├── examples
├── Vel_P.dat
├── Vel_S.dat
├── __pycache__
│ └── Disp_results.cpython-37.pyc
├── TrueHypo.dat
├── Hinit.dat
├── rcv.dat
├── WellData_P.dat
├── localisation_P.par
├── WellData_PS.dat
├── localisation_PS.par
├── Disp_results.py
├── Example.py
├── Traveltimes_P.dat
├── Traveltimes_PS.dat
├── CalibData_P.dat
├── CalibData_PS.dat
└── all_dec.xyz
├── .gitignore
├── setup.cfg
├── docs
├── images
│ ├── Data_P.png
│ ├── noise.png
│ ├── norms.png
│ ├── Data_PS.png
│ ├── Hypo_init.png
│ ├── VelModel.png
│ ├── receivers.png
│ ├── CalibDataP.png
│ ├── CalibDataPS.png
│ ├── Hypocenters.png
│ ├── P_S_Param_File.png
│ ├── Parameter_file.png
│ └── trueVelocity.png
├── __pycache__
│ ├── mesh.cpython-37.pyc
│ └── JHVI_Tetra.cpython-37.pyc
├── code.rst
├── code_JHVIT.rst
├── Makefile
├── getting_started.rst
├── make.bat
├── references.rst
├── index.rst
├── results.rst
├── conf.py
└── example.rst
├── images
└── JHVIT_Logo.gif
├── requirements.txt
├── src
├── __pycache__
│ ├── mesh.cpython-37.pyc
│ └── JHVI_Tetra.cpython-37.pyc
├── JHVIT
│ ├── __init__.py
│ └── mesh.py
└── Mesh_Prep.py
├── LICENSE.txt
├── setup.py
├── .github
└── workflows
│ └── codeql-analysis.yml
└── README.md
/examples/Vel_P.dat:
--------------------------------------------------------------------------------
1 | 6.
--------------------------------------------------------------------------------
/examples/Vel_S.dat:
--------------------------------------------------------------------------------
1 | 3.3
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 |
3 | docs/_build/
4 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [metadata]
2 | description-file = README.md
3 |
--------------------------------------------------------------------------------
/docs/images/Data_P.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Data_P.png
--------------------------------------------------------------------------------
/docs/images/noise.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/noise.png
--------------------------------------------------------------------------------
/docs/images/norms.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/norms.png
--------------------------------------------------------------------------------
/images/JHVIT_Logo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/images/JHVIT_Logo.gif
--------------------------------------------------------------------------------
/docs/images/Data_PS.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Data_PS.png
--------------------------------------------------------------------------------
/docs/images/Hypo_init.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Hypo_init.png
--------------------------------------------------------------------------------
/docs/images/VelModel.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/VelModel.png
--------------------------------------------------------------------------------
/docs/images/receivers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/receivers.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | setuptools
2 | cython
3 | numpy>=1.20.1
4 | scipy
5 | vtk
6 | ttcrpy
7 | numba
8 |
--------------------------------------------------------------------------------
/docs/images/CalibDataP.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/CalibDataP.png
--------------------------------------------------------------------------------
/docs/images/CalibDataPS.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/CalibDataPS.png
--------------------------------------------------------------------------------
/docs/images/Hypocenters.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Hypocenters.png
--------------------------------------------------------------------------------
/docs/images/P_S_Param_File.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/P_S_Param_File.png
--------------------------------------------------------------------------------
/docs/images/Parameter_file.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Parameter_file.png
--------------------------------------------------------------------------------
/docs/images/trueVelocity.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/trueVelocity.png
--------------------------------------------------------------------------------
/src/__pycache__/mesh.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/src/__pycache__/mesh.cpython-37.pyc
--------------------------------------------------------------------------------
/docs/__pycache__/mesh.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/__pycache__/mesh.cpython-37.pyc
--------------------------------------------------------------------------------
/docs/__pycache__/JHVI_Tetra.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/__pycache__/JHVI_Tetra.cpython-37.pyc
--------------------------------------------------------------------------------
/src/__pycache__/JHVI_Tetra.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/src/__pycache__/JHVI_Tetra.cpython-37.pyc
--------------------------------------------------------------------------------
/examples/__pycache__/Disp_results.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/examples/__pycache__/Disp_results.cpython-37.pyc
--------------------------------------------------------------------------------
/src/JHVIT/__init__.py:
--------------------------------------------------------------------------------
1 |
2 | """
3 | Code to perform seismic hypocenter location on tetrahedral meshes
4 | """
5 | from JHVIT.mesh import MSHReader
6 | from JHVIT.JHVI_Tetra import jntHypoVel_T, jntHyposlow_T, jntHypoVelPS_T, jntHyposlowPS_T, jointHypoVel_T, jointHypoVelPS_T, readEventsFiles
7 |
--------------------------------------------------------------------------------
/docs/code.rst:
--------------------------------------------------------------------------------
1 | *********************************
2 | Code documentation
3 | *********************************
4 |
5 | Here is the Documentation of the main functions callable in ``JHVIT``.
6 |
7 | .. toctree::
8 | :maxdepth: 2
9 | :caption: Modules:
10 |
11 | code_JHVIT.rst
12 |
--------------------------------------------------------------------------------
/docs/code_JHVIT.rst:
--------------------------------------------------------------------------------
1 |
2 | Module JHVIT.JHVI_Tetra
3 | =======================
4 |
5 | .. autofunction:: JHVI_Tetra.jntHypoVel_T
6 |
7 | .. autofunction:: JHVI_Tetra.jntHyposlow_T
8 |
9 | .. autofunction:: JHVI_Tetra.jntHypoVelPS_T
10 |
11 | .. autofunction:: JHVI_Tetra.jntHyposlowPS_T
12 |
13 | .. autofunction:: JHVI_Tetra.jointHypoVel_T
14 |
15 | .. autofunction:: JHVI_Tetra.jointHypoVelPS_T
16 |
17 | .. autofunction:: JHVI_Tetra.readEventsFiles
18 |
--------------------------------------------------------------------------------
/examples/TrueHypo.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn t0 X Y Z
3 | 1 7.858 305.448666 5723.942294 0.647953
4 | 2 9.23696 305.397083 5723.998452 0.696836
5 | 3 11.36495 305.395376 5723.913263 0.690865
6 | 4 11.66731 305.373676 5724.024994 0.684436
7 | 5 13.8493 305.388474 5723.961999 0.686552
8 | 6 15.44068 305.366536 5723.914089 0.695269
9 | 7 16.57611 305.392653 5724.058199 0.662064
10 | 8 17.45004 305.40807 5724.055363 0.677264
11 | 9 18.15286 305.39435 5724.029609 0.684731
12 | 10 26.51696 305.449088 5723.992591 0.645299
13 |
--------------------------------------------------------------------------------
/examples/Hinit.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn t0 X Y Z
3 | 1 7.87 305.30000 5723.90000 0.60000
4 | 2 9.24 305.25000 5723.90000 0.61500
5 | 3 11.38 305.30000 5723.80000 0.62000
6 | 4 11.68 305.20000 5723.90000 0.60000
7 | 5 13.85 305.25000 5723.90000 0.64000
8 | 6 15.47 305.20000 5723.80000 0.62000
9 | 7 16.59 305.30000 5723.70000 0.60000
10 | 8 17.46 305.30000 5723.95000 0.62000
11 | 9 18.16 305.35000 5723.90000 0.60000
12 | 10 26.53 305.30000 5723.85000 0.61000
--------------------------------------------------------------------------------
/examples/rcv.dat:
--------------------------------------------------------------------------------
1 | 16
2 | 305.420000 5724.001000 0.685350
3 | 305.430000 5724.041000 0.668725
4 | 305.430000 5723.966000 0.634600
5 | 305.452000 5723.966000 0.656600
6 | 305.380000 5724.001000 0.699643
7 | 305.380000 5724.046000 0.692355
8 | 305.375000 5724.091000 0.681944
9 | 305.350000 5724.031000 0.709420
10 | 305.310000 5723.981000 0.730857
11 | 305.310000 5723.936000 0.734676
12 | 305.310000 5723.891000 0.740946
13 | 305.310000 5724.026000 0.725283
14 | 305.400000 5723.981000 0.696919
15 | 305.415000 5723.961000 0.693189
16 | 305.430000 5724.042000 0.620000
17 | 305.452000 5724.042000 0.642000
18 |
--------------------------------------------------------------------------------
/docs/Makefile:
--------------------------------------------------------------------------------
1 | # Minimal makefile for Sphinx documentation
2 | #
3 |
4 | # You can set these variables from the command line, and also
5 | # from the environment for the first two.
6 | SPHINXOPTS ?=
7 | SPHINXBUILD ?= sphinx-build
8 | SOURCEDIR = .
9 | BUILDDIR = _build
10 |
11 | # Put it first so that "make" without argument is like "make help".
12 | help:
13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
14 |
15 | .PHONY: help Makefile
16 |
17 | # Catch-all target: route all unknown targets to Sphinx using the new
18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
19 | %: Makefile
20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
21 |
--------------------------------------------------------------------------------
/docs/getting_started.rst:
--------------------------------------------------------------------------------
1 | .. _getting_started:
2 |
3 |
4 | ###############
5 | Getting started
6 | ###############
7 |
8 | .. _installing- JHVIT:
9 |
10 | *****************
11 | Installing JHVIT
12 | *****************
13 |
14 | You can use pip to install the package by running::
15 |
16 | pip install JHVIT
17 |
18 | .. _Requirements- JHVIT:
19 |
20 | ***************
21 | Requirements
22 | ***************
23 |
24 | JHVIT needs the following packages:
25 | - cython (https://cython.org)
26 | - numpy (https://numpy.org) with version >= 1.20.1
27 | - scipy (https://www.scipy.org)
28 | - ttcrpy (https://pypi.org/project/ttcrpy)
29 | - vtk (https://www.vtk.org)
30 |
31 | To run the package using many processes, it is highly recommended to have python-version 3.7.
32 |
--------------------------------------------------------------------------------
/examples/WellData_P.dat:
--------------------------------------------------------------------------------
1 | ## synthetic Data
2 | Pt_id V(km/s) X(km) Y(km) Z(km)
3 | 1 5.0874 305.310 5724.000 0.70354
4 | 2 5.0533 305.310 5724.000 0.68776
5 | 3 5.1373 305.310 5724.000 0.67856
6 | 4 5.2474 305.310 5724.000 0.67509
7 | 5 5.0266 305.310 5724.000 0.65997
8 | 6 5.0242 305.310 5724.000 0.65312
9 | 7 5.1610 305.310 5724.000 0.63805
10 | 8 5.1612 305.310 5724.000 0.62651
11 | 9 5.0599 305.310 5724.000 0.62099
12 | 10 5.1055 305.310 5724.000 0.61458
13 | 11 5.1890 305.310 5724.000 0.60260
14 | 12 5.0972 305.310 5724.000 0.58473
15 | 13 5.0983 305.310 5724.000 0.57902
16 | 14 5.1477 305.310 5724.000 0.56651
17 | 15 5.0438 305.310 5724.000 0.55784
18 | 16 5.0358 305.310 5724.000 0.54864
19 | 17 5.2290 305.310 5724.000 0.53715
20 | 18 5.1633 305.310 5724.000 0.53104
21 | 19 5.1253 305.310 5724.000 0.51296
22 | 20 5.0918 305.310 5724.000 0.50560
--------------------------------------------------------------------------------
/docs/make.bat:
--------------------------------------------------------------------------------
1 | @ECHO OFF
2 |
3 | pushd %~dp0
4 |
5 | REM Command file for Sphinx documentation
6 |
7 | if "%SPHINXBUILD%" == "" (
8 | set SPHINXBUILD=sphinx-build
9 | )
10 | set SOURCEDIR=.
11 | set BUILDDIR=_build
12 |
13 | if "%1" == "" goto help
14 |
15 | %SPHINXBUILD% >NUL 2>NUL
16 | if errorlevel 9009 (
17 | echo.
18 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx
19 | echo.installed, then set the SPHINXBUILD environment variable to point
20 | echo.to the full path of the 'sphinx-build' executable. Alternatively you
21 | echo.may add the Sphinx directory to PATH.
22 | echo.
23 | echo.If you don't have Sphinx installed, grab it from
24 | echo.http://sphinx-doc.org/
25 | exit /b 1
26 | )
27 |
28 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
29 | goto end
30 |
31 | :help
32 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O%
33 |
34 | :end
35 | popd
36 |
--------------------------------------------------------------------------------
/examples/localisation_P.par:
--------------------------------------------------------------------------------
1 | base name :Benchmark_P
2 | mesh file :Model.msh
3 | topography file :topo.msh
4 | rcvfile :rcv.dat
5 | number of threads :3
6 | arrival times :Traveltimes_P.dat
7 | Velocity P waves :Vel_P.dat
8 | Velocity S waves :Vel_S.dat
9 | known velocity points :
10 | Hypo0 :Hinit.dat
11 | Time calibration :CalibData_P.dat
12 | number of iterations :10
13 | num. iters. to get hypo. :12
14 | inverse velocity :True
15 | inverse Vs/Vp :False
16 | reloc.hypo.in 2 steps :False
17 | use static corrections :True
18 | Verbose :True
19 | Save Velocity :last
20 | maximum stat. correction :0.05
21 | Vpmin :1.5
22 | Vpmax :8.
23 | Vsmin :1.2
24 | Vsmax :6.
25 | PAp :1
26 | PAs :1.
27 | dVp max :0.200
28 | dVs max :0.200
29 | dx max :0.005
30 | dt max :0.005
31 | alpha :1.
32 | lambda :1.e4
33 | Gamma :10.
34 | vertical smoothing :0.75
35 | convergence Criterion :0.0005
36 | uncertainty estm. :True
37 | confidence level :0.95
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Permission is hereby granted, free of charge, to any person obtaining a copy
4 | of this software and associated documentation files (the "Software"), to deal
5 | in the Software without restriction, including without limitation the rights
6 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 | copies of the Software, and to permit persons to whom the Software is
8 | furnished to do so, subject to the following conditions:
9 |
10 | The above copyright notice and this permission notice shall be included in all
11 | copies or substantial portions of the Software.
12 |
13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
19 | SOFTWARE.
--------------------------------------------------------------------------------
/examples/WellData_PS.dat:
--------------------------------------------------------------------------------
1 | ## synthetic Data
2 | Pt V(km/s) X(km) Y(km) Z(km) Wave
3 | 1 5.0921 305.310 5724.000 0.65636 P
4 | 2 5.1081 305.310 5724.000 0.64260 P
5 | 3 5.1095 305.310 5724.000 0.63271 P
6 | 4 5.0780 305.310 5724.000 0.61248 P
7 | 5 5.0431 305.310 5724.000 0.60352 P
8 | 6 5.1181 305.310 5724.000 0.59207 P
9 | 7 5.0781 305.310 5724.000 0.57657 P
10 | 8 5.1151 305.310 5724.000 0.56505 P
11 | 9 5.1227 305.310 5724.000 0.54657 P
12 | 10 5.1019 305.310 5724.000 0.53698 P
13 | 11 5.0139 305.310 5724.000 0.52694 P
14 | 12 5.0789 305.310 5724.000 0.50156 P
15 | 1 2.7091 305.310 5724.000 0.65636 S
16 | 2 2.8081 305.310 5724.000 0.64260 S
17 | 3 2.7125 305.310 5724.000 0.63271 S
18 | 4 2.6780 305.310 5724.000 0.61248 S
19 | 5 2.7131 305.310 5724.000 0.60352 S
20 | 6 2.7381 305.310 5724.000 0.59207 S
21 | 7 2.7781 305.310 5724.000 0.57657 S
22 | 8 2.8051 305.310 5724.000 0.56505 S
23 | 9 2.6927 305.310 5724.000 0.54657 S
24 | 10 2.6859 305.310 5724.000 0.53698 S
25 | 11 2.8019 305.310 5724.000 0.52694 S
26 | 12 2.7289 305.310 5724.000 0.50156 S
--------------------------------------------------------------------------------
/examples/localisation_PS.par:
--------------------------------------------------------------------------------
1 | base name :BenchmarkPS
2 | mesh file :Model.msh
3 | topography file :topo.msh
4 | rcvfile :rcv.dat
5 | number of threads :3
6 | arrival times :Traveltimes_PS.dat
7 | Velocity P waves :Vel_P.dat
8 | Velocity S waves :Vel_S.dat
9 | known velocity points :
10 | Hypo0 :Hinit.dat
11 | Time calibration :CalibData_PS.dat
12 | number of iterations :10
13 | num. iters. to get hypo. :12
14 | inverse velocity : 1
15 | inverse Vs/Vp :0
16 | reloc.hypo.in 2 steps :0
17 | use static corrections :1
18 | Verbose :True
19 | Save Velocity :last
20 | maximum stat. correction:0.05
21 | Vpmin :1.5
22 | Vpmax :8.
23 | Vsmin :1.2
24 | Vsmax :6.
25 | VpVs_min :1.65
26 | VpVs_max :2.25
27 | PAp :1
28 | PAs :1.
29 | Pvpvs :1.
30 | dVp max :0.200
31 | dVs max :0.200
32 | dx max :0.010
33 | dt max :0.005
34 | alpha :1.
35 | lambda :1.e4
36 | Gamma :1.
37 | Gamma_vpvs :1
38 | stigma :0.
39 | vertical smoothing :0.75
40 | convergence Criterion :0.0005
41 | uncertainty estm. :1
42 | confidence level :0.95
43 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | import setuptools
2 |
3 | with open("README.md", "r", encoding="utf-8") as fh:
4 | long_description = fh.read()
5 |
6 | setuptools.setup(
7 |
8 | name="JHVIT",
9 | version="0.0.14",
10 | author="Maher Nasr",
11 | author_email="Maher.Nasr@inrs.ca",
12 | description="Code to perform seismic hypocenter location on tetrahedral meshes",
13 | long_description=long_description,
14 | long_description_content_type="text/markdown",
15 | url="https://github.com/groupeLIAMG/JHVIT.git",
16 | keywords = ["joint hypocenter velocity inversion", "hypocenter location",
17 | "passive seismic", "tetrahedral meshes"],
18 | classifiers=[
19 | "Programming Language :: Python :: 3.7",
20 | "License :: OSI Approved :: MIT License",
21 | "Operating System :: OS Independent",
22 | 'Intended Audience :: Science/Research',
23 | 'Topic :: Scientific/Engineering',
24 | ],
25 | package_dir={"": "src"},
26 | packages=setuptools.find_packages(where="src"),
27 | python_requires= "==3.7.*",
28 | install_requires=["numpy>=1.20.1",
29 | "scipy",
30 | "vtk",
31 | "ttcrpy>=1.1.8"],
32 | )
33 |
--------------------------------------------------------------------------------
/docs/references.rst:
--------------------------------------------------------------------------------
1 | .. _references:
2 |
3 | ##########
4 | References
5 | ##########
6 |
7 | For more details and information, users are invited to look into these references:
8 |
9 | - Block, L.V. (1991): Joint hypocenter-velocity inversion of local earthquake arrival
10 | time data in two geothermal regions. Doctoral thesis, Massachusetts Institute of Technology.
11 | https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930.
12 |
13 |
14 |
15 | - Block, L.V., Cheng, C.H., Fehler, M.C., Phillips, W.S.(1994): Seismic imaging using microearthquakes
16 | induced by hydraulic fracturing. Geophysics 59(1), 102-112.
17 | https://doi.org/10.1190/geo1992-0156.
18 |
19 | - Giroux, B. (2001): Auscultation des barrages en béton par écoute microsismique: détectabilité et localisation
20 | des événements. Doctoral thesis, Université de Montréal.
21 | https://publications.polymtl.ca/8641/.
22 |
23 | - Nasr, M., Giroux, B., Dupuis, J.C.(2020): A hybrid approach to compute seismic travel times in three‐dimensional tetrahedral meshes.
24 | Geophys. Prospect. 68(4), 1291-1313. https://doi.org/10.1111/1365-2478.12930.
25 |
26 | - Nasr, M., Giroux, B., Dupuis, J. C. (2021): Python package for 3D joint hypocenter-velocity inversion
27 | on tetrahedral meshes: Parallel implementation and practical considerations. Comput. Geosci., (submitted).
28 |
--------------------------------------------------------------------------------
/docs/index.rst:
--------------------------------------------------------------------------------
1 | .. JHVIT documentation master file, created by
2 | sphinx-quickstart on Tue Oct 19 08:03:34 2021.
3 | You can adapt this file completely to your liking, but it should at least
4 | contain the root `toctree` directive.
5 |
6 | ##################################
7 | Welcome to JHVIT's documentation!
8 | ##################################
9 |
10 | JHVIT is a python package for locating seismic event hypocenters on unstructured
11 | grids. The package is an extension of the joint hypocenter-velocity inversion method
12 | on tetrahedral meshes. It is mainly recommended for domains with steep topography,
13 | underground cavities and stratigraphic and abnormal geological contacts such as
14 | folds, faults and shear zones. The code is able to locate a wide range of seismic
15 | events going from major earthquakes and nuclear explosions to low and negative
16 | magnitude events. Target application areas include computational seismology,
17 | hydraulic fracture and microseismic monitoring of mining environments or in civil
18 | engineering projects.
19 |
20 | The package is written in Python, uses an optimized c++ raytracing code wrapped in
21 | Cython and supports parallel computing.
22 |
23 | .. toctree::
24 | :maxdepth: 2
25 | :caption: Contents:
26 |
27 | getting_started.rst
28 | example.rst
29 | results.rst
30 | code.rst
31 | references.rst
32 |
33 |
34 | ##################
35 | Indices and tables
36 | ##################
37 |
38 | * :ref:`genindex`
39 | * :ref:`modindex`
40 | * :ref:`search`
41 |
--------------------------------------------------------------------------------
/.github/workflows/codeql-analysis.yml:
--------------------------------------------------------------------------------
1 | # For most projects, this workflow file will not need changing; you simply need
2 | # to commit it to your repository.
3 | #
4 | # You may wish to alter this file to override the set of languages analyzed,
5 | # or to provide custom queries or build logic.
6 | #
7 | # ******** NOTE ********
8 | # We have attempted to detect the languages in your repository. Please check
9 | # the `language` matrix defined below to confirm you have the correct set of
10 | # supported CodeQL languages.
11 | #
12 | name: "CodeQL"
13 |
14 | on:
15 | push:
16 | branches: [ main ]
17 | pull_request:
18 | # The branches below must be a subset of the branches above
19 | branches: [ main ]
20 | schedule:
21 | - cron: '34 1 * * 5'
22 |
23 | jobs:
24 | analyze:
25 | name: Analyze
26 | runs-on: ubuntu-latest
27 | permissions:
28 | actions: read
29 | contents: read
30 | security-events: write
31 |
32 | strategy:
33 | fail-fast: false
34 | matrix:
35 | language: [ 'python' ]
36 | # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
37 | # Learn more:
38 | # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
39 |
40 | steps:
41 | - name: Checkout repository
42 | uses: actions/checkout@v2
43 |
44 | # Initializes the CodeQL tools for scanning.
45 | - name: Initialize CodeQL
46 | uses: github/codeql-action/init@v1
47 | with:
48 | languages: ${{ matrix.language }}
49 | # If you wish to specify custom queries, you can do so here or in a config file.
50 | # By default, queries listed here will override any specified in a config file.
51 | # Prefix the list here with "+" to use these queries and those in the config file.
52 | # queries: ./path/to/local/query, your-org/your-repo/queries@main
53 |
54 | # Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
55 | # If this step fails, then you should remove it and run the build manually (see below)
56 | - name: Autobuild
57 | uses: github/codeql-action/autobuild@v1
58 |
59 | # ℹ️ Command-line programs to run using the OS shell.
60 | # 📚 https://git.io/JvXDl
61 |
62 | # ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
63 | # and modify them (or add more) to build your code if your project
64 | # uses a compiled language
65 |
66 | #- run: |
67 | # make bootstrap
68 | # make release
69 |
70 | - name: Perform CodeQL Analysis
71 | uses: github/codeql-action/analyze@v1
72 |
--------------------------------------------------------------------------------
/docs/results.rst:
--------------------------------------------------------------------------------
1 | .. _results:
2 |
3 | ###############
4 | Results
5 | ###############
6 |
7 | If no bugs occur, ``JHVIT`` will return a python dictionary containing an estimation of:
8 | - Hypocenter coordinates and their origin times.
9 | - Static correction values at the stations.
10 | - Velocity models for P-wave and eventually S-wave or the Vp/Vs ratio model.
11 | - Convergence states of each hypocenter.
12 | - Parameter uncertainty: this includes the origin time uncertainty and the confidence ellipsoid of each seismic event.
13 | - Data misfit norms.
14 |
15 |
16 | Examples of expected results are presented below. These results can be reproduced by running the test code:
17 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Example.py
18 |
19 | .. image:: images/Hypocenters.*
20 | :width: 800px
21 | :alt: hypo
22 | :align: center
23 |
24 |
25 | Location of a set of 10 seismic events plotted on topographic map. Green dots are the estimated geographic position of the hypocenters.
26 | The red outlines give the projections of the confidence ellipsoids on the horizontal plane. The Z-component of each hypocenter is specified nearby.
27 |
28 | .. image:: images/trueVelocity.*
29 | :width: 400px
30 | :alt: truevel
31 | :align: center
32 |
33 | .. image:: images/VelModel.*
34 | :width: 400px
35 | :alt: vel
36 | :align: center
37 |
38 | Comparison between the true velocity model and the model obtained by inversion for a synthetic seismic dataset with 5% of gaussian noise.
39 | Leftmost figure: true model. Rightmost: inverted model.
40 |
41 |
42 | .. image:: images/norms.*
43 | :width: 400px
44 | :alt: norm
45 | :align: center
46 |
47 | Evolution of the data misfit norms as a function of iterations.
48 |
49 |
50 | Noise effects
51 | =============
52 |
53 | A test involving 3 datasets with 3 noise levels (3%, 5% and 10%) and two different models (homogeneous and layered) was performed to assess the ``JHVIT`` robustness.
54 | For the hypocenter coordinates, obtained relative errors vary between 2.5% to 12% of the average distance sources-receivers while the origin time errors between
55 | 3% and 16%. In general, we noted lower errors for the homogenous model.
56 | Note also that velocity models are less sensitive to noise than the hypocenter parameters. This may be explained by the implemented Tikhonov constraint that acts as a
57 | filter by cutting off the contribution of the small eigenvalues of the Jacobian matrix.
58 |
59 | .. image:: images/noise.*
60 | :width: 600px
61 | :alt: noises
62 | :align: center
63 |
64 | Relative errors of hypocenter positions and origin times versus noise percentage. Red and blue boxplots refer respectively to the errors calculated for the homogeneous
65 | and layered model.
66 |
--------------------------------------------------------------------------------
/docs/conf.py:
--------------------------------------------------------------------------------
1 | # Configuration file for the Sphinx documentation builder.
2 | #
3 | # This file only contains a selection of the most common options. For a full
4 | # list see the documentation:
5 | # https://www.sphinx-doc.org/en/master/usage/configuration.html
6 |
7 | # -- Path setup --------------------------------------------------------------
8 |
9 | # If extensions (or modules to document with autodoc) are in another directory,
10 | # add these directories to sys.path here. If the directory is relative to the
11 | # documentation root, use os.path.abspath to make it absolute, like shown here.
12 | #
13 |
14 |
15 | import os
16 | import sys
17 | import sphinx_rtd_theme
18 | from pkg_resources import get_distribution
19 |
20 | sys.path.insert(0, os.path.abspath('../src/JHVIT'))
21 |
22 | # -- Project information -----------------------------------------------------
23 |
24 | project = 'JHVIT'
25 | copyright = '2021, Maher Nasr'
26 | author = 'Maher Nasr'
27 |
28 | # The full version, including alpha/beta/rc tags
29 | release = '0.0.14'
30 |
31 | master_doc = 'index'
32 | # -- General configuration ---------------------------------------------------
33 |
34 | # Add any Sphinx extension module names here, as strings. They can be
35 | # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
36 | # ones.
37 | extensions = [
38 | 'sphinx.ext.autodoc',
39 | 'sphinx.ext.napoleon',
40 | 'sphinx_rtd_theme'
41 | ]
42 | # Add any paths that contain templates here, relative to this directory.
43 | templates_path = ['_templates']
44 |
45 | # List of patterns, relative to source directory, that match files and
46 | # directories to ignore when looking for source files.
47 | # This pattern also affects html_static_path and html_extra_path.
48 | exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']
49 |
50 |
51 |
52 | # -- Options for HTML output -------------------------------------------------
53 |
54 | # The theme to use for HTML and HTML Help pages. See the documentation for
55 | # a list of builtin themes.
56 | #
57 | #html_theme = 'alabaster'
58 | html_theme = "sphinx_rtd_theme"
59 | # Add any paths that contain custom static files (such as style sheets) here,
60 | # relative to this directory. They are copied after the builtin static files,
61 | # so a file named "default.css" will overwrite the builtin "default.css".
62 | html_static_path = ['_static']
63 |
64 |
65 | # Napoleon settings
66 | napoleon_google_docstring = False
67 | napoleon_numpy_docstring = True
68 | napoleon_include_init_with_doc = False
69 | napoleon_include_private_with_doc = False
70 | napoleon_include_special_with_doc = True
71 | napoleon_use_admonition_for_examples = False
72 | napoleon_use_admonition_for_notes = True
73 | napoleon_use_admonition_for_references = False
74 | napoleon_use_ivar = False
75 | napoleon_use_param = True
76 | napoleon_use_rtype = True
77 |
--------------------------------------------------------------------------------
/examples/Disp_results.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | """
4 | Created on Fri Apr 3 03:40:04 2020
5 |
6 | @author: Maher Nasr
7 | """
8 |
9 | import numpy as np
10 |
11 |
12 | def insideEllipsoid(P, center, axis1, axis2, axis3):
13 | # https://en.wikipedia.org/wiki/Ellipsoid : Parametric representation
14 | P = P.reshape([-1, 1])
15 | center = center.reshape([-1, 1])
16 | PI = P - center
17 | axis1 = axis1.reshape([-1, 1])
18 | axis2 = axis2.reshape([-1, 1])
19 | axis3 = axis3.reshape([-1, 1])
20 | det1 = np.linalg.det(np.hstack([PI, axis2, axis3]))
21 | det2 = np.linalg.det(np.hstack([axis1, PI, axis3]))
22 | det3 = np.linalg.det(np.hstack([axis1, axis2, PI]))
23 | det4 = np.linalg.det(np.hstack([axis1, axis2, axis3]))
24 | return (det1**2 + det2**2 + det3**2 - det4**2) < 1.e-6
25 |
26 |
27 | def plotEllipsoid(axis1, axis2, axis3, center, nbreP):
28 | """
29 | plot ellipsoid contour defined by its 3 axes (vector)
30 | """
31 | nbreP = int(nbreP)
32 | teta = np.random.uniform(-np.pi * 0.5, np.pi * 0.5, nbreP)
33 | phi = np.random.uniform(0., np.pi * 2, nbreP)
34 | X = center[0] + np.cos(teta) * np.cos(phi) * axis1[0] + \
35 | np.cos(teta) * np.sin(phi) * axis2[0] + np.sin(teta) * axis3[0]
36 | Y = center[1] + np.cos(teta) * np.cos(phi) * axis1[1] + \
37 | np.cos(teta) * np.sin(phi) * axis2[1] + np.sin(teta) * axis3[1]
38 | Z = center[2] + np.cos(teta) * np.cos(phi) * axis1[2] + \
39 | np.cos(teta) * np.sin(phi) * axis2[2] + np.sin(teta) * axis3[2]
40 | return X, Y, Z
41 |
42 |
43 | def intersectionEll(axis1, axis2, axis3, center, points,
44 | dirct=2, nbreP=1.e3, meshObj=None):
45 | """
46 | find ellipse of intersection between ellipsoid defined
47 | by its 3 axes (vector) and the plan of direction dir
48 | """
49 | c = points[dirct] - center[dirct]
50 | nbreP = int(nbreP)
51 | teta = np.hstack(
52 | (np.linspace(
53 | 0,
54 | np.pi,
55 | nbreP // 2),
56 | np.linspace(
57 | 2 * np.pi,
58 | np.pi,
59 | nbreP // 2)))
60 | alpha = np.arctan(axis2[dirct] / axis1[dirct])
61 | arg = np.cos(alpha) * (c - axis3[dirct] *
62 | np.sin(teta)) / (axis1[dirct] * np.cos(teta))
63 | ind = abs(arg) <= 1.
64 | arg = arg[ind]
65 | n_el = arg.shape[0]
66 | teta_el = teta[ind]
67 | phi_el = np.zeros([n_el, ])
68 | phi_el[:n_el // 2] = alpha - np.arccos(arg[:n_el // 2])
69 | phi_el[n_el // 2:] = alpha + np.arccos(arg[n_el // 2:])
70 | X_el = center[0] + np.cos(teta_el) * np.cos(phi_el) * axis1[0] + np.cos(
71 | teta_el) * np.sin(phi_el) * axis2[0] + np.sin(teta_el) * axis3[0]
72 | Y_el = center[1] + np.cos(teta_el) * np.cos(phi_el) * axis1[1] + np.cos(
73 | teta_el) * np.sin(phi_el) * axis2[1] + np.sin(teta_el) * axis3[1]
74 | Z_el = center[2] + np.cos(teta_el) * np.cos(phi_el) * axis1[2] + np.cos(
75 | teta_el) * np.sin(phi_el) * axis2[2] + np.sin(teta_el) * axis3[2]
76 | points = np.column_stack((X_el, Y_el, Z_el))
77 | if meshObj is not None:
78 | for i in range(points.shape[0]):
79 | if meshObj.is_outside(points[i].reshape([1, -1])):
80 | P2 = points[i, :]
81 | for _ in range(1000):
82 | P2 = 0.1 * center + 0.9 * P2
83 | if meshObj.is_outside(P2.reshape([1, -1])) is False:
84 | points[i, :] = P2
85 | break
86 | return points
87 |
--------------------------------------------------------------------------------
/examples/Example.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | """
4 | Created on Mon Apr 6 22:53:34 2020
5 |
6 | @author: Maher Nasr
7 | """
8 |
9 | from JHVIT import jointHypoVel_T, jointHypoVelPS_T, readEventsFiles
10 | from Disp_results import intersectionEll, insideEllipsoid
11 | import numpy as np
12 | import matplotlib.pyplot as plt
13 | from ttcrpy import tmesh
14 | from JHVIT import MSHReader
15 |
16 | phase = 'P' # or 'PS'
17 |
18 | if phase == 'P':
19 | results = jointHypoVel_T('localisation_P.par')
20 | elif phase == 'PS':
21 | results = jointHypoVelPS_T('localisation_PS.par')
22 |
23 | Hypocenters = results['Hypocenters']
24 | Ucrties = results['Uncertainties']
25 | TrueHypo = readEventsFiles('TrueHypo.dat')
26 |
27 | # calculate error
28 | Error_T0 = np.abs(Hypocenters[:, 1] - TrueHypo[:, 1])
29 | Error_X = np.abs(Hypocenters[:, 2] - TrueHypo[:, 2])
30 | Error_Y = np.abs(Hypocenters[:, 3] - TrueHypo[:, 3])
31 | Error_Z = np.abs(Hypocenters[:, 4] - TrueHypo[:, 4])
32 | Error_P = np.sqrt(Error_X**2 + Error_Y**2 + Error_Z**2)
33 |
34 |
35 | # check if true hypocenter positions are inside confidence ellipsoid
36 |
37 | print('origin times')
38 | print('---------------')
39 | for h in np.arange(Hypocenters.shape[0]):
40 | ΔT0 = np.abs(TrueHypo[h, 1] - Hypocenters[h, 1])
41 | cfd_intrvl = Ucrties[h][0]
42 | if cfd_intrvl < ΔT0:
43 | print('\033[43m' +
44 | 'Event N {0:d}: origin time is outside confidence interval'.format(
45 | int(h + 1)) + '\033[0m')
46 | else:
47 | print('\033[42m' +
48 | 'Event N {0:d}: origin time is inside confidence interval'.format(
49 | int(h + 1)) + '\033[0m')
50 |
51 | print('hypocenter positions')
52 | print('---------------')
53 | for h in np.arange(Hypocenters.shape[0]):
54 |
55 | if insideEllipsoid(TrueHypo[h, 2:] * 1.e3, Hypocenters[h, 2:] * 1.e3,
56 | Ucrties[h][1] * 1.e3, Ucrties[h][2] * 1.e3,
57 | Ucrties[h][3] * 1.e3) is False:
58 | print('\033[43m' +
59 | 'Event N {0:d}: hypocenter is outside confidence ellipsoid'.format(
60 | int(h + 1)) + '\033[0m')
61 | else:
62 | print('\033[42m' +
63 | 'Event N {0:d}: hypocenter is inside confidence ellipsoid'.format(
64 | int(h + 1)) + '\033[0m')
65 |
66 | # plot hypocenters and confidence ellipsoids on map
67 |
68 | Topo_data = np.loadtxt('all_dec.xyz') * 1.e-3
69 | nx = (np.unique(Topo_data[:, 0])).size
70 | ny = (np.unique(Topo_data[:, 1])).size
71 | X = Topo_data[:, 0].reshape([nx, ny])
72 | Y = Topo_data[:, 1].reshape([nx, ny])
73 | Z = Topo_data[:, 2].reshape([nx, ny])
74 |
75 | # object cmesh
76 | MESH = MSHReader('Model.msh')
77 | nodes = MESH.readNodes()
78 | cells = MESH.readTetraherdonElements()
79 | Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0,
80 | n_threads=1, n_secondary=2, n_tertiary=1,
81 | process_vel=1, radius_factor_tertiary=2,
82 | translate_grid=1)
83 | for h in range(Hypocenters.shape[0]):
84 | pts = intersectionEll(Ucrties[h][1], Ucrties[h][2],
85 | Ucrties[h][3], Hypocenters[h, 2:],
86 | Hypocenters[h, 2:], nbreP=50,
87 | meshObj=Mesh3D)
88 | plt.plot(pts[:, 0], pts[:, 1], '-r', markersize=0.1)
89 | plt.annotate(str(int(1.e3 * Hypocenters[h, 4])),
90 | (Hypocenters[h, 2] - 0.008,
91 | Hypocenters[h, 3] + 0.006), fontsize=6, color='g')
92 | plt.plot(Hypocenters[:, 2], Hypocenters[:, 3], '.g', markersize=1)
93 | plt.xlim([305.25, 305.55])
94 | contours = plt.contour(X, Y, (1.e3 * Z).astype(int),
95 | 30, colors='k', linestyles='-')
96 | plt.clabel(contours, inline=True, fontsize=6, colors='b', fmt='%1.0f')
97 | plt.grid(True)
98 | plt.xlabel('X')
99 | plt.ylabel('Y')
100 | plt.savefig('Fig' + phase + '.pdf', format='pdf', bbox_inches='tight')
101 | plt.show()
102 |
--------------------------------------------------------------------------------
/examples/Traveltimes_P.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn arrival times rcv_index
3 | 1 7.87272554 1
4 | 1 7.88024416 2
5 | 1 7.86444157 3
6 | 1 7.86322315 4
7 | 1 7.87888200 5
8 | 1 7.88486598 6
9 | 1 7.89047888 7
10 | 1 7.88758687 8
11 | 1 7.88875361 9
12 | 1 7.89031560 10
13 | 1 7.89286593 11
14 | 1 7.89335883 12
15 | 1 7.87374941 13
16 | 1 7.87002598 14
17 | 1 7.87859728 15
18 | 1 7.87795578 16
19 | 2 9.24157796 1
20 | 2 9.25020304 2
21 | 2 9.25192739 3
22 | 2 9.25221114 4
23 | 2 9.24042428 5
24 | 2 9.24696023 6
25 | 2 9.25586548 7
26 | 2 9.24837422 8
27 | 2 9.25377850 9
28 | 2 9.26061961 10
29 | 2 9.26631347 11
30 | 2 9.25716146 12
31 | 2 9.24031443 13
32 | 2 9.24524137 14
33 | 2 9.25741592 15
34 | 2 9.25411745 16
35 | 3 11.38396339 1
36 | 3 11.39169263 2
37 | 3 11.38227325 3
38 | 3 11.38015958 4
39 | 3 11.38126226 5
40 | 3 11.39254811 6
41 | 3 11.39889099 7
42 | 3 11.38903567 8
43 | 3 11.38733365 9
44 | 3 11.38572313 10
45 | 3 11.38492521 11
46 | 3 11.39081715 12
47 | 3 11.37866457 13
48 | 3 11.37459936 14
49 | 3 11.39568086 15
50 | 3 11.39519456 16
51 | 4 11.67820901 1
52 | 4 11.67851683 2
53 | 4 11.68545612 3
54 | 4 11.68823572 4
55 | 4 11.67282895 5
56 | 4 11.67211001 6
57 | 4 11.68088722 7
58 | 4 11.67468286 8
59 | 4 11.68561587 9
60 | 4 11.69045772 10
61 | 4 11.69685816 11
62 | 4 11.68229280 12
63 | 4 11.67749184 13
64 | 4 11.68113773 14
65 | 4 11.68459215 15
66 | 4 11.68594877 16
67 | 5 13.85862070 1
68 | 5 13.86667253 2
69 | 5 13.86311731 3
70 | 5 13.86441427 4
71 | 5 13.85762784 5
72 | 5 13.86713882 6
73 | 5 13.87549709 7
74 | 5 13.86724805 8
75 | 5 13.86944731 9
76 | 5 13.86920377 10
77 | 5 13.87566102 11
78 | 5 13.86943133 12
79 | 5 13.85403237 13
80 | 5 13.85462785 14
81 | 5 13.87347526 15
82 | 5 13.87057647 16
83 | 6 15.46290483 1
84 | 6 15.47010869 2
85 | 6 15.46032626 3
86 | 6 15.46189103 4
87 | 6 15.45887533 5
88 | 6 15.46664058 6
89 | 6 15.48067349 7
90 | 6 15.46343012 8
91 | 6 15.45948166 9
92 | 6 15.45467491 10
93 | 6 15.45684341 11
94 | 6 15.46686333 12
95 | 6 15.45676097 13
96 | 6 15.45455363 14
97 | 6 15.47480606 15
98 | 6 15.47504088 16
99 | 7 16.59053644 1
100 | 7 16.58450626 2
101 | 7 16.59609440 3
102 | 7 16.59893750 4
103 | 7 16.59006949 5
104 | 7 16.58316849 6
105 | 7 16.58488227 7
106 | 7 16.59040274 8
107 | 7 16.60171044 9
108 | 7 16.61083641 10
109 | 7 16.61713036 11
110 | 7 16.59659282 12
111 | 7 16.59218814 13
112 | 7 16.59588126 14
113 | 7 16.58794287 15
114 | 7 16.58927694 16
115 | 8 17.46085199 1
116 | 8 17.45544795 2
117 | 8 17.46961014 3
118 | 8 17.47158413 4
119 | 8 17.46242805 5
120 | 8 17.45638428 6
121 | 8 17.46014268 7
122 | 8 17.46331354 8
123 | 8 17.48005709 9
124 | 8 17.48342656 10
125 | 8 17.48605516 11
126 | 8 17.47303841 12
127 | 8 17.46472890 13
128 | 8 17.47017071 14
129 | 8 17.46198193 15
130 | 8 17.46184030 16
131 | 9 18.16069334 1
132 | 9 18.16092913 2
133 | 9 18.16939148 3
134 | 9 18.16978599 4
135 | 9 18.15973851 5
136 | 9 18.15730304 6
137 | 9 18.16605341 7
138 | 9 18.16274836 8
139 | 9 18.17565701 9
140 | 9 18.17979633 10
141 | 9 18.18832392 11
142 | 9 18.16980608 12
143 | 9 18.16321080 13
144 | 9 18.16838372 14
145 | 9 18.16832055 15
146 | 9 18.16723825 16
147 | 10 26.52642421 1
148 | 10 26.52736892 2
149 | 10 26.52389760 3
150 | 10 26.52238566 4
151 | 10 26.53583763 5
152 | 10 26.53612902 6
153 | 10 26.54022627 7
154 | 10 26.54122693 8
155 | 10 26.54900835 9
156 | 10 26.55174033 10
157 | 10 26.55734512 11
158 | 10 26.55247531 12
159 | 10 26.53055159 13
160 | 10 26.52985205 14
161 | 10 26.52858466 15
162 | 10 26.52693749 16
163 |
--------------------------------------------------------------------------------
/docs/example.rst:
--------------------------------------------------------------------------------
1 | .. _example:
2 |
3 | ###############
4 | Example
5 | ###############
6 |
7 | ``JHVIT`` can automatically read the inversion parameters and data from text files.
8 | We recommend to use this feature in order to store this information for future verifications or reuse.
9 | We present in this section the templates to prepare such files.
10 |
11 | Parameter File
12 | ===============
13 |
14 | Users are invited to prepare parameter files and pass them as arguments to the proper JHVIT function.
15 | Contents of these files depends of the number of seismic phases to be used since more data and parameters
16 | are obviously required when inverting simultaneously P- and S-wave data. We give in the figures below two
17 | examples of these parameter files in the case of single-phase inversion (generally P-wave) and in the case
18 | of P- and S-wave data inversion. Users may use these templates to prepare their own parameter files by replacing
19 | text following the sharp symbol (#) by the proper values (remove the symbol # also).
20 |
21 | .. image:: images/Parameter_file.*
22 | :width: 600px
23 | :alt: single phase parameter file
24 |
25 |
26 | Parameter file template for P-wave data inversion.
27 |
28 | .. image:: images/P_S_Param_File.*
29 | :width: 600px
30 | :alt: PandSwave file
31 |
32 | Parameter file template for P- and S-wave data inversion.
33 |
34 | Domain discretization
35 | =====================
36 |
37 | ``JHVIT`` can automatically read domain meshes from separate files. At the moment, only mesh files generated using
38 | Gmsh can be recognized. To prepare such files, one must start by creating a geo file (describing the domain geometry)
39 | and pass it to Gmsh. For a simple 3D domain showing only topographic irregularities, users may utilize this python script:
40 | https://github.com/groupeLIAMG/JHVIT/blob/main/src/Mesh_Prep.py.
41 |
42 | Note that MSH files created by Gmsh may vary depending on the considered version.
43 | Version 2. is the reference one compatible with ``JHVIT``. The corresponding MSH file format must be similar to this example:
44 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Model.msh
45 |
46 |
47 | Data files
48 | ===========
49 | Input data should be organized in text files as shown in the figures below. For single phase inversion, these files should contain
50 | 3 columns abbreviated as following: Ev_idn (event indices), arrival times (arrival times) and rcv_index (corresponding receiver indices).
51 | In the case of P and S wave data inversion, a fourth column is added to specify the seismic phase (called Phase). Users are invited to
52 | use the same column labels to store their data in order to avoid bugs. The first lines are dedicated to insert optional comments and notes.
53 |
54 | .. image:: images/Data_P.*
55 | :width: 300px
56 | :alt: Pdata
57 |
58 | Data file template for P-wave inversion.
59 |
60 | .. image:: images/Data_PS.*
61 | :width: 415px
62 | :alt: PSdata
63 |
64 |
65 | Data file template for P- and S-wave inversion. We suppose herein a dataset with 3 seismic events recorded in 16 receivers each one.
66 |
67 | Data calibration files
68 | ======================
69 |
70 | The available calibration data can be stored in specific files following predefined structure. In the case of single-phase inversion,
71 | data must be organized in 5 columns: the 1st column corresponds to shot indices (Ev_idn), the 2nd column for traveltime values
72 | (labeled arrival times), the 3rd column gives corresponding receiver (rcv_index). The last three columns (X, Y and Z) must contain
73 | positions of calibration shots. A sixth column would be added if both P and S waves are inverted in order to specify seismic phase of each calibration shot.
74 |
75 | .. image:: images/CalibDataP.*
76 | :width: 600px
77 | :alt: PCaldata
78 |
79 |
80 | Template of calibration data file for P-wave inversion.
81 |
82 | .. image:: images/CalibDataPS.*
83 | :width: 600px
84 | :alt: PSCaldata
85 |
86 | Template of calibration data file for P- and S-wave inversion.
87 |
88 | Receiver files
89 | ==============
90 |
91 | Users can prepare their receiver files as following: In the first line they must specify the number of receivers to be used followed
92 | by the coordinates X, Y and Z of each one written at the rate of on receiver per line.
93 |
94 | .. image:: images/receivers.*
95 | :width: 300px
96 | :alt: Rcv
97 |
98 | Example of a receiver file. Receiver coordinates are given in the MTM system.
99 |
100 |
101 | Initial velocity values and hypocenter positions
102 | ================================================
103 |
104 | Initial estimates for velocity models and hypocenter coordinates may be stored in text files that can be indicated in the parameter files.
105 | A a simple homogeneous model is usually sufficient. The initial velocity file contains in this case a single value corresponding to the chosen velocity.
106 | Users are referred to Nasr et al. (2021) to properly select a velocity value that facilitates code convergence. If a complex model has to be set, the velocity
107 | values must to be sorted according to the node indices.
108 | The first hypocenter estimates can be stored in a five-column text file. These columns are labeled: Ev_idn (hypocenter indices), t0 (origin times),
109 | X, Y and Z (spatial coordinates). Note that the initial positions of hypocenters should be all different to avoid a singular Jacobian matrix.
110 |
111 | .. image:: images/Hypo_init.*
112 | :width: 500px
113 | :alt: Hypo
114 |
115 | Example of initial hypocenter file.
116 |
--------------------------------------------------------------------------------
/src/Mesh_Prep.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Mon Oct 17 15:29:35 2016
4 |
5 | @author: Giroux and Nasr
6 | """
7 |
8 | import numpy as np
9 | import sys
10 |
11 | data = np.loadtxt('all_dec.xyz') # Topo file
12 | data *= 1.e-3
13 | Zinf_lim = 0.050 # lower z
14 | nlcTop = 0.022 # target element size at top model corner
15 | nlcBot = 0.032 # target element size at bottom model corner
16 | # path to Gmesh (to modify)
17 | GmshDir = "/Applications/Gmsh.app/Contents/MacOS/Gmsh"
18 |
19 |
20 | data[:, 0] -= np.min(data[:, 0])
21 | data[:, 1] -= np.min(data[:, 1])
22 | data[:, 2] -= np.min(data[:, 2]) - Zinf_lim
23 | xmin = np.min(data[:, 0])
24 | xmax = np.max(data[:, 0])
25 | ymin = np.min(data[:, 1])
26 | ymax = np.max(data[:, 1])
27 | zmin = np.min(data[:, 2]) - Zinf_lim
28 | x = np.unique(data[:, 0])
29 | y = np.unique(data[:, 1])
30 |
31 | nx = x.size
32 | ny = y.size
33 | f = open('Model.geo', 'w')
34 | ft = open('topo.geo', 'w')
35 | pt_no = 1
36 |
37 | f.write("\nlc = {0:6.4f};\n\n".format(nlcTop))
38 | ft.write("\nlc = {0:6.4f};\n\n".format(nlcTop))
39 | for xp in x:
40 | ind = data[:, 0] == xp
41 | y = data[ind, 1]
42 | z = data[ind, 2]
43 |
44 | for n in np.arange(ny):
45 | f.write(
46 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format(
47 | pt_no,
48 | xp,
49 | y[n],
50 | z[n]))
51 | ft.write(
52 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format(
53 | pt_no, xp, y[n], z[n]))
54 | pt_no += 1
55 | f.write("\nlc = {0:6.4f};\n\n".format(nlcBot))
56 | f.write(
57 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format(
58 | pt_no, xmin, ymin, zmin))
59 | pt_no += 1
60 | f.write(
61 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format(
62 | pt_no, xmin, ymax, zmin))
63 | pt_no += 1
64 | f.write(
65 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format(
66 | pt_no, xmax, ymin, zmin))
67 | pt_no += 1
68 | f.write(
69 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n\n".format(
70 | pt_no, xmax, ymax, zmin))
71 | pt_no += 1
72 |
73 | li_no = 1
74 | pt_no = 1
75 |
76 | for xp in x:
77 | f.write("BSpline({0:d}) = {{{1:d}".format(li_no, pt_no))
78 | ft.write("BSpline({0:d}) = {{{1:d}".format(li_no, pt_no))
79 | pt_no += 1
80 | for n in np.arange(1, ny):
81 | f.write(", {0:d}".format(pt_no))
82 | ft.write(", {0:d}".format(pt_no))
83 | pt_no += 1
84 | f.write("};\n")
85 | ft.write("};\n")
86 | li_no += 1
87 |
88 | for n in np.arange(nx - 1):
89 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
90 | li_no, 1 + n * ny, 1 + (n + 1) * ny))
91 | ft.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
92 | li_no, 1 + n * ny, 1 + (n + 1) * ny))
93 | li_no += 1
94 | f.write(
95 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
96 | li_no, (n + 1) * ny, (n + 2) * ny))
97 | ft.write(
98 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
99 | li_no, (n + 1) * ny, (n + 2) * ny))
100 | li_no += 1
101 |
102 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(li_no, 1, 1 + nx * ny))
103 | li_no += 1
104 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(li_no, ny, 2 + nx * ny))
105 | li_no += 1
106 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
107 | li_no, 1 + (nx - 1) * ny, 3 + nx * ny))
108 | li_no += 1
109 | f.write(
110 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
111 | li_no, nx * ny, 4 + nx * ny))
112 | li_no += 1
113 |
114 | f.write(
115 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
116 | li_no, 1 + nx * ny, 2 + nx * ny))
117 | li_no += 1
118 | f.write(
119 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
120 | li_no, 2 + nx * ny, 4 + nx * ny))
121 | li_no += 1
122 | f.write(
123 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
124 | li_no, 4 + nx * ny, 3 + nx * ny))
125 | li_no += 1
126 | f.write(
127 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format(
128 | li_no, 3 + nx * ny, 1 + nx * ny))
129 | li_no += 1
130 |
131 | ll_no = li_no
132 | for n in np.arange(nx - 1):
133 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format(
134 | ll_no, n + 1, nx + (n + 1) * 2, -(n + 2), -(nx + 1 + n * 2)))
135 | ft.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format(
136 | ll_no, n + 1, nx + (n + 1) * 2, -(n + 2), -(nx + 1 + n * 2)))
137 | ll_no += 1
138 |
139 |
140 | f.write("Line Loop({0:d}) = {{".format(ll_no))
141 | for n in np.arange(nx - 1):
142 | f.write("{0:d}, ".format(nx + 1 + n * 2))
143 | f.write("{0:d}, {1:d}, {2:d}}};\n".format(nx + 2 * (nx - 1) +
144 | 3, nx + 2 * (nx - 1) + 8,
145 | -(nx + 2 * (nx - 1) + 1)))
146 | ll_no += 1
147 |
148 | f.write("Line Loop({0:d}) = {{".format(ll_no))
149 | for n in np.arange(nx - 1):
150 | f.write("{0:d}, ".format(nx + 2 + n * 2))
151 | f.write("{0:d}, {1:d}, {2:d}}};\n".format(nx + 2 * (nx - 1) +
152 | 4, -(nx + 2 * (nx - 1) + 6),
153 | -(nx + 2 * (nx - 1) + 2)))
154 | ll_no += 1
155 |
156 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format(
157 | ll_no, 1, nx + 2 * (nx - 1) + 2, -(li_no - 4), -(li_no - 8)))
158 | ll_no += 1
159 |
160 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format(
161 | ll_no, nx, nx + 2 * (nx - 1) + 4, li_no - 2, -(li_no - 6)))
162 | ll_no += 1
163 |
164 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format(
165 | ll_no, li_no - 4, li_no - 3, li_no - 2, li_no - 1))
166 | ll_no += 1
167 |
168 |
169 | su_no = 1
170 | for n in np.arange(nx - 1):
171 | f.write("Ruled Surface({0:d}) = {{{1:d}}};\n".format(su_no, li_no + n))
172 | ft.write("Ruled Surface({0:d}) = {{{1:d}}};\n".format(su_no, li_no + n))
173 | su_no += 1
174 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 5))
175 | su_no += 1
176 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 4))
177 | su_no += 1
178 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 3))
179 | su_no += 1
180 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 2))
181 | su_no += 1
182 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 1))
183 | su_no += 1
184 |
185 | sl_no = su_no
186 |
187 | f.write("Surface Loop({0:d}) = {{1".format(sl_no))
188 | for n in np.arange(1, su_no - 1):
189 | f.write(", {0:d}".format(n + 1))
190 | f.write("};\n")
191 | f.write("Volume(1) = {0:d};\n".format(sl_no))
192 | f.write("Physical Volume(\"Roc\") = {1};\n")
193 | f.close()
194 | ft.close()
195 |
196 | try:
197 | from subprocess import Popen
198 | Popen([GmshDir, "Model.geo", "-3", "-optimize"])
199 | Popen([GmshDir, "topo.geo", "-3", "-optimize"])
200 | except BaseException:
201 | print("Unexpected error:", sys.exc_info()[0])
202 | raise
203 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | ##
5 |
6 | [](https://pypi.org/project/JHVIT/)
7 | [](./LICENSE.txt)
8 | [](https://jhvit.readthedocs.io/en/latest/)
9 |
10 |
11 | JHVIT : Joint Hypocenter Velocity Inversion on Tetrahedral meshes
12 |
13 |
14 | - [The JHVIT package](#heading)
15 | - [Installation and Requirements](#heading)
16 | - [Callable functions](#heading)
17 | - [Examples](#heading)
18 | - [References](#heading)
19 |
20 |
21 |
22 | ## The JHVIT package
23 |
24 | JHVIT is a python package for locating seismic event hypocenters on unstructured
25 | grids. The package is an extension of the joint hypocenter-velocity inversion method
26 | on tetrahedral meshes. It is mainly recommended for domains with steep topography,
27 | underground cavities and stratigraphic and abnormal geological contacts such as
28 | folds, faults and shear zones. The code is able to locate a wide range of seismic
29 | events going from major earthquakes and nuclear explosions to low and negative
30 | magnitude events. Target application areas include computational seismology,
31 | hydraulic fracture and microseismic monitoring of mining environments or in civil
32 | engineering projects.
33 |
34 | The package is written in Python, uses an optimized c++ raytracing code wrapped in
35 | Cython and supports parallel computing.
36 |
37 | Documentation is available here: https://jhvit.readthedocs.io/en/latest/
38 |
39 | ## Installation and Requirements
40 |
41 | Launch a command line on your device and run:
42 | pip install JHVIT
43 |
44 | Requirements:
45 | - The package ttcrpy must be installed in order to perform the raytracing step.
46 | This package can be installed from: https://pypi.org/project/ttcrpy/
47 | - Install a proper version of vtk : https://pypi.org/project/vtk/
48 | - To prevent bugs, it would be better to use python 3.7
49 |
50 | Notes:
51 | - It is highly recommended to upgrade numpy package before installing ttcrpy.
52 | - We also recommend to install the vtk library with pip.
53 |
54 | ## Callable functions
55 |
56 | 6 functions can be called and run in this package:
57 |
58 | - jntHypoVel_T : Joint hypocenter-velocity inversion of P wave data,
59 | parametrized via the velocity model.
60 |
61 | - jntHyposlow_T : Joint hypocenter-velocity inversion of P wave data,
62 | parametrized via the slowness model.
63 |
64 | - jntHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data,
65 | parametrized via the velocity models.
66 |
67 | - jntHyposlowPS_T : Joint hypocenter-velocity inversion of P- and S-wave data,
68 | parametrized via the slowness models.
69 |
70 | - jointHypoVel_T : Joint hypocenter-velocity inversion of P wave data.
71 | Input data and inversion parameters are downloaded automatically from
72 | external text files.
73 |
74 | - jointHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data.
75 | Input data and inversion parameters are downloaded automatically
76 | from external text files.
77 |
78 | ## Examples
79 |
80 | Two examples of hypocenter relocation using the JHVIT are presented (see
81 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Example.py ).
82 | The first example involves the inversion of P wave data while the second uses
83 | both P- and S-wave data.
84 |
85 | ## References
86 | ```
87 |
88 | @Thesis{Block91,
89 | Title = {Joint hypocenter-velocity inversion of local earthquake arrival
90 | time data in two geothermal regions},
91 | Author = {Lisa Vectoria Block},
92 | Year = {1991},
93 | Number of Pages = {448},
94 | University = {Massachusetts Institute of Technology},
95 | Thesis Type = {Doctoral thesis},
96 | keywords = {Earth, Atmospheric, and Planetary Sciences},
97 | URL = {http://hdl.handle.net/1721.1/13904}
98 | }
99 |
100 | @article{Block94,
101 | author = {Lisa V. Block, C. H. Cheng, Michael C. Fehler, and
102 | W. Scott Phillips},
103 | title = {Seismic imaging using microearthquakes induced by hydraulic
104 | fracturing},
105 | journal = {Geophysics},
106 | year = {1994},
107 | volume = {59},
108 | pages = {102-112},
109 | number = {1},
110 | doi = {10.1190/geo1992-0156},
111 | url = {https://library.seg.org/doi/10.1190/geo1992-0156}
112 | }
113 |
114 | @Thesis{Giroux01,
115 | Title = {Auscultation des barrages en béton par écoute microsismique:
116 | détectabilité et localisation des événements},
117 | Author = {Bernard Giroux},
118 | Year = {2001},
119 | Number of Pages = {268},
120 | University = {Université de Montréal},
121 | Thesis Type = {Doctoral thesis},
122 | Language = {French},
123 | URL = {https://publications.polymtl.ca/8641/}
124 | }
125 |
126 | @article{Nasr18,
127 | author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian},
128 | title = {A hybrid approach to compute seismic travel times in
129 | three-dimensional tetrahedral meshes},
130 | journal = {Geophysical Prospecting},
131 | volume = {68},
132 | number = {4},
133 | pages = {1291-1313},
134 | keywords = {Travel time, Seismic modelling, Ray tracing, Seismics,
135 | Computing aspects},
136 | doi = {10.1111/1365-2478.12930},
137 | url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930},
138 | eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12930},
139 | }
140 |
141 | @article{Nasr21,
142 | author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian},
143 | title = {Python package for 3D joint hypocenter-velocity inversion on
144 | tetrahedral meshes: Parallel implementation and practical
145 | considerations},
146 | journal = {Computational Geosciences},
147 | volume = {n/a},
148 | number = {n/a},
149 | pages = {n/a},
150 | keywords = {joint hypocenter velocity inversion; hypocenter location;
151 | passive seismic; computational seismology; parallelism;
152 | tetrahedral meshes},
153 | }
154 |
155 | ```
156 |
--------------------------------------------------------------------------------
/examples/Traveltimes_PS.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn arrival times rcv_index Type
3 | 1 7.87324649 1 P
4 | 1 7.87805834 2 P
5 | 1 7.86442250 3 P
6 | 1 7.86317845 4 P
7 | 1 7.87929779 5 P
8 | 1 7.88552815 6 P
9 | 1 7.88889117 7 P
10 | 1 7.88888229 8 P
11 | 1 7.89273529 9 P
12 | 1 7.88938987 10 P
13 | 1 7.89592312 11 P
14 | 1 7.89357700 12 P
15 | 1 7.87343385 13 P
16 | 1 7.87027173 14 P
17 | 1 7.87974900 15 P
18 | 1 7.87837546 16 P
19 | 1 7.88557918 1 S
20 | 1 7.89693308 2 S
21 | 1 7.87109548 3 S
22 | 1 7.86880147 4 S
23 | 1 7.89961224 5 S
24 | 1 7.90754514 6 S
25 | 1 7.92133097 7 S
26 | 1 7.91527430 8 S
27 | 1 7.92620658 9 S
28 | 1 7.91667262 10 S
29 | 1 7.91666666 11 S
30 | 1 7.92507672 12 S
31 | 1 7.88746159 13 S
32 | 1 7.87758587 14 S
33 | 1 7.90010873 15 S
34 | 1 7.89114704 16 S
35 | 2 9.24202777 1 P
36 | 2 9.24974567 2 P
37 | 2 9.25238398 3 P
38 | 2 9.25276339 4 P
39 | 2 9.24028286 5 P
40 | 2 9.24739867 6 P
41 | 2 9.25624025 7 P
42 | 2 9.24885905 8 P
43 | 2 9.25580362 9 P
44 | 2 9.25896232 10 P
45 | 2 9.26543084 11 P
46 | 2 9.25609704 12 P
47 | 2 9.24067474 13 P
48 | 2 9.24489557 14 P
49 | 2 9.25691069 15 P
50 | 2 9.25547888 16 P
51 | 2 9.24774546 1 S
52 | 2 9.25988804 2 S
53 | 2 9.26607983 3 S
54 | 2 9.26447077 4 S
55 | 2 9.24282816 5 S
56 | 2 9.25487264 6 S
57 | 2 9.27112101 7 S
58 | 2 9.25750805 8 S
59 | 2 9.27150766 9 S
60 | 2 9.28015210 10 S
61 | 2 9.28794224 11 S
62 | 2 9.27151145 12 S
63 | 2 9.24412152 13 S
64 | 2 9.25273635 14 S
65 | 2 9.26846245 15 S
66 | 2 9.27055185 16 S
67 | 3 11.38377157 1 P
68 | 3 11.39331081 2 P
69 | 3 11.38257666 3 P
70 | 3 11.38240465 4 P
71 | 3 11.38315027 5 P
72 | 3 11.39226140 6 P
73 | 3 11.40239067 7 P
74 | 3 11.39305948 8 P
75 | 3 11.38677419 9 P
76 | 3 11.38342838 10 P
77 | 3 11.38584341 11 P
78 | 3 11.39367985 12 P
79 | 3 11.37895931 13 P
80 | 3 11.37495153 14 P
81 | 3 11.39830483 15 P
82 | 3 11.39557133 16 P
83 | 3 11.39999844 1 S
84 | 3 11.41647424 2 S
85 | 3 11.39497956 3 S
86 | 3 11.39556989 4 S
87 | 3 11.39496972 5 S
88 | 3 11.41655553 6 S
89 | 3 11.43787545 7 S
90 | 3 11.41128497 8 S
91 | 3 11.40932704 9 S
92 | 3 11.40048854 10 S
93 | 3 11.40489278 11 S
94 | 3 11.42071582 12 S
95 | 3 11.38908568 13 S
96 | 3 11.38584196 14 S
97 | 3 11.41969785 15 S
98 | 3 11.42111537 16 S
99 | 4 11.67721290 1 P
100 | 4 11.67902959 2 P
101 | 4 11.68633310 3 P
102 | 4 11.68816812 4 P
103 | 4 11.67330996 5 P
104 | 4 11.67228955 6 P
105 | 4 11.68113251 7 P
106 | 4 11.67492885 8 P
107 | 4 11.68533301 9 P
108 | 4 11.68944931 10 P
109 | 4 11.70085324 11 P
110 | 4 11.68261107 12 P
111 | 4 11.67810627 13 P
112 | 4 11.68346179 14 P
113 | 4 11.68215979 15 P
114 | 4 11.68436148 16 P
115 | 4 11.68735080 1 S
116 | 4 11.69086443 2 S
117 | 4 11.69850444 3 S
118 | 4 11.70299002 4 S
119 | 4 11.67896231 5 S
120 | 4 11.67566871 6 S
121 | 4 11.69401836 7 S
122 | 4 11.68112063 8 S
123 | 4 11.70103164 9 S
124 | 4 11.71485845 10 S
125 | 4 11.72742214 11 S
126 | 4 11.69355114 12 S
127 | 4 11.68549852 13 S
128 | 4 11.69797031 14 S
129 | 4 11.70011802 15 S
130 | 4 11.69954406 16 S
131 | 5 13.86047636 1 P
132 | 5 13.86723352 2 P
133 | 5 13.86329180 3 P
134 | 5 13.86414026 4 P
135 | 5 13.85712169 5 P
136 | 5 13.86706639 6 P
137 | 5 13.87286204 7 P
138 | 5 13.86616721 8 P
139 | 5 13.86864524 9 P
140 | 5 13.86700025 10 P
141 | 5 13.87168100 11 P
142 | 5 13.86930937 12 P
143 | 5 13.85428922 13 P
144 | 5 13.85467415 14 P
145 | 5 13.87118929 15 P
146 | 5 13.87326011 16 P
147 | 5 13.86792339 1 S
148 | 5 13.88210980 2 S
149 | 5 13.87390651 3 S
150 | 5 13.87441845 4 S
151 | 5 13.86593579 5 S
152 | 5 13.88146105 6 S
153 | 5 13.89841494 7 S
154 | 5 13.87750497 8 S
155 | 5 13.88441069 9 S
156 | 5 13.88386660 10 S
157 | 5 13.89456025 11 S
158 | 5 13.89074520 12 S
159 | 5 13.85945705 13 S
160 | 5 13.85965674 14 S
161 | 5 13.89055554 15 S
162 | 5 13.89030407 16 S
163 | 6 15.46070564 1 P
164 | 6 15.47042700 2 P
165 | 6 15.46121320 3 P
166 | 6 15.46264601 4 P
167 | 6 15.46001445 5 P
168 | 6 15.46667181 6 P
169 | 6 15.47642438 7 P
170 | 6 15.46563459 8 P
171 | 6 15.45878433 9 P
172 | 6 15.45563899 10 P
173 | 6 15.45768961 11 P
174 | 6 15.46549477 12 P
175 | 6 15.45478816 13 P
176 | 6 15.45429125 14 P
177 | 6 15.47121868 15 P
178 | 6 15.47406976 16 P
179 | 6 15.48034522 1 S
180 | 6 15.49375716 2 S
181 | 6 15.47877868 3 S
182 | 6 15.48234092 4 S
183 | 6 15.47242612 5 S
184 | 6 15.48931916 6 S
185 | 6 15.50527899 7 S
186 | 6 15.48689082 8 S
187 | 6 15.47315774 9 S
188 | 6 15.46761014 10 S
189 | 6 15.46987616 11 S
190 | 6 15.48914392 12 S
191 | 6 15.46773259 13 S
192 | 6 15.46497383 14 S
193 | 6 15.49973125 15 S
194 | 6 15.49997663 16 S
195 | 7 16.58963584 1 P
196 | 7 16.58541334 2 P
197 | 7 16.59752989 3 P
198 | 7 16.59764964 4 P
199 | 7 16.58995983 5 P
200 | 7 16.58296700 6 P
201 | 7 16.58444728 7 P
202 | 7 16.59092675 8 P
203 | 7 16.60036916 9 P
204 | 7 16.60977219 10 P
205 | 7 16.61268580 11 P
206 | 7 16.60019632 12 P
207 | 7 16.59321542 13 P
208 | 7 16.59671015 14 P
209 | 7 16.58724614 15 P
210 | 7 16.58931910 16 P
211 | 7 16.60137038 1 S
212 | 7 16.59098907 2 S
213 | 7 16.61739737 3 S
214 | 7 16.61418126 4 S
215 | 7 16.60099699 5 S
216 | 7 16.58876738 6 S
217 | 7 16.59233988 7 S
218 | 7 16.60203493 8 S
219 | 7 16.62322851 9 S
220 | 7 16.63233947 10 S
221 | 7 16.64789610 11 S
222 | 7 16.61523348 12 S
223 | 7 16.60877064 13 S
224 | 7 16.61492723 14 S
225 | 7 16.59838908 15 S
226 | 7 16.59945368 16 S
227 | 8 17.46080424 1 P
228 | 8 17.45547704 2 P
229 | 8 17.47185528 3 P
230 | 8 17.47260558 4 P
231 | 8 17.46307559 5 P
232 | 8 17.45661920 6 P
233 | 8 17.45968659 7 P
234 | 8 17.46396490 8 P
235 | 8 17.47777645 9 P
236 | 8 17.48167573 10 P
237 | 8 17.48975729 11 P
238 | 8 17.47208468 12 P
239 | 8 17.46621252 13 P
240 | 8 17.47057120 14 P
241 | 8 17.46273400 15 P
242 | 8 17.46161551 16 P
243 | 8 17.47133960 1 S
244 | 8 17.46116281 2 S
245 | 8 17.48780807 3 S
246 | 8 17.49212428 4 S
247 | 8 17.47374314 5 S
248 | 8 17.46173370 6 S
249 | 8 17.46895522 7 S
250 | 8 17.47668243 8 S
251 | 8 17.50022506 9 S
252 | 8 17.51617708 10 S
253 | 8 17.52427706 11 S
254 | 8 17.48962147 12 S
255 | 8 17.48039932 13 S
256 | 8 17.48481454 14 S
257 | 8 17.47254957 15 S
258 | 8 17.47272290 16 S
259 | 9 18.16051304 1 P
260 | 9 18.16178955 2 P
261 | 9 18.17062253 3 P
262 | 9 18.17087100 4 P
263 | 9 18.15945754 5 P
264 | 9 18.15743184 6 P
265 | 9 18.16565190 7 P
266 | 9 18.16298092 8 P
267 | 9 18.17523790 9 P
268 | 9 18.17980468 10 P
269 | 9 18.18717431 11 P
270 | 9 18.17142537 12 P
271 | 9 18.16360824 13 P
272 | 9 18.16762298 14 P
273 | 9 18.16609022 15 P
274 | 9 18.16629302 16 P
275 | 9 18.16738544 1 S
276 | 9 18.16707891 2 S
277 | 9 18.18233640 3 S
278 | 9 18.18742263 4 S
279 | 9 18.16638332 5 S
280 | 9 18.16135581 6 S
281 | 9 18.17674579 7 S
282 | 9 18.17138142 8 S
283 | 9 18.19010344 9 S
284 | 9 18.20464822 10 S
285 | 9 18.21505023 11 S
286 | 9 18.19101703 12 S
287 | 9 18.17094774 13 S
288 | 9 18.17961970 14 S
289 | 9 18.18104130 15 S
290 | 9 18.17920818 16 S
291 | 10 26.52669280 1 P
292 | 10 26.52821233 2 P
293 | 10 26.52336404 3 P
294 | 10 26.52318887 4 P
295 | 10 26.53433671 5 P
296 | 10 26.53602709 6 P
297 | 10 26.54225302 7 P
298 | 10 26.54192743 8 P
299 | 10 26.55020535 9 P
300 | 10 26.55349590 10 P
301 | 10 26.55664565 11 P
302 | 10 26.54768839 12 P
303 | 10 26.53121255 13 P
304 | 10 26.53015652 14 P
305 | 10 26.52840930 15 P
306 | 10 26.52659496 16 P
307 | 10 26.53637266 1 S
308 | 10 26.53646830 2 S
309 | 10 26.53138030 3 S
310 | 10 26.52779416 4 S
311 | 10 26.55093565 5 S
312 | 10 26.55321273 6 S
313 | 10 26.56582291 7 S
314 | 10 26.56045188 8 S
315 | 10 26.57992165 9 S
316 | 10 26.58745702 10 S
317 | 10 26.59239540 11 S
318 | 10 26.57817861 12 S
319 | 10 26.54356210 13 S
320 | 10 26.54163044 14 S
321 | 10 26.53968084 15 S
322 | 10 26.53502272 16 S
323 |
--------------------------------------------------------------------------------
/src/JHVIT/mesh.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | Created on Fri Oct 21 09:48:08 2016
4 |
5 | @author: giroux
6 | """
7 |
8 | import re
9 | import sys
10 | import numba
11 | import numpy as np
12 | import vtk
13 |
14 |
15 | class MSHReader:
16 | def __init__(self, filename):
17 | self.filename = filename
18 | self.valid = self.checkFormat()
19 |
20 | def checkFormat(self):
21 | try:
22 | f = open(self.filename, 'r')
23 | line = f.readline()
24 | if not line.startswith('$MeshFormat'):
25 | return False
26 | tmp = re.split(r' ', f.readline())
27 | if tmp[0] != '2.2' or tmp[1] != '0':
28 | return False
29 |
30 | except OSError as err:
31 | print("OS error: {0}".format(err))
32 | return False
33 | except ValueError:
34 | print("Could not convert data to an integer.")
35 | return False
36 | except BaseException:
37 | print("Unexpected error:", sys.exc_info()[0])
38 | return False
39 |
40 | def is2D(self):
41 | try:
42 | nodes = self.readNodes()
43 | except BaseException:
44 | raise
45 |
46 | ymin = np.min(nodes[:, 1])
47 | ymax = np.max(nodes[:, 1])
48 | return ymin == ymax
49 |
50 | def getNumberOfNodes(self):
51 | try:
52 | f = open(self.filename, 'r')
53 | for line in f:
54 | if line.startswith('$Nodes'):
55 | nnodes = int(f.readline())
56 | break
57 | f.close()
58 | return nnodes
59 |
60 | except OSError as err:
61 | print("OS error: {0}".format(err))
62 | except ValueError:
63 | print("Could not convert data to an integer.")
64 | except BaseException:
65 | print("Unexpected error:", sys.exc_info()[0])
66 | raise
67 |
68 | def readNodes(self):
69 | try:
70 | f = open(self.filename, 'r')
71 | for line in f:
72 | if line.startswith('$Nodes'):
73 | nnodes = int(f.readline())
74 | nodes = np.zeros((nnodes, 3))
75 | for n in np.arange(nnodes):
76 | tmp = re.split(r' ', f.readline())
77 | nodes[n, 0] = tmp[1]
78 | nodes[n, 1] = tmp[2]
79 | nodes[n, 2] = tmp[3]
80 |
81 | break
82 | f.close()
83 | return nodes
84 |
85 | except OSError as err:
86 | print("OS error: {0}".format(err))
87 | except ValueError:
88 | print("Could not convert data to an integer.")
89 | except BaseException:
90 | print("Unexpected error:", sys.exc_info()[0])
91 | raise
92 |
93 | def getNumberOfElements(self, eltype=0):
94 | try:
95 | f = open(self.filename, 'r')
96 | for line in f:
97 | if line.startswith('$Elements'):
98 | nelem = int(f.readline())
99 | if eltype != 0:
100 | nel = 0
101 | for n in np.arange(nelem):
102 | tmp = re.split(r' ', f.readline())
103 | if eltype == int(tmp[1]):
104 | nel += 1
105 | nelem = nel
106 | break
107 | f.close()
108 | return nelem
109 | except OSError as err:
110 | print("OS error: {0}".format(err))
111 | except ValueError:
112 | print("Could not convert data to an integer.")
113 | except BaseException:
114 | print("Unexpected error:", sys.exc_info()[0])
115 | raise
116 |
117 | def readTriangleElements(self):
118 | try:
119 | f = open(self.filename, 'r')
120 | for line in f:
121 | if line.startswith('$Elements'):
122 | nelem = int(f.readline())
123 | triangles = np.ndarray((nelem, 3), dtype=np.int64)
124 | nt = 0
125 | for n in np.arange(nelem):
126 | tmp = re.split(r' ', f.readline())
127 | if tmp[1] == '2':
128 | nTags = int(tmp[2])
129 | triangles[nt, 0] = tmp[nTags+3]
130 | triangles[nt, 1] = tmp[nTags+4]
131 | triangles[nt, 2] = tmp[nTags+5]
132 | nt += 1
133 | break
134 | return triangles[:nt, :]-1 # indices start at 0 in python
135 |
136 | except OSError as err:
137 | print("OS error: {0}".format(err))
138 | except ValueError:
139 | print("Could not convert data to an integer.")
140 | except BaseException:
141 | print("Unexpected error:", sys.exc_info()[0])
142 | raise
143 |
144 | def readTetraherdonElements(self):
145 | try:
146 | f = open(self.filename, 'r')
147 | for line in f:
148 | if line.startswith('$Elements'):
149 | nelem = int(f.readline())
150 | tetrahedra = np.ndarray((nelem, 4), dtype=np.int64)
151 | nt = 0
152 | for n in np.arange(nelem):
153 | tmp = re.split(r' ', f.readline())
154 | if tmp[1] == '4':
155 | nTags = int(tmp[2])
156 | tetrahedra[nt, 0] = tmp[nTags+3]
157 | tetrahedra[nt, 1] = tmp[nTags+4]
158 | tetrahedra[nt, 2] = tmp[nTags+5]
159 | tetrahedra[nt, 3] = tmp[nTags+6]
160 | nt += 1
161 | break
162 | return tetrahedra[:nt, :]-1 # indices start at 0 in python
163 |
164 | except OSError as err:
165 | print("OS error: {0}".format(err))
166 | except ValueError:
167 | print("Could not convert data to an integer.")
168 | except BaseException:
169 | print("Unexpected error:", sys.exc_info()[0])
170 | raise
171 |
172 | def readTetraherdonPhysicalEntities(self):
173 | try:
174 | f = open(self.filename, 'r')
175 | for line in f:
176 | if line.startswith('$Elements'):
177 | nelem = int(f.readline())
178 | PhysicalEnteties = np.zeros((nelem, 1))
179 | for n in range(nelem):
180 | tmp = re.split(r' ', f.readline())
181 | PhysicalEnteties[n, 0] = int(tmp[3])
182 | break
183 | return PhysicalEnteties
184 |
185 | except OSError as err:
186 | print("OS error: {0}".format(err))
187 | except ValueError:
188 | print("Could not convert data to an integer.")
189 | except BaseException:
190 | print("Unexpected error:", sys.exc_info()[0])
191 | raise
192 |
193 |
194 | class Mesh:
195 | """
196 | Superclass for 2D and 3D Meshes
197 | """
198 | def __init__(self):
199 | self.nodes = np.ndarray([])
200 | # can be triangles (2D/3D) or tetrahedra (3D)
201 | self.cells = np.ndarray([])
202 |
203 | def getNumberOfNodes(self):
204 | return self.nodes.shape[0]
205 |
206 | def getNumberOfCells(self):
207 | return self.cells.shape[0]
208 |
209 |
210 | class meshTriangle3D(Mesh):
211 | def __init__(self, nod, tri):
212 | self.cells = np.array(tri)
213 | itr = np.unique(tri)
214 | for n in np.arange(itr.size):
215 | i, j = np.nonzero(tri == itr[n])
216 | self.cells[i, j] = n
217 | self.nodes = np.array(nod[itr, :])
218 |
219 | def projz(self, pt):
220 | ind = self.ni(pt)
221 | if np.size(ind) > 0:
222 | return np.array(self.nodes[ind, :])
223 | else:
224 | p = np.array(pt)
225 | p[2] = 0.0
226 |
227 | d = np.sqrt((self.nodes[:, 0]-p[0])**2 +
228 | (self.nodes[:, 1]-p[1])**2)
229 | iclosest = np.argmin(d)
230 | # find second closest
231 | d[iclosest] *= 1e6
232 | isecond = np.argmin(d)
233 | # find next closest
234 | d[isecond] *= 1e6
235 | ithird = np.argmin(d)
236 | itri, jtri = np.nonzero(np.logical_or(np.logical_or(
237 | self.cells == iclosest, self.cells == isecond),
238 | self.cells == ithird))
239 |
240 | for i in itri:
241 | a = np.array(self.nodes[self.cells[i, 0], :])
242 | b = np.array(self.nodes[self.cells[i, 1], :])
243 | c = np.array(self.nodes[self.cells[i, 2], :])
244 | a[2] = 0.0
245 | b[2] = 0.0
246 | c[2] = 0.0
247 | if meshTriangle3D.insideTriangle(p, a, b, c) is True:
248 | a[:] = self.nodes[self.cells[i, 0], :]
249 | b[:] = self.nodes[self.cells[i, 1], :]
250 | c[:] = self.nodes[self.cells[i, 2], :]
251 | # make sure pt is below mesh
252 | p[2] = np.min(self.nodes[:, 2]) - 100.0
253 | # now project vertically
254 | v = np.array([0.0, 0.0, 1.0]) # point upward
255 | pa = a-p
256 | pb = b-p
257 | pc = c-p
258 |
259 | A = np.vstack((pa, pb, pc)).T
260 | x = np.linalg.solve(A, v)
261 | G = (x[0]*a + x[1]*b + x[2]*c)/np.sum(x)
262 | return G
263 | else:
264 |
265 | import matplotlib.pyplot as plt
266 | fig = plt.figure()
267 | ax = fig.add_subplot(1, 1, 1)
268 | ax.plot(p[0], p[1], 'rv')
269 | ax.axis('equal')
270 | ax.hold(True)
271 | ax.plot(self.nodes[iclosest, 0], self.nodes[iclosest, 1], 'ko')
272 | for i in itri:
273 | a = np.array(self.nodes[self.cells[i, 0], :])
274 | b = np.array(self.nodes[self.cells[i, 1], :])
275 | c = np.array(self.nodes[self.cells[i, 2], :])
276 | a[2] = 0.0
277 | b[2] = 0.0
278 | c[2] = 0.0
279 | ax.plot([a[0], b[0], c[0], a[0]], [a[1], b[1], c[1], a[1]])
280 | ax.hold(False)
281 | plt.show()
282 |
283 | print('Houston! We have a problem')
284 |
285 | def ni(self, pt):
286 | """
287 | Check if pt is one of the nodes
288 | """
289 | ind = []
290 | for n in np.arange(self.nodes.shape[0]):
291 | if np.sqrt(np.sum((self.nodes[n, :]-pt)**2)) < 1.0e-5:
292 | ind.append(n)
293 | return ind
294 |
295 | def getVtkUnstructuredGrid(self):
296 | tPts = vtk.vtkPoints()
297 | ugrid = vtk.vtkUnstructuredGrid()
298 | tPts.SetNumberOfPoints(self.nodes.shape[0])
299 | for n in np.arange(self.nodes.shape[0]):
300 | tPts.InsertPoint(n, self.nodes[n, 0], self.nodes[n, 1],
301 | self.nodes[n, 2])
302 | ugrid.SetPoints(tPts)
303 | tri = vtk.vtkTriangle()
304 | for n in np.arange(self.cells.shape[0]):
305 | tri.GetPointIds().SetId(0, self.cells[n, 0])
306 | tri.GetPointIds().SetId(1, self.cells[n, 1])
307 | tri.GetPointIds().SetId(2, self.cells[n, 2])
308 | ugrid.InsertNextCell(tri.GetCellType(), tri.GetPointIds())
309 | return ugrid
310 |
311 | @staticmethod
312 | @numba.jit(forceobj=True)
313 | def insideTriangle(p, a, b, c):
314 | a -= p
315 | b -= p
316 | c -= p
317 | u = np.cross(b, c)
318 | v = np.cross(c, a)
319 | if np.dot(u, v) < (-1.0e-5):
320 | return False
321 | w = np.cross(a, b)
322 | if np.dot(u, w) < (-1.0e-5):
323 | return False
324 | return True
325 |
326 |
327 | class MeshTetrahedra(Mesh):
328 |
329 | def __init__(self, nthreads=1):
330 | Mesh.__init__(self)
331 | self.nthreads = nthreads
332 | self.cmesh = None
333 |
334 | @numba.jit(nopython=True)
335 | def buildFromMSH(self, filename):
336 | reader = MSHReader(filename)
337 | nodes = reader.readNodes()
338 | tet = reader.readTetraherdonElements()
339 | self.cells = np.array(tet)
340 | itet = np.unique(tet)
341 | for n in np.arange(itet.size):
342 | i, j = np.nonzero(tet == itet[n])
343 | self.cells[i, j] = n
344 | self.nodes = np.array(nodes[itet, :])
345 |
--------------------------------------------------------------------------------
/examples/CalibData_P.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn arrival times rcv_index X Y Z
3 | 1 0.06298331 1 305.30000 5723.72000 0.73790
4 | 1 0.07147777 2 305.30000 5723.72000 0.73790
5 | 1 0.06084708 3 305.30000 5723.72000 0.73790
6 | 1 0.06292103 4 305.30000 5723.72000 0.73790
7 | 1 0.06001191 5 305.30000 5723.72000 0.73790
8 | 1 0.07094856 6 305.30000 5723.72000 0.73790
9 | 1 0.07979090 7 305.30000 5723.72000 0.73790
10 | 1 0.06588674 8 305.30000 5723.72000 0.73790
11 | 1 0.05380338 9 305.30000 5723.72000 0.73790
12 | 1 0.04486971 10 305.30000 5723.72000 0.73790
13 | 1 0.03461787 11 305.30000 5723.72000 0.73790
14 | 1 0.06390624 12 305.30000 5723.72000 0.73790
15 | 1 0.05703691 13 305.30000 5723.72000 0.73790
16 | 1 0.05505571 14 305.30000 5723.72000 0.73790
17 | 1 0.07540600 15 305.30000 5723.72000 0.73790
18 | 1 0.07437530 16 305.30000 5723.72000 0.73790
19 | 2 0.04669911 1 305.30000 5723.82000 0.74590
20 | 2 0.05555031 2 305.30000 5723.82000 0.74590
21 | 2 0.04690266 3 305.30000 5723.82000 0.74590
22 | 2 0.04712566 4 305.30000 5723.82000 0.74590
23 | 2 0.04091855 5 305.30000 5723.82000 0.74590
24 | 2 0.05093419 6 305.30000 5723.82000 0.74590
25 | 2 0.05867240 7 305.30000 5723.82000 0.74590
26 | 2 0.04520147 8 305.30000 5723.82000 0.74590
27 | 2 0.03373421 9 305.30000 5723.82000 0.74590
28 | 2 0.02380422 10 305.30000 5723.82000 0.74590
29 | 2 0.01491129 11 305.30000 5723.82000 0.74590
30 | 2 0.04205752 12 305.30000 5723.82000 0.74590
31 | 2 0.04021006 13 305.30000 5723.82000 0.74590
32 | 2 0.03877258 14 305.30000 5723.82000 0.74590
33 | 2 0.05728828 15 305.30000 5723.82000 0.74590
34 | 2 0.05858971 16 305.30000 5723.82000 0.74590
35 | 3 0.04011356 1 305.25000 5723.92000 0.74200
36 | 3 0.04644539 2 305.25000 5723.92000 0.74200
37 | 3 0.04428601 3 305.25000 5723.92000 0.74200
38 | 3 0.04548776 4 305.25000 5723.92000 0.74200
39 | 3 0.03249426 5 305.25000 5723.92000 0.74200
40 | 3 0.03913207 6 305.25000 5723.92000 0.74200
41 | 3 0.04486207 7 305.25000 5723.92000 0.74200
42 | 3 0.03164594 8 305.25000 5723.92000 0.74200
43 | 3 0.01753912 9 305.25000 5723.92000 0.74200
44 | 3 0.01278999 10 305.25000 5723.92000 0.74200
45 | 3 0.01387801 11 305.25000 5723.92000 0.74200
46 | 3 0.02469472 12 305.25000 5723.92000 0.74200
47 | 3 0.03415135 13 305.25000 5723.92000 0.74200
48 | 3 0.03645592 14 305.25000 5723.92000 0.74200
49 | 3 0.05147483 15 305.25000 5723.92000 0.74200
50 | 3 0.05277379 16 305.25000 5723.92000 0.74200
51 | 4 0.03592231 1 305.25000 5724.02000 0.72900
52 | 4 0.03870016 2 305.25000 5724.02000 0.72900
53 | 4 0.04401576 3 305.25000 5724.02000 0.72900
54 | 4 0.04537585 4 305.25000 5724.02000 0.72900
55 | 4 0.02755017 5 305.25000 5724.02000 0.72900
56 | 4 0.02828579 6 305.25000 5724.02000 0.72900
57 | 4 0.03153670 7 305.25000 5724.02000 0.72900
58 | 4 0.02118881 8 305.25000 5724.02000 0.72900
59 | 4 0.01461225 9 305.25000 5724.02000 0.72900
60 | 4 0.02151860 10 305.25000 5724.02000 0.72900
61 | 4 0.02922548 11 305.25000 5724.02000 0.72900
62 | 4 0.01231873 12 305.25000 5724.02000 0.72900
63 | 4 0.03301383 13 305.25000 5724.02000 0.72900
64 | 4 0.03739169 14 305.25000 5724.02000 0.72900
65 | 4 0.04362246 15 305.25000 5724.02000 0.72900
66 | 4 0.04530405 16 305.25000 5724.02000 0.72900
67 | 5 0.03500299 1 305.30000 5724.12000 0.69710
68 | 5 0.03214833 2 305.30000 5724.12000 0.69710
69 | 5 0.04333186 3 305.30000 5724.12000 0.69710
70 | 5 0.04486920 4 305.30000 5724.12000 0.69710
71 | 5 0.02930966 5 305.30000 5724.12000 0.69710
72 | 5 0.02261673 6 305.30000 5724.12000 0.69710
73 | 5 0.01682816 7 305.30000 5724.12000 0.69710
74 | 5 0.02078643 8 305.30000 5724.12000 0.69710
75 | 5 0.02995034 9 305.30000 5724.12000 0.69710
76 | 5 0.03947377 10 305.30000 5724.12000 0.69710
77 | 5 0.04857442 11 305.30000 5724.12000 0.69710
78 | 5 0.01975324 12 305.30000 5724.12000 0.69710
79 | 5 0.03584849 13 305.30000 5724.12000 0.69710
80 | 5 0.04028266 14 305.30000 5724.12000 0.69710
81 | 5 0.03500509 15 305.30000 5724.12000 0.69710
82 | 5 0.03758569 16 305.30000 5724.12000 0.69710
83 | 6 0.05060452 1 305.30000 5724.22000 0.66115
84 | 6 0.04551258 2 305.30000 5724.22000 0.66115
85 | 6 0.05977814 3 305.30000 5724.22000 0.66115
86 | 6 0.06001719 4 305.30000 5724.22000 0.66115
87 | 6 0.04748507 5 305.30000 5724.22000 0.66115
88 | 6 0.03899186 6 305.30000 5724.22000 0.66115
89 | 6 0.03162831 7 305.30000 5724.22000 0.66115
90 | 6 0.04036446 8 305.30000 5724.22000 0.66115
91 | 6 0.05053324 9 305.30000 5724.22000 0.66115
92 | 6 0.06072718 10 305.30000 5724.22000 0.66115
93 | 6 0.07043349 11 305.30000 5724.22000 0.66115
94 | 6 0.04209257 12 305.30000 5724.22000 0.66115
95 | 6 0.05358609 13 305.30000 5724.22000 0.66115
96 | 6 0.05908628 14 305.30000 5724.22000 0.66115
97 | 6 0.04663226 15 305.30000 5724.22000 0.66115
98 | 6 0.04712890 16 305.30000 5724.22000 0.66115
99 | 7 0.05867056 1 305.40000 5723.72000 0.66239
100 | 7 0.06527883 2 305.40000 5723.72000 0.66239
101 | 7 0.05084852 3 305.40000 5723.72000 0.66239
102 | 7 0.05200865 4 305.40000 5723.72000 0.66239
103 | 7 0.05805930 5 305.40000 5723.72000 0.66239
104 | 7 0.06580345 6 305.40000 5723.72000 0.66239
105 | 7 0.07749594 7 305.40000 5723.72000 0.66239
106 | 7 0.06491086 8 305.40000 5723.72000 0.66239
107 | 7 0.05830399 9 305.40000 5723.72000 0.66239
108 | 7 0.05020799 10 305.40000 5723.72000 0.66239
109 | 7 0.04221812 11 305.40000 5723.72000 0.66239
110 | 7 0.06589450 12 305.40000 5723.72000 0.66239
111 | 7 0.05447225 13 305.40000 5723.72000 0.66239
112 | 7 0.04975478 14 305.40000 5723.72000 0.66239
113 | 7 0.06823205 15 305.40000 5723.72000 0.66239
114 | 7 0.06608218 16 305.40000 5723.72000 0.66239
115 | 8 0.03750109 1 305.40000 5723.82000 0.68600
116 | 8 0.04579442 2 305.40000 5723.82000 0.68600
117 | 8 0.03192408 3 305.40000 5723.82000 0.68600
118 | 8 0.03219293 4 305.40000 5723.82000 0.68600
119 | 8 0.03789515 5 305.40000 5723.82000 0.68600
120 | 8 0.04689045 6 305.40000 5723.82000 0.68600
121 | 8 0.05714827 7 305.40000 5723.82000 0.68600
122 | 8 0.04541846 8 305.40000 5723.82000 0.68600
123 | 8 0.03949773 9 305.40000 5723.82000 0.68600
124 | 8 0.03109106 10 305.40000 5723.82000 0.68600
125 | 8 0.02567526 11 305.40000 5723.82000 0.68600
126 | 8 0.04759844 12 305.40000 5723.82000 0.68600
127 | 8 0.03372228 13 305.40000 5723.82000 0.68600
128 | 8 0.02920141 14 305.40000 5723.82000 0.68600
129 | 8 0.04716024 15 305.40000 5723.82000 0.68600
130 | 8 0.04724429 16 305.40000 5723.82000 0.68600
131 | 9 0.04690844 1 305.40000 5724.22000 0.61710
132 | 9 0.03945527 2 305.40000 5724.22000 0.61710
133 | 9 0.05160449 3 305.40000 5724.22000 0.61710
134 | 9 0.05413947 4 305.40000 5724.22000 0.61710
135 | 9 0.04797761 5 305.40000 5724.22000 0.61710
136 | 9 0.03916757 6 305.40000 5724.22000 0.61710
137 | 9 0.02956221 7 305.40000 5724.22000 0.61710
138 | 9 0.04455331 8 305.40000 5724.22000 0.61710
139 | 9 0.05652249 9 305.40000 5724.22000 0.61710
140 | 9 0.06690784 10 305.40000 5724.22000 0.61710
141 | 9 0.07422947 11 305.40000 5724.22000 0.61710
142 | 9 0.05002480 12 305.40000 5724.22000 0.61710
143 | 9 0.05265489 13 305.40000 5724.22000 0.61710
144 | 9 0.05545214 14 305.40000 5724.22000 0.61710
145 | 9 0.03770097 15 305.40000 5724.22000 0.61710
146 | 9 0.03920703 16 305.40000 5724.22000 0.61710
147 | 10 0.06233293 1 305.50000 5723.72000 0.58456
148 | 10 0.06929285 2 305.50000 5723.72000 0.58456
149 | 10 0.05426468 3 305.50000 5723.72000 0.58456
150 | 10 0.05429195 4 305.50000 5723.72000 0.58456
151 | 10 0.06641186 5 305.50000 5723.72000 0.58456
152 | 10 0.07580966 6 305.50000 5723.72000 0.58456
153 | 10 0.08184796 7 305.50000 5723.72000 0.58456
154 | 10 0.07432840 8 305.50000 5723.72000 0.58456
155 | 10 0.07136943 9 305.50000 5723.72000 0.58456
156 | 10 0.06572531 10 305.50000 5723.72000 0.58456
157 | 10 0.06199618 11 305.50000 5723.72000 0.58456
158 | 10 0.08058880 12 305.50000 5723.72000 0.58456
159 | 10 0.06300320 13 305.50000 5723.72000 0.58456
160 | 10 0.05829016 14 305.50000 5723.72000 0.58456
161 | 10 0.06792763 15 305.50000 5723.72000 0.58456
162 | 10 0.06883975 16 305.50000 5723.72000 0.58456
163 | 11 0.04550035 1 305.50000 5723.82000 0.58464
164 | 11 0.05213677 2 305.50000 5723.82000 0.58464
165 | 11 0.03588804 3 305.50000 5723.82000 0.58464
166 | 11 0.03557698 4 305.50000 5723.82000 0.58464
167 | 11 0.05152091 5 305.50000 5723.82000 0.58464
168 | 11 0.05710678 6 305.50000 5723.82000 0.58464
169 | 11 0.06454181 7 305.50000 5723.82000 0.58464
170 | 11 0.06029991 8 305.50000 5723.82000 0.58464
171 | 11 0.05919089 9 305.50000 5723.82000 0.58464
172 | 11 0.05548442 10 305.50000 5723.82000 0.58464
173 | 11 0.05407860 11 305.50000 5723.82000 0.58464
174 | 11 0.06570348 12 305.50000 5723.82000 0.58464
175 | 11 0.04515465 13 305.50000 5723.82000 0.58464
176 | 11 0.04119713 14 305.50000 5723.82000 0.58464
177 | 11 0.04844985 15 305.50000 5723.82000 0.58464
178 | 11 0.04779555 16 305.50000 5723.82000 0.58464
179 | 12 0.03315771 1 305.50000 5723.92000 0.59150
180 | 12 0.03595639 2 305.50000 5723.92000 0.59150
181 | 12 0.02142781 3 305.50000 5723.92000 0.59150
182 | 12 0.02264537 4 305.50000 5723.92000 0.59150
183 | 12 0.04062058 5 305.50000 5723.92000 0.59150
184 | 12 0.04321756 6 305.50000 5723.92000 0.59150
185 | 12 0.04920078 7 305.50000 5723.92000 0.59150
186 | 12 0.04789249 8 305.50000 5723.92000 0.59150
187 | 12 0.05318062 9 305.50000 5723.92000 0.59150
188 | 12 0.05226964 10 305.50000 5723.92000 0.59150
189 | 12 0.05226150 11 305.50000 5723.92000 0.59150
190 | 12 0.05375564 12 305.50000 5723.92000 0.59150
191 | 12 0.03595492 13 305.50000 5723.92000 0.59150
192 | 12 0.03146661 14 305.50000 5723.92000 0.59150
193 | 12 0.03095984 15 305.50000 5723.92000 0.59150
194 | 12 0.03155286 16 305.50000 5723.92000 0.59150
195 | 13 0.02837989 1 305.50000 5724.02000 0.57640
196 | 13 0.02503040 2 305.50000 5724.02000 0.57640
197 | 13 0.02192620 3 305.50000 5724.02000 0.57640
198 | 13 0.02354090 4 305.50000 5724.02000 0.57640
199 | 13 0.03682525 5 305.50000 5724.02000 0.57640
200 | 13 0.03542009 6 305.50000 5724.02000 0.57640
201 | 13 0.03633684 7 305.50000 5724.02000 0.57640
202 | 13 0.04146099 8 305.50000 5724.02000 0.57640
203 | 13 0.05134241 9 305.50000 5724.02000 0.57640
204 | 13 0.05502266 10 305.50000 5724.02000 0.57640
205 | 13 0.05775031 11 305.50000 5724.02000 0.57640
206 | 13 0.05083866 12 305.50000 5724.02000 0.57640
207 | 13 0.03352819 13 305.50000 5724.02000 0.57640
208 | 13 0.03250943 14 305.50000 5724.02000 0.57640
209 | 13 0.01805487 15 305.50000 5724.02000 0.57640
210 | 13 0.01846926 16 305.50000 5724.02000 0.57640
211 | 14 0.04000030 1 305.50000 5724.12000 0.55637
212 | 14 0.03254618 2 305.50000 5724.12000 0.55637
213 | 14 0.03891341 3 305.50000 5724.12000 0.55637
214 | 14 0.04030521 4 305.50000 5724.12000 0.55637
215 | 14 0.04634667 5 305.50000 5724.12000 0.55637
216 | 14 0.03966014 6 305.50000 5724.12000 0.55637
217 | 14 0.03709270 7 305.50000 5724.12000 0.55637
218 | 14 0.04768150 8 305.50000 5724.12000 0.55637
219 | 14 0.05977781 9 305.50000 5724.12000 0.55637
220 | 14 0.06479002 10 305.50000 5724.12000 0.55637
221 | 14 0.07286340 11 305.50000 5724.12000 0.55637
222 | 14 0.05565222 12 305.50000 5724.12000 0.55637
223 | 14 0.04525390 13 305.50000 5724.12000 0.55637
224 | 14 0.04660769 14 305.50000 5724.12000 0.55637
225 | 14 0.02536543 15 305.50000 5724.12000 0.55637
226 | 14 0.02667829 16 305.50000 5724.12000 0.55637
227 | 15 0.05858426 1 305.50000 5724.22000 0.51364
228 | 15 0.05041236 2 305.50000 5724.22000 0.51364
229 | 15 0.05819542 3 305.50000 5724.22000 0.51364
230 | 15 0.06202189 4 305.50000 5724.22000 0.51364
231 | 15 0.06435824 5 305.50000 5724.22000 0.51364
232 | 15 0.05773159 6 305.50000 5724.22000 0.51364
233 | 15 0.05066777 7 305.50000 5724.22000 0.51364
234 | 15 0.06509384 8 305.50000 5724.22000 0.51364
235 | 15 0.07684277 9 305.50000 5724.22000 0.51364
236 | 15 0.08241468 10 305.50000 5724.22000 0.51364
237 | 15 0.09002795 11 305.50000 5724.22000 0.51364
238 | 15 0.07116990 12 305.50000 5724.22000 0.51364
239 | 15 0.06458842 13 305.50000 5724.22000 0.51364
240 | 15 0.06712819 14 305.50000 5724.22000 0.51364
241 | 15 0.04519520 15 305.50000 5724.22000 0.51364
242 | 15 0.04538984 16 305.50000 5724.22000 0.51364
243 |
--------------------------------------------------------------------------------
/examples/CalibData_PS.dat:
--------------------------------------------------------------------------------
1 | # Synthetic data
2 | Ev_idn arrival times rcv_index X Y Z Type
3 | 1 0.06459766 1 305.30000 5723.72000 0.73790 P
4 | 1 0.06134658 2 305.30000 5723.72000 0.73790 P
5 | 1 0.06117391 3 305.30000 5723.72000 0.73790 P
6 | 1 0.06519088 4 305.30000 5723.72000 0.73790 P
7 | 1 0.06178628 5 305.30000 5723.72000 0.73790 P
8 | 1 0.06749500 6 305.30000 5723.72000 0.73790 P
9 | 1 0.08065004 7 305.30000 5723.72000 0.73790 P
10 | 1 0.06218955 8 305.30000 5723.72000 0.73790 P
11 | 1 0.04856200 9 305.30000 5723.72000 0.73790 P
12 | 1 0.04366245 10 305.30000 5723.72000 0.73790 P
13 | 1 0.03503986 11 305.30000 5723.72000 0.73790 P
14 | 1 0.06211979 12 305.30000 5723.72000 0.73790 P
15 | 1 0.05575735 13 305.30000 5723.72000 0.73790 P
16 | 1 0.05542487 14 305.30000 5723.72000 0.73790 P
17 | 1 0.06500201 15 305.30000 5723.72000 0.73790 P
18 | 1 0.07852178 16 305.30000 5723.72000 0.73790 P
19 | 1 0.11380252 1 305.30000 5723.72000 0.73790 S
20 | 1 0.12705192 2 305.30000 5723.72000 0.73790 S
21 | 1 0.10403020 3 305.30000 5723.72000 0.73790 S
22 | 1 0.10621987 4 305.30000 5723.72000 0.73790 S
23 | 1 0.10720123 5 305.30000 5723.72000 0.73790 S
24 | 1 0.12544055 6 305.30000 5723.72000 0.73790 S
25 | 1 0.14174719 7 305.30000 5723.72000 0.73790 S
26 | 1 0.12854535 8 305.30000 5723.72000 0.73790 S
27 | 1 0.09853318 9 305.30000 5723.72000 0.73790 S
28 | 1 0.07845230 10 305.30000 5723.72000 0.73790 S
29 | 1 0.06224539 11 305.30000 5723.72000 0.73790 S
30 | 1 0.11366922 12 305.30000 5723.72000 0.73790 S
31 | 1 0.09856338 13 305.30000 5723.72000 0.73790 S
32 | 1 0.09674348 14 305.30000 5723.72000 0.73790 S
33 | 1 0.13822645 15 305.30000 5723.72000 0.73790 S
34 | 1 0.14120478 16 305.30000 5723.72000 0.73790 S
35 | 2 0.04583879 1 305.30000 5723.82000 0.74590 P
36 | 2 0.05600698 2 305.30000 5723.82000 0.74590 P
37 | 2 0.04647147 3 305.30000 5723.82000 0.74590 P
38 | 2 0.04403279 4 305.30000 5723.82000 0.74590 P
39 | 2 0.04309596 5 305.30000 5723.82000 0.74590 P
40 | 2 0.05067193 6 305.30000 5723.82000 0.74590 P
41 | 2 0.05890868 7 305.30000 5723.82000 0.74590 P
42 | 2 0.04240683 8 305.30000 5723.82000 0.74590 P
43 | 2 0.03503503 9 305.30000 5723.82000 0.74590 P
44 | 2 0.02600177 10 305.30000 5723.82000 0.74590 P
45 | 2 0.01587760 11 305.30000 5723.82000 0.74590 P
46 | 2 0.04028536 12 305.30000 5723.82000 0.74590 P
47 | 2 0.03776434 13 305.30000 5723.82000 0.74590 P
48 | 2 0.03550346 14 305.30000 5723.82000 0.74590 P
49 | 2 0.05636701 15 305.30000 5723.82000 0.74590 P
50 | 2 0.05417588 16 305.30000 5723.82000 0.74590 P
51 | 2 0.08901208 1 305.30000 5723.82000 0.74590 S
52 | 2 0.09252573 2 305.30000 5723.82000 0.74590 S
53 | 2 0.07888856 3 305.30000 5723.82000 0.74590 S
54 | 2 0.09206732 4 305.30000 5723.82000 0.74590 S
55 | 2 0.06210329 5 305.30000 5723.82000 0.74590 S
56 | 2 0.09102017 6 305.30000 5723.82000 0.74590 S
57 | 2 0.10685247 7 305.30000 5723.82000 0.74590 S
58 | 2 0.08154244 8 305.30000 5723.82000 0.74590 S
59 | 2 0.05920716 9 305.30000 5723.82000 0.74590 S
60 | 2 0.04667032 10 305.30000 5723.82000 0.74590 S
61 | 2 0.02714759 11 305.30000 5723.82000 0.74590 S
62 | 2 0.07505335 12 305.30000 5723.82000 0.74590 S
63 | 2 0.07861031 13 305.30000 5723.82000 0.74590 S
64 | 2 0.07267032 14 305.30000 5723.82000 0.74590 S
65 | 2 0.11298677 15 305.30000 5723.82000 0.74590 S
66 | 2 0.10834732 16 305.30000 5723.82000 0.74590 S
67 | 3 0.03906395 1 305.25000 5723.92000 0.74200 P
68 | 3 0.04445072 2 305.25000 5723.92000 0.74200 P
69 | 3 0.04357199 3 305.25000 5723.92000 0.74200 P
70 | 3 0.04529075 4 305.25000 5723.92000 0.74200 P
71 | 3 0.03043672 5 305.25000 5723.92000 0.74200 P
72 | 3 0.03533931 6 305.25000 5723.92000 0.74200 P
73 | 3 0.04592911 7 305.25000 5723.92000 0.74200 P
74 | 3 0.02938202 8 305.25000 5723.92000 0.74200 P
75 | 3 0.01827486 9 305.25000 5723.92000 0.74200 P
76 | 3 0.01137268 10 305.25000 5723.92000 0.74200 P
77 | 3 0.01378702 11 305.25000 5723.92000 0.74200 P
78 | 3 0.02653638 12 305.25000 5723.92000 0.74200 P
79 | 3 0.03285814 13 305.25000 5723.92000 0.74200 P
80 | 3 0.03892386 14 305.25000 5723.92000 0.74200 P
81 | 3 0.04797249 15 305.25000 5723.92000 0.74200 P
82 | 3 0.05274496 16 305.25000 5723.92000 0.74200 P
83 | 3 0.07691079 1 305.25000 5723.92000 0.74200 S
84 | 3 0.08636371 2 305.25000 5723.92000 0.74200 S
85 | 3 0.08239946 3 305.25000 5723.92000 0.74200 S
86 | 3 0.08909977 4 305.25000 5723.92000 0.74200 S
87 | 3 0.05707007 5 305.25000 5723.92000 0.74200 S
88 | 3 0.06924369 6 305.25000 5723.92000 0.74200 S
89 | 3 0.08527107 7 305.25000 5723.92000 0.74200 S
90 | 3 0.06153571 8 305.25000 5723.92000 0.74200 S
91 | 3 0.03216817 9 305.25000 5723.92000 0.74200 S
92 | 3 0.02315430 10 305.25000 5723.92000 0.74200 S
93 | 3 0.02436139 11 305.25000 5723.92000 0.74200 S
94 | 3 0.04798529 12 305.25000 5723.92000 0.74200 S
95 | 3 0.06140781 13 305.25000 5723.92000 0.74200 S
96 | 3 0.06959629 14 305.25000 5723.92000 0.74200 S
97 | 3 0.09392387 15 305.25000 5723.92000 0.74200 S
98 | 3 0.10081531 16 305.25000 5723.92000 0.74200 S
99 | 4 0.03699582 1 305.25000 5724.02000 0.72900 P
100 | 4 0.03767438 2 305.25000 5724.02000 0.72900 P
101 | 4 0.04392433 3 305.25000 5724.02000 0.72900 P
102 | 4 0.04530476 4 305.25000 5724.02000 0.72900 P
103 | 4 0.02725635 5 305.25000 5724.02000 0.72900 P
104 | 4 0.03013016 6 305.25000 5724.02000 0.72900 P
105 | 4 0.02958112 7 305.25000 5724.02000 0.72900 P
106 | 4 0.02008528 8 305.25000 5724.02000 0.72900 P
107 | 4 0.01382559 9 305.25000 5724.02000 0.72900 P
108 | 4 0.02244265 10 305.25000 5724.02000 0.72900 P
109 | 4 0.02856646 11 305.25000 5724.02000 0.72900 P
110 | 4 0.01240842 12 305.25000 5724.02000 0.72900 P
111 | 4 0.03157892 13 305.25000 5724.02000 0.72900 P
112 | 4 0.03614383 14 305.25000 5724.02000 0.72900 P
113 | 4 0.04057785 15 305.25000 5724.02000 0.72900 P
114 | 4 0.04303938 16 305.25000 5724.02000 0.72900 P
115 | 4 0.06988810 1 305.25000 5724.02000 0.72900 S
116 | 4 0.07124286 2 305.25000 5724.02000 0.72900 S
117 | 4 0.07114079 3 305.25000 5724.02000 0.72900 S
118 | 4 0.08811492 4 305.25000 5724.02000 0.72900 S
119 | 4 0.04815658 5 305.25000 5724.02000 0.72900 S
120 | 4 0.05058868 6 305.25000 5724.02000 0.72900 S
121 | 4 0.05287781 7 305.25000 5724.02000 0.72900 S
122 | 4 0.03744998 8 305.25000 5724.02000 0.72900 S
123 | 4 0.02437661 9 305.25000 5724.02000 0.72900 S
124 | 4 0.03903190 10 305.25000 5724.02000 0.72900 S
125 | 4 0.05398610 11 305.25000 5724.02000 0.72900 S
126 | 4 0.02442547 12 305.25000 5724.02000 0.72900 S
127 | 4 0.05355945 13 305.25000 5724.02000 0.72900 S
128 | 4 0.06626878 14 305.25000 5724.02000 0.72900 S
129 | 4 0.07837468 15 305.25000 5724.02000 0.72900 S
130 | 4 0.08228120 16 305.25000 5724.02000 0.72900 S
131 | 5 0.03502253 1 305.30000 5724.12000 0.69710 P
132 | 5 0.03173092 2 305.30000 5724.12000 0.69710 P
133 | 5 0.04453565 3 305.30000 5724.12000 0.69710 P
134 | 5 0.04842765 4 305.30000 5724.12000 0.69710 P
135 | 5 0.02895555 5 305.30000 5724.12000 0.69710 P
136 | 5 0.01996509 6 305.30000 5724.12000 0.69710 P
137 | 5 0.01678022 7 305.30000 5724.12000 0.69710 P
138 | 5 0.01933214 8 305.30000 5724.12000 0.69710 P
139 | 5 0.02849013 9 305.30000 5724.12000 0.69710 P
140 | 5 0.03712844 10 305.30000 5724.12000 0.69710 P
141 | 5 0.04322567 11 305.30000 5724.12000 0.69710 P
142 | 5 0.01937635 12 305.30000 5724.12000 0.69710 P
143 | 5 0.03437391 13 305.30000 5724.12000 0.69710 P
144 | 5 0.04272335 14 305.30000 5724.12000 0.69710 P
145 | 5 0.03453388 15 305.30000 5724.12000 0.69710 P
146 | 5 0.03519282 16 305.30000 5724.12000 0.69710 P
147 | 5 0.06174998 1 305.30000 5724.12000 0.69710 S
148 | 5 0.05682735 2 305.30000 5724.12000 0.69710 S
149 | 5 0.07818972 3 305.30000 5724.12000 0.69710 S
150 | 5 0.08447772 4 305.30000 5724.12000 0.69710 S
151 | 5 0.05369860 5 305.30000 5724.12000 0.69710 S
152 | 5 0.03804722 6 305.30000 5724.12000 0.69710 S
153 | 5 0.03068712 7 305.30000 5724.12000 0.69710 S
154 | 5 0.03931436 8 305.30000 5724.12000 0.69710 S
155 | 5 0.05503637 9 305.30000 5724.12000 0.69710 S
156 | 5 0.07213503 10 305.30000 5724.12000 0.69710 S
157 | 5 0.08839342 11 305.30000 5724.12000 0.69710 S
158 | 5 0.03539760 12 305.30000 5724.12000 0.69710 S
159 | 5 0.06157286 13 305.30000 5724.12000 0.69710 S
160 | 5 0.07426041 14 305.30000 5724.12000 0.69710 S
161 | 5 0.06032950 15 305.30000 5724.12000 0.69710 S
162 | 5 0.06835099 16 305.30000 5724.12000 0.69710 S
163 | 6 0.04566543 1 305.30000 5724.22000 0.66115 P
164 | 6 0.04624329 2 305.30000 5724.22000 0.66115 P
165 | 6 0.05123439 3 305.30000 5724.22000 0.66115 P
166 | 6 0.06267618 4 305.30000 5724.22000 0.66115 P
167 | 6 0.04740819 5 305.30000 5724.22000 0.66115 P
168 | 6 0.03534567 6 305.30000 5724.22000 0.66115 P
169 | 6 0.03040938 7 305.30000 5724.22000 0.66115 P
170 | 6 0.04043067 8 305.30000 5724.22000 0.66115 P
171 | 6 0.05143882 9 305.30000 5724.22000 0.66115 P
172 | 6 0.06028226 10 305.30000 5724.22000 0.66115 P
173 | 6 0.06598741 11 305.30000 5724.22000 0.66115 P
174 | 6 0.04117455 12 305.30000 5724.22000 0.66115 P
175 | 6 0.04876659 13 305.30000 5724.22000 0.66115 P
176 | 6 0.05464154 14 305.30000 5724.22000 0.66115 P
177 | 6 0.04474562 15 305.30000 5724.22000 0.66115 P
178 | 6 0.04606783 16 305.30000 5724.22000 0.66115 P
179 | 6 0.08571229 1 305.30000 5724.22000 0.66115 S
180 | 6 0.08091057 2 305.30000 5724.22000 0.66115 S
181 | 6 0.10201410 3 305.30000 5724.22000 0.66115 S
182 | 6 0.11368952 4 305.30000 5724.22000 0.66115 S
183 | 6 0.08504082 5 305.30000 5724.22000 0.66115 S
184 | 6 0.06870859 6 305.30000 5724.22000 0.66115 S
185 | 6 0.05441200 7 305.30000 5724.22000 0.66115 S
186 | 6 0.07468386 8 305.30000 5724.22000 0.66115 S
187 | 6 0.09246465 9 305.30000 5724.22000 0.66115 S
188 | 6 0.10319470 10 305.30000 5724.22000 0.66115 S
189 | 6 0.12288970 11 305.30000 5724.22000 0.66115 S
190 | 6 0.08325149 12 305.30000 5724.22000 0.66115 S
191 | 6 0.09846791 13 305.30000 5724.22000 0.66115 S
192 | 6 0.10795743 14 305.30000 5724.22000 0.66115 S
193 | 6 0.07926893 15 305.30000 5724.22000 0.66115 S
194 | 6 0.08711438 16 305.30000 5724.22000 0.66115 S
195 | 7 0.05517784 1 305.40000 5723.72000 0.66239 P
196 | 7 0.06489805 2 305.40000 5723.72000 0.66239 P
197 | 7 0.05165500 3 305.40000 5723.72000 0.66239 P
198 | 7 0.05182091 4 305.40000 5723.72000 0.66239 P
199 | 7 0.05285119 5 305.40000 5723.72000 0.66239 P
200 | 7 0.06804321 6 305.40000 5723.72000 0.66239 P
201 | 7 0.08160818 7 305.40000 5723.72000 0.66239 P
202 | 7 0.06468786 8 305.40000 5723.72000 0.66239 P
203 | 7 0.05469415 9 305.40000 5723.72000 0.66239 P
204 | 7 0.05088762 10 305.40000 5723.72000 0.66239 P
205 | 7 0.03754480 11 305.40000 5723.72000 0.66239 P
206 | 7 0.06309603 12 305.40000 5723.72000 0.66239 P
207 | 7 0.04506007 13 305.40000 5723.72000 0.66239 P
208 | 7 0.04881062 14 305.40000 5723.72000 0.66239 P
209 | 7 0.06455558 15 305.40000 5723.72000 0.66239 P
210 | 7 0.06067828 16 305.40000 5723.72000 0.66239 P
211 | 7 0.10330209 1 305.40000 5723.72000 0.66239 S
212 | 7 0.10901181 2 305.40000 5723.72000 0.66239 S
213 | 7 0.08862600 3 305.40000 5723.72000 0.66239 S
214 | 7 0.09220240 4 305.40000 5723.72000 0.66239 S
215 | 7 0.10119717 5 305.40000 5723.72000 0.66239 S
216 | 7 0.13163446 6 305.40000 5723.72000 0.66239 S
217 | 7 0.12842341 7 305.40000 5723.72000 0.66239 S
218 | 7 0.11487536 8 305.40000 5723.72000 0.66239 S
219 | 7 0.10592039 9 305.40000 5723.72000 0.66239 S
220 | 7 0.08521198 10 305.40000 5723.72000 0.66239 S
221 | 7 0.07799963 11 305.40000 5723.72000 0.66239 S
222 | 7 0.12044363 12 305.40000 5723.72000 0.66239 S
223 | 7 0.09757488 13 305.40000 5723.72000 0.66239 S
224 | 7 0.09055047 14 305.40000 5723.72000 0.66239 S
225 | 7 0.12373604 15 305.40000 5723.72000 0.66239 S
226 | 7 0.12471436 16 305.40000 5723.72000 0.66239 S
227 | 8 0.03485738 1 305.40000 5723.82000 0.68600 P
228 | 8 0.04718933 2 305.40000 5723.82000 0.68600 P
229 | 8 0.02987956 3 305.40000 5723.82000 0.68600 P
230 | 8 0.02923893 4 305.40000 5723.82000 0.68600 P
231 | 8 0.03501245 5 305.40000 5723.82000 0.68600 P
232 | 8 0.04246009 6 305.40000 5723.82000 0.68600 P
233 | 8 0.04904975 7 305.40000 5723.82000 0.68600 P
234 | 8 0.04308685 8 305.40000 5723.82000 0.68600 P
235 | 8 0.04022675 9 305.40000 5723.82000 0.68600 P
236 | 8 0.02853170 10 305.40000 5723.82000 0.68600 P
237 | 8 0.02511124 11 305.40000 5723.82000 0.68600 P
238 | 8 0.04871157 12 305.40000 5723.82000 0.68600 P
239 | 8 0.03255429 13 305.40000 5723.82000 0.68600 P
240 | 8 0.02834535 14 305.40000 5723.82000 0.68600 P
241 | 8 0.05083300 15 305.40000 5723.82000 0.68600 P
242 | 8 0.04606651 16 305.40000 5723.82000 0.68600 P
243 | 8 0.07261416 1 305.40000 5723.82000 0.68600 S
244 | 8 0.08097211 2 305.40000 5723.82000 0.68600 S
245 | 8 0.05440099 3 305.40000 5723.82000 0.68600 S
246 | 8 0.06259979 4 305.40000 5723.82000 0.68600 S
247 | 8 0.06854411 5 305.40000 5723.82000 0.68600 S
248 | 8 0.08408612 6 305.40000 5723.82000 0.68600 S
249 | 8 0.10085176 7 305.40000 5723.82000 0.68600 S
250 | 8 0.08304521 8 305.40000 5723.82000 0.68600 S
251 | 8 0.06634402 9 305.40000 5723.82000 0.68600 S
252 | 8 0.06310927 10 305.40000 5723.82000 0.68600 S
253 | 8 0.04843538 11 305.40000 5723.82000 0.68600 S
254 | 8 0.08365207 12 305.40000 5723.82000 0.68600 S
255 | 8 0.05939381 13 305.40000 5723.82000 0.68600 S
256 | 8 0.05999230 14 305.40000 5723.82000 0.68600 S
257 | 8 0.08942010 15 305.40000 5723.82000 0.68600 S
258 | 8 0.09236274 16 305.40000 5723.82000 0.68600 S
259 | 9 0.05042697 1 305.40000 5724.22000 0.61710 P
260 | 9 0.03900322 2 305.40000 5724.22000 0.61710 P
261 | 9 0.05449236 3 305.40000 5724.22000 0.61710 P
262 | 9 0.05383198 4 305.40000 5724.22000 0.61710 P
263 | 9 0.04676653 5 305.40000 5724.22000 0.61710 P
264 | 9 0.03475801 6 305.40000 5724.22000 0.61710 P
265 | 9 0.02887405 7 305.40000 5724.22000 0.61710 P
266 | 9 0.04170441 8 305.40000 5724.22000 0.61710 P
267 | 9 0.06065216 9 305.40000 5724.22000 0.61710 P
268 | 9 0.06406128 10 305.40000 5724.22000 0.61710 P
269 | 9 0.07630671 11 305.40000 5724.22000 0.61710 P
270 | 9 0.04646859 12 305.40000 5724.22000 0.61710 P
271 | 9 0.05436184 13 305.40000 5724.22000 0.61710 P
272 | 9 0.05910836 14 305.40000 5724.22000 0.61710 P
273 | 9 0.03652196 15 305.40000 5724.22000 0.61710 P
274 | 9 0.03554455 16 305.40000 5724.22000 0.61710 P
275 | 9 0.09172219 1 305.40000 5724.22000 0.61710 S
276 | 9 0.07602511 2 305.40000 5724.22000 0.61710 S
277 | 9 0.09332678 3 305.40000 5724.22000 0.61710 S
278 | 9 0.09607459 4 305.40000 5724.22000 0.61710 S
279 | 9 0.08786278 5 305.40000 5724.22000 0.61710 S
280 | 9 0.06893215 6 305.40000 5724.22000 0.61710 S
281 | 9 0.05466302 7 305.40000 5724.22000 0.61710 S
282 | 9 0.07984823 8 305.40000 5724.22000 0.61710 S
283 | 9 0.10008441 9 305.40000 5724.22000 0.61710 S
284 | 9 0.11704584 10 305.40000 5724.22000 0.61710 S
285 | 9 0.12751275 11 305.40000 5724.22000 0.61710 S
286 | 9 0.09346667 12 305.40000 5724.22000 0.61710 S
287 | 9 0.09752873 13 305.40000 5724.22000 0.61710 S
288 | 9 0.09328243 14 305.40000 5724.22000 0.61710 S
289 | 9 0.06954600 15 305.40000 5724.22000 0.61710 S
290 | 9 0.07698803 16 305.40000 5724.22000 0.61710 S
291 | 10 0.06535763 1 305.50000 5723.72000 0.58456 P
292 | 10 0.06647414 2 305.50000 5723.72000 0.58456 P
293 | 10 0.05345214 3 305.50000 5723.72000 0.58456 P
294 | 10 0.04885752 4 305.50000 5723.72000 0.58456 P
295 | 10 0.06532521 5 305.50000 5723.72000 0.58456 P
296 | 10 0.06934744 6 305.50000 5723.72000 0.58456 P
297 | 10 0.08172757 7 305.50000 5723.72000 0.58456 P
298 | 10 0.07284625 8 305.50000 5723.72000 0.58456 P
299 | 10 0.07286495 9 305.50000 5723.72000 0.58456 P
300 | 10 0.06477303 10 305.50000 5723.72000 0.58456 P
301 | 10 0.05963756 11 305.50000 5723.72000 0.58456 P
302 | 10 0.07196255 12 305.50000 5723.72000 0.58456 P
303 | 10 0.05959782 13 305.50000 5723.72000 0.58456 P
304 | 10 0.06000069 14 305.50000 5723.72000 0.58456 P
305 | 10 0.06723442 15 305.50000 5723.72000 0.58456 P
306 | 10 0.06690027 16 305.50000 5723.72000 0.58456 P
307 | 10 0.12198458 1 305.50000 5723.72000 0.58456 S
308 | 10 0.11453862 2 305.50000 5723.72000 0.58456 S
309 | 10 0.09173983 3 305.50000 5723.72000 0.58456 S
310 | 10 0.09277814 4 305.50000 5723.72000 0.58456 S
311 | 10 0.12207255 5 305.50000 5723.72000 0.58456 S
312 | 10 0.13599913 6 305.50000 5723.72000 0.58456 S
313 | 10 0.15003399 7 305.50000 5723.72000 0.58456 S
314 | 10 0.14140220 8 305.50000 5723.72000 0.58456 S
315 | 10 0.11989679 9 305.50000 5723.72000 0.58456 S
316 | 10 0.12107003 10 305.50000 5723.72000 0.58456 S
317 | 10 0.10370795 11 305.50000 5723.72000 0.58456 S
318 | 10 0.14271387 12 305.50000 5723.72000 0.58456 S
319 | 10 0.10775441 13 305.50000 5723.72000 0.58456 S
320 | 10 0.09754238 14 305.50000 5723.72000 0.58456 S
321 | 10 0.11378546 15 305.50000 5723.72000 0.58456 S
322 | 10 0.12315709 16 305.50000 5723.72000 0.58456 S
323 | 11 0.04514583 1 305.50000 5723.82000 0.58464 P
324 | 11 0.04949478 2 305.50000 5723.82000 0.58464 P
325 | 11 0.03437259 3 305.50000 5723.82000 0.58464 P
326 | 11 0.03724209 4 305.50000 5723.82000 0.58464 P
327 | 11 0.04840242 5 305.50000 5723.82000 0.58464 P
328 | 11 0.06027260 6 305.50000 5723.82000 0.58464 P
329 | 11 0.06790644 7 305.50000 5723.82000 0.58464 P
330 | 11 0.06093410 8 305.50000 5723.82000 0.58464 P
331 | 11 0.05944613 9 305.50000 5723.82000 0.58464 P
332 | 11 0.05717326 10 305.50000 5723.82000 0.58464 P
333 | 11 0.04553524 11 305.50000 5723.82000 0.58464 P
334 | 11 0.06521078 12 305.50000 5723.82000 0.58464 P
335 | 11 0.04490020 13 305.50000 5723.82000 0.58464 P
336 | 11 0.04122671 14 305.50000 5723.82000 0.58464 P
337 | 11 0.05226393 15 305.50000 5723.82000 0.58464 P
338 | 11 0.04778745 16 305.50000 5723.82000 0.58464 P
339 | 11 0.08360174 1 305.50000 5723.82000 0.58464 S
340 | 11 0.08910447 2 305.50000 5723.82000 0.58464 S
341 | 11 0.06366358 3 305.50000 5723.82000 0.58464 S
342 | 11 0.05937802 4 305.50000 5723.82000 0.58464 S
343 | 11 0.09653529 5 305.50000 5723.82000 0.58464 S
344 | 11 0.09789927 6 305.50000 5723.82000 0.58464 S
345 | 11 0.11088134 7 305.50000 5723.82000 0.58464 S
346 | 11 0.10216183 8 305.50000 5723.82000 0.58464 S
347 | 11 0.10798849 9 305.50000 5723.82000 0.58464 S
348 | 11 0.09237877 10 305.50000 5723.82000 0.58464 S
349 | 11 0.09895641 11 305.50000 5723.82000 0.58464 S
350 | 11 0.12048213 12 305.50000 5723.82000 0.58464 S
351 | 11 0.08910556 13 305.50000 5723.82000 0.58464 S
352 | 11 0.07512457 14 305.50000 5723.82000 0.58464 S
353 | 11 0.09099667 15 305.50000 5723.82000 0.58464 S
354 | 11 0.08979935 16 305.50000 5723.82000 0.58464 S
355 | 12 0.02937879 1 305.50000 5723.92000 0.59150 P
356 | 12 0.03343250 2 305.50000 5723.92000 0.59150 P
357 | 12 0.02119895 3 305.50000 5723.92000 0.59150 P
358 | 12 0.02177823 4 305.50000 5723.92000 0.59150 P
359 | 12 0.03555516 5 305.50000 5723.92000 0.59150 P
360 | 12 0.04115099 6 305.50000 5723.92000 0.59150 P
361 | 12 0.04699363 7 305.50000 5723.92000 0.59150 P
362 | 12 0.04727937 8 305.50000 5723.92000 0.59150 P
363 | 12 0.05122720 9 305.50000 5723.92000 0.59150 P
364 | 12 0.05316533 10 305.50000 5723.92000 0.59150 P
365 | 12 0.04861691 11 305.50000 5723.92000 0.59150 P
366 | 12 0.05229478 12 305.50000 5723.92000 0.59150 P
367 | 12 0.03177846 13 305.50000 5723.92000 0.59150 P
368 | 12 0.03141332 14 305.50000 5723.92000 0.59150 P
369 | 12 0.03119993 15 305.50000 5723.92000 0.59150 P
370 | 12 0.03189948 16 305.50000 5723.92000 0.59150 P
371 | 12 0.06625318 1 305.50000 5723.92000 0.59150 S
372 | 12 0.06845087 2 305.50000 5723.92000 0.59150 S
373 | 12 0.03989149 3 305.50000 5723.92000 0.59150 S
374 | 12 0.04086203 4 305.50000 5723.92000 0.59150 S
375 | 12 0.06972757 5 305.50000 5723.92000 0.59150 S
376 | 12 0.07918453 6 305.50000 5723.92000 0.59150 S
377 | 12 0.08904922 7 305.50000 5723.92000 0.59150 S
378 | 12 0.08367998 8 305.50000 5723.92000 0.59150 S
379 | 12 0.09070186 9 305.50000 5723.92000 0.59150 S
380 | 12 0.08916102 10 305.50000 5723.92000 0.59150 S
381 | 12 0.08712653 11 305.50000 5723.92000 0.59150 S
382 | 12 0.09543078 12 305.50000 5723.92000 0.59150 S
383 | 12 0.06459167 13 305.50000 5723.92000 0.59150 S
384 | 12 0.06242191 14 305.50000 5723.92000 0.59150 S
385 | 12 0.05790980 15 305.50000 5723.92000 0.59150 S
386 | 12 0.05093533 16 305.50000 5723.92000 0.59150 S
387 | 13 0.02892054 1 305.50000 5724.02000 0.57640 P
388 | 13 0.02387038 2 305.50000 5724.02000 0.57640 P
389 | 13 0.02166591 3 305.50000 5724.02000 0.57640 P
390 | 13 0.02255624 4 305.50000 5724.02000 0.57640 P
391 | 13 0.03460971 5 305.50000 5724.02000 0.57640 P
392 | 13 0.03183664 6 305.50000 5724.02000 0.57640 P
393 | 13 0.03615476 7 305.50000 5724.02000 0.57640 P
394 | 13 0.03922386 8 305.50000 5724.02000 0.57640 P
395 | 13 0.05248248 9 305.50000 5724.02000 0.57640 P
396 | 13 0.05091961 10 305.50000 5724.02000 0.57640 P
397 | 13 0.05174484 11 305.50000 5724.02000 0.57640 P
398 | 13 0.05069993 12 305.50000 5724.02000 0.57640 P
399 | 13 0.03406876 13 305.50000 5724.02000 0.57640 P
400 | 13 0.03367683 14 305.50000 5724.02000 0.57640 P
401 | 13 0.01746744 15 305.50000 5724.02000 0.57640 P
402 | 13 0.01820066 16 305.50000 5724.02000 0.57640 P
403 | 13 0.05262703 1 305.50000 5724.02000 0.57640 S
404 | 13 0.04699845 2 305.50000 5724.02000 0.57640 S
405 | 13 0.03872430 3 305.50000 5724.02000 0.57640 S
406 | 13 0.04314117 4 305.50000 5724.02000 0.57640 S
407 | 13 0.06848249 5 305.50000 5724.02000 0.57640 S
408 | 13 0.06160097 6 305.50000 5724.02000 0.57640 S
409 | 13 0.07258722 7 305.50000 5724.02000 0.57640 S
410 | 13 0.07639914 8 305.50000 5724.02000 0.57640 S
411 | 13 0.09838486 9 305.50000 5724.02000 0.57640 S
412 | 13 0.09964050 10 305.50000 5724.02000 0.57640 S
413 | 13 0.09943204 11 305.50000 5724.02000 0.57640 S
414 | 13 0.08679296 12 305.50000 5724.02000 0.57640 S
415 | 13 0.05934517 13 305.50000 5724.02000 0.57640 S
416 | 13 0.05728466 14 305.50000 5724.02000 0.57640 S
417 | 13 0.03050467 15 305.50000 5724.02000 0.57640 S
418 | 13 0.03355775 16 305.50000 5724.02000 0.57640 S
419 | 14 0.03923919 1 305.50000 5724.12000 0.55637 P
420 | 14 0.03246281 2 305.50000 5724.12000 0.55637 P
421 | 14 0.03716039 3 305.50000 5724.12000 0.55637 P
422 | 14 0.03900673 4 305.50000 5724.12000 0.55637 P
423 | 14 0.04330449 5 305.50000 5724.12000 0.55637 P
424 | 14 0.03682258 6 305.50000 5724.12000 0.55637 P
425 | 14 0.03926570 7 305.50000 5724.12000 0.55637 P
426 | 14 0.04906414 8 305.50000 5724.12000 0.55637 P
427 | 14 0.06016254 9 305.50000 5724.12000 0.55637 P
428 | 14 0.06361459 10 305.50000 5724.12000 0.55637 P
429 | 14 0.06628809 11 305.50000 5724.12000 0.55637 P
430 | 14 0.05774964 12 305.50000 5724.12000 0.55637 P
431 | 14 0.04265374 13 305.50000 5724.12000 0.55637 P
432 | 14 0.04405839 14 305.50000 5724.12000 0.55637 P
433 | 14 0.02553471 15 305.50000 5724.12000 0.55637 P
434 | 14 0.02447412 16 305.50000 5724.12000 0.55637 P
435 | 14 0.07154609 1 305.50000 5724.12000 0.55637 S
436 | 14 0.05651644 2 305.50000 5724.12000 0.55637 S
437 | 14 0.06894442 3 305.50000 5724.12000 0.55637 S
438 | 14 0.06824553 4 305.50000 5724.12000 0.55637 S
439 | 14 0.08658153 5 305.50000 5724.12000 0.55637 S
440 | 14 0.07093626 6 305.50000 5724.12000 0.55637 S
441 | 14 0.06226999 7 305.50000 5724.12000 0.55637 S
442 | 14 0.08853680 8 305.50000 5724.12000 0.55637 S
443 | 14 0.10640244 9 305.50000 5724.12000 0.55637 S
444 | 14 0.10811226 10 305.50000 5724.12000 0.55637 S
445 | 14 0.13672143 11 305.50000 5724.12000 0.55637 S
446 | 14 0.09401913 12 305.50000 5724.12000 0.55637 S
447 | 14 0.08424879 13 305.50000 5724.12000 0.55637 S
448 | 14 0.08394726 14 305.50000 5724.12000 0.55637 S
449 | 14 0.04655536 15 305.50000 5724.12000 0.55637 S
450 | 14 0.05046443 16 305.50000 5724.12000 0.55637 S
451 | 15 0.05529242 1 305.50000 5724.22000 0.51364 P
452 | 15 0.04741713 2 305.50000 5724.22000 0.51364 P
453 | 15 0.05737457 3 305.50000 5724.22000 0.51364 P
454 | 15 0.05559612 4 305.50000 5724.22000 0.51364 P
455 | 15 0.06393551 5 305.50000 5724.22000 0.51364 P
456 | 15 0.05609230 6 305.50000 5724.22000 0.51364 P
457 | 15 0.05036524 7 305.50000 5724.22000 0.51364 P
458 | 15 0.06677914 8 305.50000 5724.22000 0.51364 P
459 | 15 0.07856656 9 305.50000 5724.22000 0.51364 P
460 | 15 0.08890686 10 305.50000 5724.22000 0.51364 P
461 | 15 0.08831102 11 305.50000 5724.22000 0.51364 P
462 | 15 0.06887429 12 305.50000 5724.22000 0.51364 P
463 | 15 0.06192133 13 305.50000 5724.22000 0.51364 P
464 | 15 0.06311175 14 305.50000 5724.22000 0.51364 P
465 | 15 0.04582200 15 305.50000 5724.22000 0.51364 P
466 | 15 0.04593961 16 305.50000 5724.22000 0.51364 P
467 | 15 0.10749157 1 305.50000 5724.22000 0.51364 S
468 | 15 0.08888351 2 305.50000 5724.22000 0.51364 S
469 | 15 0.11743559 3 305.50000 5724.22000 0.51364 S
470 | 15 0.11274931 4 305.50000 5724.22000 0.51364 S
471 | 15 0.11128022 5 305.50000 5724.22000 0.51364 S
472 | 15 0.09995358 6 305.50000 5724.22000 0.51364 S
473 | 15 0.08357556 7 305.50000 5724.22000 0.51364 S
474 | 15 0.11085214 8 305.50000 5724.22000 0.51364 S
475 | 15 0.13482999 9 305.50000 5724.22000 0.51364 S
476 | 15 0.14542293 10 305.50000 5724.22000 0.51364 S
477 | 15 0.16159323 11 305.50000 5724.22000 0.51364 S
478 | 15 0.13922569 12 305.50000 5724.22000 0.51364 S
479 | 15 0.11771082 13 305.50000 5724.22000 0.51364 S
480 | 15 0.12120751 14 305.50000 5724.22000 0.51364 S
481 | 15 0.07749798 15 305.50000 5724.22000 0.51364 S
482 | 15 0.08453049 16 305.50000 5724.22000 0.51364 S
483 |
--------------------------------------------------------------------------------
/examples/all_dec.xyz:
--------------------------------------------------------------------------------
1 | 305100.0 5723700.0 780.89
2 | 305100.0 5723710.0 781.44
3 | 305100.0 5723720.0 781.78
4 | 305100.0 5723730.0 783.05
5 | 305100.0 5723740.0 782.95
6 | 305100.0 5723750.0 783.79
7 | 305100.0 5723760.0 784.70
8 | 305100.0 5723770.0 785.17
9 | 305100.0 5723780.0 784.90
10 | 305100.0 5723790.0 784.92
11 | 305100.0 5723800.0 785.53
12 | 305100.0 5723810.0 785.12
13 | 305100.0 5723820.0 787.02
14 | 305100.0 5723830.0 785.54
15 | 305100.0 5723840.0 785.30
16 | 305100.0 5723850.0 784.04
17 | 305100.0 5723860.0 783.23
18 | 305100.0 5723870.0 782.88
19 | 305100.0 5723880.0 779.79
20 | 305100.0 5723890.0 779.20
21 | 305100.0 5723900.0 779.00
22 | 305100.0 5723910.0 779.15
23 | 305100.0 5723920.0 779.25
24 | 305100.0 5723930.0 779.11
25 | 305100.0 5723940.0 778.37
26 | 305100.0 5723950.0 778.51
27 | 305100.0 5723960.0 774.63
28 | 305100.0 5723970.0 772.21
29 | 305100.0 5723980.0 770.55
30 | 305100.0 5723990.0 771.02
31 | 305100.0 5724000.0 770.45
32 | 305100.0 5724010.0 769.07
33 | 305100.0 5724020.0 767.51
34 | 305100.0 5724030.0 766.56
35 | 305100.0 5724040.0 763.64
36 | 305100.0 5724050.0 762.58
37 | 305100.0 5724060.0 761.29
38 | 305100.0 5724070.0 759.60
39 | 305100.0 5724080.0 758.82
40 | 305100.0 5724090.0 758.31
41 | 305100.0 5724100.0 755.23
42 | 305100.0 5724110.0 753.99
43 | 305100.0 5724120.0 750.95
44 | 305100.0 5724130.0 748.60
45 | 305100.0 5724140.0 745.66
46 | 305100.0 5724150.0 741.33
47 | 305100.0 5724160.0 737.50
48 | 305100.0 5724170.0 732.12
49 | 305100.0 5724180.0 727.28
50 | 305100.0 5724190.0 725.34
51 | 305100.0 5724200.0 723.10
52 | 305100.0 5724210.0 723.79
53 | 305100.0 5724220.0 722.11
54 | 305100.0 5724230.0 729.73
55 | 305110.0 5723700.0 780.28
56 | 305110.0 5723710.0 779.91
57 | 305110.0 5723720.0 780.39
58 | 305110.0 5723730.0 780.96
59 | 305110.0 5723740.0 781.10
60 | 305110.0 5723750.0 780.46
61 | 305110.0 5723760.0 780.13
62 | 305110.0 5723770.0 781.59
63 | 305110.0 5723780.0 781.84
64 | 305110.0 5723790.0 781.26
65 | 305110.0 5723800.0 781.65
66 | 305110.0 5723810.0 782.40
67 | 305110.0 5723820.0 780.96
68 | 305110.0 5723830.0 779.69
69 | 305110.0 5723840.0 779.83
70 | 305110.0 5723850.0 779.48
71 | 305110.0 5723860.0 778.58
72 | 305110.0 5723870.0 778.96
73 | 305110.0 5723880.0 777.18
74 | 305110.0 5723890.0 775.36
75 | 305110.0 5723900.0 776.68
76 | 305110.0 5723910.0 776.34
77 | 305110.0 5723920.0 776.55
78 | 305110.0 5723930.0 776.68
79 | 305110.0 5723940.0 775.55
80 | 305110.0 5723950.0 774.59
81 | 305110.0 5723960.0 771.97
82 | 305110.0 5723970.0 768.56
83 | 305110.0 5723980.0 767.23
84 | 305110.0 5723990.0 766.00
85 | 305110.0 5724000.0 764.74
86 | 305110.0 5724010.0 763.12
87 | 305110.0 5724020.0 761.44
88 | 305110.0 5724030.0 759.77
89 | 305110.0 5724040.0 757.54
90 | 305110.0 5724050.0 757.40
91 | 305110.0 5724060.0 754.70
92 | 305110.0 5724070.0 754.66
93 | 305110.0 5724080.0 752.39
94 | 305110.0 5724090.0 750.22
95 | 305110.0 5724100.0 748.44
96 | 305110.0 5724110.0 745.62
97 | 305110.0 5724120.0 743.64
98 | 305110.0 5724130.0 741.96
99 | 305110.0 5724140.0 738.31
100 | 305110.0 5724150.0 734.34
101 | 305110.0 5724160.0 729.07
102 | 305110.0 5724170.0 722.87
103 | 305110.0 5724180.0 721.89
104 | 305110.0 5724190.0 718.88
105 | 305110.0 5724200.0 715.86
106 | 305110.0 5724210.0 713.93
107 | 305110.0 5724220.0 713.76
108 | 305110.0 5724230.0 722.09
109 | 305120.0 5723700.0 777.74
110 | 305120.0 5723710.0 777.41
111 | 305120.0 5723720.0 775.76
112 | 305120.0 5723730.0 774.41
113 | 305120.0 5723740.0 774.61
114 | 305120.0 5723750.0 774.85
115 | 305120.0 5723760.0 775.75
116 | 305120.0 5723770.0 776.34
117 | 305120.0 5723780.0 777.31
118 | 305120.0 5723790.0 777.09
119 | 305120.0 5723800.0 776.54
120 | 305120.0 5723810.0 776.55
121 | 305120.0 5723820.0 775.64
122 | 305120.0 5723830.0 775.77
123 | 305120.0 5723840.0 774.82
124 | 305120.0 5723850.0 776.19
125 | 305120.0 5723860.0 775.47
126 | 305120.0 5723870.0 775.43
127 | 305120.0 5723880.0 775.00
128 | 305120.0 5723890.0 773.58
129 | 305120.0 5723900.0 774.15
130 | 305120.0 5723910.0 773.55
131 | 305120.0 5723920.0 773.62
132 | 305120.0 5723930.0 773.15
133 | 305120.0 5723940.0 772.47
134 | 305120.0 5723950.0 771.07
135 | 305120.0 5723960.0 768.12
136 | 305120.0 5723970.0 764.80
137 | 305120.0 5723980.0 762.97
138 | 305120.0 5723990.0 761.63
139 | 305120.0 5724000.0 760.10
140 | 305120.0 5724010.0 758.22
141 | 305120.0 5724020.0 754.74
142 | 305120.0 5724030.0 753.37
143 | 305120.0 5724040.0 753.80
144 | 305120.0 5724050.0 751.92
145 | 305120.0 5724060.0 750.21
146 | 305120.0 5724070.0 748.72
147 | 305120.0 5724080.0 747.06
148 | 305120.0 5724090.0 744.94
149 | 305120.0 5724100.0 743.76
150 | 305120.0 5724110.0 740.68
151 | 305120.0 5724120.0 737.20
152 | 305120.0 5724130.0 733.83
153 | 305120.0 5724140.0 730.51
154 | 305120.0 5724150.0 725.51
155 | 305120.0 5724160.0 719.90
156 | 305120.0 5724170.0 717.27
157 | 305120.0 5724180.0 713.17
158 | 305120.0 5724190.0 711.18
159 | 305120.0 5724200.0 708.06
160 | 305120.0 5724210.0 705.31
161 | 305120.0 5724220.0 708.77
162 | 305120.0 5724230.0 718.92
163 | 305130.0 5723700.0 774.99
164 | 305130.0 5723710.0 773.21
165 | 305130.0 5723720.0 770.69
166 | 305130.0 5723730.0 770.30
167 | 305130.0 5723740.0 768.73
168 | 305130.0 5723750.0 769.11
169 | 305130.0 5723760.0 769.90
170 | 305130.0 5723770.0 770.73
171 | 305130.0 5723780.0 770.71
172 | 305130.0 5723790.0 771.48
173 | 305130.0 5723800.0 770.98
174 | 305130.0 5723810.0 771.59
175 | 305130.0 5723820.0 771.41
176 | 305130.0 5723830.0 770.77
177 | 305130.0 5723840.0 771.12
178 | 305130.0 5723850.0 771.38
179 | 305130.0 5723860.0 772.24
180 | 305130.0 5723870.0 770.76
181 | 305130.0 5723880.0 772.25
182 | 305130.0 5723890.0 771.15
183 | 305130.0 5723900.0 771.82
184 | 305130.0 5723910.0 771.10
185 | 305130.0 5723920.0 770.37
186 | 305130.0 5723930.0 767.78
187 | 305130.0 5723940.0 768.13
188 | 305130.0 5723950.0 766.05
189 | 305130.0 5723960.0 763.89
190 | 305130.0 5723970.0 761.70
191 | 305130.0 5723980.0 759.60
192 | 305130.0 5723990.0 755.91
193 | 305130.0 5724000.0 754.10
194 | 305130.0 5724010.0 752.17
195 | 305130.0 5724020.0 752.18
196 | 305130.0 5724030.0 749.70
197 | 305130.0 5724040.0 748.72
198 | 305130.0 5724050.0 746.92
199 | 305130.0 5724060.0 744.66
200 | 305130.0 5724070.0 743.50
201 | 305130.0 5724080.0 742.85
202 | 305130.0 5724090.0 741.36
203 | 305130.0 5724100.0 737.44
204 | 305130.0 5724110.0 734.12
205 | 305130.0 5724120.0 731.40
206 | 305130.0 5724130.0 728.66
207 | 305130.0 5724140.0 722.32
208 | 305130.0 5724150.0 717.47
209 | 305130.0 5724160.0 714.45
210 | 305130.0 5724170.0 708.36
211 | 305130.0 5724180.0 705.58
212 | 305130.0 5724190.0 704.95
213 | 305130.0 5724200.0 696.41
214 | 305130.0 5724210.0 699.98
215 | 305130.0 5724220.0 707.85
216 | 305130.0 5724230.0 715.15
217 | 305140.0 5723700.0 770.74
218 | 305140.0 5723710.0 770.15
219 | 305140.0 5723720.0 766.85
220 | 305140.0 5723730.0 766.50
221 | 305140.0 5723740.0 766.31
222 | 305140.0 5723750.0 766.09
223 | 305140.0 5723760.0 765.02
224 | 305140.0 5723770.0 765.03
225 | 305140.0 5723780.0 764.70
226 | 305140.0 5723790.0 764.83
227 | 305140.0 5723800.0 766.69
228 | 305140.0 5723810.0 767.83
229 | 305140.0 5723820.0 766.68
230 | 305140.0 5723830.0 766.85
231 | 305140.0 5723840.0 766.88
232 | 305140.0 5723850.0 767.67
233 | 305140.0 5723860.0 768.00
234 | 305140.0 5723870.0 768.62
235 | 305140.0 5723880.0 767.67
236 | 305140.0 5723890.0 767.75
237 | 305140.0 5723900.0 767.95
238 | 305140.0 5723910.0 766.54
239 | 305140.0 5723920.0 765.39
240 | 305140.0 5723930.0 762.63
241 | 305140.0 5723940.0 762.84
242 | 305140.0 5723950.0 762.97
243 | 305140.0 5723960.0 761.32
244 | 305140.0 5723970.0 759.40
245 | 305140.0 5723980.0 757.15
246 | 305140.0 5723990.0 751.95
247 | 305140.0 5724000.0 748.70
248 | 305140.0 5724010.0 748.00
249 | 305140.0 5724020.0 746.69
250 | 305140.0 5724030.0 744.90
251 | 305140.0 5724040.0 745.66
252 | 305140.0 5724050.0 742.01
253 | 305140.0 5724060.0 741.82
254 | 305140.0 5724070.0 739.11
255 | 305140.0 5724080.0 737.54
256 | 305140.0 5724090.0 735.73
257 | 305140.0 5724100.0 732.11
258 | 305140.0 5724110.0 728.98
259 | 305140.0 5724120.0 725.07
260 | 305140.0 5724130.0 720.71
261 | 305140.0 5724140.0 716.58
262 | 305140.0 5724150.0 711.70
263 | 305140.0 5724160.0 706.91
264 | 305140.0 5724170.0 705.14
265 | 305140.0 5724180.0 699.52
266 | 305140.0 5724190.0 689.25
267 | 305140.0 5724200.0 691.08
268 | 305140.0 5724210.0 694.42
269 | 305140.0 5724220.0 698.62
270 | 305140.0 5724230.0 703.76
271 | 305150.0 5723700.0 767.04
272 | 305150.0 5723710.0 765.04
273 | 305150.0 5723720.0 762.78
274 | 305150.0 5723730.0 761.21
275 | 305150.0 5723740.0 760.50
276 | 305150.0 5723750.0 761.04
277 | 305150.0 5723760.0 761.77
278 | 305150.0 5723770.0 761.28
279 | 305150.0 5723780.0 761.10
280 | 305150.0 5723790.0 761.75
281 | 305150.0 5723800.0 761.79
282 | 305150.0 5723810.0 762.69
283 | 305150.0 5723820.0 763.02
284 | 305150.0 5723830.0 762.06
285 | 305150.0 5723840.0 762.23
286 | 305150.0 5723850.0 763.16
287 | 305150.0 5723860.0 763.56
288 | 305150.0 5723870.0 763.39
289 | 305150.0 5723880.0 762.50
290 | 305150.0 5723890.0 763.49
291 | 305150.0 5723900.0 763.61
292 | 305150.0 5723910.0 763.34
293 | 305150.0 5723920.0 760.45
294 | 305150.0 5723930.0 759.41
295 | 305150.0 5723940.0 760.14
296 | 305150.0 5723950.0 758.75
297 | 305150.0 5723960.0 757.74
298 | 305150.0 5723970.0 756.68
299 | 305150.0 5723980.0 753.16
300 | 305150.0 5723990.0 748.57
301 | 305150.0 5724000.0 745.68
302 | 305150.0 5724010.0 743.01
303 | 305150.0 5724020.0 741.63
304 | 305150.0 5724030.0 741.73
305 | 305150.0 5724040.0 739.99
306 | 305150.0 5724050.0 737.97
307 | 305150.0 5724060.0 737.37
308 | 305150.0 5724070.0 734.89
309 | 305150.0 5724080.0 733.25
310 | 305150.0 5724090.0 730.00
311 | 305150.0 5724100.0 726.04
312 | 305150.0 5724110.0 723.87
313 | 305150.0 5724120.0 721.10
314 | 305150.0 5724130.0 714.44
315 | 305150.0 5724140.0 709.77
316 | 305150.0 5724150.0 705.89
317 | 305150.0 5724160.0 703.26
318 | 305150.0 5724170.0 699.04
319 | 305150.0 5724180.0 689.77
320 | 305150.0 5724190.0 685.62
321 | 305150.0 5724200.0 683.94
322 | 305150.0 5724210.0 687.04
323 | 305150.0 5724220.0 686.01
324 | 305150.0 5724230.0 694.32
325 | 305160.0 5723700.0 762.26
326 | 305160.0 5723710.0 760.23
327 | 305160.0 5723720.0 758.49
328 | 305160.0 5723730.0 757.03
329 | 305160.0 5723740.0 757.00
330 | 305160.0 5723750.0 758.10
331 | 305160.0 5723760.0 757.89
332 | 305160.0 5723770.0 758.25
333 | 305160.0 5723780.0 757.88
334 | 305160.0 5723790.0 756.19
335 | 305160.0 5723800.0 756.74
336 | 305160.0 5723810.0 758.20
337 | 305160.0 5723820.0 757.95
338 | 305160.0 5723830.0 757.89
339 | 305160.0 5723840.0 758.82
340 | 305160.0 5723850.0 758.55
341 | 305160.0 5723860.0 758.75
342 | 305160.0 5723870.0 758.72
343 | 305160.0 5723880.0 757.32
344 | 305160.0 5723890.0 759.34
345 | 305160.0 5723900.0 759.81
346 | 305160.0 5723910.0 759.45
347 | 305160.0 5723920.0 755.84
348 | 305160.0 5723930.0 756.18
349 | 305160.0 5723940.0 755.83
350 | 305160.0 5723950.0 754.77
351 | 305160.0 5723960.0 753.91
352 | 305160.0 5723970.0 751.44
353 | 305160.0 5723980.0 749.46
354 | 305160.0 5723990.0 744.47
355 | 305160.0 5724000.0 741.81
356 | 305160.0 5724010.0 740.12
357 | 305160.0 5724020.0 737.76
358 | 305160.0 5724030.0 738.50
359 | 305160.0 5724040.0 736.50
360 | 305160.0 5724050.0 735.50
361 | 305160.0 5724060.0 732.84
362 | 305160.0 5724070.0 730.94
363 | 305160.0 5724080.0 729.26
364 | 305160.0 5724090.0 725.89
365 | 305160.0 5724100.0 722.90
366 | 305160.0 5724110.0 719.76
367 | 305160.0 5724120.0 714.39
368 | 305160.0 5724130.0 708.68
369 | 305160.0 5724140.0 704.29
370 | 305160.0 5724150.0 699.62
371 | 305160.0 5724160.0 697.39
372 | 305160.0 5724170.0 691.94
373 | 305160.0 5724180.0 684.86
374 | 305160.0 5724190.0 682.08
375 | 305160.0 5724200.0 679.65
376 | 305160.0 5724210.0 679.84
377 | 305160.0 5724220.0 676.78
378 | 305160.0 5724230.0 679.55
379 | 305170.0 5723700.0 756.72
380 | 305170.0 5723710.0 757.38
381 | 305170.0 5723720.0 756.05
382 | 305170.0 5723730.0 754.12
383 | 305170.0 5723740.0 753.49
384 | 305170.0 5723750.0 754.25
385 | 305170.0 5723760.0 755.89
386 | 305170.0 5723770.0 755.97
387 | 305170.0 5723780.0 756.02
388 | 305170.0 5723790.0 753.20
389 | 305170.0 5723800.0 752.47
390 | 305170.0 5723810.0 752.95
391 | 305170.0 5723820.0 754.35
392 | 305170.0 5723830.0 754.07
393 | 305170.0 5723840.0 754.02
394 | 305170.0 5723850.0 753.25
395 | 305170.0 5723860.0 753.40
396 | 305170.0 5723870.0 754.95
397 | 305170.0 5723880.0 753.48
398 | 305170.0 5723890.0 755.40
399 | 305170.0 5723900.0 756.20
400 | 305170.0 5723910.0 754.50
401 | 305170.0 5723920.0 751.91
402 | 305170.0 5723930.0 752.46
403 | 305170.0 5723940.0 751.75
404 | 305170.0 5723950.0 751.57
405 | 305170.0 5723960.0 751.49
406 | 305170.0 5723970.0 749.30
407 | 305170.0 5723980.0 745.61
408 | 305170.0 5723990.0 742.86
409 | 305170.0 5724000.0 739.23
410 | 305170.0 5724010.0 736.77
411 | 305170.0 5724020.0 735.06
412 | 305170.0 5724030.0 733.48
413 | 305170.0 5724040.0 732.79
414 | 305170.0 5724050.0 732.51
415 | 305170.0 5724060.0 730.86
416 | 305170.0 5724070.0 729.05
417 | 305170.0 5724080.0 726.69
418 | 305170.0 5724090.0 722.84
419 | 305170.0 5724100.0 720.18
420 | 305170.0 5724110.0 714.98
421 | 305170.0 5724120.0 709.08
422 | 305170.0 5724130.0 702.71
423 | 305170.0 5724140.0 700.36
424 | 305170.0 5724150.0 695.00
425 | 305170.0 5724160.0 690.99
426 | 305170.0 5724170.0 687.39
427 | 305170.0 5724180.0 683.37
428 | 305170.0 5724190.0 678.81
429 | 305170.0 5724200.0 676.09
430 | 305170.0 5724210.0 673.42
431 | 305170.0 5724220.0 672.39
432 | 305170.0 5724230.0 669.22
433 | 305180.0 5723700.0 755.86
434 | 305180.0 5723710.0 753.68
435 | 305180.0 5723720.0 752.77
436 | 305180.0 5723730.0 751.74
437 | 305180.0 5723740.0 750.86
438 | 305180.0 5723750.0 751.09
439 | 305180.0 5723760.0 751.55
440 | 305180.0 5723770.0 751.90
441 | 305180.0 5723780.0 752.32
442 | 305180.0 5723790.0 751.23
443 | 305180.0 5723800.0 750.17
444 | 305180.0 5723810.0 750.08
445 | 305180.0 5723820.0 750.34
446 | 305180.0 5723830.0 749.87
447 | 305180.0 5723840.0 749.39
448 | 305180.0 5723850.0 749.47
449 | 305180.0 5723860.0 748.79
450 | 305180.0 5723870.0 749.68
451 | 305180.0 5723880.0 749.21
452 | 305180.0 5723890.0 750.57
453 | 305180.0 5723900.0 751.15
454 | 305180.0 5723910.0 749.34
455 | 305180.0 5723920.0 748.27
456 | 305180.0 5723930.0 748.06
457 | 305180.0 5723940.0 747.48
458 | 305180.0 5723950.0 747.57
459 | 305180.0 5723960.0 747.16
460 | 305180.0 5723970.0 746.41
461 | 305180.0 5723980.0 743.17
462 | 305180.0 5723990.0 741.79
463 | 305180.0 5724000.0 736.78
464 | 305180.0 5724010.0 734.77
465 | 305180.0 5724020.0 733.32
466 | 305180.0 5724030.0 731.62
467 | 305180.0 5724040.0 730.26
468 | 305180.0 5724050.0 729.54
469 | 305180.0 5724060.0 726.91
470 | 305180.0 5724070.0 725.15
471 | 305180.0 5724080.0 722.68
472 | 305180.0 5724090.0 718.47
473 | 305180.0 5724100.0 715.29
474 | 305180.0 5724110.0 711.55
475 | 305180.0 5724120.0 705.41
476 | 305180.0 5724130.0 700.85
477 | 305180.0 5724140.0 695.57
478 | 305180.0 5724150.0 691.44
479 | 305180.0 5724160.0 687.92
480 | 305180.0 5724170.0 684.94
481 | 305180.0 5724180.0 681.88
482 | 305180.0 5724190.0 677.43
483 | 305180.0 5724200.0 672.64
484 | 305180.0 5724210.0 668.81
485 | 305180.0 5724220.0 663.98
486 | 305180.0 5724230.0 663.60
487 | 305190.0 5723700.0 752.76
488 | 305190.0 5723710.0 752.47
489 | 305190.0 5723720.0 751.16
490 | 305190.0 5723730.0 750.23
491 | 305190.0 5723740.0 748.84
492 | 305190.0 5723750.0 748.45
493 | 305190.0 5723760.0 748.82
494 | 305190.0 5723770.0 749.17
495 | 305190.0 5723780.0 749.34
496 | 305190.0 5723790.0 749.10
497 | 305190.0 5723800.0 748.31
498 | 305190.0 5723810.0 747.60
499 | 305190.0 5723820.0 747.69
500 | 305190.0 5723830.0 747.24
501 | 305190.0 5723840.0 746.13
502 | 305190.0 5723850.0 745.51
503 | 305190.0 5723860.0 745.45
504 | 305190.0 5723870.0 745.71
505 | 305190.0 5723880.0 745.11
506 | 305190.0 5723890.0 748.14
507 | 305190.0 5723900.0 746.59
508 | 305190.0 5723910.0 745.45
509 | 305190.0 5723920.0 744.69
510 | 305190.0 5723930.0 744.51
511 | 305190.0 5723940.0 744.15
512 | 305190.0 5723950.0 744.07
513 | 305190.0 5723960.0 743.95
514 | 305190.0 5723970.0 742.34
515 | 305190.0 5723980.0 740.48
516 | 305190.0 5723990.0 737.34
517 | 305190.0 5724000.0 735.61
518 | 305190.0 5724010.0 732.47
519 | 305190.0 5724020.0 730.70
520 | 305190.0 5724030.0 729.80
521 | 305190.0 5724040.0 729.66
522 | 305190.0 5724050.0 725.07
523 | 305190.0 5724060.0 723.59
524 | 305190.0 5724070.0 720.84
525 | 305190.0 5724080.0 718.44
526 | 305190.0 5724090.0 716.77
527 | 305190.0 5724100.0 711.99
528 | 305190.0 5724110.0 708.22
529 | 305190.0 5724120.0 701.91
530 | 305190.0 5724130.0 697.60
531 | 305190.0 5724140.0 694.92
532 | 305190.0 5724150.0 689.94
533 | 305190.0 5724160.0 685.63
534 | 305190.0 5724170.0 681.96
535 | 305190.0 5724180.0 679.89
536 | 305190.0 5724190.0 678.43
537 | 305190.0 5724200.0 669.76
538 | 305190.0 5724210.0 666.87
539 | 305190.0 5724220.0 662.50
540 | 305190.0 5724230.0 659.57
541 | 305200.0 5723700.0 750.64
542 | 305200.0 5723710.0 749.05
543 | 305200.0 5723720.0 747.95
544 | 305200.0 5723730.0 746.93
545 | 305200.0 5723740.0 746.64
546 | 305200.0 5723750.0 746.88
547 | 305200.0 5723760.0 747.04
548 | 305200.0 5723770.0 746.78
549 | 305200.0 5723780.0 745.97
550 | 305200.0 5723790.0 745.42
551 | 305200.0 5723800.0 745.72
552 | 305200.0 5723810.0 744.98
553 | 305200.0 5723820.0 744.35
554 | 305200.0 5723830.0 744.44
555 | 305200.0 5723840.0 744.57
556 | 305200.0 5723850.0 744.59
557 | 305200.0 5723860.0 744.54
558 | 305200.0 5723870.0 744.99
559 | 305200.0 5723880.0 744.50
560 | 305200.0 5723890.0 746.60
561 | 305200.0 5723900.0 746.53
562 | 305200.0 5723910.0 745.96
563 | 305200.0 5723920.0 744.10
564 | 305200.0 5723930.0 742.96
565 | 305200.0 5723940.0 743.19
566 | 305200.0 5723950.0 742.31
567 | 305200.0 5723960.0 741.40
568 | 305200.0 5723970.0 739.23
569 | 305200.0 5723980.0 739.70
570 | 305200.0 5723990.0 736.79
571 | 305200.0 5724000.0 734.69
572 | 305200.0 5724010.0 732.53
573 | 305200.0 5724020.0 730.21
574 | 305200.0 5724030.0 729.02
575 | 305200.0 5724040.0 726.34
576 | 305200.0 5724050.0 723.23
577 | 305200.0 5724060.0 719.46
578 | 305200.0 5724070.0 716.83
579 | 305200.0 5724080.0 715.62
580 | 305200.0 5724090.0 710.90
581 | 305200.0 5724100.0 707.88
582 | 305200.0 5724110.0 703.97
583 | 305200.0 5724120.0 699.50
584 | 305200.0 5724130.0 696.73
585 | 305200.0 5724140.0 692.90
586 | 305200.0 5724150.0 688.42
587 | 305200.0 5724160.0 684.69
588 | 305200.0 5724170.0 683.38
589 | 305200.0 5724180.0 678.28
590 | 305200.0 5724190.0 676.51
591 | 305200.0 5724200.0 672.80
592 | 305200.0 5724210.0 668.10
593 | 305200.0 5724220.0 662.42
594 | 305200.0 5724230.0 660.15
595 | 305210.0 5723700.0 747.25
596 | 305210.0 5723710.0 746.44
597 | 305210.0 5723720.0 746.29
598 | 305210.0 5723730.0 744.49
599 | 305210.0 5723740.0 744.69
600 | 305210.0 5723750.0 744.15
601 | 305210.0 5723760.0 744.56
602 | 305210.0 5723770.0 744.57
603 | 305210.0 5723780.0 744.60
604 | 305210.0 5723790.0 744.68
605 | 305210.0 5723800.0 744.55
606 | 305210.0 5723810.0 744.21
607 | 305210.0 5723820.0 743.85
608 | 305210.0 5723830.0 743.84
609 | 305210.0 5723840.0 744.00
610 | 305210.0 5723850.0 744.20
611 | 305210.0 5723860.0 744.05
612 | 305210.0 5723870.0 744.08
613 | 305210.0 5723880.0 744.56
614 | 305210.0 5723890.0 743.52
615 | 305210.0 5723900.0 744.87
616 | 305210.0 5723910.0 745.60
617 | 305210.0 5723920.0 744.57
618 | 305210.0 5723930.0 743.97
619 | 305210.0 5723940.0 741.18
620 | 305210.0 5723950.0 739.91
621 | 305210.0 5723960.0 738.77
622 | 305210.0 5723970.0 737.47
623 | 305210.0 5723980.0 736.85
624 | 305210.0 5723990.0 735.64
625 | 305210.0 5724000.0 732.74
626 | 305210.0 5724010.0 731.36
627 | 305210.0 5724020.0 728.86
628 | 305210.0 5724030.0 725.86
629 | 305210.0 5724040.0 723.47
630 | 305210.0 5724050.0 720.19
631 | 305210.0 5724060.0 717.78
632 | 305210.0 5724070.0 713.09
633 | 305210.0 5724080.0 711.46
634 | 305210.0 5724090.0 708.96
635 | 305210.0 5724100.0 704.53
636 | 305210.0 5724110.0 700.17
637 | 305210.0 5724120.0 697.37
638 | 305210.0 5724130.0 693.80
639 | 305210.0 5724140.0 691.81
640 | 305210.0 5724150.0 689.91
641 | 305210.0 5724160.0 686.66
642 | 305210.0 5724170.0 683.23
643 | 305210.0 5724180.0 677.76
644 | 305210.0 5724190.0 675.87
645 | 305210.0 5724200.0 673.16
646 | 305210.0 5724210.0 669.30
647 | 305210.0 5724220.0 662.80
648 | 305210.0 5724230.0 658.65
649 | 305220.0 5723700.0 744.11
650 | 305220.0 5723710.0 743.26
651 | 305220.0 5723720.0 742.57
652 | 305220.0 5723730.0 742.48
653 | 305220.0 5723740.0 743.51
654 | 305220.0 5723750.0 743.22
655 | 305220.0 5723760.0 743.60
656 | 305220.0 5723770.0 744.88
657 | 305220.0 5723780.0 744.55
658 | 305220.0 5723790.0 744.18
659 | 305220.0 5723800.0 744.01
660 | 305220.0 5723810.0 743.46
661 | 305220.0 5723820.0 743.25
662 | 305220.0 5723830.0 743.52
663 | 305220.0 5723840.0 743.78
664 | 305220.0 5723850.0 743.95
665 | 305220.0 5723860.0 744.59
666 | 305220.0 5723870.0 744.57
667 | 305220.0 5723880.0 744.39
668 | 305220.0 5723890.0 743.32
669 | 305220.0 5723900.0 742.99
670 | 305220.0 5723910.0 742.75
671 | 305220.0 5723920.0 741.86
672 | 305220.0 5723930.0 741.13
673 | 305220.0 5723940.0 740.03
674 | 305220.0 5723950.0 739.43
675 | 305220.0 5723960.0 738.94
676 | 305220.0 5723970.0 737.81
677 | 305220.0 5723980.0 735.93
678 | 305220.0 5723990.0 734.12
679 | 305220.0 5724000.0 731.95
680 | 305220.0 5724010.0 729.36
681 | 305220.0 5724020.0 727.35
682 | 305220.0 5724030.0 724.31
683 | 305220.0 5724040.0 721.48
684 | 305220.0 5724050.0 718.48
685 | 305220.0 5724060.0 715.88
686 | 305220.0 5724070.0 713.54
687 | 305220.0 5724080.0 711.02
688 | 305220.0 5724090.0 707.93
689 | 305220.0 5724100.0 703.92
690 | 305220.0 5724110.0 700.33
691 | 305220.0 5724120.0 696.40
692 | 305220.0 5724130.0 694.60
693 | 305220.0 5724140.0 690.27
694 | 305220.0 5724150.0 688.32
695 | 305220.0 5724160.0 686.02
696 | 305220.0 5724170.0 682.85
697 | 305220.0 5724180.0 678.10
698 | 305220.0 5724190.0 674.24
699 | 305220.0 5724200.0 670.75
700 | 305220.0 5724210.0 667.23
701 | 305220.0 5724220.0 661.15
702 | 305220.0 5724230.0 655.86
703 | 305230.0 5723700.0 740.59
704 | 305230.0 5723710.0 739.96
705 | 305230.0 5723720.0 741.50
706 | 305230.0 5723730.0 742.20
707 | 305230.0 5723740.0 742.56
708 | 305230.0 5723750.0 743.06
709 | 305230.0 5723760.0 743.75
710 | 305230.0 5723770.0 744.53
711 | 305230.0 5723780.0 744.35
712 | 305230.0 5723790.0 744.00
713 | 305230.0 5723800.0 743.63
714 | 305230.0 5723810.0 743.16
715 | 305230.0 5723820.0 743.09
716 | 305230.0 5723830.0 743.21
717 | 305230.0 5723840.0 744.06
718 | 305230.0 5723850.0 744.61
719 | 305230.0 5723860.0 745.38
720 | 305230.0 5723870.0 745.49
721 | 305230.0 5723880.0 745.55
722 | 305230.0 5723890.0 744.84
723 | 305230.0 5723900.0 743.11
724 | 305230.0 5723910.0 742.71
725 | 305230.0 5723920.0 743.08
726 | 305230.0 5723930.0 741.23
727 | 305230.0 5723940.0 739.85
728 | 305230.0 5723950.0 739.54
729 | 305230.0 5723960.0 738.55
730 | 305230.0 5723970.0 737.06
731 | 305230.0 5723980.0 735.71
732 | 305230.0 5723990.0 733.52
733 | 305230.0 5724000.0 731.78
734 | 305230.0 5724010.0 729.47
735 | 305230.0 5724020.0 728.34
736 | 305230.0 5724030.0 726.09
737 | 305230.0 5724040.0 722.60
738 | 305230.0 5724050.0 719.71
739 | 305230.0 5724060.0 717.25
740 | 305230.0 5724070.0 715.65
741 | 305230.0 5724080.0 713.20
742 | 305230.0 5724090.0 708.78
743 | 305230.0 5724100.0 704.28
744 | 305230.0 5724110.0 700.22
745 | 305230.0 5724120.0 698.74
746 | 305230.0 5724130.0 694.97
747 | 305230.0 5724140.0 690.73
748 | 305230.0 5724150.0 686.59
749 | 305230.0 5724160.0 685.67
750 | 305230.0 5724170.0 683.04
751 | 305230.0 5724180.0 679.48
752 | 305230.0 5724190.0 674.24
753 | 305230.0 5724200.0 669.37
754 | 305230.0 5724210.0 664.45
755 | 305230.0 5724220.0 660.52
756 | 305230.0 5724230.0 653.59
757 | 305240.0 5723700.0 736.48
758 | 305240.0 5723710.0 737.91
759 | 305240.0 5723720.0 738.72
760 | 305240.0 5723730.0 740.15
761 | 305240.0 5723740.0 742.33
762 | 305240.0 5723750.0 742.56
763 | 305240.0 5723760.0 742.64
764 | 305240.0 5723770.0 743.34
765 | 305240.0 5723780.0 743.07
766 | 305240.0 5723790.0 742.91
767 | 305240.0 5723800.0 743.00
768 | 305240.0 5723810.0 743.41
769 | 305240.0 5723820.0 743.16
770 | 305240.0 5723830.0 744.09
771 | 305240.0 5723840.0 744.54
772 | 305240.0 5723850.0 745.28
773 | 305240.0 5723860.0 747.86
774 | 305240.0 5723870.0 749.62
775 | 305240.0 5723880.0 749.09
776 | 305240.0 5723890.0 747.49
777 | 305240.0 5723900.0 746.85
778 | 305240.0 5723910.0 743.92
779 | 305240.0 5723920.0 742.44
780 | 305240.0 5723930.0 740.80
781 | 305240.0 5723940.0 741.33
782 | 305240.0 5723950.0 738.94
783 | 305240.0 5723960.0 736.93
784 | 305240.0 5723970.0 736.05
785 | 305240.0 5723980.0 734.86
786 | 305240.0 5723990.0 735.33
787 | 305240.0 5724000.0 730.58
788 | 305240.0 5724010.0 730.89
789 | 305240.0 5724020.0 728.06
790 | 305240.0 5724030.0 726.30
791 | 305240.0 5724040.0 723.64
792 | 305240.0 5724050.0 721.73
793 | 305240.0 5724060.0 718.47
794 | 305240.0 5724070.0 717.17
795 | 305240.0 5724080.0 714.97
796 | 305240.0 5724090.0 711.79
797 | 305240.0 5724100.0 706.63
798 | 305240.0 5724110.0 703.34
799 | 305240.0 5724120.0 699.12
800 | 305240.0 5724130.0 695.73
801 | 305240.0 5724140.0 690.86
802 | 305240.0 5724150.0 686.29
803 | 305240.0 5724160.0 683.43
804 | 305240.0 5724170.0 682.73
805 | 305240.0 5724180.0 676.74
806 | 305240.0 5724190.0 674.02
807 | 305240.0 5724200.0 668.50
808 | 305240.0 5724210.0 663.78
809 | 305240.0 5724220.0 658.74
810 | 305240.0 5724230.0 652.17
811 | 305250.0 5723700.0 735.20
812 | 305250.0 5723710.0 736.29
813 | 305250.0 5723720.0 736.07
814 | 305250.0 5723730.0 739.39
815 | 305250.0 5723740.0 740.41
816 | 305250.0 5723750.0 742.02
817 | 305250.0 5723760.0 742.63
818 | 305250.0 5723770.0 743.00
819 | 305250.0 5723780.0 742.82
820 | 305250.0 5723790.0 742.86
821 | 305250.0 5723800.0 743.03
822 | 305250.0 5723810.0 744.02
823 | 305250.0 5723820.0 744.61
824 | 305250.0 5723830.0 744.95
825 | 305250.0 5723840.0 745.97
826 | 305250.0 5723850.0 749.05
827 | 305250.0 5723860.0 749.90
828 | 305250.0 5723870.0 749.95
829 | 305250.0 5723880.0 748.62
830 | 305250.0 5723890.0 749.69
831 | 305250.0 5723900.0 747.94
832 | 305250.0 5723910.0 745.43
833 | 305250.0 5723920.0 743.37
834 | 305250.0 5723930.0 742.07
835 | 305250.0 5723940.0 740.69
836 | 305250.0 5723950.0 739.04
837 | 305250.0 5723960.0 738.14
838 | 305250.0 5723970.0 736.79
839 | 305250.0 5723980.0 734.45
840 | 305250.0 5723990.0 732.38
841 | 305250.0 5724000.0 731.35
842 | 305250.0 5724010.0 730.48
843 | 305250.0 5724020.0 730.43
844 | 305250.0 5724030.0 727.50
845 | 305250.0 5724040.0 726.31
846 | 305250.0 5724050.0 723.33
847 | 305250.0 5724060.0 720.19
848 | 305250.0 5724070.0 718.42
849 | 305250.0 5724080.0 716.54
850 | 305250.0 5724090.0 713.09
851 | 305250.0 5724100.0 709.30
852 | 305250.0 5724110.0 703.84
853 | 305250.0 5724120.0 698.95
854 | 305250.0 5724130.0 693.33
855 | 305250.0 5724140.0 689.25
856 | 305250.0 5724150.0 684.63
857 | 305250.0 5724160.0 681.59
858 | 305250.0 5724170.0 678.46
859 | 305250.0 5724180.0 674.32
860 | 305250.0 5724190.0 672.78
861 | 305250.0 5724200.0 668.83
862 | 305250.0 5724210.0 664.12
863 | 305250.0 5724220.0 658.17
864 | 305250.0 5724230.0 652.75
865 | 305260.0 5723700.0 731.45
866 | 305260.0 5723710.0 733.69
867 | 305260.0 5723720.0 737.00
868 | 305260.0 5723730.0 738.95
869 | 305260.0 5723740.0 740.41
870 | 305260.0 5723750.0 741.92
871 | 305260.0 5723760.0 742.13
872 | 305260.0 5723770.0 742.83
873 | 305260.0 5723780.0 743.87
874 | 305260.0 5723790.0 743.94
875 | 305260.0 5723800.0 744.31
876 | 305260.0 5723810.0 744.59
877 | 305260.0 5723820.0 745.10
878 | 305260.0 5723830.0 747.40
879 | 305260.0 5723840.0 747.42
880 | 305260.0 5723850.0 748.31
881 | 305260.0 5723860.0 748.58
882 | 305260.0 5723870.0 748.70
883 | 305260.0 5723880.0 747.86
884 | 305260.0 5723890.0 748.49
885 | 305260.0 5723900.0 747.15
886 | 305260.0 5723910.0 745.16
887 | 305260.0 5723920.0 742.47
888 | 305260.0 5723930.0 740.86
889 | 305260.0 5723940.0 739.67
890 | 305260.0 5723950.0 738.38
891 | 305260.0 5723960.0 736.96
892 | 305260.0 5723970.0 736.05
893 | 305260.0 5723980.0 734.37
894 | 305260.0 5723990.0 732.52
895 | 305260.0 5724000.0 731.33
896 | 305260.0 5724010.0 730.50
897 | 305260.0 5724020.0 729.62
898 | 305260.0 5724030.0 728.15
899 | 305260.0 5724040.0 727.34
900 | 305260.0 5724050.0 724.41
901 | 305260.0 5724060.0 720.99
902 | 305260.0 5724070.0 718.79
903 | 305260.0 5724080.0 716.63
904 | 305260.0 5724090.0 714.00
905 | 305260.0 5724100.0 710.12
906 | 305260.0 5724110.0 703.84
907 | 305260.0 5724120.0 697.48
908 | 305260.0 5724130.0 692.05
909 | 305260.0 5724140.0 689.40
910 | 305260.0 5724150.0 683.61
911 | 305260.0 5724160.0 678.49
912 | 305260.0 5724170.0 674.90
913 | 305260.0 5724180.0 672.14
914 | 305260.0 5724190.0 670.92
915 | 305260.0 5724200.0 669.11
916 | 305260.0 5724210.0 663.62
917 | 305260.0 5724220.0 658.22
918 | 305260.0 5724230.0 653.23
919 | 305270.0 5723700.0 729.64
920 | 305270.0 5723710.0 733.99
921 | 305270.0 5723720.0 738.35
922 | 305270.0 5723730.0 740.22
923 | 305270.0 5723740.0 741.63
924 | 305270.0 5723750.0 741.82
925 | 305270.0 5723760.0 742.47
926 | 305270.0 5723770.0 743.62
927 | 305270.0 5723780.0 744.24
928 | 305270.0 5723790.0 744.66
929 | 305270.0 5723800.0 746.30
930 | 305270.0 5723810.0 746.49
931 | 305270.0 5723820.0 746.05
932 | 305270.0 5723830.0 746.81
933 | 305270.0 5723840.0 748.66
934 | 305270.0 5723850.0 749.80
935 | 305270.0 5723860.0 750.35
936 | 305270.0 5723870.0 749.92
937 | 305270.0 5723880.0 752.39
938 | 305270.0 5723890.0 748.03
939 | 305270.0 5723900.0 747.21
940 | 305270.0 5723910.0 745.79
941 | 305270.0 5723920.0 742.45
942 | 305270.0 5723930.0 740.53
943 | 305270.0 5723940.0 739.34
944 | 305270.0 5723950.0 738.52
945 | 305270.0 5723960.0 736.92
946 | 305270.0 5723970.0 735.76
947 | 305270.0 5723980.0 734.13
948 | 305270.0 5723990.0 733.42
949 | 305270.0 5724000.0 730.93
950 | 305270.0 5724010.0 729.67
951 | 305270.0 5724020.0 729.39
952 | 305270.0 5724030.0 728.60
953 | 305270.0 5724040.0 727.54
954 | 305270.0 5724050.0 724.34
955 | 305270.0 5724060.0 721.41
956 | 305270.0 5724070.0 717.90
957 | 305270.0 5724080.0 715.64
958 | 305270.0 5724090.0 712.16
959 | 305270.0 5724100.0 708.48
960 | 305270.0 5724110.0 702.31
961 | 305270.0 5724120.0 697.54
962 | 305270.0 5724130.0 692.35
963 | 305270.0 5724140.0 685.93
964 | 305270.0 5724150.0 682.36
965 | 305270.0 5724160.0 677.59
966 | 305270.0 5724170.0 674.22
967 | 305270.0 5724180.0 672.98
968 | 305270.0 5724190.0 670.41
969 | 305270.0 5724200.0 667.34
970 | 305270.0 5724210.0 662.51
971 | 305270.0 5724220.0 656.87
972 | 305270.0 5724230.0 655.15
973 | 305280.0 5723700.0 730.31
974 | 305280.0 5723710.0 731.87
975 | 305280.0 5723720.0 737.23
976 | 305280.0 5723730.0 739.98
977 | 305280.0 5723740.0 741.72
978 | 305280.0 5723750.0 742.10
979 | 305280.0 5723760.0 742.72
980 | 305280.0 5723770.0 743.29
981 | 305280.0 5723780.0 744.02
982 | 305280.0 5723790.0 745.44
983 | 305280.0 5723800.0 745.44
984 | 305280.0 5723810.0 744.99
985 | 305280.0 5723820.0 746.14
986 | 305280.0 5723830.0 745.99
987 | 305280.0 5723840.0 746.41
988 | 305280.0 5723850.0 749.52
989 | 305280.0 5723860.0 750.08
990 | 305280.0 5723870.0 749.29
991 | 305280.0 5723880.0 748.38
992 | 305280.0 5723890.0 747.88
993 | 305280.0 5723900.0 745.67
994 | 305280.0 5723910.0 744.67
995 | 305280.0 5723920.0 743.77
996 | 305280.0 5723930.0 741.41
997 | 305280.0 5723940.0 739.28
998 | 305280.0 5723950.0 738.05
999 | 305280.0 5723960.0 737.21
1000 | 305280.0 5723970.0 735.46
1001 | 305280.0 5723980.0 733.95
1002 | 305280.0 5723990.0 733.57
1003 | 305280.0 5724000.0 732.03
1004 | 305280.0 5724010.0 730.86
1005 | 305280.0 5724020.0 729.00
1006 | 305280.0 5724030.0 728.11
1007 | 305280.0 5724040.0 727.20
1008 | 305280.0 5724050.0 725.08
1009 | 305280.0 5724060.0 722.21
1010 | 305280.0 5724070.0 718.41
1011 | 305280.0 5724080.0 712.71
1012 | 305280.0 5724090.0 710.55
1013 | 305280.0 5724100.0 707.17
1014 | 305280.0 5724110.0 702.57
1015 | 305280.0 5724120.0 698.00
1016 | 305280.0 5724130.0 691.90
1017 | 305280.0 5724140.0 687.12
1018 | 305280.0 5724150.0 683.39
1019 | 305280.0 5724160.0 679.81
1020 | 305280.0 5724170.0 674.98
1021 | 305280.0 5724180.0 672.86
1022 | 305280.0 5724190.0 669.15
1023 | 305280.0 5724200.0 667.35
1024 | 305280.0 5724210.0 664.72
1025 | 305280.0 5724220.0 658.97
1026 | 305280.0 5724230.0 655.51
1027 | 305290.0 5723700.0 725.70
1028 | 305290.0 5723710.0 733.37
1029 | 305290.0 5723720.0 737.12
1030 | 305290.0 5723730.0 740.36
1031 | 305290.0 5723740.0 742.54
1032 | 305290.0 5723750.0 742.93
1033 | 305290.0 5723760.0 742.65
1034 | 305290.0 5723770.0 743.27
1035 | 305290.0 5723780.0 744.09
1036 | 305290.0 5723790.0 744.17
1037 | 305290.0 5723800.0 745.69
1038 | 305290.0 5723810.0 744.82
1039 | 305290.0 5723820.0 745.28
1040 | 305290.0 5723830.0 746.17
1041 | 305290.0 5723840.0 746.19
1042 | 305290.0 5723850.0 748.09
1043 | 305290.0 5723860.0 747.59
1044 | 305290.0 5723870.0 748.39
1045 | 305290.0 5723880.0 749.23
1046 | 305290.0 5723890.0 746.64
1047 | 305290.0 5723900.0 745.47
1048 | 305290.0 5723910.0 744.25
1049 | 305290.0 5723920.0 743.28
1050 | 305290.0 5723930.0 741.08
1051 | 305290.0 5723940.0 738.96
1052 | 305290.0 5723950.0 737.36
1053 | 305290.0 5723960.0 736.25
1054 | 305290.0 5723970.0 735.73
1055 | 305290.0 5723980.0 734.86
1056 | 305290.0 5723990.0 733.94
1057 | 305290.0 5724000.0 732.73
1058 | 305290.0 5724010.0 731.31
1059 | 305290.0 5724020.0 729.71
1060 | 305290.0 5724030.0 727.94
1061 | 305290.0 5724040.0 726.53
1062 | 305290.0 5724050.0 725.00
1063 | 305290.0 5724060.0 721.76
1064 | 305290.0 5724070.0 717.64
1065 | 305290.0 5724080.0 712.70
1066 | 305290.0 5724090.0 709.70
1067 | 305290.0 5724100.0 706.73
1068 | 305290.0 5724110.0 701.62
1069 | 305290.0 5724120.0 697.36
1070 | 305290.0 5724130.0 692.23
1071 | 305290.0 5724140.0 688.31
1072 | 305290.0 5724150.0 684.70
1073 | 305290.0 5724160.0 680.83
1074 | 305290.0 5724170.0 676.26
1075 | 305290.0 5724180.0 673.57
1076 | 305290.0 5724190.0 669.49
1077 | 305290.0 5724200.0 667.75
1078 | 305290.0 5724210.0 663.14
1079 | 305290.0 5724220.0 660.84
1080 | 305290.0 5724230.0 659.40
1081 | 305300.0 5723700.0 725.12
1082 | 305300.0 5723710.0 735.10
1083 | 305300.0 5723720.0 738.21
1084 | 305300.0 5723730.0 740.87
1085 | 305300.0 5723740.0 742.96
1086 | 305300.0 5723750.0 743.44
1087 | 305300.0 5723760.0 743.46
1088 | 305300.0 5723770.0 743.53
1089 | 305300.0 5723780.0 743.77
1090 | 305300.0 5723790.0 745.15
1091 | 305300.0 5723800.0 744.99
1092 | 305300.0 5723810.0 745.82
1093 | 305300.0 5723820.0 746.43
1094 | 305300.0 5723830.0 745.75
1095 | 305300.0 5723840.0 746.21
1096 | 305300.0 5723850.0 746.02
1097 | 305300.0 5723860.0 747.88
1098 | 305300.0 5723870.0 746.80
1099 | 305300.0 5723880.0 746.35
1100 | 305300.0 5723890.0 744.32
1101 | 305300.0 5723900.0 744.06
1102 | 305300.0 5723910.0 743.50
1103 | 305300.0 5723920.0 742.23
1104 | 305300.0 5723930.0 740.22
1105 | 305300.0 5723940.0 737.19
1106 | 305300.0 5723950.0 735.90
1107 | 305300.0 5723960.0 735.12
1108 | 305300.0 5723970.0 735.26
1109 | 305300.0 5723980.0 734.87
1110 | 305300.0 5723990.0 733.38
1111 | 305300.0 5724000.0 732.14
1112 | 305300.0 5724010.0 730.86
1113 | 305300.0 5724020.0 729.26
1114 | 305300.0 5724030.0 727.39
1115 | 305300.0 5724040.0 725.51
1116 | 305300.0 5724050.0 723.53
1117 | 305300.0 5724060.0 719.92
1118 | 305300.0 5724070.0 717.99
1119 | 305300.0 5724080.0 712.81
1120 | 305300.0 5724090.0 708.21
1121 | 305300.0 5724100.0 704.76
1122 | 305300.0 5724110.0 701.29
1123 | 305300.0 5724120.0 697.10
1124 | 305300.0 5724130.0 693.45
1125 | 305300.0 5724140.0 689.36
1126 | 305300.0 5724150.0 685.34
1127 | 305300.0 5724160.0 681.39
1128 | 305300.0 5724170.0 677.38
1129 | 305300.0 5724180.0 673.76
1130 | 305300.0 5724190.0 670.30
1131 | 305300.0 5724200.0 665.93
1132 | 305300.0 5724210.0 663.00
1133 | 305300.0 5724220.0 661.76
1134 | 305300.0 5724230.0 659.03
1135 | 305310.0 5723700.0 723.22
1136 | 305310.0 5723710.0 735.01
1137 | 305310.0 5723720.0 738.15
1138 | 305310.0 5723730.0 739.75
1139 | 305310.0 5723740.0 741.77
1140 | 305310.0 5723750.0 742.89
1141 | 305310.0 5723760.0 742.54
1142 | 305310.0 5723770.0 742.73
1143 | 305310.0 5723780.0 742.56
1144 | 305310.0 5723790.0 742.29
1145 | 305310.0 5723800.0 742.39
1146 | 305310.0 5723810.0 744.48
1147 | 305310.0 5723820.0 743.87
1148 | 305310.0 5723830.0 744.38
1149 | 305310.0 5723840.0 743.65
1150 | 305310.0 5723850.0 745.06
1151 | 305310.0 5723860.0 745.06
1152 | 305310.0 5723870.0 745.25
1153 | 305310.0 5723880.0 742.94
1154 | 305310.0 5723890.0 742.63
1155 | 305310.0 5723900.0 741.93
1156 | 305310.0 5723910.0 741.00
1157 | 305310.0 5723920.0 738.47
1158 | 305310.0 5723930.0 737.07
1159 | 305310.0 5723940.0 735.24
1160 | 305310.0 5723950.0 734.62
1161 | 305310.0 5723960.0 733.93
1162 | 305310.0 5723970.0 733.06
1163 | 305310.0 5723980.0 732.60
1164 | 305310.0 5723990.0 731.61
1165 | 305310.0 5724000.0 730.90
1166 | 305310.0 5724010.0 729.39
1167 | 305310.0 5724020.0 728.08
1168 | 305310.0 5724030.0 726.09
1169 | 305310.0 5724040.0 723.98
1170 | 305310.0 5724050.0 721.88
1171 | 305310.0 5724060.0 718.47
1172 | 305310.0 5724070.0 715.97
1173 | 305310.0 5724080.0 712.23
1174 | 305310.0 5724090.0 708.01
1175 | 305310.0 5724100.0 704.13
1176 | 305310.0 5724110.0 699.64
1177 | 305310.0 5724120.0 697.26
1178 | 305310.0 5724130.0 693.17
1179 | 305310.0 5724140.0 689.27
1180 | 305310.0 5724150.0 684.83
1181 | 305310.0 5724160.0 681.06
1182 | 305310.0 5724170.0 675.99
1183 | 305310.0 5724180.0 673.91
1184 | 305310.0 5724190.0 670.39
1185 | 305310.0 5724200.0 666.58
1186 | 305310.0 5724210.0 665.80
1187 | 305310.0 5724220.0 663.51
1188 | 305310.0 5724230.0 661.44
1189 | 305320.0 5723700.0 722.72
1190 | 305320.0 5723710.0 731.62
1191 | 305320.0 5723720.0 735.56
1192 | 305320.0 5723730.0 737.07
1193 | 305320.0 5723740.0 738.21
1194 | 305320.0 5723750.0 739.96
1195 | 305320.0 5723760.0 739.35
1196 | 305320.0 5723770.0 739.75
1197 | 305320.0 5723780.0 740.53
1198 | 305320.0 5723790.0 740.25
1199 | 305320.0 5723800.0 741.19
1200 | 305320.0 5723810.0 741.44
1201 | 305320.0 5723820.0 742.53
1202 | 305320.0 5723830.0 742.44
1203 | 305320.0 5723840.0 742.53
1204 | 305320.0 5723850.0 741.97
1205 | 305320.0 5723860.0 742.48
1206 | 305320.0 5723870.0 740.99
1207 | 305320.0 5723880.0 741.61
1208 | 305320.0 5723890.0 739.88
1209 | 305320.0 5723900.0 739.22
1210 | 305320.0 5723910.0 738.08
1211 | 305320.0 5723920.0 735.89
1212 | 305320.0 5723930.0 733.29
1213 | 305320.0 5723940.0 731.40
1214 | 305320.0 5723950.0 730.40
1215 | 305320.0 5723960.0 730.49
1216 | 305320.0 5723970.0 729.26
1217 | 305320.0 5723980.0 727.42
1218 | 305320.0 5723990.0 728.91
1219 | 305320.0 5724000.0 728.32
1220 | 305320.0 5724010.0 727.33
1221 | 305320.0 5724020.0 725.32
1222 | 305320.0 5724030.0 724.14
1223 | 305320.0 5724040.0 722.26
1224 | 305320.0 5724050.0 720.12
1225 | 305320.0 5724060.0 716.70
1226 | 305320.0 5724070.0 713.66
1227 | 305320.0 5724080.0 710.41
1228 | 305320.0 5724090.0 707.28
1229 | 305320.0 5724100.0 702.67
1230 | 305320.0 5724110.0 697.68
1231 | 305320.0 5724120.0 694.17
1232 | 305320.0 5724130.0 692.46
1233 | 305320.0 5724140.0 689.14
1234 | 305320.0 5724150.0 684.86
1235 | 305320.0 5724160.0 681.28
1236 | 305320.0 5724170.0 677.06
1237 | 305320.0 5724180.0 674.31
1238 | 305320.0 5724190.0 670.16
1239 | 305320.0 5724200.0 666.78
1240 | 305320.0 5724210.0 666.23
1241 | 305320.0 5724220.0 666.94
1242 | 305320.0 5724230.0 662.02
1243 | 305330.0 5723700.0 716.54
1244 | 305330.0 5723710.0 726.39
1245 | 305330.0 5723720.0 729.41
1246 | 305330.0 5723730.0 729.89
1247 | 305330.0 5723740.0 731.12
1248 | 305330.0 5723750.0 732.02
1249 | 305330.0 5723760.0 734.38
1250 | 305330.0 5723770.0 734.57
1251 | 305330.0 5723780.0 733.97
1252 | 305330.0 5723790.0 735.85
1253 | 305330.0 5723800.0 735.91
1254 | 305330.0 5723810.0 736.60
1255 | 305330.0 5723820.0 736.67
1256 | 305330.0 5723830.0 737.69
1257 | 305330.0 5723840.0 739.70
1258 | 305330.0 5723850.0 740.32
1259 | 305330.0 5723860.0 738.01
1260 | 305330.0 5723870.0 737.35
1261 | 305330.0 5723880.0 736.97
1262 | 305330.0 5723890.0 735.89
1263 | 305330.0 5723900.0 735.17
1264 | 305330.0 5723910.0 733.50
1265 | 305330.0 5723920.0 731.73
1266 | 305330.0 5723930.0 729.03
1267 | 305330.0 5723940.0 726.84
1268 | 305330.0 5723950.0 727.16
1269 | 305330.0 5723960.0 725.97
1270 | 305330.0 5723970.0 724.14
1271 | 305330.0 5723980.0 723.88
1272 | 305330.0 5723990.0 721.98
1273 | 305330.0 5724000.0 722.86
1274 | 305330.0 5724010.0 722.37
1275 | 305330.0 5724020.0 721.73
1276 | 305330.0 5724030.0 720.47
1277 | 305330.0 5724040.0 718.57
1278 | 305330.0 5724050.0 716.40
1279 | 305330.0 5724060.0 713.12
1280 | 305330.0 5724070.0 710.49
1281 | 305330.0 5724080.0 707.97
1282 | 305330.0 5724090.0 704.60
1283 | 305330.0 5724100.0 700.80
1284 | 305330.0 5724110.0 696.18
1285 | 305330.0 5724120.0 693.19
1286 | 305330.0 5724130.0 691.09
1287 | 305330.0 5724140.0 686.06
1288 | 305330.0 5724150.0 683.31
1289 | 305330.0 5724160.0 681.49
1290 | 305330.0 5724170.0 678.94
1291 | 305330.0 5724180.0 673.40
1292 | 305330.0 5724190.0 667.10
1293 | 305330.0 5724200.0 666.54
1294 | 305330.0 5724210.0 663.54
1295 | 305330.0 5724220.0 662.51
1296 | 305330.0 5724230.0 660.00
1297 | 305340.0 5723700.0 711.76
1298 | 305340.0 5723710.0 718.94
1299 | 305340.0 5723720.0 723.56
1300 | 305340.0 5723730.0 724.68
1301 | 305340.0 5723740.0 727.60
1302 | 305340.0 5723750.0 727.61
1303 | 305340.0 5723760.0 727.06
1304 | 305340.0 5723770.0 727.70
1305 | 305340.0 5723780.0 728.78
1306 | 305340.0 5723790.0 729.35
1307 | 305340.0 5723800.0 729.33
1308 | 305340.0 5723810.0 730.92
1309 | 305340.0 5723820.0 732.74
1310 | 305340.0 5723830.0 735.11
1311 | 305340.0 5723840.0 737.17
1312 | 305340.0 5723850.0 736.16
1313 | 305340.0 5723860.0 733.89
1314 | 305340.0 5723870.0 734.14
1315 | 305340.0 5723880.0 733.92
1316 | 305340.0 5723890.0 732.49
1317 | 305340.0 5723900.0 731.87
1318 | 305340.0 5723910.0 731.53
1319 | 305340.0 5723920.0 727.63
1320 | 305340.0 5723930.0 725.61
1321 | 305340.0 5723940.0 722.22
1322 | 305340.0 5723950.0 720.86
1323 | 305340.0 5723960.0 719.31
1324 | 305340.0 5723970.0 717.03
1325 | 305340.0 5723980.0 715.82
1326 | 305340.0 5723990.0 717.24
1327 | 305340.0 5724000.0 717.28
1328 | 305340.0 5724010.0 718.42
1329 | 305340.0 5724020.0 716.93
1330 | 305340.0 5724030.0 715.92
1331 | 305340.0 5724040.0 713.90
1332 | 305340.0 5724050.0 711.83
1333 | 305340.0 5724060.0 710.24
1334 | 305340.0 5724070.0 706.62
1335 | 305340.0 5724080.0 704.30
1336 | 305340.0 5724090.0 701.69
1337 | 305340.0 5724100.0 698.05
1338 | 305340.0 5724110.0 693.98
1339 | 305340.0 5724120.0 690.52
1340 | 305340.0 5724130.0 687.49
1341 | 305340.0 5724140.0 684.06
1342 | 305340.0 5724150.0 681.09
1343 | 305340.0 5724160.0 679.22
1344 | 305340.0 5724170.0 675.03
1345 | 305340.0 5724180.0 670.59
1346 | 305340.0 5724190.0 665.01
1347 | 305340.0 5724200.0 662.84
1348 | 305340.0 5724210.0 661.08
1349 | 305340.0 5724220.0 657.62
1350 | 305340.0 5724230.0 653.42
1351 | 305350.0 5723700.0 703.41
1352 | 305350.0 5723710.0 709.17
1353 | 305350.0 5723720.0 713.72
1354 | 305350.0 5723730.0 717.54
1355 | 305350.0 5723740.0 719.67
1356 | 305350.0 5723750.0 721.67
1357 | 305350.0 5723760.0 720.64
1358 | 305350.0 5723770.0 722.00
1359 | 305350.0 5723780.0 722.00
1360 | 305350.0 5723790.0 722.47
1361 | 305350.0 5723800.0 721.97
1362 | 305350.0 5723810.0 724.72
1363 | 305350.0 5723820.0 726.71
1364 | 305350.0 5723830.0 731.38
1365 | 305350.0 5723840.0 732.87
1366 | 305350.0 5723850.0 731.59
1367 | 305350.0 5723860.0 730.34
1368 | 305350.0 5723870.0 727.14
1369 | 305350.0 5723880.0 728.61
1370 | 305350.0 5723890.0 729.49
1371 | 305350.0 5723900.0 727.23
1372 | 305350.0 5723910.0 725.73
1373 | 305350.0 5723920.0 722.72
1374 | 305350.0 5723930.0 720.10
1375 | 305350.0 5723940.0 718.97
1376 | 305350.0 5723950.0 715.94
1377 | 305350.0 5723960.0 714.72
1378 | 305350.0 5723970.0 712.74
1379 | 305350.0 5723980.0 713.35
1380 | 305350.0 5723990.0 714.36
1381 | 305350.0 5724000.0 715.00
1382 | 305350.0 5724010.0 714.34
1383 | 305350.0 5724020.0 714.74
1384 | 305350.0 5724030.0 710.93
1385 | 305350.0 5724040.0 708.72
1386 | 305350.0 5724050.0 706.08
1387 | 305350.0 5724060.0 703.85
1388 | 305350.0 5724070.0 701.57
1389 | 305350.0 5724080.0 698.76
1390 | 305350.0 5724090.0 696.48
1391 | 305350.0 5724100.0 693.01
1392 | 305350.0 5724110.0 689.81
1393 | 305350.0 5724120.0 687.20
1394 | 305350.0 5724130.0 683.71
1395 | 305350.0 5724140.0 680.96
1396 | 305350.0 5724150.0 677.24
1397 | 305350.0 5724160.0 673.76
1398 | 305350.0 5724170.0 669.24
1399 | 305350.0 5724180.0 667.05
1400 | 305350.0 5724190.0 663.24
1401 | 305350.0 5724200.0 660.60
1402 | 305350.0 5724210.0 656.50
1403 | 305350.0 5724220.0 652.70
1404 | 305350.0 5724230.0 645.00
1405 | 305360.0 5723700.0 697.00
1406 | 305360.0 5723710.0 700.45
1407 | 305360.0 5723720.0 706.07
1408 | 305360.0 5723730.0 708.12
1409 | 305360.0 5723740.0 710.70
1410 | 305360.0 5723750.0 712.61
1411 | 305360.0 5723760.0 712.57
1412 | 305360.0 5723770.0 714.54
1413 | 305360.0 5723780.0 715.96
1414 | 305360.0 5723790.0 714.80
1415 | 305360.0 5723800.0 715.20
1416 | 305360.0 5723810.0 720.12
1417 | 305360.0 5723820.0 722.33
1418 | 305360.0 5723830.0 725.75
1419 | 305360.0 5723840.0 729.31
1420 | 305360.0 5723850.0 727.66
1421 | 305360.0 5723860.0 721.77
1422 | 305360.0 5723870.0 720.00
1423 | 305360.0 5723880.0 720.81
1424 | 305360.0 5723890.0 720.01
1425 | 305360.0 5723900.0 720.94
1426 | 305360.0 5723910.0 718.94
1427 | 305360.0 5723920.0 716.21
1428 | 305360.0 5723930.0 714.20
1429 | 305360.0 5723940.0 714.49
1430 | 305360.0 5723950.0 712.67
1431 | 305360.0 5723960.0 709.85
1432 | 305360.0 5723970.0 709.75
1433 | 305360.0 5723980.0 710.57
1434 | 305360.0 5723990.0 710.61
1435 | 305360.0 5724000.0 709.93
1436 | 305360.0 5724010.0 709.39
1437 | 305360.0 5724020.0 708.49
1438 | 305360.0 5724030.0 707.16
1439 | 305360.0 5724040.0 704.34
1440 | 305360.0 5724050.0 704.26
1441 | 305360.0 5724060.0 701.15
1442 | 305360.0 5724070.0 697.25
1443 | 305360.0 5724080.0 694.41
1444 | 305360.0 5724090.0 692.41
1445 | 305360.0 5724100.0 689.01
1446 | 305360.0 5724110.0 686.05
1447 | 305360.0 5724120.0 681.64
1448 | 305360.0 5724130.0 676.54
1449 | 305360.0 5724140.0 674.07
1450 | 305360.0 5724150.0 671.63
1451 | 305360.0 5724160.0 668.73
1452 | 305360.0 5724170.0 664.81
1453 | 305360.0 5724180.0 662.22
1454 | 305360.0 5724190.0 659.58
1455 | 305360.0 5724200.0 657.32
1456 | 305360.0 5724210.0 651.31
1457 | 305360.0 5724220.0 645.97
1458 | 305360.0 5724230.0 636.00
1459 | 305370.0 5723700.0 688.20
1460 | 305370.0 5723710.0 694.32
1461 | 305370.0 5723720.0 694.39
1462 | 305370.0 5723730.0 698.58
1463 | 305370.0 5723740.0 700.72
1464 | 305370.0 5723750.0 702.80
1465 | 305370.0 5723760.0 704.73
1466 | 305370.0 5723770.0 705.55
1467 | 305370.0 5723780.0 706.95
1468 | 305370.0 5723790.0 707.00
1469 | 305370.0 5723800.0 709.04
1470 | 305370.0 5723810.0 716.02
1471 | 305370.0 5723820.0 718.54
1472 | 305370.0 5723830.0 719.83
1473 | 305370.0 5723840.0 719.93
1474 | 305370.0 5723850.0 714.91
1475 | 305370.0 5723860.0 715.53
1476 | 305370.0 5723870.0 716.46
1477 | 305370.0 5723880.0 715.59
1478 | 305370.0 5723890.0 712.55
1479 | 305370.0 5723900.0 710.11
1480 | 305370.0 5723910.0 709.69
1481 | 305370.0 5723920.0 705.52
1482 | 305370.0 5723930.0 707.54
1483 | 305370.0 5723940.0 707.56
1484 | 305370.0 5723950.0 707.82
1485 | 305370.0 5723960.0 708.16
1486 | 305370.0 5723970.0 705.58
1487 | 305370.0 5723980.0 705.56
1488 | 305370.0 5723990.0 705.86
1489 | 305370.0 5724000.0 705.44
1490 | 305370.0 5724010.0 704.10
1491 | 305370.0 5724020.0 701.92
1492 | 305370.0 5724030.0 700.38
1493 | 305370.0 5724040.0 698.03
1494 | 305370.0 5724050.0 698.03
1495 | 305370.0 5724060.0 694.75
1496 | 305370.0 5724070.0 691.06
1497 | 305370.0 5724080.0 688.29
1498 | 305370.0 5724090.0 685.22
1499 | 305370.0 5724100.0 682.72
1500 | 305370.0 5724110.0 679.56
1501 | 305370.0 5724120.0 676.05
1502 | 305370.0 5724130.0 673.56
1503 | 305370.0 5724140.0 670.17
1504 | 305370.0 5724150.0 669.64
1505 | 305370.0 5724160.0 665.16
1506 | 305370.0 5724170.0 661.17
1507 | 305370.0 5724180.0 658.44
1508 | 305370.0 5724190.0 655.81
1509 | 305370.0 5724200.0 650.70
1510 | 305370.0 5724210.0 645.92
1511 | 305370.0 5724220.0 640.68
1512 | 305370.0 5724230.0 628.22
1513 | 305380.0 5723700.0 677.03
1514 | 305380.0 5723710.0 681.42
1515 | 305380.0 5723720.0 685.19
1516 | 305380.0 5723730.0 687.89
1517 | 305380.0 5723740.0 690.91
1518 | 305380.0 5723750.0 694.72
1519 | 305380.0 5723760.0 696.18
1520 | 305380.0 5723770.0 697.06
1521 | 305380.0 5723780.0 699.23
1522 | 305380.0 5723790.0 696.75
1523 | 305380.0 5723800.0 703.58
1524 | 305380.0 5723810.0 708.75
1525 | 305380.0 5723820.0 709.42
1526 | 305380.0 5723830.0 711.72
1527 | 305380.0 5723840.0 706.75
1528 | 305380.0 5723850.0 707.35
1529 | 305380.0 5723860.0 708.16
1530 | 305380.0 5723870.0 709.26
1531 | 305380.0 5723880.0 708.04
1532 | 305380.0 5723890.0 708.10
1533 | 305380.0 5723900.0 703.84
1534 | 305380.0 5723910.0 699.72
1535 | 305380.0 5723920.0 699.59
1536 | 305380.0 5723930.0 703.61
1537 | 305380.0 5723940.0 704.42
1538 | 305380.0 5723950.0 706.99
1539 | 305380.0 5723960.0 706.33
1540 | 305380.0 5723970.0 704.13
1541 | 305380.0 5723980.0 703.39
1542 | 305380.0 5723990.0 703.35
1543 | 305380.0 5724000.0 700.98
1544 | 305380.0 5724010.0 699.76
1545 | 305380.0 5724020.0 699.78
1546 | 305380.0 5724030.0 696.80
1547 | 305380.0 5724040.0 695.82
1548 | 305380.0 5724050.0 692.44
1549 | 305380.0 5724060.0 690.28
1550 | 305380.0 5724070.0 686.98
1551 | 305380.0 5724080.0 684.00
1552 | 305380.0 5724090.0 682.38
1553 | 305380.0 5724100.0 680.99
1554 | 305380.0 5724110.0 675.38
1555 | 305380.0 5724120.0 673.61
1556 | 305380.0 5724130.0 669.93
1557 | 305380.0 5724140.0 666.69
1558 | 305380.0 5724150.0 662.12
1559 | 305380.0 5724160.0 660.41
1560 | 305380.0 5724170.0 656.58
1561 | 305380.0 5724180.0 655.11
1562 | 305380.0 5724190.0 651.09
1563 | 305380.0 5724200.0 648.09
1564 | 305380.0 5724210.0 640.91
1565 | 305380.0 5724220.0 631.59
1566 | 305380.0 5724230.0 620.86
1567 | 305390.0 5723700.0 663.59
1568 | 305390.0 5723710.0 668.98
1569 | 305390.0 5723720.0 673.78
1570 | 305390.0 5723730.0 678.45
1571 | 305390.0 5723740.0 681.90
1572 | 305390.0 5723750.0 683.95
1573 | 305390.0 5723760.0 684.95
1574 | 305390.0 5723770.0 685.71
1575 | 305390.0 5723780.0 687.88
1576 | 305390.0 5723790.0 689.52
1577 | 305390.0 5723800.0 696.15
1578 | 305390.0 5723810.0 699.75
1579 | 305390.0 5723820.0 699.51
1580 | 305390.0 5723830.0 698.75
1581 | 305390.0 5723840.0 696.24
1582 | 305390.0 5723850.0 701.53
1583 | 305390.0 5723860.0 701.62
1584 | 305390.0 5723870.0 701.82
1585 | 305390.0 5723880.0 701.73
1586 | 305390.0 5723890.0 700.09
1587 | 305390.0 5723900.0 696.19
1588 | 305390.0 5723910.0 694.67
1589 | 305390.0 5723920.0 694.89
1590 | 305390.0 5723930.0 699.69
1591 | 305390.0 5723940.0 702.60
1592 | 305390.0 5723950.0 703.86
1593 | 305390.0 5723960.0 704.04
1594 | 305390.0 5723970.0 704.40
1595 | 305390.0 5723980.0 705.18
1596 | 305390.0 5723990.0 700.66
1597 | 305390.0 5724000.0 699.16
1598 | 305390.0 5724010.0 698.34
1599 | 305390.0 5724020.0 696.57
1600 | 305390.0 5724030.0 695.10
1601 | 305390.0 5724040.0 693.63
1602 | 305390.0 5724050.0 689.88
1603 | 305390.0 5724060.0 687.51
1604 | 305390.0 5724070.0 684.61
1605 | 305390.0 5724080.0 682.06
1606 | 305390.0 5724090.0 676.91
1607 | 305390.0 5724100.0 674.68
1608 | 305390.0 5724110.0 669.56
1609 | 305390.0 5724120.0 667.68
1610 | 305390.0 5724130.0 663.24
1611 | 305390.0 5724140.0 660.44
1612 | 305390.0 5724150.0 658.70
1613 | 305390.0 5724160.0 652.62
1614 | 305390.0 5724170.0 650.60
1615 | 305390.0 5724180.0 647.21
1616 | 305390.0 5724190.0 645.90
1617 | 305390.0 5724200.0 640.99
1618 | 305390.0 5724210.0 636.21
1619 | 305390.0 5724220.0 626.79
1620 | 305390.0 5724230.0 613.29
1621 | 305400.0 5723700.0 654.87
1622 | 305400.0 5723710.0 657.87
1623 | 305400.0 5723720.0 662.89
1624 | 305400.0 5723730.0 666.06
1625 | 305400.0 5723740.0 669.63
1626 | 305400.0 5723750.0 671.78
1627 | 305400.0 5723760.0 673.69
1628 | 305400.0 5723770.0 672.29
1629 | 305400.0 5723780.0 674.01
1630 | 305400.0 5723790.0 681.30
1631 | 305400.0 5723800.0 687.50
1632 | 305400.0 5723810.0 689.42
1633 | 305400.0 5723820.0 687.51
1634 | 305400.0 5723830.0 681.38
1635 | 305400.0 5723840.0 689.39
1636 | 305400.0 5723850.0 693.67
1637 | 305400.0 5723860.0 693.25
1638 | 305400.0 5723870.0 694.70
1639 | 305400.0 5723880.0 694.06
1640 | 305400.0 5723890.0 690.54
1641 | 305400.0 5723900.0 685.53
1642 | 305400.0 5723910.0 689.18
1643 | 305400.0 5723920.0 690.30
1644 | 305400.0 5723930.0 694.59
1645 | 305400.0 5723940.0 698.12
1646 | 305400.0 5723950.0 699.91
1647 | 305400.0 5723960.0 700.11
1648 | 305400.0 5723970.0 699.94
1649 | 305400.0 5723980.0 699.28
1650 | 305400.0 5723990.0 696.78
1651 | 305400.0 5724000.0 695.87
1652 | 305400.0 5724010.0 694.73
1653 | 305400.0 5724020.0 693.53
1654 | 305400.0 5724030.0 691.77
1655 | 305400.0 5724040.0 689.82
1656 | 305400.0 5724050.0 687.89
1657 | 305400.0 5724060.0 682.27
1658 | 305400.0 5724070.0 679.42
1659 | 305400.0 5724080.0 676.49
1660 | 305400.0 5724090.0 671.88
1661 | 305400.0 5724100.0 668.61
1662 | 305400.0 5724110.0 663.20
1663 | 305400.0 5724120.0 659.54
1664 | 305400.0 5724130.0 658.42
1665 | 305400.0 5724140.0 654.10
1666 | 305400.0 5724150.0 651.68
1667 | 305400.0 5724160.0 647.31
1668 | 305400.0 5724170.0 644.56
1669 | 305400.0 5724180.0 640.00
1670 | 305400.0 5724190.0 636.24
1671 | 305400.0 5724200.0 634.09
1672 | 305400.0 5724210.0 628.36
1673 | 305400.0 5724220.0 619.66
1674 | 305400.0 5724230.0 599.86
1675 | 305410.0 5723700.0 643.18
1676 | 305410.0 5723710.0 645.58
1677 | 305410.0 5723720.0 648.24
1678 | 305410.0 5723730.0 650.96
1679 | 305410.0 5723740.0 655.16
1680 | 305410.0 5723750.0 658.43
1681 | 305410.0 5723760.0 659.92
1682 | 305410.0 5723770.0 656.38
1683 | 305410.0 5723780.0 663.54
1684 | 305410.0 5723790.0 671.58
1685 | 305410.0 5723800.0 677.40
1686 | 305410.0 5723810.0 678.71
1687 | 305410.0 5723820.0 677.60
1688 | 305410.0 5723830.0 677.74
1689 | 305410.0 5723840.0 680.23
1690 | 305410.0 5723850.0 683.95
1691 | 305410.0 5723860.0 685.25
1692 | 305410.0 5723870.0 685.38
1693 | 305410.0 5723880.0 684.07
1694 | 305410.0 5723890.0 680.21
1695 | 305410.0 5723900.0 681.31
1696 | 305410.0 5723910.0 680.24
1697 | 305410.0 5723920.0 678.39
1698 | 305410.0 5723930.0 689.43
1699 | 305410.0 5723940.0 694.45
1700 | 305410.0 5723950.0 695.90
1701 | 305410.0 5723960.0 697.55
1702 | 305410.0 5723970.0 696.04
1703 | 305410.0 5723980.0 695.59
1704 | 305410.0 5723990.0 693.23
1705 | 305410.0 5724000.0 692.12
1706 | 305410.0 5724010.0 689.19
1707 | 305410.0 5724020.0 687.57
1708 | 305410.0 5724030.0 685.81
1709 | 305410.0 5724040.0 683.16
1710 | 305410.0 5724050.0 680.81
1711 | 305410.0 5724060.0 677.50
1712 | 305410.0 5724070.0 675.67
1713 | 305410.0 5724080.0 670.74
1714 | 305410.0 5724090.0 667.06
1715 | 305410.0 5724100.0 661.61
1716 | 305410.0 5724110.0 656.42
1717 | 305410.0 5724120.0 650.26
1718 | 305410.0 5724130.0 646.36
1719 | 305410.0 5724140.0 644.15
1720 | 305410.0 5724150.0 640.45
1721 | 305410.0 5724160.0 631.60
1722 | 305410.0 5724170.0 634.55
1723 | 305410.0 5724180.0 632.07
1724 | 305410.0 5724190.0 625.24
1725 | 305410.0 5724200.0 621.96
1726 | 305410.0 5724210.0 607.52
1727 | 305410.0 5724220.0 600.45
1728 | 305410.0 5724230.0 584.48
1729 | 305420.0 5723700.0 629.29
1730 | 305420.0 5723710.0 635.50
1731 | 305420.0 5723720.0 635.28
1732 | 305420.0 5723730.0 639.85
1733 | 305420.0 5723740.0 642.48
1734 | 305420.0 5723750.0 644.52
1735 | 305420.0 5723760.0 649.41
1736 | 305420.0 5723770.0 649.67
1737 | 305420.0 5723780.0 655.29
1738 | 305420.0 5723790.0 661.75
1739 | 305420.0 5723800.0 665.89
1740 | 305420.0 5723810.0 667.40
1741 | 305420.0 5723820.0 665.60
1742 | 305420.0 5723830.0 670.96
1743 | 305420.0 5723840.0 674.45
1744 | 305420.0 5723850.0 675.96
1745 | 305420.0 5723860.0 677.14
1746 | 305420.0 5723870.0 676.36
1747 | 305420.0 5723880.0 673.46
1748 | 305420.0 5723890.0 672.11
1749 | 305420.0 5723900.0 671.90
1750 | 305420.0 5723910.0 669.54
1751 | 305420.0 5723920.0 669.77
1752 | 305420.0 5723930.0 682.84
1753 | 305420.0 5723940.0 690.77
1754 | 305420.0 5723950.0 692.11
1755 | 305420.0 5723960.0 693.63
1756 | 305420.0 5723970.0 692.02
1757 | 305420.0 5723980.0 691.36
1758 | 305420.0 5723990.0 689.04
1759 | 305420.0 5724000.0 686.73
1760 | 305420.0 5724010.0 685.49
1761 | 305420.0 5724020.0 681.24
1762 | 305420.0 5724030.0 677.63
1763 | 305420.0 5724040.0 676.51
1764 | 305420.0 5724050.0 674.88
1765 | 305420.0 5724060.0 672.21
1766 | 305420.0 5724070.0 668.53
1767 | 305420.0 5724080.0 663.49
1768 | 305420.0 5724090.0 658.62
1769 | 305420.0 5724100.0 653.19
1770 | 305420.0 5724110.0 647.89
1771 | 305420.0 5724120.0 644.08
1772 | 305420.0 5724130.0 640.06
1773 | 305420.0 5724140.0 635.94
1774 | 305420.0 5724150.0 626.09
1775 | 305420.0 5724160.0 617.78
1776 | 305420.0 5724170.0 615.33
1777 | 305420.0 5724180.0 608.10
1778 | 305420.0 5724190.0 602.58
1779 | 305420.0 5724200.0 588.65
1780 | 305420.0 5724210.0 584.54
1781 | 305420.0 5724220.0 584.31
1782 | 305420.0 5724230.0 583.94
1783 | 305430.0 5723700.0 618.08
1784 | 305430.0 5723710.0 622.83
1785 | 305430.0 5723720.0 621.65
1786 | 305430.0 5723730.0 625.09
1787 | 305430.0 5723740.0 626.86
1788 | 305430.0 5723750.0 630.04
1789 | 305430.0 5723760.0 633.77
1790 | 305430.0 5723770.0 639.77
1791 | 305430.0 5723780.0 646.60
1792 | 305430.0 5723790.0 651.60
1793 | 305430.0 5723800.0 655.98
1794 | 305430.0 5723810.0 656.90
1795 | 305430.0 5723820.0 658.58
1796 | 305430.0 5723830.0 662.30
1797 | 305430.0 5723840.0 666.66
1798 | 305430.0 5723850.0 668.66
1799 | 305430.0 5723860.0 668.48
1800 | 305430.0 5723870.0 667.76
1801 | 305430.0 5723880.0 665.71
1802 | 305430.0 5723890.0 665.83
1803 | 305430.0 5723900.0 661.83
1804 | 305430.0 5723910.0 657.34
1805 | 305430.0 5723920.0 659.93
1806 | 305430.0 5723930.0 670.13
1807 | 305430.0 5723940.0 684.42
1808 | 305430.0 5723950.0 686.87
1809 | 305430.0 5723960.0 686.23
1810 | 305430.0 5723970.0 685.59
1811 | 305430.0 5723980.0 683.41
1812 | 305430.0 5723990.0 681.29
1813 | 305430.0 5724000.0 680.37
1814 | 305430.0 5724010.0 678.14
1815 | 305430.0 5724020.0 675.08
1816 | 305430.0 5724030.0 672.73
1817 | 305430.0 5724040.0 670.26
1818 | 305430.0 5724050.0 668.42
1819 | 305430.0 5724060.0 665.21
1820 | 305430.0 5724070.0 661.43
1821 | 305430.0 5724080.0 655.43
1822 | 305430.0 5724090.0 651.08
1823 | 305430.0 5724100.0 644.20
1824 | 305430.0 5724110.0 636.93
1825 | 305430.0 5724120.0 632.07
1826 | 305430.0 5724130.0 625.51
1827 | 305430.0 5724140.0 620.90
1828 | 305430.0 5724150.0 609.70
1829 | 305430.0 5724160.0 602.13
1830 | 305430.0 5724170.0 592.18
1831 | 305430.0 5724180.0 588.19
1832 | 305430.0 5724190.0 584.58
1833 | 305430.0 5724200.0 584.48
1834 | 305430.0 5724210.0 584.41
1835 | 305430.0 5724220.0 584.02
1836 | 305430.0 5724230.0 583.02
1837 | 305440.0 5723700.0 615.40
1838 | 305440.0 5723710.0 613.73
1839 | 305440.0 5723720.0 612.31
1840 | 305440.0 5723730.0 610.94
1841 | 305440.0 5723740.0 616.94
1842 | 305440.0 5723750.0 622.26
1843 | 305440.0 5723760.0 627.68
1844 | 305440.0 5723770.0 634.12
1845 | 305440.0 5723780.0 640.46
1846 | 305440.0 5723790.0 646.80
1847 | 305440.0 5723800.0 650.09
1848 | 305440.0 5723810.0 654.22
1849 | 305440.0 5723820.0 655.99
1850 | 305440.0 5723830.0 656.61
1851 | 305440.0 5723840.0 656.23
1852 | 305440.0 5723850.0 657.06
1853 | 305440.0 5723860.0 657.21
1854 | 305440.0 5723870.0 658.22
1855 | 305440.0 5723880.0 653.65
1856 | 305440.0 5723890.0 652.28
1857 | 305440.0 5723900.0 649.69
1858 | 305440.0 5723910.0 647.09
1859 | 305440.0 5723920.0 652.28
1860 | 305440.0 5723930.0 660.35
1861 | 305440.0 5723940.0 675.09
1862 | 305440.0 5723950.0 678.22
1863 | 305440.0 5723960.0 677.13
1864 | 305440.0 5723970.0 674.49
1865 | 305440.0 5723980.0 674.11
1866 | 305440.0 5723990.0 672.37
1867 | 305440.0 5724000.0 673.38
1868 | 305440.0 5724010.0 671.76
1869 | 305440.0 5724020.0 671.91
1870 | 305440.0 5724030.0 667.73
1871 | 305440.0 5724040.0 666.32
1872 | 305440.0 5724050.0 660.13
1873 | 305440.0 5724060.0 656.22
1874 | 305440.0 5724070.0 650.87
1875 | 305440.0 5724080.0 643.17
1876 | 305440.0 5724090.0 637.59
1877 | 305440.0 5724100.0 632.27
1878 | 305440.0 5724110.0 628.43
1879 | 305440.0 5724120.0 619.13
1880 | 305440.0 5724130.0 609.57
1881 | 305440.0 5724140.0 596.61
1882 | 305440.0 5724150.0 588.83
1883 | 305440.0 5724160.0 585.04
1884 | 305440.0 5724170.0 584.55
1885 | 305440.0 5724180.0 584.52
1886 | 305440.0 5724190.0 584.44
1887 | 305440.0 5724200.0 583.58
1888 | 305440.0 5724210.0 583.52
1889 | 305440.0 5724220.0 582.80
1890 | 305440.0 5724230.0 560.62
1891 | 305450.0 5723700.0 608.48
1892 | 305450.0 5723710.0 608.26
1893 | 305450.0 5723720.0 606.77
1894 | 305450.0 5723730.0 609.02
1895 | 305450.0 5723740.0 617.56
1896 | 305450.0 5723750.0 623.21
1897 | 305450.0 5723760.0 623.72
1898 | 305450.0 5723770.0 630.47
1899 | 305450.0 5723780.0 636.24
1900 | 305450.0 5723790.0 640.52
1901 | 305450.0 5723800.0 647.13
1902 | 305450.0 5723810.0 643.62
1903 | 305450.0 5723820.0 643.59
1904 | 305450.0 5723830.0 648.23
1905 | 305450.0 5723840.0 647.75
1906 | 305450.0 5723850.0 646.27
1907 | 305450.0 5723860.0 646.01
1908 | 305450.0 5723870.0 646.12
1909 | 305450.0 5723880.0 644.43
1910 | 305450.0 5723890.0 637.68
1911 | 305450.0 5723900.0 637.94
1912 | 305450.0 5723910.0 638.13
1913 | 305450.0 5723920.0 646.08
1914 | 305450.0 5723930.0 644.32
1915 | 305450.0 5723940.0 661.11
1916 | 305450.0 5723950.0 666.41
1917 | 305450.0 5723960.0 667.08
1918 | 305450.0 5723970.0 665.07
1919 | 305450.0 5723980.0 663.12
1920 | 305450.0 5723990.0 661.50
1921 | 305450.0 5724000.0 660.61
1922 | 305450.0 5724010.0 661.28
1923 | 305450.0 5724020.0 660.15
1924 | 305450.0 5724030.0 659.42
1925 | 305450.0 5724040.0 655.95
1926 | 305450.0 5724050.0 651.90
1927 | 305450.0 5724060.0 647.56
1928 | 305450.0 5724070.0 639.80
1929 | 305450.0 5724080.0 631.91
1930 | 305450.0 5724090.0 625.05
1931 | 305450.0 5724100.0 620.48
1932 | 305450.0 5724110.0 593.43
1933 | 305450.0 5724120.0 589.35
1934 | 305450.0 5724130.0 586.92
1935 | 305450.0 5724140.0 584.74
1936 | 305450.0 5724150.0 584.61
1937 | 305450.0 5724160.0 584.59
1938 | 305450.0 5724170.0 584.46
1939 | 305450.0 5724180.0 583.28
1940 | 305450.0 5724190.0 583.05
1941 | 305450.0 5724200.0 581.94
1942 | 305450.0 5724210.0 565.78
1943 | 305450.0 5724220.0 557.27
1944 | 305450.0 5724230.0 552.98
1945 | 305460.0 5723700.0 603.95
1946 | 305460.0 5723710.0 605.15
1947 | 305460.0 5723720.0 603.27
1948 | 305460.0 5723730.0 604.68
1949 | 305460.0 5723740.0 611.82
1950 | 305460.0 5723750.0 618.99
1951 | 305460.0 5723760.0 621.94
1952 | 305460.0 5723770.0 621.32
1953 | 305460.0 5723780.0 627.79
1954 | 305460.0 5723790.0 623.45
1955 | 305460.0 5723800.0 622.90
1956 | 305460.0 5723810.0 619.18
1957 | 305460.0 5723820.0 626.14
1958 | 305460.0 5723830.0 635.23
1959 | 305460.0 5723840.0 637.66
1960 | 305460.0 5723850.0 636.26
1961 | 305460.0 5723860.0 637.99
1962 | 305460.0 5723870.0 635.79
1963 | 305460.0 5723880.0 629.43
1964 | 305460.0 5723890.0 619.10
1965 | 305460.0 5723900.0 620.17
1966 | 305460.0 5723910.0 625.66
1967 | 305460.0 5723920.0 632.84
1968 | 305460.0 5723930.0 634.60
1969 | 305460.0 5723940.0 635.45
1970 | 305460.0 5723950.0 649.69
1971 | 305460.0 5723960.0 654.32
1972 | 305460.0 5723970.0 653.00
1973 | 305460.0 5723980.0 650.12
1974 | 305460.0 5723990.0 643.48
1975 | 305460.0 5724000.0 640.01
1976 | 305460.0 5724010.0 641.62
1977 | 305460.0 5724020.0 635.47
1978 | 305460.0 5724030.0 634.94
1979 | 305460.0 5724040.0 634.90
1980 | 305460.0 5724050.0 634.78
1981 | 305460.0 5724060.0 632.76
1982 | 305460.0 5724070.0 627.18
1983 | 305460.0 5724080.0 590.89
1984 | 305460.0 5724090.0 588.45
1985 | 305460.0 5724100.0 585.85
1986 | 305460.0 5724110.0 584.73
1987 | 305460.0 5724120.0 584.67
1988 | 305460.0 5724130.0 584.67
1989 | 305460.0 5724140.0 584.51
1990 | 305460.0 5724150.0 584.39
1991 | 305460.0 5724160.0 584.27
1992 | 305460.0 5724170.0 583.08
1993 | 305460.0 5724180.0 572.91
1994 | 305460.0 5724190.0 565.10
1995 | 305460.0 5724200.0 560.63
1996 | 305460.0 5724210.0 551.84
1997 | 305460.0 5724220.0 550.14
1998 | 305460.0 5724230.0 549.47
1999 | 305470.0 5723700.0 600.70
2000 | 305470.0 5723710.0 599.83
2001 | 305470.0 5723720.0 600.75
2002 | 305470.0 5723730.0 600.84
2003 | 305470.0 5723740.0 600.55
2004 | 305470.0 5723750.0 601.40
2005 | 305470.0 5723760.0 609.48
2006 | 305470.0 5723770.0 610.84
2007 | 305470.0 5723780.0 611.37
2008 | 305470.0 5723790.0 609.69
2009 | 305470.0 5723800.0 609.52
2010 | 305470.0 5723810.0 608.19
2011 | 305470.0 5723820.0 609.03
2012 | 305470.0 5723830.0 614.01
2013 | 305470.0 5723840.0 619.79
2014 | 305470.0 5723850.0 621.64
2015 | 305470.0 5723860.0 617.29
2016 | 305470.0 5723870.0 614.19
2017 | 305470.0 5723880.0 612.85
2018 | 305470.0 5723890.0 606.55
2019 | 305470.0 5723900.0 605.40
2020 | 305470.0 5723910.0 609.37
2021 | 305470.0 5723920.0 616.64
2022 | 305470.0 5723930.0 616.18
2023 | 305470.0 5723940.0 618.09
2024 | 305470.0 5723950.0 623.00
2025 | 305470.0 5723960.0 627.29
2026 | 305470.0 5723970.0 631.06
2027 | 305470.0 5723980.0 621.20
2028 | 305470.0 5723990.0 617.11
2029 | 305470.0 5724000.0 612.39
2030 | 305470.0 5724010.0 616.37
2031 | 305470.0 5724020.0 612.30
2032 | 305470.0 5724030.0 598.26
2033 | 305470.0 5724040.0 589.67
2034 | 305470.0 5724050.0 588.76
2035 | 305470.0 5724060.0 587.40
2036 | 305470.0 5724070.0 585.63
2037 | 305470.0 5724080.0 584.73
2038 | 305470.0 5724090.0 584.71
2039 | 305470.0 5724100.0 584.63
2040 | 305470.0 5724110.0 584.44
2041 | 305470.0 5724120.0 584.14
2042 | 305470.0 5724130.0 584.66
2043 | 305470.0 5724140.0 586.31
2044 | 305470.0 5724150.0 585.57
2045 | 305470.0 5724160.0 570.73
2046 | 305470.0 5724170.0 563.82
2047 | 305470.0 5724180.0 559.37
2048 | 305470.0 5724190.0 550.36
2049 | 305470.0 5724200.0 541.58
2050 | 305470.0 5724210.0 544.01
2051 | 305470.0 5724220.0 543.64
2052 | 305470.0 5724230.0 541.48
2053 | 305480.0 5723700.0 589.34
2054 | 305480.0 5723710.0 590.93
2055 | 305480.0 5723720.0 589.95
2056 | 305480.0 5723730.0 588.95
2057 | 305480.0 5723740.0 588.29
2058 | 305480.0 5723750.0 589.20
2059 | 305480.0 5723760.0 591.82
2060 | 305480.0 5723770.0 591.37
2061 | 305480.0 5723780.0 592.12
2062 | 305480.0 5723790.0 592.04
2063 | 305480.0 5723800.0 592.10
2064 | 305480.0 5723810.0 592.18
2065 | 305480.0 5723820.0 590.93
2066 | 305480.0 5723830.0 589.75
2067 | 305480.0 5723840.0 590.97
2068 | 305480.0 5723850.0 591.29
2069 | 305480.0 5723860.0 590.38
2070 | 305480.0 5723870.0 589.95
2071 | 305480.0 5723880.0 588.97
2072 | 305480.0 5723890.0 588.36
2073 | 305480.0 5723900.0 588.78
2074 | 305480.0 5723910.0 588.55
2075 | 305480.0 5723920.0 588.90
2076 | 305480.0 5723930.0 589.37
2077 | 305480.0 5723940.0 589.41
2078 | 305480.0 5723950.0 588.99
2079 | 305480.0 5723960.0 589.23
2080 | 305480.0 5723970.0 589.20
2081 | 305480.0 5723980.0 588.74
2082 | 305480.0 5723990.0 588.01
2083 | 305480.0 5724000.0 586.95
2084 | 305480.0 5724010.0 585.36
2085 | 305480.0 5724020.0 584.91
2086 | 305480.0 5724030.0 584.85
2087 | 305480.0 5724040.0 584.79
2088 | 305480.0 5724050.0 584.77
2089 | 305480.0 5724060.0 584.71
2090 | 305480.0 5724070.0 584.29
2091 | 305480.0 5724080.0 583.16
2092 | 305480.0 5724090.0 581.54
2093 | 305480.0 5724100.0 581.33
2094 | 305480.0 5724110.0 577.15
2095 | 305480.0 5724120.0 582.04
2096 | 305480.0 5724130.0 572.82
2097 | 305480.0 5724140.0 575.07
2098 | 305480.0 5724150.0 572.25
2099 | 305480.0 5724160.0 562.12
2100 | 305480.0 5724170.0 556.54
2101 | 305480.0 5724180.0 553.03
2102 | 305480.0 5724190.0 544.40
2103 | 305480.0 5724200.0 535.60
2104 | 305480.0 5724210.0 532.98
2105 | 305480.0 5724220.0 531.81
2106 | 305480.0 5724230.0 529.59
2107 | 305490.0 5723700.0 585.50
2108 | 305490.0 5723710.0 585.48
2109 | 305490.0 5723720.0 585.41
2110 | 305490.0 5723730.0 585.40
2111 | 305490.0 5723740.0 585.36
2112 | 305490.0 5723750.0 585.35
2113 | 305490.0 5723760.0 585.35
2114 | 305490.0 5723770.0 585.35
2115 | 305490.0 5723780.0 585.34
2116 | 305490.0 5723790.0 585.34
2117 | 305490.0 5723800.0 585.33
2118 | 305490.0 5723810.0 585.32
2119 | 305490.0 5723820.0 585.31
2120 | 305490.0 5723830.0 585.32
2121 | 305490.0 5723840.0 585.31
2122 | 305490.0 5723850.0 585.30
2123 | 305490.0 5723860.0 585.28
2124 | 305490.0 5723870.0 585.27
2125 | 305490.0 5723880.0 585.26
2126 | 305490.0 5723890.0 585.24
2127 | 305490.0 5723900.0 585.19
2128 | 305490.0 5723910.0 585.17
2129 | 305490.0 5723920.0 585.16
2130 | 305490.0 5723930.0 585.13
2131 | 305490.0 5723940.0 585.11
2132 | 305490.0 5723950.0 585.07
2133 | 305490.0 5723960.0 585.03
2134 | 305490.0 5723970.0 585.01
2135 | 305490.0 5723980.0 584.98
2136 | 305490.0 5723990.0 584.96
2137 | 305490.0 5724000.0 584.94
2138 | 305490.0 5724010.0 584.77
2139 | 305490.0 5724020.0 584.41
2140 | 305490.0 5724030.0 583.32
2141 | 305490.0 5724040.0 584.03
2142 | 305490.0 5724050.0 584.32
2143 | 305490.0 5724060.0 584.63
2144 | 305490.0 5724070.0 584.61
2145 | 305490.0 5724080.0 576.42
2146 | 305490.0 5724090.0 575.26
2147 | 305490.0 5724100.0 573.38
2148 | 305490.0 5724110.0 568.50
2149 | 305490.0 5724120.0 563.64
2150 | 305490.0 5724130.0 557.01
2151 | 305490.0 5724140.0 552.47
2152 | 305490.0 5724150.0 553.55
2153 | 305490.0 5724160.0 550.07
2154 | 305490.0 5724170.0 547.60
2155 | 305490.0 5724180.0 543.65
2156 | 305490.0 5724190.0 533.79
2157 | 305490.0 5724200.0 528.21
2158 | 305490.0 5724210.0 523.58
2159 | 305490.0 5724220.0 519.92
2160 | 305490.0 5724230.0 515.53
2161 | 305500.0 5723700.0 584.24
2162 | 305500.0 5723710.0 584.05
2163 | 305500.0 5723720.0 585.06
2164 | 305500.0 5723730.0 584.66
2165 | 305500.0 5723740.0 583.70
2166 | 305500.0 5723750.0 583.66
2167 | 305500.0 5723760.0 584.27
2168 | 305500.0 5723770.0 584.48
2169 | 305500.0 5723780.0 584.66
2170 | 305500.0 5723790.0 584.62
2171 | 305500.0 5723800.0 584.39
2172 | 305500.0 5723810.0 584.38
2173 | 305500.0 5723820.0 584.64
2174 | 305500.0 5723830.0 584.99
2175 | 305500.0 5723840.0 585.79
2176 | 305500.0 5723850.0 587.39
2177 | 305500.0 5723860.0 588.38
2178 | 305500.0 5723870.0 588.74
2179 | 305500.0 5723880.0 589.22
2180 | 305500.0 5723890.0 589.38
2181 | 305500.0 5723900.0 589.72
2182 | 305500.0 5723910.0 589.86
2183 | 305500.0 5723920.0 593.55
2184 | 305500.0 5723930.0 593.24
2185 | 305500.0 5723940.0 589.83
2186 | 305500.0 5723950.0 589.00
2187 | 305500.0 5723960.0 587.11
2188 | 305500.0 5723970.0 587.56
2189 | 305500.0 5723980.0 586.43
2190 | 305500.0 5723990.0 583.52
2191 | 305500.0 5724000.0 580.77
2192 | 305500.0 5724010.0 579.11
2193 | 305500.0 5724020.0 576.99
2194 | 305500.0 5724030.0 573.84
2195 | 305500.0 5724040.0 570.00
2196 | 305500.0 5724050.0 568.81
2197 | 305500.0 5724060.0 565.78
2198 | 305500.0 5724070.0 566.17
2199 | 305500.0 5724080.0 565.33
2200 | 305500.0 5724090.0 565.03
2201 | 305500.0 5724100.0 563.63
2202 | 305500.0 5724110.0 560.50
2203 | 305500.0 5724120.0 556.67
2204 | 305500.0 5724130.0 552.08
2205 | 305500.0 5724140.0 546.67
2206 | 305500.0 5724150.0 541.53
2207 | 305500.0 5724160.0 536.83
2208 | 305500.0 5724170.0 534.87
2209 | 305500.0 5724180.0 529.37
2210 | 305500.0 5724190.0 520.76
2211 | 305500.0 5724200.0 518.27
2212 | 305500.0 5724210.0 516.92
2213 | 305500.0 5724220.0 513.64
2214 | 305500.0 5724230.0 510.80
2215 | 305510.0 5723700.0 577.75
2216 | 305510.0 5723710.0 578.34
2217 | 305510.0 5723720.0 578.71
2218 | 305510.0 5723730.0 581.12
2219 | 305510.0 5723740.0 582.20
2220 | 305510.0 5723750.0 580.09
2221 | 305510.0 5723760.0 580.75
2222 | 305510.0 5723770.0 581.54
2223 | 305510.0 5723780.0 581.82
2224 | 305510.0 5723790.0 582.17
2225 | 305510.0 5723800.0 583.78
2226 | 305510.0 5723810.0 582.50
2227 | 305510.0 5723820.0 584.36
2228 | 305510.0 5723830.0 587.26
2229 | 305510.0 5723840.0 587.91
2230 | 305510.0 5723850.0 588.88
2231 | 305510.0 5723860.0 588.98
2232 | 305510.0 5723870.0 590.14
2233 | 305510.0 5723880.0 593.02
2234 | 305510.0 5723890.0 596.31
2235 | 305510.0 5723900.0 602.25
2236 | 305510.0 5723910.0 599.78
2237 | 305510.0 5723920.0 594.92
2238 | 305510.0 5723930.0 594.18
2239 | 305510.0 5723940.0 594.23
2240 | 305510.0 5723950.0 588.33
2241 | 305510.0 5723960.0 584.28
2242 | 305510.0 5723970.0 586.13
2243 | 305510.0 5723980.0 583.85
2244 | 305510.0 5723990.0 580.20
2245 | 305510.0 5724000.0 574.61
2246 | 305510.0 5724010.0 569.46
2247 | 305510.0 5724020.0 569.87
2248 | 305510.0 5724030.0 566.58
2249 | 305510.0 5724040.0 562.43
2250 | 305510.0 5724050.0 558.55
2251 | 305510.0 5724060.0 553.93
2252 | 305510.0 5724070.0 552.66
2253 | 305510.0 5724080.0 556.49
2254 | 305510.0 5724090.0 556.82
2255 | 305510.0 5724100.0 556.22
2256 | 305510.0 5724110.0 553.75
2257 | 305510.0 5724120.0 550.24
2258 | 305510.0 5724130.0 546.44
2259 | 305510.0 5724140.0 541.37
2260 | 305510.0 5724150.0 535.78
2261 | 305510.0 5724160.0 530.87
2262 | 305510.0 5724170.0 525.84
2263 | 305510.0 5724180.0 519.22
2264 | 305510.0 5724190.0 515.68
2265 | 305510.0 5724200.0 513.24
2266 | 305510.0 5724210.0 511.41
2267 | 305510.0 5724220.0 509.28
2268 | 305510.0 5724230.0 508.70
2269 | 305520.0 5723700.0 567.52
2270 | 305520.0 5723710.0 569.59
2271 | 305520.0 5723720.0 571.10
2272 | 305520.0 5723730.0 569.13
2273 | 305520.0 5723740.0 569.60
2274 | 305520.0 5723750.0 569.51
2275 | 305520.0 5723760.0 567.89
2276 | 305520.0 5723770.0 569.72
2277 | 305520.0 5723780.0 573.20
2278 | 305520.0 5723790.0 568.71
2279 | 305520.0 5723800.0 568.04
2280 | 305520.0 5723810.0 571.25
2281 | 305520.0 5723820.0 577.46
2282 | 305520.0 5723830.0 580.79
2283 | 305520.0 5723840.0 580.99
2284 | 305520.0 5723850.0 581.03
2285 | 305520.0 5723860.0 581.96
2286 | 305520.0 5723870.0 581.02
2287 | 305520.0 5723880.0 579.70
2288 | 305520.0 5723890.0 581.70
2289 | 305520.0 5723900.0 583.44
2290 | 305520.0 5723910.0 583.61
2291 | 305520.0 5723920.0 583.42
2292 | 305520.0 5723930.0 579.99
2293 | 305520.0 5723940.0 577.98
2294 | 305520.0 5723950.0 577.98
2295 | 305520.0 5723960.0 576.21
2296 | 305520.0 5723970.0 576.82
2297 | 305520.0 5723980.0 575.85
2298 | 305520.0 5723990.0 571.32
2299 | 305520.0 5724000.0 569.83
2300 | 305520.0 5724010.0 561.51
2301 | 305520.0 5724020.0 559.65
2302 | 305520.0 5724030.0 558.06
2303 | 305520.0 5724040.0 556.00
2304 | 305520.0 5724050.0 552.49
2305 | 305520.0 5724060.0 547.77
2306 | 305520.0 5724070.0 546.68
2307 | 305520.0 5724080.0 549.34
2308 | 305520.0 5724090.0 549.08
2309 | 305520.0 5724100.0 547.44
2310 | 305520.0 5724110.0 545.27
2311 | 305520.0 5724120.0 542.82
2312 | 305520.0 5724130.0 539.63
2313 | 305520.0 5724140.0 536.04
2314 | 305520.0 5724150.0 530.89
2315 | 305520.0 5724160.0 526.15
2316 | 305520.0 5724170.0 521.09
2317 | 305520.0 5724180.0 515.21
2318 | 305520.0 5724190.0 512.11
2319 | 305520.0 5724200.0 509.07
2320 | 305520.0 5724210.0 508.68
2321 | 305520.0 5724220.0 508.68
2322 | 305520.0 5724230.0 508.68
2323 | 305530.0 5723700.0 559.78
2324 | 305530.0 5723710.0 558.91
2325 | 305530.0 5723720.0 559.86
2326 | 305530.0 5723730.0 559.57
2327 | 305530.0 5723740.0 559.53
2328 | 305530.0 5723750.0 559.10
2329 | 305530.0 5723760.0 559.32
2330 | 305530.0 5723770.0 559.95
2331 | 305530.0 5723780.0 560.12
2332 | 305530.0 5723790.0 560.48
2333 | 305530.0 5723800.0 560.10
2334 | 305530.0 5723810.0 561.01
2335 | 305530.0 5723820.0 565.67
2336 | 305530.0 5723830.0 568.23
2337 | 305530.0 5723840.0 570.98
2338 | 305530.0 5723850.0 574.01
2339 | 305530.0 5723860.0 573.35
2340 | 305530.0 5723870.0 572.51
2341 | 305530.0 5723880.0 570.87
2342 | 305530.0 5723890.0 571.97
2343 | 305530.0 5723900.0 572.55
2344 | 305530.0 5723910.0 571.52
2345 | 305530.0 5723920.0 567.49
2346 | 305530.0 5723930.0 566.63
2347 | 305530.0 5723940.0 566.16
2348 | 305530.0 5723950.0 566.26
2349 | 305530.0 5723960.0 568.34
2350 | 305530.0 5723970.0 569.15
2351 | 305530.0 5723980.0 565.37
2352 | 305530.0 5723990.0 561.57
2353 | 305530.0 5724000.0 556.11
2354 | 305530.0 5724010.0 551.87
2355 | 305530.0 5724020.0 551.32
2356 | 305530.0 5724030.0 550.30
2357 | 305530.0 5724040.0 548.70
2358 | 305530.0 5724050.0 546.27
2359 | 305530.0 5724060.0 542.95
2360 | 305530.0 5724070.0 540.38
2361 | 305530.0 5724080.0 542.22
2362 | 305530.0 5724090.0 541.21
2363 | 305530.0 5724100.0 539.96
2364 | 305530.0 5724110.0 538.94
2365 | 305530.0 5724120.0 536.59
2366 | 305530.0 5724130.0 533.63
2367 | 305530.0 5724140.0 530.15
2368 | 305530.0 5724150.0 526.39
2369 | 305530.0 5724160.0 521.46
2370 | 305530.0 5724170.0 516.72
2371 | 305530.0 5724180.0 511.28
2372 | 305530.0 5724190.0 508.69
2373 | 305530.0 5724200.0 508.67
2374 | 305530.0 5724210.0 508.67
2375 | 305530.0 5724220.0 508.67
2376 | 305530.0 5724230.0 508.68
2377 | 305540.0 5723700.0 549.56
2378 | 305540.0 5723710.0 551.02
2379 | 305540.0 5723720.0 552.28
2380 | 305540.0 5723730.0 552.40
2381 | 305540.0 5723740.0 552.19
2382 | 305540.0 5723750.0 551.68
2383 | 305540.0 5723760.0 552.12
2384 | 305540.0 5723770.0 552.66
2385 | 305540.0 5723780.0 552.49
2386 | 305540.0 5723790.0 553.25
2387 | 305540.0 5723800.0 553.27
2388 | 305540.0 5723810.0 553.82
2389 | 305540.0 5723820.0 556.51
2390 | 305540.0 5723830.0 560.21
2391 | 305540.0 5723840.0 560.40
2392 | 305540.0 5723850.0 564.05
2393 | 305540.0 5723860.0 563.42
2394 | 305540.0 5723870.0 561.48
2395 | 305540.0 5723880.0 561.44
2396 | 305540.0 5723890.0 561.69
2397 | 305540.0 5723900.0 561.48
2398 | 305540.0 5723910.0 559.66
2399 | 305540.0 5723920.0 557.86
2400 | 305540.0 5723930.0 556.89
2401 | 305540.0 5723940.0 555.87
2402 | 305540.0 5723950.0 555.03
2403 | 305540.0 5723960.0 557.40
2404 | 305540.0 5723970.0 556.48
2405 | 305540.0 5723980.0 552.06
2406 | 305540.0 5723990.0 549.69
2407 | 305540.0 5724000.0 543.98
2408 | 305540.0 5724010.0 544.92
2409 | 305540.0 5724020.0 544.05
2410 | 305540.0 5724030.0 543.16
2411 | 305540.0 5724040.0 541.77
2412 | 305540.0 5724050.0 539.73
2413 | 305540.0 5724060.0 537.16
2414 | 305540.0 5724070.0 533.97
2415 | 305540.0 5724080.0 534.55
2416 | 305540.0 5724090.0 534.24
2417 | 305540.0 5724100.0 533.57
2418 | 305540.0 5724110.0 532.12
2419 | 305540.0 5724120.0 530.16
2420 | 305540.0 5724130.0 527.89
2421 | 305540.0 5724140.0 524.83
2422 | 305540.0 5724150.0 520.74
2423 | 305540.0 5724160.0 516.40
2424 | 305540.0 5724170.0 511.34
2425 | 305540.0 5724180.0 508.71
2426 | 305540.0 5724190.0 508.67
2427 | 305540.0 5724200.0 508.68
2428 | 305540.0 5724210.0 508.67
2429 | 305540.0 5724220.0 508.67
2430 | 305540.0 5724230.0 508.68
2431 | 305550.0 5723700.0 542.09
2432 | 305550.0 5723710.0 543.32
2433 | 305550.0 5723720.0 545.09
2434 | 305550.0 5723730.0 544.92
2435 | 305550.0 5723740.0 544.82
2436 | 305550.0 5723750.0 543.91
2437 | 305550.0 5723760.0 544.11
2438 | 305550.0 5723770.0 545.20
2439 | 305550.0 5723780.0 545.02
2440 | 305550.0 5723790.0 545.58
2441 | 305550.0 5723800.0 546.21
2442 | 305550.0 5723810.0 547.17
2443 | 305550.0 5723820.0 547.70
2444 | 305550.0 5723830.0 548.53
2445 | 305550.0 5723840.0 553.70
2446 | 305550.0 5723850.0 556.53
2447 | 305550.0 5723860.0 553.60
2448 | 305550.0 5723870.0 553.63
2449 | 305550.0 5723880.0 553.29
2450 | 305550.0 5723890.0 551.98
2451 | 305550.0 5723900.0 552.00
2452 | 305550.0 5723910.0 551.62
2453 | 305550.0 5723920.0 549.09
2454 | 305550.0 5723930.0 548.87
2455 | 305550.0 5723940.0 546.40
2456 | 305550.0 5723950.0 545.00
2457 | 305550.0 5723960.0 543.29
2458 | 305550.0 5723970.0 541.91
2459 | 305550.0 5723980.0 539.40
2460 | 305550.0 5723990.0 534.29
2461 | 305550.0 5724000.0 535.89
2462 | 305550.0 5724010.0 537.02
2463 | 305550.0 5724020.0 536.75
2464 | 305550.0 5724030.0 536.30
2465 | 305550.0 5724040.0 535.41
2466 | 305550.0 5724050.0 532.86
2467 | 305550.0 5724060.0 531.23
2468 | 305550.0 5724070.0 528.12
2469 | 305550.0 5724080.0 527.46
2470 | 305550.0 5724090.0 527.37
2471 | 305550.0 5724100.0 526.98
2472 | 305550.0 5724110.0 525.83
2473 | 305550.0 5724120.0 524.25
2474 | 305550.0 5724130.0 521.73
2475 | 305550.0 5724140.0 519.50
2476 | 305550.0 5724150.0 515.67
2477 | 305550.0 5724160.0 511.51
2478 | 305550.0 5724170.0 508.74
2479 | 305550.0 5724180.0 508.67
2480 | 305550.0 5724190.0 508.68
2481 | 305550.0 5724200.0 508.68
2482 | 305550.0 5724210.0 508.68
2483 | 305550.0 5724220.0 508.68
2484 | 305550.0 5724230.0 508.68
2485 |
--------------------------------------------------------------------------------