ], 44 | }; 45 | 46 | const expected = { 47 | contents: [ 48 | { role: "user", parts: [{ text: "Hi" }] }, 49 | { role: "model", parts: [{ text: "Hello" }] }, 50 | ], 51 | }; 52 | 53 | assertEquals(gemini(input), expected); 54 | }); 55 | 56 | Deno.test("gemini - multimodal content", () => { 57 | const input = { 58 | messages: [ 59 | { 60 | role: "user", 61 | content: [ 62 | { type: "text", text: "What's in this image?" }, 63 | { 64 | type: "image_url", 65 | image_url: { url: "" }, 66 | }, 67 | { 68 | type: "input_audio", 69 | input_audio: { data: "https://example.com/audio.mp3" }, 70 | }, 71 | ], 72 | }, 73 | ], 74 | }; 75 | 76 | const expected = { 77 | contents: [ 78 | { 79 | role: "user", 80 | parts: [ 81 | { text: "What's in this image?" }, 82 | { inlineData: { mimeType: "image/jpeg", data: "abc123" } }, 83 | { fileData: { fileUri: "https://example.com/audio.mp3" } }, 84 | ], 85 | }, 86 | ], 87 | }; 88 | 89 | assertEquals(gemini(input), expected); 90 | }); 91 | 92 | Deno.test("gemini - generation config parameters", () => { 93 | const input = { 94 | messages: [{ role: "user", content: "Hi" }], 95 | temperature: 0.7, 96 | max_tokens: 100, 97 | top_p: 0.9, 98 | presence_penalty: 0.5, 99 | frequency_penalty: 0.5, 100 | logprobs: true, 101 | top_logprobs: 3, 102 | n: 2, 103 | stop: ["END"], 104 | response_format: { type: "json_object" }, 105 | }; 106 | 107 | const expected = { 108 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 109 | generationConfig: { 110 | temperature: 0.7, 111 | maxOutputTokens: 100, 112 | topP: 0.9, 113 | presencePenalty: 0.5, 114 | frequencyPenalty: 0.5, 115 | responseLogprobs: true, 116 | logprobs: 3, 117 | candidateCount: 2, 118 | stopSequences: ["END"], 119 | responseMimeType: "application/json", 120 | }, 121 | }; 122 | 123 | assertEquals(gemini(input), expected); 124 | }); 125 | 126 | Deno.test("gemini - tool calling configurations", () => { 127 | const input = { 128 | messages: [{ role: "user", content: "Hi" }], 129 | tool_choice: "auto", 130 | tools: [ 131 | { 132 | function: { 133 | name: "get_weather", 134 | description: "Get weather info", 135 | parameters: { 136 | type: "object", 137 | properties: { location: { type: "string" } }, 138 | required: ["location"], 139 | additionalProperties: false, 140 | }, 141 | }, 142 | }, 143 | ], 144 | }; 145 | 146 | const expected = { 147 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 148 | toolConfig: { function_calling_config: { mode: "AUTO" } }, 149 | tools: { 150 | functionDeclarations: [ 151 | { 152 | name: "get_weather", 153 | description: "Get weather info", 154 | parameters: { 155 | type: "object", 156 | properties: { location: { type: "string" } }, 157 | required: ["location"], 158 | }, 159 | }, 160 | ], 161 | }, 162 | }; 163 | 164 | assertEquals(gemini(input), expected); 165 | }); 166 | 167 | Deno.test("gemini - specific tool choice", () => { 168 | const input = { 169 | messages: [{ role: "user", content: "Hi" }], 170 | tool_choice: { function: { name: "get_weather" } }, 171 | }; 172 | 173 | const expected = { 174 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 175 | toolConfig: { 176 | function_calling_config: { 177 | mode: "ANY", 178 | allowed_function_names: ["get_weather"], 179 | }, 180 | }, 181 | }; 182 | 183 | assertEquals(gemini(input), expected); 184 | }); 185 | 186 | Deno.test("gemini - json schema response format", () => { 187 | const input = { 188 | messages: [{ role: "user", content: "Hi" }], 189 | response_format: { 190 | type: "json_schema", 191 | json_schema: { 192 | schema: { 193 | type: "object", 194 | properties: { 195 | name: { type: "string" }, 196 | age: { type: "number" }, 197 | additionalProperties: false, 198 | }, 199 | }, 200 | }, 201 | }, 202 | }; 203 | 204 | const expected = { 205 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 206 | generationConfig: { 207 | responseMimeType: "application/json", 208 | responseSchema: { 209 | type: "object", 210 | properties: { name: { type: "string" }, age: { type: "number" } }, 211 | }, 212 | }, 213 | }; 214 | 215 | assertEquals(gemini(input), expected); 216 | }); 217 | 218 | Deno.test("gemini - required tool choice", () => { 219 | const input = { 220 | messages: [{ role: "user", content: "Hi" }], 221 | tool_choice: "required", 222 | }; 223 | 224 | const expected = { 225 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 226 | toolConfig: { function_calling_config: { mode: "ANY" } }, 227 | }; 228 | 229 | assertEquals(gemini(input), expected); 230 | }); 231 | 232 | Deno.test("gemini - none tool choice", () => { 233 | const input = { 234 | messages: [{ role: "user", content: "Hi" }], 235 | tool_choice: "none", 236 | }; 237 | 238 | const expected = { 239 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 240 | toolConfig: { function_calling_config: { mode: "NONE" } }, 241 | }; 242 | 243 | assertEquals(gemini(input), expected); 244 | }); 245 | 246 | Deno.test("gemini - string stop sequence", () => { 247 | const input = { messages: [{ role: "user", content: "Hi" }], stop: "STOP" }; 248 | 249 | const expected = { 250 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 251 | generationConfig: { stopSequences: ["STOP"] }, 252 | }; 253 | 254 | assertEquals(gemini(input), expected); 255 | }); 256 | 257 | Deno.test("gemini - max_completion_tokens parameter", () => { 258 | const input = { 259 | messages: [{ role: "user", content: "Hi" }], 260 | max_completion_tokens: 150, 261 | }; 262 | 263 | const expected = { 264 | contents: [{ role: "user", parts: [{ text: "Hi" }] }], 265 | generationConfig: { maxOutputTokens: 150 }, 266 | }; 267 | 268 | assertEquals(gemini(input), expected); 269 | }); 270 | -------------------------------------------------------------------------------- /index.d.ts: -------------------------------------------------------------------------------- 1 | import { SSEConfig } from "asyncsse"; 2 | 3 | export interface LLMTool { 4 | id?: string; 5 | name?: string; 6 | args?: string; 7 | } 8 | 9 | export interface LLMEvent { 10 | content?: string; 11 | tools?: LLMTool[]; 12 | error?: string; 13 | message?: Record; 14 | } 15 | 16 | export function asyncLLM( 17 | request: string | Request, 18 | options?: RequestInit, 19 | config?: SSEConfig 20 | ): AsyncGenerator; 21 | -------------------------------------------------------------------------------- /index.js: -------------------------------------------------------------------------------- 1 | import { asyncSSE } from "asyncsse"; 2 | 3 | /** 4 | * asyncLLM yields events when streaming from a streaming LLM endpoint. 5 | * 6 | * @param {Request} request 7 | * @param {RequestInit} options 8 | * @param {SSEConfig} config 9 | * @returns {AsyncGenerator, void, unknown>} 10 | * 11 | * @example 12 | * for await (const event of asyncLLM("https://api.openai.com/v1/chat/completions", { 13 | * method: "POST", 14 | * headers: { 15 | * "Content-Type": "application/json", 16 | * "Authorization": "Bearer YOUR_API_KEY", 17 | * }, 18 | * body: JSON.stringify({ 19 | * model: "gpt-3.5-turbo", 20 | * messages: [{ role: "user", content: "Hello, world!" }], 21 | * }), 22 | * }, { 23 | * onResponse: async (response) => { 24 | * console.log(response.status, response.headers); 25 | * }, 26 | * })) { 27 | * console.log(event); 28 | * } 29 | */ 30 | export async function* asyncLLM(request, options = {}, config = {}) { 31 | let content, 32 | tools = []; 33 | 34 | function latestTool() { 35 | if (!tools.length) tools.push({}); 36 | return tools.at(-1); 37 | } 38 | 39 | for await (const event of asyncSSE(request, options, config)) { 40 | // OpenAI and Cloudflare AI Workers use "[DONE]" to indicate the end of the stream 41 | if (event.data === "[DONE]") break; 42 | 43 | if (event.error) { 44 | yield event; 45 | continue; 46 | } 47 | 48 | let message; 49 | try { 50 | message = JSON.parse(event.data); 51 | } catch (error) { 52 | yield { error: error.message, data: event.data }; 53 | continue; 54 | } 55 | 56 | // Handle errors. asyncSSE yields { error: ... } if the fetch fails. 57 | // OpenAI, Anthropic, and Gemini return {"error": ...}. 58 | // OpenRouter returns {"message":{"error": ...}}. 59 | const error = message.message?.error ?? message.error?.message ?? message.error ?? event.error; 60 | if (error) { 61 | yield { error }; 62 | continue; 63 | } 64 | 65 | // Attempt to parse with each provider's format 66 | let hasNewData = false; 67 | for (const parser of Object.values(providers)) { 68 | const extract = parser(message); 69 | hasNewData = !isEmpty(extract.content) || extract.tools.length > 0; 70 | // console.log(hasNewData, parser, extract, message); 71 | if (!isEmpty(extract.content)) content = (content ?? "") + extract.content; 72 | for (const { name, args, id } of extract.tools) { 73 | if (!isEmpty(name)) { 74 | const tool = { name }; 75 | if (!isEmpty(id)) tool.id = id; 76 | tools.push(tool); 77 | } 78 | if (!isEmpty(args)) { 79 | const tool = latestTool(); 80 | tool.args = (tool.args ?? "") + args; 81 | } 82 | } 83 | if (hasNewData) break; 84 | } 85 | 86 | if (hasNewData) { 87 | const data = { content, message }; 88 | if (!isEmpty(content)) data.content = content; 89 | if (tools.length) data.tools = tools; 90 | yield data; 91 | } 92 | } 93 | } 94 | 95 | // Return the delta from each message as { content, tools } 96 | // content delta is string | undefined 97 | // tools delta is [{ name?: string, args?: string }] | [] 98 | const providers = { 99 | // Azure, OpenRouter, Groq, and a few others follow OpenAI's format 100 | openai: (m) => ({ 101 | content: m.choices?.[0]?.delta?.content, 102 | tools: (m.choices?.[0]?.delta?.tool_calls ?? []).map((tool) => ({ 103 | id: tool.id, 104 | name: tool.function.name, 105 | args: tool.function.arguments, 106 | })), 107 | }), 108 | // OpenAI Responses API (streaming w/ tool support) 109 | openaiResponses: (m) => ({ 110 | content: m.type == "response.output_text.delta" ? m.delta : undefined, 111 | tools: 112 | m.type == "response.output_item.added" && m.item?.type == "function_call" 113 | ? [{ id: m.item.id, name: m.item.name, args: m.item.arguments }] 114 | : m.type == "response.function_call_arguments.delta" 115 | ? [{ args: m.delta }] 116 | : [], 117 | }), 118 | anthropic: (m) => ({ 119 | content: m.delta?.text, 120 | tools: !isEmpty(m.content_block?.name) 121 | ? [{ name: m.content_block.name, id: m.content_block.id }] 122 | : !isEmpty(m.delta?.partial_json) 123 | ? [{ args: m.delta?.partial_json }] 124 | : [], 125 | }), 126 | gemini: (m) => ({ 127 | content: m.candidates?.[0]?.content?.parts?.[0]?.text, 128 | tools: (m.candidates?.[0]?.content?.parts ?? []) 129 | .map((part) => part.functionCall) 130 | .filter((d) => d) 131 | .map((d) => ({ name: d.name, args: JSON.stringify(d.args) })), 132 | }), 133 | // OpenAI's Responses API also has a .response, so we need to disambiguate. 134 | /* 135 | cloudflare: (m) => ({ 136 | content: m.response, 137 | tools: [], 138 | }), 139 | */ 140 | }; 141 | 142 | const isEmpty = (value) => value === undefined || value === null; 143 | -------------------------------------------------------------------------------- /package-lock.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "asyncllm", 3 | "version": "2.1.2", 4 | "lockfileVersion": 3, 5 | "requires": true, 6 | "packages": { 7 | "": { 8 | "name": "asyncllm", 9 | "version": "2.1.2", 10 | "license": "MIT", 11 | "dependencies": { 12 | "asyncsse": "^1.3.1" 13 | }, 14 | "engines": { 15 | "node": ">=14.0.0" 16 | } 17 | }, 18 | "node_modules/asyncsse": { 19 | "version": "1.3.1", 20 | "resolved": "https://registry.npmjs.org/asyncsse/-/asyncsse-1.3.1.tgz", 21 | "integrity": "sha512-sPd7NAmOKAl+optdLYe0zyaXqMf4PCYNtkHvSddRs4cZs40i/zdG+1h8qrkg2QKoUsRmwoUaTuv+5iKkT5iv7w==", 22 | "license": "MIT", 23 | "engines": { 24 | "node": ">=14.0.0" 25 | } 26 | } 27 | } 28 | } 29 | -------------------------------------------------------------------------------- /package.json: -------------------------------------------------------------------------------- 1 | { 2 | "name": "asyncllm", 3 | "version": "2.2.0", 4 | "description": "Fetch streaming LLM responses as an async iterable", 5 | "main": "dist/asyncllm.js", 6 | "type": "module", 7 | "module": "index.js", 8 | "exports": { 9 | ".": "./dist/asyncllm.js", 10 | "./anthropic": "./dist/anthropic.js", 11 | "./gemini": "./dist/gemini.js" 12 | }, 13 | "scripts": { 14 | "test": "deno test --allow-net --allow-read", 15 | "build-asyncllm": "npx -y esbuild index.js --bundle --minify --format=esm --outfile=dist/asyncllm.js", 16 | "build-gemini": "npx -y esbuild gemini.js --bundle --minify --format=esm --outfile=dist/gemini.js", 17 | "build-anthropic": "npx -y esbuild anthropic.js --bundle --minify --format=esm --outfile=dist/anthropic.js", 18 | "build": "npm run build-asyncllm && npm run build-gemini && npm run build-anthropic", 19 | "lint": "npx prettier@3.5 --write *.js *.md", 20 | "prepublishOnly": "npm run lint && npm run build" 21 | }, 22 | "keywords": [ 23 | "sse", 24 | "fetch", 25 | "async", 26 | "iterable", 27 | "server-sent-events", 28 | "streaming", 29 | "llm", 30 | "openai", 31 | "anthropic", 32 | "gemini", 33 | "cloudflare" 34 | ], 35 | "author": "S Anand ", 36 | "license": "MIT", 37 | "repository": { 38 | "type": "git", 39 | "url": "https://github.com/sanand0/asyncllm.git" 40 | }, 41 | "bugs": { 42 | "url": "https://github.com/sanand0/asyncllm/issues" 43 | }, 44 | "homepage": "https://github.com/sanand0/asyncllm#readme", 45 | "engines": { 46 | "node": ">=14.0.0" 47 | }, 48 | "prettier": { 49 | "printWidth": 120 50 | }, 51 | "files": [ 52 | "README.md", 53 | "dist", 54 | "index.js", 55 | "index.d.ts" 56 | ], 57 | "dependencies": { 58 | "asyncsse": "^1.3.1" 59 | } 60 | } 61 | -------------------------------------------------------------------------------- /samples/anthropic-tools.txt: -------------------------------------------------------------------------------- 1 | event: message_start 2 | data: {"type":"message_start","message":{"id":"msg_014p7gG3wDgGV9EUtLvnow3U","type":"message","role":"assistant","model":"claude-3-haiku-20240307","stop_sequence":null,"usage":{"input_tokens":472,"output_tokens":2},"content":[],"stop_reason":null}} 3 | 4 | event: content_block_start 5 | data: {"type":"content_block_start","index":0,"content_block":{"type":"text","text":""}} 6 | 7 | event: ping 8 | data: {"type": "ping"} 9 | 10 | event: content_block_delta 11 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"Okay"}} 12 | 13 | event: content_block_delta 14 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":","}} 15 | 16 | event: content_block_delta 17 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" let"}} 18 | 19 | event: content_block_delta 20 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"'s"}} 21 | 22 | event: content_block_delta 23 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" check"}} 24 | 25 | event: content_block_delta 26 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" the"}} 27 | 28 | event: content_block_delta 29 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" weather"}} 30 | 31 | event: content_block_delta 32 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" for"}} 33 | 34 | event: content_block_delta 35 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" San"}} 36 | 37 | event: content_block_delta 38 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" Francisco"}} 39 | 40 | event: content_block_delta 41 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":","}} 42 | 43 | event: content_block_delta 44 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":" CA"}} 45 | 46 | event: content_block_delta 47 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":":"}} 48 | 49 | event: content_block_stop 50 | data: {"type":"content_block_stop","index":0} 51 | 52 | event: content_block_start 53 | data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_01T1x1fJ34qAmk2tNTrN7Up6","name":"get_weather","input":{}}} 54 | 55 | event: content_block_delta 56 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":""}} 57 | 58 | event: content_block_delta 59 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"{\"location\":"}} 60 | 61 | event: content_block_delta 62 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":" \"San"}} 63 | 64 | event: content_block_delta 65 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":" Francisc"}} 66 | 67 | event: content_block_delta 68 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"o,"}} 69 | 70 | event: content_block_delta 71 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":" CA\""}} 72 | 73 | event: content_block_delta 74 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":", "}} 75 | 76 | event: content_block_delta 77 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"\"unit\": \"fah"}} 78 | 79 | event: content_block_delta 80 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"renheit\"}"}} 81 | 82 | event: content_block_stop 83 | data: {"type":"content_block_stop","index":1} 84 | 85 | event: message_delta 86 | data: {"type":"message_delta","delta":{"stop_reason":"tool_use","stop_sequence":null},"usage":{"output_tokens":89}} 87 | 88 | event: message_stop 89 | data: {"type":"message_stop"} 90 | -------------------------------------------------------------------------------- /samples/anthropic-tools2.txt: -------------------------------------------------------------------------------- 1 | event: message_start 2 | data: {"type":"message_start","message":{"id":"msg_01NpRfBZDJHQvTKGtrwFJheH","type":"message","role":"assistant","model":"claude-3-haiku-20240307","content":[],"stop_reason":null,"stop_sequence":null,"usage":{"input_tokens":482,"output_tokens":8}} } 3 | 4 | event: content_block_start 5 | data: {"type":"content_block_start","index":0,"content_block":{"type":"tool_use","id":"toolu_015yB3TjTS1RBaM7VScM2MQY","name":"get_order","input":{}} } 6 | 7 | event: ping 8 | data: {"type": "ping"} 9 | 10 | event: content_block_delta 11 | data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":""} } 12 | 13 | event: content_block_delta 14 | data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"{\"id\": \"1"} } 15 | 16 | event: content_block_delta 17 | data: {"type":"content_block_delta","index":0,"delta":{"type":"input_json_delta","partial_json":"23456\"}"} } 18 | 19 | event: content_block_stop 20 | data: {"type":"content_block_stop","index":0 } 21 | 22 | event: content_block_start 23 | data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_013VAZTYqMJm2JuRCqEA4kam","name":"get_customer","input":{}} } 24 | 25 | event: content_block_delta 26 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":""} } 27 | 28 | event: content_block_delta 29 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"{\"id\": \""} } 30 | 31 | event: content_block_delta 32 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"789"} } 33 | 34 | event: content_block_delta 35 | data: {"type":"content_block_delta","index":1,"delta":{"type":"input_json_delta","partial_json":"0\"}"} } 36 | 37 | event: content_block_stop 38 | data: {"type":"content_block_stop","index":1 } 39 | 40 | event: message_delta 41 | data: {"type":"message_delta","delta":{"stop_reason":"tool_use","stop_sequence":null},"usage":{"output_tokens":76} } 42 | 43 | event: message_stop 44 | data: {"type":"message_stop" } 45 | -------------------------------------------------------------------------------- /samples/anthropic.txt: -------------------------------------------------------------------------------- 1 | event: message_start 2 | data: {"type":"message_start","message":{"id":"msg_013uu3QExnpT3UYsC9mo2Em8","type":"message","role":"assistant","model":"claude-3-haiku-20240307","content":[],"stop_reason":null,"stop_sequence":null,"usage":{"input_tokens":19,"output_tokens":3}}} 3 | 4 | event: content_block_start 5 | data: {"type":"content_block_start","index":0,"content_block":{"type":"text","text":""}} 6 | 7 | event: ping 8 | data: {"type": "ping"} 9 | 10 | event: content_block_delta 11 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"2 "}} 12 | 13 | event: content_block_delta 14 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"+ 2 "}} 15 | 16 | event: content_block_delta 17 | data: {"type":"content_block_delta","index":0,"delta":{"type":"text_delta","text":"= 4."}} 18 | 19 | event: content_block_stop 20 | data: {"type":"content_block_stop","index":0} 21 | 22 | event: message_delta 23 | data: {"type":"message_delta","delta":{"stop_reason":"end_turn","stop_sequence":null},"usage":{"output_tokens":14}} 24 | 25 | event: message_stop 26 | data: {"type":"message_stop"} 27 | -------------------------------------------------------------------------------- /samples/errors.txt: -------------------------------------------------------------------------------- 1 | data: invalid json 2 | 3 | data: {"error": {"message": "OpenAI API error", "type": "api_error"}} 4 | 5 | data: {"error": {"type": "invalid_request_error", "message": "Anthropic API error"}} 6 | 7 | data: {"error": {"code": 400, "message": "Gemini API error"}} 8 | 9 | data: {"message": {"error": "OpenRouter API error"}} 10 | 11 | data: 12 | -------------------------------------------------------------------------------- /samples/gemini-tools.txt: -------------------------------------------------------------------------------- 1 | data: {"candidates": [{"content": {"parts": [{"functionCall": {"name": "take_notes","args": {"note": "Capitalism and socialism are two of the most prevalent economic systems in the world. Capitalism is characterized by private ownership of the means of production, free markets, and the pursuit of profit. Socialism, on the other hand, emphasizes social ownership of the means of production, with the goal of achieving social equality and economic justice. The two systems have been the subject of much debate, with proponents of each arguing for its superiority. Capitalism is often praised for its efficiency and innovation, while socialism is lauded for its potential to reduce inequality and provide for the needs of the most vulnerable. However, both systems have their drawbacks. Capitalism can lead to economic instability and social inequality, while socialism can stifle innovation and reduce individual freedom. Ultimately, the best economic system for a given society depends on its specific circumstances and values."}}}],"role": "model"},"finishReason": "STOP","index": 0,"safetyRatings": [{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 50,"candidatesTokenCount": 174,"totalTokenCount": 224}} 2 | -------------------------------------------------------------------------------- /samples/gemini-tools2.txt: -------------------------------------------------------------------------------- 1 | data: {"candidates": [{"content": {"parts": [{"functionCall": {"name": "get_order","args": {"id": "123456"}}},{"functionCall": {"name": "get_customer","args": {"id": "7890"}}}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 104,"totalTokenCount": 104},"modelVersion": "gemini-1.5-flash-8b-001"} 2 | 3 | data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"},"avgLogprobs": "NaN"}],"usageMetadata": {"promptTokenCount": 104,"totalTokenCount": 104},"modelVersion": "gemini-1.5-flash-8b-001"} 4 | 5 | data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 104,"candidatesTokenCount": 18,"totalTokenCount": 122},"modelVersion": "gemini-1.5-flash-8b-001"} 6 | -------------------------------------------------------------------------------- /samples/gemini.txt: -------------------------------------------------------------------------------- 1 | data: {"candidates": [{"content": {"parts": [{"text": "2"}],"role": "model"}}],"usageMetadata": {"promptTokenCount": 13,"totalTokenCount": 13}} 2 | 3 | data: {"candidates": [{"content": {"parts": [{"text": " + 2 = 4\n"}],"role": "model"},"safetyRatings": [{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 13,"totalTokenCount": 13}} 4 | 5 | data: {"candidates": [{"content": {"parts": [{"text": ""}],"role": "model"},"finishReason": "STOP"}],"usageMetadata": {"promptTokenCount": 13,"candidatesTokenCount": 8,"totalTokenCount": 21}} 6 | -------------------------------------------------------------------------------- /samples/openai-responses-tools.txt: -------------------------------------------------------------------------------- 1 | event: response.created 2 | data: {"type":"response.created","response":{"id":"resp_6808d3a020488192b2a013332cb5f5e70a601c2646a05cfd","object":"response","created_at":1745408928,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":"Get the delivery date for a customer order.","name":"get_delivery_date","parameters":{"type":"object","properties":{"order_id":{"type":"string","description":"The customer order ID."}},"required":["order_id"],"additionalProperties":false},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 3 | 4 | event: response.in_progress 5 | data: {"type":"response.in_progress","response":{"id":"resp_6808d3a020488192b2a013332cb5f5e70a601c2646a05cfd","object":"response","created_at":1745408928,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":"Get the delivery date for a customer order.","name":"get_delivery_date","parameters":{"type":"object","properties":{"order_id":{"type":"string","description":"The customer order ID."}},"required":["order_id"],"additionalProperties":false},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 6 | 7 | event: response.output_item.added 8 | data: {"type":"response.output_item.added","output_index":0,"item":{"id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","type":"function_call","status":"in_progress","arguments":"","call_id":"call_IEmWx3mU3gTg0kVsMN5tOHbq","name":"get_delivery_date"}} 9 | 10 | event: response.function_call_arguments.delta 11 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"{\""} 12 | 13 | event: response.function_call_arguments.delta 14 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"order"} 15 | 16 | event: response.function_call_arguments.delta 17 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"_id"} 18 | 19 | event: response.function_call_arguments.delta 20 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"\":\""} 21 | 22 | event: response.function_call_arguments.delta 23 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"123"} 24 | 25 | event: response.function_call_arguments.delta 26 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"456"} 27 | 28 | event: response.function_call_arguments.delta 29 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"delta":"\"}"} 30 | 31 | event: response.function_call_arguments.done 32 | data: {"type":"response.function_call_arguments.done","item_id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","output_index":0,"arguments":"{\"order_id\":\"123456\"}"} 33 | 34 | event: response.output_item.done 35 | data: {"type":"response.output_item.done","output_index":0,"item":{"id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","type":"function_call","status":"completed","arguments":"{\"order_id\":\"123456\"}","call_id":"call_IEmWx3mU3gTg0kVsMN5tOHbq","name":"get_delivery_date"}} 36 | 37 | event: response.completed 38 | data: {"type":"response.completed","response":{"id":"resp_6808d3a020488192b2a013332cb5f5e70a601c2646a05cfd","object":"response","created_at":1745408928,"status":"completed","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[{"id":"fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd","type":"function_call","status":"completed","arguments":"{\"order_id\":\"123456\"}","call_id":"call_IEmWx3mU3gTg0kVsMN5tOHbq","name":"get_delivery_date"}],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"default","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":"Get the delivery date for a customer order.","name":"get_delivery_date","parameters":{"type":"object","properties":{"order_id":{"type":"string","description":"The customer order ID."}},"required":["order_id"],"additionalProperties":false},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":{"input_tokens":91,"input_tokens_details":{"cached_tokens":0},"output_tokens":8,"output_tokens_details":{"reasoning_tokens":0},"total_tokens":99},"user":null,"metadata":{}}} 39 | 40 | -------------------------------------------------------------------------------- /samples/openai-responses-tools2.txt: -------------------------------------------------------------------------------- 1 | event: response.created 2 | data: {"type":"response.created","response":{"id":"resp_6808d34264cc8192a90be606a7cc50bc01c57d45ab76fecc","object":"response","created_at":1745408834,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":null,"name":"get_order","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true},{"type":"function","description":null,"name":"get_customer","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 3 | 4 | event: response.in_progress 5 | data: {"type":"response.in_progress","response":{"id":"resp_6808d34264cc8192a90be606a7cc50bc01c57d45ab76fecc","object":"response","created_at":1745408834,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":null,"name":"get_order","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true},{"type":"function","description":null,"name":"get_customer","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 6 | 7 | event: response.output_item.added 8 | data: {"type":"response.output_item.added","output_index":0,"item":{"id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","type":"function_call","status":"in_progress","arguments":"","call_id":"call_khElVS1NoyNcckH2EuTtpSDR","name":"get_order"}} 9 | 10 | event: response.function_call_arguments.delta 11 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"{"} 12 | 13 | event: response.function_call_arguments.delta 14 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"\"id"} 15 | 16 | event: response.function_call_arguments.delta 17 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"\":"} 18 | 19 | event: response.function_call_arguments.delta 20 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"\"123"} 21 | 22 | event: response.function_call_arguments.delta 23 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"456"} 24 | 25 | event: response.function_call_arguments.delta 26 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"delta":"\"}"} 27 | 28 | event: response.function_call_arguments.done 29 | data: {"type":"response.function_call_arguments.done","item_id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","output_index":0,"arguments":"{\"id\":\"123456\"}"} 30 | 31 | event: response.output_item.done 32 | data: {"type":"response.output_item.done","output_index":0,"item":{"id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","type":"function_call","status":"completed","arguments":"{\"id\":\"123456\"}","call_id":"call_khElVS1NoyNcckH2EuTtpSDR","name":"get_order"}} 33 | 34 | event: response.output_item.added 35 | data: {"type":"response.output_item.added","output_index":1,"item":{"id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","type":"function_call","status":"in_progress","arguments":"","call_id":"call_562xX7CoxXqdLoTJBCK8VbZq","name":"get_customer"}} 36 | 37 | event: response.function_call_arguments.delta 38 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"{"} 39 | 40 | event: response.function_call_arguments.delta 41 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"\"id"} 42 | 43 | event: response.function_call_arguments.delta 44 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"\":"} 45 | 46 | event: response.function_call_arguments.delta 47 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"\"789"} 48 | 49 | event: response.function_call_arguments.delta 50 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"0"} 51 | 52 | event: response.function_call_arguments.delta 53 | data: {"type":"response.function_call_arguments.delta","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"delta":"\"}"} 54 | 55 | event: response.function_call_arguments.done 56 | data: {"type":"response.function_call_arguments.done","item_id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","output_index":1,"arguments":"{\"id\":\"7890\"}"} 57 | 58 | event: response.output_item.done 59 | data: {"type":"response.output_item.done","output_index":1,"item":{"id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","type":"function_call","status":"completed","arguments":"{\"id\":\"7890\"}","call_id":"call_562xX7CoxXqdLoTJBCK8VbZq","name":"get_customer"}} 60 | 61 | event: response.completed 62 | data: {"type":"response.completed","response":{"id":"resp_6808d34264cc8192a90be606a7cc50bc01c57d45ab76fecc","object":"response","created_at":1745408834,"status":"completed","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[{"id":"fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc","type":"function_call","status":"completed","arguments":"{\"id\":\"123456\"}","call_id":"call_khElVS1NoyNcckH2EuTtpSDR","name":"get_order"},{"id":"fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc","type":"function_call","status":"completed","arguments":"{\"id\":\"7890\"}","call_id":"call_562xX7CoxXqdLoTJBCK8VbZq","name":"get_customer"}],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"default","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"required","tools":[{"type":"function","description":null,"name":"get_order","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true},{"type":"function","description":null,"name":"get_customer","parameters":{"type":"object","properties":{"id":{"type":"string"}},"required":["id"]},"strict":true}],"top_p":1.0,"truncation":"disabled","usage":{"input_tokens":0,"input_tokens_details":{"cached_tokens":0},"output_tokens":0,"output_tokens_details":{"reasoning_tokens":0},"total_tokens":0},"user":null,"metadata":{}}} 63 | 64 | -------------------------------------------------------------------------------- /samples/openai-responses.txt: -------------------------------------------------------------------------------- 1 | event: response.created 2 | data: {"type":"response.created","response":{"id":"resp_6808c792b0808192929556caffbb1ce402452198540d326e","object":"response","created_at":1745405842,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 3 | 4 | event: response.in_progress 5 | data: {"type":"response.in_progress","response":{"id":"resp_6808c792b0808192929556caffbb1ce402452198540d326e","object":"response","created_at":1745405842,"status":"in_progress","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} 6 | 7 | event: response.output_item.added 8 | data: {"type":"response.output_item.added","output_index":0,"item":{"id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","type":"message","status":"in_progress","content":[],"role":"assistant"}} 9 | 10 | event: response.content_part.added 11 | data: {"type":"response.content_part.added","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"part":{"type":"output_text","annotations":[],"text":""}} 12 | 13 | event: response.output_text.delta 14 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":"Hello"} 15 | 16 | event: response.output_text.delta 17 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":"!"} 18 | 19 | event: response.output_text.delta 20 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" How"} 21 | 22 | event: response.output_text.delta 23 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" can"} 24 | 25 | event: response.output_text.delta 26 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" I"} 27 | 28 | event: response.output_text.delta 29 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" assist"} 30 | 31 | event: response.output_text.delta 32 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" you"} 33 | 34 | event: response.output_text.delta 35 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":" today"} 36 | 37 | event: response.output_text.delta 38 | data: {"type":"response.output_text.delta","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"delta":"?"} 39 | 40 | event: response.output_text.done 41 | data: {"type":"response.output_text.done","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"text":"Hello! How can I assist you today?"} 42 | 43 | event: response.content_part.done 44 | data: {"type":"response.content_part.done","item_id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","output_index":0,"content_index":0,"part":{"type":"output_text","annotations":[],"text":"Hello! How can I assist you today?"}} 45 | 46 | event: response.output_item.done 47 | data: {"type":"response.output_item.done","output_index":0,"item":{"id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","type":"message","status":"completed","content":[{"type":"output_text","annotations":[],"text":"Hello! How can I assist you today?"}],"role":"assistant"}} 48 | 49 | event: response.completed 50 | data: {"type":"response.completed","response":{"id":"resp_6808c792b0808192929556caffbb1ce402452198540d326e","object":"response","created_at":1745405842,"status":"completed","error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"model":"gpt-4.1-nano-2025-04-14","output":[{"id":"msg_6808c79326f48192b14f4fa08354087a02452198540d326e","type":"message","status":"completed","content":[{"type":"output_text","annotations":[],"text":"Hello! How can I assist you today?"}],"role":"assistant"}],"parallel_tool_calls":true,"previous_response_id":null,"reasoning":{"effort":null,"summary":null},"service_tier":"default","store":true,"temperature":1.0,"text":{"format":{"type":"text"}},"tool_choice":"auto","tools":[],"top_p":1.0,"truncation":"disabled","usage":{"input_tokens":9,"input_tokens_details":{"cached_tokens":0},"output_tokens":10,"output_tokens_details":{"reasoning_tokens":0},"total_tokens":19},"user":null,"metadata":{}}} 51 | 52 | -------------------------------------------------------------------------------- /samples/openai-tools.txt: -------------------------------------------------------------------------------- 1 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"role":"assistant","content":null,"tool_calls":[{"index":0,"id":"call_F8YHCjnzrrTjfE4YSSpVW2Bc","type":"function","function":{"name":"get_delivery_date","arguments":""}}],"refusal":null},"logprobs":null,"finish_reason":null}]} 2 | 3 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\""}}]},"logprobs":null,"finish_reason":null}]} 4 | 5 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"order"}}]},"logprobs":null,"finish_reason":null}]} 6 | 7 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"_id"}}]},"logprobs":null,"finish_reason":null}]} 8 | 9 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"\":\""}}]},"logprobs":null,"finish_reason":null}]} 10 | 11 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"123"}}]},"logprobs":null,"finish_reason":null}]} 12 | 13 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"456"}}]},"logprobs":null,"finish_reason":null}]} 14 | 15 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"\"}"}}]},"logprobs":null,"finish_reason":null}]} 16 | 17 | data: {"id":"chatcmpl-AIYHs3Xp2vOtDdtgJUaTpUVMKk3a8","object":"chat.completion.chunk","created":1728985068,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_e2bde53e6e","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]} 18 | 19 | data: [DONE] 20 | 21 | -------------------------------------------------------------------------------- /samples/openai-tools2.txt: -------------------------------------------------------------------------------- 1 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"role":"assistant","content":null},"logprobs":null,"finish_reason":null}]} 2 | 3 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"id":"call_wnH2cswb4JAnm69pUAP4MNEN","type":"function","function":{"name":"get_order","arguments":""}}]},"logprobs":null,"finish_reason":null}]} 4 | 5 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"{\"id"}}]},"logprobs":null,"finish_reason":null}]} 6 | 7 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"\": \"1"}}]},"logprobs":null,"finish_reason":null}]} 8 | 9 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"23456\""}}]},"logprobs":null,"finish_reason":null}]} 10 | 11 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":0,"function":{"arguments":"}"}}]},"logprobs":null,"finish_reason":null}]} 12 | 13 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"id":"call_f4GVABhbwSOLoaisOBOajnsm","type":"function","function":{"name":"get_customer","arguments":""}}]},"logprobs":null,"finish_reason":null}]} 14 | 15 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"{\"id"}}]},"logprobs":null,"finish_reason":null}]} 16 | 17 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"\": \"7"}}]},"logprobs":null,"finish_reason":null}]} 18 | 19 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{"tool_calls":[{"index":1,"function":{"arguments":"890\"}"}}]},"logprobs":null,"finish_reason":null}]} 20 | 21 | data: {"id":"chatcmpl-AQ3zpRW1u9JcFF4vG4yvlRk6Dl0Nk","object":"chat.completion.chunk","created":1730775253,"model":"gpt-4o-mini-2024-07-18","system_fingerprint":"fp_9b78b61c52","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"tool_calls"}]} 22 | 23 | data: [DONE] 24 | -------------------------------------------------------------------------------- /samples/openai.txt: -------------------------------------------------------------------------------- 1 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"role":"assistant","content":"","refusal":null},"logprobs":null,"finish_reason":null}]} 2 | 3 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":"Hello"},"logprobs":null,"finish_reason":null}]} 4 | 5 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":"!"},"logprobs":null,"finish_reason":null}]} 6 | 7 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" How"},"logprobs":null,"finish_reason":null}]} 8 | 9 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" can"},"logprobs":null,"finish_reason":null}]} 10 | 11 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" I"},"logprobs":null,"finish_reason":null}]} 12 | 13 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" assist"},"logprobs":null,"finish_reason":null}]} 14 | 15 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" you"},"logprobs":null,"finish_reason":null}]} 16 | 17 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":" today"},"logprobs":null,"finish_reason":null}]} 18 | 19 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{"content":"?"},"logprobs":null,"finish_reason":null}]} 20 | 21 | data: {"id":"chatcmpl-AIXwzd0Ul2u3WWUqaXvmzE4o5Th8b","object":"chat.completion.chunk","created":1728983773,"model":"gpt-4o-2024-08-06","system_fingerprint":"fp_6b68a8204b","choices":[{"index":0,"delta":{},"logprobs":null,"finish_reason":"stop"}]} 22 | 23 | data: [DONE] 24 | -------------------------------------------------------------------------------- /samples/openrouter.txt: -------------------------------------------------------------------------------- 1 | : OPENROUTER PROCESSING 2 | 3 | : OPENROUTER PROCESSING 4 | 5 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null,"logprobs":null}]} 6 | 7 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" The"},"finish_reason":null,"logprobs":null}]} 8 | 9 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" sum"},"finish_reason":null,"logprobs":null}]} 10 | 11 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" of"},"finish_reason":null,"logprobs":null}]} 12 | 13 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 14 | 15 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"2"},"finish_reason":null,"logprobs":null}]} 16 | 17 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" and"},"finish_reason":null,"logprobs":null}]} 18 | 19 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 20 | 21 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"2"},"finish_reason":null,"logprobs":null}]} 22 | 23 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" is"},"finish_reason":null,"logprobs":null}]} 24 | 25 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 26 | 27 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"4"},"finish_reason":null,"logprobs":null}]} 28 | 29 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"."},"finish_reason":null,"logprobs":null}]} 30 | 31 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" This"},"finish_reason":null,"logprobs":null}]} 32 | 33 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" is"},"finish_reason":null,"logprobs":null}]} 34 | 35 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" a"},"finish_reason":null,"logprobs":null}]} 36 | 37 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" basic"},"finish_reason":null,"logprobs":null}]} 38 | 39 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" arithmetic"},"finish_reason":null,"logprobs":null}]} 40 | 41 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" operation"},"finish_reason":null,"logprobs":null}]} 42 | 43 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" where"},"finish_reason":null,"logprobs":null}]} 44 | 45 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" you"},"finish_reason":null,"logprobs":null}]} 46 | 47 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" add"},"finish_reason":null,"logprobs":null}]} 48 | 49 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" the"},"finish_reason":null,"logprobs":null}]} 50 | 51 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" two"},"finish_reason":null,"logprobs":null}]} 52 | 53 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" numbers"},"finish_reason":null,"logprobs":null}]} 54 | 55 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" together"},"finish_reason":null,"logprobs":null}]} 56 | 57 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" to"},"finish_reason":null,"logprobs":null}]} 58 | 59 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" get"},"finish_reason":null,"logprobs":null}]} 60 | 61 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" the"},"finish_reason":null,"logprobs":null}]} 62 | 63 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" total"},"finish_reason":null,"logprobs":null}]} 64 | 65 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"."},"finish_reason":null,"logprobs":null}]} 66 | 67 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 68 | 69 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 70 | 71 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 72 | 73 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"Here"},"finish_reason":null,"logprobs":null}]} 74 | 75 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"'"},"finish_reason":null,"logprobs":null}]} 76 | 77 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"s"},"finish_reason":null,"logprobs":null}]} 78 | 79 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" the"},"finish_reason":null,"logprobs":null}]} 80 | 81 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" calculation"},"finish_reason":null,"logprobs":null}]} 82 | 83 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":":"},"finish_reason":null,"logprobs":null}]} 84 | 85 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 86 | 87 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 88 | 89 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"2"},"finish_reason":null,"logprobs":null}]} 90 | 91 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" +"},"finish_reason":null,"logprobs":null}]} 92 | 93 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 94 | 95 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"2"},"finish_reason":null,"logprobs":null}]} 96 | 97 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" ="},"finish_reason":null,"logprobs":null}]} 98 | 99 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 100 | 101 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"4"},"finish_reason":null,"logprobs":null}]} 102 | 103 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 104 | 105 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"\n"},"finish_reason":null,"logprobs":null}]} 106 | 107 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"So"},"finish_reason":null,"logprobs":null}]} 108 | 109 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":","},"finish_reason":null,"logprobs":null}]} 110 | 111 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" the"},"finish_reason":null,"logprobs":null}]} 112 | 113 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" answer"},"finish_reason":null,"logprobs":null}]} 114 | 115 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" to"},"finish_reason":null,"logprobs":null}]} 116 | 117 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" your"},"finish_reason":null,"logprobs":null}]} 118 | 119 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" question"},"finish_reason":null,"logprobs":null}]} 120 | 121 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" is"},"finish_reason":null,"logprobs":null}]} 122 | 123 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":" "},"finish_reason":null,"logprobs":null}]} 124 | 125 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"4"},"finish_reason":null,"logprobs":null}]} 126 | 127 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":"."},"finish_reason":null,"logprobs":null}]} 128 | 129 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":"stop","logprobs":null}]} 130 | 131 | : OPENROUTER PROCESSING 132 | 133 | data: {"id":"gen-1729004990-gTyfUdC2AMGEv0NpAg7u","provider":"Azure","model":"microsoft/phi-3.5-mini-128k-instruct","object":"chat.completion.chunk","created":1729004990,"choices":[{"index":0,"delta":{"role":"assistant","content":""},"finish_reason":null,"logprobs":null}],"usage":{"prompt_tokens":17,"completion_tokens":62,"total_tokens":79}} 134 | 135 | data: [DONE] 136 | -------------------------------------------------------------------------------- /samples/output.txt: -------------------------------------------------------------------------------- 1 | data: {"candidates": [{"content": {"parts": [{"functionCall": {"name": "take_notes","args": {"note": "Capitalism and socialism are two of the most prevalent economic systems in the world. Capitalism is characterized by private ownership of the means of production, free markets, and the pursuit of profit. Socialism, on the other hand, emphasizes social ownership of the means of production, with the goal of achieving social equality and economic justice. The two systems have been the subject of much debate, with proponents of each arguing for its superiority. Capitalism is often praised for its efficiency and innovation, while socialism is lauded for its potential to reduce inequality and provide for the needs of the most vulnerable. However, both systems have their drawbacks. Capitalism can lead to economic instability and social inequality, while socialism can stifle innovation and reduce individual freedom. Ultimately, the best economic system for a given society depends on its specific circumstances and values."}}}],"role": "model"},"finishReason": "STOP","index": 0,"safetyRatings": [{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 50,"candidatesTokenCount": 174,"totalTokenCount": 224}} 2 | 3 | -------------------------------------------------------------------------------- /test.js: -------------------------------------------------------------------------------- 1 | import { asyncLLM } from "./index.js"; 2 | 3 | const PORT = 8080; 4 | const BASE_URL = `http://localhost:${PORT}`; 5 | 6 | function assertEquals(actual, expected, message) { 7 | if (JSON.stringify(actual) === JSON.stringify(expected)) return; 8 | throw new Error( 9 | message || `Expected:\n${JSON.stringify(expected, null, 2)}. Actual:\n${JSON.stringify(actual, null, 2)}`, 10 | ); 11 | } 12 | 13 | Deno.serve({ port: PORT }, async (req) => { 14 | const url = new URL(req.url); 15 | const file = await Deno.readFile(`samples${url.pathname}`); 16 | return new Response(file, { 17 | headers: { "Content-Type": "text/event-stream" }, 18 | }); 19 | }); 20 | 21 | /* 22 | curl -X POST https://llmfoundry.straive.com/openai/v1/chat/completions \ 23 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 24 | -H "Content-Type: application/json" \ 25 | -d '{"model": "gpt-4o-mini", "stream": true, "messages": [{"role": "user", "content": "Hello world"}]}' 26 | */ 27 | Deno.test("asyncLLM - OpenAI basic", async () => { 28 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/openai.txt`)); 29 | 30 | assertEquals(results.length, 10); 31 | assertEquals(results[0].content, ""); 32 | assertEquals(results[1].content, "Hello"); 33 | assertEquals(results[9].content, "Hello! How can I assist you today?"); 34 | assertEquals(results.at(-1).tools, undefined); 35 | }); 36 | 37 | /* 38 | curl -X POST https://llmfoundry.straive.com/openai/v1/chat/completions \ 39 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 40 | -H "Content-Type: application/json" \ 41 | -d '{ 42 | "model": "gpt-4o-mini", 43 | "stream": true, 44 | "messages": [ 45 | {"role": "system", "content": "Call get_delivery_date with the order ID."}, 46 | {"role": "user", "content": "123456"} 47 | ], 48 | "tools": [ 49 | { 50 | "type": "function", 51 | "function": { 52 | "name": "get_delivery_date", 53 | "description": "Get the delivery date for a customer order.", 54 | "parameters": { 55 | "type": "object", 56 | "properties": { "order_id": { "type": "string", "description": "The customer order ID." } }, 57 | "required": ["order_id"], 58 | "additionalProperties": false 59 | } 60 | } 61 | } 62 | ] 63 | }' 64 | */ 65 | Deno.test("asyncLLM - OpenAI with tool calls", async () => { 66 | let index = 0; 67 | let data = {}; 68 | for await (data of asyncLLM(`${BASE_URL}/openai-tools.txt`)) { 69 | if (index == 0) { 70 | assertEquals(data.tools[0].name, "get_delivery_date"); 71 | assertEquals(data.tools[0].id, "call_F8YHCjnzrrTjfE4YSSpVW2Bc"); 72 | assertEquals(data.tools[0].args, ""); 73 | } 74 | if (index == 1) assertEquals(data.tools[0].args, '{"'); 75 | if (index == 7) assertEquals(data.tools[0].args, '{"order_id":"123456"}'); 76 | if (index == 7) assertEquals(data.content, undefined); 77 | index++; 78 | } 79 | assertEquals(JSON.parse(data.tools[0].args), { order_id: "123456" }); 80 | assertEquals(index, 8); 81 | }); 82 | 83 | /* 84 | curl -X POST https://llmfoundry.straive.com/openai/v1/chat/completions \ 85 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 86 | -H "Content-Type: application/json" \ 87 | -d '{ 88 | "model": "gpt-4o-mini", 89 | "stream": true, 90 | "messages": [ 91 | { "role": "system", "content": "Call get_order({order_id}) AND get_customer({customer_id}) in parallel" }, 92 | { "role": "user", "content": "Order ID: 123456, Customer ID: 7890" } 93 | ], 94 | "tool_choice": "required", 95 | "tools": [ 96 | { 97 | "type": "function", 98 | "function": { "name": "get_order", "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } } 99 | }, 100 | { 101 | "type": "function", 102 | "function": { "name": "get_customer", "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } } 103 | } 104 | ] 105 | } 106 | } 107 | */ 108 | Deno.test("asyncLLM - OpenAI with multiple tool calls", async () => { 109 | let index = 0; 110 | let data = {}; 111 | for await (data of asyncLLM(`${BASE_URL}/openai-tools2.txt`)) { 112 | if (index === 0) { 113 | assertEquals(data.tools[0], { 114 | name: "get_order", 115 | id: "call_wnH2cswb4JAnm69pUAP4MNEN", 116 | args: "", 117 | }); 118 | } 119 | if (index === 5) assertEquals(data.tools[0].args, '{"id": "123456"}'); 120 | if (index === 6) { 121 | assertEquals(data.tools[1], { 122 | name: "get_customer", 123 | id: "call_f4GVABhbwSOLoaisOBOajnsm", 124 | args: '{"id', 125 | }); 126 | } 127 | if (index === 9) assertEquals(data.tools[1].args, '{"id": "7890"}'); 128 | index++; 129 | } 130 | assertEquals(index, 9); 131 | assertEquals(data.tools[0], { name: "get_order", id: "call_wnH2cswb4JAnm69pUAP4MNEN", args: '{"id": "123456"}' }); 132 | assertEquals(data.tools[1], { name: "get_customer", id: "call_f4GVABhbwSOLoaisOBOajnsm", args: '{"id": "7890"}' }); 133 | }); 134 | 135 | /* 136 | curl https://api.openai.com/v1/responses \ 137 | -H "Authorization: Bearer $OPENAI_API_KEY" \ 138 | -H "Content-Type: application/json" \ 139 | -d '{"model": "gpt-4.1-nano", "stream": true, "input": "Hello world"}' 140 | */ 141 | Deno.test("asyncLLM - OpenAI Responses basic", async () => { 142 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/openai-responses.txt`)); 143 | 144 | assertEquals(results.length, 9); 145 | assertEquals(results[0].content, "Hello"); 146 | assertEquals(results[1].content, "Hello!"); 147 | assertEquals(results[2].content, "Hello! How"); 148 | assertEquals(results[8].content, "Hello! How can I assist you today?"); 149 | assertEquals(results.at(-1).tools, undefined); 150 | }); 151 | 152 | /* 153 | curl https://api.openai.com/v1/responses \ 154 | -H "Authorization: Bearer $OPENAI_API_KEY" \ 155 | -H "Content-Type: application/json" \ 156 | -d '{ 157 | "model": "gpt-4.1-nano", 158 | "stream": true, 159 | "input": [ 160 | { "role": "system", "content": "Call get_order({order_id}) AND get_customer({customer_id}) in parallel" }, 161 | { "role": "user", "content": "Order ID: 123456, Customer ID: 7890" } 162 | ], 163 | "tool_choice": "required", 164 | "tools": [ 165 | { 166 | "type": "function", 167 | "name": "get_delivery_date", 168 | "description": "Get the delivery date for a customer order.", 169 | "parameters": { 170 | "type": "object", 171 | "properties": { "order_id": { "type": "string", "description": "The customer order ID." } }, 172 | "required": ["order_id"], 173 | "additionalProperties": false 174 | } 175 | } 176 | ] 177 | }' 178 | */ 179 | Deno.test("asyncLLM - OpenAI Responses with tool calls", async () => { 180 | let index = 0; 181 | let data = {}; 182 | for await (data of asyncLLM(`${BASE_URL}/openai-responses-tools.txt`)) { 183 | if (index == 0) { 184 | assertEquals(data.tools[0].name, "get_delivery_date"); 185 | assertEquals(data.tools[0].id, "fc_6808d3a08e708192a65b2c19dbc8b9140a601c2646a05cfd"); 186 | assertEquals(data.tools[0].args, ""); 187 | } 188 | if (index == 1) assertEquals(data.tools[0].args, '{"'); 189 | if (index == 7) assertEquals(data.tools[0].args, '{"order_id":"123456"}'); 190 | if (index == 7) assertEquals(data.content, undefined); 191 | index++; 192 | } 193 | assertEquals(JSON.parse(data.tools[0].args), { order_id: "123456" }); 194 | assertEquals(index, 8); 195 | }); 196 | 197 | /* 198 | curl https://api.openai.com/v1/responses \ 199 | -H "Authorization: Bearer $OPENAI_API_KEY" \ 200 | -H "Content-Type: application/json" \ 201 | -d '{ 202 | "model": "gpt-4.1-nano", 203 | "stream": true, 204 | "input": [ 205 | { "role": "system", "content": "Call get_order({order_id}) AND get_customer({customer_id}) in parallel" }, 206 | { "role": "user", "content": "Order ID: 123456, Customer ID: 7890" } 207 | ], 208 | "tool_choice": "required", 209 | "tools": [ 210 | { 211 | "type": "function", 212 | "name": "get_order", 213 | "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } 214 | }, 215 | { 216 | "type": "function", 217 | "name": "get_customer", 218 | "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } 219 | } 220 | ] 221 | }' 222 | */ 223 | Deno.test("asyncLLM - OpenAI Responses with multiple tool calls", async () => { 224 | let index = 0; 225 | let data = {}; 226 | for await (data of asyncLLM(`${BASE_URL}/openai-responses-tools2.txt`)) { 227 | if (index === 0) { 228 | assertEquals(data.tools[0], { 229 | name: "get_order", 230 | id: "fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc", 231 | args: "", 232 | }); 233 | } 234 | if (index === 7) assertEquals(data.tools[0].args, '{"id":"123456"}'); 235 | if (index === 10) { 236 | assertEquals(data.tools[1], { 237 | name: "get_customer", 238 | id: "fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc", 239 | args: '{"id":', 240 | }); 241 | } 242 | if (index === 13) assertEquals(data.tools[1].args, '{"id":"7890"}'); 243 | index++; 244 | } 245 | assertEquals(index, 14); 246 | assertEquals(data.tools[0], { 247 | name: "get_order", 248 | id: "fc_6808d34ab2748192957f518947f0e14d01c57d45ab76fecc", 249 | args: '{"id":"123456"}', 250 | }); 251 | assertEquals(data.tools[1], { 252 | name: "get_customer", 253 | id: "fc_6808d34ac3548192916cd16fdad20dc101c57d45ab76fecc", 254 | args: '{"id":"7890"}', 255 | }); 256 | }); 257 | 258 | /* 259 | curl -X POST https://llmfoundry.straive.com/anthropic/v1/messages \ 260 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 261 | -H "Content-Type: application/json" \ 262 | -d '{"model": "claude-3-haiku-20240307", "stream": true, "max_tokens": 10, "messages": [{"role": "user", "content": "What is 2 + 2"}]}' 263 | */ 264 | Deno.test("asyncLLM - Anthropic", async () => { 265 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/anthropic.txt`)); 266 | 267 | assertEquals(results.length, 3); 268 | assertEquals(results[0].content, "2 "); 269 | assertEquals(results[1].content, "2 + 2 "); 270 | assertEquals(results[2].content, "2 + 2 = 4."); 271 | assertEquals(results.at(-1).tools, undefined); 272 | }); 273 | 274 | Deno.test("asyncLLM - Anthropic with tool calls", async () => { 275 | let index = 0; 276 | let data = {}; 277 | for await (data of asyncLLM(`${BASE_URL}/anthropic-tools.txt`)) { 278 | if (index === 0) assertEquals(data.content, "Okay"); 279 | if (index === 12) assertEquals(data.content, "Okay, let's check the weather for San Francisco, CA:"); 280 | if (index === 13) assertEquals(data.tools[0], { name: "get_weather", id: "toolu_01T1x1fJ34qAmk2tNTrN7Up6" }); 281 | if (index === 14) assertEquals(data.tools[0].args, ""); 282 | index++; 283 | } 284 | assertEquals(data.tools[0].name, "get_weather"); 285 | assertEquals(data.tools[0].id, "toolu_01T1x1fJ34qAmk2tNTrN7Up6"); 286 | assertEquals(JSON.parse(data.tools[0].args), { 287 | location: "San Francisco, CA", 288 | unit: "fahrenheit", 289 | }); 290 | assertEquals(index, 23); 291 | }); 292 | 293 | /* 294 | curl -X POST https://llmfoundry.straive.com/anthropic/v1/messages \ 295 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 296 | -H "Content-Type: application/json" \ 297 | -d '{ 298 | "system": "Call get_order({order_id}) AND get_customer({customer_id}) in parallel", 299 | "messages": [{ "role": "user", "content": "Order ID: 123456, Customer ID: 7890" }], 300 | "model": "claude-3-haiku-20240307", 301 | "max_tokens": 4096, 302 | "stream": true, 303 | "tool_choice": { "type": "any", "disable_parallel_tool_use": false }, 304 | "tools": [ 305 | { "name": "get_order", "input_schema": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } }, 306 | { "name": "get_customer", "input_schema": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } } 307 | ] 308 | } 309 | }` 310 | */ 311 | Deno.test("asyncLLM - Anthropic with multiple tool calls", async () => { 312 | let index = 0; 313 | let data = {}; 314 | for await (data of asyncLLM(`${BASE_URL}/anthropic-tools2.txt`)) { 315 | if (index === 0) assertEquals(data.tools[0], { name: "get_order", id: "toolu_015yB3TjTS1RBaM7VScM2MQY" }); 316 | if (index === 2) assertEquals(data.tools[0].args, '{"id": "1'); 317 | if (index === 7) 318 | assertEquals(data.tools[1], { name: "get_customer", id: "toolu_013VAZTYqMJm2JuRCqEA4kam", args: '{"id": "789' }); 319 | index++; 320 | } 321 | assertEquals(index, 9); 322 | assertEquals(data.tools[0], { name: "get_order", id: "toolu_015yB3TjTS1RBaM7VScM2MQY", args: '{"id": "123456"}' }); 323 | assertEquals(data.tools[1], { name: "get_customer", id: "toolu_013VAZTYqMJm2JuRCqEA4kam", args: '{"id": "7890"}' }); 324 | }); 325 | 326 | /* 327 | curl -X POST https://llmfoundry.straive.com/gemini/v1beta/models/gemini-1.5-flash-8b:streamGenerateContent?alt=sse \ 328 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 329 | -H "Content-Type: application/json" \ 330 | -d '{ 331 | "system_instruction": { "parts": [{ "text": "You are a helpful assistant" }] }, 332 | "contents": [{ "role": "user", "parts": [{ "text": "What is 2+2?" }] }] 333 | }' 334 | */ 335 | Deno.test("asyncLLM - Gemini", async () => { 336 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/gemini.txt`)); 337 | 338 | assertEquals(results.length, 3); 339 | assertEquals(results[0].content, "2"); 340 | assertEquals(results[1].content, "2 + 2 = 4\n"); 341 | assertEquals(results[2].content, "2 + 2 = 4\n"); 342 | assertEquals(results.at(-1).tools, undefined); 343 | }); 344 | 345 | /* 346 | curl -X POST https://llmfoundry.straive.com/gemini/v1beta/models/gemini-1.5-flash-latest:streamGenerateContent?alt=sse \ 347 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 348 | -H "Content-Type: application/json" \ 349 | -d '{ 350 | "contents": { "role": "user", "parts": { "text": "Call take_notes passing it an essay about capitalism vs socialism" } }, 351 | "tools": [ 352 | { 353 | "function_declarations": [ 354 | { 355 | "name": "take_notes", 356 | "description": "Take notes about a topic", 357 | "parameters": { 358 | "type": "object", 359 | "properties": { "note": { "type": "string" } }, 360 | "required": ["note"] 361 | } 362 | } 363 | ] 364 | } 365 | ] 366 | }' 367 | */ 368 | Deno.test("asyncLLM - Gemini with tool calls", async () => { 369 | let index = 0; 370 | let data = {}; 371 | for await (data of asyncLLM(`${BASE_URL}/gemini-tools.txt`)) { 372 | if (index === 0) assertEquals(data.tools[0].name, "take_notes"); 373 | if (index === 0) assertEquals(data.tools[0].args.startsWith('{"note":"Capitalism'), true); 374 | index++; 375 | } 376 | assertEquals(data.content, undefined); 377 | assertEquals(JSON.parse(data.tools[0].args).note.startsWith("Capitalism and socialism"), true); 378 | assertEquals(JSON.parse(data.tools[0].args).note.endsWith("specific circumstances and values."), true); 379 | assertEquals(index, 1); 380 | }); 381 | 382 | /* 383 | curl -X POST https://llmfoundry.straive.com/gemini/v1beta/models/gemini-1.5-flash-latest:streamGenerateContent?alt=sse \ 384 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 385 | -H "Content-Type: application/json" \ 386 | -d '{ 387 | "systemInstruction": {"parts": [{"text": "Call get_order({order_id}) AND get_customer({customer_id}) in parallel"}]}, 388 | "contents": [{"role": "user", "parts": [{ "text": "Order ID: 123456, Customer ID: 7890" }] }], 389 | "toolConfig": { "function_calling_config": { "mode": "ANY" } }, 390 | "tools": { 391 | "functionDeclarations": [ 392 | { 393 | "name": "get_order", 394 | "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } 395 | }, 396 | { 397 | "name": "get_customer", 398 | "parameters": { "type": "object", "properties": { "id": { "type": "string" } }, "required": ["id"] } 399 | } 400 | ] 401 | } 402 | } 403 | }` 404 | */ 405 | Deno.test("asyncLLM - Gemini with multiple tool calls", async () => { 406 | let index = 0; 407 | let data = {}; 408 | for await (data of asyncLLM(`${BASE_URL}/gemini-tools2.txt`)) { 409 | if (index === 0) { 410 | assertEquals(data.tools[0], { name: "get_order", args: '{"id":"123456"}' }); 411 | assertEquals(data.tools[1], { name: "get_customer", args: '{"id":"7890"}' }); 412 | } 413 | index++; 414 | } 415 | assertEquals(index, 3); 416 | assertEquals(data.tools[0].name, "get_order"); 417 | assertEquals(JSON.parse(data.tools[0].args), { id: "123456" }); 418 | assertEquals(data.tools[1].name, "get_customer"); 419 | assertEquals(JSON.parse(data.tools[1].args), { id: "7890" }); 420 | }); 421 | 422 | /* 423 | curl -X POST https://llmfoundry.straive.com/openrouter/v1/chat/completions \ 424 | -H "Authorization: Bearer $LLMFOUNDRY_TOKEN:asyncllm" \ 425 | -H "Content-Type: application/json" \ 426 | -d '{"model": "meta-llama/llama-3.2-11b-vision-instruct", "stream": true, "messages": [{"role": "user", "content": "What is 2 + 2"}]}' 427 | */ 428 | Deno.test("asyncLLM - OpenRouter", async () => { 429 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/openrouter.txt`)); 430 | 431 | assertEquals(results.length, 64); 432 | assertEquals(results[0].content, ""); 433 | assertEquals(results[1].content, " The"); 434 | assertEquals(results[2].content, " The sum"); 435 | assertEquals( 436 | results.at(-1).content, 437 | " The sum of 2 and 2 is 4. This is a basic arithmetic operation where you add the two numbers together to get the total. \n\nHere's the calculation:\n\n2 + 2 = 4\n\nSo, the answer to your question is 4.", 438 | ); 439 | assertEquals(results.at(-1).tools, undefined); 440 | }); 441 | 442 | Deno.test("asyncLLM - Error handling", async () => { 443 | const results = await Array.fromAsync(asyncLLM(`${BASE_URL}/errors.txt`)); 444 | 445 | assertEquals(results.length, 6); 446 | 447 | // Malformed JSON 448 | assertEquals(results[0].error, "Unexpected token 'i', \"invalid json\" is not valid JSON"); 449 | 450 | // OpenAI-style error 451 | assertEquals(results[1].error, "OpenAI API error"); 452 | 453 | // Anthropic-style error 454 | assertEquals(results[2].error, "Anthropic API error"); 455 | 456 | // Gemini-style error 457 | assertEquals(results[3].error, "Gemini API error"); 458 | 459 | // OpenRouter-style error 460 | assertEquals(results[4].error, "OpenRouter API error"); 461 | 462 | // No data 463 | assertEquals(results[5].error, "Unexpected end of JSON input"); 464 | }); 465 | 466 | Deno.test("asyncLLM - Config callback", async () => { 467 | let responseStatus = 0; 468 | let contentType = ""; 469 | 470 | const results = await Array.fromAsync( 471 | asyncLLM( 472 | `${BASE_URL}/openai.txt`, 473 | {}, 474 | { 475 | onResponse: async (response) => { 476 | responseStatus = response.status; 477 | contentType = response.headers.get("Content-Type"); 478 | }, 479 | }, 480 | ), 481 | ); 482 | 483 | assertEquals(responseStatus, 200); 484 | assertEquals(contentType, "text/event-stream"); 485 | assertEquals(results.length, 10); // Verify normal operation still works 486 | }); 487 | 488 | Deno.test("asyncLLM - Config callback error handling", async () => { 489 | let responseStatus = 0; 490 | 491 | const results = await Array.fromAsync( 492 | asyncLLM( 493 | `${BASE_URL}/errors.txt`, 494 | {}, 495 | { 496 | onResponse: async (response) => { 497 | responseStatus = response.status; 498 | }, 499 | }, 500 | ), 501 | ); 502 | 503 | assertEquals(responseStatus, 200); 504 | assertEquals(results[0].error, "Unexpected token 'i', \"invalid json\" is not valid JSON"); 505 | }); 506 | 507 | Deno.test("asyncLLM - Request object input", async () => { 508 | const request = new Request(`${BASE_URL}/openai.txt`); 509 | const results = await Array.fromAsync(asyncLLM(request)); 510 | 511 | assertEquals(results.length, 10); 512 | }); 513 | --------------------------------------------------------------------------------