├── README.md
├── exams
├── 2018-19
│ ├── 2019-01-23
│ │ ├── 2019-01-23.ipynb
│ │ ├── 2019-01-23_solution.ipynb
│ │ ├── README.txt
│ │ └── dataset.csv
│ ├── 2019-02-21
│ │ ├── 2019-02-21.ipynb
│ │ ├── 2019-02-21_solution.ipynb
│ │ ├── README.txt
│ │ ├── corpus.txt
│ │ └── dataset.csv
│ ├── 2019-06-20
│ │ ├── 2019-06-20.ipynb
│ │ ├── 2019-06-20_solution.ipynb
│ │ ├── README.txt
│ │ ├── corpus.txt
│ │ └── dataset.csv
│ └── 2019-07-15
│ │ ├── 2019-07-15.ipynb
│ │ ├── 2019-07-15_solution.ipynb
│ │ ├── README.txt
│ │ └── dataset.csv
└── README.md
└── lectures
├── notebooks
├── Lecture_00_Preliminaries.ipynb
├── Lecture_01_Introduction_And_Environment_Setup.ipynb
├── Lecture_02_Python_Basics.ipynb
├── Lecture_03_Python_Data_Types_1.ipynb
├── Lecture_04_Python_Data_Types_2.ipynb
├── Lecture_05_Functions_IO.ipynb
├── Lecture_06_NumPy.ipynb
├── Lecture_06b_Linear_Algebra_Basics.ipynb
├── Lecture_07_Introduction_To_Pandas.ipynb
├── Lecture_08_Pandas_IO.ipynb
├── Lecture_09_Pandas_Data_Preparation.ipynb
├── Lecture_10_Matplotlib_Data_Visualization.ipynb
├── Lecture_11_A_Machine_Learning_Primer.ipynb
├── Lecture_12_The_Regression_Problem_Example_(Part_1).ipynb
├── Lecture_12_The_Regression_Problem_Example_(Part_2).ipynb
├── Lecture_13_The_Classification_Problem_Example_(Part_1).ipynb
├── Lecture_13_The_Classification_Problem_Example_(Part_2).ipynb
├── data
│ ├── auto-mpg-regression
│ │ ├── README.txt
│ │ ├── dataset.tsv
│ │ └── dataset.txt
│ ├── iris_dataset.csv
│ ├── loan-prediction
│ │ ├── README.txt
│ │ └── dataset.csv
│ ├── sample.json
│ ├── sample.txt
│ ├── sample_df.json
│ ├── sample_out.json
│ ├── tmp.txt
│ ├── user_occupations.pickle
│ ├── user_occupations.txt
│ └── user_occupations_no_header.txt
└── img
│ ├── abstraction-layers.png
│ ├── architecture.png
│ ├── arithmetic_ops.png
│ ├── associative_array.png
│ ├── binary.png
│ ├── boolean_ops.png
│ ├── built_in_types.png
│ ├── c-c++.png
│ ├── code_cell.png
│ ├── code_point.png
│ ├── comparisons.png
│ ├── computers.png
│ ├── cpu-decode.png
│ ├── cpu-execute.png
│ ├── cpu-fetch.png
│ ├── cpu.png
│ ├── data_science.jpg
│ ├── decimal.png
│ ├── encoding.png
│ ├── file_methods.png
│ ├── file_open_mode.png
│ ├── function_call.png
│ ├── hash_table.png
│ ├── hello_world.png
│ ├── input-device.png
│ ├── ipython_kernel_and_terminal.png
│ ├── java.jpg
│ ├── join_types.jpg
│ ├── jupyter_logo.svg
│ ├── launch_python.png
│ ├── markdown_cell.png
│ ├── markdown_cell_1.png
│ ├── markdown_cell_2.png
│ ├── markdown_cell_3.png
│ ├── markdown_cell_4.png
│ ├── matplotlib_savefig.png
│ ├── matplotlib_subplots.png
│ ├── ml_bias_variance.png
│ ├── ml_dataset_splitting.png
│ ├── ml_feature_engineering.png
│ ├── ml_labeled_dataset_1.png
│ ├── ml_labeled_dataset_2.png
│ ├── ml_models.png
│ ├── ml_mse_convex.png
│ ├── ml_overview.png
│ ├── ml_preprocessing_catcon.png
│ ├── ml_preprocessing_collinearity.png
│ ├── ml_preprocessing_imbalance.png
│ ├── ml_preprocessing_na.png
│ ├── ml_preprocessing_outliers.png
│ ├── ml_preprocessing_scale.png
│ ├── ml_preprocessing_sparsity.png
│ ├── ndarray_vs_list.png
│ ├── notebook_dashboard.png
│ ├── notebook_interface.png
│ ├── np_binary_ufuncs.png
│ ├── np_creation.png
│ ├── np_dtypes_1.png
│ ├── np_dtypes_2.png
│ ├── np_indexing.png
│ ├── np_lin_alg_funcs.png
│ ├── np_random_funcs.png
│ ├── np_set_funcs.png
│ ├── np_slicing.png
│ ├── np_stat_funcs.png
│ ├── np_unary_ufuncs_1.png
│ ├── np_unary_ufuncs_2.png
│ ├── other_kernels.png
│ ├── output-device.png
│ ├── pandas.png
│ ├── pandas_plot_1.png
│ ├── pandas_plot_2.png
│ ├── pandas_plot_df.png
│ ├── pd_aggregate_stats_1.png
│ ├── pd_aggregate_stats_2.png
│ ├── pd_arithmetics.png
│ ├── pd_concat.png
│ ├── pd_dataframe_1.png
│ ├── pd_dataframe_2.png
│ ├── pd_freq.png
│ ├── pd_index.png
│ ├── pd_index_methods.png
│ ├── pd_indexing.png
│ ├── pd_io_read_1.png
│ ├── pd_io_read_2.png
│ ├── pd_io_read_csv_1.png
│ ├── pd_io_read_csv_2.png
│ ├── pd_merge_args_1.png
│ ├── pd_merge_args_2.png
│ ├── pd_merge_how.png
│ ├── ram-address.png
│ ├── ram-bit.png
│ ├── ram-cell-4.png
│ ├── ram-cell.png
│ ├── ram.png
│ ├── rebinding.png
│ ├── reference.png
│ ├── reference2.png
│ ├── scalar_vs_simd.png
│ ├── sequence_ops.png
│ ├── set_ops_1.png
│ ├── set_ops_2.png
│ ├── skewness.jpeg
│ ├── slicing.png
│ ├── vonneumann-architecture.png
│ ├── vonneumann.png
│ ├── xkcd_ml_1.png
│ └── xkcd_ml_2.png
└── slides
├── Lecture_00_Preliminaries.pdf
├── Lecture_01_Introduction_And_Environment_Setup.pdf
├── Lecture_02_Python_Basics.pdf
├── Lecture_03_Python_Data_Types_1.pdf
├── Lecture_04_Python_Data_Types_2.pdf
├── Lecture_05_Functions_IO.pdf
├── Lecture_06_NumPy.pdf
├── Lecture_06b_Linear_Algebra_Basics.pdf
├── Lecture_07_Introduction_To_Pandas.pdf
├── Lecture_08_Pandas_IO.pdf
├── Lecture_10_Matplotlib_Data_Visualization.pdf
├── Lecture_11_A_Machine_Learning_Primer.pdf
└── Lecture_14_Deep_Dive_On_Logistic_Regression.pdf
/README.md:
--------------------------------------------------------------------------------
1 | # Python Programming for Data Science
2 |
3 | ## General Info
4 |
5 | Welcome to Python Programming for Data Science!
6 |
7 | This is a first-year course of the [MSc in Data Science of the University of Padova](https://datascience.math.unipd.it/). Indeed, it is one of the three modules which the course "_Fundamentals of Information Systems_" is made of.
8 |
9 | This repository contains lecture materials (in the form of Jupyter Notebook and PDF slides) as well as exercises from the 2018-19 examination sessions (with solutions).
10 |
11 |
12 | ## Course Goal
13 |
14 | The goal of this module is to teach the basics of the Python programming language along with a special focus on Data Science. In particular, students will become familiar with Python packages that are widely used by the community of data scientists and machine learning practicioners, such as ```numpy```, ```scipy```, ```pandas```, ```seaborn```, and ```scikit-learn```, just to name a few.
15 | Eventually, at the end of this module students are expected to be able to implement all the stages of a typical machine learning pipeline: from collecting data to building predictive models for solving either a regression or a classification problem.
16 | A full detailed description of the course is available [here](https://en.didattica.unipd.it/off/2018/LM/SC/SC2377/000ZZ/SCP7078720/N0).
17 |
18 | ## Course Syllabus
19 | Python Programming for Data Science provides students with the foundational coding skills they need as data scientists.
20 |
21 | We start our journey with an exhaustive tutorial on how to properly set up your environment, which is used throughout the class. Essentially, this consists of:
22 |
23 | - Installing **Python 3.x** (we will be using Python 3.6 installed via [Anaconda](https://www.anaconda.com/) in this class)
24 | - Installing and setting up [Jupyter Notebook](https://jupyter.org/)
25 |
26 | Then, we move to discussing the basics of the Python programming language:
27 |
28 | - Python object model
29 | - built-in data types
30 | - fuctions
31 | - I/O
32 |
33 | Finally, we will dig into a set of the most up-to-date data science Python packages, such as:
34 |
35 | - ```numpy```/```scipy``` (for numerical/scientific computing)
36 | - ```pandas``` (for data manipulation)
37 | - ```matplotlib```/```seaborn``` (for data visualization)
38 | - ```scikit-learn``` (for machine learning tasks like regression and classification).
39 |
40 | ## Class Schedule
41 |
42 | | Lecture \# | Topics | Class Material |
43 | |------------|-----------------------------------------------|----------------|
44 | | Lecture 0 | Preliminary computer science concepts | [Notebook](./lectures/notebooks/Lecture_00_Preliminaries.ipynb), [Slides](./lectures/slides/Lecture_00_Preliminaries.pdf) |
45 | | Lecture 1 | Introduction and environment setup | [Notebook](./lectures/notebooks/Lecture_01_Introduction_And_Environment_Setup.ipynb), [Slides](./lectures/slides/Lecture_01_Introduction_And_Environment_Setup.pdf) |
46 | | Lecture 2 | Python basics | [Notebook](./lectures/notebooks/Lecture_02_Python_Basics.ipynb), [Slides](./lectures/slides/Lecture_02_Python_Basics.pdf) |
47 | | Lecture 3 | Python's built-in data types (Part I) | [Notebook](./lectures/notebooks/Lecture_03_Python_Data_Types_1.ipynb), [Slides](./lectures/slides/Lecture_03_Python_Data_Types_1.pdf) |
48 | | Lecture 4 | Python's built-in data types (Part II) | [Notebook](./lectures/notebooks/Lecture_04_Python_Data_Types_2.ipynb), [Slides](./lectures/slides/Lecture_04_Python_Data_Types_2.pdf) |
49 | | Lecture 5 | Functions & I/O | [Notebook](./lectures/notebooks/Lecture_05_Functions_IO.ipynb), [Slides](./lectures/slides/Lecture_05_Functions_IO.pdf) |
50 | | Lecture 6 | ```numpy``` package | [Notebook](./lectures/notebooks/Lecture_06_NumPy.ipynb), [Slides](./lectures/slides/Lecture_06_NumPy.pdf) |
51 | | Lecture 6b | Review of linear algebra basics | [Notebook](./lectures/notebooks/Lecture_06b_Linear_Algebra_Basics.ipynb), [Slides](./lectures/slides/Lecture_06b_Linear_Algebra_Basics.pdf) |
52 | | Lecture 7 | Introduction to ```pandas``` package | [Notebook](./lectures/notebooks/Lecture_07_Introduction_To_Pandas.ipynb), [Slides](./lectures/slides/Lecture_07_Introduction_To_Pandas.pdf) |
53 | | Lecture 8 | I/O with ```pandas``` | [Notebook](./lectures/notebooks/Lecture_08_Pandas_IO.ipynb), [Slides](./lectures/slides/Lecture_08_Pandas_IO.pdf) |
54 | | Lecture 9 | Data preparation with ```pandas``` | [Notebook](./lectures/notebooks/Lecture_09_Pandas_Data_Preparation.ipynb), [Slides](./lectures/slides/Lecture_09_Pandas_Data_Preparation.pdf) |
55 | | Lecture 10 | Data visualization with ```matplotlib``` | [Notebook](./lectures/notebooks/Lecture_10_Matplotlib_Data_Visualization.ipynb), [Slides](./lectures/slides/Lecture_10_Matplotlib_Data_Visualization.pdf) |
56 | | Lecture 11 | A Machine Learning Primer (seminar) | [Notebook](./lectures/notebooks/Lecture_11_A_Machine_Learning_Primer.ipynb), [Slides](./lectures/slides/Lecture_11_A_Machine_Learning_Primer.pdf) |
57 | | Lecture 12 | The Regression Problem: Example (Part I) | [Notebook](./lectures/notebooks/Lecture_12_The_Regression_Problem_Example_(Part_1).ipynb)|
58 | | Lecture 13 | The Regression Problem: Example (Part II) | [Notebook](.lectures/notebooks/Lecture_12_The_Regression_Problem_Example_(Part_2).ipynb)|
59 | | Lecture 14 | The Classification Problem: Example (Part I) | [Notebook](./lectures/notebooks/Lecture_13_The_Classification_Problem_Example_(Part_1).ipynb)|
60 | | Lecture 15 | The Classification Problem: Example (Part II) | [Notebook](./lectures/notebooks/Lecture_13_The_Classification_Problem_Example_(Part_2).ipynb)|
61 | | Lecture 16 | Logistic Regression Demystified (seminar) | [Slides](./lectures/slides/Lecture_14_Deep_Dive_On_Logistic_Regression.pdf) |
62 |
63 |
--------------------------------------------------------------------------------
/exams/2018-19/2019-01-23/README.txt:
--------------------------------------------------------------------------------
1 | This is a sample of 1,000 instances from the data which was originally extracted from the census bureau database found at http://www.census.gov/ftp/pub/DES/www/welcome.html
2 | Donor: Ronny Kohavi and Barry Becker,
3 | Data Mining and Visualization
4 | Silicon Graphics.
5 | e-mail: ronnyk@sgi.com for questions.
6 | ---------------------------------------------------------------------------------------------------------
7 | Description of 14 features:
8 | age: [continuous].
9 | workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
10 | fnlwgt: a demographic indicator computed from the census bureau database [continuous].
11 | education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
12 | education_num: [continuous].
13 | marital_status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
14 | occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
15 | relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
16 | race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
17 | sex: Female, Male.
18 | capital_gain: [continuous].
19 | capital_loss: [continuous].
20 | hours_per_week: weekly working hours [continuous].
21 | native_country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
22 | ---------------------------------------------------------------------------------------------------------
23 | Binary label:
24 | income_greater_than_50k: +1/-1
25 |
--------------------------------------------------------------------------------
/exams/2018-19/2019-02-21/README.txt:
--------------------------------------------------------------------------------
1 | About this Dataset
2 |
3 | This data set contains 721 unique Pokemons, including their number (ID), name, first and second type, and basic stats: HP, Attack, Defense, Special Attack, Special Defense, and Speed. It has been of great use when teaching statistics to kids. With certain types you can also give a geeky introduction to machine learning.
4 |
5 | This are the raw attributes that are used for calculating how much damage an attack will do in the games. This dataset is about the pokemon games (NOT pokemon cards or Pokemon Go).
6 |
7 | The data as described by Myles O'Neill is:
8 |
9 | #: ID for each pokemon
10 | Name: Name of each pokemon
11 | Type 1: Each pokemon has a type, this determines weakness/resistance to attacks
12 | Type 2: Some pokemon are dual type and have 2
13 | Total: sum of all stats that come after this, a general guide to how strong a pokemon is
14 | HP: hit points, or health, defines how much damage a pokemon can withstand before fainting
15 | Attack: the base modifier for normal attacks (e.g., Scratch, Punch)
16 | Defense: the base damage resistance against normal attacks
17 | SP Atk: special attack, the base modifier for special attacks (e.g., fire blast, bubble beam)
18 | SP Def: the base damage resistance against special attacks
19 | Speed: determines which pokemon attacks first each round
20 |
21 | The data for this table has been acquired from several different sites, including:
22 |
23 | pokemon.com
24 | pokemondb
25 | bulbapedia
--------------------------------------------------------------------------------
/exams/2018-19/2019-06-20/README.txt:
--------------------------------------------------------------------------------
1 | About this Dataset
2 |
3 | This data set contains 1781 unique anonymised URLs, along with a set of 18 features and a binary class label (TYPE), which indicates whether the corresponding URL is malicious (1) or not (0).
4 |
5 | Below is a detailed description of this dataset.
6 |
7 | - URL: it is the anonimous identification of the URL analyzed in the study.
8 | - URL_LENGTH: it is the number of characters in the URL.
9 | - NUMBER_SPECIAL_CHARACTERS: it is number of special characters identified in the URL, such as, "/", "%", "#", "&", ". ", "=".
10 | - CHARSET: it is a categorical value and its meaning is the character encoding standard (also called character set).
11 | - SERVER: it is a categorical value and its meaning is the operative system of the server got from the packet response.
12 | - CONTENT_LENGTH: it represents the content size (in bytes) of the HTTP header.
13 | - WHOIS_COUNTRY: it is a categorical variable, its values are the countries we got from the server response (specifically, our script used the API of Whois).
14 | - WHOIS_STATEPRO: it is a categorical variable, its values are the states we got from the server response (specifically, our script used the API of Whois).
15 | - WHOIS_REGDATE: Whois provides the server registration date, so this variable has date values with format DD/MM/YYY HH:MM
16 | - WHOIS_UPDATED_DATE: through the Whois we got the last update date from the server analyzed.
17 | - TCP_CONVERSATION_EXCHANGE: this variable is the number of TCP packets exchanged between the server and our honeypot client.
18 | - DIST_REMOTE_TCP_PORT: it is the number of the ports detected and different to TCP.
19 | - REMOTE_IPS: this variable has the total number of IPs connected to the honeypot.
20 | - APP_BYTES: this is the number of bytes transfered.
21 | - SOURCE_APP_PACKETS: packets sent from the honeypot to the server.
22 | - REMOTE_APP_PACKETS: packets received from the server.
23 | - APP_PACKETS: this is the total number of IP packets generated during the communication between the honeypot and the server.
24 | - DNS_QUERY_TIMES: this is the number of DNS packets generated during the communication between the honeypot and the server.
25 | - TYPE: this is a categorical variable, its values represent the type of web page analyzed, specifically, 1 is for malicious websites and 0 is for benign websites.
--------------------------------------------------------------------------------
/exams/2018-19/2019-07-15/README.txt:
--------------------------------------------------------------------------------
1 | About this Dataset
2 |
3 | This data set contains 1781 unique anonymised URLs, along with a set of 18 features and a binary class label (TYPE), which indicates whether the corresponding URL is malicious (1) or not (0).
4 |
5 | Below is a detailed description of this dataset.
6 |
7 | - URL: it is the anonimous identification of the URL analyzed in the study.
8 | - URL_LENGTH: it is the number of characters in the URL.
9 | - NUMBER_SPECIAL_CHARACTERS: it is number of special characters identified in the URL, such as, "/", "%", "#", "&", ". ", "=".
10 | - CHARSET: it is a categorical value and its meaning is the character encoding standard (also called character set).
11 | - SERVER: it is a categorical value and its meaning is the operative system of the server got from the packet response.
12 | - CONTENT_LENGTH: it represents the content size (in bytes) of the HTTP header.
13 | - WHOIS_COUNTRY: it is a categorical variable, its values are the countries we got from the server response (specifically, our script used the API of Whois).
14 | - WHOIS_STATEPRO: it is a categorical variable, its values are the states we got from the server response (specifically, our script used the API of Whois).
15 | - WHOIS_REGDATE: Whois provides the server registration date, so this variable has date values with format DD/MM/YYY HH:MM
16 | - WHOIS_UPDATED_DATE: through the Whois we got the last update date from the server analyzed.
17 | - TCP_CONVERSATION_EXCHANGE: this variable is the number of TCP packets exchanged between the server and our honeypot client.
18 | - DIST_REMOTE_TCP_PORT: it is the number of the ports detected and different to TCP.
19 | - REMOTE_IPS: this variable has the total number of IPs connected to the honeypot.
20 | - APP_BYTES: this is the number of bytes transfered.
21 | - SOURCE_APP_PACKETS: packets sent from the honeypot to the server.
22 | - REMOTE_APP_PACKETS: packets received from the server.
23 | - APP_PACKETS: this is the total number of IP packets generated during the communication between the honeypot and the server.
24 | - DNS_QUERY_TIMES: this is the number of DNS packets generated during the communication between the honeypot and the server.
25 | - TYPE: this is a categorical variable, its values represent the type of web page analyzed, specifically, 1 is for malicious websites and 0 is for benign websites.
--------------------------------------------------------------------------------
/exams/README.md:
--------------------------------------------------------------------------------
1 | # Examination Sessions
2 |
3 | These folders contain exercises as part of 2018-19 examination sessions.
4 |
--------------------------------------------------------------------------------
/lectures/notebooks/Lecture_00_Preliminaries.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "slideshow": {
7 | "slide_type": "slide"
8 | }
9 | },
10 | "source": [
11 | "# Fundamentals of Information Systems\n",
12 | "\n",
13 | "## Python Programming (for Data Science)\n",
14 | "\n",
15 | "### Master's Degree in Data Science\n",
16 | "\n",
17 | "#### Gabriele Tolomei\n",
18 | "gtolomei@math.unipd.it \n",
19 | "University of Padua, Italy \n",
20 | "2018/2019 \n",
21 | "October 8, 2018"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {
27 | "slideshow": {
28 | "slide_type": "slide"
29 | }
30 | },
31 | "source": [
32 | "# Lecture 0: Preliminaries"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {
38 | "slideshow": {
39 | "slide_type": "slide"
40 | }
41 | },
42 | "source": [
43 | "# Course Structure\n",
44 | "\n",
45 | "- This course is made of **3** distinct modules, each one covering a specific set of topics:\n",
46 | "\n",
47 | " - **Python Programming (for Data Science)** (40 hours, taught by **Dr. Gabriele Tolomei**);\n",
48 | " - **Database Technologies** (24 hours, taught by **Dr. Nicolò Navarin**);\n",
49 | " - **Computer Networking** (32 hours, taught by **Dr. Armir Bujari**). "
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {
55 | "slideshow": {
56 | "slide_type": "slide"
57 | }
58 | },
59 | "source": [
60 | "# Course Info\n",
61 | "\n",
62 | "- We use **Moodle** for sharing communications and materials for this course (lectures, exercises, etc.).\n",
63 | "- **NOTE**: If you haven't already done it, please subscribe to the Moodle's class page at the following address: https://elearning.unipd.it/math/course/view.php?id=321\n",
64 | "- You are encouraged to ask for a meeting with the teacher in case you need any clarification: just drop us an email, and we will do our best to satisfy your request (provided you do it with a _reasonable_ notice!)."
65 | ]
66 | },
67 | {
68 | "cell_type": "markdown",
69 | "metadata": {
70 | "slideshow": {
71 | "slide_type": "slide"
72 | }
73 | },
74 | "source": [
75 | "# _This_ Module's Objectives\n",
76 | "\n",
77 | "- This module is meant to teach you the **fundamental skills of Python programming** with a special focus on data science tasks.\n",
78 | "\n",
79 | "- Firstly, you will learn the **basics** of Python programming :)\n",
80 | "\n",
81 | "- On top of the above, you will learn the \"nuts and bolts\" of _manipulating_, _processing_, _cleaning_, and _crunching_ **data with Python**.\n",
82 | "\n",
83 | "- Ultimately, you will be equipped with the toolbox you need to become a _real_ **data scientist**!"
84 | ]
85 | },
86 | {
87 | "cell_type": "markdown",
88 | "metadata": {
89 | "slideshow": {
90 | "slide_type": "slide"
91 | }
92 | },
93 | "source": [
94 | "# Course Prerequisites\n",
95 | "\n",
96 | "- Fundamentals of (von Neumann) **computer architecture** (*CPU*, *memory hierarchy*) and **operating systems** (*program* vs. *process*).\n",
97 | "\n",
98 | "- Very basic **coding** skills (not necessarily in Python): _variables_, _assignment_, _function call_, etc.\n",
99 | "\n",
100 | "- Some familiarity with **Unix-like shell** commands.\n",
101 | "\n",
102 | "- A laptop! (If some of you don't have one, please let me know and we will find out a solution)."
103 | ]
104 | },
105 | {
106 | "cell_type": "markdown",
107 | "metadata": {
108 | "slideshow": {
109 | "slide_type": "slide"
110 | }
111 | },
112 | "source": [
113 | "# Plus\n",
114 | "\n",
115 | "- Later on, we may occasionally need to refer to common data science concepts, methodologies, and techniques:\n",
116 | " - **Probability and Statistics**: probability distributions, random variables, expectation, mean, variance, sampling, tests of statistical significance, etc.\n",
117 | " - **Machine Learning**: supervised/unsupervised learning, training/test set, bias-variance tradeoff, learning algorithms, etc."
118 | ]
119 | },
120 | {
121 | "cell_type": "markdown",
122 | "metadata": {
123 | "slideshow": {
124 | "slide_type": "slide"
125 | }
126 | },
127 | "source": [
128 | "# Exams\n",
129 | "\n",
130 | "- A **single**, **unified** written test divided into **3** sections, i.e., one for each module. \n",
131 | "- How each section is organized depends on the module it refers to;\n",
132 | "- For instance, concerning **_this_** module you may expect to be asked to solve **coding exercises** and, possibly, answer **theoretical questions**.\n",
133 | "- **Don't worry now**! There will be time to discuss about exams many times in the future!"
134 | ]
135 | },
136 | {
137 | "cell_type": "markdown",
138 | "metadata": {
139 | "slideshow": {
140 | "slide_type": "slide"
141 | }
142 | },
143 | "source": [
144 | "# (Quick) Recap\n",
145 | "\n",
146 | "- How computer works?\n",
147 | " - von Neumann computing model: **CPU** + **RAM** + **I/O**\n",
148 | "- Abstraction layers (from the \"physical\" machine)\n",
149 | " - from machine language to higher-level languages (e.g., **C/C++**, **Java**, **Python**)\n",
150 | "- What does _actually_ mean programming a computer?"
151 | ]
152 | },
153 | {
154 | "cell_type": "markdown",
155 | "metadata": {
156 | "slideshow": {
157 | "slide_type": "slide"
158 | }
159 | },
160 | "source": [
161 | "# Computers are _everywhere_, seriously!\n",
162 | "\n",
163 | " \n",
164 | "
 "
165 | ]
166 | },
167 | {
168 | "cell_type": "markdown",
169 | "metadata": {
170 | "slideshow": {
171 | "slide_type": "slide"
172 | }
173 | },
174 | "source": [
175 | "# Conceptually, they are all the same!\n",
176 | "\n",
177 | " \n",
178 | "They all follow the same architectural model introduced by **John von Neumann** back in 1945\n",
179 | " \n",
180 | " "
181 | ]
182 | },
183 | {
184 | "cell_type": "markdown",
185 | "metadata": {
186 | "slideshow": {
187 | "slide_type": "slide"
188 | }
189 | },
190 | "source": [
191 | "# von Neumann's Computing Architecture\n",
192 | "\n",
193 | " \n",
194 | " \n",
195 | "Source: [Wikipedia](https://en.wikipedia.org/wiki/Von_Neumann_architecture#/media/File:Von_Neumann_Architecture.svg) "
196 | ]
197 | },
198 | {
199 | "cell_type": "markdown",
200 | "metadata": {
201 | "slideshow": {
202 | "slide_type": "slide"
203 | }
204 | },
205 | "source": [
206 | "# von Neumann's Computing Architecture: Input\n",
207 | "\n",
208 | " \n",
209 | " "
210 | ]
211 | },
212 | {
213 | "cell_type": "markdown",
214 | "metadata": {
215 | "slideshow": {
216 | "slide_type": "slide"
217 | }
218 | },
219 | "source": [
220 | "# von Neumann's Computing Architecture: Output\n",
221 | "\n",
222 | " \n",
223 | " "
224 | ]
225 | },
226 | {
227 | "cell_type": "markdown",
228 | "metadata": {
229 | "slideshow": {
230 | "slide_type": "slide"
231 | }
232 | },
233 | "source": [
234 | "# von Neumann's Computing Architecture: CPU\n",
235 | "\n",
236 | "- The **C**entral **P**rocessing **U**nit (**CPU**) is meant of executing _sequences of instructions_, one instruction by the other.\n",
237 | "- Each instruction encodes basic arithmetic and logic computations, using CPU's internal registers.\n",
238 | " "
239 | ]
240 | },
241 | {
242 | "cell_type": "markdown",
243 | "metadata": {
244 | "slideshow": {
245 | "slide_type": "slide"
246 | }
247 | },
248 | "source": [
249 | "# von Neumann's Computing Architecture: RAM\n",
250 | "\n",
251 | "- **R**andom **A**ccess **M**emory (**RAM**) contains _instructions_ and _data_, which instructions operate on\n",
252 | " "
253 | ]
254 | },
255 | {
256 | "cell_type": "markdown",
257 | "metadata": {
258 | "slideshow": {
259 | "slide_type": "slide"
260 | }
261 | },
262 | "source": [
263 | "# A Closer Look into Main Memory (RAM)\n",
264 | "\n",
265 | "- Represented as a sequence (i.e., array) of contiguous **cells**, a.k.a. **locations**.\n",
266 | "\n",
267 | "- Each memory cell is logically organized into groups of **8 bits** (**1 byte**) each, or multiple of it (e.g., 32 bits = 4 bytes).\n",
268 | "\n",
269 | "- Each cell is uniquely identified by its own **memory address**.\n",
270 | "\n",
271 | "- CPU and I/O units may read from/write to main memory by specifying memory address.\n",
272 | "\n",
273 | "- Addressing is usually performed at the single byte level."
274 | ]
275 | },
276 | {
277 | "cell_type": "markdown",
278 | "metadata": {
279 | "slideshow": {
280 | "slide_type": "slide"
281 | }
282 | },
283 | "source": [
284 | "# Binary Digit (Bit)\n",
285 | "\n",
286 | "- Can take on **2** possible values: **0**
or **1**
.\n",
287 | "\n",
288 | "- Suitable encoding to represent the smallest amount of information (e.g., voltage of digital circuits).\n",
289 | "\n",
290 | " "
291 | ]
292 | },
293 | {
294 | "cell_type": "markdown",
295 | "metadata": {
296 | "slideshow": {
297 | "slide_type": "slide"
298 | }
299 | },
300 | "source": [
301 | "# Memory Cell/Location\n",
302 | "\n",
303 | " \n",
304 | " "
305 | ]
306 | },
307 | {
308 | "cell_type": "markdown",
309 | "metadata": {
310 | "slideshow": {
311 | "slide_type": "slide"
312 | }
313 | },
314 | "source": [
315 | "# Memory Cell/Location\n",
316 | "\n",
317 | " \n",
318 | " "
319 | ]
320 | },
321 | {
322 | "cell_type": "markdown",
323 | "metadata": {
324 | "slideshow": {
325 | "slide_type": "slide"
326 | }
327 | },
328 | "source": [
329 | "# Memory Address\n",
330 | "\n",
331 | " \n",
332 | " "
333 | ]
334 | },
335 | {
336 | "cell_type": "markdown",
337 | "metadata": {
338 | "slideshow": {
339 | "slide_type": "slide"
340 | }
341 | },
342 | "source": [
343 | "# CPU Interpreter\n",
344 | "\n",
345 | "- The CPU realizes an **interpreter** which cyclically does the following **3** operations:\n",
346 | "\n",
347 | " - **Fetch**: retrieve from main memory an instruction which is stored at a specific address whose value is contained in a dedicated CPU register, called **Program Counter**;\n",
348 | " - **Decode**: decode the retrieved instruction;\n",
349 | " - **Execute**: execute the decoded instruction."
350 | ]
351 | },
352 | {
353 | "cell_type": "markdown",
354 | "metadata": {
355 | "slideshow": {
356 | "slide_type": "slide"
357 | }
358 | },
359 | "source": [
360 | "# Machine Language\n",
361 | "\n",
362 | "- Defines a set of (elementary) instructions which the CPU interpreter is able to execute directly.\n",
363 | "\n",
364 | "- Such a language is expressed using **binary numerical system**.\n",
365 | "\n",
366 | "- In other words, each instruction of a specific machine language must be encoded as a **sequence of bits**."
367 | ]
368 | },
369 | {
370 | "cell_type": "markdown",
371 | "metadata": {
372 | "slideshow": {
373 | "slide_type": "slide"
374 | }
375 | },
376 | "source": [
377 | "# Binary vs. Decimal Numerical System\n",
378 | "\n",
379 | "- In the **decimal numerical system** (base 10), each digit can take only one out of **10** possible values: **0**
, **1**
, ..., **9**
.\n",
380 | "  \n",
381 | " \n",
382 | "- In the **binary numerical system** (base 2), each digit is a bit:\n",
383 | "  "
384 | ]
385 | },
386 | {
387 | "cell_type": "markdown",
388 | "metadata": {
389 | "slideshow": {
390 | "slide_type": "slide"
391 | }
392 | },
393 | "source": [
394 | "# Machine Language: Specifications\n",
395 | "\n",
396 | "- Instructions defined by a machine language are composed of **2** parts:\n",
397 | " - An **operator** (**op code**
);\n",
398 | " - One or more **operands** representing either CPU's internal registers or main memory addresses.\n",
399 | "- The collection of instructions defined by a certain machine language (i.e., **instruction set**) is specific to a hardware implementation: e.g., _Intel x86_, _ARM_, _Sparc_, _MIPS_.\n",
400 | "\n",
401 | "- In a nutshell, machine language indicates the number of bits each instruction dedicates to the operator and operands."
402 | ]
403 | },
404 | {
405 | "cell_type": "markdown",
406 | "metadata": {
407 | "slideshow": {
408 | "slide_type": "slide"
409 | }
410 | },
411 | "source": [
412 | "# CPU Cycle: 1. Fetch\n",
413 | "\n",
414 | " \n",
415 | " "
416 | ]
417 | },
418 | {
419 | "cell_type": "markdown",
420 | "metadata": {
421 | "slideshow": {
422 | "slide_type": "slide"
423 | }
424 | },
425 | "source": [
426 | "# CPU Cycle: 2. Decode\n",
427 | "\n",
428 | " \n",
429 | " "
430 | ]
431 | },
432 | {
433 | "cell_type": "markdown",
434 | "metadata": {
435 | "slideshow": {
436 | "slide_type": "slide"
437 | }
438 | },
439 | "source": [
440 | "# CPU Cycle: 3. Execute\n",
441 | "\n",
442 | " \n",
443 | " "
444 | ]
445 | },
446 | {
447 | "cell_type": "markdown",
448 | "metadata": {
449 | "slideshow": {
450 | "slide_type": "slide"
451 | }
452 | },
453 | "source": [
454 | "# Instructions vs. Data\n",
455 | "\n",
456 | "- According to the von Neumann's architecture, memory cells contains **both** instructions and data.\n",
457 | "\n",
458 | "- CPU wouldn't be able to distinguish between those by simply \"reading\" a bit sequence stored at a given memory address.\n",
459 | "\n",
460 | "- The **Program Counter** register allows separating instructions from data as it _always_ contains the memory address of an instruction."
461 | ]
462 | },
463 | {
464 | "cell_type": "markdown",
465 | "metadata": {
466 | "slideshow": {
467 | "slide_type": "slide"
468 | }
469 | },
470 | "source": [
471 | "# Back to Machine Language\n",
472 | "\n",
473 | "- (Binary) Machine language indicates how to write a (representation of a) **program** which is the closest to the bare metal machine (hardware).\n",
474 | "\n",
475 | "- Theoretically, we could write programs using machine language instructions, directly.\n",
476 | "\n",
477 | "- In practice, though, this would be totally insane! (Think about how complex are programs running on our computers, smartphones, etc.).\n",
478 | "\n",
479 | "- **SOLUTION**: abstracting low-level machine language using higher-level languages that are closer to our natural language."
480 | ]
481 | },
482 | {
483 | "cell_type": "markdown",
484 | "metadata": {
485 | "slideshow": {
486 | "slide_type": "slide"
487 | }
488 | },
489 | "source": [
490 | "# Abstraction Layers\n",
491 | "\n",
492 | " \n",
493 | " "
494 | ]
495 | },
496 | {
497 | "cell_type": "markdown",
498 | "metadata": {
499 | "slideshow": {
500 | "slide_type": "slide"
501 | }
502 | },
503 | "source": [
504 | "# Abstraction Layers\n",
505 | "\n",
506 | "- Each layer is associated with a **language** (which is adopted by _that_ layer).\n",
507 | "\n",
508 | "- Every functionality (of the language) of a layer is implemented by a **program** which is written using language(s) of the layer(s) below.\n",
509 | "\n",
510 | "- **PRO**:\n",
511 | " - Separation between **_what_** has to be done (_specifics_) and **_how_** this has to be done (_implementation_)\n",
512 | "\n",
513 | "- **CON**:\n",
514 | " - The more we abstract from the physical machine the less will be the control we will have over it (delegated to lower layers)"
515 | ]
516 | },
517 | {
518 | "cell_type": "markdown",
519 | "metadata": {
520 | "slideshow": {
521 | "slide_type": "slide"
522 | }
523 | },
524 | "source": [
525 | "# What Does Computer Programming Mean?\n",
526 | "\n",
527 | "- Generally speaking, it means writing a program using a high-level language to solve a given problem/task (e.g., find the minimum element of a set of integers).\n",
528 | "\n",
529 | "- In this module, we will be using **Python** as the high-level language to write down our programs.\n",
530 | "\n",
531 | "- Code written using a high-level language is usually referred to as **source code**, and it **_cannot_** be directly executed by the computer.\n",
532 | "\n",
533 | "- **REMEMBER:** The CPU (interpreter) can only directly execute instructions that are defined by a specific (binary) machine language."
534 | ]
535 | },
536 | {
537 | "cell_type": "markdown",
538 | "metadata": {
539 | "slideshow": {
540 | "slide_type": "slide"
541 | }
542 | },
543 | "source": [
544 | "# From High-Level Source Code to Low-Level Machine Code\n",
545 | "\n",
546 | "- Different ways of achieving this, which depends on the _implementation_ of the high-level language:\n",
547 | "\n",
548 | " - **Compilation**\n",
549 | " - **Interpretation**\n",
550 | " - **Hybrid**: Compilation + Interpretation"
551 | ]
552 | },
553 | {
554 | "cell_type": "markdown",
555 | "metadata": {
556 | "slideshow": {
557 | "slide_type": "slide"
558 | }
559 | },
560 | "source": [
561 | "# Compilation\n",
562 | "\n",
563 | "- Uses a special computer program, called **compiler**.\n",
564 | "\n",
565 | "- Takes as input a program written in some language (**source code**) and translates it into another language (**target code**): e.g., from C/C++ to assembly.\n",
566 | "\n",
567 | "- Results of compilation is **not** directly executable by the CPU interpreter (although the compiler is tied to a specific CPU): e.g., assembly needs to be further transformed to binary (object) code via **assembler**.\n",
568 | " \n",
569 | "- Eventually, another program, called **linker**, combines multiple object codes and external libraries into a **single** machine executable code."
570 | ]
571 | },
572 | {
573 | "cell_type": "markdown",
574 | "metadata": {
575 | "slideshow": {
576 | "slide_type": "slide"
577 | }
578 | },
579 | "source": [
580 | "# Example: C/C++\n",
581 | "\n",
582 | " \n",
583 | " "
584 | ]
585 | },
586 | {
587 | "cell_type": "markdown",
588 | "metadata": {
589 | "slideshow": {
590 | "slide_type": "slide"
591 | }
592 | },
593 | "source": [
594 | "# Interpretation\n",
595 | "\n",
596 | "- Uses a special computer program, called **interpreter**.\n",
597 | "\n",
598 | "- Also interpreters \"translates\" a high-level language into a low-level one, but it does so at the moment the program is run, one instruction at a time.\n",
599 | "\n",
600 | "- The easiest example of an interpreter is the CPU, which realizes an interpreter of machine language via the **3**-phase cylce: _fetch_, _decode_, _execute_.\n",
601 | "\n",
602 | "- Purely interpreted implementations of high-level languages are now rare (**Smalltalk**, 1980), due to performance reasons."
603 | ]
604 | },
605 | {
606 | "cell_type": "markdown",
607 | "metadata": {
608 | "slideshow": {
609 | "slide_type": "slide"
610 | }
611 | },
612 | "source": [
613 | "# Hybrid: Compilation + Interpretation\n",
614 | "\n",
615 | "- Tries to take advantage of both worlds.\n",
616 | "\n",
617 | "- High-level language is firstly compiled into an **intermediate** language (usually, referred to as **bytecode**) \n",
618 | "\n",
619 | "- Bytecode is not tied to a specific hardware/CPU and can be interpreted (i.e., executed directly) by a so-called **virtual machine** hosted on top of the physical machine\n",
620 | "\n",
621 | "bytecode : virtual machine = machine code : CPU \n",
622 | "\n",
623 | "- Notable examples of high-level languages whose major implementations mix compilation and interpretation: **Java**, **Python**, **Lisp**, etc."
624 | ]
625 | },
626 | {
627 | "cell_type": "markdown",
628 | "metadata": {
629 | "slideshow": {
630 | "slide_type": "slide"
631 | }
632 | },
633 | "source": [
634 | "# Example: Java\n",
635 | "\n",
636 | " \n",
637 | " "
638 | ]
639 | },
640 | {
641 | "cell_type": "markdown",
642 | "metadata": {
643 | "slideshow": {
644 | "slide_type": "slide"
645 | }
646 | },
647 | "source": [
648 | "# Considerations on Hybrid Approach\n",
649 | "\n",
650 | "- The bytecode interpreter of a virtual machine is itself a program. \n",
651 | "\n",
652 | " - Oracle's HotSpot JVM interpreter for Java compiled bytecode (implemented in C++ and assembly)\n",
653 | " - CPython interpreter for Python compiled bytecode (implemented in C)\n",
654 | " \n",
655 | "- Hybrid implementations allow **portability**.\n",
656 | "\n",
657 | "- The same Java code can be compiled on a machine (e.g., Windows/Intel x86) and run everywhere (e.g., Linux/SPARC) as long as there is an implementation of the JVM bytecode interpreter."
658 | ]
659 | },
660 | {
661 | "cell_type": "markdown",
662 | "metadata": {
663 | "slideshow": {
664 | "slide_type": "slide"
665 | }
666 | },
667 | "source": [
668 | "# Take Away Message\n",
669 | "\n",
670 | "- Computational model based on CPU + Main Memory (+ I/O).\n",
671 | "\n",
672 | "- Abstraction layers eases writing computer programs.\n",
673 | "\n",
674 | "- Low-level binary machine language vs. high-level programming languages.\n",
675 | "\n",
676 | "- Different language implementations (even for the same language specifications)."
677 | ]
678 | }
679 | ],
680 | "metadata": {
681 | "celltoolbar": "Slideshow",
682 | "kernelspec": {
683 | "display_name": "Python 3",
684 | "language": "python",
685 | "name": "python3"
686 | },
687 | "language_info": {
688 | "codemirror_mode": {
689 | "name": "ipython",
690 | "version": 3
691 | },
692 | "file_extension": ".py",
693 | "mimetype": "text/x-python",
694 | "name": "python",
695 | "nbconvert_exporter": "python",
696 | "pygments_lexer": "ipython3",
697 | "version": "3.6.4"
698 | }
699 | },
700 | "nbformat": 4,
701 | "nbformat_minor": 2
702 | }
703 |
--------------------------------------------------------------------------------
/lectures/notebooks/Lecture_06b_Linear_Algebra_Basics.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "slideshow": {
7 | "slide_type": "slide"
8 | }
9 | },
10 | "source": [
11 | "# Fundamentals of Information Systems\n",
12 | "\n",
13 | "## Python Programming (for Data Science)\n",
14 | "\n",
15 | "### Master's Degree in Data Science\n",
16 | "\n",
17 | "#### Gabriele Tolomei\n",
18 | "gtolomei@math.unipd.it \n",
19 | "University of Padua, Italy \n",
20 | "2018/2019 \n",
21 | "November, 12 2018"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {
27 | "slideshow": {
28 | "slide_type": "slide"
29 | }
30 | },
31 | "source": [
32 | "# Lecture 6 (Extra): Basics of Linear Algebra"
33 | ]
34 | },
35 | {
36 | "cell_type": "markdown",
37 | "metadata": {
38 | "slideshow": {
39 | "slide_type": "slide"
40 | }
41 | },
42 | "source": [
43 | "## What is a Matrix?\n",
44 | "\n",
45 | "- A bidimensional array which is the building block of linear algebra. \n",
46 | "\n",
47 | "- Linear algebra is used quite a bit in advanced statistics, largely because it provides two benefits:\n",
48 | " - Compact notation for describing sets of data and sets of equations;\n",
49 | " - Efficient methods for manipulating sets of data and solving sets of equations."
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {
55 | "slideshow": {
56 | "slide_type": "slide"
57 | }
58 | },
59 | "source": [
60 | "## Matrix Definition\n",
61 | "\n",
62 | "- A **matrix** is a rectangular array of numbers arranged in **rows** and **columns**.\n",
63 | "\n",
64 | "- The following is an example of a $3$-by-$4$ matrix $\\textbf{A}$:\n",
65 | "\n",
66 | "$$\n",
67 | "\\textbf{A} = \\begin{bmatrix}\n",
68 | " 1.2 & -0.7 & 3.1 & 2.8 \\\\\n",
69 | " -5.9 & 1.4 & 0.3 & -4.3 \\\\\n",
70 | " 0.0 & 1.0 & 12.7 & 6.5 \\\\\n",
71 | "\\end{bmatrix}\n",
72 | "$$"
73 | ]
74 | },
75 | {
76 | "cell_type": "markdown",
77 | "metadata": {
78 | "slideshow": {
79 | "slide_type": "slide"
80 | }
81 | },
82 | "source": [
83 | "## Matrix Definition\n",
84 | "\n",
85 | "- More generally, an $m$-by-$n$ matrix $\\textbf{A}$ can be represented as follows:\n",
86 | "\n",
87 | "$$\n",
88 | "\\textbf{A} = \\begin{bmatrix}\n",
89 | " a_{11} & a_{12} & a_{13} & \\dots & a_{1n} \\\\\n",
90 | " a_{21} & a_{22} & a_{23} & \\dots & a_{2n} \\\\\n",
91 | " \\dots & \\dots & \\dots & \\dots & \\dots\\\\\n",
92 | " a_{m1} & a_{m2} & a_{m3} & \\dots & a_{mn}\n",
93 | "\\end{bmatrix}\n",
94 | "$$\n",
95 | "- $a_{ij}$ refers to the element of $\\textbf{A}$ located at the $i$-th row and $j$-th column.\n",
96 | "- $m$ and $n$ are called **dimensions** of the matrix.\n",
97 | "- Sometimes, you specifiy dimensions when defining a matrix, e.g., $\\textbf{A}_{m,n}$.\n"
98 | ]
99 | },
100 | {
101 | "cell_type": "markdown",
102 | "metadata": {
103 | "slideshow": {
104 | "slide_type": "slide"
105 | }
106 | },
107 | "source": [
108 | "## Matrix Equality\n",
109 | "\n",
110 | "- Two matrices $\\textbf{A}$ and $\\textbf{B}$ are equal if **all three** of the following conditions are met:\n",
111 | " - Each matrix has the same number of rows;\n",
112 | " - Each matrix has the same number of columns;\n",
113 | " - Corresponding elements within each matrix are equal."
114 | ]
115 | },
116 | {
117 | "cell_type": "markdown",
118 | "metadata": {
119 | "slideshow": {
120 | "slide_type": "slide"
121 | }
122 | },
123 | "source": [
124 | "## Transpose Matrix\n",
125 | "\n",
126 | "- The transpose of a matrix $\\textbf{A}_{m,n}$ is another matrix $\\textbf{A}^{T}_{n,m}$ that is obtained by using rows from the first matrix as columns in the second matrix.\n",
127 | "\n",
128 | "- For example, it is easy to see that the transpose of matrix $\\textbf{A}_{3,2}$ is $\\textbf{A}^{T}_{2,3}$:\n",
129 | "\n",
130 | "$$\n",
131 | "\\textbf{A} = \\begin{bmatrix}\n",
132 | " 1.2 & -0.7 \\\\\n",
133 | " -5.9 & 1.4 \\\\\n",
134 | " 0.0 & 1.0 \\\\\n",
135 | "\\end{bmatrix}\n",
136 | "~~~~~\n",
137 | "\\textbf{A}^T = \\begin{bmatrix}\n",
138 | " 1.2 & -5.9 & 0.0 \\\\\n",
139 | " -0.7 & 1.4 & 1.0 \\\\\n",
140 | "\\end{bmatrix}\n",
141 | "$$\n",
142 | "\n",
143 | "- Row 1 of matrix $\\textbf{A}$ becomes column 1 of $\\textbf{A}^T$, row 2 of $\\textbf{A}$ becomes column $\\textbf{A}^T$, and finally row 3 of $\\textbf{A}$ becomes column 3 of $\\textbf{A}^T$."
144 | ]
145 | },
146 | {
147 | "cell_type": "markdown",
148 | "metadata": {
149 | "slideshow": {
150 | "slide_type": "slide"
151 | }
152 | },
153 | "source": [
154 | "## Vectors\n",
155 | "\n",
156 | "- Vectors are a \"special\" type of matrix, which have only one column or one row.\n",
157 | "\n",
158 | "- They come in **two** flavors: **column vectors** and **row vectors**. \n",
159 | "\n",
160 | "- For example, matrix $\\textbf{a}$ is a $3$-by-$1$ column vector, and matrix $\\textbf{a}^T$ is a $1$-by-$3$ row vector.\n",
161 | "\n",
162 | "$$\n",
163 | "\\textbf{a} = \\begin{bmatrix}\n",
164 | " 1.2 \\\\\n",
165 | " -5.9 \\\\\n",
166 | " 0.0 \\\\\n",
167 | "\\end{bmatrix}\n",
168 | "~~~~~\n",
169 | "\\textbf{a}^T = \\begin{bmatrix}\n",
170 | " 1.2 & -5.9 & 0.0 \\\\\n",
171 | "\\end{bmatrix}\n",
172 | "$$"
173 | ]
174 | },
175 | {
176 | "cell_type": "markdown",
177 | "metadata": {
178 | "slideshow": {
179 | "slide_type": "slide"
180 | }
181 | },
182 | "source": [
183 | "## Square Matrix\n",
184 | "\n",
185 | "- A square matrix is a matrix having the same number of rows and columns (i.e., an $n$-by-$n$ matrix). \n",
186 | "\n",
187 | "- Some kinds of square matrices are particularly interesting:\n",
188 | " - **Symmetric Matrix**\n",
189 | " - **Diagonal Matrix**\n",
190 | " - **Scalar Matrix**"
191 | ]
192 | },
193 | {
194 | "cell_type": "markdown",
195 | "metadata": {
196 | "slideshow": {
197 | "slide_type": "slide"
198 | }
199 | },
200 | "source": [
201 | "## Symmetric Matrix\n",
202 | "\n",
203 | "- A matrix $\\textbf{A}_{n,n}$ is **symmetric** if its transpose $\\textbf{A}^{T}_{n,n}$ is equal to itself.\n",
204 | "\n",
205 | "- For example:\n",
206 | "\n",
207 | "$$\n",
208 | "\\textbf{A} = \\begin{bmatrix}\n",
209 | " 1.2 & -5.9 \\\\\n",
210 | " -5.9 & 1.2 \\\\\n",
211 | "\\end{bmatrix}\n",
212 | "=\n",
213 | "\\begin{bmatrix}\n",
214 | " 1.2 & -5.9 \\\\\n",
215 | " -5.9 & 1.2 \\\\\n",
216 | "\\end{bmatrix}\n",
217 | "= \\textbf{A}^T\n",
218 | "$$"
219 | ]
220 | },
221 | {
222 | "cell_type": "markdown",
223 | "metadata": {
224 | "slideshow": {
225 | "slide_type": "slide"
226 | }
227 | },
228 | "source": [
229 | "## Diagonal Matrix\n",
230 | "\n",
231 | "- A **diagonal** matrix $\\textbf{A}_{n,n}$ is a special type of **symmetric** matrix, in which it has zeros in the off-diagonal elements.\n",
232 | "\n",
233 | "- For example:\n",
234 | "\n",
235 | "$$\n",
236 | "\\textbf{A} = \\begin{bmatrix}\n",
237 | " 1.2 & 0 & 0 \\\\\n",
238 | " 0 & 2.7 & 0 \\\\\n",
239 | " 0 & 0 & -3.1 \\\\\n",
240 | "\\end{bmatrix}\n",
241 | "$$"
242 | ]
243 | },
244 | {
245 | "cell_type": "markdown",
246 | "metadata": {
247 | "slideshow": {
248 | "slide_type": "slide"
249 | }
250 | },
251 | "source": [
252 | "## Scalar Matrix\n",
253 | "\n",
254 | "- A **scalar** matrix $\\textbf{A}_{n,n}$ is a special kind of **diagonal** matrix, in which it has equal-valued elements along the diagonal.\n",
255 | "\n",
256 | "- For example:\n",
257 | "\n",
258 | "$$\n",
259 | "\\textbf{A} = \\begin{bmatrix}\n",
260 | " 2.7 & 0 & 0 \\\\\n",
261 | " 0 & 2.7 & 0 \\\\\n",
262 | " 0 & 0 & 2.7 \\\\\n",
263 | "\\end{bmatrix}\n",
264 | "$$"
265 | ]
266 | },
267 | {
268 | "cell_type": "markdown",
269 | "metadata": {
270 | "slideshow": {
271 | "slide_type": "slide"
272 | }
273 | },
274 | "source": [
275 | "# Matrix Operations"
276 | ]
277 | },
278 | {
279 | "cell_type": "markdown",
280 | "metadata": {
281 | "slideshow": {
282 | "slide_type": "slide"
283 | }
284 | },
285 | "source": [
286 | "## Matrix Addition and Subtraction\n",
287 | "\n",
288 | "- Just like ordinary algebra, linear algebra has operations like addition and subtraction.\n",
289 | "\n",
290 | "- Two matrices can be added or subtracted **only if** they have the same dimensions, i.e., the same number of rows and columns.\n",
291 | "\n",
292 | "- Addition or subtraction is accomplished **element-wise**. For example, consider the following matrices $\\textbf{A}$ and $\\textbf{B}$.\n",
293 | "\n",
294 | "$$\n",
295 | "\\textbf{A} = \\begin{bmatrix}\n",
296 | " 1.2 & -0.7 & 9.8\\\\\n",
297 | " -5.9 & 1.4 & 6.2\\\\\n",
298 | "\\end{bmatrix}\n",
299 | "~~~~~\n",
300 | "\\textbf{B} = \\begin{bmatrix}\n",
301 | " -0.8 & -2.9 & 0.0 \\\\\n",
302 | " 1.6 & 1.4 & 1.0 \\\\\n",
303 | "\\end{bmatrix}\n",
304 | "$$"
305 | ]
306 | },
307 | {
308 | "cell_type": "markdown",
309 | "metadata": {
310 | "slideshow": {
311 | "slide_type": "slide"
312 | }
313 | },
314 | "source": [
315 | "## Matrix Addition and Subtraction\n",
316 | "\n",
317 | "\n",
318 | "$$\n",
319 | "\\textbf{A} + \\textbf{B} = \\begin{bmatrix}\n",
320 | " 0.4 & -3.6 & 9.8\\\\\n",
321 | " -4.3 & 2.8 & 7.2\\\\\n",
322 | "\\end{bmatrix}\n",
323 | "~~~~~\n",
324 | "\\textbf{A} - \\textbf{B} = \\begin{bmatrix}\n",
325 | " 2.0 & 2.2 & 9.8 \\\\\n",
326 | " -7.5 & 0.0 & 5.2 \\\\\n",
327 | "\\end{bmatrix}\n",
328 | "$$\n",
329 | "\n",
330 | "- Note that addition is commutative (i.e., $\\textbf{A} + \\textbf{B} = \\textbf{B} + \\textbf{A}$), but subtraction in general is not."
331 | ]
332 | },
333 | {
334 | "cell_type": "markdown",
335 | "metadata": {
336 | "slideshow": {
337 | "slide_type": "slide"
338 | }
339 | },
340 | "source": [
341 | "## Matrix Multiplication\n",
342 | "\n",
343 | "- In linear algebra, there are **two** kinds of matrix multiplication: \n",
344 | " - multiplication of a matrix by a scalar (i.e., a number);\n",
345 | " - multiplication of a matrix by another matrix."
346 | ]
347 | },
348 | {
349 | "cell_type": "markdown",
350 | "metadata": {
351 | "slideshow": {
352 | "slide_type": "slide"
353 | }
354 | },
355 | "source": [
356 | "## How to Multiply a Matrix by a Scalar\n",
357 | "\n",
358 | "- When you multiply a matrix $\\textbf{A}$ by a scalar, you multiply **every element** in the matrix by that same number. \n",
359 | "\n",
360 | "- This operation produces a new matrix, which is called a **scalar multiple**.\n",
361 | "\n",
362 | "- For example, consider the following:\n",
363 | "\n",
364 | "$$\n",
365 | "\\textbf{A} = \\begin{bmatrix}\n",
366 | " 1 & 9 & 4 \\\\\n",
367 | " 5 & 2 & 0 \\\\\n",
368 | " -1 & 3 & 3 \\\\\n",
369 | "\\end{bmatrix}\n",
370 | "~~~~~\n",
371 | "k \\cdot \\textbf{A} = \\begin{bmatrix}\n",
372 | " k & 9k & 4k \\\\\n",
373 | " 5k & 2k & 0 \\\\\n",
374 | " -1k & 3k & 3k \\\\\n",
375 | "\\end{bmatrix}\n",
376 | "~~~(k \\in \\mathbb{R})\n",
377 | "$$"
378 | ]
379 | },
380 | {
381 | "cell_type": "markdown",
382 | "metadata": {
383 | "slideshow": {
384 | "slide_type": "slide"
385 | }
386 | },
387 | "source": [
388 | "## How to Multiply a Matrix by a Matrix\n",
389 | "\n",
390 | "- The product of a matrix $\\textbf{A}$ by another matrix $\\textbf{B}$, i.e., $\\textbf{A}\\cdot \\textbf{B}$ is defined **only** when the number of columns in $\\textbf{A}$ is equal to the number of rows in $\\textbf{B}$.\n",
391 | "\n",
392 | "- Analogously, $\\textbf{B}\\cdot \\textbf{A}$ is defined only when the number of columns in $\\textbf{B}$ is equal to the number of rows in $\\textbf{A}$.\n",
393 | "\n",
394 | "- More generally, if $\\textbf{A}$ is an $m$-by-$k$ matrix, and $\\textbf{B}$ is an $k$-by-$n$ matrix the matrix product $\\textbf{A}\\cdot \\textbf{B}$ is an $m$-by-$n$ matrix $\\textbf{C}$.\n",
395 | "\n",
396 | "- Each element of $\\textbf{C}$ can be therefore computed according to the following formula:\n",
397 | "$$\n",
398 | "c_{ij} = \\sum_{p=1}^k a_{ip}\\cdot b_{pj}\n",
399 | "$$\n"
400 | ]
401 | },
402 | {
403 | "cell_type": "markdown",
404 | "metadata": {
405 | "slideshow": {
406 | "slide_type": "slide"
407 | }
408 | },
409 | "source": [
410 | "## How to Multiply a Matrix by a Matrix\n",
411 | "\n",
412 | "- In the formula above we identify: \n",
413 | " - $c_{ij}$ as the element in row $i$ and column $j$ of the resulting matrix $\\textbf{C}$;\n",
414 | " - $a_{ip}$ as the element in row $i$ and column $p$ of the first operand matrix $\\textbf{A}$;\n",
415 | " - $b_{pj}$ as the element in row $p$ and column $j$ of the second operand matrix $\\textbf{B}$;\n",
416 | " - $\\sum_{p=1}^k$ indicates that $a_{ip}\\cdot b_{pj}$ must be summed over $p = 1\\ldots k$."
417 | ]
418 | },
419 | {
420 | "cell_type": "markdown",
421 | "metadata": {
422 | "slideshow": {
423 | "slide_type": "slide"
424 | }
425 | },
426 | "source": [
427 | "## Matrix Multiplication: An Example\n",
428 | "\n",
429 | "- Let's work through an example to show how the above formula works. Suppose we want to compute $\\textbf{A}\\cdot \\textbf{B}$, given the matrices below:\n",
430 | "\n",
431 | "$$\n",
432 | "\\textbf{A} = \\begin{bmatrix}\n",
433 | " 0 & 1 & 2 \\\\\n",
434 | " 3 & 4 & 5 \\\\\n",
435 | "\\end{bmatrix}\n",
436 | "~~~\n",
437 | "\\textbf{B} = \\begin{bmatrix}\n",
438 | " 6 & 7 \\\\\n",
439 | " 8 & 9 \\\\\n",
440 | " 10 & 11\\\\\n",
441 | "\\end{bmatrix}\n",
442 | "$$\n",
443 | "- Let $\\textbf{C} = \\textbf{A}\\cdot \\textbf{B}$, which we know will be a $2$-by-$2$ matrix."
444 | ]
445 | },
446 | {
447 | "cell_type": "markdown",
448 | "metadata": {
449 | "slideshow": {
450 | "slide_type": "slide"
451 | }
452 | },
453 | "source": [
454 | "## Matrix Multiplication: An Example\n",
455 | "\n",
456 | "$$\n",
457 | "c_{11} = \\sum_{p=1}^3 a_{1p}\\cdot b_{p1} = 0*6 + 1*8 +2*10 = 0 + 8 + 20 = 28\\\\\n",
458 | "c_{12} = \\sum_{p=1}^3 a_{1p}\\cdot b_{p2} = 0*7 + 1*9 +2*11 = 0 + 9 + 22 = 31\\\\\n",
459 | "c_{21} = \\sum_{p=1}^3 a_{2p}\\cdot b_{p1} = 3*6 + 4*8 +5*10 = = 18 + 32 + 50 = 100\\\\\n",
460 | "c_{22} = \\sum_{p=1}^3 a_{2p}\\cdot b_{p2} = 3*7 + 4*9 +5*11 = 21 + 36 +55 = 112\\\\\n",
461 | "$$"
462 | ]
463 | },
464 | {
465 | "cell_type": "markdown",
466 | "metadata": {
467 | "slideshow": {
468 | "slide_type": "slide"
469 | }
470 | },
471 | "source": [
472 | "## Matrix Multiplication: An Example\n",
473 | "\n",
474 | "$$\n",
475 | "\\textbf{A} \\cdot \\textbf{B} =\n",
476 | "\\textbf{C} = \\begin{bmatrix}\n",
477 | " 28 & 31 \\\\\n",
478 | " 100 & 112 \\\\\n",
479 | "\\end{bmatrix}\n",
480 | "$$"
481 | ]
482 | },
483 | {
484 | "cell_type": "markdown",
485 | "metadata": {
486 | "slideshow": {
487 | "slide_type": "slide"
488 | }
489 | },
490 | "source": [
491 | "## Multiplication Order\n",
492 | "\n",
493 | "- In some cases, matrix multiplication is defined for $\\textbf{A}\\cdot \\textbf{B}$, but not for $\\textbf{B}\\cdot \\textbf{A}$, and vice versa. \n",
494 | "\n",
495 | "- However, even when matrix multiplication is possible in both directions, results may be different. That is, $\\textbf{A}\\cdot \\textbf{B}$ is generally different from $\\textbf{B}\\cdot \\textbf{A}$.\n",
496 | "\n",
497 | "- The bottom line: when you multiply two matrices, order matters!"
498 | ]
499 | },
500 | {
501 | "cell_type": "markdown",
502 | "metadata": {
503 | "slideshow": {
504 | "slide_type": "slide"
505 | }
506 | },
507 | "source": [
508 | "## Identity Matrix\n",
509 | "\n",
510 | "- The **identity matrix** is an $n$-by-$n$ diagonal matrix with $1$'s in the diagonal and $0$'s everywhere else. \n",
511 | "\n",
512 | "- The identity matrix is often denoted by $\\textbf{I}$ (or $\\textbf{I}_{n,n}$ or $\\textbf{I}_{n}$).\n",
513 | "\n",
514 | "- The identity matrix has a nice property: Any matrix that can be multiplied by $\\textbf{I}$ remains the same, that is:\n",
515 | "\n",
516 | "$$\n",
517 | "\\textbf{A}\\cdot\\textbf{I} = \\textbf{I}\\cdot\\textbf{A} = \\textbf{A}\n",
518 | "$$\n",
519 | "\n",
520 | "- Of course, if $\\textbf{A}$ is not a square matrix, $\\textbf{I}$ will have different size depending on whether you do $\\textbf{A}\\cdot\\textbf{I}$ or $\\textbf{I}\\cdot\\textbf{A}$."
521 | ]
522 | },
523 | {
524 | "cell_type": "markdown",
525 | "metadata": {
526 | "slideshow": {
527 | "slide_type": "slide"
528 | }
529 | },
530 | "source": [
531 | "## Vector Multiplication\n",
532 | "\n",
533 | "- The multiplication of a vector by a vector produces some interesting results.\n",
534 | "\n",
535 | "- One is known as the vector **inner product** (a.k.a. **dot product** or **scalar product**), whilst the other is called the vector **outer product**.\n"
536 | ]
537 | },
538 | {
539 | "cell_type": "markdown",
540 | "metadata": {
541 | "slideshow": {
542 | "slide_type": "slide"
543 | }
544 | },
545 | "source": [
546 | "## Vector Inner Product (Dot Product)\n",
547 | "\n",
548 | "- Assume that $\\textbf{a}$ and $\\textbf{b}$ are vectors, each with the same number of elements $n$. Then, the **inner product** of $\\textbf{a}\\cdot \\textbf{b}$ is a scalar $s\\in \\mathbb{R}$.\n",
549 | "$$\n",
550 | "\\textbf{a}^T\\cdot \\textbf{b} = \\textbf{b}^T\\cdot \\textbf{a} = s\n",
551 | "$$\n",
552 | "\n",
553 | "- $\\textbf{a}$ and $\\textbf{b}$ are column vectors, each having $n$ elements;\n",
554 | "\n",
555 | "- $\\textbf{a}^T$ is the transpose of $\\textbf{a}$, which makes $\\textbf{a}^T$ a row vector;\n",
556 | "\n",
557 | "- $\\textbf{b}^T$ is the transpose of $\\textbf{b}$, which makes $\\textbf{b}^T$ a row vector;\n",
558 | "\n",
559 | "- $s$ is a scalar; that is, $s$ is a real number, **not** a matrix!\n",
560 | "\n",
561 | "- Note that the product of two matrices is usually another matrix. However, the inner product of two vectors is a real number!"
562 | ]
563 | },
564 | {
565 | "cell_type": "markdown",
566 | "metadata": {
567 | "slideshow": {
568 | "slide_type": "slide"
569 | }
570 | },
571 | "source": [
572 | "## Vector Outer Product\n",
573 | "\n",
574 | "- Assume that $\\textbf{a}$ and $\\textbf{b}$ are vectors of $m$ and $n$ elements, respectively. Then, the **outer product** of $\\textbf{a}\\otimes \\textbf{b}$ is an $m$-by-$n$ matrix $\\textbf{C}$.\n",
575 | "\n",
576 | "$$\n",
577 | "\\textbf{a}\\otimes \\textbf{b}^T = \\textbf{C}\n",
578 | "$$\n",
579 | "\n",
580 | "- $\\textbf{a}$ is an $m$-by-$1$ column vector;\n",
581 | "\n",
582 | "- $\\textbf{b}^T$ is the transpose of $\\textbf{b}$, which makes $\\textbf{b}^T$ a $1$-by-$n$ row vector;\n",
583 | "\n",
584 | "- $\\textbf{C}$ is an $m$-by-$n$ matrix.\n",
585 | "\n",
586 | "- Let's see how this works!"
587 | ]
588 | },
589 | {
590 | "cell_type": "markdown",
591 | "metadata": {
592 | "slideshow": {
593 | "slide_type": "slide"
594 | }
595 | },
596 | "source": [
597 | "## Vector Outer Product\n",
598 | "\n",
599 | "$$\n",
600 | "\\textbf{a} = \\begin{bmatrix}\n",
601 | " u \\\\\n",
602 | " v \\\\\n",
603 | "\\end{bmatrix}\n",
604 | "~~\n",
605 | "\\textbf{b} = \\begin{bmatrix}\n",
606 | " x \\\\\n",
607 | " y \\\\\n",
608 | " z \\\\\n",
609 | "\\end{bmatrix}\n",
610 | "~~~\n",
611 | "\\textbf{a}\\otimes \\textbf{b}^T = \\textbf{C} = \\begin{bmatrix}\n",
612 | " u\\cdot x & u\\cdot y & u\\cdot z \\\\\n",
613 | " v\\cdot x & v\\cdot y & v\\cdot z \\\\\n",
614 | "\\end{bmatrix}\n",
615 | "$$\n",
616 | "\n",
617 | "- Notice that the elements of matrix $\\textbf{C}$ consist of the product of elements from vector $\\textbf{a}$ \"crossed\" with elements from vector $\\textbf{b}$."
618 | ]
619 | },
620 | {
621 | "cell_type": "markdown",
622 | "metadata": {
623 | "slideshow": {
624 | "slide_type": "slide"
625 | }
626 | },
627 | "source": [
628 | "## Norm of a Vector\n",
629 | "\n",
630 | "- A **norm** is a function that assigns a strictly positive length to a vector (in a vector space).\n",
631 | "\n",
632 | "- Given a vector $\\textbf{x} \\in \\mathbb{R}^n = (x_1, \\ldots, x_n)$ we define the $\\ell_p$-norm (a.k.a. the $p$-norm), with $p\\geq 1$ as follows:\n",
633 | "\n",
634 | "$$\n",
635 | "||\\textbf{x}||_p = \\Bigg(\\sum_{i=1}^n |x_i|^p \\Bigg)^{1/p}\n",
636 | "$$\n",
637 | "\n",
638 | "where $|x_i|$ is the **absolute value** of $x_i$, and $|x_i| = x_i$ iff $x_i \\geq 0$; $-x_i$, otherwise."
639 | ]
640 | },
641 | {
642 | "cell_type": "markdown",
643 | "metadata": {
644 | "slideshow": {
645 | "slide_type": "slide"
646 | }
647 | },
648 | "source": [
649 | "## $\\ell_p$-norm\n",
650 | "\n",
651 | "- $\\ell_1$ ($p=1$) a.k.a. the **taxicab norm** or **Manhattan norm**:\n",
652 | " $$ \n",
653 | " ||\\textbf{x}||_1 = |\\textbf{x}| = \\sum_{i=1}^n |x_i|\n",
654 | " $$\n",
655 | "- $\\ell_2$ ($p=2$) a.k.a. the **Euclidean norm**:\n",
656 | " $$ \n",
657 | " ||\\textbf{x}||_2 = ||\\textbf{x}|| = \\sqrt{x_1^2 + \\ldots + x_n^2}\n",
658 | " $$\n",
659 | "- $\\ell_{\\infty}$ ($p=\\infty$) as $p$ approaches to $\\infty$ the $p$-norm approaches the **infinity norm** or **maximum norm**:\n",
660 | " $$ \n",
661 | " ||\\textbf{x}||_{\\infty} = \\max_i |x_i|\n",
662 | " $$"
663 | ]
664 | }
665 | ],
666 | "metadata": {
667 | "celltoolbar": "Slideshow",
668 | "kernelspec": {
669 | "display_name": "Python 3",
670 | "language": "python",
671 | "name": "python3"
672 | },
673 | "language_info": {
674 | "codemirror_mode": {
675 | "name": "ipython",
676 | "version": 3
677 | },
678 | "file_extension": ".py",
679 | "mimetype": "text/x-python",
680 | "name": "python",
681 | "nbconvert_exporter": "python",
682 | "pygments_lexer": "ipython3",
683 | "version": "3.6.4"
684 | }
685 | },
686 | "nbformat": 4,
687 | "nbformat_minor": 2
688 | }
689 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/auto-mpg-regression/README.txt:
--------------------------------------------------------------------------------
1 | 1. Title: Auto-Mpg Data
2 |
3 | 2. Sources:
4 | (a) Origin: This dataset was taken from the StatLib library which is
5 | maintained at Carnegie Mellon University. The dataset was
6 | used in the 1983 American Statistical Association Exposition.
7 | (c) Date: July 7, 1993
8 |
9 | 3. Past Usage:
10 | - See 2b (above)
11 | - Quinlan,R. (1993). Combining Instance-Based and Model-Based Learning.
12 | In Proceedings on the Tenth International Conference of Machine
13 | Learning, 236-243, University of Massachusetts, Amherst. Morgan
14 | Kaufmann.
15 |
16 | 4. Relevant Information:
17 |
18 | This dataset is a slightly modified version of the dataset provided in
19 | the StatLib library. In line with the use by Ross Quinlan (1993) in
20 | predicting the attribute "mpg", 8 of the original instances were removed
21 | because they had unknown values for the "mpg" attribute. The original
22 | dataset is available in the file "auto-mpg.data-original".
23 |
24 | "The data concerns city-cycle fuel consumption in miles per gallon,
25 | to be predicted in terms of 3 multivalued discrete and 5 continuous
26 | attributes." (Quinlan, 1993)
27 |
28 | 5. Number of Instances: 398
29 |
30 | 6. Number of Attributes: 9 including the class attribute
31 |
32 | 7. Attribute Information:
33 |
34 | 1. mpg: continuous
35 | 2. cylinders: multi-valued discrete
36 | 3. displacement: continuous
37 | 4. horsepower: continuous
38 | 5. weight: continuous
39 | 6. acceleration: continuous
40 | 7. model year: multi-valued discrete
41 | 8. origin: multi-valued discrete
42 | 9. car name: string (unique for each instance)
43 |
44 | 8. Missing Attribute Values: horsepower has 6 missing values
45 |
46 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/auto-mpg-regression/dataset.tsv:
--------------------------------------------------------------------------------
1 | 18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu"
2 | 15.0 8 350.0 165.0 3693. 11.5 70 1 "buick skylark 320"
3 | 18.0 8 318.0 150.0 3436. 11.0 70 1 "plymouth satellite"
4 | 16.0 8 304.0 150.0 3433. 12.0 70 1 "amc rebel sst"
5 | 17.0 8 302.0 140.0 3449. 10.5 70 1 "ford torino"
6 | 15.0 8 429.0 198.0 4341. 10.0 70 1 "ford galaxie 500"
7 | 14.0 8 454.0 220.0 4354. 9.0 70 1 "chevrolet impala"
8 | 14.0 8 440.0 215.0 4312. 8.5 70 1 "plymouth fury iii"
9 | 14.0 8 455.0 225.0 4425. 10.0 70 1 "pontiac catalina"
10 | 15.0 8 390.0 190.0 3850. 8.5 70 1 "amc ambassador dpl"
11 | 15.0 8 383.0 170.0 3563. 10.0 70 1 "dodge challenger se"
12 | 14.0 8 340.0 160.0 3609. 8.0 70 1 "plymouth 'cuda 340"
13 | 15.0 8 400.0 150.0 3761. 9.5 70 1 "chevrolet monte carlo"
14 | 14.0 8 455.0 225.0 3086. 10.0 70 1 "buick estate wagon (sw)"
15 | 24.0 4 113.0 95.00 2372. 15.0 70 3 "toyota corona mark ii"
16 | 22.0 6 198.0 95.00 2833. 15.5 70 1 "plymouth duster"
17 | 18.0 6 199.0 97.00 2774. 15.5 70 1 "amc hornet"
18 | 21.0 6 200.0 85.00 2587. 16.0 70 1 "ford maverick"
19 | 27.0 4 97.00 88.00 2130. 14.5 70 3 "datsun pl510"
20 | 26.0 4 97.00 46.00 1835. 20.5 70 2 "volkswagen 1131 deluxe sedan"
21 | 25.0 4 110.0 87.00 2672. 17.5 70 2 "peugeot 504"
22 | 24.0 4 107.0 90.00 2430. 14.5 70 2 "audi 100 ls"
23 | 25.0 4 104.0 95.00 2375. 17.5 70 2 "saab 99e"
24 | 26.0 4 121.0 113.0 2234. 12.5 70 2 "bmw 2002"
25 | 21.0 6 199.0 90.00 2648. 15.0 70 1 "amc gremlin"
26 | 10.0 8 360.0 215.0 4615. 14.0 70 1 "ford f250"
27 | 10.0 8 307.0 200.0 4376. 15.0 70 1 "chevy c20"
28 | 11.0 8 318.0 210.0 4382. 13.5 70 1 "dodge d200"
29 | 9.0 8 304.0 193.0 4732. 18.5 70 1 "hi 1200d"
30 | 27.0 4 97.00 88.00 2130. 14.5 71 3 "datsun pl510"
31 | 28.0 4 140.0 90.00 2264. 15.5 71 1 "chevrolet vega 2300"
32 | 25.0 4 113.0 95.00 2228. 14.0 71 3 "toyota corona"
33 | 25.0 4 98.00 ? 2046. 19.0 71 1 "ford pinto"
34 | 19.0 6 232.0 100.0 2634. 13.0 71 1 "amc gremlin"
35 | 16.0 6 225.0 105.0 3439. 15.5 71 1 "plymouth satellite custom"
36 | 17.0 6 250.0 100.0 3329. 15.5 71 1 "chevrolet chevelle malibu"
37 | 19.0 6 250.0 88.00 3302. 15.5 71 1 "ford torino 500"
38 | 18.0 6 232.0 100.0 3288. 15.5 71 1 "amc matador"
39 | 14.0 8 350.0 165.0 4209. 12.0 71 1 "chevrolet impala"
40 | 14.0 8 400.0 175.0 4464. 11.5 71 1 "pontiac catalina brougham"
41 | 14.0 8 351.0 153.0 4154. 13.5 71 1 "ford galaxie 500"
42 | 14.0 8 318.0 150.0 4096. 13.0 71 1 "plymouth fury iii"
43 | 12.0 8 383.0 180.0 4955. 11.5 71 1 "dodge monaco (sw)"
44 | 13.0 8 400.0 170.0 4746. 12.0 71 1 "ford country squire (sw)"
45 | 13.0 8 400.0 175.0 5140. 12.0 71 1 "pontiac safari (sw)"
46 | 18.0 6 258.0 110.0 2962. 13.5 71 1 "amc hornet sportabout (sw)"
47 | 22.0 4 140.0 72.00 2408. 19.0 71 1 "chevrolet vega (sw)"
48 | 19.0 6 250.0 100.0 3282. 15.0 71 1 "pontiac firebird"
49 | 18.0 6 250.0 88.00 3139. 14.5 71 1 "ford mustang"
50 | 23.0 4 122.0 86.00 2220. 14.0 71 1 "mercury capri 2000"
51 | 28.0 4 116.0 90.00 2123. 14.0 71 2 "opel 1900"
52 | 30.0 4 79.00 70.00 2074. 19.5 71 2 "peugeot 304"
53 | 30.0 4 88.00 76.00 2065. 14.5 71 2 "fiat 124b"
54 | 31.0 4 71.00 65.00 1773. 19.0 71 3 "toyota corolla 1200"
55 | 35.0 4 72.00 69.00 1613. 18.0 71 3 "datsun 1200"
56 | 27.0 4 97.00 60.00 1834. 19.0 71 2 "volkswagen model 111"
57 | 26.0 4 91.00 70.00 1955. 20.5 71 1 "plymouth cricket"
58 | 24.0 4 113.0 95.00 2278. 15.5 72 3 "toyota corona hardtop"
59 | 25.0 4 97.50 80.00 2126. 17.0 72 1 "dodge colt hardtop"
60 | 23.0 4 97.00 54.00 2254. 23.5 72 2 "volkswagen type 3"
61 | 20.0 4 140.0 90.00 2408. 19.5 72 1 "chevrolet vega"
62 | 21.0 4 122.0 86.00 2226. 16.5 72 1 "ford pinto runabout"
63 | 13.0 8 350.0 165.0 4274. 12.0 72 1 "chevrolet impala"
64 | 14.0 8 400.0 175.0 4385. 12.0 72 1 "pontiac catalina"
65 | 15.0 8 318.0 150.0 4135. 13.5 72 1 "plymouth fury iii"
66 | 14.0 8 351.0 153.0 4129. 13.0 72 1 "ford galaxie 500"
67 | 17.0 8 304.0 150.0 3672. 11.5 72 1 "amc ambassador sst"
68 | 11.0 8 429.0 208.0 4633. 11.0 72 1 "mercury marquis"
69 | 13.0 8 350.0 155.0 4502. 13.5 72 1 "buick lesabre custom"
70 | 12.0 8 350.0 160.0 4456. 13.5 72 1 "oldsmobile delta 88 royale"
71 | 13.0 8 400.0 190.0 4422. 12.5 72 1 "chrysler newport royal"
72 | 19.0 3 70.00 97.00 2330. 13.5 72 3 "mazda rx2 coupe"
73 | 15.0 8 304.0 150.0 3892. 12.5 72 1 "amc matador (sw)"
74 | 13.0 8 307.0 130.0 4098. 14.0 72 1 "chevrolet chevelle concours (sw)"
75 | 13.0 8 302.0 140.0 4294. 16.0 72 1 "ford gran torino (sw)"
76 | 14.0 8 318.0 150.0 4077. 14.0 72 1 "plymouth satellite custom (sw)"
77 | 18.0 4 121.0 112.0 2933. 14.5 72 2 "volvo 145e (sw)"
78 | 22.0 4 121.0 76.00 2511. 18.0 72 2 "volkswagen 411 (sw)"
79 | 21.0 4 120.0 87.00 2979. 19.5 72 2 "peugeot 504 (sw)"
80 | 26.0 4 96.00 69.00 2189. 18.0 72 2 "renault 12 (sw)"
81 | 22.0 4 122.0 86.00 2395. 16.0 72 1 "ford pinto (sw)"
82 | 28.0 4 97.00 92.00 2288. 17.0 72 3 "datsun 510 (sw)"
83 | 23.0 4 120.0 97.00 2506. 14.5 72 3 "toyouta corona mark ii (sw)"
84 | 28.0 4 98.00 80.00 2164. 15.0 72 1 "dodge colt (sw)"
85 | 27.0 4 97.00 88.00 2100. 16.5 72 3 "toyota corolla 1600 (sw)"
86 | 13.0 8 350.0 175.0 4100. 13.0 73 1 "buick century 350"
87 | 14.0 8 304.0 150.0 3672. 11.5 73 1 "amc matador"
88 | 13.0 8 350.0 145.0 3988. 13.0 73 1 "chevrolet malibu"
89 | 14.0 8 302.0 137.0 4042. 14.5 73 1 "ford gran torino"
90 | 15.0 8 318.0 150.0 3777. 12.5 73 1 "dodge coronet custom"
91 | 12.0 8 429.0 198.0 4952. 11.5 73 1 "mercury marquis brougham"
92 | 13.0 8 400.0 150.0 4464. 12.0 73 1 "chevrolet caprice classic"
93 | 13.0 8 351.0 158.0 4363. 13.0 73 1 "ford ltd"
94 | 14.0 8 318.0 150.0 4237. 14.5 73 1 "plymouth fury gran sedan"
95 | 13.0 8 440.0 215.0 4735. 11.0 73 1 "chrysler new yorker brougham"
96 | 12.0 8 455.0 225.0 4951. 11.0 73 1 "buick electra 225 custom"
97 | 13.0 8 360.0 175.0 3821. 11.0 73 1 "amc ambassador brougham"
98 | 18.0 6 225.0 105.0 3121. 16.5 73 1 "plymouth valiant"
99 | 16.0 6 250.0 100.0 3278. 18.0 73 1 "chevrolet nova custom"
100 | 18.0 6 232.0 100.0 2945. 16.0 73 1 "amc hornet"
101 | 18.0 6 250.0 88.00 3021. 16.5 73 1 "ford maverick"
102 | 23.0 6 198.0 95.00 2904. 16.0 73 1 "plymouth duster"
103 | 26.0 4 97.00 46.00 1950. 21.0 73 2 "volkswagen super beetle"
104 | 11.0 8 400.0 150.0 4997. 14.0 73 1 "chevrolet impala"
105 | 12.0 8 400.0 167.0 4906. 12.5 73 1 "ford country"
106 | 13.0 8 360.0 170.0 4654. 13.0 73 1 "plymouth custom suburb"
107 | 12.0 8 350.0 180.0 4499. 12.5 73 1 "oldsmobile vista cruiser"
108 | 18.0 6 232.0 100.0 2789. 15.0 73 1 "amc gremlin"
109 | 20.0 4 97.00 88.00 2279. 19.0 73 3 "toyota carina"
110 | 21.0 4 140.0 72.00 2401. 19.5 73 1 "chevrolet vega"
111 | 22.0 4 108.0 94.00 2379. 16.5 73 3 "datsun 610"
112 | 18.0 3 70.00 90.00 2124. 13.5 73 3 "maxda rx3"
113 | 19.0 4 122.0 85.00 2310. 18.5 73 1 "ford pinto"
114 | 21.0 6 155.0 107.0 2472. 14.0 73 1 "mercury capri v6"
115 | 26.0 4 98.00 90.00 2265. 15.5 73 2 "fiat 124 sport coupe"
116 | 15.0 8 350.0 145.0 4082. 13.0 73 1 "chevrolet monte carlo s"
117 | 16.0 8 400.0 230.0 4278. 9.50 73 1 "pontiac grand prix"
118 | 29.0 4 68.00 49.00 1867. 19.5 73 2 "fiat 128"
119 | 24.0 4 116.0 75.00 2158. 15.5 73 2 "opel manta"
120 | 20.0 4 114.0 91.00 2582. 14.0 73 2 "audi 100ls"
121 | 19.0 4 121.0 112.0 2868. 15.5 73 2 "volvo 144ea"
122 | 15.0 8 318.0 150.0 3399. 11.0 73 1 "dodge dart custom"
123 | 24.0 4 121.0 110.0 2660. 14.0 73 2 "saab 99le"
124 | 20.0 6 156.0 122.0 2807. 13.5 73 3 "toyota mark ii"
125 | 11.0 8 350.0 180.0 3664. 11.0 73 1 "oldsmobile omega"
126 | 20.0 6 198.0 95.00 3102. 16.5 74 1 "plymouth duster"
127 | 21.0 6 200.0 ? 2875. 17.0 74 1 "ford maverick"
128 | 19.0 6 232.0 100.0 2901. 16.0 74 1 "amc hornet"
129 | 15.0 6 250.0 100.0 3336. 17.0 74 1 "chevrolet nova"
130 | 31.0 4 79.00 67.00 1950. 19.0 74 3 "datsun b210"
131 | 26.0 4 122.0 80.00 2451. 16.5 74 1 "ford pinto"
132 | 32.0 4 71.00 65.00 1836. 21.0 74 3 "toyota corolla 1200"
133 | 25.0 4 140.0 75.00 2542. 17.0 74 1 "chevrolet vega"
134 | 16.0 6 250.0 100.0 3781. 17.0 74 1 "chevrolet chevelle malibu classic"
135 | 16.0 6 258.0 110.0 3632. 18.0 74 1 "amc matador"
136 | 18.0 6 225.0 105.0 3613. 16.5 74 1 "plymouth satellite sebring"
137 | 16.0 8 302.0 140.0 4141. 14.0 74 1 "ford gran torino"
138 | 13.0 8 350.0 150.0 4699. 14.5 74 1 "buick century luxus (sw)"
139 | 14.0 8 318.0 150.0 4457. 13.5 74 1 "dodge coronet custom (sw)"
140 | 14.0 8 302.0 140.0 4638. 16.0 74 1 "ford gran torino (sw)"
141 | 14.0 8 304.0 150.0 4257. 15.5 74 1 "amc matador (sw)"
142 | 29.0 4 98.00 83.00 2219. 16.5 74 2 "audi fox"
143 | 26.0 4 79.00 67.00 1963. 15.5 74 2 "volkswagen dasher"
144 | 26.0 4 97.00 78.00 2300. 14.5 74 2 "opel manta"
145 | 31.0 4 76.00 52.00 1649. 16.5 74 3 "toyota corona"
146 | 32.0 4 83.00 61.00 2003. 19.0 74 3 "datsun 710"
147 | 28.0 4 90.00 75.00 2125. 14.5 74 1 "dodge colt"
148 | 24.0 4 90.00 75.00 2108. 15.5 74 2 "fiat 128"
149 | 26.0 4 116.0 75.00 2246. 14.0 74 2 "fiat 124 tc"
150 | 24.0 4 120.0 97.00 2489. 15.0 74 3 "honda civic"
151 | 26.0 4 108.0 93.00 2391. 15.5 74 3 "subaru"
152 | 31.0 4 79.00 67.00 2000. 16.0 74 2 "fiat x1.9"
153 | 19.0 6 225.0 95.00 3264. 16.0 75 1 "plymouth valiant custom"
154 | 18.0 6 250.0 105.0 3459. 16.0 75 1 "chevrolet nova"
155 | 15.0 6 250.0 72.00 3432. 21.0 75 1 "mercury monarch"
156 | 15.0 6 250.0 72.00 3158. 19.5 75 1 "ford maverick"
157 | 16.0 8 400.0 170.0 4668. 11.5 75 1 "pontiac catalina"
158 | 15.0 8 350.0 145.0 4440. 14.0 75 1 "chevrolet bel air"
159 | 16.0 8 318.0 150.0 4498. 14.5 75 1 "plymouth grand fury"
160 | 14.0 8 351.0 148.0 4657. 13.5 75 1 "ford ltd"
161 | 17.0 6 231.0 110.0 3907. 21.0 75 1 "buick century"
162 | 16.0 6 250.0 105.0 3897. 18.5 75 1 "chevroelt chevelle malibu"
163 | 15.0 6 258.0 110.0 3730. 19.0 75 1 "amc matador"
164 | 18.0 6 225.0 95.00 3785. 19.0 75 1 "plymouth fury"
165 | 21.0 6 231.0 110.0 3039. 15.0 75 1 "buick skyhawk"
166 | 20.0 8 262.0 110.0 3221. 13.5 75 1 "chevrolet monza 2+2"
167 | 13.0 8 302.0 129.0 3169. 12.0 75 1 "ford mustang ii"
168 | 29.0 4 97.00 75.00 2171. 16.0 75 3 "toyota corolla"
169 | 23.0 4 140.0 83.00 2639. 17.0 75 1 "ford pinto"
170 | 20.0 6 232.0 100.0 2914. 16.0 75 1 "amc gremlin"
171 | 23.0 4 140.0 78.00 2592. 18.5 75 1 "pontiac astro"
172 | 24.0 4 134.0 96.00 2702. 13.5 75 3 "toyota corona"
173 | 25.0 4 90.00 71.00 2223. 16.5 75 2 "volkswagen dasher"
174 | 24.0 4 119.0 97.00 2545. 17.0 75 3 "datsun 710"
175 | 18.0 6 171.0 97.00 2984. 14.5 75 1 "ford pinto"
176 | 29.0 4 90.00 70.00 1937. 14.0 75 2 "volkswagen rabbit"
177 | 19.0 6 232.0 90.00 3211. 17.0 75 1 "amc pacer"
178 | 23.0 4 115.0 95.00 2694. 15.0 75 2 "audi 100ls"
179 | 23.0 4 120.0 88.00 2957. 17.0 75 2 "peugeot 504"
180 | 22.0 4 121.0 98.00 2945. 14.5 75 2 "volvo 244dl"
181 | 25.0 4 121.0 115.0 2671. 13.5 75 2 "saab 99le"
182 | 33.0 4 91.00 53.00 1795. 17.5 75 3 "honda civic cvcc"
183 | 28.0 4 107.0 86.00 2464. 15.5 76 2 "fiat 131"
184 | 25.0 4 116.0 81.00 2220. 16.9 76 2 "opel 1900"
185 | 25.0 4 140.0 92.00 2572. 14.9 76 1 "capri ii"
186 | 26.0 4 98.00 79.00 2255. 17.7 76 1 "dodge colt"
187 | 27.0 4 101.0 83.00 2202. 15.3 76 2 "renault 12tl"
188 | 17.5 8 305.0 140.0 4215. 13.0 76 1 "chevrolet chevelle malibu classic"
189 | 16.0 8 318.0 150.0 4190. 13.0 76 1 "dodge coronet brougham"
190 | 15.5 8 304.0 120.0 3962. 13.9 76 1 "amc matador"
191 | 14.5 8 351.0 152.0 4215. 12.8 76 1 "ford gran torino"
192 | 22.0 6 225.0 100.0 3233. 15.4 76 1 "plymouth valiant"
193 | 22.0 6 250.0 105.0 3353. 14.5 76 1 "chevrolet nova"
194 | 24.0 6 200.0 81.00 3012. 17.6 76 1 "ford maverick"
195 | 22.5 6 232.0 90.00 3085. 17.6 76 1 "amc hornet"
196 | 29.0 4 85.00 52.00 2035. 22.2 76 1 "chevrolet chevette"
197 | 24.5 4 98.00 60.00 2164. 22.1 76 1 "chevrolet woody"
198 | 29.0 4 90.00 70.00 1937. 14.2 76 2 "vw rabbit"
199 | 33.0 4 91.00 53.00 1795. 17.4 76 3 "honda civic"
200 | 20.0 6 225.0 100.0 3651. 17.7 76 1 "dodge aspen se"
201 | 18.0 6 250.0 78.00 3574. 21.0 76 1 "ford granada ghia"
202 | 18.5 6 250.0 110.0 3645. 16.2 76 1 "pontiac ventura sj"
203 | 17.5 6 258.0 95.00 3193. 17.8 76 1 "amc pacer d/l"
204 | 29.5 4 97.00 71.00 1825. 12.2 76 2 "volkswagen rabbit"
205 | 32.0 4 85.00 70.00 1990. 17.0 76 3 "datsun b-210"
206 | 28.0 4 97.00 75.00 2155. 16.4 76 3 "toyota corolla"
207 | 26.5 4 140.0 72.00 2565. 13.6 76 1 "ford pinto"
208 | 20.0 4 130.0 102.0 3150. 15.7 76 2 "volvo 245"
209 | 13.0 8 318.0 150.0 3940. 13.2 76 1 "plymouth volare premier v8"
210 | 19.0 4 120.0 88.00 3270. 21.9 76 2 "peugeot 504"
211 | 19.0 6 156.0 108.0 2930. 15.5 76 3 "toyota mark ii"
212 | 16.5 6 168.0 120.0 3820. 16.7 76 2 "mercedes-benz 280s"
213 | 16.5 8 350.0 180.0 4380. 12.1 76 1 "cadillac seville"
214 | 13.0 8 350.0 145.0 4055. 12.0 76 1 "chevy c10"
215 | 13.0 8 302.0 130.0 3870. 15.0 76 1 "ford f108"
216 | 13.0 8 318.0 150.0 3755. 14.0 76 1 "dodge d100"
217 | 31.5 4 98.00 68.00 2045. 18.5 77 3 "honda accord cvcc"
218 | 30.0 4 111.0 80.00 2155. 14.8 77 1 "buick opel isuzu deluxe"
219 | 36.0 4 79.00 58.00 1825. 18.6 77 2 "renault 5 gtl"
220 | 25.5 4 122.0 96.00 2300. 15.5 77 1 "plymouth arrow gs"
221 | 33.5 4 85.00 70.00 1945. 16.8 77 3 "datsun f-10 hatchback"
222 | 17.5 8 305.0 145.0 3880. 12.5 77 1 "chevrolet caprice classic"
223 | 17.0 8 260.0 110.0 4060. 19.0 77 1 "oldsmobile cutlass supreme"
224 | 15.5 8 318.0 145.0 4140. 13.7 77 1 "dodge monaco brougham"
225 | 15.0 8 302.0 130.0 4295. 14.9 77 1 "mercury cougar brougham"
226 | 17.5 6 250.0 110.0 3520. 16.4 77 1 "chevrolet concours"
227 | 20.5 6 231.0 105.0 3425. 16.9 77 1 "buick skylark"
228 | 19.0 6 225.0 100.0 3630. 17.7 77 1 "plymouth volare custom"
229 | 18.5 6 250.0 98.00 3525. 19.0 77 1 "ford granada"
230 | 16.0 8 400.0 180.0 4220. 11.1 77 1 "pontiac grand prix lj"
231 | 15.5 8 350.0 170.0 4165. 11.4 77 1 "chevrolet monte carlo landau"
232 | 15.5 8 400.0 190.0 4325. 12.2 77 1 "chrysler cordoba"
233 | 16.0 8 351.0 149.0 4335. 14.5 77 1 "ford thunderbird"
234 | 29.0 4 97.00 78.00 1940. 14.5 77 2 "volkswagen rabbit custom"
235 | 24.5 4 151.0 88.00 2740. 16.0 77 1 "pontiac sunbird coupe"
236 | 26.0 4 97.00 75.00 2265. 18.2 77 3 "toyota corolla liftback"
237 | 25.5 4 140.0 89.00 2755. 15.8 77 1 "ford mustang ii 2+2"
238 | 30.5 4 98.00 63.00 2051. 17.0 77 1 "chevrolet chevette"
239 | 33.5 4 98.00 83.00 2075. 15.9 77 1 "dodge colt m/m"
240 | 30.0 4 97.00 67.00 1985. 16.4 77 3 "subaru dl"
241 | 30.5 4 97.00 78.00 2190. 14.1 77 2 "volkswagen dasher"
242 | 22.0 6 146.0 97.00 2815. 14.5 77 3 "datsun 810"
243 | 21.5 4 121.0 110.0 2600. 12.8 77 2 "bmw 320i"
244 | 21.5 3 80.00 110.0 2720. 13.5 77 3 "mazda rx-4"
245 | 43.1 4 90.00 48.00 1985. 21.5 78 2 "volkswagen rabbit custom diesel"
246 | 36.1 4 98.00 66.00 1800. 14.4 78 1 "ford fiesta"
247 | 32.8 4 78.00 52.00 1985. 19.4 78 3 "mazda glc deluxe"
248 | 39.4 4 85.00 70.00 2070. 18.6 78 3 "datsun b210 gx"
249 | 36.1 4 91.00 60.00 1800. 16.4 78 3 "honda civic cvcc"
250 | 19.9 8 260.0 110.0 3365. 15.5 78 1 "oldsmobile cutlass salon brougham"
251 | 19.4 8 318.0 140.0 3735. 13.2 78 1 "dodge diplomat"
252 | 20.2 8 302.0 139.0 3570. 12.8 78 1 "mercury monarch ghia"
253 | 19.2 6 231.0 105.0 3535. 19.2 78 1 "pontiac phoenix lj"
254 | 20.5 6 200.0 95.00 3155. 18.2 78 1 "chevrolet malibu"
255 | 20.2 6 200.0 85.00 2965. 15.8 78 1 "ford fairmont (auto)"
256 | 25.1 4 140.0 88.00 2720. 15.4 78 1 "ford fairmont (man)"
257 | 20.5 6 225.0 100.0 3430. 17.2 78 1 "plymouth volare"
258 | 19.4 6 232.0 90.00 3210. 17.2 78 1 "amc concord"
259 | 20.6 6 231.0 105.0 3380. 15.8 78 1 "buick century special"
260 | 20.8 6 200.0 85.00 3070. 16.7 78 1 "mercury zephyr"
261 | 18.6 6 225.0 110.0 3620. 18.7 78 1 "dodge aspen"
262 | 18.1 6 258.0 120.0 3410. 15.1 78 1 "amc concord d/l"
263 | 19.2 8 305.0 145.0 3425. 13.2 78 1 "chevrolet monte carlo landau"
264 | 17.7 6 231.0 165.0 3445. 13.4 78 1 "buick regal sport coupe (turbo)"
265 | 18.1 8 302.0 139.0 3205. 11.2 78 1 "ford futura"
266 | 17.5 8 318.0 140.0 4080. 13.7 78 1 "dodge magnum xe"
267 | 30.0 4 98.00 68.00 2155. 16.5 78 1 "chevrolet chevette"
268 | 27.5 4 134.0 95.00 2560. 14.2 78 3 "toyota corona"
269 | 27.2 4 119.0 97.00 2300. 14.7 78 3 "datsun 510"
270 | 30.9 4 105.0 75.00 2230. 14.5 78 1 "dodge omni"
271 | 21.1 4 134.0 95.00 2515. 14.8 78 3 "toyota celica gt liftback"
272 | 23.2 4 156.0 105.0 2745. 16.7 78 1 "plymouth sapporo"
273 | 23.8 4 151.0 85.00 2855. 17.6 78 1 "oldsmobile starfire sx"
274 | 23.9 4 119.0 97.00 2405. 14.9 78 3 "datsun 200-sx"
275 | 20.3 5 131.0 103.0 2830. 15.9 78 2 "audi 5000"
276 | 17.0 6 163.0 125.0 3140. 13.6 78 2 "volvo 264gl"
277 | 21.6 4 121.0 115.0 2795. 15.7 78 2 "saab 99gle"
278 | 16.2 6 163.0 133.0 3410. 15.8 78 2 "peugeot 604sl"
279 | 31.5 4 89.00 71.00 1990. 14.9 78 2 "volkswagen scirocco"
280 | 29.5 4 98.00 68.00 2135. 16.6 78 3 "honda accord lx"
281 | 21.5 6 231.0 115.0 3245. 15.4 79 1 "pontiac lemans v6"
282 | 19.8 6 200.0 85.00 2990. 18.2 79 1 "mercury zephyr 6"
283 | 22.3 4 140.0 88.00 2890. 17.3 79 1 "ford fairmont 4"
284 | 20.2 6 232.0 90.00 3265. 18.2 79 1 "amc concord dl 6"
285 | 20.6 6 225.0 110.0 3360. 16.6 79 1 "dodge aspen 6"
286 | 17.0 8 305.0 130.0 3840. 15.4 79 1 "chevrolet caprice classic"
287 | 17.6 8 302.0 129.0 3725. 13.4 79 1 "ford ltd landau"
288 | 16.5 8 351.0 138.0 3955. 13.2 79 1 "mercury grand marquis"
289 | 18.2 8 318.0 135.0 3830. 15.2 79 1 "dodge st. regis"
290 | 16.9 8 350.0 155.0 4360. 14.9 79 1 "buick estate wagon (sw)"
291 | 15.5 8 351.0 142.0 4054. 14.3 79 1 "ford country squire (sw)"
292 | 19.2 8 267.0 125.0 3605. 15.0 79 1 "chevrolet malibu classic (sw)"
293 | 18.5 8 360.0 150.0 3940. 13.0 79 1 "chrysler lebaron town @ country (sw)"
294 | 31.9 4 89.00 71.00 1925. 14.0 79 2 "vw rabbit custom"
295 | 34.1 4 86.00 65.00 1975. 15.2 79 3 "maxda glc deluxe"
296 | 35.7 4 98.00 80.00 1915. 14.4 79 1 "dodge colt hatchback custom"
297 | 27.4 4 121.0 80.00 2670. 15.0 79 1 "amc spirit dl"
298 | 25.4 5 183.0 77.00 3530. 20.1 79 2 "mercedes benz 300d"
299 | 23.0 8 350.0 125.0 3900. 17.4 79 1 "cadillac eldorado"
300 | 27.2 4 141.0 71.00 3190. 24.8 79 2 "peugeot 504"
301 | 23.9 8 260.0 90.00 3420. 22.2 79 1 "oldsmobile cutlass salon brougham"
302 | 34.2 4 105.0 70.00 2200. 13.2 79 1 "plymouth horizon"
303 | 34.5 4 105.0 70.00 2150. 14.9 79 1 "plymouth horizon tc3"
304 | 31.8 4 85.00 65.00 2020. 19.2 79 3 "datsun 210"
305 | 37.3 4 91.00 69.00 2130. 14.7 79 2 "fiat strada custom"
306 | 28.4 4 151.0 90.00 2670. 16.0 79 1 "buick skylark limited"
307 | 28.8 6 173.0 115.0 2595. 11.3 79 1 "chevrolet citation"
308 | 26.8 6 173.0 115.0 2700. 12.9 79 1 "oldsmobile omega brougham"
309 | 33.5 4 151.0 90.00 2556. 13.2 79 1 "pontiac phoenix"
310 | 41.5 4 98.00 76.00 2144. 14.7 80 2 "vw rabbit"
311 | 38.1 4 89.00 60.00 1968. 18.8 80 3 "toyota corolla tercel"
312 | 32.1 4 98.00 70.00 2120. 15.5 80 1 "chevrolet chevette"
313 | 37.2 4 86.00 65.00 2019. 16.4 80 3 "datsun 310"
314 | 28.0 4 151.0 90.00 2678. 16.5 80 1 "chevrolet citation"
315 | 26.4 4 140.0 88.00 2870. 18.1 80 1 "ford fairmont"
316 | 24.3 4 151.0 90.00 3003. 20.1 80 1 "amc concord"
317 | 19.1 6 225.0 90.00 3381. 18.7 80 1 "dodge aspen"
318 | 34.3 4 97.00 78.00 2188. 15.8 80 2 "audi 4000"
319 | 29.8 4 134.0 90.00 2711. 15.5 80 3 "toyota corona liftback"
320 | 31.3 4 120.0 75.00 2542. 17.5 80 3 "mazda 626"
321 | 37.0 4 119.0 92.00 2434. 15.0 80 3 "datsun 510 hatchback"
322 | 32.2 4 108.0 75.00 2265. 15.2 80 3 "toyota corolla"
323 | 46.6 4 86.00 65.00 2110. 17.9 80 3 "mazda glc"
324 | 27.9 4 156.0 105.0 2800. 14.4 80 1 "dodge colt"
325 | 40.8 4 85.00 65.00 2110. 19.2 80 3 "datsun 210"
326 | 44.3 4 90.00 48.00 2085. 21.7 80 2 "vw rabbit c (diesel)"
327 | 43.4 4 90.00 48.00 2335. 23.7 80 2 "vw dasher (diesel)"
328 | 36.4 5 121.0 67.00 2950. 19.9 80 2 "audi 5000s (diesel)"
329 | 30.0 4 146.0 67.00 3250. 21.8 80 2 "mercedes-benz 240d"
330 | 44.6 4 91.00 67.00 1850. 13.8 80 3 "honda civic 1500 gl"
331 | 40.9 4 85.00 ? 1835. 17.3 80 2 "renault lecar deluxe"
332 | 33.8 4 97.00 67.00 2145. 18.0 80 3 "subaru dl"
333 | 29.8 4 89.00 62.00 1845. 15.3 80 2 "vokswagen rabbit"
334 | 32.7 6 168.0 132.0 2910. 11.4 80 3 "datsun 280-zx"
335 | 23.7 3 70.00 100.0 2420. 12.5 80 3 "mazda rx-7 gs"
336 | 35.0 4 122.0 88.00 2500. 15.1 80 2 "triumph tr7 coupe"
337 | 23.6 4 140.0 ? 2905. 14.3 80 1 "ford mustang cobra"
338 | 32.4 4 107.0 72.00 2290. 17.0 80 3 "honda accord"
339 | 27.2 4 135.0 84.00 2490. 15.7 81 1 "plymouth reliant"
340 | 26.6 4 151.0 84.00 2635. 16.4 81 1 "buick skylark"
341 | 25.8 4 156.0 92.00 2620. 14.4 81 1 "dodge aries wagon (sw)"
342 | 23.5 6 173.0 110.0 2725. 12.6 81 1 "chevrolet citation"
343 | 30.0 4 135.0 84.00 2385. 12.9 81 1 "plymouth reliant"
344 | 39.1 4 79.00 58.00 1755. 16.9 81 3 "toyota starlet"
345 | 39.0 4 86.00 64.00 1875. 16.4 81 1 "plymouth champ"
346 | 35.1 4 81.00 60.00 1760. 16.1 81 3 "honda civic 1300"
347 | 32.3 4 97.00 67.00 2065. 17.8 81 3 "subaru"
348 | 37.0 4 85.00 65.00 1975. 19.4 81 3 "datsun 210 mpg"
349 | 37.7 4 89.00 62.00 2050. 17.3 81 3 "toyota tercel"
350 | 34.1 4 91.00 68.00 1985. 16.0 81 3 "mazda glc 4"
351 | 34.7 4 105.0 63.00 2215. 14.9 81 1 "plymouth horizon 4"
352 | 34.4 4 98.00 65.00 2045. 16.2 81 1 "ford escort 4w"
353 | 29.9 4 98.00 65.00 2380. 20.7 81 1 "ford escort 2h"
354 | 33.0 4 105.0 74.00 2190. 14.2 81 2 "volkswagen jetta"
355 | 34.5 4 100.0 ? 2320. 15.8 81 2 "renault 18i"
356 | 33.7 4 107.0 75.00 2210. 14.4 81 3 "honda prelude"
357 | 32.4 4 108.0 75.00 2350. 16.8 81 3 "toyota corolla"
358 | 32.9 4 119.0 100.0 2615. 14.8 81 3 "datsun 200sx"
359 | 31.6 4 120.0 74.00 2635. 18.3 81 3 "mazda 626"
360 | 28.1 4 141.0 80.00 3230. 20.4 81 2 "peugeot 505s turbo diesel"
361 | 30.7 6 145.0 76.00 3160. 19.6 81 2 "volvo diesel"
362 | 25.4 6 168.0 116.0 2900. 12.6 81 3 "toyota cressida"
363 | 24.2 6 146.0 120.0 2930. 13.8 81 3 "datsun 810 maxima"
364 | 22.4 6 231.0 110.0 3415. 15.8 81 1 "buick century"
365 | 26.6 8 350.0 105.0 3725. 19.0 81 1 "oldsmobile cutlass ls"
366 | 20.2 6 200.0 88.00 3060. 17.1 81 1 "ford granada gl"
367 | 17.6 6 225.0 85.00 3465. 16.6 81 1 "chrysler lebaron salon"
368 | 28.0 4 112.0 88.00 2605. 19.6 82 1 "chevrolet cavalier"
369 | 27.0 4 112.0 88.00 2640. 18.6 82 1 "chevrolet cavalier wagon"
370 | 34.0 4 112.0 88.00 2395. 18.0 82 1 "chevrolet cavalier 2-door"
371 | 31.0 4 112.0 85.00 2575. 16.2 82 1 "pontiac j2000 se hatchback"
372 | 29.0 4 135.0 84.00 2525. 16.0 82 1 "dodge aries se"
373 | 27.0 4 151.0 90.00 2735. 18.0 82 1 "pontiac phoenix"
374 | 24.0 4 140.0 92.00 2865. 16.4 82 1 "ford fairmont futura"
375 | 23.0 4 151.0 ? 3035. 20.5 82 1 "amc concord dl"
376 | 36.0 4 105.0 74.00 1980. 15.3 82 2 "volkswagen rabbit l"
377 | 37.0 4 91.00 68.00 2025. 18.2 82 3 "mazda glc custom l"
378 | 31.0 4 91.00 68.00 1970. 17.6 82 3 "mazda glc custom"
379 | 38.0 4 105.0 63.00 2125. 14.7 82 1 "plymouth horizon miser"
380 | 36.0 4 98.00 70.00 2125. 17.3 82 1 "mercury lynx l"
381 | 36.0 4 120.0 88.00 2160. 14.5 82 3 "nissan stanza xe"
382 | 36.0 4 107.0 75.00 2205. 14.5 82 3 "honda accord"
383 | 34.0 4 108.0 70.00 2245 16.9 82 3 "toyota corolla"
384 | 38.0 4 91.00 67.00 1965. 15.0 82 3 "honda civic"
385 | 32.0 4 91.00 67.00 1965. 15.7 82 3 "honda civic (auto)"
386 | 38.0 4 91.00 67.00 1995. 16.2 82 3 "datsun 310 gx"
387 | 25.0 6 181.0 110.0 2945. 16.4 82 1 "buick century limited"
388 | 38.0 6 262.0 85.00 3015. 17.0 82 1 "oldsmobile cutlass ciera (diesel)"
389 | 26.0 4 156.0 92.00 2585. 14.5 82 1 "chrysler lebaron medallion"
390 | 22.0 6 232.0 112.0 2835 14.7 82 1 "ford granada l"
391 | 32.0 4 144.0 96.00 2665. 13.9 82 3 "toyota celica gt"
392 | 36.0 4 135.0 84.00 2370. 13.0 82 1 "dodge charger 2.2"
393 | 27.0 4 151.0 90.00 2950. 17.3 82 1 "chevrolet camaro"
394 | 27.0 4 140.0 86.00 2790. 15.6 82 1 "ford mustang gl"
395 | 44.0 4 97.00 52.00 2130. 24.6 82 2 "vw pickup"
396 | 32.0 4 135.0 84.00 2295. 11.6 82 1 "dodge rampage"
397 | 28.0 4 120.0 79.00 2625. 18.6 82 1 "ford ranger"
398 | 31.0 4 119.0 82.00 2720. 19.4 82 1 "chevy s-10"
399 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/auto-mpg-regression/dataset.txt:
--------------------------------------------------------------------------------
1 | 18.0 8 307.0 130.0 3504. 12.0 70 1 "chevrolet chevelle malibu"
2 | 15.0 8 350.0 165.0 3693. 11.5 70 1 "buick skylark 320"
3 | 18.0 8 318.0 150.0 3436. 11.0 70 1 "plymouth satellite"
4 | 16.0 8 304.0 150.0 3433. 12.0 70 1 "amc rebel sst"
5 | 17.0 8 302.0 140.0 3449. 10.5 70 1 "ford torino"
6 | 15.0 8 429.0 198.0 4341. 10.0 70 1 "ford galaxie 500"
7 | 14.0 8 454.0 220.0 4354. 9.0 70 1 "chevrolet impala"
8 | 14.0 8 440.0 215.0 4312. 8.5 70 1 "plymouth fury iii"
9 | 14.0 8 455.0 225.0 4425. 10.0 70 1 "pontiac catalina"
10 | 15.0 8 390.0 190.0 3850. 8.5 70 1 "amc ambassador dpl"
11 | 15.0 8 383.0 170.0 3563. 10.0 70 1 "dodge challenger se"
12 | 14.0 8 340.0 160.0 3609. 8.0 70 1 "plymouth 'cuda 340"
13 | 15.0 8 400.0 150.0 3761. 9.5 70 1 "chevrolet monte carlo"
14 | 14.0 8 455.0 225.0 3086. 10.0 70 1 "buick estate wagon (sw)"
15 | 24.0 4 113.0 95.00 2372. 15.0 70 3 "toyota corona mark ii"
16 | 22.0 6 198.0 95.00 2833. 15.5 70 1 "plymouth duster"
17 | 18.0 6 199.0 97.00 2774. 15.5 70 1 "amc hornet"
18 | 21.0 6 200.0 85.00 2587. 16.0 70 1 "ford maverick"
19 | 27.0 4 97.00 88.00 2130. 14.5 70 3 "datsun pl510"
20 | 26.0 4 97.00 46.00 1835. 20.5 70 2 "volkswagen 1131 deluxe sedan"
21 | 25.0 4 110.0 87.00 2672. 17.5 70 2 "peugeot 504"
22 | 24.0 4 107.0 90.00 2430. 14.5 70 2 "audi 100 ls"
23 | 25.0 4 104.0 95.00 2375. 17.5 70 2 "saab 99e"
24 | 26.0 4 121.0 113.0 2234. 12.5 70 2 "bmw 2002"
25 | 21.0 6 199.0 90.00 2648. 15.0 70 1 "amc gremlin"
26 | 10.0 8 360.0 215.0 4615. 14.0 70 1 "ford f250"
27 | 10.0 8 307.0 200.0 4376. 15.0 70 1 "chevy c20"
28 | 11.0 8 318.0 210.0 4382. 13.5 70 1 "dodge d200"
29 | 9.0 8 304.0 193.0 4732. 18.5 70 1 "hi 1200d"
30 | 27.0 4 97.00 88.00 2130. 14.5 71 3 "datsun pl510"
31 | 28.0 4 140.0 90.00 2264. 15.5 71 1 "chevrolet vega 2300"
32 | 25.0 4 113.0 95.00 2228. 14.0 71 3 "toyota corona"
33 | 25.0 4 98.00 ? 2046. 19.0 71 1 "ford pinto"
34 | 19.0 6 232.0 100.0 2634. 13.0 71 1 "amc gremlin"
35 | 16.0 6 225.0 105.0 3439. 15.5 71 1 "plymouth satellite custom"
36 | 17.0 6 250.0 100.0 3329. 15.5 71 1 "chevrolet chevelle malibu"
37 | 19.0 6 250.0 88.00 3302. 15.5 71 1 "ford torino 500"
38 | 18.0 6 232.0 100.0 3288. 15.5 71 1 "amc matador"
39 | 14.0 8 350.0 165.0 4209. 12.0 71 1 "chevrolet impala"
40 | 14.0 8 400.0 175.0 4464. 11.5 71 1 "pontiac catalina brougham"
41 | 14.0 8 351.0 153.0 4154. 13.5 71 1 "ford galaxie 500"
42 | 14.0 8 318.0 150.0 4096. 13.0 71 1 "plymouth fury iii"
43 | 12.0 8 383.0 180.0 4955. 11.5 71 1 "dodge monaco (sw)"
44 | 13.0 8 400.0 170.0 4746. 12.0 71 1 "ford country squire (sw)"
45 | 13.0 8 400.0 175.0 5140. 12.0 71 1 "pontiac safari (sw)"
46 | 18.0 6 258.0 110.0 2962. 13.5 71 1 "amc hornet sportabout (sw)"
47 | 22.0 4 140.0 72.00 2408. 19.0 71 1 "chevrolet vega (sw)"
48 | 19.0 6 250.0 100.0 3282. 15.0 71 1 "pontiac firebird"
49 | 18.0 6 250.0 88.00 3139. 14.5 71 1 "ford mustang"
50 | 23.0 4 122.0 86.00 2220. 14.0 71 1 "mercury capri 2000"
51 | 28.0 4 116.0 90.00 2123. 14.0 71 2 "opel 1900"
52 | 30.0 4 79.00 70.00 2074. 19.5 71 2 "peugeot 304"
53 | 30.0 4 88.00 76.00 2065. 14.5 71 2 "fiat 124b"
54 | 31.0 4 71.00 65.00 1773. 19.0 71 3 "toyota corolla 1200"
55 | 35.0 4 72.00 69.00 1613. 18.0 71 3 "datsun 1200"
56 | 27.0 4 97.00 60.00 1834. 19.0 71 2 "volkswagen model 111"
57 | 26.0 4 91.00 70.00 1955. 20.5 71 1 "plymouth cricket"
58 | 24.0 4 113.0 95.00 2278. 15.5 72 3 "toyota corona hardtop"
59 | 25.0 4 97.50 80.00 2126. 17.0 72 1 "dodge colt hardtop"
60 | 23.0 4 97.00 54.00 2254. 23.5 72 2 "volkswagen type 3"
61 | 20.0 4 140.0 90.00 2408. 19.5 72 1 "chevrolet vega"
62 | 21.0 4 122.0 86.00 2226. 16.5 72 1 "ford pinto runabout"
63 | 13.0 8 350.0 165.0 4274. 12.0 72 1 "chevrolet impala"
64 | 14.0 8 400.0 175.0 4385. 12.0 72 1 "pontiac catalina"
65 | 15.0 8 318.0 150.0 4135. 13.5 72 1 "plymouth fury iii"
66 | 14.0 8 351.0 153.0 4129. 13.0 72 1 "ford galaxie 500"
67 | 17.0 8 304.0 150.0 3672. 11.5 72 1 "amc ambassador sst"
68 | 11.0 8 429.0 208.0 4633. 11.0 72 1 "mercury marquis"
69 | 13.0 8 350.0 155.0 4502. 13.5 72 1 "buick lesabre custom"
70 | 12.0 8 350.0 160.0 4456. 13.5 72 1 "oldsmobile delta 88 royale"
71 | 13.0 8 400.0 190.0 4422. 12.5 72 1 "chrysler newport royal"
72 | 19.0 3 70.00 97.00 2330. 13.5 72 3 "mazda rx2 coupe"
73 | 15.0 8 304.0 150.0 3892. 12.5 72 1 "amc matador (sw)"
74 | 13.0 8 307.0 130.0 4098. 14.0 72 1 "chevrolet chevelle concours (sw)"
75 | 13.0 8 302.0 140.0 4294. 16.0 72 1 "ford gran torino (sw)"
76 | 14.0 8 318.0 150.0 4077. 14.0 72 1 "plymouth satellite custom (sw)"
77 | 18.0 4 121.0 112.0 2933. 14.5 72 2 "volvo 145e (sw)"
78 | 22.0 4 121.0 76.00 2511. 18.0 72 2 "volkswagen 411 (sw)"
79 | 21.0 4 120.0 87.00 2979. 19.5 72 2 "peugeot 504 (sw)"
80 | 26.0 4 96.00 69.00 2189. 18.0 72 2 "renault 12 (sw)"
81 | 22.0 4 122.0 86.00 2395. 16.0 72 1 "ford pinto (sw)"
82 | 28.0 4 97.00 92.00 2288. 17.0 72 3 "datsun 510 (sw)"
83 | 23.0 4 120.0 97.00 2506. 14.5 72 3 "toyouta corona mark ii (sw)"
84 | 28.0 4 98.00 80.00 2164. 15.0 72 1 "dodge colt (sw)"
85 | 27.0 4 97.00 88.00 2100. 16.5 72 3 "toyota corolla 1600 (sw)"
86 | 13.0 8 350.0 175.0 4100. 13.0 73 1 "buick century 350"
87 | 14.0 8 304.0 150.0 3672. 11.5 73 1 "amc matador"
88 | 13.0 8 350.0 145.0 3988. 13.0 73 1 "chevrolet malibu"
89 | 14.0 8 302.0 137.0 4042. 14.5 73 1 "ford gran torino"
90 | 15.0 8 318.0 150.0 3777. 12.5 73 1 "dodge coronet custom"
91 | 12.0 8 429.0 198.0 4952. 11.5 73 1 "mercury marquis brougham"
92 | 13.0 8 400.0 150.0 4464. 12.0 73 1 "chevrolet caprice classic"
93 | 13.0 8 351.0 158.0 4363. 13.0 73 1 "ford ltd"
94 | 14.0 8 318.0 150.0 4237. 14.5 73 1 "plymouth fury gran sedan"
95 | 13.0 8 440.0 215.0 4735. 11.0 73 1 "chrysler new yorker brougham"
96 | 12.0 8 455.0 225.0 4951. 11.0 73 1 "buick electra 225 custom"
97 | 13.0 8 360.0 175.0 3821. 11.0 73 1 "amc ambassador brougham"
98 | 18.0 6 225.0 105.0 3121. 16.5 73 1 "plymouth valiant"
99 | 16.0 6 250.0 100.0 3278. 18.0 73 1 "chevrolet nova custom"
100 | 18.0 6 232.0 100.0 2945. 16.0 73 1 "amc hornet"
101 | 18.0 6 250.0 88.00 3021. 16.5 73 1 "ford maverick"
102 | 23.0 6 198.0 95.00 2904. 16.0 73 1 "plymouth duster"
103 | 26.0 4 97.00 46.00 1950. 21.0 73 2 "volkswagen super beetle"
104 | 11.0 8 400.0 150.0 4997. 14.0 73 1 "chevrolet impala"
105 | 12.0 8 400.0 167.0 4906. 12.5 73 1 "ford country"
106 | 13.0 8 360.0 170.0 4654. 13.0 73 1 "plymouth custom suburb"
107 | 12.0 8 350.0 180.0 4499. 12.5 73 1 "oldsmobile vista cruiser"
108 | 18.0 6 232.0 100.0 2789. 15.0 73 1 "amc gremlin"
109 | 20.0 4 97.00 88.00 2279. 19.0 73 3 "toyota carina"
110 | 21.0 4 140.0 72.00 2401. 19.5 73 1 "chevrolet vega"
111 | 22.0 4 108.0 94.00 2379. 16.5 73 3 "datsun 610"
112 | 18.0 3 70.00 90.00 2124. 13.5 73 3 "maxda rx3"
113 | 19.0 4 122.0 85.00 2310. 18.5 73 1 "ford pinto"
114 | 21.0 6 155.0 107.0 2472. 14.0 73 1 "mercury capri v6"
115 | 26.0 4 98.00 90.00 2265. 15.5 73 2 "fiat 124 sport coupe"
116 | 15.0 8 350.0 145.0 4082. 13.0 73 1 "chevrolet monte carlo s"
117 | 16.0 8 400.0 230.0 4278. 9.50 73 1 "pontiac grand prix"
118 | 29.0 4 68.00 49.00 1867. 19.5 73 2 "fiat 128"
119 | 24.0 4 116.0 75.00 2158. 15.5 73 2 "opel manta"
120 | 20.0 4 114.0 91.00 2582. 14.0 73 2 "audi 100ls"
121 | 19.0 4 121.0 112.0 2868. 15.5 73 2 "volvo 144ea"
122 | 15.0 8 318.0 150.0 3399. 11.0 73 1 "dodge dart custom"
123 | 24.0 4 121.0 110.0 2660. 14.0 73 2 "saab 99le"
124 | 20.0 6 156.0 122.0 2807. 13.5 73 3 "toyota mark ii"
125 | 11.0 8 350.0 180.0 3664. 11.0 73 1 "oldsmobile omega"
126 | 20.0 6 198.0 95.00 3102. 16.5 74 1 "plymouth duster"
127 | 21.0 6 200.0 ? 2875. 17.0 74 1 "ford maverick"
128 | 19.0 6 232.0 100.0 2901. 16.0 74 1 "amc hornet"
129 | 15.0 6 250.0 100.0 3336. 17.0 74 1 "chevrolet nova"
130 | 31.0 4 79.00 67.00 1950. 19.0 74 3 "datsun b210"
131 | 26.0 4 122.0 80.00 2451. 16.5 74 1 "ford pinto"
132 | 32.0 4 71.00 65.00 1836. 21.0 74 3 "toyota corolla 1200"
133 | 25.0 4 140.0 75.00 2542. 17.0 74 1 "chevrolet vega"
134 | 16.0 6 250.0 100.0 3781. 17.0 74 1 "chevrolet chevelle malibu classic"
135 | 16.0 6 258.0 110.0 3632. 18.0 74 1 "amc matador"
136 | 18.0 6 225.0 105.0 3613. 16.5 74 1 "plymouth satellite sebring"
137 | 16.0 8 302.0 140.0 4141. 14.0 74 1 "ford gran torino"
138 | 13.0 8 350.0 150.0 4699. 14.5 74 1 "buick century luxus (sw)"
139 | 14.0 8 318.0 150.0 4457. 13.5 74 1 "dodge coronet custom (sw)"
140 | 14.0 8 302.0 140.0 4638. 16.0 74 1 "ford gran torino (sw)"
141 | 14.0 8 304.0 150.0 4257. 15.5 74 1 "amc matador (sw)"
142 | 29.0 4 98.00 83.00 2219. 16.5 74 2 "audi fox"
143 | 26.0 4 79.00 67.00 1963. 15.5 74 2 "volkswagen dasher"
144 | 26.0 4 97.00 78.00 2300. 14.5 74 2 "opel manta"
145 | 31.0 4 76.00 52.00 1649. 16.5 74 3 "toyota corona"
146 | 32.0 4 83.00 61.00 2003. 19.0 74 3 "datsun 710"
147 | 28.0 4 90.00 75.00 2125. 14.5 74 1 "dodge colt"
148 | 24.0 4 90.00 75.00 2108. 15.5 74 2 "fiat 128"
149 | 26.0 4 116.0 75.00 2246. 14.0 74 2 "fiat 124 tc"
150 | 24.0 4 120.0 97.00 2489. 15.0 74 3 "honda civic"
151 | 26.0 4 108.0 93.00 2391. 15.5 74 3 "subaru"
152 | 31.0 4 79.00 67.00 2000. 16.0 74 2 "fiat x1.9"
153 | 19.0 6 225.0 95.00 3264. 16.0 75 1 "plymouth valiant custom"
154 | 18.0 6 250.0 105.0 3459. 16.0 75 1 "chevrolet nova"
155 | 15.0 6 250.0 72.00 3432. 21.0 75 1 "mercury monarch"
156 | 15.0 6 250.0 72.00 3158. 19.5 75 1 "ford maverick"
157 | 16.0 8 400.0 170.0 4668. 11.5 75 1 "pontiac catalina"
158 | 15.0 8 350.0 145.0 4440. 14.0 75 1 "chevrolet bel air"
159 | 16.0 8 318.0 150.0 4498. 14.5 75 1 "plymouth grand fury"
160 | 14.0 8 351.0 148.0 4657. 13.5 75 1 "ford ltd"
161 | 17.0 6 231.0 110.0 3907. 21.0 75 1 "buick century"
162 | 16.0 6 250.0 105.0 3897. 18.5 75 1 "chevroelt chevelle malibu"
163 | 15.0 6 258.0 110.0 3730. 19.0 75 1 "amc matador"
164 | 18.0 6 225.0 95.00 3785. 19.0 75 1 "plymouth fury"
165 | 21.0 6 231.0 110.0 3039. 15.0 75 1 "buick skyhawk"
166 | 20.0 8 262.0 110.0 3221. 13.5 75 1 "chevrolet monza 2+2"
167 | 13.0 8 302.0 129.0 3169. 12.0 75 1 "ford mustang ii"
168 | 29.0 4 97.00 75.00 2171. 16.0 75 3 "toyota corolla"
169 | 23.0 4 140.0 83.00 2639. 17.0 75 1 "ford pinto"
170 | 20.0 6 232.0 100.0 2914. 16.0 75 1 "amc gremlin"
171 | 23.0 4 140.0 78.00 2592. 18.5 75 1 "pontiac astro"
172 | 24.0 4 134.0 96.00 2702. 13.5 75 3 "toyota corona"
173 | 25.0 4 90.00 71.00 2223. 16.5 75 2 "volkswagen dasher"
174 | 24.0 4 119.0 97.00 2545. 17.0 75 3 "datsun 710"
175 | 18.0 6 171.0 97.00 2984. 14.5 75 1 "ford pinto"
176 | 29.0 4 90.00 70.00 1937. 14.0 75 2 "volkswagen rabbit"
177 | 19.0 6 232.0 90.00 3211. 17.0 75 1 "amc pacer"
178 | 23.0 4 115.0 95.00 2694. 15.0 75 2 "audi 100ls"
179 | 23.0 4 120.0 88.00 2957. 17.0 75 2 "peugeot 504"
180 | 22.0 4 121.0 98.00 2945. 14.5 75 2 "volvo 244dl"
181 | 25.0 4 121.0 115.0 2671. 13.5 75 2 "saab 99le"
182 | 33.0 4 91.00 53.00 1795. 17.5 75 3 "honda civic cvcc"
183 | 28.0 4 107.0 86.00 2464. 15.5 76 2 "fiat 131"
184 | 25.0 4 116.0 81.00 2220. 16.9 76 2 "opel 1900"
185 | 25.0 4 140.0 92.00 2572. 14.9 76 1 "capri ii"
186 | 26.0 4 98.00 79.00 2255. 17.7 76 1 "dodge colt"
187 | 27.0 4 101.0 83.00 2202. 15.3 76 2 "renault 12tl"
188 | 17.5 8 305.0 140.0 4215. 13.0 76 1 "chevrolet chevelle malibu classic"
189 | 16.0 8 318.0 150.0 4190. 13.0 76 1 "dodge coronet brougham"
190 | 15.5 8 304.0 120.0 3962. 13.9 76 1 "amc matador"
191 | 14.5 8 351.0 152.0 4215. 12.8 76 1 "ford gran torino"
192 | 22.0 6 225.0 100.0 3233. 15.4 76 1 "plymouth valiant"
193 | 22.0 6 250.0 105.0 3353. 14.5 76 1 "chevrolet nova"
194 | 24.0 6 200.0 81.00 3012. 17.6 76 1 "ford maverick"
195 | 22.5 6 232.0 90.00 3085. 17.6 76 1 "amc hornet"
196 | 29.0 4 85.00 52.00 2035. 22.2 76 1 "chevrolet chevette"
197 | 24.5 4 98.00 60.00 2164. 22.1 76 1 "chevrolet woody"
198 | 29.0 4 90.00 70.00 1937. 14.2 76 2 "vw rabbit"
199 | 33.0 4 91.00 53.00 1795. 17.4 76 3 "honda civic"
200 | 20.0 6 225.0 100.0 3651. 17.7 76 1 "dodge aspen se"
201 | 18.0 6 250.0 78.00 3574. 21.0 76 1 "ford granada ghia"
202 | 18.5 6 250.0 110.0 3645. 16.2 76 1 "pontiac ventura sj"
203 | 17.5 6 258.0 95.00 3193. 17.8 76 1 "amc pacer d/l"
204 | 29.5 4 97.00 71.00 1825. 12.2 76 2 "volkswagen rabbit"
205 | 32.0 4 85.00 70.00 1990. 17.0 76 3 "datsun b-210"
206 | 28.0 4 97.00 75.00 2155. 16.4 76 3 "toyota corolla"
207 | 26.5 4 140.0 72.00 2565. 13.6 76 1 "ford pinto"
208 | 20.0 4 130.0 102.0 3150. 15.7 76 2 "volvo 245"
209 | 13.0 8 318.0 150.0 3940. 13.2 76 1 "plymouth volare premier v8"
210 | 19.0 4 120.0 88.00 3270. 21.9 76 2 "peugeot 504"
211 | 19.0 6 156.0 108.0 2930. 15.5 76 3 "toyota mark ii"
212 | 16.5 6 168.0 120.0 3820. 16.7 76 2 "mercedes-benz 280s"
213 | 16.5 8 350.0 180.0 4380. 12.1 76 1 "cadillac seville"
214 | 13.0 8 350.0 145.0 4055. 12.0 76 1 "chevy c10"
215 | 13.0 8 302.0 130.0 3870. 15.0 76 1 "ford f108"
216 | 13.0 8 318.0 150.0 3755. 14.0 76 1 "dodge d100"
217 | 31.5 4 98.00 68.00 2045. 18.5 77 3 "honda accord cvcc"
218 | 30.0 4 111.0 80.00 2155. 14.8 77 1 "buick opel isuzu deluxe"
219 | 36.0 4 79.00 58.00 1825. 18.6 77 2 "renault 5 gtl"
220 | 25.5 4 122.0 96.00 2300. 15.5 77 1 "plymouth arrow gs"
221 | 33.5 4 85.00 70.00 1945. 16.8 77 3 "datsun f-10 hatchback"
222 | 17.5 8 305.0 145.0 3880. 12.5 77 1 "chevrolet caprice classic"
223 | 17.0 8 260.0 110.0 4060. 19.0 77 1 "oldsmobile cutlass supreme"
224 | 15.5 8 318.0 145.0 4140. 13.7 77 1 "dodge monaco brougham"
225 | 15.0 8 302.0 130.0 4295. 14.9 77 1 "mercury cougar brougham"
226 | 17.5 6 250.0 110.0 3520. 16.4 77 1 "chevrolet concours"
227 | 20.5 6 231.0 105.0 3425. 16.9 77 1 "buick skylark"
228 | 19.0 6 225.0 100.0 3630. 17.7 77 1 "plymouth volare custom"
229 | 18.5 6 250.0 98.00 3525. 19.0 77 1 "ford granada"
230 | 16.0 8 400.0 180.0 4220. 11.1 77 1 "pontiac grand prix lj"
231 | 15.5 8 350.0 170.0 4165. 11.4 77 1 "chevrolet monte carlo landau"
232 | 15.5 8 400.0 190.0 4325. 12.2 77 1 "chrysler cordoba"
233 | 16.0 8 351.0 149.0 4335. 14.5 77 1 "ford thunderbird"
234 | 29.0 4 97.00 78.00 1940. 14.5 77 2 "volkswagen rabbit custom"
235 | 24.5 4 151.0 88.00 2740. 16.0 77 1 "pontiac sunbird coupe"
236 | 26.0 4 97.00 75.00 2265. 18.2 77 3 "toyota corolla liftback"
237 | 25.5 4 140.0 89.00 2755. 15.8 77 1 "ford mustang ii 2+2"
238 | 30.5 4 98.00 63.00 2051. 17.0 77 1 "chevrolet chevette"
239 | 33.5 4 98.00 83.00 2075. 15.9 77 1 "dodge colt m/m"
240 | 30.0 4 97.00 67.00 1985. 16.4 77 3 "subaru dl"
241 | 30.5 4 97.00 78.00 2190. 14.1 77 2 "volkswagen dasher"
242 | 22.0 6 146.0 97.00 2815. 14.5 77 3 "datsun 810"
243 | 21.5 4 121.0 110.0 2600. 12.8 77 2 "bmw 320i"
244 | 21.5 3 80.00 110.0 2720. 13.5 77 3 "mazda rx-4"
245 | 43.1 4 90.00 48.00 1985. 21.5 78 2 "volkswagen rabbit custom diesel"
246 | 36.1 4 98.00 66.00 1800. 14.4 78 1 "ford fiesta"
247 | 32.8 4 78.00 52.00 1985. 19.4 78 3 "mazda glc deluxe"
248 | 39.4 4 85.00 70.00 2070. 18.6 78 3 "datsun b210 gx"
249 | 36.1 4 91.00 60.00 1800. 16.4 78 3 "honda civic cvcc"
250 | 19.9 8 260.0 110.0 3365. 15.5 78 1 "oldsmobile cutlass salon brougham"
251 | 19.4 8 318.0 140.0 3735. 13.2 78 1 "dodge diplomat"
252 | 20.2 8 302.0 139.0 3570. 12.8 78 1 "mercury monarch ghia"
253 | 19.2 6 231.0 105.0 3535. 19.2 78 1 "pontiac phoenix lj"
254 | 20.5 6 200.0 95.00 3155. 18.2 78 1 "chevrolet malibu"
255 | 20.2 6 200.0 85.00 2965. 15.8 78 1 "ford fairmont (auto)"
256 | 25.1 4 140.0 88.00 2720. 15.4 78 1 "ford fairmont (man)"
257 | 20.5 6 225.0 100.0 3430. 17.2 78 1 "plymouth volare"
258 | 19.4 6 232.0 90.00 3210. 17.2 78 1 "amc concord"
259 | 20.6 6 231.0 105.0 3380. 15.8 78 1 "buick century special"
260 | 20.8 6 200.0 85.00 3070. 16.7 78 1 "mercury zephyr"
261 | 18.6 6 225.0 110.0 3620. 18.7 78 1 "dodge aspen"
262 | 18.1 6 258.0 120.0 3410. 15.1 78 1 "amc concord d/l"
263 | 19.2 8 305.0 145.0 3425. 13.2 78 1 "chevrolet monte carlo landau"
264 | 17.7 6 231.0 165.0 3445. 13.4 78 1 "buick regal sport coupe (turbo)"
265 | 18.1 8 302.0 139.0 3205. 11.2 78 1 "ford futura"
266 | 17.5 8 318.0 140.0 4080. 13.7 78 1 "dodge magnum xe"
267 | 30.0 4 98.00 68.00 2155. 16.5 78 1 "chevrolet chevette"
268 | 27.5 4 134.0 95.00 2560. 14.2 78 3 "toyota corona"
269 | 27.2 4 119.0 97.00 2300. 14.7 78 3 "datsun 510"
270 | 30.9 4 105.0 75.00 2230. 14.5 78 1 "dodge omni"
271 | 21.1 4 134.0 95.00 2515. 14.8 78 3 "toyota celica gt liftback"
272 | 23.2 4 156.0 105.0 2745. 16.7 78 1 "plymouth sapporo"
273 | 23.8 4 151.0 85.00 2855. 17.6 78 1 "oldsmobile starfire sx"
274 | 23.9 4 119.0 97.00 2405. 14.9 78 3 "datsun 200-sx"
275 | 20.3 5 131.0 103.0 2830. 15.9 78 2 "audi 5000"
276 | 17.0 6 163.0 125.0 3140. 13.6 78 2 "volvo 264gl"
277 | 21.6 4 121.0 115.0 2795. 15.7 78 2 "saab 99gle"
278 | 16.2 6 163.0 133.0 3410. 15.8 78 2 "peugeot 604sl"
279 | 31.5 4 89.00 71.00 1990. 14.9 78 2 "volkswagen scirocco"
280 | 29.5 4 98.00 68.00 2135. 16.6 78 3 "honda accord lx"
281 | 21.5 6 231.0 115.0 3245. 15.4 79 1 "pontiac lemans v6"
282 | 19.8 6 200.0 85.00 2990. 18.2 79 1 "mercury zephyr 6"
283 | 22.3 4 140.0 88.00 2890. 17.3 79 1 "ford fairmont 4"
284 | 20.2 6 232.0 90.00 3265. 18.2 79 1 "amc concord dl 6"
285 | 20.6 6 225.0 110.0 3360. 16.6 79 1 "dodge aspen 6"
286 | 17.0 8 305.0 130.0 3840. 15.4 79 1 "chevrolet caprice classic"
287 | 17.6 8 302.0 129.0 3725. 13.4 79 1 "ford ltd landau"
288 | 16.5 8 351.0 138.0 3955. 13.2 79 1 "mercury grand marquis"
289 | 18.2 8 318.0 135.0 3830. 15.2 79 1 "dodge st. regis"
290 | 16.9 8 350.0 155.0 4360. 14.9 79 1 "buick estate wagon (sw)"
291 | 15.5 8 351.0 142.0 4054. 14.3 79 1 "ford country squire (sw)"
292 | 19.2 8 267.0 125.0 3605. 15.0 79 1 "chevrolet malibu classic (sw)"
293 | 18.5 8 360.0 150.0 3940. 13.0 79 1 "chrysler lebaron town @ country (sw)"
294 | 31.9 4 89.00 71.00 1925. 14.0 79 2 "vw rabbit custom"
295 | 34.1 4 86.00 65.00 1975. 15.2 79 3 "maxda glc deluxe"
296 | 35.7 4 98.00 80.00 1915. 14.4 79 1 "dodge colt hatchback custom"
297 | 27.4 4 121.0 80.00 2670. 15.0 79 1 "amc spirit dl"
298 | 25.4 5 183.0 77.00 3530. 20.1 79 2 "mercedes benz 300d"
299 | 23.0 8 350.0 125.0 3900. 17.4 79 1 "cadillac eldorado"
300 | 27.2 4 141.0 71.00 3190. 24.8 79 2 "peugeot 504"
301 | 23.9 8 260.0 90.00 3420. 22.2 79 1 "oldsmobile cutlass salon brougham"
302 | 34.2 4 105.0 70.00 2200. 13.2 79 1 "plymouth horizon"
303 | 34.5 4 105.0 70.00 2150. 14.9 79 1 "plymouth horizon tc3"
304 | 31.8 4 85.00 65.00 2020. 19.2 79 3 "datsun 210"
305 | 37.3 4 91.00 69.00 2130. 14.7 79 2 "fiat strada custom"
306 | 28.4 4 151.0 90.00 2670. 16.0 79 1 "buick skylark limited"
307 | 28.8 6 173.0 115.0 2595. 11.3 79 1 "chevrolet citation"
308 | 26.8 6 173.0 115.0 2700. 12.9 79 1 "oldsmobile omega brougham"
309 | 33.5 4 151.0 90.00 2556. 13.2 79 1 "pontiac phoenix"
310 | 41.5 4 98.00 76.00 2144. 14.7 80 2 "vw rabbit"
311 | 38.1 4 89.00 60.00 1968. 18.8 80 3 "toyota corolla tercel"
312 | 32.1 4 98.00 70.00 2120. 15.5 80 1 "chevrolet chevette"
313 | 37.2 4 86.00 65.00 2019. 16.4 80 3 "datsun 310"
314 | 28.0 4 151.0 90.00 2678. 16.5 80 1 "chevrolet citation"
315 | 26.4 4 140.0 88.00 2870. 18.1 80 1 "ford fairmont"
316 | 24.3 4 151.0 90.00 3003. 20.1 80 1 "amc concord"
317 | 19.1 6 225.0 90.00 3381. 18.7 80 1 "dodge aspen"
318 | 34.3 4 97.00 78.00 2188. 15.8 80 2 "audi 4000"
319 | 29.8 4 134.0 90.00 2711. 15.5 80 3 "toyota corona liftback"
320 | 31.3 4 120.0 75.00 2542. 17.5 80 3 "mazda 626"
321 | 37.0 4 119.0 92.00 2434. 15.0 80 3 "datsun 510 hatchback"
322 | 32.2 4 108.0 75.00 2265. 15.2 80 3 "toyota corolla"
323 | 46.6 4 86.00 65.00 2110. 17.9 80 3 "mazda glc"
324 | 27.9 4 156.0 105.0 2800. 14.4 80 1 "dodge colt"
325 | 40.8 4 85.00 65.00 2110. 19.2 80 3 "datsun 210"
326 | 44.3 4 90.00 48.00 2085. 21.7 80 2 "vw rabbit c (diesel)"
327 | 43.4 4 90.00 48.00 2335. 23.7 80 2 "vw dasher (diesel)"
328 | 36.4 5 121.0 67.00 2950. 19.9 80 2 "audi 5000s (diesel)"
329 | 30.0 4 146.0 67.00 3250. 21.8 80 2 "mercedes-benz 240d"
330 | 44.6 4 91.00 67.00 1850. 13.8 80 3 "honda civic 1500 gl"
331 | 40.9 4 85.00 ? 1835. 17.3 80 2 "renault lecar deluxe"
332 | 33.8 4 97.00 67.00 2145. 18.0 80 3 "subaru dl"
333 | 29.8 4 89.00 62.00 1845. 15.3 80 2 "vokswagen rabbit"
334 | 32.7 6 168.0 132.0 2910. 11.4 80 3 "datsun 280-zx"
335 | 23.7 3 70.00 100.0 2420. 12.5 80 3 "mazda rx-7 gs"
336 | 35.0 4 122.0 88.00 2500. 15.1 80 2 "triumph tr7 coupe"
337 | 23.6 4 140.0 ? 2905. 14.3 80 1 "ford mustang cobra"
338 | 32.4 4 107.0 72.00 2290. 17.0 80 3 "honda accord"
339 | 27.2 4 135.0 84.00 2490. 15.7 81 1 "plymouth reliant"
340 | 26.6 4 151.0 84.00 2635. 16.4 81 1 "buick skylark"
341 | 25.8 4 156.0 92.00 2620. 14.4 81 1 "dodge aries wagon (sw)"
342 | 23.5 6 173.0 110.0 2725. 12.6 81 1 "chevrolet citation"
343 | 30.0 4 135.0 84.00 2385. 12.9 81 1 "plymouth reliant"
344 | 39.1 4 79.00 58.00 1755. 16.9 81 3 "toyota starlet"
345 | 39.0 4 86.00 64.00 1875. 16.4 81 1 "plymouth champ"
346 | 35.1 4 81.00 60.00 1760. 16.1 81 3 "honda civic 1300"
347 | 32.3 4 97.00 67.00 2065. 17.8 81 3 "subaru"
348 | 37.0 4 85.00 65.00 1975. 19.4 81 3 "datsun 210 mpg"
349 | 37.7 4 89.00 62.00 2050. 17.3 81 3 "toyota tercel"
350 | 34.1 4 91.00 68.00 1985. 16.0 81 3 "mazda glc 4"
351 | 34.7 4 105.0 63.00 2215. 14.9 81 1 "plymouth horizon 4"
352 | 34.4 4 98.00 65.00 2045. 16.2 81 1 "ford escort 4w"
353 | 29.9 4 98.00 65.00 2380. 20.7 81 1 "ford escort 2h"
354 | 33.0 4 105.0 74.00 2190. 14.2 81 2 "volkswagen jetta"
355 | 34.5 4 100.0 ? 2320. 15.8 81 2 "renault 18i"
356 | 33.7 4 107.0 75.00 2210. 14.4 81 3 "honda prelude"
357 | 32.4 4 108.0 75.00 2350. 16.8 81 3 "toyota corolla"
358 | 32.9 4 119.0 100.0 2615. 14.8 81 3 "datsun 200sx"
359 | 31.6 4 120.0 74.00 2635. 18.3 81 3 "mazda 626"
360 | 28.1 4 141.0 80.00 3230. 20.4 81 2 "peugeot 505s turbo diesel"
361 | 30.7 6 145.0 76.00 3160. 19.6 81 2 "volvo diesel"
362 | 25.4 6 168.0 116.0 2900. 12.6 81 3 "toyota cressida"
363 | 24.2 6 146.0 120.0 2930. 13.8 81 3 "datsun 810 maxima"
364 | 22.4 6 231.0 110.0 3415. 15.8 81 1 "buick century"
365 | 26.6 8 350.0 105.0 3725. 19.0 81 1 "oldsmobile cutlass ls"
366 | 20.2 6 200.0 88.00 3060. 17.1 81 1 "ford granada gl"
367 | 17.6 6 225.0 85.00 3465. 16.6 81 1 "chrysler lebaron salon"
368 | 28.0 4 112.0 88.00 2605. 19.6 82 1 "chevrolet cavalier"
369 | 27.0 4 112.0 88.00 2640. 18.6 82 1 "chevrolet cavalier wagon"
370 | 34.0 4 112.0 88.00 2395. 18.0 82 1 "chevrolet cavalier 2-door"
371 | 31.0 4 112.0 85.00 2575. 16.2 82 1 "pontiac j2000 se hatchback"
372 | 29.0 4 135.0 84.00 2525. 16.0 82 1 "dodge aries se"
373 | 27.0 4 151.0 90.00 2735. 18.0 82 1 "pontiac phoenix"
374 | 24.0 4 140.0 92.00 2865. 16.4 82 1 "ford fairmont futura"
375 | 23.0 4 151.0 ? 3035. 20.5 82 1 "amc concord dl"
376 | 36.0 4 105.0 74.00 1980. 15.3 82 2 "volkswagen rabbit l"
377 | 37.0 4 91.00 68.00 2025. 18.2 82 3 "mazda glc custom l"
378 | 31.0 4 91.00 68.00 1970. 17.6 82 3 "mazda glc custom"
379 | 38.0 4 105.0 63.00 2125. 14.7 82 1 "plymouth horizon miser"
380 | 36.0 4 98.00 70.00 2125. 17.3 82 1 "mercury lynx l"
381 | 36.0 4 120.0 88.00 2160. 14.5 82 3 "nissan stanza xe"
382 | 36.0 4 107.0 75.00 2205. 14.5 82 3 "honda accord"
383 | 34.0 4 108.0 70.00 2245 16.9 82 3 "toyota corolla"
384 | 38.0 4 91.00 67.00 1965. 15.0 82 3 "honda civic"
385 | 32.0 4 91.00 67.00 1965. 15.7 82 3 "honda civic (auto)"
386 | 38.0 4 91.00 67.00 1995. 16.2 82 3 "datsun 310 gx"
387 | 25.0 6 181.0 110.0 2945. 16.4 82 1 "buick century limited"
388 | 38.0 6 262.0 85.00 3015. 17.0 82 1 "oldsmobile cutlass ciera (diesel)"
389 | 26.0 4 156.0 92.00 2585. 14.5 82 1 "chrysler lebaron medallion"
390 | 22.0 6 232.0 112.0 2835 14.7 82 1 "ford granada l"
391 | 32.0 4 144.0 96.00 2665. 13.9 82 3 "toyota celica gt"
392 | 36.0 4 135.0 84.00 2370. 13.0 82 1 "dodge charger 2.2"
393 | 27.0 4 151.0 90.00 2950. 17.3 82 1 "chevrolet camaro"
394 | 27.0 4 140.0 86.00 2790. 15.6 82 1 "ford mustang gl"
395 | 44.0 4 97.00 52.00 2130. 24.6 82 2 "vw pickup"
396 | 32.0 4 135.0 84.00 2295. 11.6 82 1 "dodge rampage"
397 | 28.0 4 120.0 79.00 2625. 18.6 82 1 "ford ranger"
398 | 31.0 4 119.0 82.00 2720. 19.4 82 1 "chevy s-10"
399 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/iris_dataset.csv:
--------------------------------------------------------------------------------
1 | sepal_length_cm,sepal_width_cm,petal_length_cm,petal_width_cm,class
2 | 5.1,3.5,1.4,0.2,Iris-setosa
3 | 4.9,3,1.4,0.2,Iris-setosa
4 | 4.7,3.2,1.3,0.2,Iris-setosa
5 | 4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,3.6,1.4,0.2,Iris-setosa
7 | 5.4,3.9,1.7,0.4,Iris-setosa
8 | 4.6,3.4,1.4,0.3,Iris-setosa
9 | 5,3.4,1.5,NA,Iris-setosa
10 | 4.4,2.9,1.4,NA,Iris-setosa
11 | 4.9,3.1,1.5,NA,Iris-setosa
12 | 5.4,3.7,1.5,NA,Iris-setosa
13 | 4.8,3.4,1.6,NA,Iris-setosa
14 | 4.8,3,1.4,0.1,Iris-setosa
15 | 5.7,3,1.1,0.1,Iris-setosa
16 | 5.8,4,1.2,0.2,Iris-setosa
17 | 5.7,4.4,1.5,0.4,Iris-setosa
18 | 5.4,3.9,1.3,0.4,Iris-setosa
19 | 5.1,3.5,1.4,0.3,Iris-setosa
20 | 5.7,3.8,1.7,0.3,Iris-setossa
21 | 5.1,3.8,1.5,0.3,Iris-setosa
22 | 5.4,3.4,1.7,0.2,Iris-setosa
23 | 5.1,3.7,1.5,0.4,Iris-setosa
24 | 4.6,3.6,1,0.2,Iris-setosa
25 | 5.1,3.3,1.7,0.5,Iris-setosa
26 | 4.8,3.4,1.9,0.2,Iris-setosa
27 | 5,3,1.6,0.2,Iris-setosa
28 | 5,3.4,1.6,0.4,Iris-setosa
29 | 5.2,3.5,1.5,0.2,Iris-setosa
30 | 5.2,3.4,1.4,0.2,Iris-setosa
31 | 4.7,3.2,1.6,0.2,Iris-setosa
32 | 4.8,3.1,1.6,0.2,Iris-setosa
33 | 5.4,3.4,1.5,0.4,Iris-setosa
34 | 5.2,4.1,1.5,0.1,Iris-setosa
35 | 5.5,4.2,1.4,0.2,Iris-setosa
36 | 4.9,3.1,1.5,0.1,Iris-setosa
37 | 5,3.2,1.2,0.2,Iris-setosa
38 | 5.5,3.5,1.3,0.2,Iris-setosa
39 | 4.9,3.1,1.5,0.1,Iris-setosa
40 | 4.4,3,1.3,0.2,Iris-setosa
41 | 5.1,3.4,1.5,0.2,Iris-setosa
42 | 5,3.5,1.3,0.3,Iris-setosa
43 | 4.5,2.3,1.3,0.3,Iris-setosa
44 | 4.4,3.2,1.3,0.2,Iris-setosa
45 | 5,3.5,1.6,0.6,Iris-setosa
46 | 5.1,3.8,1.9,0.4,Iris-setosa
47 | 4.8,3,1.4,0.3,Iris-setosa
48 | 5.1,3.8,1.6,0.2,Iris-setosa
49 | 4.6,3.2,1.4,0.2,Iris-setosa
50 | 5.3,3.7,1.5,0.2,Iris-setosa
51 | 5,3.3,1.4,0.2,Iris-setosa
52 | 7,3.2,4.7,1.4,Iris-versicolor
53 | 6.4,3.2,4.5,1.5,Iris-versicolor
54 | 6.9,3.1,4.9,1.5,Iris-versicolor
55 | 5.5,2.3,4,1.3,Iris-versicolor
56 | 6.5,2.8,4.6,1.5,Iris-versicolor
57 | 5.7,2.8,4.5,1.3,Iris-versicolor
58 | 6.3,3.3,4.7,1.6,Iris-versicolor
59 | 4.9,2.4,3.3,1,Iris-versicolor
60 | 6.6,2.9,4.6,1.3,Iris-versicolor
61 | 5.2,2.7,3.9,1.4,Iris-versicolor
62 | 5,2,3.5,1,Iris-versicolor
63 | 5.9,3,4.2,1.5,Iris-versicolor
64 | 6,2.2,4,1,Iris-versicolor
65 | 6.1,2.9,4.7,1.4,Iris-versicolor
66 | 5.6,2.9,3.6,1.3,Iris-versicolor
67 | 6.7,3.1,4.4,1.4,Iris-versicolor
68 | 5.6,3,4.5,1.5,Iris-versicolor
69 | 5.8,2.7,4.1,1,Iris-versicolor
70 | 6.2,2.2,4.5,1.5,Iris-versicolor
71 | 5.6,2.5,3.9,1.1,Iris-versicolor
72 | 5.9,3.2,4.8,1.8,Iris-versicolor
73 | 6.1,2.8,4,1.3,Iris-versicolor
74 | 6.3,2.5,4.9,1.5,Iris-versicolor
75 | 6.1,2.8,4.7,1.2,Iris-versicolor
76 | 6.4,2.9,4.3,1.3,Iris-versicolor
77 | 6.6,3,4.4,1.4,Iris-versicolor
78 | 6.8,2.8,4.8,1.4,Iris-versicolor
79 | 0.067,3,5,1.7,Iris-versicolor
80 | 0.06,2.9,4.5,1.5,Iris-versicolor
81 | 0.057,2.6,3.5,1,Iris-versicolor
82 | 0.055,2.4,3.8,1.1,Iris-versicolor
83 | 0.055,2.4,3.7,1,Iris-versicolor
84 | 5.8,2.7,3.9,1.2,Iris-versicolor
85 | 6,2.8,5.1,1.6,Iris-versicolor
86 | 5.4,3,4.5,1.5,Iris-versicolor
87 | 6,3.4,4.5,1.6,Iris-versicolor
88 | 6.7,3.1,4.7,1.5,Iris-versicolor
89 | 6.3,2.3,4.4,1.3,Iris-versicolor
90 | 5.6,3,4.1,1.3,Iris-versicolor
91 | 5.5,2.5,4,1.3,Iris-versicolor
92 | 5.5,2.6,4.4,1.2,Iris-versicolor
93 | 6.1,3,4.6,1.4,Iris-versicolor
94 | 5.8,2.6,4,1.2,Iris-versicolor
95 | 5,2.3,3.3,1,Iris-versicolor
96 | 5.6,2.7,4.2,1.3,Iris-versicolor
97 | 5.7,3,4.2,1.2,versicolor
98 | 5.7,2.9,4.2,1.3,versicolor
99 | 6.2,2.9,4.3,1.3,versicolor
100 | 5.1,2.5,3,1.1,versicolor
101 | 5.7,2.8,4.1,1.3,versicolor
102 | 6.3,3.3,6,2.5,Iris-virginica
103 | 5.8,2.7,5.1,1.9,Iris-virginica
104 | 7.1,3,5.9,2.1,Iris-virginica
105 | 6.3,2.9,5.6,1.8,Iris-virginica
106 | 6.5,3,5.8,2.2,Iris-virginica
107 | 7.6,3,6.6,2.1,Iris-virginica
108 | 4.9,2.5,4.5,1.7,Iris-virginica
109 | 7.3,2.9,6.3,1.8,Iris-virginica
110 | 6.7,2.5,5.8,1.8,Iris-virginica
111 | 7.2,3.6,6.1,2.5,Iris-virginica
112 | 6.5,3.2,5.1,2,Iris-virginica
113 | 6.4,2.7,5.3,1.9,Iris-virginica
114 | 6.8,3,5.5,2.1,Iris-virginica
115 | 5.7,2.5,5,2,Iris-virginica
116 | 5.8,2.8,5.1,2.4,Iris-virginica
117 | 6.4,3.2,5.3,2.3,Iris-virginica
118 | 6.5,3,5.5,1.8,Iris-virginica
119 | 7.7,3.8,6.7,2.2,Iris-virginica
120 | 7.7,2.6,6.9,2.3,Iris-virginica
121 | 6,2.2,5,1.5,Iris-virginica
122 | 6.9,3.2,5.7,2.3,Iris-virginica
123 | 5.6,2.8,4.9,2,Iris-virginica
124 | 5.6,2.8,6.7,2,Iris-virginica
125 | 6.3,2.7,4.9,1.8,Iris-virginica
126 | 6.7,3.3,5.7,2.1,Iris-virginica
127 | 7.2,3.2,6,1.8,Iris-virginica
128 | 6.2,2.8,4.8,1.8,Iris-virginica
129 | 6.1,3,4.9,1.8,Iris-virginica
130 | 6.4,2.8,5.6,2.1,Iris-virginica
131 | 7.2,3,5.8,1.6,Iris-virginica
132 | 7.4,2.8,6.1,1.9,Iris-virginica
133 | 7.9,3.8,6.4,2,Iris-virginica
134 | 6.4,2.8,5.6,2.2,Iris-virginica
135 | 6.3,2.8,5.1,1.5,Iris-virginica
136 | 6.1,2.6,5.6,1.4,Iris-virginica
137 | 7.7,3,6.1,2.3,Iris-virginica
138 | 6.3,3.4,5.6,2.4,Iris-virginica
139 | 6.4,3.1,5.5,1.8,Iris-virginica
140 | 6,3,4.8,1.8,Iris-virginica
141 | 6.9,3.1,5.4,2.1,Iris-virginica
142 | 6.7,3.1,5.6,2.4,Iris-virginica
143 | 6.9,3.1,5.1,2.3,Iris-virginica
144 | 5.8,2.7,5.1,1.9,Iris-virginica
145 | 6.8,3.2,5.9,2.3,Iris-virginica
146 | 6.7,3.3,5.7,2.5,Iris-virginica
147 | 6.7,3,5.2,2.3,Iris-virginica
148 | 6.3,2.5,5,2.3,Iris-virginica
149 | 6.5,3,5.2,2,Iris-virginica
150 | 6.2,3.4,5.4,2.3,Iris-virginica
151 | 5.9,3,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/loan-prediction/README.txt:
--------------------------------------------------------------------------------
1 | Variable Description
2 | Loan_ID Unique Loan ID
3 | Gender Male/Female
4 | Married Applicant married (Y/N)
5 | Dependents Number of dependents
6 | Education Applicant Education (Graduate/Not Graduate)
7 | Self_Employed Self employed (Y/N)
8 | ApplicantIncome Applicant income
9 | CoapplicantIncome Coapplicant income
10 | LoanAmount Loan amount in thousands
11 | Loan_Amount_Term Term of loan in months
12 | Credit_History Credit history meets guidelines (0/1)
13 | Property_Area Urban/Semi Urban/Rural
14 | Loan_Status Loan approved (Y/N)
15 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/sample.json:
--------------------------------------------------------------------------------
1 | {"name": "Wes",
2 | "places_lived": ["United States", "Spain", "Germany"],
3 | "pet": null,
4 | "siblings": [{"name": "Scott", "age": 29, "pets": ["Zeus", "Zuko"]},
5 | {"name": "Katie", "age": 38,
6 | "pets": ["Sixes", "Stache", "Cisco"]}]
7 | }
--------------------------------------------------------------------------------
/lectures/notebooks/data/sample.txt:
--------------------------------------------------------------------------------
1 | Sueña el rico en su riqueza,
2 | que más cuidados le ofrece;
3 |
4 | sueña el pobre que padece
5 | su miseria y su pobreza;
6 |
7 | sueña el que a medrar empieza,
8 | sueña el que afana y pretende,
9 | sueña el que agravia y ofende,
10 |
11 | y en el mundo, en conclusión,
12 | todos sueñan lo que son,
13 | aunque ninguno lo entiende.
14 |
15 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/sample_df.json:
--------------------------------------------------------------------------------
1 | [
2 | {
3 | "color": "red",
4 | "value": "#f00"
5 | },
6 | {
7 | "color": "green",
8 | "value": "#0f0"
9 | },
10 | {
11 | "color": "blue",
12 | "value": "#00f"
13 | },
14 | {
15 | "color": "cyan",
16 | "value": "#0ff"
17 | },
18 | {
19 | "color": "magenta",
20 | "value": "#f0f"
21 | },
22 | {
23 | "color": "yellow",
24 | "value": "#ff0"
25 | },
26 | {
27 | "color": "black",
28 | "value": "#000"
29 | }
30 | ]
--------------------------------------------------------------------------------
/lectures/notebooks/data/sample_out.json:
--------------------------------------------------------------------------------
1 | {"name": "Wes", "places_lived": ["United States", "Spain", "Germany"], "pet": null, "siblings": [{"name": "Scott", "age": 29, "pets": ["Zeus", "Zuko"]}, {"name": "Katie", "age": 38, "pets": ["Sixes", "Stache", "Cisco"]}]}
--------------------------------------------------------------------------------
/lectures/notebooks/data/tmp.txt:
--------------------------------------------------------------------------------
1 | Sueña el rico en su riqueza,
2 | que más cuidados le ofrece;
3 | sueña el pobre que padece
4 | su miseria y su pobreza;
5 | sueña el que a medrar empieza,
6 | sueña el que afana y pretende,
7 | sueña el que agravia y ofende,
8 | y en el mundo, en conclusión,
9 | todos sueñan lo que son,
10 | aunque ninguno lo entiende.
11 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/user_occupations.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/data/user_occupations.pickle
--------------------------------------------------------------------------------
/lectures/notebooks/data/user_occupations.txt:
--------------------------------------------------------------------------------
1 | user_id|age|gender|occupation|zip_code
2 | 1|24|M|technician|85711
3 | 2|53|F|other|94043
4 | 3|23|M|writer|32067
5 | 4|24|M|technician|43537
6 | 5|33|F|other|15213
7 | 6|42|M|executive|98101
8 | 7|57|M|administrator|91344
9 | 8|36|M|administrator|05201
10 | 9|29|M|student|01002
11 | 10|53|M|lawyer|90703
12 | 11|39|F|other|30329
13 | 12|28|F|other|06405
14 | 13|47|M|educator|29206
15 | 14|45|M|scientist|55106
16 | 15|49|F|educator|97301
17 | 16|21|M|entertainment|10309
18 | 17|30|M|programmer|06355
19 | 18|35|F|other|37212
20 | 19|40|M|librarian|02138
21 | 20|42|F|homemaker|95660
22 | 21|26|M|writer|30068
23 | 22|25|M|writer|40206
24 | 23|30|F|artist|48197
25 | 24|21|F|artist|94533
26 | 25|39|M|engineer|55107
27 | 26|49|M|engineer|21044
28 | 27|40|F|librarian|30030
29 | 28|32|M|writer|55369
30 | 29|41|M|programmer|94043
31 | 30|7|M|student|55436
32 | 31|24|M|artist|10003
33 | 32|28|F|student|78741
34 | 33|23|M|student|27510
35 | 34|38|F|administrator|42141
36 | 35|20|F|homemaker|42459
37 | 36|19|F|student|93117
38 | 37|23|M|student|55105
39 | 38|28|F|other|54467
40 | 39|41|M|entertainment|01040
41 | 40|38|M|scientist|27514
42 | 41|33|M|engineer|80525
43 | 42|30|M|administrator|17870
44 | 43|29|F|librarian|20854
45 | 44|26|M|technician|46260
46 | 45|29|M|programmer|50233
47 | 46|27|F|marketing|46538
48 | 47|53|M|marketing|07102
49 | 48|45|M|administrator|12550
50 | 49|23|F|student|76111
51 | 50|21|M|writer|52245
52 | 51|28|M|educator|16509
53 | 52|18|F|student|55105
54 | 53|26|M|programmer|55414
55 | 54|22|M|executive|66315
56 | 55|37|M|programmer|01331
57 | 56|25|M|librarian|46260
58 | 57|16|M|none|84010
59 | 58|27|M|programmer|52246
60 | 59|49|M|educator|08403
61 | 60|50|M|healthcare|06472
62 | 61|36|M|engineer|30040
63 | 62|27|F|administrator|97214
64 | 63|31|M|marketing|75240
65 | 64|32|M|educator|43202
66 | 65|51|F|educator|48118
67 | 66|23|M|student|80521
68 | 67|17|M|student|60402
69 | 68|19|M|student|22904
70 | 69|24|M|engineer|55337
71 | 70|27|M|engineer|60067
72 | 71|39|M|scientist|98034
73 | 72|48|F|administrator|73034
74 | 73|24|M|student|41850
75 | 74|39|M|scientist|T8H1N
76 | 75|24|M|entertainment|08816
77 | 76|20|M|student|02215
78 | 77|30|M|technician|29379
79 | 78|26|M|administrator|61801
80 | 79|39|F|administrator|03755
81 | 80|34|F|administrator|52241
82 | 81|21|M|student|21218
83 | 82|50|M|programmer|22902
84 | 83|40|M|other|44133
85 | 84|32|M|executive|55369
86 | 85|51|M|educator|20003
87 | 86|26|M|administrator|46005
88 | 87|47|M|administrator|89503
89 | 88|49|F|librarian|11701
90 | 89|43|F|administrator|68106
91 | 90|60|M|educator|78155
92 | 91|55|M|marketing|01913
93 | 92|32|M|entertainment|80525
94 | 93|48|M|executive|23112
95 | 94|26|M|student|71457
96 | 95|31|M|administrator|10707
97 | 96|25|F|artist|75206
98 | 97|43|M|artist|98006
99 | 98|49|F|executive|90291
100 | 99|20|M|student|63129
101 | 100|36|M|executive|90254
102 | 101|15|M|student|05146
103 | 102|38|M|programmer|30220
104 | 103|26|M|student|55108
105 | 104|27|M|student|55108
106 | 105|24|M|engineer|94043
107 | 106|61|M|retired|55125
108 | 107|39|M|scientist|60466
109 | 108|44|M|educator|63130
110 | 109|29|M|other|55423
111 | 110|19|M|student|77840
112 | 111|57|M|engineer|90630
113 | 112|30|M|salesman|60613
114 | 113|47|M|executive|95032
115 | 114|27|M|programmer|75013
116 | 115|31|M|engineer|17110
117 | 116|40|M|healthcare|97232
118 | 117|20|M|student|16125
119 | 118|21|M|administrator|90210
120 | 119|32|M|programmer|67401
121 | 120|47|F|other|06260
122 | 121|54|M|librarian|99603
123 | 122|32|F|writer|22206
124 | 123|48|F|artist|20008
125 | 124|34|M|student|60615
126 | 125|30|M|lawyer|22202
127 | 126|28|F|lawyer|20015
128 | 127|33|M|none|73439
129 | 128|24|F|marketing|20009
130 | 129|36|F|marketing|07039
131 | 130|20|M|none|60115
132 | 131|59|F|administrator|15237
133 | 132|24|M|other|94612
134 | 133|53|M|engineer|78602
135 | 134|31|M|programmer|80236
136 | 135|23|M|student|38401
137 | 136|51|M|other|97365
138 | 137|50|M|educator|84408
139 | 138|46|M|doctor|53211
140 | 139|20|M|student|08904
141 | 140|30|F|student|32250
142 | 141|49|M|programmer|36117
143 | 142|13|M|other|48118
144 | 143|42|M|technician|08832
145 | 144|53|M|programmer|20910
146 | 145|31|M|entertainment|V3N4P
147 | 146|45|M|artist|83814
148 | 147|40|F|librarian|02143
149 | 148|33|M|engineer|97006
150 | 149|35|F|marketing|17325
151 | 150|20|F|artist|02139
152 | 151|38|F|administrator|48103
153 | 152|33|F|educator|68767
154 | 153|25|M|student|60641
155 | 154|25|M|student|53703
156 | 155|32|F|other|11217
157 | 156|25|M|educator|08360
158 | 157|57|M|engineer|70808
159 | 158|50|M|educator|27606
160 | 159|23|F|student|55346
161 | 160|27|M|programmer|66215
162 | 161|50|M|lawyer|55104
163 | 162|25|M|artist|15610
164 | 163|49|M|administrator|97212
165 | 164|47|M|healthcare|80123
166 | 165|20|F|other|53715
167 | 166|47|M|educator|55113
168 | 167|37|M|other|L9G2B
169 | 168|48|M|other|80127
170 | 169|52|F|other|53705
171 | 170|53|F|healthcare|30067
172 | 171|48|F|educator|78750
173 | 172|55|M|marketing|22207
174 | 173|56|M|other|22306
175 | 174|30|F|administrator|52302
176 | 175|26|F|scientist|21911
177 | 176|28|M|scientist|07030
178 | 177|20|M|programmer|19104
179 | 178|26|M|other|49512
180 | 179|15|M|entertainment|20755
181 | 180|22|F|administrator|60202
182 | 181|26|M|executive|21218
183 | 182|36|M|programmer|33884
184 | 183|33|M|scientist|27708
185 | 184|37|M|librarian|76013
186 | 185|53|F|librarian|97403
187 | 186|39|F|executive|00000
188 | 187|26|M|educator|16801
189 | 188|42|M|student|29440
190 | 189|32|M|artist|95014
191 | 190|30|M|administrator|95938
192 | 191|33|M|administrator|95161
193 | 192|42|M|educator|90840
194 | 193|29|M|student|49931
195 | 194|38|M|administrator|02154
196 | 195|42|M|scientist|93555
197 | 196|49|M|writer|55105
198 | 197|55|M|technician|75094
199 | 198|21|F|student|55414
200 | 199|30|M|writer|17604
201 | 200|40|M|programmer|93402
202 | 201|27|M|writer|E2A4H
203 | 202|41|F|educator|60201
204 | 203|25|F|student|32301
205 | 204|52|F|librarian|10960
206 | 205|47|M|lawyer|06371
207 | 206|14|F|student|53115
208 | 207|39|M|marketing|92037
209 | 208|43|M|engineer|01720
210 | 209|33|F|educator|85710
211 | 210|39|M|engineer|03060
212 | 211|66|M|salesman|32605
213 | 212|49|F|educator|61401
214 | 213|33|M|executive|55345
215 | 214|26|F|librarian|11231
216 | 215|35|M|programmer|63033
217 | 216|22|M|engineer|02215
218 | 217|22|M|other|11727
219 | 218|37|M|administrator|06513
220 | 219|32|M|programmer|43212
221 | 220|30|M|librarian|78205
222 | 221|19|M|student|20685
223 | 222|29|M|programmer|27502
224 | 223|19|F|student|47906
225 | 224|31|F|educator|43512
226 | 225|51|F|administrator|58202
227 | 226|28|M|student|92103
228 | 227|46|M|executive|60659
229 | 228|21|F|student|22003
230 | 229|29|F|librarian|22903
231 | 230|28|F|student|14476
232 | 231|48|M|librarian|01080
233 | 232|45|M|scientist|99709
234 | 233|38|M|engineer|98682
235 | 234|60|M|retired|94702
236 | 235|37|M|educator|22973
237 | 236|44|F|writer|53214
238 | 237|49|M|administrator|63146
239 | 238|42|F|administrator|44124
240 | 239|39|M|artist|95628
241 | 240|23|F|educator|20784
242 | 241|26|F|student|20001
243 | 242|33|M|educator|31404
244 | 243|33|M|educator|60201
245 | 244|28|M|technician|80525
246 | 245|22|M|student|55109
247 | 246|19|M|student|28734
248 | 247|28|M|engineer|20770
249 | 248|25|M|student|37235
250 | 249|25|M|student|84103
251 | 250|29|M|executive|95110
252 | 251|28|M|doctor|85032
253 | 252|42|M|engineer|07733
254 | 253|26|F|librarian|22903
255 | 254|44|M|educator|42647
256 | 255|23|M|entertainment|07029
257 | 256|35|F|none|39042
258 | 257|17|M|student|77005
259 | 258|19|F|student|77801
260 | 259|21|M|student|48823
261 | 260|40|F|artist|89801
262 | 261|28|M|administrator|85202
263 | 262|19|F|student|78264
264 | 263|41|M|programmer|55346
265 | 264|36|F|writer|90064
266 | 265|26|M|executive|84601
267 | 266|62|F|administrator|78756
268 | 267|23|M|engineer|83716
269 | 268|24|M|engineer|19422
270 | 269|31|F|librarian|43201
271 | 270|18|F|student|63119
272 | 271|51|M|engineer|22932
273 | 272|33|M|scientist|53706
274 | 273|50|F|other|10016
275 | 274|20|F|student|55414
276 | 275|38|M|engineer|92064
277 | 276|21|M|student|95064
278 | 277|35|F|administrator|55406
279 | 278|37|F|librarian|30033
280 | 279|33|M|programmer|85251
281 | 280|30|F|librarian|22903
282 | 281|15|F|student|06059
283 | 282|22|M|administrator|20057
284 | 283|28|M|programmer|55305
285 | 284|40|M|executive|92629
286 | 285|25|M|programmer|53713
287 | 286|27|M|student|15217
288 | 287|21|M|salesman|31211
289 | 288|34|M|marketing|23226
290 | 289|11|M|none|94619
291 | 290|40|M|engineer|93550
292 | 291|19|M|student|44106
293 | 292|35|F|programmer|94703
294 | 293|24|M|writer|60804
295 | 294|34|M|technician|92110
296 | 295|31|M|educator|50325
297 | 296|43|F|administrator|16803
298 | 297|29|F|educator|98103
299 | 298|44|M|executive|01581
300 | 299|29|M|doctor|63108
301 | 300|26|F|programmer|55106
302 | 301|24|M|student|55439
303 | 302|42|M|educator|77904
304 | 303|19|M|student|14853
305 | 304|22|F|student|71701
306 | 305|23|M|programmer|94086
307 | 306|45|M|other|73132
308 | 307|25|M|student|55454
309 | 308|60|M|retired|95076
310 | 309|40|M|scientist|70802
311 | 310|37|M|educator|91711
312 | 311|32|M|technician|73071
313 | 312|48|M|other|02110
314 | 313|41|M|marketing|60035
315 | 314|20|F|student|08043
316 | 315|31|M|educator|18301
317 | 316|43|F|other|77009
318 | 317|22|M|administrator|13210
319 | 318|65|M|retired|06518
320 | 319|38|M|programmer|22030
321 | 320|19|M|student|24060
322 | 321|49|F|educator|55413
323 | 322|20|M|student|50613
324 | 323|21|M|student|19149
325 | 324|21|F|student|02176
326 | 325|48|M|technician|02139
327 | 326|41|M|administrator|15235
328 | 327|22|M|student|11101
329 | 328|51|M|administrator|06779
330 | 329|48|M|educator|01720
331 | 330|35|F|educator|33884
332 | 331|33|M|entertainment|91344
333 | 332|20|M|student|40504
334 | 333|47|M|other|V0R2M
335 | 334|32|M|librarian|30002
336 | 335|45|M|executive|33775
337 | 336|23|M|salesman|42101
338 | 337|37|M|scientist|10522
339 | 338|39|F|librarian|59717
340 | 339|35|M|lawyer|37901
341 | 340|46|M|engineer|80123
342 | 341|17|F|student|44405
343 | 342|25|F|other|98006
344 | 343|43|M|engineer|30093
345 | 344|30|F|librarian|94117
346 | 345|28|F|librarian|94143
347 | 346|34|M|other|76059
348 | 347|18|M|student|90210
349 | 348|24|F|student|45660
350 | 349|68|M|retired|61455
351 | 350|32|M|student|97301
352 | 351|61|M|educator|49938
353 | 352|37|F|programmer|55105
354 | 353|25|M|scientist|28480
355 | 354|29|F|librarian|48197
356 | 355|25|M|student|60135
357 | 356|32|F|homemaker|92688
358 | 357|26|M|executive|98133
359 | 358|40|M|educator|10022
360 | 359|22|M|student|61801
361 | 360|51|M|other|98027
362 | 361|22|M|student|44074
363 | 362|35|F|homemaker|85233
364 | 363|20|M|student|87501
365 | 364|63|M|engineer|01810
366 | 365|29|M|lawyer|20009
367 | 366|20|F|student|50670
368 | 367|17|M|student|37411
369 | 368|18|M|student|92113
370 | 369|24|M|student|91335
371 | 370|52|M|writer|08534
372 | 371|36|M|engineer|99206
373 | 372|25|F|student|66046
374 | 373|24|F|other|55116
375 | 374|36|M|executive|78746
376 | 375|17|M|entertainment|37777
377 | 376|28|F|other|10010
378 | 377|22|M|student|18015
379 | 378|35|M|student|02859
380 | 379|44|M|programmer|98117
381 | 380|32|M|engineer|55117
382 | 381|33|M|artist|94608
383 | 382|45|M|engineer|01824
384 | 383|42|M|administrator|75204
385 | 384|52|M|programmer|45218
386 | 385|36|M|writer|10003
387 | 386|36|M|salesman|43221
388 | 387|33|M|entertainment|37412
389 | 388|31|M|other|36106
390 | 389|44|F|writer|83702
391 | 390|42|F|writer|85016
392 | 391|23|M|student|84604
393 | 392|52|M|writer|59801
394 | 393|19|M|student|83686
395 | 394|25|M|administrator|96819
396 | 395|43|M|other|44092
397 | 396|57|M|engineer|94551
398 | 397|17|M|student|27514
399 | 398|40|M|other|60008
400 | 399|25|M|other|92374
401 | 400|33|F|administrator|78213
402 | 401|46|F|healthcare|84107
403 | 402|30|M|engineer|95129
404 | 403|37|M|other|06811
405 | 404|29|F|programmer|55108
406 | 405|22|F|healthcare|10019
407 | 406|52|M|educator|93109
408 | 407|29|M|engineer|03261
409 | 408|23|M|student|61755
410 | 409|48|M|administrator|98225
411 | 410|30|F|artist|94025
412 | 411|34|M|educator|44691
413 | 412|25|M|educator|15222
414 | 413|55|M|educator|78212
415 | 414|24|M|programmer|38115
416 | 415|39|M|educator|85711
417 | 416|20|F|student|92626
418 | 417|27|F|other|48103
419 | 418|55|F|none|21206
420 | 419|37|M|lawyer|43215
421 | 420|53|M|educator|02140
422 | 421|38|F|programmer|55105
423 | 422|26|M|entertainment|94533
424 | 423|64|M|other|91606
425 | 424|36|F|marketing|55422
426 | 425|19|M|student|58644
427 | 426|55|M|educator|01602
428 | 427|51|M|doctor|85258
429 | 428|28|M|student|55414
430 | 429|27|M|student|29205
431 | 430|38|M|scientist|98199
432 | 431|24|M|marketing|92629
433 | 432|22|M|entertainment|50311
434 | 433|27|M|artist|11211
435 | 434|16|F|student|49705
436 | 435|24|M|engineer|60007
437 | 436|30|F|administrator|17345
438 | 437|27|F|other|20009
439 | 438|51|F|administrator|43204
440 | 439|23|F|administrator|20817
441 | 440|30|M|other|48076
442 | 441|50|M|technician|55013
443 | 442|22|M|student|85282
444 | 443|35|M|salesman|33308
445 | 444|51|F|lawyer|53202
446 | 445|21|M|writer|92653
447 | 446|57|M|educator|60201
448 | 447|30|M|administrator|55113
449 | 448|23|M|entertainment|10021
450 | 449|23|M|librarian|55021
451 | 450|35|F|educator|11758
452 | 451|16|M|student|48446
453 | 452|35|M|administrator|28018
454 | 453|18|M|student|06333
455 | 454|57|M|other|97330
456 | 455|48|M|administrator|83709
457 | 456|24|M|technician|31820
458 | 457|33|F|salesman|30011
459 | 458|47|M|technician|Y1A6B
460 | 459|22|M|student|29201
461 | 460|44|F|other|60630
462 | 461|15|M|student|98102
463 | 462|19|F|student|02918
464 | 463|48|F|healthcare|75218
465 | 464|60|M|writer|94583
466 | 465|32|M|other|05001
467 | 466|22|M|student|90804
468 | 467|29|M|engineer|91201
469 | 468|28|M|engineer|02341
470 | 469|60|M|educator|78628
471 | 470|24|M|programmer|10021
472 | 471|10|M|student|77459
473 | 472|24|M|student|87544
474 | 473|29|M|student|94708
475 | 474|51|M|executive|93711
476 | 475|30|M|programmer|75230
477 | 476|28|M|student|60440
478 | 477|23|F|student|02125
479 | 478|29|M|other|10019
480 | 479|30|M|educator|55409
481 | 480|57|M|retired|98257
482 | 481|73|M|retired|37771
483 | 482|18|F|student|40256
484 | 483|29|M|scientist|43212
485 | 484|27|M|student|21208
486 | 485|44|F|educator|95821
487 | 486|39|M|educator|93101
488 | 487|22|M|engineer|92121
489 | 488|48|M|technician|21012
490 | 489|55|M|other|45218
491 | 490|29|F|artist|V5A2B
492 | 491|43|F|writer|53711
493 | 492|57|M|educator|94618
494 | 493|22|M|engineer|60090
495 | 494|38|F|administrator|49428
496 | 495|29|M|engineer|03052
497 | 496|21|F|student|55414
498 | 497|20|M|student|50112
499 | 498|26|M|writer|55408
500 | 499|42|M|programmer|75006
501 | 500|28|M|administrator|94305
502 | 501|22|M|student|10025
503 | 502|22|M|student|23092
504 | 503|50|F|writer|27514
505 | 504|40|F|writer|92115
506 | 505|27|F|other|20657
507 | 506|46|M|programmer|03869
508 | 507|18|F|writer|28450
509 | 508|27|M|marketing|19382
510 | 509|23|M|administrator|10011
511 | 510|34|M|other|98038
512 | 511|22|M|student|21250
513 | 512|29|M|other|20090
514 | 513|43|M|administrator|26241
515 | 514|27|M|programmer|20707
516 | 515|53|M|marketing|49508
517 | 516|53|F|librarian|10021
518 | 517|24|M|student|55454
519 | 518|49|F|writer|99709
520 | 519|22|M|other|55320
521 | 520|62|M|healthcare|12603
522 | 521|19|M|student|02146
523 | 522|36|M|engineer|55443
524 | 523|50|F|administrator|04102
525 | 524|56|M|educator|02159
526 | 525|27|F|administrator|19711
527 | 526|30|M|marketing|97124
528 | 527|33|M|librarian|12180
529 | 528|18|M|student|55104
530 | 529|47|F|administrator|44224
531 | 530|29|M|engineer|94040
532 | 531|30|F|salesman|97408
533 | 532|20|M|student|92705
534 | 533|43|M|librarian|02324
535 | 534|20|M|student|05464
536 | 535|45|F|educator|80302
537 | 536|38|M|engineer|30078
538 | 537|36|M|engineer|22902
539 | 538|31|M|scientist|21010
540 | 539|53|F|administrator|80303
541 | 540|28|M|engineer|91201
542 | 541|19|F|student|84302
543 | 542|21|M|student|60515
544 | 543|33|M|scientist|95123
545 | 544|44|F|other|29464
546 | 545|27|M|technician|08052
547 | 546|36|M|executive|22911
548 | 547|50|M|educator|14534
549 | 548|51|M|writer|95468
550 | 549|42|M|scientist|45680
551 | 550|16|F|student|95453
552 | 551|25|M|programmer|55414
553 | 552|45|M|other|68147
554 | 553|58|M|educator|62901
555 | 554|32|M|scientist|62901
556 | 555|29|F|educator|23227
557 | 556|35|F|educator|30606
558 | 557|30|F|writer|11217
559 | 558|56|F|writer|63132
560 | 559|69|M|executive|10022
561 | 560|32|M|student|10003
562 | 561|23|M|engineer|60005
563 | 562|54|F|administrator|20879
564 | 563|39|F|librarian|32707
565 | 564|65|M|retired|94591
566 | 565|40|M|student|55422
567 | 566|20|M|student|14627
568 | 567|24|M|entertainment|10003
569 | 568|39|M|educator|01915
570 | 569|34|M|educator|91903
571 | 570|26|M|educator|14627
572 | 571|34|M|artist|01945
573 | 572|51|M|educator|20003
574 | 573|68|M|retired|48911
575 | 574|56|M|educator|53188
576 | 575|33|M|marketing|46032
577 | 576|48|M|executive|98281
578 | 577|36|F|student|77845
579 | 578|31|M|administrator|M7A1A
580 | 579|32|M|educator|48103
581 | 580|16|M|student|17961
582 | 581|37|M|other|94131
583 | 582|17|M|student|93003
584 | 583|44|M|engineer|29631
585 | 584|25|M|student|27511
586 | 585|69|M|librarian|98501
587 | 586|20|M|student|79508
588 | 587|26|M|other|14216
589 | 588|18|F|student|93063
590 | 589|21|M|lawyer|90034
591 | 590|50|M|educator|82435
592 | 591|57|F|librarian|92093
593 | 592|18|M|student|97520
594 | 593|31|F|educator|68767
595 | 594|46|M|educator|M4J2K
596 | 595|25|M|programmer|31909
597 | 596|20|M|artist|77073
598 | 597|23|M|other|84116
599 | 598|40|F|marketing|43085
600 | 599|22|F|student|R3T5K
601 | 600|34|M|programmer|02320
602 | 601|19|F|artist|99687
603 | 602|47|F|other|34656
604 | 603|21|M|programmer|47905
605 | 604|39|M|educator|11787
606 | 605|33|M|engineer|33716
607 | 606|28|M|programmer|63044
608 | 607|49|F|healthcare|02154
609 | 608|22|M|other|10003
610 | 609|13|F|student|55106
611 | 610|22|M|student|21227
612 | 611|46|M|librarian|77008
613 | 612|36|M|educator|79070
614 | 613|37|F|marketing|29678
615 | 614|54|M|educator|80227
616 | 615|38|M|educator|27705
617 | 616|55|M|scientist|50613
618 | 617|27|F|writer|11201
619 | 618|15|F|student|44212
620 | 619|17|M|student|44134
621 | 620|18|F|writer|81648
622 | 621|17|M|student|60402
623 | 622|25|M|programmer|14850
624 | 623|50|F|educator|60187
625 | 624|19|M|student|30067
626 | 625|27|M|programmer|20723
627 | 626|23|M|scientist|19807
628 | 627|24|M|engineer|08034
629 | 628|13|M|none|94306
630 | 629|46|F|other|44224
631 | 630|26|F|healthcare|55408
632 | 631|18|F|student|38866
633 | 632|18|M|student|55454
634 | 633|35|M|programmer|55414
635 | 634|39|M|engineer|T8H1N
636 | 635|22|M|other|23237
637 | 636|47|M|educator|48043
638 | 637|30|M|other|74101
639 | 638|45|M|engineer|01940
640 | 639|42|F|librarian|12065
641 | 640|20|M|student|61801
642 | 641|24|M|student|60626
643 | 642|18|F|student|95521
644 | 643|39|M|scientist|55122
645 | 644|51|M|retired|63645
646 | 645|27|M|programmer|53211
647 | 646|17|F|student|51250
648 | 647|40|M|educator|45810
649 | 648|43|M|engineer|91351
650 | 649|20|M|student|39762
651 | 650|42|M|engineer|83814
652 | 651|65|M|retired|02903
653 | 652|35|M|other|22911
654 | 653|31|M|executive|55105
655 | 654|27|F|student|78739
656 | 655|50|F|healthcare|60657
657 | 656|48|M|educator|10314
658 | 657|26|F|none|78704
659 | 658|33|M|programmer|92626
660 | 659|31|M|educator|54248
661 | 660|26|M|student|77380
662 | 661|28|M|programmer|98121
663 | 662|55|M|librarian|19102
664 | 663|26|M|other|19341
665 | 664|30|M|engineer|94115
666 | 665|25|M|administrator|55412
667 | 666|44|M|administrator|61820
668 | 667|35|M|librarian|01970
669 | 668|29|F|writer|10016
670 | 669|37|M|other|20009
671 | 670|30|M|technician|21114
672 | 671|21|M|programmer|91919
673 | 672|54|F|administrator|90095
674 | 673|51|M|educator|22906
675 | 674|13|F|student|55337
676 | 675|34|M|other|28814
677 | 676|30|M|programmer|32712
678 | 677|20|M|other|99835
679 | 678|50|M|educator|61462
680 | 679|20|F|student|54302
681 | 680|33|M|lawyer|90405
682 | 681|44|F|marketing|97208
683 | 682|23|M|programmer|55128
684 | 683|42|M|librarian|23509
685 | 684|28|M|student|55414
686 | 685|32|F|librarian|55409
687 | 686|32|M|educator|26506
688 | 687|31|F|healthcare|27713
689 | 688|37|F|administrator|60476
690 | 689|25|M|other|45439
691 | 690|35|M|salesman|63304
692 | 691|34|M|educator|60089
693 | 692|34|M|engineer|18053
694 | 693|43|F|healthcare|85210
695 | 694|60|M|programmer|06365
696 | 695|26|M|writer|38115
697 | 696|55|M|other|94920
698 | 697|25|M|other|77042
699 | 698|28|F|programmer|06906
700 | 699|44|M|other|96754
701 | 700|17|M|student|76309
702 | 701|51|F|librarian|56321
703 | 702|37|M|other|89104
704 | 703|26|M|educator|49512
705 | 704|51|F|librarian|91105
706 | 705|21|F|student|54494
707 | 706|23|M|student|55454
708 | 707|56|F|librarian|19146
709 | 708|26|F|homemaker|96349
710 | 709|21|M|other|N4T1A
711 | 710|19|M|student|92020
712 | 711|22|F|student|15203
713 | 712|22|F|student|54901
714 | 713|42|F|other|07204
715 | 714|26|M|engineer|55343
716 | 715|21|M|technician|91206
717 | 716|36|F|administrator|44265
718 | 717|24|M|technician|84105
719 | 718|42|M|technician|64118
720 | 719|37|F|other|V0R2H
721 | 720|49|F|administrator|16506
722 | 721|24|F|entertainment|11238
723 | 722|50|F|homemaker|17331
724 | 723|26|M|executive|94403
725 | 724|31|M|executive|40243
726 | 725|21|M|student|91711
727 | 726|25|F|administrator|80538
728 | 727|25|M|student|78741
729 | 728|58|M|executive|94306
730 | 729|19|M|student|56567
731 | 730|31|F|scientist|32114
732 | 731|41|F|educator|70403
733 | 732|28|F|other|98405
734 | 733|44|F|other|60630
735 | 734|25|F|other|63108
736 | 735|29|F|healthcare|85719
737 | 736|48|F|writer|94618
738 | 737|30|M|programmer|98072
739 | 738|35|M|technician|95403
740 | 739|35|M|technician|73162
741 | 740|25|F|educator|22206
742 | 741|25|M|writer|63108
743 | 742|35|M|student|29210
744 | 743|31|M|programmer|92660
745 | 744|35|M|marketing|47024
746 | 745|42|M|writer|55113
747 | 746|25|M|engineer|19047
748 | 747|19|M|other|93612
749 | 748|28|M|administrator|94720
750 | 749|33|M|other|80919
751 | 750|28|M|administrator|32303
752 | 751|24|F|other|90034
753 | 752|60|M|retired|21201
754 | 753|56|M|salesman|91206
755 | 754|59|F|librarian|62901
756 | 755|44|F|educator|97007
757 | 756|30|F|none|90247
758 | 757|26|M|student|55104
759 | 758|27|M|student|53706
760 | 759|20|F|student|68503
761 | 760|35|F|other|14211
762 | 761|17|M|student|97302
763 | 762|32|M|administrator|95050
764 | 763|27|M|scientist|02113
765 | 764|27|F|educator|62903
766 | 765|31|M|student|33066
767 | 766|42|M|other|10960
768 | 767|70|M|engineer|00000
769 | 768|29|M|administrator|12866
770 | 769|39|M|executive|06927
771 | 770|28|M|student|14216
772 | 771|26|M|student|15232
773 | 772|50|M|writer|27105
774 | 773|20|M|student|55414
775 | 774|30|M|student|80027
776 | 775|46|M|executive|90036
777 | 776|30|M|librarian|51157
778 | 777|63|M|programmer|01810
779 | 778|34|M|student|01960
780 | 779|31|M|student|K7L5J
781 | 780|49|M|programmer|94560
782 | 781|20|M|student|48825
783 | 782|21|F|artist|33205
784 | 783|30|M|marketing|77081
785 | 784|47|M|administrator|91040
786 | 785|32|M|engineer|23322
787 | 786|36|F|engineer|01754
788 | 787|18|F|student|98620
789 | 788|51|M|administrator|05779
790 | 789|29|M|other|55420
791 | 790|27|M|technician|80913
792 | 791|31|M|educator|20064
793 | 792|40|M|programmer|12205
794 | 793|22|M|student|85281
795 | 794|32|M|educator|57197
796 | 795|30|M|programmer|08610
797 | 796|32|F|writer|33755
798 | 797|44|F|other|62522
799 | 798|40|F|writer|64131
800 | 799|49|F|administrator|19716
801 | 800|25|M|programmer|55337
802 | 801|22|M|writer|92154
803 | 802|35|M|administrator|34105
804 | 803|70|M|administrator|78212
805 | 804|39|M|educator|61820
806 | 805|27|F|other|20009
807 | 806|27|M|marketing|11217
808 | 807|41|F|healthcare|93555
809 | 808|45|M|salesman|90016
810 | 809|50|F|marketing|30803
811 | 810|55|F|other|80526
812 | 811|40|F|educator|73013
813 | 812|22|M|technician|76234
814 | 813|14|F|student|02136
815 | 814|30|M|other|12345
816 | 815|32|M|other|28806
817 | 816|34|M|other|20755
818 | 817|19|M|student|60152
819 | 818|28|M|librarian|27514
820 | 819|59|M|administrator|40205
821 | 820|22|M|student|37725
822 | 821|37|M|engineer|77845
823 | 822|29|F|librarian|53144
824 | 823|27|M|artist|50322
825 | 824|31|M|other|15017
826 | 825|44|M|engineer|05452
827 | 826|28|M|artist|77048
828 | 827|23|F|engineer|80228
829 | 828|28|M|librarian|85282
830 | 829|48|M|writer|80209
831 | 830|46|M|programmer|53066
832 | 831|21|M|other|33765
833 | 832|24|M|technician|77042
834 | 833|34|M|writer|90019
835 | 834|26|M|other|64153
836 | 835|44|F|executive|11577
837 | 836|44|M|artist|10018
838 | 837|36|F|artist|55409
839 | 838|23|M|student|01375
840 | 839|38|F|entertainment|90814
841 | 840|39|M|artist|55406
842 | 841|45|M|doctor|47401
843 | 842|40|M|writer|93055
844 | 843|35|M|librarian|44212
845 | 844|22|M|engineer|95662
846 | 845|64|M|doctor|97405
847 | 846|27|M|lawyer|47130
848 | 847|29|M|student|55417
849 | 848|46|M|engineer|02146
850 | 849|15|F|student|25652
851 | 850|34|M|technician|78390
852 | 851|18|M|other|29646
853 | 852|46|M|administrator|94086
854 | 853|49|M|writer|40515
855 | 854|29|F|student|55408
856 | 855|53|M|librarian|04988
857 | 856|43|F|marketing|97215
858 | 857|35|F|administrator|V1G4L
859 | 858|63|M|educator|09645
860 | 859|18|F|other|06492
861 | 860|70|F|retired|48322
862 | 861|38|F|student|14085
863 | 862|25|M|executive|13820
864 | 863|17|M|student|60089
865 | 864|27|M|programmer|63021
866 | 865|25|M|artist|11231
867 | 866|45|M|other|60302
868 | 867|24|M|scientist|92507
869 | 868|21|M|programmer|55303
870 | 869|30|M|student|10025
871 | 870|22|M|student|65203
872 | 871|31|M|executive|44648
873 | 872|19|F|student|74078
874 | 873|48|F|administrator|33763
875 | 874|36|M|scientist|37076
876 | 875|24|F|student|35802
877 | 876|41|M|other|20902
878 | 877|30|M|other|77504
879 | 878|50|F|educator|98027
880 | 879|33|F|administrator|55337
881 | 880|13|M|student|83702
882 | 881|39|M|marketing|43017
883 | 882|35|M|engineer|40503
884 | 883|49|M|librarian|50266
885 | 884|44|M|engineer|55337
886 | 885|30|F|other|95316
887 | 886|20|M|student|61820
888 | 887|14|F|student|27249
889 | 888|41|M|scientist|17036
890 | 889|24|M|technician|78704
891 | 890|32|M|student|97301
892 | 891|51|F|administrator|03062
893 | 892|36|M|other|45243
894 | 893|25|M|student|95823
895 | 894|47|M|educator|74075
896 | 895|31|F|librarian|32301
897 | 896|28|M|writer|91505
898 | 897|30|M|other|33484
899 | 898|23|M|homemaker|61755
900 | 899|32|M|other|55116
901 | 900|60|M|retired|18505
902 | 901|38|M|executive|L1V3W
903 | 902|45|F|artist|97203
904 | 903|28|M|educator|20850
905 | 904|17|F|student|61073
906 | 905|27|M|other|30350
907 | 906|45|M|librarian|70124
908 | 907|25|F|other|80526
909 | 908|44|F|librarian|68504
910 | 909|50|F|educator|53171
911 | 910|28|M|healthcare|29301
912 | 911|37|F|writer|53210
913 | 912|51|M|other|06512
914 | 913|27|M|student|76201
915 | 914|44|F|other|08105
916 | 915|50|M|entertainment|60614
917 | 916|27|M|engineer|N2L5N
918 | 917|22|F|student|20006
919 | 918|40|M|scientist|70116
920 | 919|25|M|other|14216
921 | 920|30|F|artist|90008
922 | 921|20|F|student|98801
923 | 922|29|F|administrator|21114
924 | 923|21|M|student|E2E3R
925 | 924|29|M|other|11753
926 | 925|18|F|salesman|49036
927 | 926|49|M|entertainment|01701
928 | 927|23|M|programmer|55428
929 | 928|21|M|student|55408
930 | 929|44|M|scientist|53711
931 | 930|28|F|scientist|07310
932 | 931|60|M|educator|33556
933 | 932|58|M|educator|06437
934 | 933|28|M|student|48105
935 | 934|61|M|engineer|22902
936 | 935|42|M|doctor|66221
937 | 936|24|M|other|32789
938 | 937|48|M|educator|98072
939 | 938|38|F|technician|55038
940 | 939|26|F|student|33319
941 | 940|32|M|administrator|02215
942 | 941|20|M|student|97229
943 | 942|48|F|librarian|78209
944 | 943|22|M|student|77841
945 |
--------------------------------------------------------------------------------
/lectures/notebooks/data/user_occupations_no_header.txt:
--------------------------------------------------------------------------------
1 | 1|24|M|technician|85711
2 | 2|53|F|other|94043
3 | 3|23|M|writer|32067
4 | 4|24|M|technician|43537
5 | 5|33|F|other|15213
6 | 6|42|M|executive|98101
7 | 7|57|M|administrator|91344
8 | 8|36|M|administrator|05201
9 | 9|29|M|student|01002
10 | 10|53|M|lawyer|90703
11 | 11|39|F|other|30329
12 | 12|28|F|other|06405
13 | 13|47|M|educator|29206
14 | 14|45|M|scientist|55106
15 | 15|49|F|educator|97301
16 | 16|21|M|entertainment|10309
17 | 17|30|M|programmer|06355
18 | 18|35|F|other|37212
19 | 19|40|M|librarian|02138
20 | 20|42|F|homemaker|95660
21 | 21|26|M|writer|30068
22 | 22|25|M|writer|40206
23 | 23|30|F|artist|48197
24 | 24|21|F|artist|94533
25 | 25|39|M|engineer|55107
26 | 26|49|M|engineer|21044
27 | 27|40|F|librarian|30030
28 | 28|32|M|writer|55369
29 | 29|41|M|programmer|94043
30 | 30|7|M|student|55436
31 | 31|24|M|artist|10003
32 | 32|28|F|student|78741
33 | 33|23|M|student|27510
34 | 34|38|F|administrator|42141
35 | 35|20|F|homemaker|42459
36 | 36|19|F|student|93117
37 | 37|23|M|student|55105
38 | 38|28|F|other|54467
39 | 39|41|M|entertainment|01040
40 | 40|38|M|scientist|27514
41 | 41|33|M|engineer|80525
42 | 42|30|M|administrator|17870
43 | 43|29|F|librarian|20854
44 | 44|26|M|technician|46260
45 | 45|29|M|programmer|50233
46 | 46|27|F|marketing|46538
47 | 47|53|M|marketing|07102
48 | 48|45|M|administrator|12550
49 | 49|23|F|student|76111
50 | 50|21|M|writer|52245
51 | 51|28|M|educator|16509
52 | 52|18|F|student|55105
53 | 53|26|M|programmer|55414
54 | 54|22|M|executive|66315
55 | 55|37|M|programmer|01331
56 | 56|25|M|librarian|46260
57 | 57|16|M|none|84010
58 | 58|27|M|programmer|52246
59 | 59|49|M|educator|08403
60 | 60|50|M|healthcare|06472
61 | 61|36|M|engineer|30040
62 | 62|27|F|administrator|97214
63 | 63|31|M|marketing|75240
64 | 64|32|M|educator|43202
65 | 65|51|F|educator|48118
66 | 66|23|M|student|80521
67 | 67|17|M|student|60402
68 | 68|19|M|student|22904
69 | 69|24|M|engineer|55337
70 | 70|27|M|engineer|60067
71 | 71|39|M|scientist|98034
72 | 72|48|F|administrator|73034
73 | 73|24|M|student|41850
74 | 74|39|M|scientist|T8H1N
75 | 75|24|M|entertainment|08816
76 | 76|20|M|student|02215
77 | 77|30|M|technician|29379
78 | 78|26|M|administrator|61801
79 | 79|39|F|administrator|03755
80 | 80|34|F|administrator|52241
81 | 81|21|M|student|21218
82 | 82|50|M|programmer|22902
83 | 83|40|M|other|44133
84 | 84|32|M|executive|55369
85 | 85|51|M|educator|20003
86 | 86|26|M|administrator|46005
87 | 87|47|M|administrator|89503
88 | 88|49|F|librarian|11701
89 | 89|43|F|administrator|68106
90 | 90|60|M|educator|78155
91 | 91|55|M|marketing|01913
92 | 92|32|M|entertainment|80525
93 | 93|48|M|executive|23112
94 | 94|26|M|student|71457
95 | 95|31|M|administrator|10707
96 | 96|25|F|artist|75206
97 | 97|43|M|artist|98006
98 | 98|49|F|executive|90291
99 | 99|20|M|student|63129
100 | 100|36|M|executive|90254
101 | 101|15|M|student|05146
102 | 102|38|M|programmer|30220
103 | 103|26|M|student|55108
104 | 104|27|M|student|55108
105 | 105|24|M|engineer|94043
106 | 106|61|M|retired|55125
107 | 107|39|M|scientist|60466
108 | 108|44|M|educator|63130
109 | 109|29|M|other|55423
110 | 110|19|M|student|77840
111 | 111|57|M|engineer|90630
112 | 112|30|M|salesman|60613
113 | 113|47|M|executive|95032
114 | 114|27|M|programmer|75013
115 | 115|31|M|engineer|17110
116 | 116|40|M|healthcare|97232
117 | 117|20|M|student|16125
118 | 118|21|M|administrator|90210
119 | 119|32|M|programmer|67401
120 | 120|47|F|other|06260
121 | 121|54|M|librarian|99603
122 | 122|32|F|writer|22206
123 | 123|48|F|artist|20008
124 | 124|34|M|student|60615
125 | 125|30|M|lawyer|22202
126 | 126|28|F|lawyer|20015
127 | 127|33|M|none|73439
128 | 128|24|F|marketing|20009
129 | 129|36|F|marketing|07039
130 | 130|20|M|none|60115
131 | 131|59|F|administrator|15237
132 | 132|24|M|other|94612
133 | 133|53|M|engineer|78602
134 | 134|31|M|programmer|80236
135 | 135|23|M|student|38401
136 | 136|51|M|other|97365
137 | 137|50|M|educator|84408
138 | 138|46|M|doctor|53211
139 | 139|20|M|student|08904
140 | 140|30|F|student|32250
141 | 141|49|M|programmer|36117
142 | 142|13|M|other|48118
143 | 143|42|M|technician|08832
144 | 144|53|M|programmer|20910
145 | 145|31|M|entertainment|V3N4P
146 | 146|45|M|artist|83814
147 | 147|40|F|librarian|02143
148 | 148|33|M|engineer|97006
149 | 149|35|F|marketing|17325
150 | 150|20|F|artist|02139
151 | 151|38|F|administrator|48103
152 | 152|33|F|educator|68767
153 | 153|25|M|student|60641
154 | 154|25|M|student|53703
155 | 155|32|F|other|11217
156 | 156|25|M|educator|08360
157 | 157|57|M|engineer|70808
158 | 158|50|M|educator|27606
159 | 159|23|F|student|55346
160 | 160|27|M|programmer|66215
161 | 161|50|M|lawyer|55104
162 | 162|25|M|artist|15610
163 | 163|49|M|administrator|97212
164 | 164|47|M|healthcare|80123
165 | 165|20|F|other|53715
166 | 166|47|M|educator|55113
167 | 167|37|M|other|L9G2B
168 | 168|48|M|other|80127
169 | 169|52|F|other|53705
170 | 170|53|F|healthcare|30067
171 | 171|48|F|educator|78750
172 | 172|55|M|marketing|22207
173 | 173|56|M|other|22306
174 | 174|30|F|administrator|52302
175 | 175|26|F|scientist|21911
176 | 176|28|M|scientist|07030
177 | 177|20|M|programmer|19104
178 | 178|26|M|other|49512
179 | 179|15|M|entertainment|20755
180 | 180|22|F|administrator|60202
181 | 181|26|M|executive|21218
182 | 182|36|M|programmer|33884
183 | 183|33|M|scientist|27708
184 | 184|37|M|librarian|76013
185 | 185|53|F|librarian|97403
186 | 186|39|F|executive|00000
187 | 187|26|M|educator|16801
188 | 188|42|M|student|29440
189 | 189|32|M|artist|95014
190 | 190|30|M|administrator|95938
191 | 191|33|M|administrator|95161
192 | 192|42|M|educator|90840
193 | 193|29|M|student|49931
194 | 194|38|M|administrator|02154
195 | 195|42|M|scientist|93555
196 | 196|49|M|writer|55105
197 | 197|55|M|technician|75094
198 | 198|21|F|student|55414
199 | 199|30|M|writer|17604
200 | 200|40|M|programmer|93402
201 | 201|27|M|writer|E2A4H
202 | 202|41|F|educator|60201
203 | 203|25|F|student|32301
204 | 204|52|F|librarian|10960
205 | 205|47|M|lawyer|06371
206 | 206|14|F|student|53115
207 | 207|39|M|marketing|92037
208 | 208|43|M|engineer|01720
209 | 209|33|F|educator|85710
210 | 210|39|M|engineer|03060
211 | 211|66|M|salesman|32605
212 | 212|49|F|educator|61401
213 | 213|33|M|executive|55345
214 | 214|26|F|librarian|11231
215 | 215|35|M|programmer|63033
216 | 216|22|M|engineer|02215
217 | 217|22|M|other|11727
218 | 218|37|M|administrator|06513
219 | 219|32|M|programmer|43212
220 | 220|30|M|librarian|78205
221 | 221|19|M|student|20685
222 | 222|29|M|programmer|27502
223 | 223|19|F|student|47906
224 | 224|31|F|educator|43512
225 | 225|51|F|administrator|58202
226 | 226|28|M|student|92103
227 | 227|46|M|executive|60659
228 | 228|21|F|student|22003
229 | 229|29|F|librarian|22903
230 | 230|28|F|student|14476
231 | 231|48|M|librarian|01080
232 | 232|45|M|scientist|99709
233 | 233|38|M|engineer|98682
234 | 234|60|M|retired|94702
235 | 235|37|M|educator|22973
236 | 236|44|F|writer|53214
237 | 237|49|M|administrator|63146
238 | 238|42|F|administrator|44124
239 | 239|39|M|artist|95628
240 | 240|23|F|educator|20784
241 | 241|26|F|student|20001
242 | 242|33|M|educator|31404
243 | 243|33|M|educator|60201
244 | 244|28|M|technician|80525
245 | 245|22|M|student|55109
246 | 246|19|M|student|28734
247 | 247|28|M|engineer|20770
248 | 248|25|M|student|37235
249 | 249|25|M|student|84103
250 | 250|29|M|executive|95110
251 | 251|28|M|doctor|85032
252 | 252|42|M|engineer|07733
253 | 253|26|F|librarian|22903
254 | 254|44|M|educator|42647
255 | 255|23|M|entertainment|07029
256 | 256|35|F|none|39042
257 | 257|17|M|student|77005
258 | 258|19|F|student|77801
259 | 259|21|M|student|48823
260 | 260|40|F|artist|89801
261 | 261|28|M|administrator|85202
262 | 262|19|F|student|78264
263 | 263|41|M|programmer|55346
264 | 264|36|F|writer|90064
265 | 265|26|M|executive|84601
266 | 266|62|F|administrator|78756
267 | 267|23|M|engineer|83716
268 | 268|24|M|engineer|19422
269 | 269|31|F|librarian|43201
270 | 270|18|F|student|63119
271 | 271|51|M|engineer|22932
272 | 272|33|M|scientist|53706
273 | 273|50|F|other|10016
274 | 274|20|F|student|55414
275 | 275|38|M|engineer|92064
276 | 276|21|M|student|95064
277 | 277|35|F|administrator|55406
278 | 278|37|F|librarian|30033
279 | 279|33|M|programmer|85251
280 | 280|30|F|librarian|22903
281 | 281|15|F|student|06059
282 | 282|22|M|administrator|20057
283 | 283|28|M|programmer|55305
284 | 284|40|M|executive|92629
285 | 285|25|M|programmer|53713
286 | 286|27|M|student|15217
287 | 287|21|M|salesman|31211
288 | 288|34|M|marketing|23226
289 | 289|11|M|none|94619
290 | 290|40|M|engineer|93550
291 | 291|19|M|student|44106
292 | 292|35|F|programmer|94703
293 | 293|24|M|writer|60804
294 | 294|34|M|technician|92110
295 | 295|31|M|educator|50325
296 | 296|43|F|administrator|16803
297 | 297|29|F|educator|98103
298 | 298|44|M|executive|01581
299 | 299|29|M|doctor|63108
300 | 300|26|F|programmer|55106
301 | 301|24|M|student|55439
302 | 302|42|M|educator|77904
303 | 303|19|M|student|14853
304 | 304|22|F|student|71701
305 | 305|23|M|programmer|94086
306 | 306|45|M|other|73132
307 | 307|25|M|student|55454
308 | 308|60|M|retired|95076
309 | 309|40|M|scientist|70802
310 | 310|37|M|educator|91711
311 | 311|32|M|technician|73071
312 | 312|48|M|other|02110
313 | 313|41|M|marketing|60035
314 | 314|20|F|student|08043
315 | 315|31|M|educator|18301
316 | 316|43|F|other|77009
317 | 317|22|M|administrator|13210
318 | 318|65|M|retired|06518
319 | 319|38|M|programmer|22030
320 | 320|19|M|student|24060
321 | 321|49|F|educator|55413
322 | 322|20|M|student|50613
323 | 323|21|M|student|19149
324 | 324|21|F|student|02176
325 | 325|48|M|technician|02139
326 | 326|41|M|administrator|15235
327 | 327|22|M|student|11101
328 | 328|51|M|administrator|06779
329 | 329|48|M|educator|01720
330 | 330|35|F|educator|33884
331 | 331|33|M|entertainment|91344
332 | 332|20|M|student|40504
333 | 333|47|M|other|V0R2M
334 | 334|32|M|librarian|30002
335 | 335|45|M|executive|33775
336 | 336|23|M|salesman|42101
337 | 337|37|M|scientist|10522
338 | 338|39|F|librarian|59717
339 | 339|35|M|lawyer|37901
340 | 340|46|M|engineer|80123
341 | 341|17|F|student|44405
342 | 342|25|F|other|98006
343 | 343|43|M|engineer|30093
344 | 344|30|F|librarian|94117
345 | 345|28|F|librarian|94143
346 | 346|34|M|other|76059
347 | 347|18|M|student|90210
348 | 348|24|F|student|45660
349 | 349|68|M|retired|61455
350 | 350|32|M|student|97301
351 | 351|61|M|educator|49938
352 | 352|37|F|programmer|55105
353 | 353|25|M|scientist|28480
354 | 354|29|F|librarian|48197
355 | 355|25|M|student|60135
356 | 356|32|F|homemaker|92688
357 | 357|26|M|executive|98133
358 | 358|40|M|educator|10022
359 | 359|22|M|student|61801
360 | 360|51|M|other|98027
361 | 361|22|M|student|44074
362 | 362|35|F|homemaker|85233
363 | 363|20|M|student|87501
364 | 364|63|M|engineer|01810
365 | 365|29|M|lawyer|20009
366 | 366|20|F|student|50670
367 | 367|17|M|student|37411
368 | 368|18|M|student|92113
369 | 369|24|M|student|91335
370 | 370|52|M|writer|08534
371 | 371|36|M|engineer|99206
372 | 372|25|F|student|66046
373 | 373|24|F|other|55116
374 | 374|36|M|executive|78746
375 | 375|17|M|entertainment|37777
376 | 376|28|F|other|10010
377 | 377|22|M|student|18015
378 | 378|35|M|student|02859
379 | 379|44|M|programmer|98117
380 | 380|32|M|engineer|55117
381 | 381|33|M|artist|94608
382 | 382|45|M|engineer|01824
383 | 383|42|M|administrator|75204
384 | 384|52|M|programmer|45218
385 | 385|36|M|writer|10003
386 | 386|36|M|salesman|43221
387 | 387|33|M|entertainment|37412
388 | 388|31|M|other|36106
389 | 389|44|F|writer|83702
390 | 390|42|F|writer|85016
391 | 391|23|M|student|84604
392 | 392|52|M|writer|59801
393 | 393|19|M|student|83686
394 | 394|25|M|administrator|96819
395 | 395|43|M|other|44092
396 | 396|57|M|engineer|94551
397 | 397|17|M|student|27514
398 | 398|40|M|other|60008
399 | 399|25|M|other|92374
400 | 400|33|F|administrator|78213
401 | 401|46|F|healthcare|84107
402 | 402|30|M|engineer|95129
403 | 403|37|M|other|06811
404 | 404|29|F|programmer|55108
405 | 405|22|F|healthcare|10019
406 | 406|52|M|educator|93109
407 | 407|29|M|engineer|03261
408 | 408|23|M|student|61755
409 | 409|48|M|administrator|98225
410 | 410|30|F|artist|94025
411 | 411|34|M|educator|44691
412 | 412|25|M|educator|15222
413 | 413|55|M|educator|78212
414 | 414|24|M|programmer|38115
415 | 415|39|M|educator|85711
416 | 416|20|F|student|92626
417 | 417|27|F|other|48103
418 | 418|55|F|none|21206
419 | 419|37|M|lawyer|43215
420 | 420|53|M|educator|02140
421 | 421|38|F|programmer|55105
422 | 422|26|M|entertainment|94533
423 | 423|64|M|other|91606
424 | 424|36|F|marketing|55422
425 | 425|19|M|student|58644
426 | 426|55|M|educator|01602
427 | 427|51|M|doctor|85258
428 | 428|28|M|student|55414
429 | 429|27|M|student|29205
430 | 430|38|M|scientist|98199
431 | 431|24|M|marketing|92629
432 | 432|22|M|entertainment|50311
433 | 433|27|M|artist|11211
434 | 434|16|F|student|49705
435 | 435|24|M|engineer|60007
436 | 436|30|F|administrator|17345
437 | 437|27|F|other|20009
438 | 438|51|F|administrator|43204
439 | 439|23|F|administrator|20817
440 | 440|30|M|other|48076
441 | 441|50|M|technician|55013
442 | 442|22|M|student|85282
443 | 443|35|M|salesman|33308
444 | 444|51|F|lawyer|53202
445 | 445|21|M|writer|92653
446 | 446|57|M|educator|60201
447 | 447|30|M|administrator|55113
448 | 448|23|M|entertainment|10021
449 | 449|23|M|librarian|55021
450 | 450|35|F|educator|11758
451 | 451|16|M|student|48446
452 | 452|35|M|administrator|28018
453 | 453|18|M|student|06333
454 | 454|57|M|other|97330
455 | 455|48|M|administrator|83709
456 | 456|24|M|technician|31820
457 | 457|33|F|salesman|30011
458 | 458|47|M|technician|Y1A6B
459 | 459|22|M|student|29201
460 | 460|44|F|other|60630
461 | 461|15|M|student|98102
462 | 462|19|F|student|02918
463 | 463|48|F|healthcare|75218
464 | 464|60|M|writer|94583
465 | 465|32|M|other|05001
466 | 466|22|M|student|90804
467 | 467|29|M|engineer|91201
468 | 468|28|M|engineer|02341
469 | 469|60|M|educator|78628
470 | 470|24|M|programmer|10021
471 | 471|10|M|student|77459
472 | 472|24|M|student|87544
473 | 473|29|M|student|94708
474 | 474|51|M|executive|93711
475 | 475|30|M|programmer|75230
476 | 476|28|M|student|60440
477 | 477|23|F|student|02125
478 | 478|29|M|other|10019
479 | 479|30|M|educator|55409
480 | 480|57|M|retired|98257
481 | 481|73|M|retired|37771
482 | 482|18|F|student|40256
483 | 483|29|M|scientist|43212
484 | 484|27|M|student|21208
485 | 485|44|F|educator|95821
486 | 486|39|M|educator|93101
487 | 487|22|M|engineer|92121
488 | 488|48|M|technician|21012
489 | 489|55|M|other|45218
490 | 490|29|F|artist|V5A2B
491 | 491|43|F|writer|53711
492 | 492|57|M|educator|94618
493 | 493|22|M|engineer|60090
494 | 494|38|F|administrator|49428
495 | 495|29|M|engineer|03052
496 | 496|21|F|student|55414
497 | 497|20|M|student|50112
498 | 498|26|M|writer|55408
499 | 499|42|M|programmer|75006
500 | 500|28|M|administrator|94305
501 | 501|22|M|student|10025
502 | 502|22|M|student|23092
503 | 503|50|F|writer|27514
504 | 504|40|F|writer|92115
505 | 505|27|F|other|20657
506 | 506|46|M|programmer|03869
507 | 507|18|F|writer|28450
508 | 508|27|M|marketing|19382
509 | 509|23|M|administrator|10011
510 | 510|34|M|other|98038
511 | 511|22|M|student|21250
512 | 512|29|M|other|20090
513 | 513|43|M|administrator|26241
514 | 514|27|M|programmer|20707
515 | 515|53|M|marketing|49508
516 | 516|53|F|librarian|10021
517 | 517|24|M|student|55454
518 | 518|49|F|writer|99709
519 | 519|22|M|other|55320
520 | 520|62|M|healthcare|12603
521 | 521|19|M|student|02146
522 | 522|36|M|engineer|55443
523 | 523|50|F|administrator|04102
524 | 524|56|M|educator|02159
525 | 525|27|F|administrator|19711
526 | 526|30|M|marketing|97124
527 | 527|33|M|librarian|12180
528 | 528|18|M|student|55104
529 | 529|47|F|administrator|44224
530 | 530|29|M|engineer|94040
531 | 531|30|F|salesman|97408
532 | 532|20|M|student|92705
533 | 533|43|M|librarian|02324
534 | 534|20|M|student|05464
535 | 535|45|F|educator|80302
536 | 536|38|M|engineer|30078
537 | 537|36|M|engineer|22902
538 | 538|31|M|scientist|21010
539 | 539|53|F|administrator|80303
540 | 540|28|M|engineer|91201
541 | 541|19|F|student|84302
542 | 542|21|M|student|60515
543 | 543|33|M|scientist|95123
544 | 544|44|F|other|29464
545 | 545|27|M|technician|08052
546 | 546|36|M|executive|22911
547 | 547|50|M|educator|14534
548 | 548|51|M|writer|95468
549 | 549|42|M|scientist|45680
550 | 550|16|F|student|95453
551 | 551|25|M|programmer|55414
552 | 552|45|M|other|68147
553 | 553|58|M|educator|62901
554 | 554|32|M|scientist|62901
555 | 555|29|F|educator|23227
556 | 556|35|F|educator|30606
557 | 557|30|F|writer|11217
558 | 558|56|F|writer|63132
559 | 559|69|M|executive|10022
560 | 560|32|M|student|10003
561 | 561|23|M|engineer|60005
562 | 562|54|F|administrator|20879
563 | 563|39|F|librarian|32707
564 | 564|65|M|retired|94591
565 | 565|40|M|student|55422
566 | 566|20|M|student|14627
567 | 567|24|M|entertainment|10003
568 | 568|39|M|educator|01915
569 | 569|34|M|educator|91903
570 | 570|26|M|educator|14627
571 | 571|34|M|artist|01945
572 | 572|51|M|educator|20003
573 | 573|68|M|retired|48911
574 | 574|56|M|educator|53188
575 | 575|33|M|marketing|46032
576 | 576|48|M|executive|98281
577 | 577|36|F|student|77845
578 | 578|31|M|administrator|M7A1A
579 | 579|32|M|educator|48103
580 | 580|16|M|student|17961
581 | 581|37|M|other|94131
582 | 582|17|M|student|93003
583 | 583|44|M|engineer|29631
584 | 584|25|M|student|27511
585 | 585|69|M|librarian|98501
586 | 586|20|M|student|79508
587 | 587|26|M|other|14216
588 | 588|18|F|student|93063
589 | 589|21|M|lawyer|90034
590 | 590|50|M|educator|82435
591 | 591|57|F|librarian|92093
592 | 592|18|M|student|97520
593 | 593|31|F|educator|68767
594 | 594|46|M|educator|M4J2K
595 | 595|25|M|programmer|31909
596 | 596|20|M|artist|77073
597 | 597|23|M|other|84116
598 | 598|40|F|marketing|43085
599 | 599|22|F|student|R3T5K
600 | 600|34|M|programmer|02320
601 | 601|19|F|artist|99687
602 | 602|47|F|other|34656
603 | 603|21|M|programmer|47905
604 | 604|39|M|educator|11787
605 | 605|33|M|engineer|33716
606 | 606|28|M|programmer|63044
607 | 607|49|F|healthcare|02154
608 | 608|22|M|other|10003
609 | 609|13|F|student|55106
610 | 610|22|M|student|21227
611 | 611|46|M|librarian|77008
612 | 612|36|M|educator|79070
613 | 613|37|F|marketing|29678
614 | 614|54|M|educator|80227
615 | 615|38|M|educator|27705
616 | 616|55|M|scientist|50613
617 | 617|27|F|writer|11201
618 | 618|15|F|student|44212
619 | 619|17|M|student|44134
620 | 620|18|F|writer|81648
621 | 621|17|M|student|60402
622 | 622|25|M|programmer|14850
623 | 623|50|F|educator|60187
624 | 624|19|M|student|30067
625 | 625|27|M|programmer|20723
626 | 626|23|M|scientist|19807
627 | 627|24|M|engineer|08034
628 | 628|13|M|none|94306
629 | 629|46|F|other|44224
630 | 630|26|F|healthcare|55408
631 | 631|18|F|student|38866
632 | 632|18|M|student|55454
633 | 633|35|M|programmer|55414
634 | 634|39|M|engineer|T8H1N
635 | 635|22|M|other|23237
636 | 636|47|M|educator|48043
637 | 637|30|M|other|74101
638 | 638|45|M|engineer|01940
639 | 639|42|F|librarian|12065
640 | 640|20|M|student|61801
641 | 641|24|M|student|60626
642 | 642|18|F|student|95521
643 | 643|39|M|scientist|55122
644 | 644|51|M|retired|63645
645 | 645|27|M|programmer|53211
646 | 646|17|F|student|51250
647 | 647|40|M|educator|45810
648 | 648|43|M|engineer|91351
649 | 649|20|M|student|39762
650 | 650|42|M|engineer|83814
651 | 651|65|M|retired|02903
652 | 652|35|M|other|22911
653 | 653|31|M|executive|55105
654 | 654|27|F|student|78739
655 | 655|50|F|healthcare|60657
656 | 656|48|M|educator|10314
657 | 657|26|F|none|78704
658 | 658|33|M|programmer|92626
659 | 659|31|M|educator|54248
660 | 660|26|M|student|77380
661 | 661|28|M|programmer|98121
662 | 662|55|M|librarian|19102
663 | 663|26|M|other|19341
664 | 664|30|M|engineer|94115
665 | 665|25|M|administrator|55412
666 | 666|44|M|administrator|61820
667 | 667|35|M|librarian|01970
668 | 668|29|F|writer|10016
669 | 669|37|M|other|20009
670 | 670|30|M|technician|21114
671 | 671|21|M|programmer|91919
672 | 672|54|F|administrator|90095
673 | 673|51|M|educator|22906
674 | 674|13|F|student|55337
675 | 675|34|M|other|28814
676 | 676|30|M|programmer|32712
677 | 677|20|M|other|99835
678 | 678|50|M|educator|61462
679 | 679|20|F|student|54302
680 | 680|33|M|lawyer|90405
681 | 681|44|F|marketing|97208
682 | 682|23|M|programmer|55128
683 | 683|42|M|librarian|23509
684 | 684|28|M|student|55414
685 | 685|32|F|librarian|55409
686 | 686|32|M|educator|26506
687 | 687|31|F|healthcare|27713
688 | 688|37|F|administrator|60476
689 | 689|25|M|other|45439
690 | 690|35|M|salesman|63304
691 | 691|34|M|educator|60089
692 | 692|34|M|engineer|18053
693 | 693|43|F|healthcare|85210
694 | 694|60|M|programmer|06365
695 | 695|26|M|writer|38115
696 | 696|55|M|other|94920
697 | 697|25|M|other|77042
698 | 698|28|F|programmer|06906
699 | 699|44|M|other|96754
700 | 700|17|M|student|76309
701 | 701|51|F|librarian|56321
702 | 702|37|M|other|89104
703 | 703|26|M|educator|49512
704 | 704|51|F|librarian|91105
705 | 705|21|F|student|54494
706 | 706|23|M|student|55454
707 | 707|56|F|librarian|19146
708 | 708|26|F|homemaker|96349
709 | 709|21|M|other|N4T1A
710 | 710|19|M|student|92020
711 | 711|22|F|student|15203
712 | 712|22|F|student|54901
713 | 713|42|F|other|07204
714 | 714|26|M|engineer|55343
715 | 715|21|M|technician|91206
716 | 716|36|F|administrator|44265
717 | 717|24|M|technician|84105
718 | 718|42|M|technician|64118
719 | 719|37|F|other|V0R2H
720 | 720|49|F|administrator|16506
721 | 721|24|F|entertainment|11238
722 | 722|50|F|homemaker|17331
723 | 723|26|M|executive|94403
724 | 724|31|M|executive|40243
725 | 725|21|M|student|91711
726 | 726|25|F|administrator|80538
727 | 727|25|M|student|78741
728 | 728|58|M|executive|94306
729 | 729|19|M|student|56567
730 | 730|31|F|scientist|32114
731 | 731|41|F|educator|70403
732 | 732|28|F|other|98405
733 | 733|44|F|other|60630
734 | 734|25|F|other|63108
735 | 735|29|F|healthcare|85719
736 | 736|48|F|writer|94618
737 | 737|30|M|programmer|98072
738 | 738|35|M|technician|95403
739 | 739|35|M|technician|73162
740 | 740|25|F|educator|22206
741 | 741|25|M|writer|63108
742 | 742|35|M|student|29210
743 | 743|31|M|programmer|92660
744 | 744|35|M|marketing|47024
745 | 745|42|M|writer|55113
746 | 746|25|M|engineer|19047
747 | 747|19|M|other|93612
748 | 748|28|M|administrator|94720
749 | 749|33|M|other|80919
750 | 750|28|M|administrator|32303
751 | 751|24|F|other|90034
752 | 752|60|M|retired|21201
753 | 753|56|M|salesman|91206
754 | 754|59|F|librarian|62901
755 | 755|44|F|educator|97007
756 | 756|30|F|none|90247
757 | 757|26|M|student|55104
758 | 758|27|M|student|53706
759 | 759|20|F|student|68503
760 | 760|35|F|other|14211
761 | 761|17|M|student|97302
762 | 762|32|M|administrator|95050
763 | 763|27|M|scientist|02113
764 | 764|27|F|educator|62903
765 | 765|31|M|student|33066
766 | 766|42|M|other|10960
767 | 767|70|M|engineer|00000
768 | 768|29|M|administrator|12866
769 | 769|39|M|executive|06927
770 | 770|28|M|student|14216
771 | 771|26|M|student|15232
772 | 772|50|M|writer|27105
773 | 773|20|M|student|55414
774 | 774|30|M|student|80027
775 | 775|46|M|executive|90036
776 | 776|30|M|librarian|51157
777 | 777|63|M|programmer|01810
778 | 778|34|M|student|01960
779 | 779|31|M|student|K7L5J
780 | 780|49|M|programmer|94560
781 | 781|20|M|student|48825
782 | 782|21|F|artist|33205
783 | 783|30|M|marketing|77081
784 | 784|47|M|administrator|91040
785 | 785|32|M|engineer|23322
786 | 786|36|F|engineer|01754
787 | 787|18|F|student|98620
788 | 788|51|M|administrator|05779
789 | 789|29|M|other|55420
790 | 790|27|M|technician|80913
791 | 791|31|M|educator|20064
792 | 792|40|M|programmer|12205
793 | 793|22|M|student|85281
794 | 794|32|M|educator|57197
795 | 795|30|M|programmer|08610
796 | 796|32|F|writer|33755
797 | 797|44|F|other|62522
798 | 798|40|F|writer|64131
799 | 799|49|F|administrator|19716
800 | 800|25|M|programmer|55337
801 | 801|22|M|writer|92154
802 | 802|35|M|administrator|34105
803 | 803|70|M|administrator|78212
804 | 804|39|M|educator|61820
805 | 805|27|F|other|20009
806 | 806|27|M|marketing|11217
807 | 807|41|F|healthcare|93555
808 | 808|45|M|salesman|90016
809 | 809|50|F|marketing|30803
810 | 810|55|F|other|80526
811 | 811|40|F|educator|73013
812 | 812|22|M|technician|76234
813 | 813|14|F|student|02136
814 | 814|30|M|other|12345
815 | 815|32|M|other|28806
816 | 816|34|M|other|20755
817 | 817|19|M|student|60152
818 | 818|28|M|librarian|27514
819 | 819|59|M|administrator|40205
820 | 820|22|M|student|37725
821 | 821|37|M|engineer|77845
822 | 822|29|F|librarian|53144
823 | 823|27|M|artist|50322
824 | 824|31|M|other|15017
825 | 825|44|M|engineer|05452
826 | 826|28|M|artist|77048
827 | 827|23|F|engineer|80228
828 | 828|28|M|librarian|85282
829 | 829|48|M|writer|80209
830 | 830|46|M|programmer|53066
831 | 831|21|M|other|33765
832 | 832|24|M|technician|77042
833 | 833|34|M|writer|90019
834 | 834|26|M|other|64153
835 | 835|44|F|executive|11577
836 | 836|44|M|artist|10018
837 | 837|36|F|artist|55409
838 | 838|23|M|student|01375
839 | 839|38|F|entertainment|90814
840 | 840|39|M|artist|55406
841 | 841|45|M|doctor|47401
842 | 842|40|M|writer|93055
843 | 843|35|M|librarian|44212
844 | 844|22|M|engineer|95662
845 | 845|64|M|doctor|97405
846 | 846|27|M|lawyer|47130
847 | 847|29|M|student|55417
848 | 848|46|M|engineer|02146
849 | 849|15|F|student|25652
850 | 850|34|M|technician|78390
851 | 851|18|M|other|29646
852 | 852|46|M|administrator|94086
853 | 853|49|M|writer|40515
854 | 854|29|F|student|55408
855 | 855|53|M|librarian|04988
856 | 856|43|F|marketing|97215
857 | 857|35|F|administrator|V1G4L
858 | 858|63|M|educator|09645
859 | 859|18|F|other|06492
860 | 860|70|F|retired|48322
861 | 861|38|F|student|14085
862 | 862|25|M|executive|13820
863 | 863|17|M|student|60089
864 | 864|27|M|programmer|63021
865 | 865|25|M|artist|11231
866 | 866|45|M|other|60302
867 | 867|24|M|scientist|92507
868 | 868|21|M|programmer|55303
869 | 869|30|M|student|10025
870 | 870|22|M|student|65203
871 | 871|31|M|executive|44648
872 | 872|19|F|student|74078
873 | 873|48|F|administrator|33763
874 | 874|36|M|scientist|37076
875 | 875|24|F|student|35802
876 | 876|41|M|other|20902
877 | 877|30|M|other|77504
878 | 878|50|F|educator|98027
879 | 879|33|F|administrator|55337
880 | 880|13|M|student|83702
881 | 881|39|M|marketing|43017
882 | 882|35|M|engineer|40503
883 | 883|49|M|librarian|50266
884 | 884|44|M|engineer|55337
885 | 885|30|F|other|95316
886 | 886|20|M|student|61820
887 | 887|14|F|student|27249
888 | 888|41|M|scientist|17036
889 | 889|24|M|technician|78704
890 | 890|32|M|student|97301
891 | 891|51|F|administrator|03062
892 | 892|36|M|other|45243
893 | 893|25|M|student|95823
894 | 894|47|M|educator|74075
895 | 895|31|F|librarian|32301
896 | 896|28|M|writer|91505
897 | 897|30|M|other|33484
898 | 898|23|M|homemaker|61755
899 | 899|32|M|other|55116
900 | 900|60|M|retired|18505
901 | 901|38|M|executive|L1V3W
902 | 902|45|F|artist|97203
903 | 903|28|M|educator|20850
904 | 904|17|F|student|61073
905 | 905|27|M|other|30350
906 | 906|45|M|librarian|70124
907 | 907|25|F|other|80526
908 | 908|44|F|librarian|68504
909 | 909|50|F|educator|53171
910 | 910|28|M|healthcare|29301
911 | 911|37|F|writer|53210
912 | 912|51|M|other|06512
913 | 913|27|M|student|76201
914 | 914|44|F|other|08105
915 | 915|50|M|entertainment|60614
916 | 916|27|M|engineer|N2L5N
917 | 917|22|F|student|20006
918 | 918|40|M|scientist|70116
919 | 919|25|M|other|14216
920 | 920|30|F|artist|90008
921 | 921|20|F|student|98801
922 | 922|29|F|administrator|21114
923 | 923|21|M|student|E2E3R
924 | 924|29|M|other|11753
925 | 925|18|F|salesman|49036
926 | 926|49|M|entertainment|01701
927 | 927|23|M|programmer|55428
928 | 928|21|M|student|55408
929 | 929|44|M|scientist|53711
930 | 930|28|F|scientist|07310
931 | 931|60|M|educator|33556
932 | 932|58|M|educator|06437
933 | 933|28|M|student|48105
934 | 934|61|M|engineer|22902
935 | 935|42|M|doctor|66221
936 | 936|24|M|other|32789
937 | 937|48|M|educator|98072
938 | 938|38|F|technician|55038
939 | 939|26|F|student|33319
940 | 940|32|M|administrator|02215
941 | 941|20|M|student|97229
942 | 942|48|F|librarian|78209
943 | 943|22|M|student|77841
944 |
--------------------------------------------------------------------------------
/lectures/notebooks/img/abstraction-layers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/abstraction-layers.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/architecture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/architecture.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/arithmetic_ops.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/arithmetic_ops.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/associative_array.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/associative_array.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/binary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/binary.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/boolean_ops.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/boolean_ops.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/built_in_types.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/built_in_types.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/c-c++.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/c-c++.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/code_cell.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/code_cell.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/code_point.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/code_point.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/comparisons.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/comparisons.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/computers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/computers.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/cpu-decode.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/cpu-decode.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/cpu-execute.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/cpu-execute.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/cpu-fetch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/cpu-fetch.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/cpu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/cpu.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/data_science.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/data_science.jpg
--------------------------------------------------------------------------------
/lectures/notebooks/img/decimal.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/decimal.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/encoding.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/encoding.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/file_methods.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/file_methods.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/file_open_mode.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/file_open_mode.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/function_call.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/function_call.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/hash_table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/hash_table.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/hello_world.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/hello_world.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/input-device.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/input-device.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ipython_kernel_and_terminal.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ipython_kernel_and_terminal.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/java.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/java.jpg
--------------------------------------------------------------------------------
/lectures/notebooks/img/join_types.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/join_types.jpg
--------------------------------------------------------------------------------
/lectures/notebooks/img/jupyter_logo.svg:
--------------------------------------------------------------------------------
1 |
2 | logo.svg
3 | Created using Figma 0.90
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
--------------------------------------------------------------------------------
/lectures/notebooks/img/launch_python.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/launch_python.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/markdown_cell.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/markdown_cell.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/markdown_cell_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/markdown_cell_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/markdown_cell_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/markdown_cell_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/markdown_cell_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/markdown_cell_3.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/markdown_cell_4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/markdown_cell_4.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/matplotlib_savefig.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/matplotlib_savefig.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/matplotlib_subplots.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/matplotlib_subplots.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_bias_variance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_bias_variance.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_dataset_splitting.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_dataset_splitting.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_feature_engineering.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_feature_engineering.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_labeled_dataset_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_labeled_dataset_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_labeled_dataset_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_labeled_dataset_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_models.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_models.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_mse_convex.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_mse_convex.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_overview.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_catcon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_catcon.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_collinearity.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_collinearity.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_imbalance.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_imbalance.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_na.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_na.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_outliers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_outliers.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_scale.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_scale.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ml_preprocessing_sparsity.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ml_preprocessing_sparsity.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ndarray_vs_list.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ndarray_vs_list.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/notebook_dashboard.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/notebook_dashboard.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/notebook_interface.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/notebook_interface.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_binary_ufuncs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_binary_ufuncs.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_creation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_creation.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_dtypes_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_dtypes_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_dtypes_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_dtypes_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_indexing.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_indexing.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_lin_alg_funcs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_lin_alg_funcs.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_random_funcs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_random_funcs.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_set_funcs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_set_funcs.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_slicing.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_slicing.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_stat_funcs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_stat_funcs.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_unary_ufuncs_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_unary_ufuncs_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/np_unary_ufuncs_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/np_unary_ufuncs_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/other_kernels.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/other_kernels.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/output-device.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/output-device.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pandas.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pandas.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pandas_plot_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pandas_plot_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pandas_plot_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pandas_plot_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pandas_plot_df.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pandas_plot_df.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_aggregate_stats_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_aggregate_stats_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_aggregate_stats_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_aggregate_stats_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_arithmetics.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_arithmetics.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_concat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_concat.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_dataframe_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_dataframe_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_dataframe_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_dataframe_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_freq.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_freq.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_index.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_index.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_index_methods.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_index_methods.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_indexing.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_indexing.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_io_read_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_io_read_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_io_read_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_io_read_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_io_read_csv_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_io_read_csv_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_io_read_csv_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_io_read_csv_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_merge_args_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_merge_args_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_merge_args_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_merge_args_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/pd_merge_how.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/pd_merge_how.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ram-address.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ram-address.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ram-bit.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ram-bit.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ram-cell-4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ram-cell-4.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ram-cell.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ram-cell.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/ram.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/ram.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/rebinding.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/rebinding.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/reference.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/reference.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/reference2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/reference2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/scalar_vs_simd.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/scalar_vs_simd.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/sequence_ops.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/sequence_ops.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/set_ops_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/set_ops_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/set_ops_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/set_ops_2.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/skewness.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/skewness.jpeg
--------------------------------------------------------------------------------
/lectures/notebooks/img/slicing.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/slicing.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/vonneumann-architecture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/vonneumann-architecture.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/vonneumann.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/vonneumann.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/xkcd_ml_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/xkcd_ml_1.png
--------------------------------------------------------------------------------
/lectures/notebooks/img/xkcd_ml_2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/notebooks/img/xkcd_ml_2.png
--------------------------------------------------------------------------------
/lectures/slides/Lecture_00_Preliminaries.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_00_Preliminaries.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_01_Introduction_And_Environment_Setup.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_01_Introduction_And_Environment_Setup.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_02_Python_Basics.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_02_Python_Basics.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_03_Python_Data_Types_1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_03_Python_Data_Types_1.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_04_Python_Data_Types_2.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_04_Python_Data_Types_2.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_05_Functions_IO.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_05_Functions_IO.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_06_NumPy.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_06_NumPy.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_06b_Linear_Algebra_Basics.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_06b_Linear_Algebra_Basics.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_07_Introduction_To_Pandas.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_07_Introduction_To_Pandas.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_08_Pandas_IO.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_08_Pandas_IO.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_10_Matplotlib_Data_Visualization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_10_Matplotlib_Data_Visualization.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_11_A_Machine_Learning_Primer.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_11_A_Machine_Learning_Primer.pdf
--------------------------------------------------------------------------------
/lectures/slides/Lecture_14_Deep_Dive_On_Logistic_Regression.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gtolomei/python-for-datascience/38d0acaa36ac1766e20f2dfef364b667404c9a68/lectures/slides/Lecture_14_Deep_Dive_On_Logistic_Regression.pdf
--------------------------------------------------------------------------------