├── examples ├── Vel_P.dat ├── Vel_S.dat ├── __pycache__ │ └── Disp_results.cpython-37.pyc ├── TrueHypo.dat ├── Hinit.dat ├── rcv.dat ├── WellData_P.dat ├── localisation_P.par ├── WellData_PS.dat ├── localisation_PS.par ├── Disp_results.py ├── Example.py ├── Traveltimes_P.dat ├── Traveltimes_PS.dat ├── CalibData_P.dat ├── CalibData_PS.dat └── all_dec.xyz ├── .gitignore ├── setup.cfg ├── docs ├── images │ ├── Data_P.png │ ├── noise.png │ ├── norms.png │ ├── Data_PS.png │ ├── Hypo_init.png │ ├── VelModel.png │ ├── receivers.png │ ├── CalibDataP.png │ ├── CalibDataPS.png │ ├── Hypocenters.png │ ├── P_S_Param_File.png │ ├── Parameter_file.png │ └── trueVelocity.png ├── __pycache__ │ ├── mesh.cpython-37.pyc │ └── JHVI_Tetra.cpython-37.pyc ├── code.rst ├── code_JHVIT.rst ├── Makefile ├── getting_started.rst ├── make.bat ├── references.rst ├── index.rst ├── results.rst ├── conf.py └── example.rst ├── images └── JHVIT_Logo.gif ├── requirements.txt ├── src ├── __pycache__ │ ├── mesh.cpython-37.pyc │ └── JHVI_Tetra.cpython-37.pyc ├── JHVIT │ ├── __init__.py │ └── mesh.py └── Mesh_Prep.py ├── LICENSE.txt ├── setup.py ├── .github └── workflows │ └── codeql-analysis.yml └── README.md /examples/Vel_P.dat: -------------------------------------------------------------------------------- 1 | 6. -------------------------------------------------------------------------------- /examples/Vel_S.dat: -------------------------------------------------------------------------------- 1 | 3.3 -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | *.pyc 2 | 3 | docs/_build/ 4 | -------------------------------------------------------------------------------- /setup.cfg: -------------------------------------------------------------------------------- 1 | [metadata] 2 | description-file = README.md 3 | -------------------------------------------------------------------------------- /docs/images/Data_P.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Data_P.png -------------------------------------------------------------------------------- /docs/images/noise.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/noise.png -------------------------------------------------------------------------------- /docs/images/norms.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/norms.png -------------------------------------------------------------------------------- /images/JHVIT_Logo.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/images/JHVIT_Logo.gif -------------------------------------------------------------------------------- /docs/images/Data_PS.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Data_PS.png -------------------------------------------------------------------------------- /docs/images/Hypo_init.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Hypo_init.png -------------------------------------------------------------------------------- /docs/images/VelModel.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/VelModel.png -------------------------------------------------------------------------------- /docs/images/receivers.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/receivers.png -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | setuptools 2 | cython 3 | numpy>=1.20.1 4 | scipy 5 | vtk 6 | ttcrpy 7 | numba 8 | -------------------------------------------------------------------------------- /docs/images/CalibDataP.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/CalibDataP.png -------------------------------------------------------------------------------- /docs/images/CalibDataPS.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/CalibDataPS.png -------------------------------------------------------------------------------- /docs/images/Hypocenters.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Hypocenters.png -------------------------------------------------------------------------------- /docs/images/P_S_Param_File.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/P_S_Param_File.png -------------------------------------------------------------------------------- /docs/images/Parameter_file.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/Parameter_file.png -------------------------------------------------------------------------------- /docs/images/trueVelocity.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/images/trueVelocity.png -------------------------------------------------------------------------------- /src/__pycache__/mesh.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/src/__pycache__/mesh.cpython-37.pyc -------------------------------------------------------------------------------- /docs/__pycache__/mesh.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/__pycache__/mesh.cpython-37.pyc -------------------------------------------------------------------------------- /docs/__pycache__/JHVI_Tetra.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/docs/__pycache__/JHVI_Tetra.cpython-37.pyc -------------------------------------------------------------------------------- /src/__pycache__/JHVI_Tetra.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/src/__pycache__/JHVI_Tetra.cpython-37.pyc -------------------------------------------------------------------------------- /examples/__pycache__/Disp_results.cpython-37.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/groupeLIAMG/JHVIT/HEAD/examples/__pycache__/Disp_results.cpython-37.pyc -------------------------------------------------------------------------------- /src/JHVIT/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | """ 3 | Code to perform seismic hypocenter location on tetrahedral meshes 4 | """ 5 | from JHVIT.mesh import MSHReader 6 | from JHVIT.JHVI_Tetra import jntHypoVel_T, jntHyposlow_T, jntHypoVelPS_T, jntHyposlowPS_T, jointHypoVel_T, jointHypoVelPS_T, readEventsFiles 7 | -------------------------------------------------------------------------------- /docs/code.rst: -------------------------------------------------------------------------------- 1 | ********************************* 2 | Code documentation 3 | ********************************* 4 | 5 | Here is the Documentation of the main functions callable in ``JHVIT``. 6 | 7 | .. toctree:: 8 | :maxdepth: 2 9 | :caption: Modules: 10 | 11 | code_JHVIT.rst 12 | -------------------------------------------------------------------------------- /docs/code_JHVIT.rst: -------------------------------------------------------------------------------- 1 | 2 | Module JHVIT.JHVI_Tetra 3 | ======================= 4 | 5 | .. autofunction:: JHVI_Tetra.jntHypoVel_T 6 | 7 | .. autofunction:: JHVI_Tetra.jntHyposlow_T 8 | 9 | .. autofunction:: JHVI_Tetra.jntHypoVelPS_T 10 | 11 | .. autofunction:: JHVI_Tetra.jntHyposlowPS_T 12 | 13 | .. autofunction:: JHVI_Tetra.jointHypoVel_T 14 | 15 | .. autofunction:: JHVI_Tetra.jointHypoVelPS_T 16 | 17 | .. autofunction:: JHVI_Tetra.readEventsFiles 18 | -------------------------------------------------------------------------------- /examples/TrueHypo.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn t0 X Y Z 3 | 1 7.858 305.448666 5723.942294 0.647953 4 | 2 9.23696 305.397083 5723.998452 0.696836 5 | 3 11.36495 305.395376 5723.913263 0.690865 6 | 4 11.66731 305.373676 5724.024994 0.684436 7 | 5 13.8493 305.388474 5723.961999 0.686552 8 | 6 15.44068 305.366536 5723.914089 0.695269 9 | 7 16.57611 305.392653 5724.058199 0.662064 10 | 8 17.45004 305.40807 5724.055363 0.677264 11 | 9 18.15286 305.39435 5724.029609 0.684731 12 | 10 26.51696 305.449088 5723.992591 0.645299 13 | -------------------------------------------------------------------------------- /examples/Hinit.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn t0 X Y Z 3 | 1 7.87 305.30000 5723.90000 0.60000 4 | 2 9.24 305.25000 5723.90000 0.61500 5 | 3 11.38 305.30000 5723.80000 0.62000 6 | 4 11.68 305.20000 5723.90000 0.60000 7 | 5 13.85 305.25000 5723.90000 0.64000 8 | 6 15.47 305.20000 5723.80000 0.62000 9 | 7 16.59 305.30000 5723.70000 0.60000 10 | 8 17.46 305.30000 5723.95000 0.62000 11 | 9 18.16 305.35000 5723.90000 0.60000 12 | 10 26.53 305.30000 5723.85000 0.61000 -------------------------------------------------------------------------------- /examples/rcv.dat: -------------------------------------------------------------------------------- 1 | 16 2 | 305.420000 5724.001000 0.685350 3 | 305.430000 5724.041000 0.668725 4 | 305.430000 5723.966000 0.634600 5 | 305.452000 5723.966000 0.656600 6 | 305.380000 5724.001000 0.699643 7 | 305.380000 5724.046000 0.692355 8 | 305.375000 5724.091000 0.681944 9 | 305.350000 5724.031000 0.709420 10 | 305.310000 5723.981000 0.730857 11 | 305.310000 5723.936000 0.734676 12 | 305.310000 5723.891000 0.740946 13 | 305.310000 5724.026000 0.725283 14 | 305.400000 5723.981000 0.696919 15 | 305.415000 5723.961000 0.693189 16 | 305.430000 5724.042000 0.620000 17 | 305.452000 5724.042000 0.642000 18 | -------------------------------------------------------------------------------- /docs/Makefile: -------------------------------------------------------------------------------- 1 | # Minimal makefile for Sphinx documentation 2 | # 3 | 4 | # You can set these variables from the command line, and also 5 | # from the environment for the first two. 6 | SPHINXOPTS ?= 7 | SPHINXBUILD ?= sphinx-build 8 | SOURCEDIR = . 9 | BUILDDIR = _build 10 | 11 | # Put it first so that "make" without argument is like "make help". 12 | help: 13 | @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 14 | 15 | .PHONY: help Makefile 16 | 17 | # Catch-all target: route all unknown targets to Sphinx using the new 18 | # "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). 19 | %: Makefile 20 | @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) 21 | -------------------------------------------------------------------------------- /docs/getting_started.rst: -------------------------------------------------------------------------------- 1 | .. _getting_started: 2 | 3 | 4 | ############### 5 | Getting started 6 | ############### 7 | 8 | .. _installing- JHVIT: 9 | 10 | ***************** 11 | Installing JHVIT 12 | ***************** 13 | 14 | You can use pip to install the package by running:: 15 | 16 | pip install JHVIT 17 | 18 | .. _Requirements- JHVIT: 19 | 20 | *************** 21 | Requirements 22 | *************** 23 | 24 | JHVIT needs the following packages: 25 | - cython (https://cython.org) 26 | - numpy (https://numpy.org) with version >= 1.20.1 27 | - scipy (https://www.scipy.org) 28 | - ttcrpy (https://pypi.org/project/ttcrpy) 29 | - vtk (https://www.vtk.org) 30 | 31 | To run the package using many processes, it is highly recommended to have python-version 3.7. 32 | -------------------------------------------------------------------------------- /examples/WellData_P.dat: -------------------------------------------------------------------------------- 1 | ## synthetic Data 2 | Pt_id V(km/s) X(km) Y(km) Z(km) 3 | 1 5.0874 305.310 5724.000 0.70354 4 | 2 5.0533 305.310 5724.000 0.68776 5 | 3 5.1373 305.310 5724.000 0.67856 6 | 4 5.2474 305.310 5724.000 0.67509 7 | 5 5.0266 305.310 5724.000 0.65997 8 | 6 5.0242 305.310 5724.000 0.65312 9 | 7 5.1610 305.310 5724.000 0.63805 10 | 8 5.1612 305.310 5724.000 0.62651 11 | 9 5.0599 305.310 5724.000 0.62099 12 | 10 5.1055 305.310 5724.000 0.61458 13 | 11 5.1890 305.310 5724.000 0.60260 14 | 12 5.0972 305.310 5724.000 0.58473 15 | 13 5.0983 305.310 5724.000 0.57902 16 | 14 5.1477 305.310 5724.000 0.56651 17 | 15 5.0438 305.310 5724.000 0.55784 18 | 16 5.0358 305.310 5724.000 0.54864 19 | 17 5.2290 305.310 5724.000 0.53715 20 | 18 5.1633 305.310 5724.000 0.53104 21 | 19 5.1253 305.310 5724.000 0.51296 22 | 20 5.0918 305.310 5724.000 0.50560 -------------------------------------------------------------------------------- /docs/make.bat: -------------------------------------------------------------------------------- 1 | @ECHO OFF 2 | 3 | pushd %~dp0 4 | 5 | REM Command file for Sphinx documentation 6 | 7 | if "%SPHINXBUILD%" == "" ( 8 | set SPHINXBUILD=sphinx-build 9 | ) 10 | set SOURCEDIR=. 11 | set BUILDDIR=_build 12 | 13 | if "%1" == "" goto help 14 | 15 | %SPHINXBUILD% >NUL 2>NUL 16 | if errorlevel 9009 ( 17 | echo. 18 | echo.The 'sphinx-build' command was not found. Make sure you have Sphinx 19 | echo.installed, then set the SPHINXBUILD environment variable to point 20 | echo.to the full path of the 'sphinx-build' executable. Alternatively you 21 | echo.may add the Sphinx directory to PATH. 22 | echo. 23 | echo.If you don't have Sphinx installed, grab it from 24 | echo.http://sphinx-doc.org/ 25 | exit /b 1 26 | ) 27 | 28 | %SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% 29 | goto end 30 | 31 | :help 32 | %SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% 33 | 34 | :end 35 | popd 36 | -------------------------------------------------------------------------------- /examples/localisation_P.par: -------------------------------------------------------------------------------- 1 | base name :Benchmark_P 2 | mesh file :Model.msh 3 | topography file :topo.msh 4 | rcvfile :rcv.dat 5 | number of threads :3 6 | arrival times :Traveltimes_P.dat 7 | Velocity P waves :Vel_P.dat 8 | Velocity S waves :Vel_S.dat 9 | known velocity points : 10 | Hypo0 :Hinit.dat 11 | Time calibration :CalibData_P.dat 12 | number of iterations :10 13 | num. iters. to get hypo. :12 14 | inverse velocity :True 15 | inverse Vs/Vp :False 16 | reloc.hypo.in 2 steps :False 17 | use static corrections :True 18 | Verbose :True 19 | Save Velocity :last 20 | maximum stat. correction :0.05 21 | Vpmin :1.5 22 | Vpmax :8. 23 | Vsmin :1.2 24 | Vsmax :6. 25 | PAp :1 26 | PAs :1. 27 | dVp max :0.200 28 | dVs max :0.200 29 | dx max :0.005 30 | dt max :0.005 31 | alpha :1. 32 | lambda :1.e4 33 | Gamma :10. 34 | vertical smoothing :0.75 35 | convergence Criterion :0.0005 36 | uncertainty estm. :True 37 | confidence level :0.95 -------------------------------------------------------------------------------- /LICENSE.txt: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Permission is hereby granted, free of charge, to any person obtaining a copy 4 | of this software and associated documentation files (the "Software"), to deal 5 | in the Software without restriction, including without limitation the rights 6 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 | copies of the Software, and to permit persons to whom the Software is 8 | furnished to do so, subject to the following conditions: 9 | 10 | The above copyright notice and this permission notice shall be included in all 11 | copies or substantial portions of the Software. 12 | 13 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 19 | SOFTWARE. -------------------------------------------------------------------------------- /examples/WellData_PS.dat: -------------------------------------------------------------------------------- 1 | ## synthetic Data 2 | Pt V(km/s) X(km) Y(km) Z(km) Wave 3 | 1 5.0921 305.310 5724.000 0.65636 P 4 | 2 5.1081 305.310 5724.000 0.64260 P 5 | 3 5.1095 305.310 5724.000 0.63271 P 6 | 4 5.0780 305.310 5724.000 0.61248 P 7 | 5 5.0431 305.310 5724.000 0.60352 P 8 | 6 5.1181 305.310 5724.000 0.59207 P 9 | 7 5.0781 305.310 5724.000 0.57657 P 10 | 8 5.1151 305.310 5724.000 0.56505 P 11 | 9 5.1227 305.310 5724.000 0.54657 P 12 | 10 5.1019 305.310 5724.000 0.53698 P 13 | 11 5.0139 305.310 5724.000 0.52694 P 14 | 12 5.0789 305.310 5724.000 0.50156 P 15 | 1 2.7091 305.310 5724.000 0.65636 S 16 | 2 2.8081 305.310 5724.000 0.64260 S 17 | 3 2.7125 305.310 5724.000 0.63271 S 18 | 4 2.6780 305.310 5724.000 0.61248 S 19 | 5 2.7131 305.310 5724.000 0.60352 S 20 | 6 2.7381 305.310 5724.000 0.59207 S 21 | 7 2.7781 305.310 5724.000 0.57657 S 22 | 8 2.8051 305.310 5724.000 0.56505 S 23 | 9 2.6927 305.310 5724.000 0.54657 S 24 | 10 2.6859 305.310 5724.000 0.53698 S 25 | 11 2.8019 305.310 5724.000 0.52694 S 26 | 12 2.7289 305.310 5724.000 0.50156 S -------------------------------------------------------------------------------- /examples/localisation_PS.par: -------------------------------------------------------------------------------- 1 | base name :BenchmarkPS 2 | mesh file :Model.msh 3 | topography file :topo.msh 4 | rcvfile :rcv.dat 5 | number of threads :3 6 | arrival times :Traveltimes_PS.dat 7 | Velocity P waves :Vel_P.dat 8 | Velocity S waves :Vel_S.dat 9 | known velocity points : 10 | Hypo0 :Hinit.dat 11 | Time calibration :CalibData_PS.dat 12 | number of iterations :10 13 | num. iters. to get hypo. :12 14 | inverse velocity : 1 15 | inverse Vs/Vp :0 16 | reloc.hypo.in 2 steps :0 17 | use static corrections :1 18 | Verbose :True 19 | Save Velocity :last 20 | maximum stat. correction:0.05 21 | Vpmin :1.5 22 | Vpmax :8. 23 | Vsmin :1.2 24 | Vsmax :6. 25 | VpVs_min :1.65 26 | VpVs_max :2.25 27 | PAp :1 28 | PAs :1. 29 | Pvpvs :1. 30 | dVp max :0.200 31 | dVs max :0.200 32 | dx max :0.010 33 | dt max :0.005 34 | alpha :1. 35 | lambda :1.e4 36 | Gamma :1. 37 | Gamma_vpvs :1 38 | stigma :0. 39 | vertical smoothing :0.75 40 | convergence Criterion :0.0005 41 | uncertainty estm. :1 42 | confidence level :0.95 43 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | import setuptools 2 | 3 | with open("README.md", "r", encoding="utf-8") as fh: 4 | long_description = fh.read() 5 | 6 | setuptools.setup( 7 | 8 | name="JHVIT", 9 | version="0.0.14", 10 | author="Maher Nasr", 11 | author_email="Maher.Nasr@inrs.ca", 12 | description="Code to perform seismic hypocenter location on tetrahedral meshes", 13 | long_description=long_description, 14 | long_description_content_type="text/markdown", 15 | url="https://github.com/groupeLIAMG/JHVIT.git", 16 | keywords = ["joint hypocenter velocity inversion", "hypocenter location", 17 | "passive seismic", "tetrahedral meshes"], 18 | classifiers=[ 19 | "Programming Language :: Python :: 3.7", 20 | "License :: OSI Approved :: MIT License", 21 | "Operating System :: OS Independent", 22 | 'Intended Audience :: Science/Research', 23 | 'Topic :: Scientific/Engineering', 24 | ], 25 | package_dir={"": "src"}, 26 | packages=setuptools.find_packages(where="src"), 27 | python_requires= "==3.7.*", 28 | install_requires=["numpy>=1.20.1", 29 | "scipy", 30 | "vtk", 31 | "ttcrpy>=1.1.8"], 32 | ) 33 | -------------------------------------------------------------------------------- /docs/references.rst: -------------------------------------------------------------------------------- 1 | .. _references: 2 | 3 | ########## 4 | References 5 | ########## 6 | 7 | For more details and information, users are invited to look into these references: 8 | 9 | - Block, L.V. (1991): Joint hypocenter-velocity inversion of local earthquake arrival 10 | time data in two geothermal regions. Doctoral thesis, Massachusetts Institute of Technology. 11 | https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930. 12 | 13 | 14 | 15 | - Block, L.V., Cheng, C.H., Fehler, M.C., Phillips, W.S.(1994): Seismic imaging using microearthquakes 16 | induced by hydraulic fracturing. Geophysics 59(1), 102-112. 17 | https://doi.org/10.1190/geo1992-0156. 18 | 19 | - Giroux, B. (2001): Auscultation des barrages en béton par écoute microsismique: détectabilité et localisation 20 | des événements. Doctoral thesis, Université de Montréal. 21 | https://publications.polymtl.ca/8641/. 22 | 23 | - Nasr, M., Giroux, B., Dupuis, J.C.(2020): A hybrid approach to compute seismic travel times in three‐dimensional tetrahedral meshes. 24 | Geophys. Prospect. 68(4), 1291-1313. https://doi.org/10.1111/1365-2478.12930. 25 | 26 | - Nasr, M., Giroux, B., Dupuis, J. C. (2021): Python package for 3D joint hypocenter-velocity inversion 27 | on tetrahedral meshes: Parallel implementation and practical considerations. Comput. Geosci., (submitted). 28 | -------------------------------------------------------------------------------- /docs/index.rst: -------------------------------------------------------------------------------- 1 | .. JHVIT documentation master file, created by 2 | sphinx-quickstart on Tue Oct 19 08:03:34 2021. 3 | You can adapt this file completely to your liking, but it should at least 4 | contain the root `toctree` directive. 5 | 6 | ################################## 7 | Welcome to JHVIT's documentation! 8 | ################################## 9 | 10 | JHVIT is a python package for locating seismic event hypocenters on unstructured 11 | grids. The package is an extension of the joint hypocenter-velocity inversion method 12 | on tetrahedral meshes. It is mainly recommended for domains with steep topography, 13 | underground cavities and stratigraphic and abnormal geological contacts such as 14 | folds, faults and shear zones. The code is able to locate a wide range of seismic 15 | events going from major earthquakes and nuclear explosions to low and negative 16 | magnitude events. Target application areas include computational seismology, 17 | hydraulic fracture and microseismic monitoring of mining environments or in civil 18 | engineering projects. 19 | 20 | The package is written in Python, uses an optimized c++ raytracing code wrapped in 21 | Cython and supports parallel computing. 22 | 23 | .. toctree:: 24 | :maxdepth: 2 25 | :caption: Contents: 26 | 27 | getting_started.rst 28 | example.rst 29 | results.rst 30 | code.rst 31 | references.rst 32 | 33 | 34 | ################## 35 | Indices and tables 36 | ################## 37 | 38 | * :ref:`genindex` 39 | * :ref:`modindex` 40 | * :ref:`search` 41 | -------------------------------------------------------------------------------- /.github/workflows/codeql-analysis.yml: -------------------------------------------------------------------------------- 1 | # For most projects, this workflow file will not need changing; you simply need 2 | # to commit it to your repository. 3 | # 4 | # You may wish to alter this file to override the set of languages analyzed, 5 | # or to provide custom queries or build logic. 6 | # 7 | # ******** NOTE ******** 8 | # We have attempted to detect the languages in your repository. Please check 9 | # the `language` matrix defined below to confirm you have the correct set of 10 | # supported CodeQL languages. 11 | # 12 | name: "CodeQL" 13 | 14 | on: 15 | push: 16 | branches: [ main ] 17 | pull_request: 18 | # The branches below must be a subset of the branches above 19 | branches: [ main ] 20 | schedule: 21 | - cron: '34 1 * * 5' 22 | 23 | jobs: 24 | analyze: 25 | name: Analyze 26 | runs-on: ubuntu-latest 27 | permissions: 28 | actions: read 29 | contents: read 30 | security-events: write 31 | 32 | strategy: 33 | fail-fast: false 34 | matrix: 35 | language: [ 'python' ] 36 | # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ] 37 | # Learn more: 38 | # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed 39 | 40 | steps: 41 | - name: Checkout repository 42 | uses: actions/checkout@v2 43 | 44 | # Initializes the CodeQL tools for scanning. 45 | - name: Initialize CodeQL 46 | uses: github/codeql-action/init@v1 47 | with: 48 | languages: ${{ matrix.language }} 49 | # If you wish to specify custom queries, you can do so here or in a config file. 50 | # By default, queries listed here will override any specified in a config file. 51 | # Prefix the list here with "+" to use these queries and those in the config file. 52 | # queries: ./path/to/local/query, your-org/your-repo/queries@main 53 | 54 | # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). 55 | # If this step fails, then you should remove it and run the build manually (see below) 56 | - name: Autobuild 57 | uses: github/codeql-action/autobuild@v1 58 | 59 | # ℹ️ Command-line programs to run using the OS shell. 60 | # 📚 https://git.io/JvXDl 61 | 62 | # ✏️ If the Autobuild fails above, remove it and uncomment the following three lines 63 | # and modify them (or add more) to build your code if your project 64 | # uses a compiled language 65 | 66 | #- run: | 67 | # make bootstrap 68 | # make release 69 | 70 | - name: Perform CodeQL Analysis 71 | uses: github/codeql-action/analyze@v1 72 | -------------------------------------------------------------------------------- /docs/results.rst: -------------------------------------------------------------------------------- 1 | .. _results: 2 | 3 | ############### 4 | Results 5 | ############### 6 | 7 | If no bugs occur, ``JHVIT`` will return a python dictionary containing an estimation of: 8 | - Hypocenter coordinates and their origin times. 9 | - Static correction values at the stations. 10 | - Velocity models for P-wave and eventually S-wave or the Vp/Vs ratio model. 11 | - Convergence states of each hypocenter. 12 | - Parameter uncertainty: this includes the origin time uncertainty and the confidence ellipsoid of each seismic event. 13 | - Data misfit norms. 14 | 15 | 16 | Examples of expected results are presented below. These results can be reproduced by running the test code: 17 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Example.py 18 | 19 | .. image:: images/Hypocenters.* 20 | :width: 800px 21 | :alt: hypo 22 | :align: center 23 | 24 | 25 | Location of a set of 10 seismic events plotted on topographic map. Green dots are the estimated geographic position of the hypocenters. 26 | The red outlines give the projections of the confidence ellipsoids on the horizontal plane. The Z-component of each hypocenter is specified nearby. 27 | 28 | .. image:: images/trueVelocity.* 29 | :width: 400px 30 | :alt: truevel 31 | :align: center 32 | 33 | .. image:: images/VelModel.* 34 | :width: 400px 35 | :alt: vel 36 | :align: center 37 | 38 | Comparison between the true velocity model and the model obtained by inversion for a synthetic seismic dataset with 5% of gaussian noise. 39 | Leftmost figure: true model. Rightmost: inverted model. 40 | 41 | 42 | .. image:: images/norms.* 43 | :width: 400px 44 | :alt: norm 45 | :align: center 46 | 47 | Evolution of the data misfit norms as a function of iterations. 48 | 49 | 50 | Noise effects 51 | ============= 52 | 53 | A test involving 3 datasets with 3 noise levels (3%, 5% and 10%) and two different models (homogeneous and layered) was performed to assess the ``JHVIT`` robustness. 54 | For the hypocenter coordinates, obtained relative errors vary between 2.5% to 12% of the average distance sources-receivers while the origin time errors between 55 | 3% and 16%. In general, we noted lower errors for the homogenous model. 56 | Note also that velocity models are less sensitive to noise than the hypocenter parameters. This may be explained by the implemented Tikhonov constraint that acts as a 57 | filter by cutting off the contribution of the small eigenvalues of the Jacobian matrix. 58 | 59 | .. image:: images/noise.* 60 | :width: 600px 61 | :alt: noises 62 | :align: center 63 | 64 | Relative errors of hypocenter positions and origin times versus noise percentage. Red and blue boxplots refer respectively to the errors calculated for the homogeneous 65 | and layered model. 66 | -------------------------------------------------------------------------------- /docs/conf.py: -------------------------------------------------------------------------------- 1 | # Configuration file for the Sphinx documentation builder. 2 | # 3 | # This file only contains a selection of the most common options. For a full 4 | # list see the documentation: 5 | # https://www.sphinx-doc.org/en/master/usage/configuration.html 6 | 7 | # -- Path setup -------------------------------------------------------------- 8 | 9 | # If extensions (or modules to document with autodoc) are in another directory, 10 | # add these directories to sys.path here. If the directory is relative to the 11 | # documentation root, use os.path.abspath to make it absolute, like shown here. 12 | # 13 | 14 | 15 | import os 16 | import sys 17 | import sphinx_rtd_theme 18 | from pkg_resources import get_distribution 19 | 20 | sys.path.insert(0, os.path.abspath('../src/JHVIT')) 21 | 22 | # -- Project information ----------------------------------------------------- 23 | 24 | project = 'JHVIT' 25 | copyright = '2021, Maher Nasr' 26 | author = 'Maher Nasr' 27 | 28 | # The full version, including alpha/beta/rc tags 29 | release = '0.0.14' 30 | 31 | master_doc = 'index' 32 | # -- General configuration --------------------------------------------------- 33 | 34 | # Add any Sphinx extension module names here, as strings. They can be 35 | # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom 36 | # ones. 37 | extensions = [ 38 | 'sphinx.ext.autodoc', 39 | 'sphinx.ext.napoleon', 40 | 'sphinx_rtd_theme' 41 | ] 42 | # Add any paths that contain templates here, relative to this directory. 43 | templates_path = ['_templates'] 44 | 45 | # List of patterns, relative to source directory, that match files and 46 | # directories to ignore when looking for source files. 47 | # This pattern also affects html_static_path and html_extra_path. 48 | exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] 49 | 50 | 51 | 52 | # -- Options for HTML output ------------------------------------------------- 53 | 54 | # The theme to use for HTML and HTML Help pages. See the documentation for 55 | # a list of builtin themes. 56 | # 57 | #html_theme = 'alabaster' 58 | html_theme = "sphinx_rtd_theme" 59 | # Add any paths that contain custom static files (such as style sheets) here, 60 | # relative to this directory. They are copied after the builtin static files, 61 | # so a file named "default.css" will overwrite the builtin "default.css". 62 | html_static_path = ['_static'] 63 | 64 | 65 | # Napoleon settings 66 | napoleon_google_docstring = False 67 | napoleon_numpy_docstring = True 68 | napoleon_include_init_with_doc = False 69 | napoleon_include_private_with_doc = False 70 | napoleon_include_special_with_doc = True 71 | napoleon_use_admonition_for_examples = False 72 | napoleon_use_admonition_for_notes = True 73 | napoleon_use_admonition_for_references = False 74 | napoleon_use_ivar = False 75 | napoleon_use_param = True 76 | napoleon_use_rtype = True 77 | -------------------------------------------------------------------------------- /examples/Disp_results.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # -*- coding: utf-8 -*- 3 | """ 4 | Created on Fri Apr 3 03:40:04 2020 5 | 6 | @author: Maher Nasr 7 | """ 8 | 9 | import numpy as np 10 | 11 | 12 | def insideEllipsoid(P, center, axis1, axis2, axis3): 13 | # https://en.wikipedia.org/wiki/Ellipsoid : Parametric representation 14 | P = P.reshape([-1, 1]) 15 | center = center.reshape([-1, 1]) 16 | PI = P - center 17 | axis1 = axis1.reshape([-1, 1]) 18 | axis2 = axis2.reshape([-1, 1]) 19 | axis3 = axis3.reshape([-1, 1]) 20 | det1 = np.linalg.det(np.hstack([PI, axis2, axis3])) 21 | det2 = np.linalg.det(np.hstack([axis1, PI, axis3])) 22 | det3 = np.linalg.det(np.hstack([axis1, axis2, PI])) 23 | det4 = np.linalg.det(np.hstack([axis1, axis2, axis3])) 24 | return (det1**2 + det2**2 + det3**2 - det4**2) < 1.e-6 25 | 26 | 27 | def plotEllipsoid(axis1, axis2, axis3, center, nbreP): 28 | """ 29 | plot ellipsoid contour defined by its 3 axes (vector) 30 | """ 31 | nbreP = int(nbreP) 32 | teta = np.random.uniform(-np.pi * 0.5, np.pi * 0.5, nbreP) 33 | phi = np.random.uniform(0., np.pi * 2, nbreP) 34 | X = center[0] + np.cos(teta) * np.cos(phi) * axis1[0] + \ 35 | np.cos(teta) * np.sin(phi) * axis2[0] + np.sin(teta) * axis3[0] 36 | Y = center[1] + np.cos(teta) * np.cos(phi) * axis1[1] + \ 37 | np.cos(teta) * np.sin(phi) * axis2[1] + np.sin(teta) * axis3[1] 38 | Z = center[2] + np.cos(teta) * np.cos(phi) * axis1[2] + \ 39 | np.cos(teta) * np.sin(phi) * axis2[2] + np.sin(teta) * axis3[2] 40 | return X, Y, Z 41 | 42 | 43 | def intersectionEll(axis1, axis2, axis3, center, points, 44 | dirct=2, nbreP=1.e3, meshObj=None): 45 | """ 46 | find ellipse of intersection between ellipsoid defined 47 | by its 3 axes (vector) and the plan of direction dir 48 | """ 49 | c = points[dirct] - center[dirct] 50 | nbreP = int(nbreP) 51 | teta = np.hstack( 52 | (np.linspace( 53 | 0, 54 | np.pi, 55 | nbreP // 2), 56 | np.linspace( 57 | 2 * np.pi, 58 | np.pi, 59 | nbreP // 2))) 60 | alpha = np.arctan(axis2[dirct] / axis1[dirct]) 61 | arg = np.cos(alpha) * (c - axis3[dirct] * 62 | np.sin(teta)) / (axis1[dirct] * np.cos(teta)) 63 | ind = abs(arg) <= 1. 64 | arg = arg[ind] 65 | n_el = arg.shape[0] 66 | teta_el = teta[ind] 67 | phi_el = np.zeros([n_el, ]) 68 | phi_el[:n_el // 2] = alpha - np.arccos(arg[:n_el // 2]) 69 | phi_el[n_el // 2:] = alpha + np.arccos(arg[n_el // 2:]) 70 | X_el = center[0] + np.cos(teta_el) * np.cos(phi_el) * axis1[0] + np.cos( 71 | teta_el) * np.sin(phi_el) * axis2[0] + np.sin(teta_el) * axis3[0] 72 | Y_el = center[1] + np.cos(teta_el) * np.cos(phi_el) * axis1[1] + np.cos( 73 | teta_el) * np.sin(phi_el) * axis2[1] + np.sin(teta_el) * axis3[1] 74 | Z_el = center[2] + np.cos(teta_el) * np.cos(phi_el) * axis1[2] + np.cos( 75 | teta_el) * np.sin(phi_el) * axis2[2] + np.sin(teta_el) * axis3[2] 76 | points = np.column_stack((X_el, Y_el, Z_el)) 77 | if meshObj is not None: 78 | for i in range(points.shape[0]): 79 | if meshObj.is_outside(points[i].reshape([1, -1])): 80 | P2 = points[i, :] 81 | for _ in range(1000): 82 | P2 = 0.1 * center + 0.9 * P2 83 | if meshObj.is_outside(P2.reshape([1, -1])) is False: 84 | points[i, :] = P2 85 | break 86 | return points 87 | -------------------------------------------------------------------------------- /examples/Example.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3 2 | # -*- coding: utf-8 -*- 3 | """ 4 | Created on Mon Apr 6 22:53:34 2020 5 | 6 | @author: Maher Nasr 7 | """ 8 | 9 | from JHVIT import jointHypoVel_T, jointHypoVelPS_T, readEventsFiles 10 | from Disp_results import intersectionEll, insideEllipsoid 11 | import numpy as np 12 | import matplotlib.pyplot as plt 13 | from ttcrpy import tmesh 14 | from JHVIT import MSHReader 15 | 16 | phase = 'P' # or 'PS' 17 | 18 | if phase == 'P': 19 | results = jointHypoVel_T('localisation_P.par') 20 | elif phase == 'PS': 21 | results = jointHypoVelPS_T('localisation_PS.par') 22 | 23 | Hypocenters = results['Hypocenters'] 24 | Ucrties = results['Uncertainties'] 25 | TrueHypo = readEventsFiles('TrueHypo.dat') 26 | 27 | # calculate error 28 | Error_T0 = np.abs(Hypocenters[:, 1] - TrueHypo[:, 1]) 29 | Error_X = np.abs(Hypocenters[:, 2] - TrueHypo[:, 2]) 30 | Error_Y = np.abs(Hypocenters[:, 3] - TrueHypo[:, 3]) 31 | Error_Z = np.abs(Hypocenters[:, 4] - TrueHypo[:, 4]) 32 | Error_P = np.sqrt(Error_X**2 + Error_Y**2 + Error_Z**2) 33 | 34 | 35 | # check if true hypocenter positions are inside confidence ellipsoid 36 | 37 | print('origin times') 38 | print('---------------') 39 | for h in np.arange(Hypocenters.shape[0]): 40 | ΔT0 = np.abs(TrueHypo[h, 1] - Hypocenters[h, 1]) 41 | cfd_intrvl = Ucrties[h][0] 42 | if cfd_intrvl < ΔT0: 43 | print('\033[43m' + 44 | 'Event N {0:d}: origin time is outside confidence interval'.format( 45 | int(h + 1)) + '\033[0m') 46 | else: 47 | print('\033[42m' + 48 | 'Event N {0:d}: origin time is inside confidence interval'.format( 49 | int(h + 1)) + '\033[0m') 50 | 51 | print('hypocenter positions') 52 | print('---------------') 53 | for h in np.arange(Hypocenters.shape[0]): 54 | 55 | if insideEllipsoid(TrueHypo[h, 2:] * 1.e3, Hypocenters[h, 2:] * 1.e3, 56 | Ucrties[h][1] * 1.e3, Ucrties[h][2] * 1.e3, 57 | Ucrties[h][3] * 1.e3) is False: 58 | print('\033[43m' + 59 | 'Event N {0:d}: hypocenter is outside confidence ellipsoid'.format( 60 | int(h + 1)) + '\033[0m') 61 | else: 62 | print('\033[42m' + 63 | 'Event N {0:d}: hypocenter is inside confidence ellipsoid'.format( 64 | int(h + 1)) + '\033[0m') 65 | 66 | # plot hypocenters and confidence ellipsoids on map 67 | 68 | Topo_data = np.loadtxt('all_dec.xyz') * 1.e-3 69 | nx = (np.unique(Topo_data[:, 0])).size 70 | ny = (np.unique(Topo_data[:, 1])).size 71 | X = Topo_data[:, 0].reshape([nx, ny]) 72 | Y = Topo_data[:, 1].reshape([nx, ny]) 73 | Z = Topo_data[:, 2].reshape([nx, ny]) 74 | 75 | # object cmesh 76 | MESH = MSHReader('Model.msh') 77 | nodes = MESH.readNodes() 78 | cells = MESH.readTetraherdonElements() 79 | Mesh3D = tmesh.Mesh3d(nodes, tetra=cells, method='DSPM', cell_slowness=0, 80 | n_threads=1, n_secondary=2, n_tertiary=1, 81 | process_vel=1, radius_factor_tertiary=2, 82 | translate_grid=1) 83 | for h in range(Hypocenters.shape[0]): 84 | pts = intersectionEll(Ucrties[h][1], Ucrties[h][2], 85 | Ucrties[h][3], Hypocenters[h, 2:], 86 | Hypocenters[h, 2:], nbreP=50, 87 | meshObj=Mesh3D) 88 | plt.plot(pts[:, 0], pts[:, 1], '-r', markersize=0.1) 89 | plt.annotate(str(int(1.e3 * Hypocenters[h, 4])), 90 | (Hypocenters[h, 2] - 0.008, 91 | Hypocenters[h, 3] + 0.006), fontsize=6, color='g') 92 | plt.plot(Hypocenters[:, 2], Hypocenters[:, 3], '.g', markersize=1) 93 | plt.xlim([305.25, 305.55]) 94 | contours = plt.contour(X, Y, (1.e3 * Z).astype(int), 95 | 30, colors='k', linestyles='-') 96 | plt.clabel(contours, inline=True, fontsize=6, colors='b', fmt='%1.0f') 97 | plt.grid(True) 98 | plt.xlabel('X') 99 | plt.ylabel('Y') 100 | plt.savefig('Fig' + phase + '.pdf', format='pdf', bbox_inches='tight') 101 | plt.show() 102 | -------------------------------------------------------------------------------- /examples/Traveltimes_P.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn arrival times rcv_index 3 | 1 7.87272554 1 4 | 1 7.88024416 2 5 | 1 7.86444157 3 6 | 1 7.86322315 4 7 | 1 7.87888200 5 8 | 1 7.88486598 6 9 | 1 7.89047888 7 10 | 1 7.88758687 8 11 | 1 7.88875361 9 12 | 1 7.89031560 10 13 | 1 7.89286593 11 14 | 1 7.89335883 12 15 | 1 7.87374941 13 16 | 1 7.87002598 14 17 | 1 7.87859728 15 18 | 1 7.87795578 16 19 | 2 9.24157796 1 20 | 2 9.25020304 2 21 | 2 9.25192739 3 22 | 2 9.25221114 4 23 | 2 9.24042428 5 24 | 2 9.24696023 6 25 | 2 9.25586548 7 26 | 2 9.24837422 8 27 | 2 9.25377850 9 28 | 2 9.26061961 10 29 | 2 9.26631347 11 30 | 2 9.25716146 12 31 | 2 9.24031443 13 32 | 2 9.24524137 14 33 | 2 9.25741592 15 34 | 2 9.25411745 16 35 | 3 11.38396339 1 36 | 3 11.39169263 2 37 | 3 11.38227325 3 38 | 3 11.38015958 4 39 | 3 11.38126226 5 40 | 3 11.39254811 6 41 | 3 11.39889099 7 42 | 3 11.38903567 8 43 | 3 11.38733365 9 44 | 3 11.38572313 10 45 | 3 11.38492521 11 46 | 3 11.39081715 12 47 | 3 11.37866457 13 48 | 3 11.37459936 14 49 | 3 11.39568086 15 50 | 3 11.39519456 16 51 | 4 11.67820901 1 52 | 4 11.67851683 2 53 | 4 11.68545612 3 54 | 4 11.68823572 4 55 | 4 11.67282895 5 56 | 4 11.67211001 6 57 | 4 11.68088722 7 58 | 4 11.67468286 8 59 | 4 11.68561587 9 60 | 4 11.69045772 10 61 | 4 11.69685816 11 62 | 4 11.68229280 12 63 | 4 11.67749184 13 64 | 4 11.68113773 14 65 | 4 11.68459215 15 66 | 4 11.68594877 16 67 | 5 13.85862070 1 68 | 5 13.86667253 2 69 | 5 13.86311731 3 70 | 5 13.86441427 4 71 | 5 13.85762784 5 72 | 5 13.86713882 6 73 | 5 13.87549709 7 74 | 5 13.86724805 8 75 | 5 13.86944731 9 76 | 5 13.86920377 10 77 | 5 13.87566102 11 78 | 5 13.86943133 12 79 | 5 13.85403237 13 80 | 5 13.85462785 14 81 | 5 13.87347526 15 82 | 5 13.87057647 16 83 | 6 15.46290483 1 84 | 6 15.47010869 2 85 | 6 15.46032626 3 86 | 6 15.46189103 4 87 | 6 15.45887533 5 88 | 6 15.46664058 6 89 | 6 15.48067349 7 90 | 6 15.46343012 8 91 | 6 15.45948166 9 92 | 6 15.45467491 10 93 | 6 15.45684341 11 94 | 6 15.46686333 12 95 | 6 15.45676097 13 96 | 6 15.45455363 14 97 | 6 15.47480606 15 98 | 6 15.47504088 16 99 | 7 16.59053644 1 100 | 7 16.58450626 2 101 | 7 16.59609440 3 102 | 7 16.59893750 4 103 | 7 16.59006949 5 104 | 7 16.58316849 6 105 | 7 16.58488227 7 106 | 7 16.59040274 8 107 | 7 16.60171044 9 108 | 7 16.61083641 10 109 | 7 16.61713036 11 110 | 7 16.59659282 12 111 | 7 16.59218814 13 112 | 7 16.59588126 14 113 | 7 16.58794287 15 114 | 7 16.58927694 16 115 | 8 17.46085199 1 116 | 8 17.45544795 2 117 | 8 17.46961014 3 118 | 8 17.47158413 4 119 | 8 17.46242805 5 120 | 8 17.45638428 6 121 | 8 17.46014268 7 122 | 8 17.46331354 8 123 | 8 17.48005709 9 124 | 8 17.48342656 10 125 | 8 17.48605516 11 126 | 8 17.47303841 12 127 | 8 17.46472890 13 128 | 8 17.47017071 14 129 | 8 17.46198193 15 130 | 8 17.46184030 16 131 | 9 18.16069334 1 132 | 9 18.16092913 2 133 | 9 18.16939148 3 134 | 9 18.16978599 4 135 | 9 18.15973851 5 136 | 9 18.15730304 6 137 | 9 18.16605341 7 138 | 9 18.16274836 8 139 | 9 18.17565701 9 140 | 9 18.17979633 10 141 | 9 18.18832392 11 142 | 9 18.16980608 12 143 | 9 18.16321080 13 144 | 9 18.16838372 14 145 | 9 18.16832055 15 146 | 9 18.16723825 16 147 | 10 26.52642421 1 148 | 10 26.52736892 2 149 | 10 26.52389760 3 150 | 10 26.52238566 4 151 | 10 26.53583763 5 152 | 10 26.53612902 6 153 | 10 26.54022627 7 154 | 10 26.54122693 8 155 | 10 26.54900835 9 156 | 10 26.55174033 10 157 | 10 26.55734512 11 158 | 10 26.55247531 12 159 | 10 26.53055159 13 160 | 10 26.52985205 14 161 | 10 26.52858466 15 162 | 10 26.52693749 16 163 | -------------------------------------------------------------------------------- /docs/example.rst: -------------------------------------------------------------------------------- 1 | .. _example: 2 | 3 | ############### 4 | Example 5 | ############### 6 | 7 | ``JHVIT`` can automatically read the inversion parameters and data from text files. 8 | We recommend to use this feature in order to store this information for future verifications or reuse. 9 | We present in this section the templates to prepare such files. 10 | 11 | Parameter File 12 | =============== 13 | 14 | Users are invited to prepare parameter files and pass them as arguments to the proper JHVIT function. 15 | Contents of these files depends of the number of seismic phases to be used since more data and parameters 16 | are obviously required when inverting simultaneously P- and S-wave data. We give in the figures below two 17 | examples of these parameter files in the case of single-phase inversion (generally P-wave) and in the case 18 | of P- and S-wave data inversion. Users may use these templates to prepare their own parameter files by replacing 19 | text following the sharp symbol (#) by the proper values (remove the symbol # also). 20 | 21 | .. image:: images/Parameter_file.* 22 | :width: 600px 23 | :alt: single phase parameter file 24 | 25 | 26 | Parameter file template for P-wave data inversion. 27 | 28 | .. image:: images/P_S_Param_File.* 29 | :width: 600px 30 | :alt: PandSwave file 31 | 32 | Parameter file template for P- and S-wave data inversion. 33 | 34 | Domain discretization 35 | ===================== 36 | 37 | ``JHVIT`` can automatically read domain meshes from separate files. At the moment, only mesh files generated using 38 | Gmsh can be recognized. To prepare such files, one must start by creating a geo file (describing the domain geometry) 39 | and pass it to Gmsh. For a simple 3D domain showing only topographic irregularities, users may utilize this python script: 40 | https://github.com/groupeLIAMG/JHVIT/blob/main/src/Mesh_Prep.py. 41 | 42 | Note that MSH files created by Gmsh may vary depending on the considered version. 43 | Version 2. is the reference one compatible with ``JHVIT``. The corresponding MSH file format must be similar to this example: 44 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Model.msh 45 | 46 | 47 | Data files 48 | =========== 49 | Input data should be organized in text files as shown in the figures below. For single phase inversion, these files should contain 50 | 3 columns abbreviated as following: Ev_idn (event indices), arrival times (arrival times) and rcv_index (corresponding receiver indices). 51 | In the case of P and S wave data inversion, a fourth column is added to specify the seismic phase (called Phase). Users are invited to 52 | use the same column labels to store their data in order to avoid bugs. The first lines are dedicated to insert optional comments and notes. 53 | 54 | .. image:: images/Data_P.* 55 | :width: 300px 56 | :alt: Pdata 57 | 58 | Data file template for P-wave inversion. 59 | 60 | .. image:: images/Data_PS.* 61 | :width: 415px 62 | :alt: PSdata 63 | 64 | 65 | Data file template for P- and S-wave inversion. We suppose herein a dataset with 3 seismic events recorded in 16 receivers each one. 66 | 67 | Data calibration files 68 | ====================== 69 | 70 | The available calibration data can be stored in specific files following predefined structure. In the case of single-phase inversion, 71 | data must be organized in 5 columns: the 1st column corresponds to shot indices (Ev_idn), the 2nd column for traveltime values 72 | (labeled arrival times), the 3rd column gives corresponding receiver (rcv_index). The last three columns (X, Y and Z) must contain 73 | positions of calibration shots. A sixth column would be added if both P and S waves are inverted in order to specify seismic phase of each calibration shot. 74 | 75 | .. image:: images/CalibDataP.* 76 | :width: 600px 77 | :alt: PCaldata 78 | 79 | 80 | Template of calibration data file for P-wave inversion. 81 | 82 | .. image:: images/CalibDataPS.* 83 | :width: 600px 84 | :alt: PSCaldata 85 | 86 | Template of calibration data file for P- and S-wave inversion. 87 | 88 | Receiver files 89 | ============== 90 | 91 | Users can prepare their receiver files as following: In the first line they must specify the number of receivers to be used followed 92 | by the coordinates X, Y and Z of each one written at the rate of on receiver per line. 93 | 94 | .. image:: images/receivers.* 95 | :width: 300px 96 | :alt: Rcv 97 | 98 | Example of a receiver file. Receiver coordinates are given in the MTM system. 99 | 100 | 101 | Initial velocity values and hypocenter positions 102 | ================================================ 103 | 104 | Initial estimates for velocity models and hypocenter coordinates may be stored in text files that can be indicated in the parameter files. 105 | A a simple homogeneous model is usually sufficient. The initial velocity file contains in this case a single value corresponding to the chosen velocity. 106 | Users are referred to Nasr et al. (2021) to properly select a velocity value that facilitates code convergence. If a complex model has to be set, the velocity 107 | values must to be sorted according to the node indices. 108 | The first hypocenter estimates can be stored in a five-column text file. These columns are labeled: Ev_idn (hypocenter indices), t0 (origin times), 109 | X, Y and Z (spatial coordinates). Note that the initial positions of hypocenters should be all different to avoid a singular Jacobian matrix. 110 | 111 | .. image:: images/Hypo_init.* 112 | :width: 500px 113 | :alt: Hypo 114 | 115 | Example of initial hypocenter file. 116 | -------------------------------------------------------------------------------- /src/Mesh_Prep.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | """ 3 | Created on Mon Oct 17 15:29:35 2016 4 | 5 | @author: Giroux and Nasr 6 | """ 7 | 8 | import numpy as np 9 | import sys 10 | 11 | data = np.loadtxt('all_dec.xyz') # Topo file 12 | data *= 1.e-3 13 | Zinf_lim = 0.050 # lower z 14 | nlcTop = 0.022 # target element size at top model corner 15 | nlcBot = 0.032 # target element size at bottom model corner 16 | # path to Gmesh (to modify) 17 | GmshDir = "/Applications/Gmsh.app/Contents/MacOS/Gmsh" 18 | 19 | 20 | data[:, 0] -= np.min(data[:, 0]) 21 | data[:, 1] -= np.min(data[:, 1]) 22 | data[:, 2] -= np.min(data[:, 2]) - Zinf_lim 23 | xmin = np.min(data[:, 0]) 24 | xmax = np.max(data[:, 0]) 25 | ymin = np.min(data[:, 1]) 26 | ymax = np.max(data[:, 1]) 27 | zmin = np.min(data[:, 2]) - Zinf_lim 28 | x = np.unique(data[:, 0]) 29 | y = np.unique(data[:, 1]) 30 | 31 | nx = x.size 32 | ny = y.size 33 | f = open('Model.geo', 'w') 34 | ft = open('topo.geo', 'w') 35 | pt_no = 1 36 | 37 | f.write("\nlc = {0:6.4f};\n\n".format(nlcTop)) 38 | ft.write("\nlc = {0:6.4f};\n\n".format(nlcTop)) 39 | for xp in x: 40 | ind = data[:, 0] == xp 41 | y = data[ind, 1] 42 | z = data[ind, 2] 43 | 44 | for n in np.arange(ny): 45 | f.write( 46 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format( 47 | pt_no, 48 | xp, 49 | y[n], 50 | z[n])) 51 | ft.write( 52 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format( 53 | pt_no, xp, y[n], z[n])) 54 | pt_no += 1 55 | f.write("\nlc = {0:6.4f};\n\n".format(nlcBot)) 56 | f.write( 57 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format( 58 | pt_no, xmin, ymin, zmin)) 59 | pt_no += 1 60 | f.write( 61 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format( 62 | pt_no, xmin, ymax, zmin)) 63 | pt_no += 1 64 | f.write( 65 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n".format( 66 | pt_no, xmax, ymin, zmin)) 67 | pt_no += 1 68 | f.write( 69 | "Point({0:d}) = {{{1:8.6f}, {2:9.6f}, {3:6.6f}, lc}};\n\n".format( 70 | pt_no, xmax, ymax, zmin)) 71 | pt_no += 1 72 | 73 | li_no = 1 74 | pt_no = 1 75 | 76 | for xp in x: 77 | f.write("BSpline({0:d}) = {{{1:d}".format(li_no, pt_no)) 78 | ft.write("BSpline({0:d}) = {{{1:d}".format(li_no, pt_no)) 79 | pt_no += 1 80 | for n in np.arange(1, ny): 81 | f.write(", {0:d}".format(pt_no)) 82 | ft.write(", {0:d}".format(pt_no)) 83 | pt_no += 1 84 | f.write("};\n") 85 | ft.write("};\n") 86 | li_no += 1 87 | 88 | for n in np.arange(nx - 1): 89 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 90 | li_no, 1 + n * ny, 1 + (n + 1) * ny)) 91 | ft.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 92 | li_no, 1 + n * ny, 1 + (n + 1) * ny)) 93 | li_no += 1 94 | f.write( 95 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 96 | li_no, (n + 1) * ny, (n + 2) * ny)) 97 | ft.write( 98 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 99 | li_no, (n + 1) * ny, (n + 2) * ny)) 100 | li_no += 1 101 | 102 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(li_no, 1, 1 + nx * ny)) 103 | li_no += 1 104 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format(li_no, ny, 2 + nx * ny)) 105 | li_no += 1 106 | f.write("Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 107 | li_no, 1 + (nx - 1) * ny, 3 + nx * ny)) 108 | li_no += 1 109 | f.write( 110 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 111 | li_no, nx * ny, 4 + nx * ny)) 112 | li_no += 1 113 | 114 | f.write( 115 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 116 | li_no, 1 + nx * ny, 2 + nx * ny)) 117 | li_no += 1 118 | f.write( 119 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 120 | li_no, 2 + nx * ny, 4 + nx * ny)) 121 | li_no += 1 122 | f.write( 123 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 124 | li_no, 4 + nx * ny, 3 + nx * ny)) 125 | li_no += 1 126 | f.write( 127 | "Line({0:d}) = {{{1:d}, {2:d}}};\n".format( 128 | li_no, 3 + nx * ny, 1 + nx * ny)) 129 | li_no += 1 130 | 131 | ll_no = li_no 132 | for n in np.arange(nx - 1): 133 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format( 134 | ll_no, n + 1, nx + (n + 1) * 2, -(n + 2), -(nx + 1 + n * 2))) 135 | ft.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format( 136 | ll_no, n + 1, nx + (n + 1) * 2, -(n + 2), -(nx + 1 + n * 2))) 137 | ll_no += 1 138 | 139 | 140 | f.write("Line Loop({0:d}) = {{".format(ll_no)) 141 | for n in np.arange(nx - 1): 142 | f.write("{0:d}, ".format(nx + 1 + n * 2)) 143 | f.write("{0:d}, {1:d}, {2:d}}};\n".format(nx + 2 * (nx - 1) + 144 | 3, nx + 2 * (nx - 1) + 8, 145 | -(nx + 2 * (nx - 1) + 1))) 146 | ll_no += 1 147 | 148 | f.write("Line Loop({0:d}) = {{".format(ll_no)) 149 | for n in np.arange(nx - 1): 150 | f.write("{0:d}, ".format(nx + 2 + n * 2)) 151 | f.write("{0:d}, {1:d}, {2:d}}};\n".format(nx + 2 * (nx - 1) + 152 | 4, -(nx + 2 * (nx - 1) + 6), 153 | -(nx + 2 * (nx - 1) + 2))) 154 | ll_no += 1 155 | 156 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format( 157 | ll_no, 1, nx + 2 * (nx - 1) + 2, -(li_no - 4), -(li_no - 8))) 158 | ll_no += 1 159 | 160 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format( 161 | ll_no, nx, nx + 2 * (nx - 1) + 4, li_no - 2, -(li_no - 6))) 162 | ll_no += 1 163 | 164 | f.write("Line Loop({0:d}) = {{{1:d}, {2:d}, {3:d}, {4:d}}};\n".format( 165 | ll_no, li_no - 4, li_no - 3, li_no - 2, li_no - 1)) 166 | ll_no += 1 167 | 168 | 169 | su_no = 1 170 | for n in np.arange(nx - 1): 171 | f.write("Ruled Surface({0:d}) = {{{1:d}}};\n".format(su_no, li_no + n)) 172 | ft.write("Ruled Surface({0:d}) = {{{1:d}}};\n".format(su_no, li_no + n)) 173 | su_no += 1 174 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 5)) 175 | su_no += 1 176 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 4)) 177 | su_no += 1 178 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 3)) 179 | su_no += 1 180 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 2)) 181 | su_no += 1 182 | f.write("Plane Surface({0:d}) = {{{1:d}}};\n".format(su_no, ll_no - 1)) 183 | su_no += 1 184 | 185 | sl_no = su_no 186 | 187 | f.write("Surface Loop({0:d}) = {{1".format(sl_no)) 188 | for n in np.arange(1, su_no - 1): 189 | f.write(", {0:d}".format(n + 1)) 190 | f.write("};\n") 191 | f.write("Volume(1) = {0:d};\n".format(sl_no)) 192 | f.write("Physical Volume(\"Roc\") = {1};\n") 193 | f.close() 194 | ft.close() 195 | 196 | try: 197 | from subprocess import Popen 198 | Popen([GmshDir, "Model.geo", "-3", "-optimize"]) 199 | Popen([GmshDir, "topo.geo", "-3", "-optimize"]) 200 | except BaseException: 201 | print("Unexpected error:", sys.exc_info()[0]) 202 | raise 203 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 |

2 |

3 | 4 | ## 5 | 6 | [![pypi](https://img.shields.io/pypi/v/JHVIT.svg)](https://pypi.org/project/JHVIT/) 7 | [![License: MIT](https://img.shields.io/badge/License-MIT%20-blue.svg)](./LICENSE.txt) 8 | [![Documentation Status](https://readthedocs.org/projects/jhvit/badge/?version=latest)](https://jhvit.readthedocs.io/en/latest/) 9 | 10 | 11 | JHVIT : Joint Hypocenter Velocity Inversion on Tetrahedral meshes 12 | 13 | 14 | - [The JHVIT package](#heading) 15 | - [Installation and Requirements](#heading) 16 | - [Callable functions](#heading) 17 | - [Examples](#heading) 18 | - [References](#heading) 19 | 20 | 21 | 22 | ## The JHVIT package 23 | 24 | JHVIT is a python package for locating seismic event hypocenters on unstructured 25 | grids. The package is an extension of the joint hypocenter-velocity inversion method 26 | on tetrahedral meshes. It is mainly recommended for domains with steep topography, 27 | underground cavities and stratigraphic and abnormal geological contacts such as 28 | folds, faults and shear zones. The code is able to locate a wide range of seismic 29 | events going from major earthquakes and nuclear explosions to low and negative 30 | magnitude events. Target application areas include computational seismology, 31 | hydraulic fracture and microseismic monitoring of mining environments or in civil 32 | engineering projects. 33 | 34 | The package is written in Python, uses an optimized c++ raytracing code wrapped in 35 | Cython and supports parallel computing. 36 | 37 | Documentation is available here: https://jhvit.readthedocs.io/en/latest/ 38 | 39 | ## Installation and Requirements 40 | 41 | Launch a command line on your device and run: 42 | pip install JHVIT 43 | 44 | Requirements: 45 | - The package ttcrpy must be installed in order to perform the raytracing step. 46 | This package can be installed from: https://pypi.org/project/ttcrpy/ 47 | - Install a proper version of vtk : https://pypi.org/project/vtk/ 48 | - To prevent bugs, it would be better to use python 3.7 49 | 50 | Notes: 51 | - It is highly recommended to upgrade numpy package before installing ttcrpy. 52 | - We also recommend to install the vtk library with pip. 53 | 54 | ## Callable functions 55 | 56 | 6 functions can be called and run in this package: 57 | 58 | - jntHypoVel_T : Joint hypocenter-velocity inversion of P wave data, 59 | parametrized via the velocity model. 60 | 61 | - jntHyposlow_T : Joint hypocenter-velocity inversion of P wave data, 62 | parametrized via the slowness model. 63 | 64 | - jntHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, 65 | parametrized via the velocity models. 66 | 67 | - jntHyposlowPS_T : Joint hypocenter-velocity inversion of P- and S-wave data, 68 | parametrized via the slowness models. 69 | 70 | - jointHypoVel_T : Joint hypocenter-velocity inversion of P wave data. 71 | Input data and inversion parameters are downloaded automatically from 72 | external text files. 73 | 74 | - jointHypoVelPS_T : Joint hypocenter-velocity inversion of P- and S-wave data. 75 | Input data and inversion parameters are downloaded automatically 76 | from external text files. 77 | 78 | ## Examples 79 | 80 | Two examples of hypocenter relocation using the JHVIT are presented (see 81 | https://github.com/groupeLIAMG/JHVIT/blob/main/examples/Example.py ). 82 | The first example involves the inversion of P wave data while the second uses 83 | both P- and S-wave data. 84 | 85 | ## References 86 | ``` 87 | 88 | @Thesis{Block91, 89 | Title = {Joint hypocenter-velocity inversion of local earthquake arrival 90 | time data in two geothermal regions}, 91 | Author = {Lisa Vectoria Block}, 92 | Year = {1991}, 93 | Number of Pages = {448}, 94 | University = {Massachusetts Institute of Technology}, 95 | Thesis Type = {Doctoral thesis}, 96 | keywords = {Earth, Atmospheric, and Planetary Sciences}, 97 | URL = {http://hdl.handle.net/1721.1/13904} 98 | } 99 | 100 | @article{Block94, 101 | author = {Lisa V. Block, C. H. Cheng, Michael C. Fehler, and 102 | W. Scott Phillips}, 103 | title = {Seismic imaging using microearthquakes induced by hydraulic 104 | fracturing}, 105 | journal = {Geophysics}, 106 | year = {1994}, 107 | volume = {59}, 108 | pages = {102-112}, 109 | number = {1}, 110 | doi = {10.1190/geo1992-0156}, 111 | url = {https://library.seg.org/doi/10.1190/geo1992-0156} 112 | } 113 | 114 | @Thesis{Giroux01, 115 | Title = {Auscultation des barrages en béton par écoute microsismique: 116 | détectabilité et localisation des événements}, 117 | Author = {Bernard Giroux}, 118 | Year = {2001}, 119 | Number of Pages = {268}, 120 | University = {Université de Montréal}, 121 | Thesis Type = {Doctoral thesis}, 122 | Language = {French}, 123 | URL = {https://publications.polymtl.ca/8641/} 124 | } 125 | 126 | @article{Nasr18, 127 | author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian}, 128 | title = {A hybrid approach to compute seismic travel times in 129 | three-dimensional tetrahedral meshes}, 130 | journal = {Geophysical Prospecting}, 131 | volume = {68}, 132 | number = {4}, 133 | pages = {1291-1313}, 134 | keywords = {Travel time, Seismic modelling, Ray tracing, Seismics, 135 | Computing aspects}, 136 | doi = {10.1111/1365-2478.12930}, 137 | url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-2478.12930}, 138 | eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2478.12930}, 139 | } 140 | 141 | @article{Nasr21, 142 | author = {Nasr, Maher and Giroux, Bernard and Dupuis, J. Christian}, 143 | title = {Python package for 3D joint hypocenter-velocity inversion on 144 | tetrahedral meshes: Parallel implementation and practical 145 | considerations}, 146 | journal = {Computational Geosciences}, 147 | volume = {n/a}, 148 | number = {n/a}, 149 | pages = {n/a}, 150 | keywords = {joint hypocenter velocity inversion; hypocenter location; 151 | passive seismic; computational seismology; parallelism; 152 | tetrahedral meshes}, 153 | } 154 | 155 | ``` 156 | -------------------------------------------------------------------------------- /examples/Traveltimes_PS.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn arrival times rcv_index Type 3 | 1 7.87324649 1 P 4 | 1 7.87805834 2 P 5 | 1 7.86442250 3 P 6 | 1 7.86317845 4 P 7 | 1 7.87929779 5 P 8 | 1 7.88552815 6 P 9 | 1 7.88889117 7 P 10 | 1 7.88888229 8 P 11 | 1 7.89273529 9 P 12 | 1 7.88938987 10 P 13 | 1 7.89592312 11 P 14 | 1 7.89357700 12 P 15 | 1 7.87343385 13 P 16 | 1 7.87027173 14 P 17 | 1 7.87974900 15 P 18 | 1 7.87837546 16 P 19 | 1 7.88557918 1 S 20 | 1 7.89693308 2 S 21 | 1 7.87109548 3 S 22 | 1 7.86880147 4 S 23 | 1 7.89961224 5 S 24 | 1 7.90754514 6 S 25 | 1 7.92133097 7 S 26 | 1 7.91527430 8 S 27 | 1 7.92620658 9 S 28 | 1 7.91667262 10 S 29 | 1 7.91666666 11 S 30 | 1 7.92507672 12 S 31 | 1 7.88746159 13 S 32 | 1 7.87758587 14 S 33 | 1 7.90010873 15 S 34 | 1 7.89114704 16 S 35 | 2 9.24202777 1 P 36 | 2 9.24974567 2 P 37 | 2 9.25238398 3 P 38 | 2 9.25276339 4 P 39 | 2 9.24028286 5 P 40 | 2 9.24739867 6 P 41 | 2 9.25624025 7 P 42 | 2 9.24885905 8 P 43 | 2 9.25580362 9 P 44 | 2 9.25896232 10 P 45 | 2 9.26543084 11 P 46 | 2 9.25609704 12 P 47 | 2 9.24067474 13 P 48 | 2 9.24489557 14 P 49 | 2 9.25691069 15 P 50 | 2 9.25547888 16 P 51 | 2 9.24774546 1 S 52 | 2 9.25988804 2 S 53 | 2 9.26607983 3 S 54 | 2 9.26447077 4 S 55 | 2 9.24282816 5 S 56 | 2 9.25487264 6 S 57 | 2 9.27112101 7 S 58 | 2 9.25750805 8 S 59 | 2 9.27150766 9 S 60 | 2 9.28015210 10 S 61 | 2 9.28794224 11 S 62 | 2 9.27151145 12 S 63 | 2 9.24412152 13 S 64 | 2 9.25273635 14 S 65 | 2 9.26846245 15 S 66 | 2 9.27055185 16 S 67 | 3 11.38377157 1 P 68 | 3 11.39331081 2 P 69 | 3 11.38257666 3 P 70 | 3 11.38240465 4 P 71 | 3 11.38315027 5 P 72 | 3 11.39226140 6 P 73 | 3 11.40239067 7 P 74 | 3 11.39305948 8 P 75 | 3 11.38677419 9 P 76 | 3 11.38342838 10 P 77 | 3 11.38584341 11 P 78 | 3 11.39367985 12 P 79 | 3 11.37895931 13 P 80 | 3 11.37495153 14 P 81 | 3 11.39830483 15 P 82 | 3 11.39557133 16 P 83 | 3 11.39999844 1 S 84 | 3 11.41647424 2 S 85 | 3 11.39497956 3 S 86 | 3 11.39556989 4 S 87 | 3 11.39496972 5 S 88 | 3 11.41655553 6 S 89 | 3 11.43787545 7 S 90 | 3 11.41128497 8 S 91 | 3 11.40932704 9 S 92 | 3 11.40048854 10 S 93 | 3 11.40489278 11 S 94 | 3 11.42071582 12 S 95 | 3 11.38908568 13 S 96 | 3 11.38584196 14 S 97 | 3 11.41969785 15 S 98 | 3 11.42111537 16 S 99 | 4 11.67721290 1 P 100 | 4 11.67902959 2 P 101 | 4 11.68633310 3 P 102 | 4 11.68816812 4 P 103 | 4 11.67330996 5 P 104 | 4 11.67228955 6 P 105 | 4 11.68113251 7 P 106 | 4 11.67492885 8 P 107 | 4 11.68533301 9 P 108 | 4 11.68944931 10 P 109 | 4 11.70085324 11 P 110 | 4 11.68261107 12 P 111 | 4 11.67810627 13 P 112 | 4 11.68346179 14 P 113 | 4 11.68215979 15 P 114 | 4 11.68436148 16 P 115 | 4 11.68735080 1 S 116 | 4 11.69086443 2 S 117 | 4 11.69850444 3 S 118 | 4 11.70299002 4 S 119 | 4 11.67896231 5 S 120 | 4 11.67566871 6 S 121 | 4 11.69401836 7 S 122 | 4 11.68112063 8 S 123 | 4 11.70103164 9 S 124 | 4 11.71485845 10 S 125 | 4 11.72742214 11 S 126 | 4 11.69355114 12 S 127 | 4 11.68549852 13 S 128 | 4 11.69797031 14 S 129 | 4 11.70011802 15 S 130 | 4 11.69954406 16 S 131 | 5 13.86047636 1 P 132 | 5 13.86723352 2 P 133 | 5 13.86329180 3 P 134 | 5 13.86414026 4 P 135 | 5 13.85712169 5 P 136 | 5 13.86706639 6 P 137 | 5 13.87286204 7 P 138 | 5 13.86616721 8 P 139 | 5 13.86864524 9 P 140 | 5 13.86700025 10 P 141 | 5 13.87168100 11 P 142 | 5 13.86930937 12 P 143 | 5 13.85428922 13 P 144 | 5 13.85467415 14 P 145 | 5 13.87118929 15 P 146 | 5 13.87326011 16 P 147 | 5 13.86792339 1 S 148 | 5 13.88210980 2 S 149 | 5 13.87390651 3 S 150 | 5 13.87441845 4 S 151 | 5 13.86593579 5 S 152 | 5 13.88146105 6 S 153 | 5 13.89841494 7 S 154 | 5 13.87750497 8 S 155 | 5 13.88441069 9 S 156 | 5 13.88386660 10 S 157 | 5 13.89456025 11 S 158 | 5 13.89074520 12 S 159 | 5 13.85945705 13 S 160 | 5 13.85965674 14 S 161 | 5 13.89055554 15 S 162 | 5 13.89030407 16 S 163 | 6 15.46070564 1 P 164 | 6 15.47042700 2 P 165 | 6 15.46121320 3 P 166 | 6 15.46264601 4 P 167 | 6 15.46001445 5 P 168 | 6 15.46667181 6 P 169 | 6 15.47642438 7 P 170 | 6 15.46563459 8 P 171 | 6 15.45878433 9 P 172 | 6 15.45563899 10 P 173 | 6 15.45768961 11 P 174 | 6 15.46549477 12 P 175 | 6 15.45478816 13 P 176 | 6 15.45429125 14 P 177 | 6 15.47121868 15 P 178 | 6 15.47406976 16 P 179 | 6 15.48034522 1 S 180 | 6 15.49375716 2 S 181 | 6 15.47877868 3 S 182 | 6 15.48234092 4 S 183 | 6 15.47242612 5 S 184 | 6 15.48931916 6 S 185 | 6 15.50527899 7 S 186 | 6 15.48689082 8 S 187 | 6 15.47315774 9 S 188 | 6 15.46761014 10 S 189 | 6 15.46987616 11 S 190 | 6 15.48914392 12 S 191 | 6 15.46773259 13 S 192 | 6 15.46497383 14 S 193 | 6 15.49973125 15 S 194 | 6 15.49997663 16 S 195 | 7 16.58963584 1 P 196 | 7 16.58541334 2 P 197 | 7 16.59752989 3 P 198 | 7 16.59764964 4 P 199 | 7 16.58995983 5 P 200 | 7 16.58296700 6 P 201 | 7 16.58444728 7 P 202 | 7 16.59092675 8 P 203 | 7 16.60036916 9 P 204 | 7 16.60977219 10 P 205 | 7 16.61268580 11 P 206 | 7 16.60019632 12 P 207 | 7 16.59321542 13 P 208 | 7 16.59671015 14 P 209 | 7 16.58724614 15 P 210 | 7 16.58931910 16 P 211 | 7 16.60137038 1 S 212 | 7 16.59098907 2 S 213 | 7 16.61739737 3 S 214 | 7 16.61418126 4 S 215 | 7 16.60099699 5 S 216 | 7 16.58876738 6 S 217 | 7 16.59233988 7 S 218 | 7 16.60203493 8 S 219 | 7 16.62322851 9 S 220 | 7 16.63233947 10 S 221 | 7 16.64789610 11 S 222 | 7 16.61523348 12 S 223 | 7 16.60877064 13 S 224 | 7 16.61492723 14 S 225 | 7 16.59838908 15 S 226 | 7 16.59945368 16 S 227 | 8 17.46080424 1 P 228 | 8 17.45547704 2 P 229 | 8 17.47185528 3 P 230 | 8 17.47260558 4 P 231 | 8 17.46307559 5 P 232 | 8 17.45661920 6 P 233 | 8 17.45968659 7 P 234 | 8 17.46396490 8 P 235 | 8 17.47777645 9 P 236 | 8 17.48167573 10 P 237 | 8 17.48975729 11 P 238 | 8 17.47208468 12 P 239 | 8 17.46621252 13 P 240 | 8 17.47057120 14 P 241 | 8 17.46273400 15 P 242 | 8 17.46161551 16 P 243 | 8 17.47133960 1 S 244 | 8 17.46116281 2 S 245 | 8 17.48780807 3 S 246 | 8 17.49212428 4 S 247 | 8 17.47374314 5 S 248 | 8 17.46173370 6 S 249 | 8 17.46895522 7 S 250 | 8 17.47668243 8 S 251 | 8 17.50022506 9 S 252 | 8 17.51617708 10 S 253 | 8 17.52427706 11 S 254 | 8 17.48962147 12 S 255 | 8 17.48039932 13 S 256 | 8 17.48481454 14 S 257 | 8 17.47254957 15 S 258 | 8 17.47272290 16 S 259 | 9 18.16051304 1 P 260 | 9 18.16178955 2 P 261 | 9 18.17062253 3 P 262 | 9 18.17087100 4 P 263 | 9 18.15945754 5 P 264 | 9 18.15743184 6 P 265 | 9 18.16565190 7 P 266 | 9 18.16298092 8 P 267 | 9 18.17523790 9 P 268 | 9 18.17980468 10 P 269 | 9 18.18717431 11 P 270 | 9 18.17142537 12 P 271 | 9 18.16360824 13 P 272 | 9 18.16762298 14 P 273 | 9 18.16609022 15 P 274 | 9 18.16629302 16 P 275 | 9 18.16738544 1 S 276 | 9 18.16707891 2 S 277 | 9 18.18233640 3 S 278 | 9 18.18742263 4 S 279 | 9 18.16638332 5 S 280 | 9 18.16135581 6 S 281 | 9 18.17674579 7 S 282 | 9 18.17138142 8 S 283 | 9 18.19010344 9 S 284 | 9 18.20464822 10 S 285 | 9 18.21505023 11 S 286 | 9 18.19101703 12 S 287 | 9 18.17094774 13 S 288 | 9 18.17961970 14 S 289 | 9 18.18104130 15 S 290 | 9 18.17920818 16 S 291 | 10 26.52669280 1 P 292 | 10 26.52821233 2 P 293 | 10 26.52336404 3 P 294 | 10 26.52318887 4 P 295 | 10 26.53433671 5 P 296 | 10 26.53602709 6 P 297 | 10 26.54225302 7 P 298 | 10 26.54192743 8 P 299 | 10 26.55020535 9 P 300 | 10 26.55349590 10 P 301 | 10 26.55664565 11 P 302 | 10 26.54768839 12 P 303 | 10 26.53121255 13 P 304 | 10 26.53015652 14 P 305 | 10 26.52840930 15 P 306 | 10 26.52659496 16 P 307 | 10 26.53637266 1 S 308 | 10 26.53646830 2 S 309 | 10 26.53138030 3 S 310 | 10 26.52779416 4 S 311 | 10 26.55093565 5 S 312 | 10 26.55321273 6 S 313 | 10 26.56582291 7 S 314 | 10 26.56045188 8 S 315 | 10 26.57992165 9 S 316 | 10 26.58745702 10 S 317 | 10 26.59239540 11 S 318 | 10 26.57817861 12 S 319 | 10 26.54356210 13 S 320 | 10 26.54163044 14 S 321 | 10 26.53968084 15 S 322 | 10 26.53502272 16 S 323 | -------------------------------------------------------------------------------- /src/JHVIT/mesh.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | """ 3 | Created on Fri Oct 21 09:48:08 2016 4 | 5 | @author: giroux 6 | """ 7 | 8 | import re 9 | import sys 10 | import numba 11 | import numpy as np 12 | import vtk 13 | 14 | 15 | class MSHReader: 16 | def __init__(self, filename): 17 | self.filename = filename 18 | self.valid = self.checkFormat() 19 | 20 | def checkFormat(self): 21 | try: 22 | f = open(self.filename, 'r') 23 | line = f.readline() 24 | if not line.startswith('$MeshFormat'): 25 | return False 26 | tmp = re.split(r' ', f.readline()) 27 | if tmp[0] != '2.2' or tmp[1] != '0': 28 | return False 29 | 30 | except OSError as err: 31 | print("OS error: {0}".format(err)) 32 | return False 33 | except ValueError: 34 | print("Could not convert data to an integer.") 35 | return False 36 | except BaseException: 37 | print("Unexpected error:", sys.exc_info()[0]) 38 | return False 39 | 40 | def is2D(self): 41 | try: 42 | nodes = self.readNodes() 43 | except BaseException: 44 | raise 45 | 46 | ymin = np.min(nodes[:, 1]) 47 | ymax = np.max(nodes[:, 1]) 48 | return ymin == ymax 49 | 50 | def getNumberOfNodes(self): 51 | try: 52 | f = open(self.filename, 'r') 53 | for line in f: 54 | if line.startswith('$Nodes'): 55 | nnodes = int(f.readline()) 56 | break 57 | f.close() 58 | return nnodes 59 | 60 | except OSError as err: 61 | print("OS error: {0}".format(err)) 62 | except ValueError: 63 | print("Could not convert data to an integer.") 64 | except BaseException: 65 | print("Unexpected error:", sys.exc_info()[0]) 66 | raise 67 | 68 | def readNodes(self): 69 | try: 70 | f = open(self.filename, 'r') 71 | for line in f: 72 | if line.startswith('$Nodes'): 73 | nnodes = int(f.readline()) 74 | nodes = np.zeros((nnodes, 3)) 75 | for n in np.arange(nnodes): 76 | tmp = re.split(r' ', f.readline()) 77 | nodes[n, 0] = tmp[1] 78 | nodes[n, 1] = tmp[2] 79 | nodes[n, 2] = tmp[3] 80 | 81 | break 82 | f.close() 83 | return nodes 84 | 85 | except OSError as err: 86 | print("OS error: {0}".format(err)) 87 | except ValueError: 88 | print("Could not convert data to an integer.") 89 | except BaseException: 90 | print("Unexpected error:", sys.exc_info()[0]) 91 | raise 92 | 93 | def getNumberOfElements(self, eltype=0): 94 | try: 95 | f = open(self.filename, 'r') 96 | for line in f: 97 | if line.startswith('$Elements'): 98 | nelem = int(f.readline()) 99 | if eltype != 0: 100 | nel = 0 101 | for n in np.arange(nelem): 102 | tmp = re.split(r' ', f.readline()) 103 | if eltype == int(tmp[1]): 104 | nel += 1 105 | nelem = nel 106 | break 107 | f.close() 108 | return nelem 109 | except OSError as err: 110 | print("OS error: {0}".format(err)) 111 | except ValueError: 112 | print("Could not convert data to an integer.") 113 | except BaseException: 114 | print("Unexpected error:", sys.exc_info()[0]) 115 | raise 116 | 117 | def readTriangleElements(self): 118 | try: 119 | f = open(self.filename, 'r') 120 | for line in f: 121 | if line.startswith('$Elements'): 122 | nelem = int(f.readline()) 123 | triangles = np.ndarray((nelem, 3), dtype=np.int64) 124 | nt = 0 125 | for n in np.arange(nelem): 126 | tmp = re.split(r' ', f.readline()) 127 | if tmp[1] == '2': 128 | nTags = int(tmp[2]) 129 | triangles[nt, 0] = tmp[nTags+3] 130 | triangles[nt, 1] = tmp[nTags+4] 131 | triangles[nt, 2] = tmp[nTags+5] 132 | nt += 1 133 | break 134 | return triangles[:nt, :]-1 # indices start at 0 in python 135 | 136 | except OSError as err: 137 | print("OS error: {0}".format(err)) 138 | except ValueError: 139 | print("Could not convert data to an integer.") 140 | except BaseException: 141 | print("Unexpected error:", sys.exc_info()[0]) 142 | raise 143 | 144 | def readTetraherdonElements(self): 145 | try: 146 | f = open(self.filename, 'r') 147 | for line in f: 148 | if line.startswith('$Elements'): 149 | nelem = int(f.readline()) 150 | tetrahedra = np.ndarray((nelem, 4), dtype=np.int64) 151 | nt = 0 152 | for n in np.arange(nelem): 153 | tmp = re.split(r' ', f.readline()) 154 | if tmp[1] == '4': 155 | nTags = int(tmp[2]) 156 | tetrahedra[nt, 0] = tmp[nTags+3] 157 | tetrahedra[nt, 1] = tmp[nTags+4] 158 | tetrahedra[nt, 2] = tmp[nTags+5] 159 | tetrahedra[nt, 3] = tmp[nTags+6] 160 | nt += 1 161 | break 162 | return tetrahedra[:nt, :]-1 # indices start at 0 in python 163 | 164 | except OSError as err: 165 | print("OS error: {0}".format(err)) 166 | except ValueError: 167 | print("Could not convert data to an integer.") 168 | except BaseException: 169 | print("Unexpected error:", sys.exc_info()[0]) 170 | raise 171 | 172 | def readTetraherdonPhysicalEntities(self): 173 | try: 174 | f = open(self.filename, 'r') 175 | for line in f: 176 | if line.startswith('$Elements'): 177 | nelem = int(f.readline()) 178 | PhysicalEnteties = np.zeros((nelem, 1)) 179 | for n in range(nelem): 180 | tmp = re.split(r' ', f.readline()) 181 | PhysicalEnteties[n, 0] = int(tmp[3]) 182 | break 183 | return PhysicalEnteties 184 | 185 | except OSError as err: 186 | print("OS error: {0}".format(err)) 187 | except ValueError: 188 | print("Could not convert data to an integer.") 189 | except BaseException: 190 | print("Unexpected error:", sys.exc_info()[0]) 191 | raise 192 | 193 | 194 | class Mesh: 195 | """ 196 | Superclass for 2D and 3D Meshes 197 | """ 198 | def __init__(self): 199 | self.nodes = np.ndarray([]) 200 | # can be triangles (2D/3D) or tetrahedra (3D) 201 | self.cells = np.ndarray([]) 202 | 203 | def getNumberOfNodes(self): 204 | return self.nodes.shape[0] 205 | 206 | def getNumberOfCells(self): 207 | return self.cells.shape[0] 208 | 209 | 210 | class meshTriangle3D(Mesh): 211 | def __init__(self, nod, tri): 212 | self.cells = np.array(tri) 213 | itr = np.unique(tri) 214 | for n in np.arange(itr.size): 215 | i, j = np.nonzero(tri == itr[n]) 216 | self.cells[i, j] = n 217 | self.nodes = np.array(nod[itr, :]) 218 | 219 | def projz(self, pt): 220 | ind = self.ni(pt) 221 | if np.size(ind) > 0: 222 | return np.array(self.nodes[ind, :]) 223 | else: 224 | p = np.array(pt) 225 | p[2] = 0.0 226 | 227 | d = np.sqrt((self.nodes[:, 0]-p[0])**2 + 228 | (self.nodes[:, 1]-p[1])**2) 229 | iclosest = np.argmin(d) 230 | # find second closest 231 | d[iclosest] *= 1e6 232 | isecond = np.argmin(d) 233 | # find next closest 234 | d[isecond] *= 1e6 235 | ithird = np.argmin(d) 236 | itri, jtri = np.nonzero(np.logical_or(np.logical_or( 237 | self.cells == iclosest, self.cells == isecond), 238 | self.cells == ithird)) 239 | 240 | for i in itri: 241 | a = np.array(self.nodes[self.cells[i, 0], :]) 242 | b = np.array(self.nodes[self.cells[i, 1], :]) 243 | c = np.array(self.nodes[self.cells[i, 2], :]) 244 | a[2] = 0.0 245 | b[2] = 0.0 246 | c[2] = 0.0 247 | if meshTriangle3D.insideTriangle(p, a, b, c) is True: 248 | a[:] = self.nodes[self.cells[i, 0], :] 249 | b[:] = self.nodes[self.cells[i, 1], :] 250 | c[:] = self.nodes[self.cells[i, 2], :] 251 | # make sure pt is below mesh 252 | p[2] = np.min(self.nodes[:, 2]) - 100.0 253 | # now project vertically 254 | v = np.array([0.0, 0.0, 1.0]) # point upward 255 | pa = a-p 256 | pb = b-p 257 | pc = c-p 258 | 259 | A = np.vstack((pa, pb, pc)).T 260 | x = np.linalg.solve(A, v) 261 | G = (x[0]*a + x[1]*b + x[2]*c)/np.sum(x) 262 | return G 263 | else: 264 | 265 | import matplotlib.pyplot as plt 266 | fig = plt.figure() 267 | ax = fig.add_subplot(1, 1, 1) 268 | ax.plot(p[0], p[1], 'rv') 269 | ax.axis('equal') 270 | ax.hold(True) 271 | ax.plot(self.nodes[iclosest, 0], self.nodes[iclosest, 1], 'ko') 272 | for i in itri: 273 | a = np.array(self.nodes[self.cells[i, 0], :]) 274 | b = np.array(self.nodes[self.cells[i, 1], :]) 275 | c = np.array(self.nodes[self.cells[i, 2], :]) 276 | a[2] = 0.0 277 | b[2] = 0.0 278 | c[2] = 0.0 279 | ax.plot([a[0], b[0], c[0], a[0]], [a[1], b[1], c[1], a[1]]) 280 | ax.hold(False) 281 | plt.show() 282 | 283 | print('Houston! We have a problem') 284 | 285 | def ni(self, pt): 286 | """ 287 | Check if pt is one of the nodes 288 | """ 289 | ind = [] 290 | for n in np.arange(self.nodes.shape[0]): 291 | if np.sqrt(np.sum((self.nodes[n, :]-pt)**2)) < 1.0e-5: 292 | ind.append(n) 293 | return ind 294 | 295 | def getVtkUnstructuredGrid(self): 296 | tPts = vtk.vtkPoints() 297 | ugrid = vtk.vtkUnstructuredGrid() 298 | tPts.SetNumberOfPoints(self.nodes.shape[0]) 299 | for n in np.arange(self.nodes.shape[0]): 300 | tPts.InsertPoint(n, self.nodes[n, 0], self.nodes[n, 1], 301 | self.nodes[n, 2]) 302 | ugrid.SetPoints(tPts) 303 | tri = vtk.vtkTriangle() 304 | for n in np.arange(self.cells.shape[0]): 305 | tri.GetPointIds().SetId(0, self.cells[n, 0]) 306 | tri.GetPointIds().SetId(1, self.cells[n, 1]) 307 | tri.GetPointIds().SetId(2, self.cells[n, 2]) 308 | ugrid.InsertNextCell(tri.GetCellType(), tri.GetPointIds()) 309 | return ugrid 310 | 311 | @staticmethod 312 | @numba.jit(forceobj=True) 313 | def insideTriangle(p, a, b, c): 314 | a -= p 315 | b -= p 316 | c -= p 317 | u = np.cross(b, c) 318 | v = np.cross(c, a) 319 | if np.dot(u, v) < (-1.0e-5): 320 | return False 321 | w = np.cross(a, b) 322 | if np.dot(u, w) < (-1.0e-5): 323 | return False 324 | return True 325 | 326 | 327 | class MeshTetrahedra(Mesh): 328 | 329 | def __init__(self, nthreads=1): 330 | Mesh.__init__(self) 331 | self.nthreads = nthreads 332 | self.cmesh = None 333 | 334 | @numba.jit(nopython=True) 335 | def buildFromMSH(self, filename): 336 | reader = MSHReader(filename) 337 | nodes = reader.readNodes() 338 | tet = reader.readTetraherdonElements() 339 | self.cells = np.array(tet) 340 | itet = np.unique(tet) 341 | for n in np.arange(itet.size): 342 | i, j = np.nonzero(tet == itet[n]) 343 | self.cells[i, j] = n 344 | self.nodes = np.array(nodes[itet, :]) 345 | -------------------------------------------------------------------------------- /examples/CalibData_P.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn arrival times rcv_index X Y Z 3 | 1 0.06298331 1 305.30000 5723.72000 0.73790 4 | 1 0.07147777 2 305.30000 5723.72000 0.73790 5 | 1 0.06084708 3 305.30000 5723.72000 0.73790 6 | 1 0.06292103 4 305.30000 5723.72000 0.73790 7 | 1 0.06001191 5 305.30000 5723.72000 0.73790 8 | 1 0.07094856 6 305.30000 5723.72000 0.73790 9 | 1 0.07979090 7 305.30000 5723.72000 0.73790 10 | 1 0.06588674 8 305.30000 5723.72000 0.73790 11 | 1 0.05380338 9 305.30000 5723.72000 0.73790 12 | 1 0.04486971 10 305.30000 5723.72000 0.73790 13 | 1 0.03461787 11 305.30000 5723.72000 0.73790 14 | 1 0.06390624 12 305.30000 5723.72000 0.73790 15 | 1 0.05703691 13 305.30000 5723.72000 0.73790 16 | 1 0.05505571 14 305.30000 5723.72000 0.73790 17 | 1 0.07540600 15 305.30000 5723.72000 0.73790 18 | 1 0.07437530 16 305.30000 5723.72000 0.73790 19 | 2 0.04669911 1 305.30000 5723.82000 0.74590 20 | 2 0.05555031 2 305.30000 5723.82000 0.74590 21 | 2 0.04690266 3 305.30000 5723.82000 0.74590 22 | 2 0.04712566 4 305.30000 5723.82000 0.74590 23 | 2 0.04091855 5 305.30000 5723.82000 0.74590 24 | 2 0.05093419 6 305.30000 5723.82000 0.74590 25 | 2 0.05867240 7 305.30000 5723.82000 0.74590 26 | 2 0.04520147 8 305.30000 5723.82000 0.74590 27 | 2 0.03373421 9 305.30000 5723.82000 0.74590 28 | 2 0.02380422 10 305.30000 5723.82000 0.74590 29 | 2 0.01491129 11 305.30000 5723.82000 0.74590 30 | 2 0.04205752 12 305.30000 5723.82000 0.74590 31 | 2 0.04021006 13 305.30000 5723.82000 0.74590 32 | 2 0.03877258 14 305.30000 5723.82000 0.74590 33 | 2 0.05728828 15 305.30000 5723.82000 0.74590 34 | 2 0.05858971 16 305.30000 5723.82000 0.74590 35 | 3 0.04011356 1 305.25000 5723.92000 0.74200 36 | 3 0.04644539 2 305.25000 5723.92000 0.74200 37 | 3 0.04428601 3 305.25000 5723.92000 0.74200 38 | 3 0.04548776 4 305.25000 5723.92000 0.74200 39 | 3 0.03249426 5 305.25000 5723.92000 0.74200 40 | 3 0.03913207 6 305.25000 5723.92000 0.74200 41 | 3 0.04486207 7 305.25000 5723.92000 0.74200 42 | 3 0.03164594 8 305.25000 5723.92000 0.74200 43 | 3 0.01753912 9 305.25000 5723.92000 0.74200 44 | 3 0.01278999 10 305.25000 5723.92000 0.74200 45 | 3 0.01387801 11 305.25000 5723.92000 0.74200 46 | 3 0.02469472 12 305.25000 5723.92000 0.74200 47 | 3 0.03415135 13 305.25000 5723.92000 0.74200 48 | 3 0.03645592 14 305.25000 5723.92000 0.74200 49 | 3 0.05147483 15 305.25000 5723.92000 0.74200 50 | 3 0.05277379 16 305.25000 5723.92000 0.74200 51 | 4 0.03592231 1 305.25000 5724.02000 0.72900 52 | 4 0.03870016 2 305.25000 5724.02000 0.72900 53 | 4 0.04401576 3 305.25000 5724.02000 0.72900 54 | 4 0.04537585 4 305.25000 5724.02000 0.72900 55 | 4 0.02755017 5 305.25000 5724.02000 0.72900 56 | 4 0.02828579 6 305.25000 5724.02000 0.72900 57 | 4 0.03153670 7 305.25000 5724.02000 0.72900 58 | 4 0.02118881 8 305.25000 5724.02000 0.72900 59 | 4 0.01461225 9 305.25000 5724.02000 0.72900 60 | 4 0.02151860 10 305.25000 5724.02000 0.72900 61 | 4 0.02922548 11 305.25000 5724.02000 0.72900 62 | 4 0.01231873 12 305.25000 5724.02000 0.72900 63 | 4 0.03301383 13 305.25000 5724.02000 0.72900 64 | 4 0.03739169 14 305.25000 5724.02000 0.72900 65 | 4 0.04362246 15 305.25000 5724.02000 0.72900 66 | 4 0.04530405 16 305.25000 5724.02000 0.72900 67 | 5 0.03500299 1 305.30000 5724.12000 0.69710 68 | 5 0.03214833 2 305.30000 5724.12000 0.69710 69 | 5 0.04333186 3 305.30000 5724.12000 0.69710 70 | 5 0.04486920 4 305.30000 5724.12000 0.69710 71 | 5 0.02930966 5 305.30000 5724.12000 0.69710 72 | 5 0.02261673 6 305.30000 5724.12000 0.69710 73 | 5 0.01682816 7 305.30000 5724.12000 0.69710 74 | 5 0.02078643 8 305.30000 5724.12000 0.69710 75 | 5 0.02995034 9 305.30000 5724.12000 0.69710 76 | 5 0.03947377 10 305.30000 5724.12000 0.69710 77 | 5 0.04857442 11 305.30000 5724.12000 0.69710 78 | 5 0.01975324 12 305.30000 5724.12000 0.69710 79 | 5 0.03584849 13 305.30000 5724.12000 0.69710 80 | 5 0.04028266 14 305.30000 5724.12000 0.69710 81 | 5 0.03500509 15 305.30000 5724.12000 0.69710 82 | 5 0.03758569 16 305.30000 5724.12000 0.69710 83 | 6 0.05060452 1 305.30000 5724.22000 0.66115 84 | 6 0.04551258 2 305.30000 5724.22000 0.66115 85 | 6 0.05977814 3 305.30000 5724.22000 0.66115 86 | 6 0.06001719 4 305.30000 5724.22000 0.66115 87 | 6 0.04748507 5 305.30000 5724.22000 0.66115 88 | 6 0.03899186 6 305.30000 5724.22000 0.66115 89 | 6 0.03162831 7 305.30000 5724.22000 0.66115 90 | 6 0.04036446 8 305.30000 5724.22000 0.66115 91 | 6 0.05053324 9 305.30000 5724.22000 0.66115 92 | 6 0.06072718 10 305.30000 5724.22000 0.66115 93 | 6 0.07043349 11 305.30000 5724.22000 0.66115 94 | 6 0.04209257 12 305.30000 5724.22000 0.66115 95 | 6 0.05358609 13 305.30000 5724.22000 0.66115 96 | 6 0.05908628 14 305.30000 5724.22000 0.66115 97 | 6 0.04663226 15 305.30000 5724.22000 0.66115 98 | 6 0.04712890 16 305.30000 5724.22000 0.66115 99 | 7 0.05867056 1 305.40000 5723.72000 0.66239 100 | 7 0.06527883 2 305.40000 5723.72000 0.66239 101 | 7 0.05084852 3 305.40000 5723.72000 0.66239 102 | 7 0.05200865 4 305.40000 5723.72000 0.66239 103 | 7 0.05805930 5 305.40000 5723.72000 0.66239 104 | 7 0.06580345 6 305.40000 5723.72000 0.66239 105 | 7 0.07749594 7 305.40000 5723.72000 0.66239 106 | 7 0.06491086 8 305.40000 5723.72000 0.66239 107 | 7 0.05830399 9 305.40000 5723.72000 0.66239 108 | 7 0.05020799 10 305.40000 5723.72000 0.66239 109 | 7 0.04221812 11 305.40000 5723.72000 0.66239 110 | 7 0.06589450 12 305.40000 5723.72000 0.66239 111 | 7 0.05447225 13 305.40000 5723.72000 0.66239 112 | 7 0.04975478 14 305.40000 5723.72000 0.66239 113 | 7 0.06823205 15 305.40000 5723.72000 0.66239 114 | 7 0.06608218 16 305.40000 5723.72000 0.66239 115 | 8 0.03750109 1 305.40000 5723.82000 0.68600 116 | 8 0.04579442 2 305.40000 5723.82000 0.68600 117 | 8 0.03192408 3 305.40000 5723.82000 0.68600 118 | 8 0.03219293 4 305.40000 5723.82000 0.68600 119 | 8 0.03789515 5 305.40000 5723.82000 0.68600 120 | 8 0.04689045 6 305.40000 5723.82000 0.68600 121 | 8 0.05714827 7 305.40000 5723.82000 0.68600 122 | 8 0.04541846 8 305.40000 5723.82000 0.68600 123 | 8 0.03949773 9 305.40000 5723.82000 0.68600 124 | 8 0.03109106 10 305.40000 5723.82000 0.68600 125 | 8 0.02567526 11 305.40000 5723.82000 0.68600 126 | 8 0.04759844 12 305.40000 5723.82000 0.68600 127 | 8 0.03372228 13 305.40000 5723.82000 0.68600 128 | 8 0.02920141 14 305.40000 5723.82000 0.68600 129 | 8 0.04716024 15 305.40000 5723.82000 0.68600 130 | 8 0.04724429 16 305.40000 5723.82000 0.68600 131 | 9 0.04690844 1 305.40000 5724.22000 0.61710 132 | 9 0.03945527 2 305.40000 5724.22000 0.61710 133 | 9 0.05160449 3 305.40000 5724.22000 0.61710 134 | 9 0.05413947 4 305.40000 5724.22000 0.61710 135 | 9 0.04797761 5 305.40000 5724.22000 0.61710 136 | 9 0.03916757 6 305.40000 5724.22000 0.61710 137 | 9 0.02956221 7 305.40000 5724.22000 0.61710 138 | 9 0.04455331 8 305.40000 5724.22000 0.61710 139 | 9 0.05652249 9 305.40000 5724.22000 0.61710 140 | 9 0.06690784 10 305.40000 5724.22000 0.61710 141 | 9 0.07422947 11 305.40000 5724.22000 0.61710 142 | 9 0.05002480 12 305.40000 5724.22000 0.61710 143 | 9 0.05265489 13 305.40000 5724.22000 0.61710 144 | 9 0.05545214 14 305.40000 5724.22000 0.61710 145 | 9 0.03770097 15 305.40000 5724.22000 0.61710 146 | 9 0.03920703 16 305.40000 5724.22000 0.61710 147 | 10 0.06233293 1 305.50000 5723.72000 0.58456 148 | 10 0.06929285 2 305.50000 5723.72000 0.58456 149 | 10 0.05426468 3 305.50000 5723.72000 0.58456 150 | 10 0.05429195 4 305.50000 5723.72000 0.58456 151 | 10 0.06641186 5 305.50000 5723.72000 0.58456 152 | 10 0.07580966 6 305.50000 5723.72000 0.58456 153 | 10 0.08184796 7 305.50000 5723.72000 0.58456 154 | 10 0.07432840 8 305.50000 5723.72000 0.58456 155 | 10 0.07136943 9 305.50000 5723.72000 0.58456 156 | 10 0.06572531 10 305.50000 5723.72000 0.58456 157 | 10 0.06199618 11 305.50000 5723.72000 0.58456 158 | 10 0.08058880 12 305.50000 5723.72000 0.58456 159 | 10 0.06300320 13 305.50000 5723.72000 0.58456 160 | 10 0.05829016 14 305.50000 5723.72000 0.58456 161 | 10 0.06792763 15 305.50000 5723.72000 0.58456 162 | 10 0.06883975 16 305.50000 5723.72000 0.58456 163 | 11 0.04550035 1 305.50000 5723.82000 0.58464 164 | 11 0.05213677 2 305.50000 5723.82000 0.58464 165 | 11 0.03588804 3 305.50000 5723.82000 0.58464 166 | 11 0.03557698 4 305.50000 5723.82000 0.58464 167 | 11 0.05152091 5 305.50000 5723.82000 0.58464 168 | 11 0.05710678 6 305.50000 5723.82000 0.58464 169 | 11 0.06454181 7 305.50000 5723.82000 0.58464 170 | 11 0.06029991 8 305.50000 5723.82000 0.58464 171 | 11 0.05919089 9 305.50000 5723.82000 0.58464 172 | 11 0.05548442 10 305.50000 5723.82000 0.58464 173 | 11 0.05407860 11 305.50000 5723.82000 0.58464 174 | 11 0.06570348 12 305.50000 5723.82000 0.58464 175 | 11 0.04515465 13 305.50000 5723.82000 0.58464 176 | 11 0.04119713 14 305.50000 5723.82000 0.58464 177 | 11 0.04844985 15 305.50000 5723.82000 0.58464 178 | 11 0.04779555 16 305.50000 5723.82000 0.58464 179 | 12 0.03315771 1 305.50000 5723.92000 0.59150 180 | 12 0.03595639 2 305.50000 5723.92000 0.59150 181 | 12 0.02142781 3 305.50000 5723.92000 0.59150 182 | 12 0.02264537 4 305.50000 5723.92000 0.59150 183 | 12 0.04062058 5 305.50000 5723.92000 0.59150 184 | 12 0.04321756 6 305.50000 5723.92000 0.59150 185 | 12 0.04920078 7 305.50000 5723.92000 0.59150 186 | 12 0.04789249 8 305.50000 5723.92000 0.59150 187 | 12 0.05318062 9 305.50000 5723.92000 0.59150 188 | 12 0.05226964 10 305.50000 5723.92000 0.59150 189 | 12 0.05226150 11 305.50000 5723.92000 0.59150 190 | 12 0.05375564 12 305.50000 5723.92000 0.59150 191 | 12 0.03595492 13 305.50000 5723.92000 0.59150 192 | 12 0.03146661 14 305.50000 5723.92000 0.59150 193 | 12 0.03095984 15 305.50000 5723.92000 0.59150 194 | 12 0.03155286 16 305.50000 5723.92000 0.59150 195 | 13 0.02837989 1 305.50000 5724.02000 0.57640 196 | 13 0.02503040 2 305.50000 5724.02000 0.57640 197 | 13 0.02192620 3 305.50000 5724.02000 0.57640 198 | 13 0.02354090 4 305.50000 5724.02000 0.57640 199 | 13 0.03682525 5 305.50000 5724.02000 0.57640 200 | 13 0.03542009 6 305.50000 5724.02000 0.57640 201 | 13 0.03633684 7 305.50000 5724.02000 0.57640 202 | 13 0.04146099 8 305.50000 5724.02000 0.57640 203 | 13 0.05134241 9 305.50000 5724.02000 0.57640 204 | 13 0.05502266 10 305.50000 5724.02000 0.57640 205 | 13 0.05775031 11 305.50000 5724.02000 0.57640 206 | 13 0.05083866 12 305.50000 5724.02000 0.57640 207 | 13 0.03352819 13 305.50000 5724.02000 0.57640 208 | 13 0.03250943 14 305.50000 5724.02000 0.57640 209 | 13 0.01805487 15 305.50000 5724.02000 0.57640 210 | 13 0.01846926 16 305.50000 5724.02000 0.57640 211 | 14 0.04000030 1 305.50000 5724.12000 0.55637 212 | 14 0.03254618 2 305.50000 5724.12000 0.55637 213 | 14 0.03891341 3 305.50000 5724.12000 0.55637 214 | 14 0.04030521 4 305.50000 5724.12000 0.55637 215 | 14 0.04634667 5 305.50000 5724.12000 0.55637 216 | 14 0.03966014 6 305.50000 5724.12000 0.55637 217 | 14 0.03709270 7 305.50000 5724.12000 0.55637 218 | 14 0.04768150 8 305.50000 5724.12000 0.55637 219 | 14 0.05977781 9 305.50000 5724.12000 0.55637 220 | 14 0.06479002 10 305.50000 5724.12000 0.55637 221 | 14 0.07286340 11 305.50000 5724.12000 0.55637 222 | 14 0.05565222 12 305.50000 5724.12000 0.55637 223 | 14 0.04525390 13 305.50000 5724.12000 0.55637 224 | 14 0.04660769 14 305.50000 5724.12000 0.55637 225 | 14 0.02536543 15 305.50000 5724.12000 0.55637 226 | 14 0.02667829 16 305.50000 5724.12000 0.55637 227 | 15 0.05858426 1 305.50000 5724.22000 0.51364 228 | 15 0.05041236 2 305.50000 5724.22000 0.51364 229 | 15 0.05819542 3 305.50000 5724.22000 0.51364 230 | 15 0.06202189 4 305.50000 5724.22000 0.51364 231 | 15 0.06435824 5 305.50000 5724.22000 0.51364 232 | 15 0.05773159 6 305.50000 5724.22000 0.51364 233 | 15 0.05066777 7 305.50000 5724.22000 0.51364 234 | 15 0.06509384 8 305.50000 5724.22000 0.51364 235 | 15 0.07684277 9 305.50000 5724.22000 0.51364 236 | 15 0.08241468 10 305.50000 5724.22000 0.51364 237 | 15 0.09002795 11 305.50000 5724.22000 0.51364 238 | 15 0.07116990 12 305.50000 5724.22000 0.51364 239 | 15 0.06458842 13 305.50000 5724.22000 0.51364 240 | 15 0.06712819 14 305.50000 5724.22000 0.51364 241 | 15 0.04519520 15 305.50000 5724.22000 0.51364 242 | 15 0.04538984 16 305.50000 5724.22000 0.51364 243 | -------------------------------------------------------------------------------- /examples/CalibData_PS.dat: -------------------------------------------------------------------------------- 1 | # Synthetic data 2 | Ev_idn arrival times rcv_index X Y Z Type 3 | 1 0.06459766 1 305.30000 5723.72000 0.73790 P 4 | 1 0.06134658 2 305.30000 5723.72000 0.73790 P 5 | 1 0.06117391 3 305.30000 5723.72000 0.73790 P 6 | 1 0.06519088 4 305.30000 5723.72000 0.73790 P 7 | 1 0.06178628 5 305.30000 5723.72000 0.73790 P 8 | 1 0.06749500 6 305.30000 5723.72000 0.73790 P 9 | 1 0.08065004 7 305.30000 5723.72000 0.73790 P 10 | 1 0.06218955 8 305.30000 5723.72000 0.73790 P 11 | 1 0.04856200 9 305.30000 5723.72000 0.73790 P 12 | 1 0.04366245 10 305.30000 5723.72000 0.73790 P 13 | 1 0.03503986 11 305.30000 5723.72000 0.73790 P 14 | 1 0.06211979 12 305.30000 5723.72000 0.73790 P 15 | 1 0.05575735 13 305.30000 5723.72000 0.73790 P 16 | 1 0.05542487 14 305.30000 5723.72000 0.73790 P 17 | 1 0.06500201 15 305.30000 5723.72000 0.73790 P 18 | 1 0.07852178 16 305.30000 5723.72000 0.73790 P 19 | 1 0.11380252 1 305.30000 5723.72000 0.73790 S 20 | 1 0.12705192 2 305.30000 5723.72000 0.73790 S 21 | 1 0.10403020 3 305.30000 5723.72000 0.73790 S 22 | 1 0.10621987 4 305.30000 5723.72000 0.73790 S 23 | 1 0.10720123 5 305.30000 5723.72000 0.73790 S 24 | 1 0.12544055 6 305.30000 5723.72000 0.73790 S 25 | 1 0.14174719 7 305.30000 5723.72000 0.73790 S 26 | 1 0.12854535 8 305.30000 5723.72000 0.73790 S 27 | 1 0.09853318 9 305.30000 5723.72000 0.73790 S 28 | 1 0.07845230 10 305.30000 5723.72000 0.73790 S 29 | 1 0.06224539 11 305.30000 5723.72000 0.73790 S 30 | 1 0.11366922 12 305.30000 5723.72000 0.73790 S 31 | 1 0.09856338 13 305.30000 5723.72000 0.73790 S 32 | 1 0.09674348 14 305.30000 5723.72000 0.73790 S 33 | 1 0.13822645 15 305.30000 5723.72000 0.73790 S 34 | 1 0.14120478 16 305.30000 5723.72000 0.73790 S 35 | 2 0.04583879 1 305.30000 5723.82000 0.74590 P 36 | 2 0.05600698 2 305.30000 5723.82000 0.74590 P 37 | 2 0.04647147 3 305.30000 5723.82000 0.74590 P 38 | 2 0.04403279 4 305.30000 5723.82000 0.74590 P 39 | 2 0.04309596 5 305.30000 5723.82000 0.74590 P 40 | 2 0.05067193 6 305.30000 5723.82000 0.74590 P 41 | 2 0.05890868 7 305.30000 5723.82000 0.74590 P 42 | 2 0.04240683 8 305.30000 5723.82000 0.74590 P 43 | 2 0.03503503 9 305.30000 5723.82000 0.74590 P 44 | 2 0.02600177 10 305.30000 5723.82000 0.74590 P 45 | 2 0.01587760 11 305.30000 5723.82000 0.74590 P 46 | 2 0.04028536 12 305.30000 5723.82000 0.74590 P 47 | 2 0.03776434 13 305.30000 5723.82000 0.74590 P 48 | 2 0.03550346 14 305.30000 5723.82000 0.74590 P 49 | 2 0.05636701 15 305.30000 5723.82000 0.74590 P 50 | 2 0.05417588 16 305.30000 5723.82000 0.74590 P 51 | 2 0.08901208 1 305.30000 5723.82000 0.74590 S 52 | 2 0.09252573 2 305.30000 5723.82000 0.74590 S 53 | 2 0.07888856 3 305.30000 5723.82000 0.74590 S 54 | 2 0.09206732 4 305.30000 5723.82000 0.74590 S 55 | 2 0.06210329 5 305.30000 5723.82000 0.74590 S 56 | 2 0.09102017 6 305.30000 5723.82000 0.74590 S 57 | 2 0.10685247 7 305.30000 5723.82000 0.74590 S 58 | 2 0.08154244 8 305.30000 5723.82000 0.74590 S 59 | 2 0.05920716 9 305.30000 5723.82000 0.74590 S 60 | 2 0.04667032 10 305.30000 5723.82000 0.74590 S 61 | 2 0.02714759 11 305.30000 5723.82000 0.74590 S 62 | 2 0.07505335 12 305.30000 5723.82000 0.74590 S 63 | 2 0.07861031 13 305.30000 5723.82000 0.74590 S 64 | 2 0.07267032 14 305.30000 5723.82000 0.74590 S 65 | 2 0.11298677 15 305.30000 5723.82000 0.74590 S 66 | 2 0.10834732 16 305.30000 5723.82000 0.74590 S 67 | 3 0.03906395 1 305.25000 5723.92000 0.74200 P 68 | 3 0.04445072 2 305.25000 5723.92000 0.74200 P 69 | 3 0.04357199 3 305.25000 5723.92000 0.74200 P 70 | 3 0.04529075 4 305.25000 5723.92000 0.74200 P 71 | 3 0.03043672 5 305.25000 5723.92000 0.74200 P 72 | 3 0.03533931 6 305.25000 5723.92000 0.74200 P 73 | 3 0.04592911 7 305.25000 5723.92000 0.74200 P 74 | 3 0.02938202 8 305.25000 5723.92000 0.74200 P 75 | 3 0.01827486 9 305.25000 5723.92000 0.74200 P 76 | 3 0.01137268 10 305.25000 5723.92000 0.74200 P 77 | 3 0.01378702 11 305.25000 5723.92000 0.74200 P 78 | 3 0.02653638 12 305.25000 5723.92000 0.74200 P 79 | 3 0.03285814 13 305.25000 5723.92000 0.74200 P 80 | 3 0.03892386 14 305.25000 5723.92000 0.74200 P 81 | 3 0.04797249 15 305.25000 5723.92000 0.74200 P 82 | 3 0.05274496 16 305.25000 5723.92000 0.74200 P 83 | 3 0.07691079 1 305.25000 5723.92000 0.74200 S 84 | 3 0.08636371 2 305.25000 5723.92000 0.74200 S 85 | 3 0.08239946 3 305.25000 5723.92000 0.74200 S 86 | 3 0.08909977 4 305.25000 5723.92000 0.74200 S 87 | 3 0.05707007 5 305.25000 5723.92000 0.74200 S 88 | 3 0.06924369 6 305.25000 5723.92000 0.74200 S 89 | 3 0.08527107 7 305.25000 5723.92000 0.74200 S 90 | 3 0.06153571 8 305.25000 5723.92000 0.74200 S 91 | 3 0.03216817 9 305.25000 5723.92000 0.74200 S 92 | 3 0.02315430 10 305.25000 5723.92000 0.74200 S 93 | 3 0.02436139 11 305.25000 5723.92000 0.74200 S 94 | 3 0.04798529 12 305.25000 5723.92000 0.74200 S 95 | 3 0.06140781 13 305.25000 5723.92000 0.74200 S 96 | 3 0.06959629 14 305.25000 5723.92000 0.74200 S 97 | 3 0.09392387 15 305.25000 5723.92000 0.74200 S 98 | 3 0.10081531 16 305.25000 5723.92000 0.74200 S 99 | 4 0.03699582 1 305.25000 5724.02000 0.72900 P 100 | 4 0.03767438 2 305.25000 5724.02000 0.72900 P 101 | 4 0.04392433 3 305.25000 5724.02000 0.72900 P 102 | 4 0.04530476 4 305.25000 5724.02000 0.72900 P 103 | 4 0.02725635 5 305.25000 5724.02000 0.72900 P 104 | 4 0.03013016 6 305.25000 5724.02000 0.72900 P 105 | 4 0.02958112 7 305.25000 5724.02000 0.72900 P 106 | 4 0.02008528 8 305.25000 5724.02000 0.72900 P 107 | 4 0.01382559 9 305.25000 5724.02000 0.72900 P 108 | 4 0.02244265 10 305.25000 5724.02000 0.72900 P 109 | 4 0.02856646 11 305.25000 5724.02000 0.72900 P 110 | 4 0.01240842 12 305.25000 5724.02000 0.72900 P 111 | 4 0.03157892 13 305.25000 5724.02000 0.72900 P 112 | 4 0.03614383 14 305.25000 5724.02000 0.72900 P 113 | 4 0.04057785 15 305.25000 5724.02000 0.72900 P 114 | 4 0.04303938 16 305.25000 5724.02000 0.72900 P 115 | 4 0.06988810 1 305.25000 5724.02000 0.72900 S 116 | 4 0.07124286 2 305.25000 5724.02000 0.72900 S 117 | 4 0.07114079 3 305.25000 5724.02000 0.72900 S 118 | 4 0.08811492 4 305.25000 5724.02000 0.72900 S 119 | 4 0.04815658 5 305.25000 5724.02000 0.72900 S 120 | 4 0.05058868 6 305.25000 5724.02000 0.72900 S 121 | 4 0.05287781 7 305.25000 5724.02000 0.72900 S 122 | 4 0.03744998 8 305.25000 5724.02000 0.72900 S 123 | 4 0.02437661 9 305.25000 5724.02000 0.72900 S 124 | 4 0.03903190 10 305.25000 5724.02000 0.72900 S 125 | 4 0.05398610 11 305.25000 5724.02000 0.72900 S 126 | 4 0.02442547 12 305.25000 5724.02000 0.72900 S 127 | 4 0.05355945 13 305.25000 5724.02000 0.72900 S 128 | 4 0.06626878 14 305.25000 5724.02000 0.72900 S 129 | 4 0.07837468 15 305.25000 5724.02000 0.72900 S 130 | 4 0.08228120 16 305.25000 5724.02000 0.72900 S 131 | 5 0.03502253 1 305.30000 5724.12000 0.69710 P 132 | 5 0.03173092 2 305.30000 5724.12000 0.69710 P 133 | 5 0.04453565 3 305.30000 5724.12000 0.69710 P 134 | 5 0.04842765 4 305.30000 5724.12000 0.69710 P 135 | 5 0.02895555 5 305.30000 5724.12000 0.69710 P 136 | 5 0.01996509 6 305.30000 5724.12000 0.69710 P 137 | 5 0.01678022 7 305.30000 5724.12000 0.69710 P 138 | 5 0.01933214 8 305.30000 5724.12000 0.69710 P 139 | 5 0.02849013 9 305.30000 5724.12000 0.69710 P 140 | 5 0.03712844 10 305.30000 5724.12000 0.69710 P 141 | 5 0.04322567 11 305.30000 5724.12000 0.69710 P 142 | 5 0.01937635 12 305.30000 5724.12000 0.69710 P 143 | 5 0.03437391 13 305.30000 5724.12000 0.69710 P 144 | 5 0.04272335 14 305.30000 5724.12000 0.69710 P 145 | 5 0.03453388 15 305.30000 5724.12000 0.69710 P 146 | 5 0.03519282 16 305.30000 5724.12000 0.69710 P 147 | 5 0.06174998 1 305.30000 5724.12000 0.69710 S 148 | 5 0.05682735 2 305.30000 5724.12000 0.69710 S 149 | 5 0.07818972 3 305.30000 5724.12000 0.69710 S 150 | 5 0.08447772 4 305.30000 5724.12000 0.69710 S 151 | 5 0.05369860 5 305.30000 5724.12000 0.69710 S 152 | 5 0.03804722 6 305.30000 5724.12000 0.69710 S 153 | 5 0.03068712 7 305.30000 5724.12000 0.69710 S 154 | 5 0.03931436 8 305.30000 5724.12000 0.69710 S 155 | 5 0.05503637 9 305.30000 5724.12000 0.69710 S 156 | 5 0.07213503 10 305.30000 5724.12000 0.69710 S 157 | 5 0.08839342 11 305.30000 5724.12000 0.69710 S 158 | 5 0.03539760 12 305.30000 5724.12000 0.69710 S 159 | 5 0.06157286 13 305.30000 5724.12000 0.69710 S 160 | 5 0.07426041 14 305.30000 5724.12000 0.69710 S 161 | 5 0.06032950 15 305.30000 5724.12000 0.69710 S 162 | 5 0.06835099 16 305.30000 5724.12000 0.69710 S 163 | 6 0.04566543 1 305.30000 5724.22000 0.66115 P 164 | 6 0.04624329 2 305.30000 5724.22000 0.66115 P 165 | 6 0.05123439 3 305.30000 5724.22000 0.66115 P 166 | 6 0.06267618 4 305.30000 5724.22000 0.66115 P 167 | 6 0.04740819 5 305.30000 5724.22000 0.66115 P 168 | 6 0.03534567 6 305.30000 5724.22000 0.66115 P 169 | 6 0.03040938 7 305.30000 5724.22000 0.66115 P 170 | 6 0.04043067 8 305.30000 5724.22000 0.66115 P 171 | 6 0.05143882 9 305.30000 5724.22000 0.66115 P 172 | 6 0.06028226 10 305.30000 5724.22000 0.66115 P 173 | 6 0.06598741 11 305.30000 5724.22000 0.66115 P 174 | 6 0.04117455 12 305.30000 5724.22000 0.66115 P 175 | 6 0.04876659 13 305.30000 5724.22000 0.66115 P 176 | 6 0.05464154 14 305.30000 5724.22000 0.66115 P 177 | 6 0.04474562 15 305.30000 5724.22000 0.66115 P 178 | 6 0.04606783 16 305.30000 5724.22000 0.66115 P 179 | 6 0.08571229 1 305.30000 5724.22000 0.66115 S 180 | 6 0.08091057 2 305.30000 5724.22000 0.66115 S 181 | 6 0.10201410 3 305.30000 5724.22000 0.66115 S 182 | 6 0.11368952 4 305.30000 5724.22000 0.66115 S 183 | 6 0.08504082 5 305.30000 5724.22000 0.66115 S 184 | 6 0.06870859 6 305.30000 5724.22000 0.66115 S 185 | 6 0.05441200 7 305.30000 5724.22000 0.66115 S 186 | 6 0.07468386 8 305.30000 5724.22000 0.66115 S 187 | 6 0.09246465 9 305.30000 5724.22000 0.66115 S 188 | 6 0.10319470 10 305.30000 5724.22000 0.66115 S 189 | 6 0.12288970 11 305.30000 5724.22000 0.66115 S 190 | 6 0.08325149 12 305.30000 5724.22000 0.66115 S 191 | 6 0.09846791 13 305.30000 5724.22000 0.66115 S 192 | 6 0.10795743 14 305.30000 5724.22000 0.66115 S 193 | 6 0.07926893 15 305.30000 5724.22000 0.66115 S 194 | 6 0.08711438 16 305.30000 5724.22000 0.66115 S 195 | 7 0.05517784 1 305.40000 5723.72000 0.66239 P 196 | 7 0.06489805 2 305.40000 5723.72000 0.66239 P 197 | 7 0.05165500 3 305.40000 5723.72000 0.66239 P 198 | 7 0.05182091 4 305.40000 5723.72000 0.66239 P 199 | 7 0.05285119 5 305.40000 5723.72000 0.66239 P 200 | 7 0.06804321 6 305.40000 5723.72000 0.66239 P 201 | 7 0.08160818 7 305.40000 5723.72000 0.66239 P 202 | 7 0.06468786 8 305.40000 5723.72000 0.66239 P 203 | 7 0.05469415 9 305.40000 5723.72000 0.66239 P 204 | 7 0.05088762 10 305.40000 5723.72000 0.66239 P 205 | 7 0.03754480 11 305.40000 5723.72000 0.66239 P 206 | 7 0.06309603 12 305.40000 5723.72000 0.66239 P 207 | 7 0.04506007 13 305.40000 5723.72000 0.66239 P 208 | 7 0.04881062 14 305.40000 5723.72000 0.66239 P 209 | 7 0.06455558 15 305.40000 5723.72000 0.66239 P 210 | 7 0.06067828 16 305.40000 5723.72000 0.66239 P 211 | 7 0.10330209 1 305.40000 5723.72000 0.66239 S 212 | 7 0.10901181 2 305.40000 5723.72000 0.66239 S 213 | 7 0.08862600 3 305.40000 5723.72000 0.66239 S 214 | 7 0.09220240 4 305.40000 5723.72000 0.66239 S 215 | 7 0.10119717 5 305.40000 5723.72000 0.66239 S 216 | 7 0.13163446 6 305.40000 5723.72000 0.66239 S 217 | 7 0.12842341 7 305.40000 5723.72000 0.66239 S 218 | 7 0.11487536 8 305.40000 5723.72000 0.66239 S 219 | 7 0.10592039 9 305.40000 5723.72000 0.66239 S 220 | 7 0.08521198 10 305.40000 5723.72000 0.66239 S 221 | 7 0.07799963 11 305.40000 5723.72000 0.66239 S 222 | 7 0.12044363 12 305.40000 5723.72000 0.66239 S 223 | 7 0.09757488 13 305.40000 5723.72000 0.66239 S 224 | 7 0.09055047 14 305.40000 5723.72000 0.66239 S 225 | 7 0.12373604 15 305.40000 5723.72000 0.66239 S 226 | 7 0.12471436 16 305.40000 5723.72000 0.66239 S 227 | 8 0.03485738 1 305.40000 5723.82000 0.68600 P 228 | 8 0.04718933 2 305.40000 5723.82000 0.68600 P 229 | 8 0.02987956 3 305.40000 5723.82000 0.68600 P 230 | 8 0.02923893 4 305.40000 5723.82000 0.68600 P 231 | 8 0.03501245 5 305.40000 5723.82000 0.68600 P 232 | 8 0.04246009 6 305.40000 5723.82000 0.68600 P 233 | 8 0.04904975 7 305.40000 5723.82000 0.68600 P 234 | 8 0.04308685 8 305.40000 5723.82000 0.68600 P 235 | 8 0.04022675 9 305.40000 5723.82000 0.68600 P 236 | 8 0.02853170 10 305.40000 5723.82000 0.68600 P 237 | 8 0.02511124 11 305.40000 5723.82000 0.68600 P 238 | 8 0.04871157 12 305.40000 5723.82000 0.68600 P 239 | 8 0.03255429 13 305.40000 5723.82000 0.68600 P 240 | 8 0.02834535 14 305.40000 5723.82000 0.68600 P 241 | 8 0.05083300 15 305.40000 5723.82000 0.68600 P 242 | 8 0.04606651 16 305.40000 5723.82000 0.68600 P 243 | 8 0.07261416 1 305.40000 5723.82000 0.68600 S 244 | 8 0.08097211 2 305.40000 5723.82000 0.68600 S 245 | 8 0.05440099 3 305.40000 5723.82000 0.68600 S 246 | 8 0.06259979 4 305.40000 5723.82000 0.68600 S 247 | 8 0.06854411 5 305.40000 5723.82000 0.68600 S 248 | 8 0.08408612 6 305.40000 5723.82000 0.68600 S 249 | 8 0.10085176 7 305.40000 5723.82000 0.68600 S 250 | 8 0.08304521 8 305.40000 5723.82000 0.68600 S 251 | 8 0.06634402 9 305.40000 5723.82000 0.68600 S 252 | 8 0.06310927 10 305.40000 5723.82000 0.68600 S 253 | 8 0.04843538 11 305.40000 5723.82000 0.68600 S 254 | 8 0.08365207 12 305.40000 5723.82000 0.68600 S 255 | 8 0.05939381 13 305.40000 5723.82000 0.68600 S 256 | 8 0.05999230 14 305.40000 5723.82000 0.68600 S 257 | 8 0.08942010 15 305.40000 5723.82000 0.68600 S 258 | 8 0.09236274 16 305.40000 5723.82000 0.68600 S 259 | 9 0.05042697 1 305.40000 5724.22000 0.61710 P 260 | 9 0.03900322 2 305.40000 5724.22000 0.61710 P 261 | 9 0.05449236 3 305.40000 5724.22000 0.61710 P 262 | 9 0.05383198 4 305.40000 5724.22000 0.61710 P 263 | 9 0.04676653 5 305.40000 5724.22000 0.61710 P 264 | 9 0.03475801 6 305.40000 5724.22000 0.61710 P 265 | 9 0.02887405 7 305.40000 5724.22000 0.61710 P 266 | 9 0.04170441 8 305.40000 5724.22000 0.61710 P 267 | 9 0.06065216 9 305.40000 5724.22000 0.61710 P 268 | 9 0.06406128 10 305.40000 5724.22000 0.61710 P 269 | 9 0.07630671 11 305.40000 5724.22000 0.61710 P 270 | 9 0.04646859 12 305.40000 5724.22000 0.61710 P 271 | 9 0.05436184 13 305.40000 5724.22000 0.61710 P 272 | 9 0.05910836 14 305.40000 5724.22000 0.61710 P 273 | 9 0.03652196 15 305.40000 5724.22000 0.61710 P 274 | 9 0.03554455 16 305.40000 5724.22000 0.61710 P 275 | 9 0.09172219 1 305.40000 5724.22000 0.61710 S 276 | 9 0.07602511 2 305.40000 5724.22000 0.61710 S 277 | 9 0.09332678 3 305.40000 5724.22000 0.61710 S 278 | 9 0.09607459 4 305.40000 5724.22000 0.61710 S 279 | 9 0.08786278 5 305.40000 5724.22000 0.61710 S 280 | 9 0.06893215 6 305.40000 5724.22000 0.61710 S 281 | 9 0.05466302 7 305.40000 5724.22000 0.61710 S 282 | 9 0.07984823 8 305.40000 5724.22000 0.61710 S 283 | 9 0.10008441 9 305.40000 5724.22000 0.61710 S 284 | 9 0.11704584 10 305.40000 5724.22000 0.61710 S 285 | 9 0.12751275 11 305.40000 5724.22000 0.61710 S 286 | 9 0.09346667 12 305.40000 5724.22000 0.61710 S 287 | 9 0.09752873 13 305.40000 5724.22000 0.61710 S 288 | 9 0.09328243 14 305.40000 5724.22000 0.61710 S 289 | 9 0.06954600 15 305.40000 5724.22000 0.61710 S 290 | 9 0.07698803 16 305.40000 5724.22000 0.61710 S 291 | 10 0.06535763 1 305.50000 5723.72000 0.58456 P 292 | 10 0.06647414 2 305.50000 5723.72000 0.58456 P 293 | 10 0.05345214 3 305.50000 5723.72000 0.58456 P 294 | 10 0.04885752 4 305.50000 5723.72000 0.58456 P 295 | 10 0.06532521 5 305.50000 5723.72000 0.58456 P 296 | 10 0.06934744 6 305.50000 5723.72000 0.58456 P 297 | 10 0.08172757 7 305.50000 5723.72000 0.58456 P 298 | 10 0.07284625 8 305.50000 5723.72000 0.58456 P 299 | 10 0.07286495 9 305.50000 5723.72000 0.58456 P 300 | 10 0.06477303 10 305.50000 5723.72000 0.58456 P 301 | 10 0.05963756 11 305.50000 5723.72000 0.58456 P 302 | 10 0.07196255 12 305.50000 5723.72000 0.58456 P 303 | 10 0.05959782 13 305.50000 5723.72000 0.58456 P 304 | 10 0.06000069 14 305.50000 5723.72000 0.58456 P 305 | 10 0.06723442 15 305.50000 5723.72000 0.58456 P 306 | 10 0.06690027 16 305.50000 5723.72000 0.58456 P 307 | 10 0.12198458 1 305.50000 5723.72000 0.58456 S 308 | 10 0.11453862 2 305.50000 5723.72000 0.58456 S 309 | 10 0.09173983 3 305.50000 5723.72000 0.58456 S 310 | 10 0.09277814 4 305.50000 5723.72000 0.58456 S 311 | 10 0.12207255 5 305.50000 5723.72000 0.58456 S 312 | 10 0.13599913 6 305.50000 5723.72000 0.58456 S 313 | 10 0.15003399 7 305.50000 5723.72000 0.58456 S 314 | 10 0.14140220 8 305.50000 5723.72000 0.58456 S 315 | 10 0.11989679 9 305.50000 5723.72000 0.58456 S 316 | 10 0.12107003 10 305.50000 5723.72000 0.58456 S 317 | 10 0.10370795 11 305.50000 5723.72000 0.58456 S 318 | 10 0.14271387 12 305.50000 5723.72000 0.58456 S 319 | 10 0.10775441 13 305.50000 5723.72000 0.58456 S 320 | 10 0.09754238 14 305.50000 5723.72000 0.58456 S 321 | 10 0.11378546 15 305.50000 5723.72000 0.58456 S 322 | 10 0.12315709 16 305.50000 5723.72000 0.58456 S 323 | 11 0.04514583 1 305.50000 5723.82000 0.58464 P 324 | 11 0.04949478 2 305.50000 5723.82000 0.58464 P 325 | 11 0.03437259 3 305.50000 5723.82000 0.58464 P 326 | 11 0.03724209 4 305.50000 5723.82000 0.58464 P 327 | 11 0.04840242 5 305.50000 5723.82000 0.58464 P 328 | 11 0.06027260 6 305.50000 5723.82000 0.58464 P 329 | 11 0.06790644 7 305.50000 5723.82000 0.58464 P 330 | 11 0.06093410 8 305.50000 5723.82000 0.58464 P 331 | 11 0.05944613 9 305.50000 5723.82000 0.58464 P 332 | 11 0.05717326 10 305.50000 5723.82000 0.58464 P 333 | 11 0.04553524 11 305.50000 5723.82000 0.58464 P 334 | 11 0.06521078 12 305.50000 5723.82000 0.58464 P 335 | 11 0.04490020 13 305.50000 5723.82000 0.58464 P 336 | 11 0.04122671 14 305.50000 5723.82000 0.58464 P 337 | 11 0.05226393 15 305.50000 5723.82000 0.58464 P 338 | 11 0.04778745 16 305.50000 5723.82000 0.58464 P 339 | 11 0.08360174 1 305.50000 5723.82000 0.58464 S 340 | 11 0.08910447 2 305.50000 5723.82000 0.58464 S 341 | 11 0.06366358 3 305.50000 5723.82000 0.58464 S 342 | 11 0.05937802 4 305.50000 5723.82000 0.58464 S 343 | 11 0.09653529 5 305.50000 5723.82000 0.58464 S 344 | 11 0.09789927 6 305.50000 5723.82000 0.58464 S 345 | 11 0.11088134 7 305.50000 5723.82000 0.58464 S 346 | 11 0.10216183 8 305.50000 5723.82000 0.58464 S 347 | 11 0.10798849 9 305.50000 5723.82000 0.58464 S 348 | 11 0.09237877 10 305.50000 5723.82000 0.58464 S 349 | 11 0.09895641 11 305.50000 5723.82000 0.58464 S 350 | 11 0.12048213 12 305.50000 5723.82000 0.58464 S 351 | 11 0.08910556 13 305.50000 5723.82000 0.58464 S 352 | 11 0.07512457 14 305.50000 5723.82000 0.58464 S 353 | 11 0.09099667 15 305.50000 5723.82000 0.58464 S 354 | 11 0.08979935 16 305.50000 5723.82000 0.58464 S 355 | 12 0.02937879 1 305.50000 5723.92000 0.59150 P 356 | 12 0.03343250 2 305.50000 5723.92000 0.59150 P 357 | 12 0.02119895 3 305.50000 5723.92000 0.59150 P 358 | 12 0.02177823 4 305.50000 5723.92000 0.59150 P 359 | 12 0.03555516 5 305.50000 5723.92000 0.59150 P 360 | 12 0.04115099 6 305.50000 5723.92000 0.59150 P 361 | 12 0.04699363 7 305.50000 5723.92000 0.59150 P 362 | 12 0.04727937 8 305.50000 5723.92000 0.59150 P 363 | 12 0.05122720 9 305.50000 5723.92000 0.59150 P 364 | 12 0.05316533 10 305.50000 5723.92000 0.59150 P 365 | 12 0.04861691 11 305.50000 5723.92000 0.59150 P 366 | 12 0.05229478 12 305.50000 5723.92000 0.59150 P 367 | 12 0.03177846 13 305.50000 5723.92000 0.59150 P 368 | 12 0.03141332 14 305.50000 5723.92000 0.59150 P 369 | 12 0.03119993 15 305.50000 5723.92000 0.59150 P 370 | 12 0.03189948 16 305.50000 5723.92000 0.59150 P 371 | 12 0.06625318 1 305.50000 5723.92000 0.59150 S 372 | 12 0.06845087 2 305.50000 5723.92000 0.59150 S 373 | 12 0.03989149 3 305.50000 5723.92000 0.59150 S 374 | 12 0.04086203 4 305.50000 5723.92000 0.59150 S 375 | 12 0.06972757 5 305.50000 5723.92000 0.59150 S 376 | 12 0.07918453 6 305.50000 5723.92000 0.59150 S 377 | 12 0.08904922 7 305.50000 5723.92000 0.59150 S 378 | 12 0.08367998 8 305.50000 5723.92000 0.59150 S 379 | 12 0.09070186 9 305.50000 5723.92000 0.59150 S 380 | 12 0.08916102 10 305.50000 5723.92000 0.59150 S 381 | 12 0.08712653 11 305.50000 5723.92000 0.59150 S 382 | 12 0.09543078 12 305.50000 5723.92000 0.59150 S 383 | 12 0.06459167 13 305.50000 5723.92000 0.59150 S 384 | 12 0.06242191 14 305.50000 5723.92000 0.59150 S 385 | 12 0.05790980 15 305.50000 5723.92000 0.59150 S 386 | 12 0.05093533 16 305.50000 5723.92000 0.59150 S 387 | 13 0.02892054 1 305.50000 5724.02000 0.57640 P 388 | 13 0.02387038 2 305.50000 5724.02000 0.57640 P 389 | 13 0.02166591 3 305.50000 5724.02000 0.57640 P 390 | 13 0.02255624 4 305.50000 5724.02000 0.57640 P 391 | 13 0.03460971 5 305.50000 5724.02000 0.57640 P 392 | 13 0.03183664 6 305.50000 5724.02000 0.57640 P 393 | 13 0.03615476 7 305.50000 5724.02000 0.57640 P 394 | 13 0.03922386 8 305.50000 5724.02000 0.57640 P 395 | 13 0.05248248 9 305.50000 5724.02000 0.57640 P 396 | 13 0.05091961 10 305.50000 5724.02000 0.57640 P 397 | 13 0.05174484 11 305.50000 5724.02000 0.57640 P 398 | 13 0.05069993 12 305.50000 5724.02000 0.57640 P 399 | 13 0.03406876 13 305.50000 5724.02000 0.57640 P 400 | 13 0.03367683 14 305.50000 5724.02000 0.57640 P 401 | 13 0.01746744 15 305.50000 5724.02000 0.57640 P 402 | 13 0.01820066 16 305.50000 5724.02000 0.57640 P 403 | 13 0.05262703 1 305.50000 5724.02000 0.57640 S 404 | 13 0.04699845 2 305.50000 5724.02000 0.57640 S 405 | 13 0.03872430 3 305.50000 5724.02000 0.57640 S 406 | 13 0.04314117 4 305.50000 5724.02000 0.57640 S 407 | 13 0.06848249 5 305.50000 5724.02000 0.57640 S 408 | 13 0.06160097 6 305.50000 5724.02000 0.57640 S 409 | 13 0.07258722 7 305.50000 5724.02000 0.57640 S 410 | 13 0.07639914 8 305.50000 5724.02000 0.57640 S 411 | 13 0.09838486 9 305.50000 5724.02000 0.57640 S 412 | 13 0.09964050 10 305.50000 5724.02000 0.57640 S 413 | 13 0.09943204 11 305.50000 5724.02000 0.57640 S 414 | 13 0.08679296 12 305.50000 5724.02000 0.57640 S 415 | 13 0.05934517 13 305.50000 5724.02000 0.57640 S 416 | 13 0.05728466 14 305.50000 5724.02000 0.57640 S 417 | 13 0.03050467 15 305.50000 5724.02000 0.57640 S 418 | 13 0.03355775 16 305.50000 5724.02000 0.57640 S 419 | 14 0.03923919 1 305.50000 5724.12000 0.55637 P 420 | 14 0.03246281 2 305.50000 5724.12000 0.55637 P 421 | 14 0.03716039 3 305.50000 5724.12000 0.55637 P 422 | 14 0.03900673 4 305.50000 5724.12000 0.55637 P 423 | 14 0.04330449 5 305.50000 5724.12000 0.55637 P 424 | 14 0.03682258 6 305.50000 5724.12000 0.55637 P 425 | 14 0.03926570 7 305.50000 5724.12000 0.55637 P 426 | 14 0.04906414 8 305.50000 5724.12000 0.55637 P 427 | 14 0.06016254 9 305.50000 5724.12000 0.55637 P 428 | 14 0.06361459 10 305.50000 5724.12000 0.55637 P 429 | 14 0.06628809 11 305.50000 5724.12000 0.55637 P 430 | 14 0.05774964 12 305.50000 5724.12000 0.55637 P 431 | 14 0.04265374 13 305.50000 5724.12000 0.55637 P 432 | 14 0.04405839 14 305.50000 5724.12000 0.55637 P 433 | 14 0.02553471 15 305.50000 5724.12000 0.55637 P 434 | 14 0.02447412 16 305.50000 5724.12000 0.55637 P 435 | 14 0.07154609 1 305.50000 5724.12000 0.55637 S 436 | 14 0.05651644 2 305.50000 5724.12000 0.55637 S 437 | 14 0.06894442 3 305.50000 5724.12000 0.55637 S 438 | 14 0.06824553 4 305.50000 5724.12000 0.55637 S 439 | 14 0.08658153 5 305.50000 5724.12000 0.55637 S 440 | 14 0.07093626 6 305.50000 5724.12000 0.55637 S 441 | 14 0.06226999 7 305.50000 5724.12000 0.55637 S 442 | 14 0.08853680 8 305.50000 5724.12000 0.55637 S 443 | 14 0.10640244 9 305.50000 5724.12000 0.55637 S 444 | 14 0.10811226 10 305.50000 5724.12000 0.55637 S 445 | 14 0.13672143 11 305.50000 5724.12000 0.55637 S 446 | 14 0.09401913 12 305.50000 5724.12000 0.55637 S 447 | 14 0.08424879 13 305.50000 5724.12000 0.55637 S 448 | 14 0.08394726 14 305.50000 5724.12000 0.55637 S 449 | 14 0.04655536 15 305.50000 5724.12000 0.55637 S 450 | 14 0.05046443 16 305.50000 5724.12000 0.55637 S 451 | 15 0.05529242 1 305.50000 5724.22000 0.51364 P 452 | 15 0.04741713 2 305.50000 5724.22000 0.51364 P 453 | 15 0.05737457 3 305.50000 5724.22000 0.51364 P 454 | 15 0.05559612 4 305.50000 5724.22000 0.51364 P 455 | 15 0.06393551 5 305.50000 5724.22000 0.51364 P 456 | 15 0.05609230 6 305.50000 5724.22000 0.51364 P 457 | 15 0.05036524 7 305.50000 5724.22000 0.51364 P 458 | 15 0.06677914 8 305.50000 5724.22000 0.51364 P 459 | 15 0.07856656 9 305.50000 5724.22000 0.51364 P 460 | 15 0.08890686 10 305.50000 5724.22000 0.51364 P 461 | 15 0.08831102 11 305.50000 5724.22000 0.51364 P 462 | 15 0.06887429 12 305.50000 5724.22000 0.51364 P 463 | 15 0.06192133 13 305.50000 5724.22000 0.51364 P 464 | 15 0.06311175 14 305.50000 5724.22000 0.51364 P 465 | 15 0.04582200 15 305.50000 5724.22000 0.51364 P 466 | 15 0.04593961 16 305.50000 5724.22000 0.51364 P 467 | 15 0.10749157 1 305.50000 5724.22000 0.51364 S 468 | 15 0.08888351 2 305.50000 5724.22000 0.51364 S 469 | 15 0.11743559 3 305.50000 5724.22000 0.51364 S 470 | 15 0.11274931 4 305.50000 5724.22000 0.51364 S 471 | 15 0.11128022 5 305.50000 5724.22000 0.51364 S 472 | 15 0.09995358 6 305.50000 5724.22000 0.51364 S 473 | 15 0.08357556 7 305.50000 5724.22000 0.51364 S 474 | 15 0.11085214 8 305.50000 5724.22000 0.51364 S 475 | 15 0.13482999 9 305.50000 5724.22000 0.51364 S 476 | 15 0.14542293 10 305.50000 5724.22000 0.51364 S 477 | 15 0.16159323 11 305.50000 5724.22000 0.51364 S 478 | 15 0.13922569 12 305.50000 5724.22000 0.51364 S 479 | 15 0.11771082 13 305.50000 5724.22000 0.51364 S 480 | 15 0.12120751 14 305.50000 5724.22000 0.51364 S 481 | 15 0.07749798 15 305.50000 5724.22000 0.51364 S 482 | 15 0.08453049 16 305.50000 5724.22000 0.51364 S 483 | -------------------------------------------------------------------------------- /examples/all_dec.xyz: -------------------------------------------------------------------------------- 1 | 305100.0 5723700.0 780.89 2 | 305100.0 5723710.0 781.44 3 | 305100.0 5723720.0 781.78 4 | 305100.0 5723730.0 783.05 5 | 305100.0 5723740.0 782.95 6 | 305100.0 5723750.0 783.79 7 | 305100.0 5723760.0 784.70 8 | 305100.0 5723770.0 785.17 9 | 305100.0 5723780.0 784.90 10 | 305100.0 5723790.0 784.92 11 | 305100.0 5723800.0 785.53 12 | 305100.0 5723810.0 785.12 13 | 305100.0 5723820.0 787.02 14 | 305100.0 5723830.0 785.54 15 | 305100.0 5723840.0 785.30 16 | 305100.0 5723850.0 784.04 17 | 305100.0 5723860.0 783.23 18 | 305100.0 5723870.0 782.88 19 | 305100.0 5723880.0 779.79 20 | 305100.0 5723890.0 779.20 21 | 305100.0 5723900.0 779.00 22 | 305100.0 5723910.0 779.15 23 | 305100.0 5723920.0 779.25 24 | 305100.0 5723930.0 779.11 25 | 305100.0 5723940.0 778.37 26 | 305100.0 5723950.0 778.51 27 | 305100.0 5723960.0 774.63 28 | 305100.0 5723970.0 772.21 29 | 305100.0 5723980.0 770.55 30 | 305100.0 5723990.0 771.02 31 | 305100.0 5724000.0 770.45 32 | 305100.0 5724010.0 769.07 33 | 305100.0 5724020.0 767.51 34 | 305100.0 5724030.0 766.56 35 | 305100.0 5724040.0 763.64 36 | 305100.0 5724050.0 762.58 37 | 305100.0 5724060.0 761.29 38 | 305100.0 5724070.0 759.60 39 | 305100.0 5724080.0 758.82 40 | 305100.0 5724090.0 758.31 41 | 305100.0 5724100.0 755.23 42 | 305100.0 5724110.0 753.99 43 | 305100.0 5724120.0 750.95 44 | 305100.0 5724130.0 748.60 45 | 305100.0 5724140.0 745.66 46 | 305100.0 5724150.0 741.33 47 | 305100.0 5724160.0 737.50 48 | 305100.0 5724170.0 732.12 49 | 305100.0 5724180.0 727.28 50 | 305100.0 5724190.0 725.34 51 | 305100.0 5724200.0 723.10 52 | 305100.0 5724210.0 723.79 53 | 305100.0 5724220.0 722.11 54 | 305100.0 5724230.0 729.73 55 | 305110.0 5723700.0 780.28 56 | 305110.0 5723710.0 779.91 57 | 305110.0 5723720.0 780.39 58 | 305110.0 5723730.0 780.96 59 | 305110.0 5723740.0 781.10 60 | 305110.0 5723750.0 780.46 61 | 305110.0 5723760.0 780.13 62 | 305110.0 5723770.0 781.59 63 | 305110.0 5723780.0 781.84 64 | 305110.0 5723790.0 781.26 65 | 305110.0 5723800.0 781.65 66 | 305110.0 5723810.0 782.40 67 | 305110.0 5723820.0 780.96 68 | 305110.0 5723830.0 779.69 69 | 305110.0 5723840.0 779.83 70 | 305110.0 5723850.0 779.48 71 | 305110.0 5723860.0 778.58 72 | 305110.0 5723870.0 778.96 73 | 305110.0 5723880.0 777.18 74 | 305110.0 5723890.0 775.36 75 | 305110.0 5723900.0 776.68 76 | 305110.0 5723910.0 776.34 77 | 305110.0 5723920.0 776.55 78 | 305110.0 5723930.0 776.68 79 | 305110.0 5723940.0 775.55 80 | 305110.0 5723950.0 774.59 81 | 305110.0 5723960.0 771.97 82 | 305110.0 5723970.0 768.56 83 | 305110.0 5723980.0 767.23 84 | 305110.0 5723990.0 766.00 85 | 305110.0 5724000.0 764.74 86 | 305110.0 5724010.0 763.12 87 | 305110.0 5724020.0 761.44 88 | 305110.0 5724030.0 759.77 89 | 305110.0 5724040.0 757.54 90 | 305110.0 5724050.0 757.40 91 | 305110.0 5724060.0 754.70 92 | 305110.0 5724070.0 754.66 93 | 305110.0 5724080.0 752.39 94 | 305110.0 5724090.0 750.22 95 | 305110.0 5724100.0 748.44 96 | 305110.0 5724110.0 745.62 97 | 305110.0 5724120.0 743.64 98 | 305110.0 5724130.0 741.96 99 | 305110.0 5724140.0 738.31 100 | 305110.0 5724150.0 734.34 101 | 305110.0 5724160.0 729.07 102 | 305110.0 5724170.0 722.87 103 | 305110.0 5724180.0 721.89 104 | 305110.0 5724190.0 718.88 105 | 305110.0 5724200.0 715.86 106 | 305110.0 5724210.0 713.93 107 | 305110.0 5724220.0 713.76 108 | 305110.0 5724230.0 722.09 109 | 305120.0 5723700.0 777.74 110 | 305120.0 5723710.0 777.41 111 | 305120.0 5723720.0 775.76 112 | 305120.0 5723730.0 774.41 113 | 305120.0 5723740.0 774.61 114 | 305120.0 5723750.0 774.85 115 | 305120.0 5723760.0 775.75 116 | 305120.0 5723770.0 776.34 117 | 305120.0 5723780.0 777.31 118 | 305120.0 5723790.0 777.09 119 | 305120.0 5723800.0 776.54 120 | 305120.0 5723810.0 776.55 121 | 305120.0 5723820.0 775.64 122 | 305120.0 5723830.0 775.77 123 | 305120.0 5723840.0 774.82 124 | 305120.0 5723850.0 776.19 125 | 305120.0 5723860.0 775.47 126 | 305120.0 5723870.0 775.43 127 | 305120.0 5723880.0 775.00 128 | 305120.0 5723890.0 773.58 129 | 305120.0 5723900.0 774.15 130 | 305120.0 5723910.0 773.55 131 | 305120.0 5723920.0 773.62 132 | 305120.0 5723930.0 773.15 133 | 305120.0 5723940.0 772.47 134 | 305120.0 5723950.0 771.07 135 | 305120.0 5723960.0 768.12 136 | 305120.0 5723970.0 764.80 137 | 305120.0 5723980.0 762.97 138 | 305120.0 5723990.0 761.63 139 | 305120.0 5724000.0 760.10 140 | 305120.0 5724010.0 758.22 141 | 305120.0 5724020.0 754.74 142 | 305120.0 5724030.0 753.37 143 | 305120.0 5724040.0 753.80 144 | 305120.0 5724050.0 751.92 145 | 305120.0 5724060.0 750.21 146 | 305120.0 5724070.0 748.72 147 | 305120.0 5724080.0 747.06 148 | 305120.0 5724090.0 744.94 149 | 305120.0 5724100.0 743.76 150 | 305120.0 5724110.0 740.68 151 | 305120.0 5724120.0 737.20 152 | 305120.0 5724130.0 733.83 153 | 305120.0 5724140.0 730.51 154 | 305120.0 5724150.0 725.51 155 | 305120.0 5724160.0 719.90 156 | 305120.0 5724170.0 717.27 157 | 305120.0 5724180.0 713.17 158 | 305120.0 5724190.0 711.18 159 | 305120.0 5724200.0 708.06 160 | 305120.0 5724210.0 705.31 161 | 305120.0 5724220.0 708.77 162 | 305120.0 5724230.0 718.92 163 | 305130.0 5723700.0 774.99 164 | 305130.0 5723710.0 773.21 165 | 305130.0 5723720.0 770.69 166 | 305130.0 5723730.0 770.30 167 | 305130.0 5723740.0 768.73 168 | 305130.0 5723750.0 769.11 169 | 305130.0 5723760.0 769.90 170 | 305130.0 5723770.0 770.73 171 | 305130.0 5723780.0 770.71 172 | 305130.0 5723790.0 771.48 173 | 305130.0 5723800.0 770.98 174 | 305130.0 5723810.0 771.59 175 | 305130.0 5723820.0 771.41 176 | 305130.0 5723830.0 770.77 177 | 305130.0 5723840.0 771.12 178 | 305130.0 5723850.0 771.38 179 | 305130.0 5723860.0 772.24 180 | 305130.0 5723870.0 770.76 181 | 305130.0 5723880.0 772.25 182 | 305130.0 5723890.0 771.15 183 | 305130.0 5723900.0 771.82 184 | 305130.0 5723910.0 771.10 185 | 305130.0 5723920.0 770.37 186 | 305130.0 5723930.0 767.78 187 | 305130.0 5723940.0 768.13 188 | 305130.0 5723950.0 766.05 189 | 305130.0 5723960.0 763.89 190 | 305130.0 5723970.0 761.70 191 | 305130.0 5723980.0 759.60 192 | 305130.0 5723990.0 755.91 193 | 305130.0 5724000.0 754.10 194 | 305130.0 5724010.0 752.17 195 | 305130.0 5724020.0 752.18 196 | 305130.0 5724030.0 749.70 197 | 305130.0 5724040.0 748.72 198 | 305130.0 5724050.0 746.92 199 | 305130.0 5724060.0 744.66 200 | 305130.0 5724070.0 743.50 201 | 305130.0 5724080.0 742.85 202 | 305130.0 5724090.0 741.36 203 | 305130.0 5724100.0 737.44 204 | 305130.0 5724110.0 734.12 205 | 305130.0 5724120.0 731.40 206 | 305130.0 5724130.0 728.66 207 | 305130.0 5724140.0 722.32 208 | 305130.0 5724150.0 717.47 209 | 305130.0 5724160.0 714.45 210 | 305130.0 5724170.0 708.36 211 | 305130.0 5724180.0 705.58 212 | 305130.0 5724190.0 704.95 213 | 305130.0 5724200.0 696.41 214 | 305130.0 5724210.0 699.98 215 | 305130.0 5724220.0 707.85 216 | 305130.0 5724230.0 715.15 217 | 305140.0 5723700.0 770.74 218 | 305140.0 5723710.0 770.15 219 | 305140.0 5723720.0 766.85 220 | 305140.0 5723730.0 766.50 221 | 305140.0 5723740.0 766.31 222 | 305140.0 5723750.0 766.09 223 | 305140.0 5723760.0 765.02 224 | 305140.0 5723770.0 765.03 225 | 305140.0 5723780.0 764.70 226 | 305140.0 5723790.0 764.83 227 | 305140.0 5723800.0 766.69 228 | 305140.0 5723810.0 767.83 229 | 305140.0 5723820.0 766.68 230 | 305140.0 5723830.0 766.85 231 | 305140.0 5723840.0 766.88 232 | 305140.0 5723850.0 767.67 233 | 305140.0 5723860.0 768.00 234 | 305140.0 5723870.0 768.62 235 | 305140.0 5723880.0 767.67 236 | 305140.0 5723890.0 767.75 237 | 305140.0 5723900.0 767.95 238 | 305140.0 5723910.0 766.54 239 | 305140.0 5723920.0 765.39 240 | 305140.0 5723930.0 762.63 241 | 305140.0 5723940.0 762.84 242 | 305140.0 5723950.0 762.97 243 | 305140.0 5723960.0 761.32 244 | 305140.0 5723970.0 759.40 245 | 305140.0 5723980.0 757.15 246 | 305140.0 5723990.0 751.95 247 | 305140.0 5724000.0 748.70 248 | 305140.0 5724010.0 748.00 249 | 305140.0 5724020.0 746.69 250 | 305140.0 5724030.0 744.90 251 | 305140.0 5724040.0 745.66 252 | 305140.0 5724050.0 742.01 253 | 305140.0 5724060.0 741.82 254 | 305140.0 5724070.0 739.11 255 | 305140.0 5724080.0 737.54 256 | 305140.0 5724090.0 735.73 257 | 305140.0 5724100.0 732.11 258 | 305140.0 5724110.0 728.98 259 | 305140.0 5724120.0 725.07 260 | 305140.0 5724130.0 720.71 261 | 305140.0 5724140.0 716.58 262 | 305140.0 5724150.0 711.70 263 | 305140.0 5724160.0 706.91 264 | 305140.0 5724170.0 705.14 265 | 305140.0 5724180.0 699.52 266 | 305140.0 5724190.0 689.25 267 | 305140.0 5724200.0 691.08 268 | 305140.0 5724210.0 694.42 269 | 305140.0 5724220.0 698.62 270 | 305140.0 5724230.0 703.76 271 | 305150.0 5723700.0 767.04 272 | 305150.0 5723710.0 765.04 273 | 305150.0 5723720.0 762.78 274 | 305150.0 5723730.0 761.21 275 | 305150.0 5723740.0 760.50 276 | 305150.0 5723750.0 761.04 277 | 305150.0 5723760.0 761.77 278 | 305150.0 5723770.0 761.28 279 | 305150.0 5723780.0 761.10 280 | 305150.0 5723790.0 761.75 281 | 305150.0 5723800.0 761.79 282 | 305150.0 5723810.0 762.69 283 | 305150.0 5723820.0 763.02 284 | 305150.0 5723830.0 762.06 285 | 305150.0 5723840.0 762.23 286 | 305150.0 5723850.0 763.16 287 | 305150.0 5723860.0 763.56 288 | 305150.0 5723870.0 763.39 289 | 305150.0 5723880.0 762.50 290 | 305150.0 5723890.0 763.49 291 | 305150.0 5723900.0 763.61 292 | 305150.0 5723910.0 763.34 293 | 305150.0 5723920.0 760.45 294 | 305150.0 5723930.0 759.41 295 | 305150.0 5723940.0 760.14 296 | 305150.0 5723950.0 758.75 297 | 305150.0 5723960.0 757.74 298 | 305150.0 5723970.0 756.68 299 | 305150.0 5723980.0 753.16 300 | 305150.0 5723990.0 748.57 301 | 305150.0 5724000.0 745.68 302 | 305150.0 5724010.0 743.01 303 | 305150.0 5724020.0 741.63 304 | 305150.0 5724030.0 741.73 305 | 305150.0 5724040.0 739.99 306 | 305150.0 5724050.0 737.97 307 | 305150.0 5724060.0 737.37 308 | 305150.0 5724070.0 734.89 309 | 305150.0 5724080.0 733.25 310 | 305150.0 5724090.0 730.00 311 | 305150.0 5724100.0 726.04 312 | 305150.0 5724110.0 723.87 313 | 305150.0 5724120.0 721.10 314 | 305150.0 5724130.0 714.44 315 | 305150.0 5724140.0 709.77 316 | 305150.0 5724150.0 705.89 317 | 305150.0 5724160.0 703.26 318 | 305150.0 5724170.0 699.04 319 | 305150.0 5724180.0 689.77 320 | 305150.0 5724190.0 685.62 321 | 305150.0 5724200.0 683.94 322 | 305150.0 5724210.0 687.04 323 | 305150.0 5724220.0 686.01 324 | 305150.0 5724230.0 694.32 325 | 305160.0 5723700.0 762.26 326 | 305160.0 5723710.0 760.23 327 | 305160.0 5723720.0 758.49 328 | 305160.0 5723730.0 757.03 329 | 305160.0 5723740.0 757.00 330 | 305160.0 5723750.0 758.10 331 | 305160.0 5723760.0 757.89 332 | 305160.0 5723770.0 758.25 333 | 305160.0 5723780.0 757.88 334 | 305160.0 5723790.0 756.19 335 | 305160.0 5723800.0 756.74 336 | 305160.0 5723810.0 758.20 337 | 305160.0 5723820.0 757.95 338 | 305160.0 5723830.0 757.89 339 | 305160.0 5723840.0 758.82 340 | 305160.0 5723850.0 758.55 341 | 305160.0 5723860.0 758.75 342 | 305160.0 5723870.0 758.72 343 | 305160.0 5723880.0 757.32 344 | 305160.0 5723890.0 759.34 345 | 305160.0 5723900.0 759.81 346 | 305160.0 5723910.0 759.45 347 | 305160.0 5723920.0 755.84 348 | 305160.0 5723930.0 756.18 349 | 305160.0 5723940.0 755.83 350 | 305160.0 5723950.0 754.77 351 | 305160.0 5723960.0 753.91 352 | 305160.0 5723970.0 751.44 353 | 305160.0 5723980.0 749.46 354 | 305160.0 5723990.0 744.47 355 | 305160.0 5724000.0 741.81 356 | 305160.0 5724010.0 740.12 357 | 305160.0 5724020.0 737.76 358 | 305160.0 5724030.0 738.50 359 | 305160.0 5724040.0 736.50 360 | 305160.0 5724050.0 735.50 361 | 305160.0 5724060.0 732.84 362 | 305160.0 5724070.0 730.94 363 | 305160.0 5724080.0 729.26 364 | 305160.0 5724090.0 725.89 365 | 305160.0 5724100.0 722.90 366 | 305160.0 5724110.0 719.76 367 | 305160.0 5724120.0 714.39 368 | 305160.0 5724130.0 708.68 369 | 305160.0 5724140.0 704.29 370 | 305160.0 5724150.0 699.62 371 | 305160.0 5724160.0 697.39 372 | 305160.0 5724170.0 691.94 373 | 305160.0 5724180.0 684.86 374 | 305160.0 5724190.0 682.08 375 | 305160.0 5724200.0 679.65 376 | 305160.0 5724210.0 679.84 377 | 305160.0 5724220.0 676.78 378 | 305160.0 5724230.0 679.55 379 | 305170.0 5723700.0 756.72 380 | 305170.0 5723710.0 757.38 381 | 305170.0 5723720.0 756.05 382 | 305170.0 5723730.0 754.12 383 | 305170.0 5723740.0 753.49 384 | 305170.0 5723750.0 754.25 385 | 305170.0 5723760.0 755.89 386 | 305170.0 5723770.0 755.97 387 | 305170.0 5723780.0 756.02 388 | 305170.0 5723790.0 753.20 389 | 305170.0 5723800.0 752.47 390 | 305170.0 5723810.0 752.95 391 | 305170.0 5723820.0 754.35 392 | 305170.0 5723830.0 754.07 393 | 305170.0 5723840.0 754.02 394 | 305170.0 5723850.0 753.25 395 | 305170.0 5723860.0 753.40 396 | 305170.0 5723870.0 754.95 397 | 305170.0 5723880.0 753.48 398 | 305170.0 5723890.0 755.40 399 | 305170.0 5723900.0 756.20 400 | 305170.0 5723910.0 754.50 401 | 305170.0 5723920.0 751.91 402 | 305170.0 5723930.0 752.46 403 | 305170.0 5723940.0 751.75 404 | 305170.0 5723950.0 751.57 405 | 305170.0 5723960.0 751.49 406 | 305170.0 5723970.0 749.30 407 | 305170.0 5723980.0 745.61 408 | 305170.0 5723990.0 742.86 409 | 305170.0 5724000.0 739.23 410 | 305170.0 5724010.0 736.77 411 | 305170.0 5724020.0 735.06 412 | 305170.0 5724030.0 733.48 413 | 305170.0 5724040.0 732.79 414 | 305170.0 5724050.0 732.51 415 | 305170.0 5724060.0 730.86 416 | 305170.0 5724070.0 729.05 417 | 305170.0 5724080.0 726.69 418 | 305170.0 5724090.0 722.84 419 | 305170.0 5724100.0 720.18 420 | 305170.0 5724110.0 714.98 421 | 305170.0 5724120.0 709.08 422 | 305170.0 5724130.0 702.71 423 | 305170.0 5724140.0 700.36 424 | 305170.0 5724150.0 695.00 425 | 305170.0 5724160.0 690.99 426 | 305170.0 5724170.0 687.39 427 | 305170.0 5724180.0 683.37 428 | 305170.0 5724190.0 678.81 429 | 305170.0 5724200.0 676.09 430 | 305170.0 5724210.0 673.42 431 | 305170.0 5724220.0 672.39 432 | 305170.0 5724230.0 669.22 433 | 305180.0 5723700.0 755.86 434 | 305180.0 5723710.0 753.68 435 | 305180.0 5723720.0 752.77 436 | 305180.0 5723730.0 751.74 437 | 305180.0 5723740.0 750.86 438 | 305180.0 5723750.0 751.09 439 | 305180.0 5723760.0 751.55 440 | 305180.0 5723770.0 751.90 441 | 305180.0 5723780.0 752.32 442 | 305180.0 5723790.0 751.23 443 | 305180.0 5723800.0 750.17 444 | 305180.0 5723810.0 750.08 445 | 305180.0 5723820.0 750.34 446 | 305180.0 5723830.0 749.87 447 | 305180.0 5723840.0 749.39 448 | 305180.0 5723850.0 749.47 449 | 305180.0 5723860.0 748.79 450 | 305180.0 5723870.0 749.68 451 | 305180.0 5723880.0 749.21 452 | 305180.0 5723890.0 750.57 453 | 305180.0 5723900.0 751.15 454 | 305180.0 5723910.0 749.34 455 | 305180.0 5723920.0 748.27 456 | 305180.0 5723930.0 748.06 457 | 305180.0 5723940.0 747.48 458 | 305180.0 5723950.0 747.57 459 | 305180.0 5723960.0 747.16 460 | 305180.0 5723970.0 746.41 461 | 305180.0 5723980.0 743.17 462 | 305180.0 5723990.0 741.79 463 | 305180.0 5724000.0 736.78 464 | 305180.0 5724010.0 734.77 465 | 305180.0 5724020.0 733.32 466 | 305180.0 5724030.0 731.62 467 | 305180.0 5724040.0 730.26 468 | 305180.0 5724050.0 729.54 469 | 305180.0 5724060.0 726.91 470 | 305180.0 5724070.0 725.15 471 | 305180.0 5724080.0 722.68 472 | 305180.0 5724090.0 718.47 473 | 305180.0 5724100.0 715.29 474 | 305180.0 5724110.0 711.55 475 | 305180.0 5724120.0 705.41 476 | 305180.0 5724130.0 700.85 477 | 305180.0 5724140.0 695.57 478 | 305180.0 5724150.0 691.44 479 | 305180.0 5724160.0 687.92 480 | 305180.0 5724170.0 684.94 481 | 305180.0 5724180.0 681.88 482 | 305180.0 5724190.0 677.43 483 | 305180.0 5724200.0 672.64 484 | 305180.0 5724210.0 668.81 485 | 305180.0 5724220.0 663.98 486 | 305180.0 5724230.0 663.60 487 | 305190.0 5723700.0 752.76 488 | 305190.0 5723710.0 752.47 489 | 305190.0 5723720.0 751.16 490 | 305190.0 5723730.0 750.23 491 | 305190.0 5723740.0 748.84 492 | 305190.0 5723750.0 748.45 493 | 305190.0 5723760.0 748.82 494 | 305190.0 5723770.0 749.17 495 | 305190.0 5723780.0 749.34 496 | 305190.0 5723790.0 749.10 497 | 305190.0 5723800.0 748.31 498 | 305190.0 5723810.0 747.60 499 | 305190.0 5723820.0 747.69 500 | 305190.0 5723830.0 747.24 501 | 305190.0 5723840.0 746.13 502 | 305190.0 5723850.0 745.51 503 | 305190.0 5723860.0 745.45 504 | 305190.0 5723870.0 745.71 505 | 305190.0 5723880.0 745.11 506 | 305190.0 5723890.0 748.14 507 | 305190.0 5723900.0 746.59 508 | 305190.0 5723910.0 745.45 509 | 305190.0 5723920.0 744.69 510 | 305190.0 5723930.0 744.51 511 | 305190.0 5723940.0 744.15 512 | 305190.0 5723950.0 744.07 513 | 305190.0 5723960.0 743.95 514 | 305190.0 5723970.0 742.34 515 | 305190.0 5723980.0 740.48 516 | 305190.0 5723990.0 737.34 517 | 305190.0 5724000.0 735.61 518 | 305190.0 5724010.0 732.47 519 | 305190.0 5724020.0 730.70 520 | 305190.0 5724030.0 729.80 521 | 305190.0 5724040.0 729.66 522 | 305190.0 5724050.0 725.07 523 | 305190.0 5724060.0 723.59 524 | 305190.0 5724070.0 720.84 525 | 305190.0 5724080.0 718.44 526 | 305190.0 5724090.0 716.77 527 | 305190.0 5724100.0 711.99 528 | 305190.0 5724110.0 708.22 529 | 305190.0 5724120.0 701.91 530 | 305190.0 5724130.0 697.60 531 | 305190.0 5724140.0 694.92 532 | 305190.0 5724150.0 689.94 533 | 305190.0 5724160.0 685.63 534 | 305190.0 5724170.0 681.96 535 | 305190.0 5724180.0 679.89 536 | 305190.0 5724190.0 678.43 537 | 305190.0 5724200.0 669.76 538 | 305190.0 5724210.0 666.87 539 | 305190.0 5724220.0 662.50 540 | 305190.0 5724230.0 659.57 541 | 305200.0 5723700.0 750.64 542 | 305200.0 5723710.0 749.05 543 | 305200.0 5723720.0 747.95 544 | 305200.0 5723730.0 746.93 545 | 305200.0 5723740.0 746.64 546 | 305200.0 5723750.0 746.88 547 | 305200.0 5723760.0 747.04 548 | 305200.0 5723770.0 746.78 549 | 305200.0 5723780.0 745.97 550 | 305200.0 5723790.0 745.42 551 | 305200.0 5723800.0 745.72 552 | 305200.0 5723810.0 744.98 553 | 305200.0 5723820.0 744.35 554 | 305200.0 5723830.0 744.44 555 | 305200.0 5723840.0 744.57 556 | 305200.0 5723850.0 744.59 557 | 305200.0 5723860.0 744.54 558 | 305200.0 5723870.0 744.99 559 | 305200.0 5723880.0 744.50 560 | 305200.0 5723890.0 746.60 561 | 305200.0 5723900.0 746.53 562 | 305200.0 5723910.0 745.96 563 | 305200.0 5723920.0 744.10 564 | 305200.0 5723930.0 742.96 565 | 305200.0 5723940.0 743.19 566 | 305200.0 5723950.0 742.31 567 | 305200.0 5723960.0 741.40 568 | 305200.0 5723970.0 739.23 569 | 305200.0 5723980.0 739.70 570 | 305200.0 5723990.0 736.79 571 | 305200.0 5724000.0 734.69 572 | 305200.0 5724010.0 732.53 573 | 305200.0 5724020.0 730.21 574 | 305200.0 5724030.0 729.02 575 | 305200.0 5724040.0 726.34 576 | 305200.0 5724050.0 723.23 577 | 305200.0 5724060.0 719.46 578 | 305200.0 5724070.0 716.83 579 | 305200.0 5724080.0 715.62 580 | 305200.0 5724090.0 710.90 581 | 305200.0 5724100.0 707.88 582 | 305200.0 5724110.0 703.97 583 | 305200.0 5724120.0 699.50 584 | 305200.0 5724130.0 696.73 585 | 305200.0 5724140.0 692.90 586 | 305200.0 5724150.0 688.42 587 | 305200.0 5724160.0 684.69 588 | 305200.0 5724170.0 683.38 589 | 305200.0 5724180.0 678.28 590 | 305200.0 5724190.0 676.51 591 | 305200.0 5724200.0 672.80 592 | 305200.0 5724210.0 668.10 593 | 305200.0 5724220.0 662.42 594 | 305200.0 5724230.0 660.15 595 | 305210.0 5723700.0 747.25 596 | 305210.0 5723710.0 746.44 597 | 305210.0 5723720.0 746.29 598 | 305210.0 5723730.0 744.49 599 | 305210.0 5723740.0 744.69 600 | 305210.0 5723750.0 744.15 601 | 305210.0 5723760.0 744.56 602 | 305210.0 5723770.0 744.57 603 | 305210.0 5723780.0 744.60 604 | 305210.0 5723790.0 744.68 605 | 305210.0 5723800.0 744.55 606 | 305210.0 5723810.0 744.21 607 | 305210.0 5723820.0 743.85 608 | 305210.0 5723830.0 743.84 609 | 305210.0 5723840.0 744.00 610 | 305210.0 5723850.0 744.20 611 | 305210.0 5723860.0 744.05 612 | 305210.0 5723870.0 744.08 613 | 305210.0 5723880.0 744.56 614 | 305210.0 5723890.0 743.52 615 | 305210.0 5723900.0 744.87 616 | 305210.0 5723910.0 745.60 617 | 305210.0 5723920.0 744.57 618 | 305210.0 5723930.0 743.97 619 | 305210.0 5723940.0 741.18 620 | 305210.0 5723950.0 739.91 621 | 305210.0 5723960.0 738.77 622 | 305210.0 5723970.0 737.47 623 | 305210.0 5723980.0 736.85 624 | 305210.0 5723990.0 735.64 625 | 305210.0 5724000.0 732.74 626 | 305210.0 5724010.0 731.36 627 | 305210.0 5724020.0 728.86 628 | 305210.0 5724030.0 725.86 629 | 305210.0 5724040.0 723.47 630 | 305210.0 5724050.0 720.19 631 | 305210.0 5724060.0 717.78 632 | 305210.0 5724070.0 713.09 633 | 305210.0 5724080.0 711.46 634 | 305210.0 5724090.0 708.96 635 | 305210.0 5724100.0 704.53 636 | 305210.0 5724110.0 700.17 637 | 305210.0 5724120.0 697.37 638 | 305210.0 5724130.0 693.80 639 | 305210.0 5724140.0 691.81 640 | 305210.0 5724150.0 689.91 641 | 305210.0 5724160.0 686.66 642 | 305210.0 5724170.0 683.23 643 | 305210.0 5724180.0 677.76 644 | 305210.0 5724190.0 675.87 645 | 305210.0 5724200.0 673.16 646 | 305210.0 5724210.0 669.30 647 | 305210.0 5724220.0 662.80 648 | 305210.0 5724230.0 658.65 649 | 305220.0 5723700.0 744.11 650 | 305220.0 5723710.0 743.26 651 | 305220.0 5723720.0 742.57 652 | 305220.0 5723730.0 742.48 653 | 305220.0 5723740.0 743.51 654 | 305220.0 5723750.0 743.22 655 | 305220.0 5723760.0 743.60 656 | 305220.0 5723770.0 744.88 657 | 305220.0 5723780.0 744.55 658 | 305220.0 5723790.0 744.18 659 | 305220.0 5723800.0 744.01 660 | 305220.0 5723810.0 743.46 661 | 305220.0 5723820.0 743.25 662 | 305220.0 5723830.0 743.52 663 | 305220.0 5723840.0 743.78 664 | 305220.0 5723850.0 743.95 665 | 305220.0 5723860.0 744.59 666 | 305220.0 5723870.0 744.57 667 | 305220.0 5723880.0 744.39 668 | 305220.0 5723890.0 743.32 669 | 305220.0 5723900.0 742.99 670 | 305220.0 5723910.0 742.75 671 | 305220.0 5723920.0 741.86 672 | 305220.0 5723930.0 741.13 673 | 305220.0 5723940.0 740.03 674 | 305220.0 5723950.0 739.43 675 | 305220.0 5723960.0 738.94 676 | 305220.0 5723970.0 737.81 677 | 305220.0 5723980.0 735.93 678 | 305220.0 5723990.0 734.12 679 | 305220.0 5724000.0 731.95 680 | 305220.0 5724010.0 729.36 681 | 305220.0 5724020.0 727.35 682 | 305220.0 5724030.0 724.31 683 | 305220.0 5724040.0 721.48 684 | 305220.0 5724050.0 718.48 685 | 305220.0 5724060.0 715.88 686 | 305220.0 5724070.0 713.54 687 | 305220.0 5724080.0 711.02 688 | 305220.0 5724090.0 707.93 689 | 305220.0 5724100.0 703.92 690 | 305220.0 5724110.0 700.33 691 | 305220.0 5724120.0 696.40 692 | 305220.0 5724130.0 694.60 693 | 305220.0 5724140.0 690.27 694 | 305220.0 5724150.0 688.32 695 | 305220.0 5724160.0 686.02 696 | 305220.0 5724170.0 682.85 697 | 305220.0 5724180.0 678.10 698 | 305220.0 5724190.0 674.24 699 | 305220.0 5724200.0 670.75 700 | 305220.0 5724210.0 667.23 701 | 305220.0 5724220.0 661.15 702 | 305220.0 5724230.0 655.86 703 | 305230.0 5723700.0 740.59 704 | 305230.0 5723710.0 739.96 705 | 305230.0 5723720.0 741.50 706 | 305230.0 5723730.0 742.20 707 | 305230.0 5723740.0 742.56 708 | 305230.0 5723750.0 743.06 709 | 305230.0 5723760.0 743.75 710 | 305230.0 5723770.0 744.53 711 | 305230.0 5723780.0 744.35 712 | 305230.0 5723790.0 744.00 713 | 305230.0 5723800.0 743.63 714 | 305230.0 5723810.0 743.16 715 | 305230.0 5723820.0 743.09 716 | 305230.0 5723830.0 743.21 717 | 305230.0 5723840.0 744.06 718 | 305230.0 5723850.0 744.61 719 | 305230.0 5723860.0 745.38 720 | 305230.0 5723870.0 745.49 721 | 305230.0 5723880.0 745.55 722 | 305230.0 5723890.0 744.84 723 | 305230.0 5723900.0 743.11 724 | 305230.0 5723910.0 742.71 725 | 305230.0 5723920.0 743.08 726 | 305230.0 5723930.0 741.23 727 | 305230.0 5723940.0 739.85 728 | 305230.0 5723950.0 739.54 729 | 305230.0 5723960.0 738.55 730 | 305230.0 5723970.0 737.06 731 | 305230.0 5723980.0 735.71 732 | 305230.0 5723990.0 733.52 733 | 305230.0 5724000.0 731.78 734 | 305230.0 5724010.0 729.47 735 | 305230.0 5724020.0 728.34 736 | 305230.0 5724030.0 726.09 737 | 305230.0 5724040.0 722.60 738 | 305230.0 5724050.0 719.71 739 | 305230.0 5724060.0 717.25 740 | 305230.0 5724070.0 715.65 741 | 305230.0 5724080.0 713.20 742 | 305230.0 5724090.0 708.78 743 | 305230.0 5724100.0 704.28 744 | 305230.0 5724110.0 700.22 745 | 305230.0 5724120.0 698.74 746 | 305230.0 5724130.0 694.97 747 | 305230.0 5724140.0 690.73 748 | 305230.0 5724150.0 686.59 749 | 305230.0 5724160.0 685.67 750 | 305230.0 5724170.0 683.04 751 | 305230.0 5724180.0 679.48 752 | 305230.0 5724190.0 674.24 753 | 305230.0 5724200.0 669.37 754 | 305230.0 5724210.0 664.45 755 | 305230.0 5724220.0 660.52 756 | 305230.0 5724230.0 653.59 757 | 305240.0 5723700.0 736.48 758 | 305240.0 5723710.0 737.91 759 | 305240.0 5723720.0 738.72 760 | 305240.0 5723730.0 740.15 761 | 305240.0 5723740.0 742.33 762 | 305240.0 5723750.0 742.56 763 | 305240.0 5723760.0 742.64 764 | 305240.0 5723770.0 743.34 765 | 305240.0 5723780.0 743.07 766 | 305240.0 5723790.0 742.91 767 | 305240.0 5723800.0 743.00 768 | 305240.0 5723810.0 743.41 769 | 305240.0 5723820.0 743.16 770 | 305240.0 5723830.0 744.09 771 | 305240.0 5723840.0 744.54 772 | 305240.0 5723850.0 745.28 773 | 305240.0 5723860.0 747.86 774 | 305240.0 5723870.0 749.62 775 | 305240.0 5723880.0 749.09 776 | 305240.0 5723890.0 747.49 777 | 305240.0 5723900.0 746.85 778 | 305240.0 5723910.0 743.92 779 | 305240.0 5723920.0 742.44 780 | 305240.0 5723930.0 740.80 781 | 305240.0 5723940.0 741.33 782 | 305240.0 5723950.0 738.94 783 | 305240.0 5723960.0 736.93 784 | 305240.0 5723970.0 736.05 785 | 305240.0 5723980.0 734.86 786 | 305240.0 5723990.0 735.33 787 | 305240.0 5724000.0 730.58 788 | 305240.0 5724010.0 730.89 789 | 305240.0 5724020.0 728.06 790 | 305240.0 5724030.0 726.30 791 | 305240.0 5724040.0 723.64 792 | 305240.0 5724050.0 721.73 793 | 305240.0 5724060.0 718.47 794 | 305240.0 5724070.0 717.17 795 | 305240.0 5724080.0 714.97 796 | 305240.0 5724090.0 711.79 797 | 305240.0 5724100.0 706.63 798 | 305240.0 5724110.0 703.34 799 | 305240.0 5724120.0 699.12 800 | 305240.0 5724130.0 695.73 801 | 305240.0 5724140.0 690.86 802 | 305240.0 5724150.0 686.29 803 | 305240.0 5724160.0 683.43 804 | 305240.0 5724170.0 682.73 805 | 305240.0 5724180.0 676.74 806 | 305240.0 5724190.0 674.02 807 | 305240.0 5724200.0 668.50 808 | 305240.0 5724210.0 663.78 809 | 305240.0 5724220.0 658.74 810 | 305240.0 5724230.0 652.17 811 | 305250.0 5723700.0 735.20 812 | 305250.0 5723710.0 736.29 813 | 305250.0 5723720.0 736.07 814 | 305250.0 5723730.0 739.39 815 | 305250.0 5723740.0 740.41 816 | 305250.0 5723750.0 742.02 817 | 305250.0 5723760.0 742.63 818 | 305250.0 5723770.0 743.00 819 | 305250.0 5723780.0 742.82 820 | 305250.0 5723790.0 742.86 821 | 305250.0 5723800.0 743.03 822 | 305250.0 5723810.0 744.02 823 | 305250.0 5723820.0 744.61 824 | 305250.0 5723830.0 744.95 825 | 305250.0 5723840.0 745.97 826 | 305250.0 5723850.0 749.05 827 | 305250.0 5723860.0 749.90 828 | 305250.0 5723870.0 749.95 829 | 305250.0 5723880.0 748.62 830 | 305250.0 5723890.0 749.69 831 | 305250.0 5723900.0 747.94 832 | 305250.0 5723910.0 745.43 833 | 305250.0 5723920.0 743.37 834 | 305250.0 5723930.0 742.07 835 | 305250.0 5723940.0 740.69 836 | 305250.0 5723950.0 739.04 837 | 305250.0 5723960.0 738.14 838 | 305250.0 5723970.0 736.79 839 | 305250.0 5723980.0 734.45 840 | 305250.0 5723990.0 732.38 841 | 305250.0 5724000.0 731.35 842 | 305250.0 5724010.0 730.48 843 | 305250.0 5724020.0 730.43 844 | 305250.0 5724030.0 727.50 845 | 305250.0 5724040.0 726.31 846 | 305250.0 5724050.0 723.33 847 | 305250.0 5724060.0 720.19 848 | 305250.0 5724070.0 718.42 849 | 305250.0 5724080.0 716.54 850 | 305250.0 5724090.0 713.09 851 | 305250.0 5724100.0 709.30 852 | 305250.0 5724110.0 703.84 853 | 305250.0 5724120.0 698.95 854 | 305250.0 5724130.0 693.33 855 | 305250.0 5724140.0 689.25 856 | 305250.0 5724150.0 684.63 857 | 305250.0 5724160.0 681.59 858 | 305250.0 5724170.0 678.46 859 | 305250.0 5724180.0 674.32 860 | 305250.0 5724190.0 672.78 861 | 305250.0 5724200.0 668.83 862 | 305250.0 5724210.0 664.12 863 | 305250.0 5724220.0 658.17 864 | 305250.0 5724230.0 652.75 865 | 305260.0 5723700.0 731.45 866 | 305260.0 5723710.0 733.69 867 | 305260.0 5723720.0 737.00 868 | 305260.0 5723730.0 738.95 869 | 305260.0 5723740.0 740.41 870 | 305260.0 5723750.0 741.92 871 | 305260.0 5723760.0 742.13 872 | 305260.0 5723770.0 742.83 873 | 305260.0 5723780.0 743.87 874 | 305260.0 5723790.0 743.94 875 | 305260.0 5723800.0 744.31 876 | 305260.0 5723810.0 744.59 877 | 305260.0 5723820.0 745.10 878 | 305260.0 5723830.0 747.40 879 | 305260.0 5723840.0 747.42 880 | 305260.0 5723850.0 748.31 881 | 305260.0 5723860.0 748.58 882 | 305260.0 5723870.0 748.70 883 | 305260.0 5723880.0 747.86 884 | 305260.0 5723890.0 748.49 885 | 305260.0 5723900.0 747.15 886 | 305260.0 5723910.0 745.16 887 | 305260.0 5723920.0 742.47 888 | 305260.0 5723930.0 740.86 889 | 305260.0 5723940.0 739.67 890 | 305260.0 5723950.0 738.38 891 | 305260.0 5723960.0 736.96 892 | 305260.0 5723970.0 736.05 893 | 305260.0 5723980.0 734.37 894 | 305260.0 5723990.0 732.52 895 | 305260.0 5724000.0 731.33 896 | 305260.0 5724010.0 730.50 897 | 305260.0 5724020.0 729.62 898 | 305260.0 5724030.0 728.15 899 | 305260.0 5724040.0 727.34 900 | 305260.0 5724050.0 724.41 901 | 305260.0 5724060.0 720.99 902 | 305260.0 5724070.0 718.79 903 | 305260.0 5724080.0 716.63 904 | 305260.0 5724090.0 714.00 905 | 305260.0 5724100.0 710.12 906 | 305260.0 5724110.0 703.84 907 | 305260.0 5724120.0 697.48 908 | 305260.0 5724130.0 692.05 909 | 305260.0 5724140.0 689.40 910 | 305260.0 5724150.0 683.61 911 | 305260.0 5724160.0 678.49 912 | 305260.0 5724170.0 674.90 913 | 305260.0 5724180.0 672.14 914 | 305260.0 5724190.0 670.92 915 | 305260.0 5724200.0 669.11 916 | 305260.0 5724210.0 663.62 917 | 305260.0 5724220.0 658.22 918 | 305260.0 5724230.0 653.23 919 | 305270.0 5723700.0 729.64 920 | 305270.0 5723710.0 733.99 921 | 305270.0 5723720.0 738.35 922 | 305270.0 5723730.0 740.22 923 | 305270.0 5723740.0 741.63 924 | 305270.0 5723750.0 741.82 925 | 305270.0 5723760.0 742.47 926 | 305270.0 5723770.0 743.62 927 | 305270.0 5723780.0 744.24 928 | 305270.0 5723790.0 744.66 929 | 305270.0 5723800.0 746.30 930 | 305270.0 5723810.0 746.49 931 | 305270.0 5723820.0 746.05 932 | 305270.0 5723830.0 746.81 933 | 305270.0 5723840.0 748.66 934 | 305270.0 5723850.0 749.80 935 | 305270.0 5723860.0 750.35 936 | 305270.0 5723870.0 749.92 937 | 305270.0 5723880.0 752.39 938 | 305270.0 5723890.0 748.03 939 | 305270.0 5723900.0 747.21 940 | 305270.0 5723910.0 745.79 941 | 305270.0 5723920.0 742.45 942 | 305270.0 5723930.0 740.53 943 | 305270.0 5723940.0 739.34 944 | 305270.0 5723950.0 738.52 945 | 305270.0 5723960.0 736.92 946 | 305270.0 5723970.0 735.76 947 | 305270.0 5723980.0 734.13 948 | 305270.0 5723990.0 733.42 949 | 305270.0 5724000.0 730.93 950 | 305270.0 5724010.0 729.67 951 | 305270.0 5724020.0 729.39 952 | 305270.0 5724030.0 728.60 953 | 305270.0 5724040.0 727.54 954 | 305270.0 5724050.0 724.34 955 | 305270.0 5724060.0 721.41 956 | 305270.0 5724070.0 717.90 957 | 305270.0 5724080.0 715.64 958 | 305270.0 5724090.0 712.16 959 | 305270.0 5724100.0 708.48 960 | 305270.0 5724110.0 702.31 961 | 305270.0 5724120.0 697.54 962 | 305270.0 5724130.0 692.35 963 | 305270.0 5724140.0 685.93 964 | 305270.0 5724150.0 682.36 965 | 305270.0 5724160.0 677.59 966 | 305270.0 5724170.0 674.22 967 | 305270.0 5724180.0 672.98 968 | 305270.0 5724190.0 670.41 969 | 305270.0 5724200.0 667.34 970 | 305270.0 5724210.0 662.51 971 | 305270.0 5724220.0 656.87 972 | 305270.0 5724230.0 655.15 973 | 305280.0 5723700.0 730.31 974 | 305280.0 5723710.0 731.87 975 | 305280.0 5723720.0 737.23 976 | 305280.0 5723730.0 739.98 977 | 305280.0 5723740.0 741.72 978 | 305280.0 5723750.0 742.10 979 | 305280.0 5723760.0 742.72 980 | 305280.0 5723770.0 743.29 981 | 305280.0 5723780.0 744.02 982 | 305280.0 5723790.0 745.44 983 | 305280.0 5723800.0 745.44 984 | 305280.0 5723810.0 744.99 985 | 305280.0 5723820.0 746.14 986 | 305280.0 5723830.0 745.99 987 | 305280.0 5723840.0 746.41 988 | 305280.0 5723850.0 749.52 989 | 305280.0 5723860.0 750.08 990 | 305280.0 5723870.0 749.29 991 | 305280.0 5723880.0 748.38 992 | 305280.0 5723890.0 747.88 993 | 305280.0 5723900.0 745.67 994 | 305280.0 5723910.0 744.67 995 | 305280.0 5723920.0 743.77 996 | 305280.0 5723930.0 741.41 997 | 305280.0 5723940.0 739.28 998 | 305280.0 5723950.0 738.05 999 | 305280.0 5723960.0 737.21 1000 | 305280.0 5723970.0 735.46 1001 | 305280.0 5723980.0 733.95 1002 | 305280.0 5723990.0 733.57 1003 | 305280.0 5724000.0 732.03 1004 | 305280.0 5724010.0 730.86 1005 | 305280.0 5724020.0 729.00 1006 | 305280.0 5724030.0 728.11 1007 | 305280.0 5724040.0 727.20 1008 | 305280.0 5724050.0 725.08 1009 | 305280.0 5724060.0 722.21 1010 | 305280.0 5724070.0 718.41 1011 | 305280.0 5724080.0 712.71 1012 | 305280.0 5724090.0 710.55 1013 | 305280.0 5724100.0 707.17 1014 | 305280.0 5724110.0 702.57 1015 | 305280.0 5724120.0 698.00 1016 | 305280.0 5724130.0 691.90 1017 | 305280.0 5724140.0 687.12 1018 | 305280.0 5724150.0 683.39 1019 | 305280.0 5724160.0 679.81 1020 | 305280.0 5724170.0 674.98 1021 | 305280.0 5724180.0 672.86 1022 | 305280.0 5724190.0 669.15 1023 | 305280.0 5724200.0 667.35 1024 | 305280.0 5724210.0 664.72 1025 | 305280.0 5724220.0 658.97 1026 | 305280.0 5724230.0 655.51 1027 | 305290.0 5723700.0 725.70 1028 | 305290.0 5723710.0 733.37 1029 | 305290.0 5723720.0 737.12 1030 | 305290.0 5723730.0 740.36 1031 | 305290.0 5723740.0 742.54 1032 | 305290.0 5723750.0 742.93 1033 | 305290.0 5723760.0 742.65 1034 | 305290.0 5723770.0 743.27 1035 | 305290.0 5723780.0 744.09 1036 | 305290.0 5723790.0 744.17 1037 | 305290.0 5723800.0 745.69 1038 | 305290.0 5723810.0 744.82 1039 | 305290.0 5723820.0 745.28 1040 | 305290.0 5723830.0 746.17 1041 | 305290.0 5723840.0 746.19 1042 | 305290.0 5723850.0 748.09 1043 | 305290.0 5723860.0 747.59 1044 | 305290.0 5723870.0 748.39 1045 | 305290.0 5723880.0 749.23 1046 | 305290.0 5723890.0 746.64 1047 | 305290.0 5723900.0 745.47 1048 | 305290.0 5723910.0 744.25 1049 | 305290.0 5723920.0 743.28 1050 | 305290.0 5723930.0 741.08 1051 | 305290.0 5723940.0 738.96 1052 | 305290.0 5723950.0 737.36 1053 | 305290.0 5723960.0 736.25 1054 | 305290.0 5723970.0 735.73 1055 | 305290.0 5723980.0 734.86 1056 | 305290.0 5723990.0 733.94 1057 | 305290.0 5724000.0 732.73 1058 | 305290.0 5724010.0 731.31 1059 | 305290.0 5724020.0 729.71 1060 | 305290.0 5724030.0 727.94 1061 | 305290.0 5724040.0 726.53 1062 | 305290.0 5724050.0 725.00 1063 | 305290.0 5724060.0 721.76 1064 | 305290.0 5724070.0 717.64 1065 | 305290.0 5724080.0 712.70 1066 | 305290.0 5724090.0 709.70 1067 | 305290.0 5724100.0 706.73 1068 | 305290.0 5724110.0 701.62 1069 | 305290.0 5724120.0 697.36 1070 | 305290.0 5724130.0 692.23 1071 | 305290.0 5724140.0 688.31 1072 | 305290.0 5724150.0 684.70 1073 | 305290.0 5724160.0 680.83 1074 | 305290.0 5724170.0 676.26 1075 | 305290.0 5724180.0 673.57 1076 | 305290.0 5724190.0 669.49 1077 | 305290.0 5724200.0 667.75 1078 | 305290.0 5724210.0 663.14 1079 | 305290.0 5724220.0 660.84 1080 | 305290.0 5724230.0 659.40 1081 | 305300.0 5723700.0 725.12 1082 | 305300.0 5723710.0 735.10 1083 | 305300.0 5723720.0 738.21 1084 | 305300.0 5723730.0 740.87 1085 | 305300.0 5723740.0 742.96 1086 | 305300.0 5723750.0 743.44 1087 | 305300.0 5723760.0 743.46 1088 | 305300.0 5723770.0 743.53 1089 | 305300.0 5723780.0 743.77 1090 | 305300.0 5723790.0 745.15 1091 | 305300.0 5723800.0 744.99 1092 | 305300.0 5723810.0 745.82 1093 | 305300.0 5723820.0 746.43 1094 | 305300.0 5723830.0 745.75 1095 | 305300.0 5723840.0 746.21 1096 | 305300.0 5723850.0 746.02 1097 | 305300.0 5723860.0 747.88 1098 | 305300.0 5723870.0 746.80 1099 | 305300.0 5723880.0 746.35 1100 | 305300.0 5723890.0 744.32 1101 | 305300.0 5723900.0 744.06 1102 | 305300.0 5723910.0 743.50 1103 | 305300.0 5723920.0 742.23 1104 | 305300.0 5723930.0 740.22 1105 | 305300.0 5723940.0 737.19 1106 | 305300.0 5723950.0 735.90 1107 | 305300.0 5723960.0 735.12 1108 | 305300.0 5723970.0 735.26 1109 | 305300.0 5723980.0 734.87 1110 | 305300.0 5723990.0 733.38 1111 | 305300.0 5724000.0 732.14 1112 | 305300.0 5724010.0 730.86 1113 | 305300.0 5724020.0 729.26 1114 | 305300.0 5724030.0 727.39 1115 | 305300.0 5724040.0 725.51 1116 | 305300.0 5724050.0 723.53 1117 | 305300.0 5724060.0 719.92 1118 | 305300.0 5724070.0 717.99 1119 | 305300.0 5724080.0 712.81 1120 | 305300.0 5724090.0 708.21 1121 | 305300.0 5724100.0 704.76 1122 | 305300.0 5724110.0 701.29 1123 | 305300.0 5724120.0 697.10 1124 | 305300.0 5724130.0 693.45 1125 | 305300.0 5724140.0 689.36 1126 | 305300.0 5724150.0 685.34 1127 | 305300.0 5724160.0 681.39 1128 | 305300.0 5724170.0 677.38 1129 | 305300.0 5724180.0 673.76 1130 | 305300.0 5724190.0 670.30 1131 | 305300.0 5724200.0 665.93 1132 | 305300.0 5724210.0 663.00 1133 | 305300.0 5724220.0 661.76 1134 | 305300.0 5724230.0 659.03 1135 | 305310.0 5723700.0 723.22 1136 | 305310.0 5723710.0 735.01 1137 | 305310.0 5723720.0 738.15 1138 | 305310.0 5723730.0 739.75 1139 | 305310.0 5723740.0 741.77 1140 | 305310.0 5723750.0 742.89 1141 | 305310.0 5723760.0 742.54 1142 | 305310.0 5723770.0 742.73 1143 | 305310.0 5723780.0 742.56 1144 | 305310.0 5723790.0 742.29 1145 | 305310.0 5723800.0 742.39 1146 | 305310.0 5723810.0 744.48 1147 | 305310.0 5723820.0 743.87 1148 | 305310.0 5723830.0 744.38 1149 | 305310.0 5723840.0 743.65 1150 | 305310.0 5723850.0 745.06 1151 | 305310.0 5723860.0 745.06 1152 | 305310.0 5723870.0 745.25 1153 | 305310.0 5723880.0 742.94 1154 | 305310.0 5723890.0 742.63 1155 | 305310.0 5723900.0 741.93 1156 | 305310.0 5723910.0 741.00 1157 | 305310.0 5723920.0 738.47 1158 | 305310.0 5723930.0 737.07 1159 | 305310.0 5723940.0 735.24 1160 | 305310.0 5723950.0 734.62 1161 | 305310.0 5723960.0 733.93 1162 | 305310.0 5723970.0 733.06 1163 | 305310.0 5723980.0 732.60 1164 | 305310.0 5723990.0 731.61 1165 | 305310.0 5724000.0 730.90 1166 | 305310.0 5724010.0 729.39 1167 | 305310.0 5724020.0 728.08 1168 | 305310.0 5724030.0 726.09 1169 | 305310.0 5724040.0 723.98 1170 | 305310.0 5724050.0 721.88 1171 | 305310.0 5724060.0 718.47 1172 | 305310.0 5724070.0 715.97 1173 | 305310.0 5724080.0 712.23 1174 | 305310.0 5724090.0 708.01 1175 | 305310.0 5724100.0 704.13 1176 | 305310.0 5724110.0 699.64 1177 | 305310.0 5724120.0 697.26 1178 | 305310.0 5724130.0 693.17 1179 | 305310.0 5724140.0 689.27 1180 | 305310.0 5724150.0 684.83 1181 | 305310.0 5724160.0 681.06 1182 | 305310.0 5724170.0 675.99 1183 | 305310.0 5724180.0 673.91 1184 | 305310.0 5724190.0 670.39 1185 | 305310.0 5724200.0 666.58 1186 | 305310.0 5724210.0 665.80 1187 | 305310.0 5724220.0 663.51 1188 | 305310.0 5724230.0 661.44 1189 | 305320.0 5723700.0 722.72 1190 | 305320.0 5723710.0 731.62 1191 | 305320.0 5723720.0 735.56 1192 | 305320.0 5723730.0 737.07 1193 | 305320.0 5723740.0 738.21 1194 | 305320.0 5723750.0 739.96 1195 | 305320.0 5723760.0 739.35 1196 | 305320.0 5723770.0 739.75 1197 | 305320.0 5723780.0 740.53 1198 | 305320.0 5723790.0 740.25 1199 | 305320.0 5723800.0 741.19 1200 | 305320.0 5723810.0 741.44 1201 | 305320.0 5723820.0 742.53 1202 | 305320.0 5723830.0 742.44 1203 | 305320.0 5723840.0 742.53 1204 | 305320.0 5723850.0 741.97 1205 | 305320.0 5723860.0 742.48 1206 | 305320.0 5723870.0 740.99 1207 | 305320.0 5723880.0 741.61 1208 | 305320.0 5723890.0 739.88 1209 | 305320.0 5723900.0 739.22 1210 | 305320.0 5723910.0 738.08 1211 | 305320.0 5723920.0 735.89 1212 | 305320.0 5723930.0 733.29 1213 | 305320.0 5723940.0 731.40 1214 | 305320.0 5723950.0 730.40 1215 | 305320.0 5723960.0 730.49 1216 | 305320.0 5723970.0 729.26 1217 | 305320.0 5723980.0 727.42 1218 | 305320.0 5723990.0 728.91 1219 | 305320.0 5724000.0 728.32 1220 | 305320.0 5724010.0 727.33 1221 | 305320.0 5724020.0 725.32 1222 | 305320.0 5724030.0 724.14 1223 | 305320.0 5724040.0 722.26 1224 | 305320.0 5724050.0 720.12 1225 | 305320.0 5724060.0 716.70 1226 | 305320.0 5724070.0 713.66 1227 | 305320.0 5724080.0 710.41 1228 | 305320.0 5724090.0 707.28 1229 | 305320.0 5724100.0 702.67 1230 | 305320.0 5724110.0 697.68 1231 | 305320.0 5724120.0 694.17 1232 | 305320.0 5724130.0 692.46 1233 | 305320.0 5724140.0 689.14 1234 | 305320.0 5724150.0 684.86 1235 | 305320.0 5724160.0 681.28 1236 | 305320.0 5724170.0 677.06 1237 | 305320.0 5724180.0 674.31 1238 | 305320.0 5724190.0 670.16 1239 | 305320.0 5724200.0 666.78 1240 | 305320.0 5724210.0 666.23 1241 | 305320.0 5724220.0 666.94 1242 | 305320.0 5724230.0 662.02 1243 | 305330.0 5723700.0 716.54 1244 | 305330.0 5723710.0 726.39 1245 | 305330.0 5723720.0 729.41 1246 | 305330.0 5723730.0 729.89 1247 | 305330.0 5723740.0 731.12 1248 | 305330.0 5723750.0 732.02 1249 | 305330.0 5723760.0 734.38 1250 | 305330.0 5723770.0 734.57 1251 | 305330.0 5723780.0 733.97 1252 | 305330.0 5723790.0 735.85 1253 | 305330.0 5723800.0 735.91 1254 | 305330.0 5723810.0 736.60 1255 | 305330.0 5723820.0 736.67 1256 | 305330.0 5723830.0 737.69 1257 | 305330.0 5723840.0 739.70 1258 | 305330.0 5723850.0 740.32 1259 | 305330.0 5723860.0 738.01 1260 | 305330.0 5723870.0 737.35 1261 | 305330.0 5723880.0 736.97 1262 | 305330.0 5723890.0 735.89 1263 | 305330.0 5723900.0 735.17 1264 | 305330.0 5723910.0 733.50 1265 | 305330.0 5723920.0 731.73 1266 | 305330.0 5723930.0 729.03 1267 | 305330.0 5723940.0 726.84 1268 | 305330.0 5723950.0 727.16 1269 | 305330.0 5723960.0 725.97 1270 | 305330.0 5723970.0 724.14 1271 | 305330.0 5723980.0 723.88 1272 | 305330.0 5723990.0 721.98 1273 | 305330.0 5724000.0 722.86 1274 | 305330.0 5724010.0 722.37 1275 | 305330.0 5724020.0 721.73 1276 | 305330.0 5724030.0 720.47 1277 | 305330.0 5724040.0 718.57 1278 | 305330.0 5724050.0 716.40 1279 | 305330.0 5724060.0 713.12 1280 | 305330.0 5724070.0 710.49 1281 | 305330.0 5724080.0 707.97 1282 | 305330.0 5724090.0 704.60 1283 | 305330.0 5724100.0 700.80 1284 | 305330.0 5724110.0 696.18 1285 | 305330.0 5724120.0 693.19 1286 | 305330.0 5724130.0 691.09 1287 | 305330.0 5724140.0 686.06 1288 | 305330.0 5724150.0 683.31 1289 | 305330.0 5724160.0 681.49 1290 | 305330.0 5724170.0 678.94 1291 | 305330.0 5724180.0 673.40 1292 | 305330.0 5724190.0 667.10 1293 | 305330.0 5724200.0 666.54 1294 | 305330.0 5724210.0 663.54 1295 | 305330.0 5724220.0 662.51 1296 | 305330.0 5724230.0 660.00 1297 | 305340.0 5723700.0 711.76 1298 | 305340.0 5723710.0 718.94 1299 | 305340.0 5723720.0 723.56 1300 | 305340.0 5723730.0 724.68 1301 | 305340.0 5723740.0 727.60 1302 | 305340.0 5723750.0 727.61 1303 | 305340.0 5723760.0 727.06 1304 | 305340.0 5723770.0 727.70 1305 | 305340.0 5723780.0 728.78 1306 | 305340.0 5723790.0 729.35 1307 | 305340.0 5723800.0 729.33 1308 | 305340.0 5723810.0 730.92 1309 | 305340.0 5723820.0 732.74 1310 | 305340.0 5723830.0 735.11 1311 | 305340.0 5723840.0 737.17 1312 | 305340.0 5723850.0 736.16 1313 | 305340.0 5723860.0 733.89 1314 | 305340.0 5723870.0 734.14 1315 | 305340.0 5723880.0 733.92 1316 | 305340.0 5723890.0 732.49 1317 | 305340.0 5723900.0 731.87 1318 | 305340.0 5723910.0 731.53 1319 | 305340.0 5723920.0 727.63 1320 | 305340.0 5723930.0 725.61 1321 | 305340.0 5723940.0 722.22 1322 | 305340.0 5723950.0 720.86 1323 | 305340.0 5723960.0 719.31 1324 | 305340.0 5723970.0 717.03 1325 | 305340.0 5723980.0 715.82 1326 | 305340.0 5723990.0 717.24 1327 | 305340.0 5724000.0 717.28 1328 | 305340.0 5724010.0 718.42 1329 | 305340.0 5724020.0 716.93 1330 | 305340.0 5724030.0 715.92 1331 | 305340.0 5724040.0 713.90 1332 | 305340.0 5724050.0 711.83 1333 | 305340.0 5724060.0 710.24 1334 | 305340.0 5724070.0 706.62 1335 | 305340.0 5724080.0 704.30 1336 | 305340.0 5724090.0 701.69 1337 | 305340.0 5724100.0 698.05 1338 | 305340.0 5724110.0 693.98 1339 | 305340.0 5724120.0 690.52 1340 | 305340.0 5724130.0 687.49 1341 | 305340.0 5724140.0 684.06 1342 | 305340.0 5724150.0 681.09 1343 | 305340.0 5724160.0 679.22 1344 | 305340.0 5724170.0 675.03 1345 | 305340.0 5724180.0 670.59 1346 | 305340.0 5724190.0 665.01 1347 | 305340.0 5724200.0 662.84 1348 | 305340.0 5724210.0 661.08 1349 | 305340.0 5724220.0 657.62 1350 | 305340.0 5724230.0 653.42 1351 | 305350.0 5723700.0 703.41 1352 | 305350.0 5723710.0 709.17 1353 | 305350.0 5723720.0 713.72 1354 | 305350.0 5723730.0 717.54 1355 | 305350.0 5723740.0 719.67 1356 | 305350.0 5723750.0 721.67 1357 | 305350.0 5723760.0 720.64 1358 | 305350.0 5723770.0 722.00 1359 | 305350.0 5723780.0 722.00 1360 | 305350.0 5723790.0 722.47 1361 | 305350.0 5723800.0 721.97 1362 | 305350.0 5723810.0 724.72 1363 | 305350.0 5723820.0 726.71 1364 | 305350.0 5723830.0 731.38 1365 | 305350.0 5723840.0 732.87 1366 | 305350.0 5723850.0 731.59 1367 | 305350.0 5723860.0 730.34 1368 | 305350.0 5723870.0 727.14 1369 | 305350.0 5723880.0 728.61 1370 | 305350.0 5723890.0 729.49 1371 | 305350.0 5723900.0 727.23 1372 | 305350.0 5723910.0 725.73 1373 | 305350.0 5723920.0 722.72 1374 | 305350.0 5723930.0 720.10 1375 | 305350.0 5723940.0 718.97 1376 | 305350.0 5723950.0 715.94 1377 | 305350.0 5723960.0 714.72 1378 | 305350.0 5723970.0 712.74 1379 | 305350.0 5723980.0 713.35 1380 | 305350.0 5723990.0 714.36 1381 | 305350.0 5724000.0 715.00 1382 | 305350.0 5724010.0 714.34 1383 | 305350.0 5724020.0 714.74 1384 | 305350.0 5724030.0 710.93 1385 | 305350.0 5724040.0 708.72 1386 | 305350.0 5724050.0 706.08 1387 | 305350.0 5724060.0 703.85 1388 | 305350.0 5724070.0 701.57 1389 | 305350.0 5724080.0 698.76 1390 | 305350.0 5724090.0 696.48 1391 | 305350.0 5724100.0 693.01 1392 | 305350.0 5724110.0 689.81 1393 | 305350.0 5724120.0 687.20 1394 | 305350.0 5724130.0 683.71 1395 | 305350.0 5724140.0 680.96 1396 | 305350.0 5724150.0 677.24 1397 | 305350.0 5724160.0 673.76 1398 | 305350.0 5724170.0 669.24 1399 | 305350.0 5724180.0 667.05 1400 | 305350.0 5724190.0 663.24 1401 | 305350.0 5724200.0 660.60 1402 | 305350.0 5724210.0 656.50 1403 | 305350.0 5724220.0 652.70 1404 | 305350.0 5724230.0 645.00 1405 | 305360.0 5723700.0 697.00 1406 | 305360.0 5723710.0 700.45 1407 | 305360.0 5723720.0 706.07 1408 | 305360.0 5723730.0 708.12 1409 | 305360.0 5723740.0 710.70 1410 | 305360.0 5723750.0 712.61 1411 | 305360.0 5723760.0 712.57 1412 | 305360.0 5723770.0 714.54 1413 | 305360.0 5723780.0 715.96 1414 | 305360.0 5723790.0 714.80 1415 | 305360.0 5723800.0 715.20 1416 | 305360.0 5723810.0 720.12 1417 | 305360.0 5723820.0 722.33 1418 | 305360.0 5723830.0 725.75 1419 | 305360.0 5723840.0 729.31 1420 | 305360.0 5723850.0 727.66 1421 | 305360.0 5723860.0 721.77 1422 | 305360.0 5723870.0 720.00 1423 | 305360.0 5723880.0 720.81 1424 | 305360.0 5723890.0 720.01 1425 | 305360.0 5723900.0 720.94 1426 | 305360.0 5723910.0 718.94 1427 | 305360.0 5723920.0 716.21 1428 | 305360.0 5723930.0 714.20 1429 | 305360.0 5723940.0 714.49 1430 | 305360.0 5723950.0 712.67 1431 | 305360.0 5723960.0 709.85 1432 | 305360.0 5723970.0 709.75 1433 | 305360.0 5723980.0 710.57 1434 | 305360.0 5723990.0 710.61 1435 | 305360.0 5724000.0 709.93 1436 | 305360.0 5724010.0 709.39 1437 | 305360.0 5724020.0 708.49 1438 | 305360.0 5724030.0 707.16 1439 | 305360.0 5724040.0 704.34 1440 | 305360.0 5724050.0 704.26 1441 | 305360.0 5724060.0 701.15 1442 | 305360.0 5724070.0 697.25 1443 | 305360.0 5724080.0 694.41 1444 | 305360.0 5724090.0 692.41 1445 | 305360.0 5724100.0 689.01 1446 | 305360.0 5724110.0 686.05 1447 | 305360.0 5724120.0 681.64 1448 | 305360.0 5724130.0 676.54 1449 | 305360.0 5724140.0 674.07 1450 | 305360.0 5724150.0 671.63 1451 | 305360.0 5724160.0 668.73 1452 | 305360.0 5724170.0 664.81 1453 | 305360.0 5724180.0 662.22 1454 | 305360.0 5724190.0 659.58 1455 | 305360.0 5724200.0 657.32 1456 | 305360.0 5724210.0 651.31 1457 | 305360.0 5724220.0 645.97 1458 | 305360.0 5724230.0 636.00 1459 | 305370.0 5723700.0 688.20 1460 | 305370.0 5723710.0 694.32 1461 | 305370.0 5723720.0 694.39 1462 | 305370.0 5723730.0 698.58 1463 | 305370.0 5723740.0 700.72 1464 | 305370.0 5723750.0 702.80 1465 | 305370.0 5723760.0 704.73 1466 | 305370.0 5723770.0 705.55 1467 | 305370.0 5723780.0 706.95 1468 | 305370.0 5723790.0 707.00 1469 | 305370.0 5723800.0 709.04 1470 | 305370.0 5723810.0 716.02 1471 | 305370.0 5723820.0 718.54 1472 | 305370.0 5723830.0 719.83 1473 | 305370.0 5723840.0 719.93 1474 | 305370.0 5723850.0 714.91 1475 | 305370.0 5723860.0 715.53 1476 | 305370.0 5723870.0 716.46 1477 | 305370.0 5723880.0 715.59 1478 | 305370.0 5723890.0 712.55 1479 | 305370.0 5723900.0 710.11 1480 | 305370.0 5723910.0 709.69 1481 | 305370.0 5723920.0 705.52 1482 | 305370.0 5723930.0 707.54 1483 | 305370.0 5723940.0 707.56 1484 | 305370.0 5723950.0 707.82 1485 | 305370.0 5723960.0 708.16 1486 | 305370.0 5723970.0 705.58 1487 | 305370.0 5723980.0 705.56 1488 | 305370.0 5723990.0 705.86 1489 | 305370.0 5724000.0 705.44 1490 | 305370.0 5724010.0 704.10 1491 | 305370.0 5724020.0 701.92 1492 | 305370.0 5724030.0 700.38 1493 | 305370.0 5724040.0 698.03 1494 | 305370.0 5724050.0 698.03 1495 | 305370.0 5724060.0 694.75 1496 | 305370.0 5724070.0 691.06 1497 | 305370.0 5724080.0 688.29 1498 | 305370.0 5724090.0 685.22 1499 | 305370.0 5724100.0 682.72 1500 | 305370.0 5724110.0 679.56 1501 | 305370.0 5724120.0 676.05 1502 | 305370.0 5724130.0 673.56 1503 | 305370.0 5724140.0 670.17 1504 | 305370.0 5724150.0 669.64 1505 | 305370.0 5724160.0 665.16 1506 | 305370.0 5724170.0 661.17 1507 | 305370.0 5724180.0 658.44 1508 | 305370.0 5724190.0 655.81 1509 | 305370.0 5724200.0 650.70 1510 | 305370.0 5724210.0 645.92 1511 | 305370.0 5724220.0 640.68 1512 | 305370.0 5724230.0 628.22 1513 | 305380.0 5723700.0 677.03 1514 | 305380.0 5723710.0 681.42 1515 | 305380.0 5723720.0 685.19 1516 | 305380.0 5723730.0 687.89 1517 | 305380.0 5723740.0 690.91 1518 | 305380.0 5723750.0 694.72 1519 | 305380.0 5723760.0 696.18 1520 | 305380.0 5723770.0 697.06 1521 | 305380.0 5723780.0 699.23 1522 | 305380.0 5723790.0 696.75 1523 | 305380.0 5723800.0 703.58 1524 | 305380.0 5723810.0 708.75 1525 | 305380.0 5723820.0 709.42 1526 | 305380.0 5723830.0 711.72 1527 | 305380.0 5723840.0 706.75 1528 | 305380.0 5723850.0 707.35 1529 | 305380.0 5723860.0 708.16 1530 | 305380.0 5723870.0 709.26 1531 | 305380.0 5723880.0 708.04 1532 | 305380.0 5723890.0 708.10 1533 | 305380.0 5723900.0 703.84 1534 | 305380.0 5723910.0 699.72 1535 | 305380.0 5723920.0 699.59 1536 | 305380.0 5723930.0 703.61 1537 | 305380.0 5723940.0 704.42 1538 | 305380.0 5723950.0 706.99 1539 | 305380.0 5723960.0 706.33 1540 | 305380.0 5723970.0 704.13 1541 | 305380.0 5723980.0 703.39 1542 | 305380.0 5723990.0 703.35 1543 | 305380.0 5724000.0 700.98 1544 | 305380.0 5724010.0 699.76 1545 | 305380.0 5724020.0 699.78 1546 | 305380.0 5724030.0 696.80 1547 | 305380.0 5724040.0 695.82 1548 | 305380.0 5724050.0 692.44 1549 | 305380.0 5724060.0 690.28 1550 | 305380.0 5724070.0 686.98 1551 | 305380.0 5724080.0 684.00 1552 | 305380.0 5724090.0 682.38 1553 | 305380.0 5724100.0 680.99 1554 | 305380.0 5724110.0 675.38 1555 | 305380.0 5724120.0 673.61 1556 | 305380.0 5724130.0 669.93 1557 | 305380.0 5724140.0 666.69 1558 | 305380.0 5724150.0 662.12 1559 | 305380.0 5724160.0 660.41 1560 | 305380.0 5724170.0 656.58 1561 | 305380.0 5724180.0 655.11 1562 | 305380.0 5724190.0 651.09 1563 | 305380.0 5724200.0 648.09 1564 | 305380.0 5724210.0 640.91 1565 | 305380.0 5724220.0 631.59 1566 | 305380.0 5724230.0 620.86 1567 | 305390.0 5723700.0 663.59 1568 | 305390.0 5723710.0 668.98 1569 | 305390.0 5723720.0 673.78 1570 | 305390.0 5723730.0 678.45 1571 | 305390.0 5723740.0 681.90 1572 | 305390.0 5723750.0 683.95 1573 | 305390.0 5723760.0 684.95 1574 | 305390.0 5723770.0 685.71 1575 | 305390.0 5723780.0 687.88 1576 | 305390.0 5723790.0 689.52 1577 | 305390.0 5723800.0 696.15 1578 | 305390.0 5723810.0 699.75 1579 | 305390.0 5723820.0 699.51 1580 | 305390.0 5723830.0 698.75 1581 | 305390.0 5723840.0 696.24 1582 | 305390.0 5723850.0 701.53 1583 | 305390.0 5723860.0 701.62 1584 | 305390.0 5723870.0 701.82 1585 | 305390.0 5723880.0 701.73 1586 | 305390.0 5723890.0 700.09 1587 | 305390.0 5723900.0 696.19 1588 | 305390.0 5723910.0 694.67 1589 | 305390.0 5723920.0 694.89 1590 | 305390.0 5723930.0 699.69 1591 | 305390.0 5723940.0 702.60 1592 | 305390.0 5723950.0 703.86 1593 | 305390.0 5723960.0 704.04 1594 | 305390.0 5723970.0 704.40 1595 | 305390.0 5723980.0 705.18 1596 | 305390.0 5723990.0 700.66 1597 | 305390.0 5724000.0 699.16 1598 | 305390.0 5724010.0 698.34 1599 | 305390.0 5724020.0 696.57 1600 | 305390.0 5724030.0 695.10 1601 | 305390.0 5724040.0 693.63 1602 | 305390.0 5724050.0 689.88 1603 | 305390.0 5724060.0 687.51 1604 | 305390.0 5724070.0 684.61 1605 | 305390.0 5724080.0 682.06 1606 | 305390.0 5724090.0 676.91 1607 | 305390.0 5724100.0 674.68 1608 | 305390.0 5724110.0 669.56 1609 | 305390.0 5724120.0 667.68 1610 | 305390.0 5724130.0 663.24 1611 | 305390.0 5724140.0 660.44 1612 | 305390.0 5724150.0 658.70 1613 | 305390.0 5724160.0 652.62 1614 | 305390.0 5724170.0 650.60 1615 | 305390.0 5724180.0 647.21 1616 | 305390.0 5724190.0 645.90 1617 | 305390.0 5724200.0 640.99 1618 | 305390.0 5724210.0 636.21 1619 | 305390.0 5724220.0 626.79 1620 | 305390.0 5724230.0 613.29 1621 | 305400.0 5723700.0 654.87 1622 | 305400.0 5723710.0 657.87 1623 | 305400.0 5723720.0 662.89 1624 | 305400.0 5723730.0 666.06 1625 | 305400.0 5723740.0 669.63 1626 | 305400.0 5723750.0 671.78 1627 | 305400.0 5723760.0 673.69 1628 | 305400.0 5723770.0 672.29 1629 | 305400.0 5723780.0 674.01 1630 | 305400.0 5723790.0 681.30 1631 | 305400.0 5723800.0 687.50 1632 | 305400.0 5723810.0 689.42 1633 | 305400.0 5723820.0 687.51 1634 | 305400.0 5723830.0 681.38 1635 | 305400.0 5723840.0 689.39 1636 | 305400.0 5723850.0 693.67 1637 | 305400.0 5723860.0 693.25 1638 | 305400.0 5723870.0 694.70 1639 | 305400.0 5723880.0 694.06 1640 | 305400.0 5723890.0 690.54 1641 | 305400.0 5723900.0 685.53 1642 | 305400.0 5723910.0 689.18 1643 | 305400.0 5723920.0 690.30 1644 | 305400.0 5723930.0 694.59 1645 | 305400.0 5723940.0 698.12 1646 | 305400.0 5723950.0 699.91 1647 | 305400.0 5723960.0 700.11 1648 | 305400.0 5723970.0 699.94 1649 | 305400.0 5723980.0 699.28 1650 | 305400.0 5723990.0 696.78 1651 | 305400.0 5724000.0 695.87 1652 | 305400.0 5724010.0 694.73 1653 | 305400.0 5724020.0 693.53 1654 | 305400.0 5724030.0 691.77 1655 | 305400.0 5724040.0 689.82 1656 | 305400.0 5724050.0 687.89 1657 | 305400.0 5724060.0 682.27 1658 | 305400.0 5724070.0 679.42 1659 | 305400.0 5724080.0 676.49 1660 | 305400.0 5724090.0 671.88 1661 | 305400.0 5724100.0 668.61 1662 | 305400.0 5724110.0 663.20 1663 | 305400.0 5724120.0 659.54 1664 | 305400.0 5724130.0 658.42 1665 | 305400.0 5724140.0 654.10 1666 | 305400.0 5724150.0 651.68 1667 | 305400.0 5724160.0 647.31 1668 | 305400.0 5724170.0 644.56 1669 | 305400.0 5724180.0 640.00 1670 | 305400.0 5724190.0 636.24 1671 | 305400.0 5724200.0 634.09 1672 | 305400.0 5724210.0 628.36 1673 | 305400.0 5724220.0 619.66 1674 | 305400.0 5724230.0 599.86 1675 | 305410.0 5723700.0 643.18 1676 | 305410.0 5723710.0 645.58 1677 | 305410.0 5723720.0 648.24 1678 | 305410.0 5723730.0 650.96 1679 | 305410.0 5723740.0 655.16 1680 | 305410.0 5723750.0 658.43 1681 | 305410.0 5723760.0 659.92 1682 | 305410.0 5723770.0 656.38 1683 | 305410.0 5723780.0 663.54 1684 | 305410.0 5723790.0 671.58 1685 | 305410.0 5723800.0 677.40 1686 | 305410.0 5723810.0 678.71 1687 | 305410.0 5723820.0 677.60 1688 | 305410.0 5723830.0 677.74 1689 | 305410.0 5723840.0 680.23 1690 | 305410.0 5723850.0 683.95 1691 | 305410.0 5723860.0 685.25 1692 | 305410.0 5723870.0 685.38 1693 | 305410.0 5723880.0 684.07 1694 | 305410.0 5723890.0 680.21 1695 | 305410.0 5723900.0 681.31 1696 | 305410.0 5723910.0 680.24 1697 | 305410.0 5723920.0 678.39 1698 | 305410.0 5723930.0 689.43 1699 | 305410.0 5723940.0 694.45 1700 | 305410.0 5723950.0 695.90 1701 | 305410.0 5723960.0 697.55 1702 | 305410.0 5723970.0 696.04 1703 | 305410.0 5723980.0 695.59 1704 | 305410.0 5723990.0 693.23 1705 | 305410.0 5724000.0 692.12 1706 | 305410.0 5724010.0 689.19 1707 | 305410.0 5724020.0 687.57 1708 | 305410.0 5724030.0 685.81 1709 | 305410.0 5724040.0 683.16 1710 | 305410.0 5724050.0 680.81 1711 | 305410.0 5724060.0 677.50 1712 | 305410.0 5724070.0 675.67 1713 | 305410.0 5724080.0 670.74 1714 | 305410.0 5724090.0 667.06 1715 | 305410.0 5724100.0 661.61 1716 | 305410.0 5724110.0 656.42 1717 | 305410.0 5724120.0 650.26 1718 | 305410.0 5724130.0 646.36 1719 | 305410.0 5724140.0 644.15 1720 | 305410.0 5724150.0 640.45 1721 | 305410.0 5724160.0 631.60 1722 | 305410.0 5724170.0 634.55 1723 | 305410.0 5724180.0 632.07 1724 | 305410.0 5724190.0 625.24 1725 | 305410.0 5724200.0 621.96 1726 | 305410.0 5724210.0 607.52 1727 | 305410.0 5724220.0 600.45 1728 | 305410.0 5724230.0 584.48 1729 | 305420.0 5723700.0 629.29 1730 | 305420.0 5723710.0 635.50 1731 | 305420.0 5723720.0 635.28 1732 | 305420.0 5723730.0 639.85 1733 | 305420.0 5723740.0 642.48 1734 | 305420.0 5723750.0 644.52 1735 | 305420.0 5723760.0 649.41 1736 | 305420.0 5723770.0 649.67 1737 | 305420.0 5723780.0 655.29 1738 | 305420.0 5723790.0 661.75 1739 | 305420.0 5723800.0 665.89 1740 | 305420.0 5723810.0 667.40 1741 | 305420.0 5723820.0 665.60 1742 | 305420.0 5723830.0 670.96 1743 | 305420.0 5723840.0 674.45 1744 | 305420.0 5723850.0 675.96 1745 | 305420.0 5723860.0 677.14 1746 | 305420.0 5723870.0 676.36 1747 | 305420.0 5723880.0 673.46 1748 | 305420.0 5723890.0 672.11 1749 | 305420.0 5723900.0 671.90 1750 | 305420.0 5723910.0 669.54 1751 | 305420.0 5723920.0 669.77 1752 | 305420.0 5723930.0 682.84 1753 | 305420.0 5723940.0 690.77 1754 | 305420.0 5723950.0 692.11 1755 | 305420.0 5723960.0 693.63 1756 | 305420.0 5723970.0 692.02 1757 | 305420.0 5723980.0 691.36 1758 | 305420.0 5723990.0 689.04 1759 | 305420.0 5724000.0 686.73 1760 | 305420.0 5724010.0 685.49 1761 | 305420.0 5724020.0 681.24 1762 | 305420.0 5724030.0 677.63 1763 | 305420.0 5724040.0 676.51 1764 | 305420.0 5724050.0 674.88 1765 | 305420.0 5724060.0 672.21 1766 | 305420.0 5724070.0 668.53 1767 | 305420.0 5724080.0 663.49 1768 | 305420.0 5724090.0 658.62 1769 | 305420.0 5724100.0 653.19 1770 | 305420.0 5724110.0 647.89 1771 | 305420.0 5724120.0 644.08 1772 | 305420.0 5724130.0 640.06 1773 | 305420.0 5724140.0 635.94 1774 | 305420.0 5724150.0 626.09 1775 | 305420.0 5724160.0 617.78 1776 | 305420.0 5724170.0 615.33 1777 | 305420.0 5724180.0 608.10 1778 | 305420.0 5724190.0 602.58 1779 | 305420.0 5724200.0 588.65 1780 | 305420.0 5724210.0 584.54 1781 | 305420.0 5724220.0 584.31 1782 | 305420.0 5724230.0 583.94 1783 | 305430.0 5723700.0 618.08 1784 | 305430.0 5723710.0 622.83 1785 | 305430.0 5723720.0 621.65 1786 | 305430.0 5723730.0 625.09 1787 | 305430.0 5723740.0 626.86 1788 | 305430.0 5723750.0 630.04 1789 | 305430.0 5723760.0 633.77 1790 | 305430.0 5723770.0 639.77 1791 | 305430.0 5723780.0 646.60 1792 | 305430.0 5723790.0 651.60 1793 | 305430.0 5723800.0 655.98 1794 | 305430.0 5723810.0 656.90 1795 | 305430.0 5723820.0 658.58 1796 | 305430.0 5723830.0 662.30 1797 | 305430.0 5723840.0 666.66 1798 | 305430.0 5723850.0 668.66 1799 | 305430.0 5723860.0 668.48 1800 | 305430.0 5723870.0 667.76 1801 | 305430.0 5723880.0 665.71 1802 | 305430.0 5723890.0 665.83 1803 | 305430.0 5723900.0 661.83 1804 | 305430.0 5723910.0 657.34 1805 | 305430.0 5723920.0 659.93 1806 | 305430.0 5723930.0 670.13 1807 | 305430.0 5723940.0 684.42 1808 | 305430.0 5723950.0 686.87 1809 | 305430.0 5723960.0 686.23 1810 | 305430.0 5723970.0 685.59 1811 | 305430.0 5723980.0 683.41 1812 | 305430.0 5723990.0 681.29 1813 | 305430.0 5724000.0 680.37 1814 | 305430.0 5724010.0 678.14 1815 | 305430.0 5724020.0 675.08 1816 | 305430.0 5724030.0 672.73 1817 | 305430.0 5724040.0 670.26 1818 | 305430.0 5724050.0 668.42 1819 | 305430.0 5724060.0 665.21 1820 | 305430.0 5724070.0 661.43 1821 | 305430.0 5724080.0 655.43 1822 | 305430.0 5724090.0 651.08 1823 | 305430.0 5724100.0 644.20 1824 | 305430.0 5724110.0 636.93 1825 | 305430.0 5724120.0 632.07 1826 | 305430.0 5724130.0 625.51 1827 | 305430.0 5724140.0 620.90 1828 | 305430.0 5724150.0 609.70 1829 | 305430.0 5724160.0 602.13 1830 | 305430.0 5724170.0 592.18 1831 | 305430.0 5724180.0 588.19 1832 | 305430.0 5724190.0 584.58 1833 | 305430.0 5724200.0 584.48 1834 | 305430.0 5724210.0 584.41 1835 | 305430.0 5724220.0 584.02 1836 | 305430.0 5724230.0 583.02 1837 | 305440.0 5723700.0 615.40 1838 | 305440.0 5723710.0 613.73 1839 | 305440.0 5723720.0 612.31 1840 | 305440.0 5723730.0 610.94 1841 | 305440.0 5723740.0 616.94 1842 | 305440.0 5723750.0 622.26 1843 | 305440.0 5723760.0 627.68 1844 | 305440.0 5723770.0 634.12 1845 | 305440.0 5723780.0 640.46 1846 | 305440.0 5723790.0 646.80 1847 | 305440.0 5723800.0 650.09 1848 | 305440.0 5723810.0 654.22 1849 | 305440.0 5723820.0 655.99 1850 | 305440.0 5723830.0 656.61 1851 | 305440.0 5723840.0 656.23 1852 | 305440.0 5723850.0 657.06 1853 | 305440.0 5723860.0 657.21 1854 | 305440.0 5723870.0 658.22 1855 | 305440.0 5723880.0 653.65 1856 | 305440.0 5723890.0 652.28 1857 | 305440.0 5723900.0 649.69 1858 | 305440.0 5723910.0 647.09 1859 | 305440.0 5723920.0 652.28 1860 | 305440.0 5723930.0 660.35 1861 | 305440.0 5723940.0 675.09 1862 | 305440.0 5723950.0 678.22 1863 | 305440.0 5723960.0 677.13 1864 | 305440.0 5723970.0 674.49 1865 | 305440.0 5723980.0 674.11 1866 | 305440.0 5723990.0 672.37 1867 | 305440.0 5724000.0 673.38 1868 | 305440.0 5724010.0 671.76 1869 | 305440.0 5724020.0 671.91 1870 | 305440.0 5724030.0 667.73 1871 | 305440.0 5724040.0 666.32 1872 | 305440.0 5724050.0 660.13 1873 | 305440.0 5724060.0 656.22 1874 | 305440.0 5724070.0 650.87 1875 | 305440.0 5724080.0 643.17 1876 | 305440.0 5724090.0 637.59 1877 | 305440.0 5724100.0 632.27 1878 | 305440.0 5724110.0 628.43 1879 | 305440.0 5724120.0 619.13 1880 | 305440.0 5724130.0 609.57 1881 | 305440.0 5724140.0 596.61 1882 | 305440.0 5724150.0 588.83 1883 | 305440.0 5724160.0 585.04 1884 | 305440.0 5724170.0 584.55 1885 | 305440.0 5724180.0 584.52 1886 | 305440.0 5724190.0 584.44 1887 | 305440.0 5724200.0 583.58 1888 | 305440.0 5724210.0 583.52 1889 | 305440.0 5724220.0 582.80 1890 | 305440.0 5724230.0 560.62 1891 | 305450.0 5723700.0 608.48 1892 | 305450.0 5723710.0 608.26 1893 | 305450.0 5723720.0 606.77 1894 | 305450.0 5723730.0 609.02 1895 | 305450.0 5723740.0 617.56 1896 | 305450.0 5723750.0 623.21 1897 | 305450.0 5723760.0 623.72 1898 | 305450.0 5723770.0 630.47 1899 | 305450.0 5723780.0 636.24 1900 | 305450.0 5723790.0 640.52 1901 | 305450.0 5723800.0 647.13 1902 | 305450.0 5723810.0 643.62 1903 | 305450.0 5723820.0 643.59 1904 | 305450.0 5723830.0 648.23 1905 | 305450.0 5723840.0 647.75 1906 | 305450.0 5723850.0 646.27 1907 | 305450.0 5723860.0 646.01 1908 | 305450.0 5723870.0 646.12 1909 | 305450.0 5723880.0 644.43 1910 | 305450.0 5723890.0 637.68 1911 | 305450.0 5723900.0 637.94 1912 | 305450.0 5723910.0 638.13 1913 | 305450.0 5723920.0 646.08 1914 | 305450.0 5723930.0 644.32 1915 | 305450.0 5723940.0 661.11 1916 | 305450.0 5723950.0 666.41 1917 | 305450.0 5723960.0 667.08 1918 | 305450.0 5723970.0 665.07 1919 | 305450.0 5723980.0 663.12 1920 | 305450.0 5723990.0 661.50 1921 | 305450.0 5724000.0 660.61 1922 | 305450.0 5724010.0 661.28 1923 | 305450.0 5724020.0 660.15 1924 | 305450.0 5724030.0 659.42 1925 | 305450.0 5724040.0 655.95 1926 | 305450.0 5724050.0 651.90 1927 | 305450.0 5724060.0 647.56 1928 | 305450.0 5724070.0 639.80 1929 | 305450.0 5724080.0 631.91 1930 | 305450.0 5724090.0 625.05 1931 | 305450.0 5724100.0 620.48 1932 | 305450.0 5724110.0 593.43 1933 | 305450.0 5724120.0 589.35 1934 | 305450.0 5724130.0 586.92 1935 | 305450.0 5724140.0 584.74 1936 | 305450.0 5724150.0 584.61 1937 | 305450.0 5724160.0 584.59 1938 | 305450.0 5724170.0 584.46 1939 | 305450.0 5724180.0 583.28 1940 | 305450.0 5724190.0 583.05 1941 | 305450.0 5724200.0 581.94 1942 | 305450.0 5724210.0 565.78 1943 | 305450.0 5724220.0 557.27 1944 | 305450.0 5724230.0 552.98 1945 | 305460.0 5723700.0 603.95 1946 | 305460.0 5723710.0 605.15 1947 | 305460.0 5723720.0 603.27 1948 | 305460.0 5723730.0 604.68 1949 | 305460.0 5723740.0 611.82 1950 | 305460.0 5723750.0 618.99 1951 | 305460.0 5723760.0 621.94 1952 | 305460.0 5723770.0 621.32 1953 | 305460.0 5723780.0 627.79 1954 | 305460.0 5723790.0 623.45 1955 | 305460.0 5723800.0 622.90 1956 | 305460.0 5723810.0 619.18 1957 | 305460.0 5723820.0 626.14 1958 | 305460.0 5723830.0 635.23 1959 | 305460.0 5723840.0 637.66 1960 | 305460.0 5723850.0 636.26 1961 | 305460.0 5723860.0 637.99 1962 | 305460.0 5723870.0 635.79 1963 | 305460.0 5723880.0 629.43 1964 | 305460.0 5723890.0 619.10 1965 | 305460.0 5723900.0 620.17 1966 | 305460.0 5723910.0 625.66 1967 | 305460.0 5723920.0 632.84 1968 | 305460.0 5723930.0 634.60 1969 | 305460.0 5723940.0 635.45 1970 | 305460.0 5723950.0 649.69 1971 | 305460.0 5723960.0 654.32 1972 | 305460.0 5723970.0 653.00 1973 | 305460.0 5723980.0 650.12 1974 | 305460.0 5723990.0 643.48 1975 | 305460.0 5724000.0 640.01 1976 | 305460.0 5724010.0 641.62 1977 | 305460.0 5724020.0 635.47 1978 | 305460.0 5724030.0 634.94 1979 | 305460.0 5724040.0 634.90 1980 | 305460.0 5724050.0 634.78 1981 | 305460.0 5724060.0 632.76 1982 | 305460.0 5724070.0 627.18 1983 | 305460.0 5724080.0 590.89 1984 | 305460.0 5724090.0 588.45 1985 | 305460.0 5724100.0 585.85 1986 | 305460.0 5724110.0 584.73 1987 | 305460.0 5724120.0 584.67 1988 | 305460.0 5724130.0 584.67 1989 | 305460.0 5724140.0 584.51 1990 | 305460.0 5724150.0 584.39 1991 | 305460.0 5724160.0 584.27 1992 | 305460.0 5724170.0 583.08 1993 | 305460.0 5724180.0 572.91 1994 | 305460.0 5724190.0 565.10 1995 | 305460.0 5724200.0 560.63 1996 | 305460.0 5724210.0 551.84 1997 | 305460.0 5724220.0 550.14 1998 | 305460.0 5724230.0 549.47 1999 | 305470.0 5723700.0 600.70 2000 | 305470.0 5723710.0 599.83 2001 | 305470.0 5723720.0 600.75 2002 | 305470.0 5723730.0 600.84 2003 | 305470.0 5723740.0 600.55 2004 | 305470.0 5723750.0 601.40 2005 | 305470.0 5723760.0 609.48 2006 | 305470.0 5723770.0 610.84 2007 | 305470.0 5723780.0 611.37 2008 | 305470.0 5723790.0 609.69 2009 | 305470.0 5723800.0 609.52 2010 | 305470.0 5723810.0 608.19 2011 | 305470.0 5723820.0 609.03 2012 | 305470.0 5723830.0 614.01 2013 | 305470.0 5723840.0 619.79 2014 | 305470.0 5723850.0 621.64 2015 | 305470.0 5723860.0 617.29 2016 | 305470.0 5723870.0 614.19 2017 | 305470.0 5723880.0 612.85 2018 | 305470.0 5723890.0 606.55 2019 | 305470.0 5723900.0 605.40 2020 | 305470.0 5723910.0 609.37 2021 | 305470.0 5723920.0 616.64 2022 | 305470.0 5723930.0 616.18 2023 | 305470.0 5723940.0 618.09 2024 | 305470.0 5723950.0 623.00 2025 | 305470.0 5723960.0 627.29 2026 | 305470.0 5723970.0 631.06 2027 | 305470.0 5723980.0 621.20 2028 | 305470.0 5723990.0 617.11 2029 | 305470.0 5724000.0 612.39 2030 | 305470.0 5724010.0 616.37 2031 | 305470.0 5724020.0 612.30 2032 | 305470.0 5724030.0 598.26 2033 | 305470.0 5724040.0 589.67 2034 | 305470.0 5724050.0 588.76 2035 | 305470.0 5724060.0 587.40 2036 | 305470.0 5724070.0 585.63 2037 | 305470.0 5724080.0 584.73 2038 | 305470.0 5724090.0 584.71 2039 | 305470.0 5724100.0 584.63 2040 | 305470.0 5724110.0 584.44 2041 | 305470.0 5724120.0 584.14 2042 | 305470.0 5724130.0 584.66 2043 | 305470.0 5724140.0 586.31 2044 | 305470.0 5724150.0 585.57 2045 | 305470.0 5724160.0 570.73 2046 | 305470.0 5724170.0 563.82 2047 | 305470.0 5724180.0 559.37 2048 | 305470.0 5724190.0 550.36 2049 | 305470.0 5724200.0 541.58 2050 | 305470.0 5724210.0 544.01 2051 | 305470.0 5724220.0 543.64 2052 | 305470.0 5724230.0 541.48 2053 | 305480.0 5723700.0 589.34 2054 | 305480.0 5723710.0 590.93 2055 | 305480.0 5723720.0 589.95 2056 | 305480.0 5723730.0 588.95 2057 | 305480.0 5723740.0 588.29 2058 | 305480.0 5723750.0 589.20 2059 | 305480.0 5723760.0 591.82 2060 | 305480.0 5723770.0 591.37 2061 | 305480.0 5723780.0 592.12 2062 | 305480.0 5723790.0 592.04 2063 | 305480.0 5723800.0 592.10 2064 | 305480.0 5723810.0 592.18 2065 | 305480.0 5723820.0 590.93 2066 | 305480.0 5723830.0 589.75 2067 | 305480.0 5723840.0 590.97 2068 | 305480.0 5723850.0 591.29 2069 | 305480.0 5723860.0 590.38 2070 | 305480.0 5723870.0 589.95 2071 | 305480.0 5723880.0 588.97 2072 | 305480.0 5723890.0 588.36 2073 | 305480.0 5723900.0 588.78 2074 | 305480.0 5723910.0 588.55 2075 | 305480.0 5723920.0 588.90 2076 | 305480.0 5723930.0 589.37 2077 | 305480.0 5723940.0 589.41 2078 | 305480.0 5723950.0 588.99 2079 | 305480.0 5723960.0 589.23 2080 | 305480.0 5723970.0 589.20 2081 | 305480.0 5723980.0 588.74 2082 | 305480.0 5723990.0 588.01 2083 | 305480.0 5724000.0 586.95 2084 | 305480.0 5724010.0 585.36 2085 | 305480.0 5724020.0 584.91 2086 | 305480.0 5724030.0 584.85 2087 | 305480.0 5724040.0 584.79 2088 | 305480.0 5724050.0 584.77 2089 | 305480.0 5724060.0 584.71 2090 | 305480.0 5724070.0 584.29 2091 | 305480.0 5724080.0 583.16 2092 | 305480.0 5724090.0 581.54 2093 | 305480.0 5724100.0 581.33 2094 | 305480.0 5724110.0 577.15 2095 | 305480.0 5724120.0 582.04 2096 | 305480.0 5724130.0 572.82 2097 | 305480.0 5724140.0 575.07 2098 | 305480.0 5724150.0 572.25 2099 | 305480.0 5724160.0 562.12 2100 | 305480.0 5724170.0 556.54 2101 | 305480.0 5724180.0 553.03 2102 | 305480.0 5724190.0 544.40 2103 | 305480.0 5724200.0 535.60 2104 | 305480.0 5724210.0 532.98 2105 | 305480.0 5724220.0 531.81 2106 | 305480.0 5724230.0 529.59 2107 | 305490.0 5723700.0 585.50 2108 | 305490.0 5723710.0 585.48 2109 | 305490.0 5723720.0 585.41 2110 | 305490.0 5723730.0 585.40 2111 | 305490.0 5723740.0 585.36 2112 | 305490.0 5723750.0 585.35 2113 | 305490.0 5723760.0 585.35 2114 | 305490.0 5723770.0 585.35 2115 | 305490.0 5723780.0 585.34 2116 | 305490.0 5723790.0 585.34 2117 | 305490.0 5723800.0 585.33 2118 | 305490.0 5723810.0 585.32 2119 | 305490.0 5723820.0 585.31 2120 | 305490.0 5723830.0 585.32 2121 | 305490.0 5723840.0 585.31 2122 | 305490.0 5723850.0 585.30 2123 | 305490.0 5723860.0 585.28 2124 | 305490.0 5723870.0 585.27 2125 | 305490.0 5723880.0 585.26 2126 | 305490.0 5723890.0 585.24 2127 | 305490.0 5723900.0 585.19 2128 | 305490.0 5723910.0 585.17 2129 | 305490.0 5723920.0 585.16 2130 | 305490.0 5723930.0 585.13 2131 | 305490.0 5723940.0 585.11 2132 | 305490.0 5723950.0 585.07 2133 | 305490.0 5723960.0 585.03 2134 | 305490.0 5723970.0 585.01 2135 | 305490.0 5723980.0 584.98 2136 | 305490.0 5723990.0 584.96 2137 | 305490.0 5724000.0 584.94 2138 | 305490.0 5724010.0 584.77 2139 | 305490.0 5724020.0 584.41 2140 | 305490.0 5724030.0 583.32 2141 | 305490.0 5724040.0 584.03 2142 | 305490.0 5724050.0 584.32 2143 | 305490.0 5724060.0 584.63 2144 | 305490.0 5724070.0 584.61 2145 | 305490.0 5724080.0 576.42 2146 | 305490.0 5724090.0 575.26 2147 | 305490.0 5724100.0 573.38 2148 | 305490.0 5724110.0 568.50 2149 | 305490.0 5724120.0 563.64 2150 | 305490.0 5724130.0 557.01 2151 | 305490.0 5724140.0 552.47 2152 | 305490.0 5724150.0 553.55 2153 | 305490.0 5724160.0 550.07 2154 | 305490.0 5724170.0 547.60 2155 | 305490.0 5724180.0 543.65 2156 | 305490.0 5724190.0 533.79 2157 | 305490.0 5724200.0 528.21 2158 | 305490.0 5724210.0 523.58 2159 | 305490.0 5724220.0 519.92 2160 | 305490.0 5724230.0 515.53 2161 | 305500.0 5723700.0 584.24 2162 | 305500.0 5723710.0 584.05 2163 | 305500.0 5723720.0 585.06 2164 | 305500.0 5723730.0 584.66 2165 | 305500.0 5723740.0 583.70 2166 | 305500.0 5723750.0 583.66 2167 | 305500.0 5723760.0 584.27 2168 | 305500.0 5723770.0 584.48 2169 | 305500.0 5723780.0 584.66 2170 | 305500.0 5723790.0 584.62 2171 | 305500.0 5723800.0 584.39 2172 | 305500.0 5723810.0 584.38 2173 | 305500.0 5723820.0 584.64 2174 | 305500.0 5723830.0 584.99 2175 | 305500.0 5723840.0 585.79 2176 | 305500.0 5723850.0 587.39 2177 | 305500.0 5723860.0 588.38 2178 | 305500.0 5723870.0 588.74 2179 | 305500.0 5723880.0 589.22 2180 | 305500.0 5723890.0 589.38 2181 | 305500.0 5723900.0 589.72 2182 | 305500.0 5723910.0 589.86 2183 | 305500.0 5723920.0 593.55 2184 | 305500.0 5723930.0 593.24 2185 | 305500.0 5723940.0 589.83 2186 | 305500.0 5723950.0 589.00 2187 | 305500.0 5723960.0 587.11 2188 | 305500.0 5723970.0 587.56 2189 | 305500.0 5723980.0 586.43 2190 | 305500.0 5723990.0 583.52 2191 | 305500.0 5724000.0 580.77 2192 | 305500.0 5724010.0 579.11 2193 | 305500.0 5724020.0 576.99 2194 | 305500.0 5724030.0 573.84 2195 | 305500.0 5724040.0 570.00 2196 | 305500.0 5724050.0 568.81 2197 | 305500.0 5724060.0 565.78 2198 | 305500.0 5724070.0 566.17 2199 | 305500.0 5724080.0 565.33 2200 | 305500.0 5724090.0 565.03 2201 | 305500.0 5724100.0 563.63 2202 | 305500.0 5724110.0 560.50 2203 | 305500.0 5724120.0 556.67 2204 | 305500.0 5724130.0 552.08 2205 | 305500.0 5724140.0 546.67 2206 | 305500.0 5724150.0 541.53 2207 | 305500.0 5724160.0 536.83 2208 | 305500.0 5724170.0 534.87 2209 | 305500.0 5724180.0 529.37 2210 | 305500.0 5724190.0 520.76 2211 | 305500.0 5724200.0 518.27 2212 | 305500.0 5724210.0 516.92 2213 | 305500.0 5724220.0 513.64 2214 | 305500.0 5724230.0 510.80 2215 | 305510.0 5723700.0 577.75 2216 | 305510.0 5723710.0 578.34 2217 | 305510.0 5723720.0 578.71 2218 | 305510.0 5723730.0 581.12 2219 | 305510.0 5723740.0 582.20 2220 | 305510.0 5723750.0 580.09 2221 | 305510.0 5723760.0 580.75 2222 | 305510.0 5723770.0 581.54 2223 | 305510.0 5723780.0 581.82 2224 | 305510.0 5723790.0 582.17 2225 | 305510.0 5723800.0 583.78 2226 | 305510.0 5723810.0 582.50 2227 | 305510.0 5723820.0 584.36 2228 | 305510.0 5723830.0 587.26 2229 | 305510.0 5723840.0 587.91 2230 | 305510.0 5723850.0 588.88 2231 | 305510.0 5723860.0 588.98 2232 | 305510.0 5723870.0 590.14 2233 | 305510.0 5723880.0 593.02 2234 | 305510.0 5723890.0 596.31 2235 | 305510.0 5723900.0 602.25 2236 | 305510.0 5723910.0 599.78 2237 | 305510.0 5723920.0 594.92 2238 | 305510.0 5723930.0 594.18 2239 | 305510.0 5723940.0 594.23 2240 | 305510.0 5723950.0 588.33 2241 | 305510.0 5723960.0 584.28 2242 | 305510.0 5723970.0 586.13 2243 | 305510.0 5723980.0 583.85 2244 | 305510.0 5723990.0 580.20 2245 | 305510.0 5724000.0 574.61 2246 | 305510.0 5724010.0 569.46 2247 | 305510.0 5724020.0 569.87 2248 | 305510.0 5724030.0 566.58 2249 | 305510.0 5724040.0 562.43 2250 | 305510.0 5724050.0 558.55 2251 | 305510.0 5724060.0 553.93 2252 | 305510.0 5724070.0 552.66 2253 | 305510.0 5724080.0 556.49 2254 | 305510.0 5724090.0 556.82 2255 | 305510.0 5724100.0 556.22 2256 | 305510.0 5724110.0 553.75 2257 | 305510.0 5724120.0 550.24 2258 | 305510.0 5724130.0 546.44 2259 | 305510.0 5724140.0 541.37 2260 | 305510.0 5724150.0 535.78 2261 | 305510.0 5724160.0 530.87 2262 | 305510.0 5724170.0 525.84 2263 | 305510.0 5724180.0 519.22 2264 | 305510.0 5724190.0 515.68 2265 | 305510.0 5724200.0 513.24 2266 | 305510.0 5724210.0 511.41 2267 | 305510.0 5724220.0 509.28 2268 | 305510.0 5724230.0 508.70 2269 | 305520.0 5723700.0 567.52 2270 | 305520.0 5723710.0 569.59 2271 | 305520.0 5723720.0 571.10 2272 | 305520.0 5723730.0 569.13 2273 | 305520.0 5723740.0 569.60 2274 | 305520.0 5723750.0 569.51 2275 | 305520.0 5723760.0 567.89 2276 | 305520.0 5723770.0 569.72 2277 | 305520.0 5723780.0 573.20 2278 | 305520.0 5723790.0 568.71 2279 | 305520.0 5723800.0 568.04 2280 | 305520.0 5723810.0 571.25 2281 | 305520.0 5723820.0 577.46 2282 | 305520.0 5723830.0 580.79 2283 | 305520.0 5723840.0 580.99 2284 | 305520.0 5723850.0 581.03 2285 | 305520.0 5723860.0 581.96 2286 | 305520.0 5723870.0 581.02 2287 | 305520.0 5723880.0 579.70 2288 | 305520.0 5723890.0 581.70 2289 | 305520.0 5723900.0 583.44 2290 | 305520.0 5723910.0 583.61 2291 | 305520.0 5723920.0 583.42 2292 | 305520.0 5723930.0 579.99 2293 | 305520.0 5723940.0 577.98 2294 | 305520.0 5723950.0 577.98 2295 | 305520.0 5723960.0 576.21 2296 | 305520.0 5723970.0 576.82 2297 | 305520.0 5723980.0 575.85 2298 | 305520.0 5723990.0 571.32 2299 | 305520.0 5724000.0 569.83 2300 | 305520.0 5724010.0 561.51 2301 | 305520.0 5724020.0 559.65 2302 | 305520.0 5724030.0 558.06 2303 | 305520.0 5724040.0 556.00 2304 | 305520.0 5724050.0 552.49 2305 | 305520.0 5724060.0 547.77 2306 | 305520.0 5724070.0 546.68 2307 | 305520.0 5724080.0 549.34 2308 | 305520.0 5724090.0 549.08 2309 | 305520.0 5724100.0 547.44 2310 | 305520.0 5724110.0 545.27 2311 | 305520.0 5724120.0 542.82 2312 | 305520.0 5724130.0 539.63 2313 | 305520.0 5724140.0 536.04 2314 | 305520.0 5724150.0 530.89 2315 | 305520.0 5724160.0 526.15 2316 | 305520.0 5724170.0 521.09 2317 | 305520.0 5724180.0 515.21 2318 | 305520.0 5724190.0 512.11 2319 | 305520.0 5724200.0 509.07 2320 | 305520.0 5724210.0 508.68 2321 | 305520.0 5724220.0 508.68 2322 | 305520.0 5724230.0 508.68 2323 | 305530.0 5723700.0 559.78 2324 | 305530.0 5723710.0 558.91 2325 | 305530.0 5723720.0 559.86 2326 | 305530.0 5723730.0 559.57 2327 | 305530.0 5723740.0 559.53 2328 | 305530.0 5723750.0 559.10 2329 | 305530.0 5723760.0 559.32 2330 | 305530.0 5723770.0 559.95 2331 | 305530.0 5723780.0 560.12 2332 | 305530.0 5723790.0 560.48 2333 | 305530.0 5723800.0 560.10 2334 | 305530.0 5723810.0 561.01 2335 | 305530.0 5723820.0 565.67 2336 | 305530.0 5723830.0 568.23 2337 | 305530.0 5723840.0 570.98 2338 | 305530.0 5723850.0 574.01 2339 | 305530.0 5723860.0 573.35 2340 | 305530.0 5723870.0 572.51 2341 | 305530.0 5723880.0 570.87 2342 | 305530.0 5723890.0 571.97 2343 | 305530.0 5723900.0 572.55 2344 | 305530.0 5723910.0 571.52 2345 | 305530.0 5723920.0 567.49 2346 | 305530.0 5723930.0 566.63 2347 | 305530.0 5723940.0 566.16 2348 | 305530.0 5723950.0 566.26 2349 | 305530.0 5723960.0 568.34 2350 | 305530.0 5723970.0 569.15 2351 | 305530.0 5723980.0 565.37 2352 | 305530.0 5723990.0 561.57 2353 | 305530.0 5724000.0 556.11 2354 | 305530.0 5724010.0 551.87 2355 | 305530.0 5724020.0 551.32 2356 | 305530.0 5724030.0 550.30 2357 | 305530.0 5724040.0 548.70 2358 | 305530.0 5724050.0 546.27 2359 | 305530.0 5724060.0 542.95 2360 | 305530.0 5724070.0 540.38 2361 | 305530.0 5724080.0 542.22 2362 | 305530.0 5724090.0 541.21 2363 | 305530.0 5724100.0 539.96 2364 | 305530.0 5724110.0 538.94 2365 | 305530.0 5724120.0 536.59 2366 | 305530.0 5724130.0 533.63 2367 | 305530.0 5724140.0 530.15 2368 | 305530.0 5724150.0 526.39 2369 | 305530.0 5724160.0 521.46 2370 | 305530.0 5724170.0 516.72 2371 | 305530.0 5724180.0 511.28 2372 | 305530.0 5724190.0 508.69 2373 | 305530.0 5724200.0 508.67 2374 | 305530.0 5724210.0 508.67 2375 | 305530.0 5724220.0 508.67 2376 | 305530.0 5724230.0 508.68 2377 | 305540.0 5723700.0 549.56 2378 | 305540.0 5723710.0 551.02 2379 | 305540.0 5723720.0 552.28 2380 | 305540.0 5723730.0 552.40 2381 | 305540.0 5723740.0 552.19 2382 | 305540.0 5723750.0 551.68 2383 | 305540.0 5723760.0 552.12 2384 | 305540.0 5723770.0 552.66 2385 | 305540.0 5723780.0 552.49 2386 | 305540.0 5723790.0 553.25 2387 | 305540.0 5723800.0 553.27 2388 | 305540.0 5723810.0 553.82 2389 | 305540.0 5723820.0 556.51 2390 | 305540.0 5723830.0 560.21 2391 | 305540.0 5723840.0 560.40 2392 | 305540.0 5723850.0 564.05 2393 | 305540.0 5723860.0 563.42 2394 | 305540.0 5723870.0 561.48 2395 | 305540.0 5723880.0 561.44 2396 | 305540.0 5723890.0 561.69 2397 | 305540.0 5723900.0 561.48 2398 | 305540.0 5723910.0 559.66 2399 | 305540.0 5723920.0 557.86 2400 | 305540.0 5723930.0 556.89 2401 | 305540.0 5723940.0 555.87 2402 | 305540.0 5723950.0 555.03 2403 | 305540.0 5723960.0 557.40 2404 | 305540.0 5723970.0 556.48 2405 | 305540.0 5723980.0 552.06 2406 | 305540.0 5723990.0 549.69 2407 | 305540.0 5724000.0 543.98 2408 | 305540.0 5724010.0 544.92 2409 | 305540.0 5724020.0 544.05 2410 | 305540.0 5724030.0 543.16 2411 | 305540.0 5724040.0 541.77 2412 | 305540.0 5724050.0 539.73 2413 | 305540.0 5724060.0 537.16 2414 | 305540.0 5724070.0 533.97 2415 | 305540.0 5724080.0 534.55 2416 | 305540.0 5724090.0 534.24 2417 | 305540.0 5724100.0 533.57 2418 | 305540.0 5724110.0 532.12 2419 | 305540.0 5724120.0 530.16 2420 | 305540.0 5724130.0 527.89 2421 | 305540.0 5724140.0 524.83 2422 | 305540.0 5724150.0 520.74 2423 | 305540.0 5724160.0 516.40 2424 | 305540.0 5724170.0 511.34 2425 | 305540.0 5724180.0 508.71 2426 | 305540.0 5724190.0 508.67 2427 | 305540.0 5724200.0 508.68 2428 | 305540.0 5724210.0 508.67 2429 | 305540.0 5724220.0 508.67 2430 | 305540.0 5724230.0 508.68 2431 | 305550.0 5723700.0 542.09 2432 | 305550.0 5723710.0 543.32 2433 | 305550.0 5723720.0 545.09 2434 | 305550.0 5723730.0 544.92 2435 | 305550.0 5723740.0 544.82 2436 | 305550.0 5723750.0 543.91 2437 | 305550.0 5723760.0 544.11 2438 | 305550.0 5723770.0 545.20 2439 | 305550.0 5723780.0 545.02 2440 | 305550.0 5723790.0 545.58 2441 | 305550.0 5723800.0 546.21 2442 | 305550.0 5723810.0 547.17 2443 | 305550.0 5723820.0 547.70 2444 | 305550.0 5723830.0 548.53 2445 | 305550.0 5723840.0 553.70 2446 | 305550.0 5723850.0 556.53 2447 | 305550.0 5723860.0 553.60 2448 | 305550.0 5723870.0 553.63 2449 | 305550.0 5723880.0 553.29 2450 | 305550.0 5723890.0 551.98 2451 | 305550.0 5723900.0 552.00 2452 | 305550.0 5723910.0 551.62 2453 | 305550.0 5723920.0 549.09 2454 | 305550.0 5723930.0 548.87 2455 | 305550.0 5723940.0 546.40 2456 | 305550.0 5723950.0 545.00 2457 | 305550.0 5723960.0 543.29 2458 | 305550.0 5723970.0 541.91 2459 | 305550.0 5723980.0 539.40 2460 | 305550.0 5723990.0 534.29 2461 | 305550.0 5724000.0 535.89 2462 | 305550.0 5724010.0 537.02 2463 | 305550.0 5724020.0 536.75 2464 | 305550.0 5724030.0 536.30 2465 | 305550.0 5724040.0 535.41 2466 | 305550.0 5724050.0 532.86 2467 | 305550.0 5724060.0 531.23 2468 | 305550.0 5724070.0 528.12 2469 | 305550.0 5724080.0 527.46 2470 | 305550.0 5724090.0 527.37 2471 | 305550.0 5724100.0 526.98 2472 | 305550.0 5724110.0 525.83 2473 | 305550.0 5724120.0 524.25 2474 | 305550.0 5724130.0 521.73 2475 | 305550.0 5724140.0 519.50 2476 | 305550.0 5724150.0 515.67 2477 | 305550.0 5724160.0 511.51 2478 | 305550.0 5724170.0 508.74 2479 | 305550.0 5724180.0 508.67 2480 | 305550.0 5724190.0 508.68 2481 | 305550.0 5724200.0 508.68 2482 | 305550.0 5724210.0 508.68 2483 | 305550.0 5724220.0 508.68 2484 | 305550.0 5724230.0 508.68 2485 | --------------------------------------------------------------------------------