├── Figure
└── FIG1.png
├── core
├── __pycache__
│ ├── oan.cpython-36.pyc
│ ├── data.cpython-36.pyc
│ ├── loss.cpython-36.pyc
│ ├── test.cpython-36.pyc
│ ├── train.cpython-36.pyc
│ ├── utils.cpython-36.pyc
│ ├── config.cpython-36.pyc
│ ├── config.cpython-37.pyc
│ ├── logger.cpython-36.pyc
│ ├── evaluation.cpython-36.pyc
│ └── transformations.cpython-36.pyc
├── utils.py
├── main.py
├── train.py
├── loss.py
├── logger.py
├── evaluation.py
├── config.py
├── data.py
├── test.py
├── pgf.py
└── transformations.py
└── README.md
/Figure/FIG1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/Figure/FIG1.png
--------------------------------------------------------------------------------
/core/__pycache__/oan.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/oan.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/data.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/data.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/loss.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/loss.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/test.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/test.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/train.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/train.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/utils.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/utils.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/config.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/config.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/config.cpython-37.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/config.cpython-37.pyc
--------------------------------------------------------------------------------
/core/__pycache__/logger.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/logger.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/evaluation.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/evaluation.cpython-36.pyc
--------------------------------------------------------------------------------
/core/__pycache__/transformations.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guobaoxiao/PGFNet/HEAD/core/__pycache__/transformations.cpython-36.pyc
--------------------------------------------------------------------------------
/core/utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | from multiprocessing import Pool as ThreadPool
4 |
5 | def tocuda(data):
6 | # convert tensor data in dictionary to cuda when it is a tensor
7 | for key in data.keys():
8 | if type(data[key]) == torch.Tensor:
9 | data[key] = data[key].cuda()
10 | return data
11 |
12 | def get_pool_result(num_processor, fun, args):
13 | pool = ThreadPool(num_processor)
14 | pool_res = pool.map(fun, args)
15 | pool.close()
16 | pool.join()
17 | return pool_res
18 |
19 | def np_skew_symmetric(v):
20 |
21 | zero = np.zeros_like(v[:, 0])
22 |
23 | M = np.stack([
24 | zero, -v[:, 2], v[:, 1],
25 | v[:, 2], zero, -v[:, 0],
26 | -v[:, 1], v[:, 0], zero,
27 | ], axis=1)
28 |
29 | return M
30 |
31 | def torch_skew_symmetric(v):
32 |
33 | zero = torch.zeros_like(v[:, 0])
34 |
35 | M = torch.stack([
36 | zero, -v[:, 2], v[:, 1],
37 | v[:, 2], zero, -v[:, 0],
38 | -v[:, 1], v[:, 0], zero,
39 | ], dim=1)
40 |
41 | return M
42 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PGFNet
2 | PGFNet: Preference-Guided Filtering Network for Two-View Correspondence Learning
3 |
4 | # PGFNet implementation
5 | Pytorch implementation of PGFNet
6 |
7 | ## Abstract
8 |
9 |
10 | Accurate correspondence selection between two images is of great importance for numerous feature matching based vision tasks. The initial correspondences established by off-the-shelf feature extraction methods usually contain a large number of outliers, and this often leads to the difficulty in accurately and sufficiently capturing contextual information for the correspondence learning task. In this paper, we propose a Preference-Guided Filtering Network (PGFNet) to address this problem. The proposed PGFNet is able to effectively select correct correspondences and simultaneously recover the accurate camera pose of matching images. Specifically, we first design a novel iterative filtering structure to learn the preference scores of correspondences for guiding the correspondence filtering strategy. This structure explicitly alleviates the negative effects of outliers so that our network is able to capture more reliable contextual information encoded by the inliers for network learning. Then, to enhance the reliability of preference scores, we present a simple yet effective Grouped Residual Attention block as our network backbone, by designing a feature grouping strategy, a feature grouping manner, a hierarchical residual-like manner and two grouped attention operations. We evaluate PGFNet by extensive ablation studies and comparative experiments on the tasks of outlier removal and camera pose estimation. The results demonstrate outstanding performance gains over the existing state-of-the-art methods on different challenging scenes.
11 |
12 | ## Requirements
13 |
14 | Please use Python 3.6, opencv-contrib-python (3.4.0.12) and Pytorch (>= 1.1.0). Other dependencies should be easily installed through pip or conda.
15 |
16 | ## Explanation
17 |
18 | If you need YFCC100M and SUN3D datasets, You can visit the code at https://github.com/zjhthu/OANet.git. We have uploaded the main code on 'core' folder.
19 |
20 | # Citing PGFNet
21 | If you find the PGFNet code useful, please consider citing:
22 |
23 | ```bibtex
24 | @article{liu2023pgfnet,
25 | title={Pgfnet: Preference-guided filtering network for two-view correspondence learning},
26 | author={Liu, Xin and Xiao, Guobao and Chen, Riqing and Ma, Jiayi},
27 | journal={IEEE Transactions on Image Processing},
28 | volume={32},
29 | pages={1367--1378},
30 | year={2023},
31 | publisher={IEEE}
32 | }
33 | ```
34 |
--------------------------------------------------------------------------------
/core/main.py:
--------------------------------------------------------------------------------
1 | from config import get_config, print_usage
2 | config, unparsed = get_config()
3 | import os
4 | os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_id
5 | import torch.utils.data
6 | import sys
7 | from data import collate_fn, CorrespondencesDataset
8 | from pgf import PGFNet as Model
9 | from train import train
10 | from test import test
11 |
12 |
13 | print("-------------------------Deep Essential-------------------------")
14 | print("Note: To combine datasets, use .")
15 |
16 | def create_log_dir(config):
17 | if not os.path.isdir(config.log_base):
18 | os.makedirs(config.log_base)
19 | if config.log_suffix == "":
20 | suffix = "-".join(sys.argv)
21 | #result_path = config.log_base+'/'+suffix
22 | result_path = './log'
23 | if not os.path.isdir(result_path):
24 | os.makedirs(result_path)
25 | if not os.path.isdir(result_path+'/train'):
26 | os.makedirs(result_path+'/train')
27 | if not os.path.isdir(result_path+'/valid'):
28 | os.makedirs(result_path+'/valid')
29 | if not os.path.isdir(result_path+'/test'):
30 | os.makedirs(result_path+'/test')
31 | if os.path.exists(result_path+'/config.th'):
32 | print('warning: will overwrite config file')
33 | torch.save(config, result_path+'/config.th')
34 |
35 | # path for saving traning logs
36 | config.log_path = result_path+'/train'
37 |
38 | def main(config):
39 | """The main function."""
40 |
41 | # Initialize network
42 | model = Model(config)
43 |
44 | # Run propper mode
45 | if config.run_mode == "train":
46 | create_log_dir(config)
47 |
48 | train_dataset = CorrespondencesDataset(config.data_tr, config)
49 |
50 | train_loader = torch.utils.data.DataLoader(
51 | train_dataset, batch_size=config.train_batch_size, shuffle=True,
52 | num_workers=16, pin_memory=False, collate_fn=collate_fn)
53 |
54 | valid_dataset = CorrespondencesDataset(config.data_va, config)
55 | valid_loader = torch.utils.data.DataLoader(
56 | valid_dataset, batch_size=config.train_batch_size, shuffle=False,
57 | num_workers=8, pin_memory=False, collate_fn=collate_fn)
58 | #valid_loader = None
59 | print('start training .....')
60 | train(model, train_loader, valid_loader, config)
61 |
62 | elif config.run_mode == "test":
63 | test_dataset = CorrespondencesDataset(config.data_te, config)
64 | test_loader = torch.utils.data.DataLoader(
65 | test_dataset, batch_size=1, shuffle=False,
66 | num_workers=8, pin_memory=False, collate_fn=collate_fn)
67 |
68 | test(test_loader, model, config)
69 |
70 |
71 |
72 |
73 | if __name__ == "__main__":
74 |
75 | # ----------------------------------------
76 | # Parse configuration
77 | config, unparsed = get_config()
78 | # If we have unparsed arguments, print usage and exit
79 | if len(unparsed) > 0:
80 | print_usage()
81 | exit(1)
82 |
83 | main(config)
84 |
85 | #
86 | # main.py ends here
87 |
--------------------------------------------------------------------------------
/core/train.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | import torch.optim as optim
4 | import sys
5 | from tqdm import trange
6 | import os
7 | from logger import Logger
8 | from test import valid
9 | from loss import MatchLoss
10 | from utils import tocuda
11 |
12 |
13 | def train_step(step, optimizer, model, match_loss, data):
14 | model.train()
15 |
16 | res_logits, res_e_hat = model(data)
17 | loss = 0
18 | loss_val = []
19 | for i in range(len(res_logits)):
20 | loss_i, geo_loss, cla_loss, l2_loss, _, _ = match_loss.run(step, data, res_logits[i], res_e_hat[i])
21 | loss += loss_i
22 | loss_val += [geo_loss, cla_loss, l2_loss]
23 | optimizer.zero_grad()
24 | loss.backward()
25 | for name, param in model.named_parameters():
26 | if torch.any(torch.isnan(param.grad)):
27 | print('skip because nan')
28 | return loss_val
29 |
30 | optimizer.step()
31 | return loss_val
32 |
33 |
34 | def train(model, train_loader, valid_loader, config):
35 | model.cuda()
36 | optimizer = optim.Adam(model.parameters(), lr=config.train_lr, weight_decay = config.weight_decay)
37 | match_loss = MatchLoss(config)
38 |
39 | checkpoint_path = os.path.join(config.log_path, 'checkpoint.pth')
40 | config.resume = os.path.isfile(checkpoint_path)
41 | if config.resume:
42 | print('==> Resuming from checkpoint..')
43 | checkpoint = torch.load(checkpoint_path)
44 | best_acc = checkpoint['best_acc']
45 | start_epoch = checkpoint['epoch']
46 | model.load_state_dict(checkpoint['state_dict'])
47 | optimizer.load_state_dict(checkpoint['optimizer'])
48 | logger_train = Logger(os.path.join(config.log_path, 'log_train.txt'), title='oan', resume=True)
49 | logger_valid = Logger(os.path.join(config.log_path, 'log_valid.txt'), title='oan', resume=True)
50 | else:
51 | best_acc = -1
52 | start_epoch = 0
53 | logger_train = Logger(os.path.join(config.log_path, 'log_train.txt'), title='oan')
54 | logger_train.set_names(['Learning Rate'] + ['Geo Loss', 'Classfi Loss', 'L2 Loss']*(config.iter_num+1))
55 | logger_valid = Logger(os.path.join(config.log_path, 'log_valid.txt'), title='oan')
56 | logger_valid.set_names(['Valid Acc'] + ['Geo Loss', 'Clasfi Loss', 'L2 Loss'])
57 | train_loader_iter = iter(train_loader)
58 | for step in trange(start_epoch, config.train_iter, ncols=config.tqdm_width):
59 | try:
60 | train_data = next(train_loader_iter)
61 | except StopIteration:
62 | train_loader_iter = iter(train_loader)
63 | train_data = next(train_loader_iter)
64 | train_data = tocuda(train_data)
65 |
66 | # run training
67 | cur_lr = optimizer.param_groups[0]['lr']
68 | loss_vals = train_step(step, optimizer, model, match_loss, train_data) #训练
69 | logger_train.append([cur_lr] + loss_vals)
70 |
71 | # Check if we want to write validation
72 | b_save = ((step + 1) % config.save_intv) == 0
73 | b_validate = ((step + 1) % config.val_intv) == 0
74 | if b_validate:
75 | va_res, geo_loss, cla_loss, l2_loss, _, _, _ = valid(valid_loader, model, step, config) # 验证
76 | logger_valid.append([va_res, geo_loss, cla_loss, l2_loss])
77 | if va_res > best_acc:
78 | print("Saving best model with va_res = {}".format(va_res))
79 | best_acc = va_res
80 | torch.save({
81 | 'epoch': step + 1,
82 | 'state_dict': model.state_dict(),
83 | 'best_acc': best_acc,
84 | 'optimizer' : optimizer.state_dict(),
85 | }, os.path.join(config.log_path, 'model_best.pth'))
86 |
87 | if b_save:
88 | torch.save({
89 | 'epoch': step + 1,
90 | 'state_dict': model.state_dict(),
91 | 'best_acc': best_acc,
92 | 'optimizer' : optimizer.state_dict(),
93 | }, checkpoint_path)
94 |
95 |
--------------------------------------------------------------------------------
/core/loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from utils import torch_skew_symmetric
3 | import numpy as np
4 |
5 | def batch_episym(x1, x2, F):
6 | batch_size, num_pts = x1.shape[0], x1.shape[1]
7 | x1 = torch.cat([x1, x1.new_ones(batch_size, num_pts,1)], dim=-1).reshape(batch_size, num_pts,3,1)
8 | x2 = torch.cat([x2, x2.new_ones(batch_size, num_pts,1)], dim=-1).reshape(batch_size, num_pts,3,1)
9 | F = F.reshape(-1,1,3,3).repeat(1,num_pts,1,1)
10 | x2Fx1 = torch.matmul(x2.transpose(2,3), torch.matmul(F, x1)).reshape(batch_size,num_pts)
11 | Fx1 = torch.matmul(F,x1).reshape(batch_size,num_pts,3)
12 | Ftx2 = torch.matmul(F.transpose(2,3),x2).reshape(batch_size,num_pts,3)
13 | ys = x2Fx1**2 * (
14 | 1.0 / (Fx1[:, :, 0]**2 + Fx1[:, :, 1]**2 + 1e-15) +
15 | 1.0 / (Ftx2[:, :, 0]**2 + Ftx2[:, :, 1]**2 + 1e-15))
16 | return ys
17 |
18 | class MatchLoss(object):
19 | def __init__(self, config):
20 | self.loss_essential = config.loss_essential
21 | self.loss_classif = config.loss_classif
22 | self.use_fundamental = config.use_fundamental
23 | self.obj_geod_th = config.obj_geod_th
24 | self.geo_loss_margin = config.geo_loss_margin
25 | self.loss_essential_init_iter = config.loss_essential_init_iter
26 |
27 | def run(self, global_step, data, logits, e_hat):
28 | R_in, t_in, y_in, pts_virt = data['Rs'], data['ts'], data['ys'], data['virtPts']
29 |
30 | # Get groundtruth Essential matrix
31 | e_gt_unnorm = torch.reshape(torch.matmul(
32 | torch.reshape(torch_skew_symmetric(t_in), (-1, 3, 3)),
33 | torch.reshape(R_in, (-1, 3, 3))
34 | ), (-1, 9))
35 |
36 | e_gt = e_gt_unnorm / torch.norm(e_gt_unnorm, dim=1, keepdim=True)
37 |
38 | ess_hat = e_hat
39 | if self.use_fundamental:
40 | ess_hat = torch.matmul(torch.matmul(data['T2s'].transpose(1,2), ess_hat.reshape(-1,3,3)),data['T1s'])
41 | # get essential matrix from fundamental matrix
42 | ess_hat = torch.matmul(torch.matmul(data['K2s'].transpose(1,2), ess_hat.reshape(-1,3,3)),data['K1s']).reshape(-1,9)
43 | ess_hat = ess_hat / torch.norm(ess_hat, dim=1, keepdim=True)
44 |
45 |
46 | # Essential/Fundamental matrix loss
47 | pts1_virts, pts2_virts = pts_virt[:, :, :2], pts_virt[:,:,2:]
48 | geod = batch_episym(pts1_virts, pts2_virts, e_hat)
49 | essential_loss = torch.min(geod, self.geo_loss_margin*geod.new_ones(geod.shape))
50 | essential_loss = essential_loss.mean()
51 | # we do not use the l2 loss, just save the value for convenience
52 | L2_loss = torch.mean(torch.min(
53 | torch.sum(torch.pow(ess_hat - e_gt, 2), dim=1),
54 | torch.sum(torch.pow(ess_hat + e_gt, 2), dim=1)
55 | ))
56 |
57 |
58 | # Classification loss
59 | # The groundtruth epi sqr
60 | gt_geod_d = y_in[:, :, 0]
61 | is_pos = (gt_geod_d < self.obj_geod_th).type(logits.type())
62 | is_neg = (gt_geod_d >= self.obj_geod_th).type(logits.type())
63 | c = is_pos - is_neg
64 | classif_losses = -torch.log(torch.sigmoid(c * logits) + np.finfo(float).eps.item())
65 | # balance
66 | num_pos = torch.relu(torch.sum(is_pos, dim=1) - 1.0) + 1.0
67 | num_neg = torch.relu(torch.sum(is_neg, dim=1) - 1.0) + 1.0
68 | classif_loss_p = torch.sum(classif_losses * is_pos, dim=1)
69 | classif_loss_n = torch.sum(classif_losses * is_neg, dim=1)
70 | classif_loss = torch.mean(classif_loss_p * 0.5 / num_pos + classif_loss_n * 0.5 / num_neg)
71 |
72 |
73 | precision = torch.mean(
74 | torch.sum((logits > 0).type(is_pos.type()) * is_pos, dim=1) /
75 | torch.sum((logits > 0).type(is_pos.type()) * (is_pos + is_neg), dim=1)
76 | )
77 | recall = torch.mean(
78 | torch.sum((logits > 0).type(is_pos.type()) * is_pos, dim=1) /
79 | torch.sum(is_pos, dim=1)
80 | )
81 |
82 | loss = 0
83 | # Check global_step and add essential loss
84 | if self.loss_essential > 0 and global_step >= self.loss_essential_init_iter:
85 | loss += self.loss_essential * essential_loss
86 | if self.loss_classif > 0:
87 | loss += self.loss_classif * classif_loss
88 |
89 | return [loss, (self.loss_essential * essential_loss).item(), (self.loss_classif * classif_loss).item(), L2_loss.item(), precision.item(), recall.item()]
90 |
--------------------------------------------------------------------------------
/core/logger.py:
--------------------------------------------------------------------------------
1 | # A simple torch style logger
2 | # (C) Wei YANG 2017
3 | from __future__ import absolute_import
4 | import matplotlib.pyplot as plt
5 | import os
6 | import sys
7 | import numpy as np
8 |
9 | __all__ = ['Logger', 'LoggerMonitor', 'savefig']
10 |
11 | def savefig(fname, dpi=None):
12 | dpi = 150 if dpi == None else dpi
13 | plt.savefig(fname, dpi=dpi)
14 |
15 | def plot_overlap(logger, names=None):
16 | names = logger.names if names == None else names
17 | numbers = logger.numbers
18 | for _, name in enumerate(names):
19 | x = np.arange(len(numbers[name]))
20 | plt.plot(x, np.asarray(numbers[name]))
21 | return [logger.title + '(' + name + ')' for name in names]
22 |
23 | class Logger(object):
24 | '''Save training process to log file with simple plot function.'''
25 | def __init__(self, fpath, title=None, resume=False):
26 | self.file = None
27 | self.resume = resume
28 | self.title = '' if title == None else title
29 | if fpath is not None:
30 | if resume:
31 | self.file = open(fpath, 'r')
32 | name = self.file.readline()
33 | self.names = name.rstrip().split('\t')
34 | self.numbers = {}
35 | for _, name in enumerate(self.names):
36 | self.numbers[name] = []
37 |
38 | for numbers in self.file:
39 | numbers = numbers.rstrip().split('\t')
40 | for i in range(0, len(numbers)):
41 | self.numbers[self.names[i]].append(numbers[i])
42 | self.file.close()
43 | self.file = open(fpath, 'a')
44 | else:
45 | self.file = open(fpath, 'w')
46 |
47 | def set_names(self, names):
48 | if self.resume:
49 | pass
50 | # initialize numbers as empty list
51 | self.numbers = {}
52 | self.names = names
53 | for _, name in enumerate(self.names):
54 | self.file.write(name)
55 | self.file.write('\t')
56 | self.numbers[name] = []
57 | self.file.write('\n')
58 | self.file.flush()
59 |
60 |
61 | def append(self, numbers):
62 | assert len(self.names) == len(numbers), 'Numbers do not match names'
63 | for index, num in enumerate(numbers):
64 | self.file.write("{0:.6f}".format(num))
65 | self.file.write('\t')
66 | self.numbers[self.names[index]].append(num)
67 | self.file.write('\n')
68 | self.file.flush()
69 |
70 | def plot(self, names=None):
71 | names = self.names if names == None else names
72 | numbers = self.numbers
73 | for _, name in enumerate(names):
74 | x = np.arange(len(numbers[name]))
75 | plt.plot(x, np.asarray(numbers[name]))
76 | plt.legend([self.title + '(' + name + ')' for name in names])
77 | plt.grid(True)
78 |
79 | def close(self):
80 | if self.file is not None:
81 | self.file.close()
82 |
83 | class LoggerMonitor(object):
84 | '''Load and visualize multiple logs.'''
85 | def __init__ (self, paths):
86 | '''paths is a distionary with {name:filepath} pair'''
87 | self.loggers = []
88 | for title, path in paths.items():
89 | logger = Logger(path, title=title, resume=True)
90 | self.loggers.append(logger)
91 |
92 | def plot(self, names=None):
93 | plt.figure()
94 | plt.subplot(121)
95 | legend_text = []
96 | for logger in self.loggers:
97 | legend_text += plot_overlap(logger, names)
98 | plt.legend(legend_text, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
99 | plt.grid(True)
100 |
101 | if __name__ == '__main__':
102 | # # Example
103 | # logger = Logger('test.txt')
104 | # logger.set_names(['Train loss', 'Valid loss','Test loss'])
105 |
106 | # length = 100
107 | # t = np.arange(length)
108 | # train_loss = np.exp(-t / 10.0) + np.random.rand(length) * 0.1
109 | # valid_loss = np.exp(-t / 10.0) + np.random.rand(length) * 0.1
110 | # test_loss = np.exp(-t / 10.0) + np.random.rand(length) * 0.1
111 |
112 | # for i in range(0, length):
113 | # logger.append([train_loss[i], valid_loss[i], test_loss[i]])
114 | # logger.plot()
115 |
116 | # Example: logger monitor
117 | paths = {
118 | 'resadvnet20':'/home/wyang/code/pytorch-classification/checkpoint/cifar10/resadvnet20/log.txt',
119 | 'resadvnet32':'/home/wyang/code/pytorch-classification/checkpoint/cifar10/resadvnet32/log.txt',
120 | 'resadvnet44':'/home/wyang/code/pytorch-classification/checkpoint/cifar10/resadvnet44/log.txt',
121 | }
122 |
123 | field = ['Valid Acc.']
124 |
125 | monitor = LoggerMonitor(paths)
126 | monitor.plot(names=field)
127 | savefig('test.eps')
128 |
--------------------------------------------------------------------------------
/core/evaluation.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | from transformations import quaternion_from_matrix
3 | import numpy as np
4 |
5 |
6 | def evaluate_R_t(R_gt, t_gt, R, t, q_gt=None):
7 | t = t.flatten()
8 | t_gt = t_gt.flatten()
9 |
10 | eps = 1e-15
11 |
12 | if q_gt is None:
13 | q_gt = quaternion_from_matrix(R_gt)
14 | q = quaternion_from_matrix(R)
15 | q = q / (np.linalg.norm(q) + eps)
16 | q_gt = q_gt / (np.linalg.norm(q_gt) + eps)
17 | loss_q = np.maximum(eps, (1.0 - np.sum(q * q_gt)**2))
18 | err_q = np.arccos(1 - 2 * loss_q)
19 |
20 | # dR = np.dot(R, R_gt.T)
21 | # dt = t - np.dot(dR, t_gt)
22 | # dR = np.dot(R, R_gt.T)
23 | # dt = t - t_gt
24 | t = t / (np.linalg.norm(t) + eps)
25 | t_gt = t_gt / (np.linalg.norm(t_gt) + eps)
26 | loss_t = np.maximum(eps, (1.0 - np.sum(t * t_gt)**2))
27 | err_t = np.arccos(np.sqrt(1 - loss_t))
28 |
29 | if np.sum(np.isnan(err_q)) or np.sum(np.isnan(err_t)):
30 | # This should never happen! Debug here
31 | import IPython
32 | IPython.embed()
33 |
34 | return err_q, err_t
35 |
36 |
37 | def eval_nondecompose(p1s, p2s, E_hat, dR, dt, scores):
38 |
39 | # Use only the top 10% in terms of score to decompose, we can probably
40 | # implement a better way of doing this, but this should be just fine.
41 | num_top = len(scores) // 10
42 | num_top = max(1, num_top)
43 | th = np.sort(scores)[::-1][num_top]
44 | mask = scores >= th
45 |
46 | p1s_good = p1s[mask]
47 | p2s_good = p2s[mask]
48 |
49 | # Match types
50 | E_hat = E_hat.reshape(3, 3).astype(p1s.dtype)
51 | R, t = None, None
52 | if p1s_good.shape[0] >= 5:
53 | # Get the best E just in case we get multipl E from findEssentialMat
54 | num_inlier, R, t, mask_new = cv2.recoverPose(
55 | E_hat, p1s_good, p2s_good)
56 | try:
57 | err_q, err_t = evaluate_R_t(dR, dt, R, t)
58 | except:
59 | print("Failed in evaluation")
60 | print(E_hat)
61 | print(R)
62 | print(t)
63 | err_q = np.pi
64 | err_t = np.pi / 2
65 | #import pdb;pdb.set_trace()
66 | else:
67 | err_q = np.pi
68 | err_t = np.pi / 2
69 |
70 | loss_q = np.sqrt(0.5 * (1 - np.cos(err_q)))
71 | loss_t = np.sqrt(1.0 - np.cos(err_t)**2)
72 |
73 | # Change mask type
74 | mask = mask.flatten().astype(bool)
75 |
76 | mask_updated = mask.copy()
77 | if mask_new is not None:
78 | # Change mask type
79 | mask_new = mask_new.flatten().astype(bool)
80 | mask_updated[mask] = mask_new
81 |
82 | return err_q, err_t, loss_q, loss_t, np.sum(num_inlier), mask_updated, R, t
83 |
84 |
85 | def eval_decompose(p1s, p2s, dR, dt, mask=None, method=cv2.LMEDS, probs=None,
86 | weighted=False, use_prob=True):
87 | if mask is None:
88 | mask = np.ones((len(p1s),), dtype=bool)
89 | # Change mask type
90 | mask = mask.flatten().astype(bool)
91 |
92 | # Mask the ones that will not be used
93 | p1s_good = p1s[mask]
94 | p2s_good = p2s[mask]
95 | probs_good = None
96 | if probs is not None:
97 | probs_good = probs[mask]
98 |
99 | num_inlier = 0
100 | mask_new2 = None
101 | R, t = None, None
102 | if p1s_good.shape[0] >= 5:
103 | if probs is None and method != "MLESAC":
104 | # Change the threshold from 0.01 to 0.001 can largely imporve the results
105 | # For fundamental matrix estimation evaluation, we also transform the matrix to essential matrix.
106 | # This gives better results than using findFundamentalMat
107 | E, mask_new = cv2.findEssentialMat(p1s_good, p2s_good, method=method, threshold=0.001)
108 |
109 | else:
110 | pass
111 | if E is not None:
112 | new_RT = False
113 | # Get the best E just in case we get multipl E from
114 | # findEssentialMat
115 | for _E in np.split(E, len(E) / 3):
116 | _num_inlier, _R, _t, _mask_new2 = cv2.recoverPose(
117 | _E, p1s_good, p2s_good, mask=mask_new)
118 | if _num_inlier > num_inlier:
119 | num_inlier = _num_inlier
120 | R = _R
121 | t = _t
122 | mask_new2 = _mask_new2
123 | new_RT = True
124 | if new_RT:
125 | err_q, err_t = evaluate_R_t(dR, dt, R, t)
126 | else:
127 | err_q = np.pi
128 | err_t = np.pi / 2
129 |
130 | else:
131 | err_q = np.pi
132 | err_t = np.pi / 2
133 | else:
134 | err_q = np.pi
135 | err_t = np.pi / 2
136 |
137 | loss_q = np.sqrt(0.5 * (1 - np.cos(err_q)))
138 | loss_t = np.sqrt(1.0 - np.cos(err_t)**2)
139 |
140 | mask_updated = mask.copy()
141 | if mask_new2 is not None:
142 | # Change mask type
143 | mask_new2 = mask_new2.flatten().astype(bool)
144 | mask_updated[mask] = mask_new2
145 |
146 | return err_q, err_t, loss_q, loss_t, np.sum(num_inlier), mask_updated, R, t
147 |
--------------------------------------------------------------------------------
/core/config.py:
--------------------------------------------------------------------------------
1 | import argparse
2 |
3 |
4 |
5 | def str2bool(v):
6 | return v.lower() in ("true", "1")
7 |
8 |
9 | arg_lists = []
10 | parser = argparse.ArgumentParser()
11 |
12 |
13 | def add_argument_group(name):
14 | arg = parser.add_argument_group(name)
15 | arg_lists.append(arg)
16 | return arg
17 |
18 |
19 | # -----------------------------------------------------------------------------
20 | # Network
21 | net_arg = add_argument_group("Network")
22 | net_arg.add_argument(
23 | "--net_depth", type=int, default=12, help=""
24 | "number of layers. Default: 12")
25 | net_arg.add_argument(
26 | "--clusters", type=int, default=500, help=""
27 | "cluster number in OANet. Default: 500")
28 | net_arg.add_argument(
29 | "--iter_num", type=int, default=1, help=""
30 | "iteration number in the iterative network. Default: 1")
31 | net_arg.add_argument(
32 | "--net_channels", type=int, default=256, help=""
33 | "number of channels in a layer. Default: 256")
34 | net_arg.add_argument(
35 | "--use_fundamental", type=str2bool, default=False, help=""
36 | "train fundamental matrix estimation. Default: False")
37 | net_arg.add_argument(
38 | "--share", type=str2bool, default=False, help=""
39 | "share the parameter in iterative network. Default: False")
40 | net_arg.add_argument(
41 | "--use_ratio", type=int, default=0, help=""
42 | "use ratio test. 0: not use, 1: use before network, 2: use as side information. Default: 0")
43 | net_arg.add_argument(
44 | "--use_mutual", type=int, default=0, help=""
45 | "use matual nearest neighbor check. 0: not use, 1: use before network, 2: use as side information. Default: 0")
46 | net_arg.add_argument(
47 | "--ratio_test_th", type=float, default=0.8, help=""
48 | "ratio test threshold. Default: 0.8")
49 |
50 | # -----------------------------------------------------------------------------
51 | # Data
52 | data_arg = add_argument_group("Data")
53 | data_arg.add_argument(
54 | "--data_tr", type=str, default='', help=""
55 | "name of the dataset for train")
56 | data_arg.add_argument(
57 | "--data_va", type=str, default='', help=""
58 | "name of the dataset for valid")
59 | data_arg.add_argument(
60 | "--data_te", type=str, default='', help=""
61 | "name of the unseen dataset for test")
62 |
63 |
64 | # -----------------------------------------------------------------------------
65 | # Objective
66 | obj_arg = add_argument_group("obj")
67 | obj_arg.add_argument(
68 | "--obj_num_kp", type=int, default=2000, help=""
69 | "number of keypoints per image")
70 | obj_arg.add_argument(
71 | "--obj_top_k", type=int, default=-1, help=""
72 | "number of keypoints above the threshold to use for "
73 | "essential matrix estimation. put -1 to use all. ")
74 | obj_arg.add_argument(
75 | "--obj_geod_type", type=str, default="episym",
76 | choices=["sampson", "episqr", "episym"], help=""
77 | "type of geodesic distance")
78 | obj_arg.add_argument(
79 | "--obj_geod_th", type=float, default=1e-4, help=""
80 | "theshold for the good geodesic distance")
81 |
82 |
83 | # -----------------------------------------------------------------------------
84 | # Loss
85 | loss_arg = add_argument_group("loss")
86 | loss_arg.add_argument(
87 | "--weight_decay", type=float, default=0, help=""
88 | "l2 decay")
89 | loss_arg.add_argument(
90 | "--momentum", type=float, default=0.9, help=""
91 | "momentum")
92 | loss_arg.add_argument(
93 | "--loss_classif", type=float, default=1.0, help=""
94 | "weight of the classification loss")
95 | loss_arg.add_argument(
96 | "--loss_essential", type=float, default=0.5, help=""
97 | "weight of the essential loss")
98 | loss_arg.add_argument(
99 | "--loss_essential_init_iter", type=int, default=20000, help=""
100 | "initial iterations to run only the classification loss")
101 | loss_arg.add_argument(
102 | "--geo_loss_margin", type=float, default=0.1, help=""
103 | "clamping margin in geometry loss")
104 |
105 | # -----------------------------------------------------------------------------
106 | # Training
107 | train_arg = add_argument_group("Train")
108 | train_arg.add_argument(
109 | "--run_mode", type=str, default="train", help=""
110 | "run_mode")
111 | train_arg.add_argument(
112 | "--train_lr", type=float, default=1e-3, help=""
113 | "learning rate")
114 | train_arg.add_argument(
115 | "--train_batch_size", type=int, default=32, help=""
116 | "batch size")
117 | train_arg.add_argument(
118 | "--gpu_id", type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
119 | train_arg.add_argument(
120 | "--num_processor", type=int, default=8, help='numbers of used cpu')
121 | train_arg.add_argument(
122 | "--train_iter", type=int, default=500000, help=""
123 | "training iterations to perform")
124 | train_arg.add_argument(
125 | "--log_base", type=str, default="./log/", help=""
126 | "save directory name inside results")
127 | train_arg.add_argument(
128 | "--log_suffix", type=str, default="", help=""
129 | "suffix of log dir")
130 | train_arg.add_argument(
131 | "--val_intv", type=int, default=10000, help=""
132 | "validation interval")
133 | train_arg.add_argument(
134 | "--save_intv", type=int, default=1000, help=""
135 | "summary interval")
136 |
137 | # -----------------------------------------------------------------------------
138 | # Testing
139 | test_arg = add_argument_group("Test")
140 | test_arg.add_argument(
141 | "--use_ransac", type=str2bool, default=True, help=""
142 | "use ransac when testing?")
143 | test_arg.add_argument(
144 | "--model_path", type=str, default="", help=""
145 | "saved best model path for test")
146 | test_arg.add_argument(
147 | "--res_path", type=str, default="", help=""
148 | "path for saving results")
149 |
150 |
151 | # -----------------------------------------------------------------------------
152 | # Visualization
153 | vis_arg = add_argument_group('Visualization')
154 | vis_arg.add_argument(
155 | "--tqdm_width", type=int, default=79, help=""
156 | "width of the tqdm bar"
157 | )
158 |
159 |
160 | def get_config():
161 | config, unparsed = parser.parse_known_args()
162 | return config, unparsed
163 |
164 |
165 | def print_usage():
166 | parser.print_usage()
167 |
168 | #
169 | # config.py ends here
170 |
--------------------------------------------------------------------------------
/core/data.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import sys
3 | import h5py
4 | import numpy as np
5 | import cv2
6 | import torch
7 | import torch.utils.data as data
8 | from utils import np_skew_symmetric
9 |
10 |
11 | def collate_fn(batch):
12 | batch_size = len(batch)
13 | numkps = np.array([sample['xs'].shape[1] for sample in batch])
14 | cur_num_kp = int(numkps.min())
15 |
16 | data = {}
17 | data['K1s'], data['K2s'], data['Rs'], \
18 | data['ts'], data['xs'], data['ys'], data['T1s'], data['T2s'], data['virtPts'], data['sides'] = [], [], [], [], [], [], [], [], [], []
19 | for sample in batch:
20 | data['K1s'].append(sample['K1'])
21 | data['K2s'].append(sample['K2'])
22 | data['T1s'].append(sample['T1'])
23 | data['T2s'].append(sample['T2'])
24 | data['Rs'].append(sample['R'])
25 | data['ts'].append(sample['t'])
26 | data['virtPts'].append(sample['virtPt'])
27 | if sample['xs'].shape[1] > cur_num_kp:
28 | sub_idx = np.random.choice(sample['xs'].shape[1], cur_num_kp)
29 | data['xs'].append(sample['xs'][:,sub_idx,:])
30 | data['ys'].append(sample['ys'][sub_idx,:])
31 | if sample['side'] != []:
32 | data['sides'].append(sample['side'][sub_idx,:])
33 | else:
34 | data['xs'].append(sample['xs'])
35 | data['ys'].append(sample['ys'])
36 | if sample['side'] != []:
37 | data['sides'].append(sample['side'])
38 |
39 |
40 | for key in ['K1s', 'K2s', 'Rs', 'ts', 'xs', 'ys', 'T1s', 'T2s','virtPts']:
41 | data[key] = torch.from_numpy(np.stack(data[key])).float()
42 | if data['sides'] != []:
43 | data['sides'] = torch.from_numpy(np.stack(data['sides'])).float()
44 | return data
45 |
46 |
47 |
48 | class CorrespondencesDataset(data.Dataset):
49 | def __init__(self, filename, config):
50 | self.config = config
51 | self.filename = filename
52 | self.data = None
53 |
54 | def correctMatches(self, e_gt):
55 | step = 0.1
56 | xx,yy = np.meshgrid(np.arange(-1, 1, step), np.arange(-1, 1, step))
57 | # Points in first image before projection
58 | pts1_virt_b = np.float32(np.vstack((xx.flatten(), yy.flatten())).T)
59 | # Points in second image before projection
60 | pts2_virt_b = np.float32(pts1_virt_b)
61 | pts1_virt_b, pts2_virt_b = pts1_virt_b.reshape(1,-1,2), pts2_virt_b.reshape(1,-1,2)
62 |
63 | pts1_virt_b, pts2_virt_b = cv2.correctMatches(e_gt.reshape(3,3), pts1_virt_b, pts2_virt_b)
64 |
65 | return pts1_virt_b.squeeze(), pts2_virt_b.squeeze()
66 |
67 | def norm_input(self, x):
68 | x_mean = np.mean(x, axis=0)
69 | dist = x - x_mean
70 | meandist = np.sqrt((dist**2).sum(axis=1)).mean()
71 | scale = np.sqrt(2) / meandist
72 | T = np.zeros([3,3])
73 | T[0,0], T[1,1], T[2,2] = scale, scale, 1
74 | T[0,2], T[1,2] = -scale*x_mean[0], -scale*x_mean[1]
75 | x = x * np.asarray([T[0,0], T[1,1]]) + np.array([T[0,2], T[1,2]])
76 | return x, T
77 |
78 | def __getitem__(self, index):
79 | if self.data is None:
80 | self.data = h5py.File(self.filename,'r')
81 |
82 | xs = np.asarray(self.data['xs'][str(index)])
83 | ys = np.asarray(self.data['ys'][str(index)])
84 | R = np.asarray(self.data['Rs'][str(index)])
85 | t = np.asarray(self.data['ts'][str(index)])
86 | side = []
87 | if self.config.use_ratio == 0 and self.config.use_mutual == 0:
88 | pass
89 | elif self.config.use_ratio == 1 and self.config.use_mutual == 0:
90 | mask = np.asarray(self.data['ratios'][str(index)]).reshape(-1) < config.ratio_test_th
91 | xs = xs[:,mask,:]
92 | ys = ys[:,mask]
93 | elif self.config.use_ratio == 0 and self.config.use_mutual == 1:
94 | mask = np.asarray(self.data['mutuals'][str(index)]).reshape(-1).astype(bool)
95 | xs = xs[:,mask,:]
96 | ys = ys[:,mask]
97 | elif self.config.use_ratio == 2 and self.config.use_mutual == 2:
98 | side.append(np.asarray(self.data['ratios'][str(index)]).reshape(-1,1))
99 | side.append(np.asarray(self.data['mutuals'][str(index)]).reshape(-1,1))
100 | side = np.concatenate(side,axis=-1)
101 | else:
102 | raise NotImplementedError
103 |
104 |
105 | e_gt_unnorm = np.reshape(np.matmul(
106 | np.reshape(np_skew_symmetric(t.astype('float64').reshape(1,3)), (3, 3)), np.reshape(R.astype('float64'), (3, 3))), (3, 3))
107 | e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
108 |
109 | if self.config.use_fundamental:
110 | cx1 = np.asarray(self.data['cx1s'][str(index)])
111 | cy1 = np.asarray(self.data['cy1s'][str(index)])
112 | cx2 = np.asarray(self.data['cx2s'][str(index)])
113 | cy2 = np.asarray(self.data['cy2s'][str(index)])
114 | f1 = np.asarray(self.data['f1s'][str(index)])
115 | f2 = np.asarray(self.data['f2s'][str(index)])
116 | K1 = np.asarray([
117 | [f1[0], 0, cx1[0]],
118 | [0, f1[1], cy1[0]],
119 | [0, 0, 1]
120 | ])
121 | K2 = np.asarray([
122 | [f2[0], 0, cx2[0]],
123 | [0, f2[1], cy2[0]],
124 | [0, 0, 1]
125 | ])
126 | x1, x2 = xs[0,:,:2], xs[0,:,2:4]
127 | x1 = x1 * np.asarray([K1[0,0], K1[1,1]]) + np.array([K1[0,2], K1[1,2]])
128 | x2 = x2 * np.asarray([K2[0,0], K2[1,1]]) + np.array([K2[0,2], K2[1,2]])
129 | # norm input
130 | x1, T1 = self.norm_input(x1)
131 | x2, T2 = self.norm_input(x2)
132 |
133 | xs = np.concatenate([x1,x2],axis=-1).reshape(1,-1,4)
134 | # get F
135 | e_gt = np.matmul(np.matmul(np.linalg.inv(K2).T, e_gt), np.linalg.inv(K1))
136 | # get F after norm
137 | e_gt_unnorm = np.matmul(np.matmul(np.linalg.inv(T2).T, e_gt), np.linalg.inv(T1))
138 | e_gt = e_gt_unnorm / np.linalg.norm(e_gt_unnorm)
139 | else:
140 | K1, K2 = np.zeros(1), np.zeros(1)
141 | T1, T2 = np.zeros(1), np.zeros(1)
142 |
143 | pts1_virt, pts2_virt = self.correctMatches(e_gt)
144 |
145 | pts_virt = np.concatenate([pts1_virt, pts2_virt], axis=1).astype('float64')
146 | return {'K1':K1, 'K2':K2, 'R':R, 't':t, \
147 | 'xs':xs, 'ys':ys, 'T1':T1, 'T2':T2, 'virtPt':pts_virt, 'side':side}
148 |
149 | def reset(self):
150 | if self.data is not None:
151 | self.data.close()
152 | self.data = None
153 |
154 | def __len__(self):
155 | if self.data is None:
156 | self.data = h5py.File(self.filename,'r')
157 | _len = len(self.data['xs'])
158 | self.data.close()
159 | self.data = None
160 | else:
161 | _len = len(self.data['xs'])
162 | return _len
163 |
164 | def __del__(self):
165 | if self.data is not None:
166 | self.data.close()
167 |
168 |
--------------------------------------------------------------------------------
/core/test.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import os
4 | import cv2
5 | from six.moves import xrange
6 | from loss import MatchLoss
7 | from evaluation import eval_nondecompose, eval_decompose
8 | from utils import tocuda, get_pool_result
9 |
10 |
11 | def test_sample(args):
12 | _xs, _dR, _dt, _e_hat, _y_hat, _y_gt, config, = args
13 | _xs = _xs.reshape(-1, 4).astype('float64')
14 | _dR, _dt = _dR.astype('float64').reshape(3,3), _dt.astype('float64')
15 | _y_hat_out = _y_hat.flatten().astype('float64')
16 | e_hat_out = _e_hat.flatten().astype('float64')
17 |
18 | _x1 = _xs[:, :2]
19 | _x2 = _xs[:, 2:]
20 | # current validity from network
21 | _valid = _y_hat_out
22 | # choose top ones (get validity threshold)
23 | _valid_th = np.sort(_valid)[::-1][config.obj_top_k]
24 | _mask_before = _valid >= max(0, _valid_th)
25 |
26 | if not config.use_ransac:
27 | _err_q, _err_t, _, _, _num_inlier, _mask_updated, _R_hat, _t_hat = \
28 | eval_nondecompose(_x1, _x2, e_hat_out, _dR, _dt, _y_hat_out)
29 | else:
30 | # actually not use prob here since probs is None
31 | _err_q, _err_t, _, _, _num_inlier, _mask_updated, _R_hat, _t_hat = \
32 | eval_decompose(_x1, _x2, _dR, _dt, mask=_mask_before, method=cv2.RANSAC, \
33 | probs=None, weighted=False, use_prob=True)
34 | if _R_hat is None:
35 | _R_hat = np.random.randn(3,3)
36 | _t_hat = np.random.randn(3,1)
37 | return [float(_err_q), float(_err_t), float(_num_inlier), _R_hat.reshape(1,-1), _t_hat.reshape(1,-1)]
38 |
39 | def dump_res(measure_list, res_path, eval_res, tag):
40 | # dump test results
41 | for sub_tag in measure_list:
42 | # For median error
43 | ofn = os.path.join(res_path, "median_{}_{}.txt".format(sub_tag, tag))
44 | with open(ofn, "w") as ofp:
45 | ofp.write("{}\n".format(np.median(eval_res[sub_tag])))
46 |
47 | ths = np.arange(7) * 5
48 | cur_err_q = np.array(eval_res["err_q"]) * 180.0 / np.pi
49 | cur_err_t = np.array(eval_res["err_t"]) * 180.0 / np.pi
50 | # Get histogram
51 | q_acc_hist, _ = np.histogram(cur_err_q, ths)
52 | t_acc_hist, _ = np.histogram(cur_err_t, ths)
53 | qt_acc_hist, _ = np.histogram(np.maximum(cur_err_q, cur_err_t), ths)
54 | num_pair = float(len(cur_err_q))
55 | q_acc_hist = q_acc_hist.astype(float) / num_pair
56 | t_acc_hist = t_acc_hist.astype(float) / num_pair
57 | qt_acc_hist = qt_acc_hist.astype(float) / num_pair
58 | q_acc = np.cumsum(q_acc_hist)
59 | t_acc = np.cumsum(t_acc_hist)
60 | qt_acc = np.cumsum(qt_acc_hist)
61 | # Store return val
62 | for _idx_th in xrange(1, len(ths)):
63 | ofn = os.path.join(res_path, "acc_q_auc{}_{}.txt".format(ths[_idx_th], tag))
64 | with open(ofn, "w") as ofp:
65 | ofp.write("{}\n".format(np.mean(q_acc[:_idx_th])))
66 | ofn = os.path.join(res_path, "acc_t_auc{}_{}.txt".format(ths[_idx_th], tag))
67 | with open(ofn, "w") as ofp:
68 | ofp.write("{}\n".format(np.mean(t_acc[:_idx_th])))
69 | ofn = os.path.join(res_path, "acc_qt_auc{}_{}.txt".format(ths[_idx_th], tag))
70 | with open(ofn, "w") as ofp:
71 | ofp.write("{}\n".format(np.mean(qt_acc[:_idx_th])))
72 |
73 | ofn = os.path.join(res_path, "all_acc_qt_auc20_{}.txt".format(tag))
74 | np.savetxt(ofn, np.maximum(cur_err_q, cur_err_t))
75 | ofn = os.path.join(res_path, "all_acc_q_auc20_{}.txt".format(tag))
76 | np.savetxt(ofn, cur_err_q)
77 | ofn = os.path.join(res_path, "all_acc_t_auc20_{}.txt".format(tag))
78 | np.savetxt(ofn, cur_err_t)
79 |
80 | # Return qt_auc20
81 | ret_val = np.mean(qt_acc[:4]) # 1 == 5
82 | return ret_val
83 |
84 | def denorm(x, T):
85 | x = (x - np.array([T[0,2], T[1,2]])) / np.asarray([T[0,0], T[1,1]])
86 | return x
87 |
88 | def test_process(mode, model, cur_global_step, data_loader, config):
89 | model.eval()
90 | match_loss = MatchLoss(config)
91 | loader_iter = iter(data_loader)
92 |
93 | # save info given by the network
94 | network_infor_list = ["geo_losses", "cla_losses", "l2_losses", 'precisions', 'recalls', 'f_scores']
95 | network_info = {info:[] for info in network_infor_list}
96 |
97 | results, pool_arg = [], []
98 | eval_step, eval_step_i, num_processor = 100, 0, 8
99 | with torch.no_grad():
100 | for test_data in loader_iter:
101 | test_data = tocuda(test_data)
102 | res_logits, res_e_hat = model(test_data)
103 | y_hat, e_hat = res_logits[-1], res_e_hat[-1]
104 | loss, geo_loss, cla_loss, l2_loss, prec, rec = match_loss.run(cur_global_step, test_data, y_hat, e_hat)
105 | info = [geo_loss, cla_loss, l2_loss, prec, rec, 2*prec*rec/(prec+rec+1e-15)]
106 | for info_idx, value in enumerate(info):
107 | network_info[network_infor_list[info_idx]].append(value)
108 |
109 | if config.use_fundamental:
110 | # unnorm F
111 | e_hat = torch.matmul(torch.matmul(test_data['T2s'].transpose(1,2), e_hat.reshape(-1,3,3)),test_data['T1s'])
112 | # get essential matrix from fundamental matrix
113 | e_hat = torch.matmul(torch.matmul(test_data['K2s'].transpose(1,2), e_hat.reshape(-1,3,3)),test_data['K1s']).reshape(-1,9)
114 | e_hat = e_hat / torch.norm(e_hat, dim=1, keepdim=True)
115 |
116 | for batch_idx in range(e_hat.shape[0]):
117 | test_xs = test_data['xs'][batch_idx].detach().cpu().numpy()
118 | if config.use_fundamental: # back to original
119 | x1, x2 = test_xs[0,:,:2], test_xs[0,:,2:4]
120 | T1, T2 = test_data['T1s'][batch_idx].cpu().numpy(), test_data['T2s'][batch_idx].cpu().numpy()
121 | x1, x2 = denorm(x1, T1), denorm(x2, T2) # denormalize coordinate
122 | K1, K2 = test_data['K1s'][batch_idx].cpu().numpy(), test_data['K2s'][batch_idx].cpu().numpy()
123 | x1, x2 = denorm(x1, K1), denorm(x2, K2) # normalize coordiante with intrinsic
124 | test_xs = np.concatenate([x1,x2],axis=-1).reshape(1,-1,4)
125 |
126 | pool_arg += [(test_xs, test_data['Rs'][batch_idx].detach().cpu().numpy(), \
127 | test_data['ts'][batch_idx].detach().cpu().numpy(), e_hat[batch_idx].detach().cpu().numpy(), \
128 | y_hat[batch_idx].detach().cpu().numpy(), \
129 | test_data['ys'][batch_idx,:,0].detach().cpu().numpy(), config)]
130 |
131 | eval_step_i += 1
132 | if eval_step_i % eval_step == 0:
133 | results += get_pool_result(num_processor, test_sample, pool_arg)
134 | pool_arg = []
135 | if len(pool_arg) > 0:
136 | results += get_pool_result(num_processor, test_sample, pool_arg)
137 |
138 | measure_list = ["err_q", "err_t", "num", 'R_hat', 't_hat']
139 | eval_res = {}
140 | for measure_idx, measure in enumerate(measure_list):
141 | eval_res[measure] = np.asarray([result[measure_idx] for result in results])
142 |
143 | if config.res_path == '':
144 | config.res_path = os.path.join(config.log_path[:-5], mode)
145 | tag = "ours" if not config.use_ransac else "ours_ransac"
146 | ret_val = dump_res(measure_list, config.res_path, eval_res, tag)
147 | return [ret_val, np.mean(np.asarray(network_info['geo_losses'])), np.mean(np.asarray(network_info['cla_losses'])), \
148 | np.mean(np.asarray(network_info['l2_losses'])), np.mean(np.asarray(network_info['precisions'])), \
149 | np.mean(np.asarray(network_info['recalls'])), np.mean(np.asarray(network_info['f_scores']))]
150 |
151 |
152 | def test(data_loader, model, config):
153 | save_file_best = os.path.join(config.model_path, 'model_best.pth')
154 | if not os.path.exists(save_file_best):
155 | print("Model File {} does not exist! Quiting".format(save_file_best))
156 | exit(1)
157 | # Restore model
158 | checkpoint = torch.load(save_file_best)
159 | start_epoch = checkpoint['epoch']
160 | model.load_state_dict(checkpoint['state_dict'])
161 | model.cuda()
162 | print("Restoring from " + str(save_file_best) + ', ' + str(start_epoch) + "epoch...\n")
163 | if config.res_path == '':
164 | config.res_path = config.model_path[:-5]+'test'
165 | print('save result to '+config.res_path)
166 | va_res = test_process("test", model, 0, data_loader, config)
167 | print('test result '+str(va_res))
168 | def valid(data_loader, model, step, config):
169 | config.use_ransac = False
170 | return test_process("valid", model, step, data_loader, config)
171 |
172 |
--------------------------------------------------------------------------------
/core/pgf.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from loss import batch_episym
4 | from torch.nn import functional as F
5 | import numpy as np
6 |
7 |
8 | class GRA_block(nn.Module):
9 | def __init__(self, channels, out_channels=None):
10 | nn.Module.__init__(self)
11 | sub_channels = channels // 4
12 |
13 |
14 | self.spatial_att = nn.Sequential(
15 | nn.Conv2d(2, 1, kernel_size=1),
16 | nn.BatchNorm2d(1)
17 | )
18 |
19 | self.channel_att = nn.Sequential(
20 | nn.Conv2d(channels, sub_channels, kernel_size=1),
21 | nn.BatchNorm2d(sub_channels),
22 | nn.ReLU(),
23 | nn.Conv2d(sub_channels, channels, kernel_size=1),
24 | nn.BatchNorm2d(channels),
25 | )
26 |
27 | self.conv1 = nn.Sequential(
28 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
29 | nn.BatchNorm2d(sub_channels),
30 | nn.ReLU(),
31 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1),
32 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
33 | nn.BatchNorm2d(sub_channels),
34 | nn.ReLU(),
35 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1)
36 | )
37 | self.conv2 = nn.Sequential(
38 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
39 | nn.BatchNorm2d(sub_channels),
40 | nn.ReLU(),
41 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1),
42 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
43 | nn.BatchNorm2d(sub_channels),
44 | nn.ReLU(),
45 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1)
46 | )
47 | self.conv3 = nn.Sequential(
48 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
49 | nn.BatchNorm2d(sub_channels),
50 | nn.ReLU(),
51 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1),
52 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
53 | nn.BatchNorm2d(sub_channels),
54 | nn.ReLU(),
55 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1)
56 | )
57 | self.conv4 = nn.Sequential(
58 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
59 | nn.BatchNorm2d(sub_channels),
60 | nn.ReLU(),
61 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1),
62 | nn.InstanceNorm2d(sub_channels, eps=1e-3),
63 | nn.BatchNorm2d(sub_channels),
64 | nn.ReLU(),
65 | nn.Conv2d(sub_channels, sub_channels, kernel_size=1)
66 | )
67 |
68 | def forward(self, x):
69 | spx = torch.split(x, 64, 1)
70 | #x_spatial = self.spatial_attpre(spx[0])
71 |
72 | x_spatial = spx[0]
73 | x_spatial = torch.cat((torch.max(x_spatial, 1)[0].unsqueeze(1), torch.mean(x_spatial, 1).unsqueeze(1)), dim=1)
74 | x_spatial = self.spatial_att(x_spatial)
75 | scale_sa = torch.sigmoid(x_spatial)
76 |
77 | sp1 = spx[0] * scale_sa
78 | sp1 = self.conv1(sp1)
79 |
80 | sp2 = sp1 + spx[1] * scale_sa
81 | sp2 = self.conv2(sp2)
82 |
83 | sp3 = sp2 + spx[2] * scale_sa
84 | sp3 = self.conv3(sp3)
85 |
86 | sp4 = sp3 + spx[3] * scale_sa
87 | sp4 = self.conv4(sp4)
88 |
89 | cat = torch.cat((sp1, sp2, sp3, sp4), 1)
90 | out = cat
91 |
92 | xag = F.avg_pool2d(out, (out.size(2), x.size(3)), stride=(out.size(2), x.size(3)))
93 | xmg = F.max_pool2d(out, (out.size(2), x.size(3)), stride=(out.size(2), x.size(3)))
94 |
95 | xam = self.channel_att(xag + xmg)
96 |
97 | scale_ca = torch.sigmoid(xam)
98 | out = out * scale_ca
99 |
100 | out = out + x
101 | out = shuffle_chnls(out, 4)
102 | return out
103 |
104 | class PointCN_down128(nn.Module):
105 | def __init__(self, channels, out_channels=None):
106 | nn.Module.__init__(self)
107 | self.conv = nn.Sequential(
108 | nn.InstanceNorm2d(channels , eps=1e-3),
109 | nn.BatchNorm2d(channels),
110 | nn.ReLU(),
111 | nn.Conv2d(channels, channels // 2, kernel_size=1)
112 | )
113 |
114 | def forward(self, x):
115 | out = self.conv(x)
116 |
117 | return out
118 |
119 |
120 | class PointCN_256(nn.Module):
121 | def __init__(self, channels, out_channels=None):
122 | nn.Module.__init__(self)
123 | self.conv = nn.Sequential(
124 | nn.InstanceNorm2d(channels, eps=1e-3),
125 | nn.BatchNorm2d(channels),
126 | nn.ReLU(),
127 | nn.Conv2d(channels, channels, kernel_size=1)
128 | )
129 |
130 | def forward(self, x):
131 | out = self.conv(x)
132 |
133 | return out
134 |
135 |
136 | class diff_pool(nn.Module):
137 | def __init__(self, in_channel, output_points):
138 | nn.Module.__init__(self)
139 | self.output_points = output_points
140 | self.conv = nn.Sequential(
141 | nn.InstanceNorm2d(in_channel, eps=1e-3),
142 | nn.BatchNorm2d(in_channel),
143 | nn.ReLU(),
144 | nn.Conv2d(in_channel, output_points, kernel_size=1))
145 |
146 | def forward(self, x):
147 | embed = self.conv(x) # b*k*n*1
148 | S = torch.softmax(embed, dim=2).squeeze(3)
149 | out = torch.matmul(x.squeeze(3), S.transpose(1, 2)).unsqueeze(3)
150 | return out
151 |
152 |
153 | class diff_unpool(nn.Module):
154 | def __init__(self, in_channel, output_points):
155 | nn.Module.__init__(self)
156 | self.output_points = output_points
157 | self.conv = nn.Sequential(
158 | nn.InstanceNorm2d(in_channel, eps=1e-3),
159 | nn.BatchNorm2d(in_channel),
160 | nn.ReLU(),
161 | nn.Conv2d(in_channel, output_points, kernel_size=1))
162 |
163 | def forward(self, x_up, x_down):
164 | # x_up: b*c*n*1
165 | # x_down: b*c*k*1
166 | embed = self.conv(x_up) # b*k*n*1
167 | S = torch.softmax(embed, dim=1).squeeze(3) # b*k*n
168 | out = torch.matmul(x_down.squeeze(3), S).unsqueeze(3)
169 | return out
170 |
171 |
172 | class trans(nn.Module):
173 | def __init__(self, dim1, dim2):
174 | nn.Module.__init__(self)
175 | self.dim1 = dim1
176 | self.dim2 = dim2
177 |
178 | def forward(self, x):
179 | return x.transpose(self.dim1, self.dim2)
180 |
181 |
182 | class OAFilter(nn.Module):
183 | def __init__(self, channels, points, out_channels=None):
184 | nn.Module.__init__(self)
185 | if not out_channels:
186 | out_channels = channels
187 | self.shot_cut = None
188 | if out_channels != channels:
189 | self.shot_cut = nn.Conv2d(channels, out_channels, kernel_size=1)
190 | self.conv1 = nn.Sequential(
191 | nn.InstanceNorm2d(channels, eps=1e-3),
192 | nn.BatchNorm2d(channels),
193 | nn.ReLU(),
194 | nn.Conv2d(channels, out_channels, kernel_size=1), # b*c*n*1
195 | trans(1, 2))
196 | # Spatial Correlation Layer
197 | self.conv2 = nn.Sequential(
198 | nn.BatchNorm2d(points),
199 | nn.ReLU(),
200 | nn.Conv2d(points, points, kernel_size=1)
201 | )
202 | self.conv3 = nn.Sequential(
203 | trans(1, 2),
204 | nn.InstanceNorm2d(out_channels, eps=1e-3),
205 | nn.BatchNorm2d(out_channels),
206 | nn.ReLU(),
207 | nn.Conv2d(out_channels, out_channels, kernel_size=1)
208 | )
209 |
210 | def forward(self, x):
211 | out = self.conv1(x)
212 | out = out + self.conv2(out)
213 | out = self.conv3(out)
214 | if self.shot_cut:
215 | out = out + self.shot_cut(x)
216 | else:
217 | out = out + x
218 | return out
219 |
220 |
221 | class GRAModule(nn.Module):
222 | def __init__(self, net_channels, input_channel, depth, clusters):
223 | nn.Module.__init__(self)
224 | channels = net_channels
225 | self.layer_num = depth
226 | print('channels:' + str(channels) + ', layer_num:' + str(self.layer_num))
227 | self.conv1 = nn.Conv2d(input_channel, channels, kernel_size=1)
228 |
229 | l2_nums = clusters
230 |
231 | self.l1_1 = []
232 | for _ in range(self.layer_num // 2):
233 | self.l1_1.append(GRA_block(channels))
234 |
235 | self.l1_down128 = PointCN_down128(channels)
236 | self.down1 = diff_pool(channels//2, l2_nums)
237 |
238 | self.l2 = []
239 | for _ in range(self.layer_num // 2):
240 | self.l2.append(OAFilter(channels //2, l2_nums))
241 |
242 | self.up1 = diff_unpool(channels//2, l2_nums)
243 |
244 | self.l1_2 = []
245 | self.l1_exchange = PointCN_256(channels)
246 |
247 | for _ in range(self.layer_num // 2):
248 | self.l1_2.append(GRA_block(channels))
249 |
250 | self.l1_1 = nn.Sequential(*self.l1_1)
251 | self.l1_2 = nn.Sequential(*self.l1_2)
252 | self.l2 = nn.Sequential(*self.l2)
253 |
254 | self.output = nn.Conv2d(channels, 1, kernel_size=1)
255 |
256 | def forward(self, data, xs):
257 | # data: b*c*n*1
258 | batch_size, num_pts = data.shape[0], data.shape[2]
259 | x1_1 = self.conv1(data)
260 | x1_1 = self.l1_1(x1_1)
261 |
262 | x1_1 = self.l1_down128(x1_1)
263 |
264 | x_down = self.down1(x1_1)
265 | x2 = self.l2(x_down)
266 | x_up = self.up1(x1_1, x2)
267 | x1_2 = self.l1_exchange(torch.cat([x1_1, x_up], dim=1))
268 | out = self.l1_2(x1_2)
269 |
270 | logits = torch.squeeze(torch.squeeze(self.output(out), 3), 1)
271 | e_hat = weighted_8points(xs, logits)
272 |
273 | x1, x2 = xs[:, 0, :, :2], xs[:, 0, :, 2:4]
274 | e_hat_norm = e_hat
275 | residual = batch_episym(x1, x2, e_hat_norm).reshape(batch_size, 1, num_pts, 1)
276 |
277 | return logits, e_hat, residual
278 |
279 |
280 | class PGFNet(nn.Module):
281 | def __init__(self, config):
282 | nn.Module.__init__(self)
283 | self.iter_num = config.iter_num
284 | depth_each_stage = config.net_depth // (config.iter_num + 1)
285 | self.side_channel = (config.use_ratio == 2) + (config.use_mutual == 2)
286 | self.weights_init = GRAModule(config.net_channels, 4 + self.side_channel, depth_each_stage, config.clusters)
287 | self.weights_iter = [GRAModule(config.net_channels, 6 + self.side_channel, depth_each_stage, config.clusters) for
288 | _ in range(config.iter_num)]
289 | self.weights_iter = nn.Sequential(*self.weights_iter)
290 | self.gamma = nn.Parameter(torch.zeros(1))
291 |
292 | def forward(self, data):
293 | assert data['xs'].dim() == 4 and data['xs'].shape[1] == 1
294 | batch_size, num_pts = data['xs'].shape[0], data['xs'].shape[2]
295 | # data: b*1*n*c
296 | # x_weight = self.positon(data['xs'])
297 | input = data['xs'].transpose(1, 3)
298 | if self.side_channel > 0:
299 | sides = data['sides'].transpose(1, 2).unsqueeze(3)
300 | input = torch.cat([input, sides], dim=1)
301 |
302 | res_logits, res_e_hat = [], []
303 | logits, e_hat, residual = self.weights_init(input, data['xs'])
304 | res_logits.append(logits), res_e_hat.append(e_hat)
305 | logits_1 = logits
306 | logits_2 = torch.zeros(logits.shape).cuda()
307 |
308 | index_k = logits.topk(k=num_pts//2, dim=-1)[1]
309 | input_new = torch.stack(
310 | [ input[i].squeeze().transpose(0, 1)[index_k[i]] for i in range(input.size(0))]).unsqueeze(-1).transpose(1, 2)
311 |
312 | residual_new = torch.stack(
313 | [ residual[i].squeeze(0)[index_k[i]] for i in range(residual.size(0))]).unsqueeze(1)
314 |
315 | logits_new = logits.reshape(residual.shape)
316 | logits_new = torch.stack(
317 | [ logits_new[i].squeeze(0)[index_k[i]] for i in range(logits_new.size(0))]).unsqueeze(1)
318 |
319 | data_new = torch.stack(
320 | [ data['xs'][i].squeeze(0)[index_k[i]] for i in range(input.size(0))]).unsqueeze(1)
321 |
322 |
323 |
324 | for i in range(self.iter_num):
325 | logits, e_hat, residual = self.weights_iter[i](
326 | torch.cat([input_new, residual_new.detach(), torch.relu(torch.tanh(logits_new)).detach()],
327 | dim=1),
328 | data_new)
329 | '''for i in range(logits_2.size(0)):
330 | for j in range(logits.size(-1)):
331 | logits_2[i][index_k[i][j]] = logits[i][j]'''
332 | logits_2.scatter_(1, index_k, logits)
333 |
334 | logits_2 = logits_2 + self.gamma*logits_1
335 | e_hat = weighted_8points(data['xs'], logits_2)
336 |
337 |
338 | res_logits.append(logits_2), res_e_hat.append(e_hat)
339 | #print(self.gamma)
340 | return res_logits, res_e_hat
341 |
342 | def batch_symeig(X):
343 | # it is much faster to run symeig on CPU
344 | X = X.cpu()
345 | b, d, _ = X.size()
346 | bv = X.new(b, d, d)
347 | for batch_idx in range(X.shape[0]):
348 | e, v = torch.symeig(X[batch_idx, :, :].squeeze(), True)
349 | bv[batch_idx, :, :] = v
350 | bv = bv.cuda()
351 | return bv
352 |
353 |
354 | def weighted_8points(x_in, logits):
355 | # x_in: batch * 1 * N * 4
356 | x_shp = x_in.shape
357 | # Turn into weights for each sample
358 | weights = torch.relu(torch.tanh(logits))
359 | x_in = x_in.squeeze(1)
360 |
361 | # Make input data (num_img_pair x num_corr x 4)
362 | xx = torch.reshape(x_in, (x_shp[0], x_shp[2], 4)).permute(0, 2, 1)
363 |
364 | # Create the matrix to be used for the eight-point algorithm
365 | X = torch.stack([
366 | xx[:, 2] * xx[:, 0], xx[:, 2] * xx[:, 1], xx[:, 2],
367 | xx[:, 3] * xx[:, 0], xx[:, 3] * xx[:, 1], xx[:, 3],
368 | xx[:, 0], xx[:, 1], torch.ones_like(xx[:, 0])
369 | ], dim=1).permute(0, 2, 1)
370 | wX = torch.reshape(weights, (x_shp[0], x_shp[2], 1)) * X
371 | XwX = torch.matmul(X.permute(0, 2, 1), wX)
372 |
373 | # Recover essential matrix from self-adjoing eigen
374 | v = batch_symeig(XwX)
375 | e_hat = torch.reshape(v[:, :, 0], (x_shp[0], 9))
376 |
377 | # Make unit norm just in case
378 | e_hat = e_hat / torch.norm(e_hat, dim=1, keepdim=True)
379 | return e_hat
380 |
381 |
382 | def shuffle_chnls(x, groups=4):
383 | """Channel Shuffle"""
384 |
385 | bs, chnls, h, w = x.data.size()
386 | if chnls % groups:
387 | return x
388 | chnls_per_group = chnls // groups
389 | x = x.view(bs, groups, chnls_per_group, h, w)
390 | x = torch.transpose(x, 1, 2).contiguous()
391 | x = x.view(bs, -1, h, w)
392 |
393 | return x
394 |
--------------------------------------------------------------------------------
/core/transformations.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | # transformations.py
3 |
4 | # Copyright (c) 2006-2015, Christoph Gohlke
5 | # Copyright (c) 2006-2015, The Regents of the University of California
6 | # Produced at the Laboratory for Fluorescence Dynamics
7 | # All rights reserved.
8 | #
9 | # Redistribution and use in source and binary forms, with or without
10 | # modification, are permitted provided that the following conditions are met:
11 | #
12 | # * Redistributions of source code must retain the above copyright
13 | # notice, this list of conditions and the following disclaimer.
14 | # * Redistributions in binary form must reproduce the above copyright
15 | # notice, this list of conditions and the following disclaimer in the
16 | # documentation and/or other materials provided with the distribution.
17 | # * Neither the name of the copyright holders nor the names of any
18 | # contributors may be used to endorse or promote products derived
19 | # from this software without specific prior written permission.
20 | #
21 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 | # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 | # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 | # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 | # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 | # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 | # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 | # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 | # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 | # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 | # POSSIBILITY OF SUCH DAMAGE.
32 |
33 | """Homogeneous Transformation Matrices and Quaternions.
34 |
35 | A library for calculating 4x4 matrices for translating, rotating, reflecting,
36 | scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
37 | 3D homogeneous coordinates as well as for converting between rotation matrices,
38 | Euler angles, and quaternions. Also includes an Arcball control object and
39 | functions to decompose transformation matrices.
40 |
41 | :Author:
42 | `Christoph Gohlke `_
43 |
44 | :Organization:
45 | Laboratory for Fluorescence Dynamics, University of California, Irvine
46 |
47 | :Version: 2015.07.18
48 |
49 | Requirements
50 | ------------
51 | * `CPython 2.7 or 3.4 `_
52 | * `Numpy 1.9 `_
53 | * `Transformations.c 2015.07.18 `_
54 | (recommended for speedup of some functions)
55 |
56 | Notes
57 | -----
58 | The API is not stable yet and is expected to change between revisions.
59 |
60 | This Python code is not optimized for speed. Refer to the transformations.c
61 | module for a faster implementation of some functions.
62 |
63 | Documentation in HTML format can be generated with epydoc.
64 |
65 | Matrices (M) can be inverted using numpy.linalg.inv(M), be concatenated using
66 | numpy.dot(M0, M1), or transform homogeneous coordinate arrays (v) using
67 | numpy.dot(M, v) for shape (4, \*) column vectors, respectively
68 | numpy.dot(v, M.T) for shape (\*, 4) row vectors ("array of points").
69 |
70 | This module follows the "column vectors on the right" and "row major storage"
71 | (C contiguous) conventions. The translation components are in the right column
72 | of the transformation matrix, i.e. M[:3, 3].
73 | The transpose of the transformation matrices may have to be used to interface
74 | with other graphics systems, e.g. with OpenGL's glMultMatrixd(). See also [16].
75 |
76 | Calculations are carried out with numpy.float64 precision.
77 |
78 | Vector, point, quaternion, and matrix function arguments are expected to be
79 | "array like", i.e. tuple, list, or numpy arrays.
80 |
81 | Return types are numpy arrays unless specified otherwise.
82 |
83 | Angles are in radians unless specified otherwise.
84 |
85 | Quaternions w+ix+jy+kz are represented as [w, x, y, z].
86 |
87 | A triple of Euler angles can be applied/interpreted in 24 ways, which can
88 | be specified using a 4 character string or encoded 4-tuple:
89 |
90 | *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
91 |
92 | - first character : rotations are applied to 's'tatic or 'r'otating frame
93 | - remaining characters : successive rotation axis 'x', 'y', or 'z'
94 |
95 | *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
96 |
97 | - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
98 | - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
99 | by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
100 | - repetition : first and last axis are same (1) or different (0).
101 | - frame : rotations are applied to static (0) or rotating (1) frame.
102 |
103 | Other Python packages and modules for 3D transformations and quaternions:
104 |
105 | * `Transforms3d `_
106 | includes most code of this module.
107 | * `Blender.mathutils `_
108 | * `numpy-dtypes `_
109 |
110 | References
111 | ----------
112 | (1) Matrices and transformations. Ronald Goldman.
113 | In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
114 | (2) More matrices and transformations: shear and pseudo-perspective.
115 | Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
116 | (3) Decomposing a matrix into simple transformations. Spencer Thomas.
117 | In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
118 | (4) Recovering the data from the transformation matrix. Ronald Goldman.
119 | In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
120 | (5) Euler angle conversion. Ken Shoemake.
121 | In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
122 | (6) Arcball rotation control. Ken Shoemake.
123 | In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
124 | (7) Representing attitude: Euler angles, unit quaternions, and rotation
125 | vectors. James Diebel. 2006.
126 | (8) A discussion of the solution for the best rotation to relate two sets
127 | of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
128 | (9) Closed-form solution of absolute orientation using unit quaternions.
129 | BKP Horn. J Opt Soc Am A. 1987. 4(4):629-642.
130 | (10) Quaternions. Ken Shoemake.
131 | http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
132 | (11) From quaternion to matrix and back. JMP van Waveren. 2005.
133 | http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
134 | (12) Uniform random rotations. Ken Shoemake.
135 | In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
136 | (13) Quaternion in molecular modeling. CFF Karney.
137 | J Mol Graph Mod, 25(5):595-604
138 | (14) New method for extracting the quaternion from a rotation matrix.
139 | Itzhack Y Bar-Itzhack, J Guid Contr Dynam. 2000. 23(6): 1085-1087.
140 | (15) Multiple View Geometry in Computer Vision. Hartley and Zissermann.
141 | Cambridge University Press; 2nd Ed. 2004. Chapter 4, Algorithm 4.7, p 130.
142 | (16) Column Vectors vs. Row Vectors.
143 | http://steve.hollasch.net/cgindex/math/matrix/column-vec.html
144 |
145 | Examples
146 | --------
147 | >>> alpha, beta, gamma = 0.123, -1.234, 2.345
148 | >>> origin, xaxis, yaxis, zaxis = [0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]
149 | >>> I = identity_matrix()
150 | >>> Rx = rotation_matrix(alpha, xaxis)
151 | >>> Ry = rotation_matrix(beta, yaxis)
152 | >>> Rz = rotation_matrix(gamma, zaxis)
153 | >>> R = concatenate_matrices(Rx, Ry, Rz)
154 | >>> euler = euler_from_matrix(R, 'rxyz')
155 | >>> numpy.allclose([alpha, beta, gamma], euler)
156 | True
157 | >>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
158 | >>> is_same_transform(R, Re)
159 | True
160 | >>> al, be, ga = euler_from_matrix(Re, 'rxyz')
161 | >>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
162 | True
163 | >>> qx = quaternion_about_axis(alpha, xaxis)
164 | >>> qy = quaternion_about_axis(beta, yaxis)
165 | >>> qz = quaternion_about_axis(gamma, zaxis)
166 | >>> q = quaternion_multiply(qx, qy)
167 | >>> q = quaternion_multiply(q, qz)
168 | >>> Rq = quaternion_matrix(q)
169 | >>> is_same_transform(R, Rq)
170 | True
171 | >>> S = scale_matrix(1.23, origin)
172 | >>> T = translation_matrix([1, 2, 3])
173 | >>> Z = shear_matrix(beta, xaxis, origin, zaxis)
174 | >>> R = random_rotation_matrix(numpy.random.rand(3))
175 | >>> M = concatenate_matrices(T, R, Z, S)
176 | >>> scale, shear, angles, trans, persp = decompose_matrix(M)
177 | >>> numpy.allclose(scale, 1.23)
178 | True
179 | >>> numpy.allclose(trans, [1, 2, 3])
180 | True
181 | >>> numpy.allclose(shear, [0, math.tan(beta), 0])
182 | True
183 | >>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
184 | True
185 | >>> M1 = compose_matrix(scale, shear, angles, trans, persp)
186 | >>> is_same_transform(M, M1)
187 | True
188 | >>> v0, v1 = random_vector(3), random_vector(3)
189 | >>> M = rotation_matrix(angle_between_vectors(v0, v1), vector_product(v0, v1))
190 | >>> v2 = numpy.dot(v0, M[:3,:3].T)
191 | >>> numpy.allclose(unit_vector(v1), unit_vector(v2))
192 | True
193 |
194 | """
195 |
196 | from __future__ import division, print_function
197 |
198 | import math
199 |
200 | import numpy
201 |
202 | __version__ = '2015.07.18'
203 | __docformat__ = 'restructuredtext en'
204 | __all__ = ()
205 |
206 |
207 | def identity_matrix():
208 | """Return 4x4 identity/unit matrix.
209 |
210 | >>> I = identity_matrix()
211 | >>> numpy.allclose(I, numpy.dot(I, I))
212 | True
213 | >>> numpy.sum(I), numpy.trace(I)
214 | (4.0, 4.0)
215 | >>> numpy.allclose(I, numpy.identity(4))
216 | True
217 |
218 | """
219 | return numpy.identity(4)
220 |
221 |
222 | def translation_matrix(direction):
223 | """Return matrix to translate by direction vector.
224 |
225 | >>> v = numpy.random.random(3) - 0.5
226 | >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
227 | True
228 |
229 | """
230 | M = numpy.identity(4)
231 | M[:3, 3] = direction[:3]
232 | return M
233 |
234 |
235 | def translation_from_matrix(matrix):
236 | """Return translation vector from translation matrix.
237 |
238 | >>> v0 = numpy.random.random(3) - 0.5
239 | >>> v1 = translation_from_matrix(translation_matrix(v0))
240 | >>> numpy.allclose(v0, v1)
241 | True
242 |
243 | """
244 | return numpy.array(matrix, copy=False)[:3, 3].copy()
245 |
246 |
247 | def reflection_matrix(point, normal):
248 | """Return matrix to mirror at plane defined by point and normal vector.
249 |
250 | >>> v0 = numpy.random.random(4) - 0.5
251 | >>> v0[3] = 1.
252 | >>> v1 = numpy.random.random(3) - 0.5
253 | >>> R = reflection_matrix(v0, v1)
254 | >>> numpy.allclose(2, numpy.trace(R))
255 | True
256 | >>> numpy.allclose(v0, numpy.dot(R, v0))
257 | True
258 | >>> v2 = v0.copy()
259 | >>> v2[:3] += v1
260 | >>> v3 = v0.copy()
261 | >>> v2[:3] -= v1
262 | >>> numpy.allclose(v2, numpy.dot(R, v3))
263 | True
264 |
265 | """
266 | normal = unit_vector(normal[:3])
267 | M = numpy.identity(4)
268 | M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
269 | M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
270 | return M
271 |
272 |
273 | def reflection_from_matrix(matrix):
274 | """Return mirror plane point and normal vector from reflection matrix.
275 |
276 | >>> v0 = numpy.random.random(3) - 0.5
277 | >>> v1 = numpy.random.random(3) - 0.5
278 | >>> M0 = reflection_matrix(v0, v1)
279 | >>> point, normal = reflection_from_matrix(M0)
280 | >>> M1 = reflection_matrix(point, normal)
281 | >>> is_same_transform(M0, M1)
282 | True
283 |
284 | """
285 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
286 | # normal: unit eigenvector corresponding to eigenvalue -1
287 | w, V = numpy.linalg.eig(M[:3, :3])
288 | i = numpy.where(abs(numpy.real(w) + 1.0) < 1e-8)[0]
289 | if not len(i):
290 | raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
291 | normal = numpy.real(V[:, i[0]]).squeeze()
292 | # point: any unit eigenvector corresponding to eigenvalue 1
293 | w, V = numpy.linalg.eig(M)
294 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
295 | if not len(i):
296 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
297 | point = numpy.real(V[:, i[-1]]).squeeze()
298 | point /= point[3]
299 | return point, normal
300 |
301 |
302 | def rotation_matrix(angle, direction, point=None):
303 | """Return matrix to rotate about axis defined by point and direction.
304 |
305 | >>> R = rotation_matrix(math.pi/2, [0, 0, 1], [1, 0, 0])
306 | >>> numpy.allclose(numpy.dot(R, [0, 0, 0, 1]), [1, -1, 0, 1])
307 | True
308 | >>> angle = (random.random() - 0.5) * (2*math.pi)
309 | >>> direc = numpy.random.random(3) - 0.5
310 | >>> point = numpy.random.random(3) - 0.5
311 | >>> R0 = rotation_matrix(angle, direc, point)
312 | >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
313 | >>> is_same_transform(R0, R1)
314 | True
315 | >>> R0 = rotation_matrix(angle, direc, point)
316 | >>> R1 = rotation_matrix(-angle, -direc, point)
317 | >>> is_same_transform(R0, R1)
318 | True
319 | >>> I = numpy.identity(4, numpy.float64)
320 | >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
321 | True
322 | >>> numpy.allclose(2, numpy.trace(rotation_matrix(math.pi/2,
323 | ... direc, point)))
324 | True
325 |
326 | """
327 | sina = math.sin(angle)
328 | cosa = math.cos(angle)
329 | direction = unit_vector(direction[:3])
330 | # rotation matrix around unit vector
331 | R = numpy.diag([cosa, cosa, cosa])
332 | R += numpy.outer(direction, direction) * (1.0 - cosa)
333 | direction *= sina
334 | R += numpy.array([[ 0.0, -direction[2], direction[1]],
335 | [ direction[2], 0.0, -direction[0]],
336 | [-direction[1], direction[0], 0.0]])
337 | M = numpy.identity(4)
338 | M[:3, :3] = R
339 | if point is not None:
340 | # rotation not around origin
341 | point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
342 | M[:3, 3] = point - numpy.dot(R, point)
343 | return M
344 |
345 |
346 | def rotation_from_matrix(matrix):
347 | """Return rotation angle and axis from rotation matrix.
348 |
349 | >>> angle = (random.random() - 0.5) * (2*math.pi)
350 | >>> direc = numpy.random.random(3) - 0.5
351 | >>> point = numpy.random.random(3) - 0.5
352 | >>> R0 = rotation_matrix(angle, direc, point)
353 | >>> angle, direc, point = rotation_from_matrix(R0)
354 | >>> R1 = rotation_matrix(angle, direc, point)
355 | >>> is_same_transform(R0, R1)
356 | True
357 |
358 | """
359 | R = numpy.array(matrix, dtype=numpy.float64, copy=False)
360 | R33 = R[:3, :3]
361 | # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
362 | w, W = numpy.linalg.eig(R33.T)
363 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
364 | if not len(i):
365 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
366 | direction = numpy.real(W[:, i[-1]]).squeeze()
367 | # point: unit eigenvector of R33 corresponding to eigenvalue of 1
368 | w, Q = numpy.linalg.eig(R)
369 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
370 | if not len(i):
371 | raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
372 | point = numpy.real(Q[:, i[-1]]).squeeze()
373 | point /= point[3]
374 | # rotation angle depending on direction
375 | cosa = (numpy.trace(R33) - 1.0) / 2.0
376 | if abs(direction[2]) > 1e-8:
377 | sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
378 | elif abs(direction[1]) > 1e-8:
379 | sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
380 | else:
381 | sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
382 | angle = math.atan2(sina, cosa)
383 | return angle, direction, point
384 |
385 |
386 | def scale_matrix(factor, origin=None, direction=None):
387 | """Return matrix to scale by factor around origin in direction.
388 |
389 | Use factor -1 for point symmetry.
390 |
391 | >>> v = (numpy.random.rand(4, 5) - 0.5) * 20
392 | >>> v[3] = 1
393 | >>> S = scale_matrix(-1.234)
394 | >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
395 | True
396 | >>> factor = random.random() * 10 - 5
397 | >>> origin = numpy.random.random(3) - 0.5
398 | >>> direct = numpy.random.random(3) - 0.5
399 | >>> S = scale_matrix(factor, origin)
400 | >>> S = scale_matrix(factor, origin, direct)
401 |
402 | """
403 | if direction is None:
404 | # uniform scaling
405 | M = numpy.diag([factor, factor, factor, 1.0])
406 | if origin is not None:
407 | M[:3, 3] = origin[:3]
408 | M[:3, 3] *= 1.0 - factor
409 | else:
410 | # nonuniform scaling
411 | direction = unit_vector(direction[:3])
412 | factor = 1.0 - factor
413 | M = numpy.identity(4)
414 | M[:3, :3] -= factor * numpy.outer(direction, direction)
415 | if origin is not None:
416 | M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
417 | return M
418 |
419 |
420 | def scale_from_matrix(matrix):
421 | """Return scaling factor, origin and direction from scaling matrix.
422 |
423 | >>> factor = random.random() * 10 - 5
424 | >>> origin = numpy.random.random(3) - 0.5
425 | >>> direct = numpy.random.random(3) - 0.5
426 | >>> S0 = scale_matrix(factor, origin)
427 | >>> factor, origin, direction = scale_from_matrix(S0)
428 | >>> S1 = scale_matrix(factor, origin, direction)
429 | >>> is_same_transform(S0, S1)
430 | True
431 | >>> S0 = scale_matrix(factor, origin, direct)
432 | >>> factor, origin, direction = scale_from_matrix(S0)
433 | >>> S1 = scale_matrix(factor, origin, direction)
434 | >>> is_same_transform(S0, S1)
435 | True
436 |
437 | """
438 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
439 | M33 = M[:3, :3]
440 | factor = numpy.trace(M33) - 2.0
441 | try:
442 | # direction: unit eigenvector corresponding to eigenvalue factor
443 | w, V = numpy.linalg.eig(M33)
444 | i = numpy.where(abs(numpy.real(w) - factor) < 1e-8)[0][0]
445 | direction = numpy.real(V[:, i]).squeeze()
446 | direction /= vector_norm(direction)
447 | except IndexError:
448 | # uniform scaling
449 | factor = (factor + 2.0) / 3.0
450 | direction = None
451 | # origin: any eigenvector corresponding to eigenvalue 1
452 | w, V = numpy.linalg.eig(M)
453 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
454 | if not len(i):
455 | raise ValueError("no eigenvector corresponding to eigenvalue 1")
456 | origin = numpy.real(V[:, i[-1]]).squeeze()
457 | origin /= origin[3]
458 | return factor, origin, direction
459 |
460 |
461 | def projection_matrix(point, normal, direction=None,
462 | perspective=None, pseudo=False):
463 | """Return matrix to project onto plane defined by point and normal.
464 |
465 | Using either perspective point, projection direction, or none of both.
466 |
467 | If pseudo is True, perspective projections will preserve relative depth
468 | such that Perspective = dot(Orthogonal, PseudoPerspective).
469 |
470 | >>> P = projection_matrix([0, 0, 0], [1, 0, 0])
471 | >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
472 | True
473 | >>> point = numpy.random.random(3) - 0.5
474 | >>> normal = numpy.random.random(3) - 0.5
475 | >>> direct = numpy.random.random(3) - 0.5
476 | >>> persp = numpy.random.random(3) - 0.5
477 | >>> P0 = projection_matrix(point, normal)
478 | >>> P1 = projection_matrix(point, normal, direction=direct)
479 | >>> P2 = projection_matrix(point, normal, perspective=persp)
480 | >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
481 | >>> is_same_transform(P2, numpy.dot(P0, P3))
482 | True
483 | >>> P = projection_matrix([3, 0, 0], [1, 1, 0], [1, 0, 0])
484 | >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20
485 | >>> v0[3] = 1
486 | >>> v1 = numpy.dot(P, v0)
487 | >>> numpy.allclose(v1[1], v0[1])
488 | True
489 | >>> numpy.allclose(v1[0], 3-v1[1])
490 | True
491 |
492 | """
493 | M = numpy.identity(4)
494 | point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
495 | normal = unit_vector(normal[:3])
496 | if perspective is not None:
497 | # perspective projection
498 | perspective = numpy.array(perspective[:3], dtype=numpy.float64,
499 | copy=False)
500 | M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
501 | M[:3, :3] -= numpy.outer(perspective, normal)
502 | if pseudo:
503 | # preserve relative depth
504 | M[:3, :3] -= numpy.outer(normal, normal)
505 | M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
506 | else:
507 | M[:3, 3] = numpy.dot(point, normal) * perspective
508 | M[3, :3] = -normal
509 | M[3, 3] = numpy.dot(perspective, normal)
510 | elif direction is not None:
511 | # parallel projection
512 | direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
513 | scale = numpy.dot(direction, normal)
514 | M[:3, :3] -= numpy.outer(direction, normal) / scale
515 | M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
516 | else:
517 | # orthogonal projection
518 | M[:3, :3] -= numpy.outer(normal, normal)
519 | M[:3, 3] = numpy.dot(point, normal) * normal
520 | return M
521 |
522 |
523 | def projection_from_matrix(matrix, pseudo=False):
524 | """Return projection plane and perspective point from projection matrix.
525 |
526 | Return values are same as arguments for projection_matrix function:
527 | point, normal, direction, perspective, and pseudo.
528 |
529 | >>> point = numpy.random.random(3) - 0.5
530 | >>> normal = numpy.random.random(3) - 0.5
531 | >>> direct = numpy.random.random(3) - 0.5
532 | >>> persp = numpy.random.random(3) - 0.5
533 | >>> P0 = projection_matrix(point, normal)
534 | >>> result = projection_from_matrix(P0)
535 | >>> P1 = projection_matrix(*result)
536 | >>> is_same_transform(P0, P1)
537 | True
538 | >>> P0 = projection_matrix(point, normal, direct)
539 | >>> result = projection_from_matrix(P0)
540 | >>> P1 = projection_matrix(*result)
541 | >>> is_same_transform(P0, P1)
542 | True
543 | >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
544 | >>> result = projection_from_matrix(P0, pseudo=False)
545 | >>> P1 = projection_matrix(*result)
546 | >>> is_same_transform(P0, P1)
547 | True
548 | >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
549 | >>> result = projection_from_matrix(P0, pseudo=True)
550 | >>> P1 = projection_matrix(*result)
551 | >>> is_same_transform(P0, P1)
552 | True
553 |
554 | """
555 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
556 | M33 = M[:3, :3]
557 | w, V = numpy.linalg.eig(M)
558 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
559 | if not pseudo and len(i):
560 | # point: any eigenvector corresponding to eigenvalue 1
561 | point = numpy.real(V[:, i[-1]]).squeeze()
562 | point /= point[3]
563 | # direction: unit eigenvector corresponding to eigenvalue 0
564 | w, V = numpy.linalg.eig(M33)
565 | i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
566 | if not len(i):
567 | raise ValueError("no eigenvector corresponding to eigenvalue 0")
568 | direction = numpy.real(V[:, i[0]]).squeeze()
569 | direction /= vector_norm(direction)
570 | # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
571 | w, V = numpy.linalg.eig(M33.T)
572 | i = numpy.where(abs(numpy.real(w)) < 1e-8)[0]
573 | if len(i):
574 | # parallel projection
575 | normal = numpy.real(V[:, i[0]]).squeeze()
576 | normal /= vector_norm(normal)
577 | return point, normal, direction, None, False
578 | else:
579 | # orthogonal projection, where normal equals direction vector
580 | return point, direction, None, None, False
581 | else:
582 | # perspective projection
583 | i = numpy.where(abs(numpy.real(w)) > 1e-8)[0]
584 | if not len(i):
585 | raise ValueError(
586 | "no eigenvector not corresponding to eigenvalue 0")
587 | point = numpy.real(V[:, i[-1]]).squeeze()
588 | point /= point[3]
589 | normal = - M[3, :3]
590 | perspective = M[:3, 3] / numpy.dot(point[:3], normal)
591 | if pseudo:
592 | perspective -= normal
593 | return point, normal, None, perspective, pseudo
594 |
595 |
596 | def clip_matrix(left, right, bottom, top, near, far, perspective=False):
597 | """Return matrix to obtain normalized device coordinates from frustum.
598 |
599 | The frustum bounds are axis-aligned along x (left, right),
600 | y (bottom, top) and z (near, far).
601 |
602 | Normalized device coordinates are in range [-1, 1] if coordinates are
603 | inside the frustum.
604 |
605 | If perspective is True the frustum is a truncated pyramid with the
606 | perspective point at origin and direction along z axis, otherwise an
607 | orthographic canonical view volume (a box).
608 |
609 | Homogeneous coordinates transformed by the perspective clip matrix
610 | need to be dehomogenized (divided by w coordinate).
611 |
612 | >>> frustum = numpy.random.rand(6)
613 | >>> frustum[1] += frustum[0]
614 | >>> frustum[3] += frustum[2]
615 | >>> frustum[5] += frustum[4]
616 | >>> M = clip_matrix(perspective=False, *frustum)
617 | >>> numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
618 | array([-1., -1., -1., 1.])
619 | >>> numpy.dot(M, [frustum[1], frustum[3], frustum[5], 1])
620 | array([ 1., 1., 1., 1.])
621 | >>> M = clip_matrix(perspective=True, *frustum)
622 | >>> v = numpy.dot(M, [frustum[0], frustum[2], frustum[4], 1])
623 | >>> v / v[3]
624 | array([-1., -1., -1., 1.])
625 | >>> v = numpy.dot(M, [frustum[1], frustum[3], frustum[4], 1])
626 | >>> v / v[3]
627 | array([ 1., 1., -1., 1.])
628 |
629 | """
630 | if left >= right or bottom >= top or near >= far:
631 | raise ValueError("invalid frustum")
632 | if perspective:
633 | if near <= _EPS:
634 | raise ValueError("invalid frustum: near <= 0")
635 | t = 2.0 * near
636 | M = [[t/(left-right), 0.0, (right+left)/(right-left), 0.0],
637 | [0.0, t/(bottom-top), (top+bottom)/(top-bottom), 0.0],
638 | [0.0, 0.0, (far+near)/(near-far), t*far/(far-near)],
639 | [0.0, 0.0, -1.0, 0.0]]
640 | else:
641 | M = [[2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)],
642 | [0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)],
643 | [0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)],
644 | [0.0, 0.0, 0.0, 1.0]]
645 | return numpy.array(M)
646 |
647 |
648 | def shear_matrix(angle, direction, point, normal):
649 | """Return matrix to shear by angle along direction vector on shear plane.
650 |
651 | The shear plane is defined by a point and normal vector. The direction
652 | vector must be orthogonal to the plane's normal vector.
653 |
654 | A point P is transformed by the shear matrix into P" such that
655 | the vector P-P" is parallel to the direction vector and its extent is
656 | given by the angle of P-P'-P", where P' is the orthogonal projection
657 | of P onto the shear plane.
658 |
659 | >>> angle = (random.random() - 0.5) * 4*math.pi
660 | >>> direct = numpy.random.random(3) - 0.5
661 | >>> point = numpy.random.random(3) - 0.5
662 | >>> normal = numpy.cross(direct, numpy.random.random(3))
663 | >>> S = shear_matrix(angle, direct, point, normal)
664 | >>> numpy.allclose(1, numpy.linalg.det(S))
665 | True
666 |
667 | """
668 | normal = unit_vector(normal[:3])
669 | direction = unit_vector(direction[:3])
670 | if abs(numpy.dot(normal, direction)) > 1e-6:
671 | raise ValueError("direction and normal vectors are not orthogonal")
672 | angle = math.tan(angle)
673 | M = numpy.identity(4)
674 | M[:3, :3] += angle * numpy.outer(direction, normal)
675 | M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
676 | return M
677 |
678 |
679 | def shear_from_matrix(matrix):
680 | """Return shear angle, direction and plane from shear matrix.
681 |
682 | >>> angle = (random.random() - 0.5) * 4*math.pi
683 | >>> direct = numpy.random.random(3) - 0.5
684 | >>> point = numpy.random.random(3) - 0.5
685 | >>> normal = numpy.cross(direct, numpy.random.random(3))
686 | >>> S0 = shear_matrix(angle, direct, point, normal)
687 | >>> angle, direct, point, normal = shear_from_matrix(S0)
688 | >>> S1 = shear_matrix(angle, direct, point, normal)
689 | >>> is_same_transform(S0, S1)
690 | True
691 |
692 | """
693 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)
694 | M33 = M[:3, :3]
695 | # normal: cross independent eigenvectors corresponding to the eigenvalue 1
696 | w, V = numpy.linalg.eig(M33)
697 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-4)[0]
698 | if len(i) < 2:
699 | raise ValueError("no two linear independent eigenvectors found %s" % w)
700 | V = numpy.real(V[:, i]).squeeze().T
701 | lenorm = -1.0
702 | for i0, i1 in ((0, 1), (0, 2), (1, 2)):
703 | n = numpy.cross(V[i0], V[i1])
704 | w = vector_norm(n)
705 | if w > lenorm:
706 | lenorm = w
707 | normal = n
708 | normal /= lenorm
709 | # direction and angle
710 | direction = numpy.dot(M33 - numpy.identity(3), normal)
711 | angle = vector_norm(direction)
712 | direction /= angle
713 | angle = math.atan(angle)
714 | # point: eigenvector corresponding to eigenvalue 1
715 | w, V = numpy.linalg.eig(M)
716 | i = numpy.where(abs(numpy.real(w) - 1.0) < 1e-8)[0]
717 | if not len(i):
718 | raise ValueError("no eigenvector corresponding to eigenvalue 1")
719 | point = numpy.real(V[:, i[-1]]).squeeze()
720 | point /= point[3]
721 | return angle, direction, point, normal
722 |
723 |
724 | def decompose_matrix(matrix):
725 | """Return sequence of transformations from transformation matrix.
726 |
727 | matrix : array_like
728 | Non-degenerative homogeneous transformation matrix
729 |
730 | Return tuple of:
731 | scale : vector of 3 scaling factors
732 | shear : list of shear factors for x-y, x-z, y-z axes
733 | angles : list of Euler angles about static x, y, z axes
734 | translate : translation vector along x, y, z axes
735 | perspective : perspective partition of matrix
736 |
737 | Raise ValueError if matrix is of wrong type or degenerative.
738 |
739 | >>> T0 = translation_matrix([1, 2, 3])
740 | >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
741 | >>> T1 = translation_matrix(trans)
742 | >>> numpy.allclose(T0, T1)
743 | True
744 | >>> S = scale_matrix(0.123)
745 | >>> scale, shear, angles, trans, persp = decompose_matrix(S)
746 | >>> scale[0]
747 | 0.123
748 | >>> R0 = euler_matrix(1, 2, 3)
749 | >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
750 | >>> R1 = euler_matrix(*angles)
751 | >>> numpy.allclose(R0, R1)
752 | True
753 |
754 | """
755 | M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
756 | if abs(M[3, 3]) < _EPS:
757 | raise ValueError("M[3, 3] is zero")
758 | M /= M[3, 3]
759 | P = M.copy()
760 | P[:, 3] = 0.0, 0.0, 0.0, 1.0
761 | if not numpy.linalg.det(P):
762 | raise ValueError("matrix is singular")
763 |
764 | scale = numpy.zeros((3, ))
765 | shear = [0.0, 0.0, 0.0]
766 | angles = [0.0, 0.0, 0.0]
767 |
768 | if any(abs(M[:3, 3]) > _EPS):
769 | perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
770 | M[:, 3] = 0.0, 0.0, 0.0, 1.0
771 | else:
772 | perspective = numpy.array([0.0, 0.0, 0.0, 1.0])
773 |
774 | translate = M[3, :3].copy()
775 | M[3, :3] = 0.0
776 |
777 | row = M[:3, :3].copy()
778 | scale[0] = vector_norm(row[0])
779 | row[0] /= scale[0]
780 | shear[0] = numpy.dot(row[0], row[1])
781 | row[1] -= row[0] * shear[0]
782 | scale[1] = vector_norm(row[1])
783 | row[1] /= scale[1]
784 | shear[0] /= scale[1]
785 | shear[1] = numpy.dot(row[0], row[2])
786 | row[2] -= row[0] * shear[1]
787 | shear[2] = numpy.dot(row[1], row[2])
788 | row[2] -= row[1] * shear[2]
789 | scale[2] = vector_norm(row[2])
790 | row[2] /= scale[2]
791 | shear[1:] /= scale[2]
792 |
793 | if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
794 | numpy.negative(scale, scale)
795 | numpy.negative(row, row)
796 |
797 | angles[1] = math.asin(-row[0, 2])
798 | if math.cos(angles[1]):
799 | angles[0] = math.atan2(row[1, 2], row[2, 2])
800 | angles[2] = math.atan2(row[0, 1], row[0, 0])
801 | else:
802 | #angles[0] = math.atan2(row[1, 0], row[1, 1])
803 | angles[0] = math.atan2(-row[2, 1], row[1, 1])
804 | angles[2] = 0.0
805 |
806 | return scale, shear, angles, translate, perspective
807 |
808 |
809 | def compose_matrix(scale=None, shear=None, angles=None, translate=None,
810 | perspective=None):
811 | """Return transformation matrix from sequence of transformations.
812 |
813 | This is the inverse of the decompose_matrix function.
814 |
815 | Sequence of transformations:
816 | scale : vector of 3 scaling factors
817 | shear : list of shear factors for x-y, x-z, y-z axes
818 | angles : list of Euler angles about static x, y, z axes
819 | translate : translation vector along x, y, z axes
820 | perspective : perspective partition of matrix
821 |
822 | >>> scale = numpy.random.random(3) - 0.5
823 | >>> shear = numpy.random.random(3) - 0.5
824 | >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
825 | >>> trans = numpy.random.random(3) - 0.5
826 | >>> persp = numpy.random.random(4) - 0.5
827 | >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
828 | >>> result = decompose_matrix(M0)
829 | >>> M1 = compose_matrix(*result)
830 | >>> is_same_transform(M0, M1)
831 | True
832 |
833 | """
834 | M = numpy.identity(4)
835 | if perspective is not None:
836 | P = numpy.identity(4)
837 | P[3, :] = perspective[:4]
838 | M = numpy.dot(M, P)
839 | if translate is not None:
840 | T = numpy.identity(4)
841 | T[:3, 3] = translate[:3]
842 | M = numpy.dot(M, T)
843 | if angles is not None:
844 | R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
845 | M = numpy.dot(M, R)
846 | if shear is not None:
847 | Z = numpy.identity(4)
848 | Z[1, 2] = shear[2]
849 | Z[0, 2] = shear[1]
850 | Z[0, 1] = shear[0]
851 | M = numpy.dot(M, Z)
852 | if scale is not None:
853 | S = numpy.identity(4)
854 | S[0, 0] = scale[0]
855 | S[1, 1] = scale[1]
856 | S[2, 2] = scale[2]
857 | M = numpy.dot(M, S)
858 | M /= M[3, 3]
859 | return M
860 |
861 |
862 | def orthogonalization_matrix(lengths, angles):
863 | """Return orthogonalization matrix for crystallographic cell coordinates.
864 |
865 | Angles are expected in degrees.
866 |
867 | The de-orthogonalization matrix is the inverse.
868 |
869 | >>> O = orthogonalization_matrix([10, 10, 10], [90, 90, 90])
870 | >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
871 | True
872 | >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
873 | >>> numpy.allclose(numpy.sum(O), 43.063229)
874 | True
875 |
876 | """
877 | a, b, c = lengths
878 | angles = numpy.radians(angles)
879 | sina, sinb, _ = numpy.sin(angles)
880 | cosa, cosb, cosg = numpy.cos(angles)
881 | co = (cosa * cosb - cosg) / (sina * sinb)
882 | return numpy.array([
883 | [ a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0],
884 | [-a*sinb*co, b*sina, 0.0, 0.0],
885 | [ a*cosb, b*cosa, c, 0.0],
886 | [ 0.0, 0.0, 0.0, 1.0]])
887 |
888 |
889 | def affine_matrix_from_points(v0, v1, shear=True, scale=True, usesvd=True):
890 | """Return affine transform matrix to register two point sets.
891 |
892 | v0 and v1 are shape (ndims, \*) arrays of at least ndims non-homogeneous
893 | coordinates, where ndims is the dimensionality of the coordinate space.
894 |
895 | If shear is False, a similarity transformation matrix is returned.
896 | If also scale is False, a rigid/Euclidean transformation matrix
897 | is returned.
898 |
899 | By default the algorithm by Hartley and Zissermann [15] is used.
900 | If usesvd is True, similarity and Euclidean transformation matrices
901 | are calculated by minimizing the weighted sum of squared deviations
902 | (RMSD) according to the algorithm by Kabsch [8].
903 | Otherwise, and if ndims is 3, the quaternion based algorithm by Horn [9]
904 | is used, which is slower when using this Python implementation.
905 |
906 | The returned matrix performs rotation, translation and uniform scaling
907 | (if specified).
908 |
909 | >>> v0 = [[0, 1031, 1031, 0], [0, 0, 1600, 1600]]
910 | >>> v1 = [[675, 826, 826, 677], [55, 52, 281, 277]]
911 | >>> affine_matrix_from_points(v0, v1)
912 | array([[ 0.14549, 0.00062, 675.50008],
913 | [ 0.00048, 0.14094, 53.24971],
914 | [ 0. , 0. , 1. ]])
915 | >>> T = translation_matrix(numpy.random.random(3)-0.5)
916 | >>> R = random_rotation_matrix(numpy.random.random(3))
917 | >>> S = scale_matrix(random.random())
918 | >>> M = concatenate_matrices(T, R, S)
919 | >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
920 | >>> v0[3] = 1
921 | >>> v1 = numpy.dot(M, v0)
922 | >>> v0[:3] += numpy.random.normal(0, 1e-8, 300).reshape(3, -1)
923 | >>> M = affine_matrix_from_points(v0[:3], v1[:3])
924 | >>> numpy.allclose(v1, numpy.dot(M, v0))
925 | True
926 |
927 | More examples in superimposition_matrix()
928 |
929 | """
930 | v0 = numpy.array(v0, dtype=numpy.float64, copy=True)
931 | v1 = numpy.array(v1, dtype=numpy.float64, copy=True)
932 |
933 | ndims = v0.shape[0]
934 | if ndims < 2 or v0.shape[1] < ndims or v0.shape != v1.shape:
935 | raise ValueError("input arrays are of wrong shape or type")
936 |
937 | # move centroids to origin
938 | t0 = -numpy.mean(v0, axis=1)
939 | M0 = numpy.identity(ndims+1)
940 | M0[:ndims, ndims] = t0
941 | v0 += t0.reshape(ndims, 1)
942 | t1 = -numpy.mean(v1, axis=1)
943 | M1 = numpy.identity(ndims+1)
944 | M1[:ndims, ndims] = t1
945 | v1 += t1.reshape(ndims, 1)
946 |
947 | if shear:
948 | # Affine transformation
949 | A = numpy.concatenate((v0, v1), axis=0)
950 | u, s, vh = numpy.linalg.svd(A.T)
951 | vh = vh[:ndims].T
952 | B = vh[:ndims]
953 | C = vh[ndims:2*ndims]
954 | t = numpy.dot(C, numpy.linalg.pinv(B))
955 | t = numpy.concatenate((t, numpy.zeros((ndims, 1))), axis=1)
956 | M = numpy.vstack((t, ((0.0,)*ndims) + (1.0,)))
957 | elif usesvd or ndims != 3:
958 | # Rigid transformation via SVD of covariance matrix
959 | u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
960 | # rotation matrix from SVD orthonormal bases
961 | R = numpy.dot(u, vh)
962 | if numpy.linalg.det(R) < 0.0:
963 | # R does not constitute right handed system
964 | R -= numpy.outer(u[:, ndims-1], vh[ndims-1, :]*2.0)
965 | s[-1] *= -1.0
966 | # homogeneous transformation matrix
967 | M = numpy.identity(ndims+1)
968 | M[:ndims, :ndims] = R
969 | else:
970 | # Rigid transformation matrix via quaternion
971 | # compute symmetric matrix N
972 | xx, yy, zz = numpy.sum(v0 * v1, axis=1)
973 | xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
974 | xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
975 | N = [[xx+yy+zz, 0.0, 0.0, 0.0],
976 | [yz-zy, xx-yy-zz, 0.0, 0.0],
977 | [zx-xz, xy+yx, yy-xx-zz, 0.0],
978 | [xy-yx, zx+xz, yz+zy, zz-xx-yy]]
979 | # quaternion: eigenvector corresponding to most positive eigenvalue
980 | w, V = numpy.linalg.eigh(N)
981 | q = V[:, numpy.argmax(w)]
982 | q /= vector_norm(q) # unit quaternion
983 | # homogeneous transformation matrix
984 | M = quaternion_matrix(q)
985 |
986 | if scale and not shear:
987 | # Affine transformation; scale is ratio of RMS deviations from centroid
988 | v0 *= v0
989 | v1 *= v1
990 | M[:ndims, :ndims] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
991 |
992 | # move centroids back
993 | M = numpy.dot(numpy.linalg.inv(M1), numpy.dot(M, M0))
994 | M /= M[ndims, ndims]
995 | return M
996 |
997 |
998 | def superimposition_matrix(v0, v1, scale=False, usesvd=True):
999 | """Return matrix to transform given 3D point set into second point set.
1000 |
1001 | v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 points.
1002 |
1003 | The parameters scale and usesvd are explained in the more general
1004 | affine_matrix_from_points function.
1005 |
1006 | The returned matrix is a similarity or Euclidean transformation matrix.
1007 | This function has a fast C implementation in transformations.c.
1008 |
1009 | >>> v0 = numpy.random.rand(3, 10)
1010 | >>> M = superimposition_matrix(v0, v0)
1011 | >>> numpy.allclose(M, numpy.identity(4))
1012 | True
1013 | >>> R = random_rotation_matrix(numpy.random.random(3))
1014 | >>> v0 = [[1,0,0], [0,1,0], [0,0,1], [1,1,1]]
1015 | >>> v1 = numpy.dot(R, v0)
1016 | >>> M = superimposition_matrix(v0, v1)
1017 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1018 | True
1019 | >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20
1020 | >>> v0[3] = 1
1021 | >>> v1 = numpy.dot(R, v0)
1022 | >>> M = superimposition_matrix(v0, v1)
1023 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1024 | True
1025 | >>> S = scale_matrix(random.random())
1026 | >>> T = translation_matrix(numpy.random.random(3)-0.5)
1027 | >>> M = concatenate_matrices(T, R, S)
1028 | >>> v1 = numpy.dot(M, v0)
1029 | >>> v0[:3] += numpy.random.normal(0, 1e-9, 300).reshape(3, -1)
1030 | >>> M = superimposition_matrix(v0, v1, scale=True)
1031 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1032 | True
1033 | >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
1034 | >>> numpy.allclose(v1, numpy.dot(M, v0))
1035 | True
1036 | >>> v = numpy.empty((4, 100, 3))
1037 | >>> v[:, :, 0] = v0
1038 | >>> M = superimposition_matrix(v0, v1, scale=True, usesvd=False)
1039 | >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
1040 | True
1041 |
1042 | """
1043 | v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
1044 | v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
1045 | return affine_matrix_from_points(v0, v1, shear=False,
1046 | scale=scale, usesvd=usesvd)
1047 |
1048 |
1049 | def euler_matrix(ai, aj, ak, axes='sxyz'):
1050 | """Return homogeneous rotation matrix from Euler angles and axis sequence.
1051 |
1052 | ai, aj, ak : Euler's roll, pitch and yaw angles
1053 | axes : One of 24 axis sequences as string or encoded tuple
1054 |
1055 | >>> R = euler_matrix(1, 2, 3, 'syxz')
1056 | >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
1057 | True
1058 | >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
1059 | >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
1060 | True
1061 | >>> ai, aj, ak = (4*math.pi) * (numpy.random.random(3) - 0.5)
1062 | >>> for axes in _AXES2TUPLE.keys():
1063 | ... R = euler_matrix(ai, aj, ak, axes)
1064 | >>> for axes in _TUPLE2AXES.keys():
1065 | ... R = euler_matrix(ai, aj, ak, axes)
1066 |
1067 | """
1068 | try:
1069 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
1070 | except (AttributeError, KeyError):
1071 | _TUPLE2AXES[axes] # validation
1072 | firstaxis, parity, repetition, frame = axes
1073 |
1074 | i = firstaxis
1075 | j = _NEXT_AXIS[i+parity]
1076 | k = _NEXT_AXIS[i-parity+1]
1077 |
1078 | if frame:
1079 | ai, ak = ak, ai
1080 | if parity:
1081 | ai, aj, ak = -ai, -aj, -ak
1082 |
1083 | si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
1084 | ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
1085 | cc, cs = ci*ck, ci*sk
1086 | sc, ss = si*ck, si*sk
1087 |
1088 | M = numpy.identity(4)
1089 | if repetition:
1090 | M[i, i] = cj
1091 | M[i, j] = sj*si
1092 | M[i, k] = sj*ci
1093 | M[j, i] = sj*sk
1094 | M[j, j] = -cj*ss+cc
1095 | M[j, k] = -cj*cs-sc
1096 | M[k, i] = -sj*ck
1097 | M[k, j] = cj*sc+cs
1098 | M[k, k] = cj*cc-ss
1099 | else:
1100 | M[i, i] = cj*ck
1101 | M[i, j] = sj*sc-cs
1102 | M[i, k] = sj*cc+ss
1103 | M[j, i] = cj*sk
1104 | M[j, j] = sj*ss+cc
1105 | M[j, k] = sj*cs-sc
1106 | M[k, i] = -sj
1107 | M[k, j] = cj*si
1108 | M[k, k] = cj*ci
1109 | return M
1110 |
1111 |
1112 | def euler_from_matrix(matrix, axes='sxyz'):
1113 | """Return Euler angles from rotation matrix for specified axis sequence.
1114 |
1115 | axes : One of 24 axis sequences as string or encoded tuple
1116 |
1117 | Note that many Euler angle triplets can describe one matrix.
1118 |
1119 | >>> R0 = euler_matrix(1, 2, 3, 'syxz')
1120 | >>> al, be, ga = euler_from_matrix(R0, 'syxz')
1121 | >>> R1 = euler_matrix(al, be, ga, 'syxz')
1122 | >>> numpy.allclose(R0, R1)
1123 | True
1124 | >>> angles = (4*math.pi) * (numpy.random.random(3) - 0.5)
1125 | >>> for axes in _AXES2TUPLE.keys():
1126 | ... R0 = euler_matrix(axes=axes, *angles)
1127 | ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
1128 | ... if not numpy.allclose(R0, R1): print(axes, "failed")
1129 |
1130 | """
1131 | try:
1132 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1133 | except (AttributeError, KeyError):
1134 | _TUPLE2AXES[axes] # validation
1135 | firstaxis, parity, repetition, frame = axes
1136 |
1137 | i = firstaxis
1138 | j = _NEXT_AXIS[i+parity]
1139 | k = _NEXT_AXIS[i-parity+1]
1140 |
1141 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
1142 | if repetition:
1143 | sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
1144 | if sy > _EPS:
1145 | ax = math.atan2( M[i, j], M[i, k])
1146 | ay = math.atan2( sy, M[i, i])
1147 | az = math.atan2( M[j, i], -M[k, i])
1148 | else:
1149 | ax = math.atan2(-M[j, k], M[j, j])
1150 | ay = math.atan2( sy, M[i, i])
1151 | az = 0.0
1152 | else:
1153 | cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
1154 | if cy > _EPS:
1155 | ax = math.atan2( M[k, j], M[k, k])
1156 | ay = math.atan2(-M[k, i], cy)
1157 | az = math.atan2( M[j, i], M[i, i])
1158 | else:
1159 | ax = math.atan2(-M[j, k], M[j, j])
1160 | ay = math.atan2(-M[k, i], cy)
1161 | az = 0.0
1162 |
1163 | if parity:
1164 | ax, ay, az = -ax, -ay, -az
1165 | if frame:
1166 | ax, az = az, ax
1167 | return ax, ay, az
1168 |
1169 |
1170 | def euler_from_quaternion(quaternion, axes='sxyz'):
1171 | """Return Euler angles from quaternion for specified axis sequence.
1172 |
1173 | >>> angles = euler_from_quaternion([0.99810947, 0.06146124, 0, 0])
1174 | >>> numpy.allclose(angles, [0.123, 0, 0])
1175 | True
1176 |
1177 | """
1178 | return euler_from_matrix(quaternion_matrix(quaternion), axes)
1179 |
1180 |
1181 | def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
1182 | """Return quaternion from Euler angles and axis sequence.
1183 |
1184 | ai, aj, ak : Euler's roll, pitch and yaw angles
1185 | axes : One of 24 axis sequences as string or encoded tuple
1186 |
1187 | >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
1188 | >>> numpy.allclose(q, [0.435953, 0.310622, -0.718287, 0.444435])
1189 | True
1190 |
1191 | """
1192 | try:
1193 | firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1194 | except (AttributeError, KeyError):
1195 | _TUPLE2AXES[axes] # validation
1196 | firstaxis, parity, repetition, frame = axes
1197 |
1198 | i = firstaxis + 1
1199 | j = _NEXT_AXIS[i+parity-1] + 1
1200 | k = _NEXT_AXIS[i-parity] + 1
1201 |
1202 | if frame:
1203 | ai, ak = ak, ai
1204 | if parity:
1205 | aj = -aj
1206 |
1207 | ai /= 2.0
1208 | aj /= 2.0
1209 | ak /= 2.0
1210 | ci = math.cos(ai)
1211 | si = math.sin(ai)
1212 | cj = math.cos(aj)
1213 | sj = math.sin(aj)
1214 | ck = math.cos(ak)
1215 | sk = math.sin(ak)
1216 | cc = ci*ck
1217 | cs = ci*sk
1218 | sc = si*ck
1219 | ss = si*sk
1220 |
1221 | q = numpy.empty((4, ))
1222 | if repetition:
1223 | q[0] = cj*(cc - ss)
1224 | q[i] = cj*(cs + sc)
1225 | q[j] = sj*(cc + ss)
1226 | q[k] = sj*(cs - sc)
1227 | else:
1228 | q[0] = cj*cc + sj*ss
1229 | q[i] = cj*sc - sj*cs
1230 | q[j] = cj*ss + sj*cc
1231 | q[k] = cj*cs - sj*sc
1232 | if parity:
1233 | q[j] *= -1.0
1234 |
1235 | return q
1236 |
1237 |
1238 | def quaternion_about_axis(angle, axis):
1239 | """Return quaternion for rotation about axis.
1240 |
1241 | >>> q = quaternion_about_axis(0.123, [1, 0, 0])
1242 | >>> numpy.allclose(q, [0.99810947, 0.06146124, 0, 0])
1243 | True
1244 |
1245 | """
1246 | q = numpy.array([0.0, axis[0], axis[1], axis[2]])
1247 | qlen = vector_norm(q)
1248 | if qlen > _EPS:
1249 | q *= math.sin(angle/2.0) / qlen
1250 | q[0] = math.cos(angle/2.0)
1251 | return q
1252 |
1253 |
1254 | def quaternion_matrix(quaternion):
1255 | """Return homogeneous rotation matrix from quaternion.
1256 |
1257 | >>> M = quaternion_matrix([0.99810947, 0.06146124, 0, 0])
1258 | >>> numpy.allclose(M, rotation_matrix(0.123, [1, 0, 0]))
1259 | True
1260 | >>> M = quaternion_matrix([1, 0, 0, 0])
1261 | >>> numpy.allclose(M, numpy.identity(4))
1262 | True
1263 | >>> M = quaternion_matrix([0, 1, 0, 0])
1264 | >>> numpy.allclose(M, numpy.diag([1, -1, -1, 1]))
1265 | True
1266 |
1267 | """
1268 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1269 | n = numpy.dot(q, q)
1270 | if n < _EPS:
1271 | return numpy.identity(4)
1272 | q *= math.sqrt(2.0 / n)
1273 | q = numpy.outer(q, q)
1274 | return numpy.array([
1275 | [1.0-q[2, 2]-q[3, 3], q[1, 2]-q[3, 0], q[1, 3]+q[2, 0], 0.0],
1276 | [ q[1, 2]+q[3, 0], 1.0-q[1, 1]-q[3, 3], q[2, 3]-q[1, 0], 0.0],
1277 | [ q[1, 3]-q[2, 0], q[2, 3]+q[1, 0], 1.0-q[1, 1]-q[2, 2], 0.0],
1278 | [ 0.0, 0.0, 0.0, 1.0]])
1279 |
1280 |
1281 | def quaternion_from_matrix(matrix, isprecise=False):
1282 | """Return quaternion from rotation matrix.
1283 |
1284 | If isprecise is True, the input matrix is assumed to be a precise rotation
1285 | matrix and a faster algorithm is used.
1286 |
1287 | >>> q = quaternion_from_matrix(numpy.identity(4), True)
1288 | >>> numpy.allclose(q, [1, 0, 0, 0])
1289 | True
1290 | >>> q = quaternion_from_matrix(numpy.diag([1, -1, -1, 1]))
1291 | >>> numpy.allclose(q, [0, 1, 0, 0]) or numpy.allclose(q, [0, -1, 0, 0])
1292 | True
1293 | >>> R = rotation_matrix(0.123, (1, 2, 3))
1294 | >>> q = quaternion_from_matrix(R, True)
1295 | >>> numpy.allclose(q, [0.9981095, 0.0164262, 0.0328524, 0.0492786])
1296 | True
1297 | >>> R = [[-0.545, 0.797, 0.260, 0], [0.733, 0.603, -0.313, 0],
1298 | ... [-0.407, 0.021, -0.913, 0], [0, 0, 0, 1]]
1299 | >>> q = quaternion_from_matrix(R)
1300 | >>> numpy.allclose(q, [0.19069, 0.43736, 0.87485, -0.083611])
1301 | True
1302 | >>> R = [[0.395, 0.362, 0.843, 0], [-0.626, 0.796, -0.056, 0],
1303 | ... [-0.677, -0.498, 0.529, 0], [0, 0, 0, 1]]
1304 | >>> q = quaternion_from_matrix(R)
1305 | >>> numpy.allclose(q, [0.82336615, -0.13610694, 0.46344705, -0.29792603])
1306 | True
1307 | >>> R = random_rotation_matrix()
1308 | >>> q = quaternion_from_matrix(R)
1309 | >>> is_same_transform(R, quaternion_matrix(q))
1310 | True
1311 | >>> R = euler_matrix(0.0, 0.0, numpy.pi/2.0)
1312 | >>> numpy.allclose(quaternion_from_matrix(R, isprecise=False),
1313 | ... quaternion_from_matrix(R, isprecise=True))
1314 | True
1315 |
1316 | """
1317 | M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
1318 | if isprecise:
1319 | q = numpy.empty((4, ))
1320 | t = numpy.trace(M)
1321 | if t > M[3, 3]:
1322 | q[0] = t
1323 | q[3] = M[1, 0] - M[0, 1]
1324 | q[2] = M[0, 2] - M[2, 0]
1325 | q[1] = M[2, 1] - M[1, 2]
1326 | else:
1327 | i, j, k = 1, 2, 3
1328 | if M[1, 1] > M[0, 0]:
1329 | i, j, k = 2, 3, 1
1330 | if M[2, 2] > M[i, i]:
1331 | i, j, k = 3, 1, 2
1332 | t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
1333 | q[i] = t
1334 | q[j] = M[i, j] + M[j, i]
1335 | q[k] = M[k, i] + M[i, k]
1336 | q[3] = M[k, j] - M[j, k]
1337 | q *= 0.5 / math.sqrt(t * M[3, 3])
1338 | else:
1339 | m00 = M[0, 0]
1340 | m01 = M[0, 1]
1341 | m02 = M[0, 2]
1342 | m10 = M[1, 0]
1343 | m11 = M[1, 1]
1344 | m12 = M[1, 2]
1345 | m20 = M[2, 0]
1346 | m21 = M[2, 1]
1347 | m22 = M[2, 2]
1348 | # symmetric matrix K
1349 | K = numpy.array([[m00-m11-m22, 0.0, 0.0, 0.0],
1350 | [m01+m10, m11-m00-m22, 0.0, 0.0],
1351 | [m02+m20, m12+m21, m22-m00-m11, 0.0],
1352 | [m21-m12, m02-m20, m10-m01, m00+m11+m22]])
1353 | K /= 3.0
1354 | # quaternion is eigenvector of K that corresponds to largest eigenvalue
1355 | w, V = numpy.linalg.eigh(K)
1356 | q = V[[3, 0, 1, 2], numpy.argmax(w)]
1357 | if q[0] < 0.0:
1358 | numpy.negative(q, q)
1359 | return q
1360 |
1361 |
1362 | def quaternion_multiply(quaternion1, quaternion0):
1363 | """Return multiplication of two quaternions.
1364 |
1365 | >>> q = quaternion_multiply([4, 1, -2, 3], [8, -5, 6, 7])
1366 | >>> numpy.allclose(q, [28, -44, -14, 48])
1367 | True
1368 |
1369 | """
1370 | w0, x0, y0, z0 = quaternion0
1371 | w1, x1, y1, z1 = quaternion1
1372 | return numpy.array([-x1*x0 - y1*y0 - z1*z0 + w1*w0,
1373 | x1*w0 + y1*z0 - z1*y0 + w1*x0,
1374 | -x1*z0 + y1*w0 + z1*x0 + w1*y0,
1375 | x1*y0 - y1*x0 + z1*w0 + w1*z0], dtype=numpy.float64)
1376 |
1377 |
1378 | def quaternion_conjugate(quaternion):
1379 | """Return conjugate of quaternion.
1380 |
1381 | >>> q0 = random_quaternion()
1382 | >>> q1 = quaternion_conjugate(q0)
1383 | >>> q1[0] == q0[0] and all(q1[1:] == -q0[1:])
1384 | True
1385 |
1386 | """
1387 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1388 | numpy.negative(q[1:], q[1:])
1389 | return q
1390 |
1391 |
1392 | def quaternion_inverse(quaternion):
1393 | """Return inverse of quaternion.
1394 |
1395 | >>> q0 = random_quaternion()
1396 | >>> q1 = quaternion_inverse(q0)
1397 | >>> numpy.allclose(quaternion_multiply(q0, q1), [1, 0, 0, 0])
1398 | True
1399 |
1400 | """
1401 | q = numpy.array(quaternion, dtype=numpy.float64, copy=True)
1402 | numpy.negative(q[1:], q[1:])
1403 | return q / numpy.dot(q, q)
1404 |
1405 |
1406 | def quaternion_real(quaternion):
1407 | """Return real part of quaternion.
1408 |
1409 | >>> quaternion_real([3, 0, 1, 2])
1410 | 3.0
1411 |
1412 | """
1413 | return float(quaternion[0])
1414 |
1415 |
1416 | def quaternion_imag(quaternion):
1417 | """Return imaginary part of quaternion.
1418 |
1419 | >>> quaternion_imag([3, 0, 1, 2])
1420 | array([ 0., 1., 2.])
1421 |
1422 | """
1423 | return numpy.array(quaternion[1:4], dtype=numpy.float64, copy=True)
1424 |
1425 |
1426 | def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
1427 | """Return spherical linear interpolation between two quaternions.
1428 |
1429 | >>> q0 = random_quaternion()
1430 | >>> q1 = random_quaternion()
1431 | >>> q = quaternion_slerp(q0, q1, 0)
1432 | >>> numpy.allclose(q, q0)
1433 | True
1434 | >>> q = quaternion_slerp(q0, q1, 1, 1)
1435 | >>> numpy.allclose(q, q1)
1436 | True
1437 | >>> q = quaternion_slerp(q0, q1, 0.5)
1438 | >>> angle = math.acos(numpy.dot(q0, q))
1439 | >>> numpy.allclose(2, math.acos(numpy.dot(q0, q1)) / angle) or \
1440 | numpy.allclose(2, math.acos(-numpy.dot(q0, q1)) / angle)
1441 | True
1442 |
1443 | """
1444 | q0 = unit_vector(quat0[:4])
1445 | q1 = unit_vector(quat1[:4])
1446 | if fraction == 0.0:
1447 | return q0
1448 | elif fraction == 1.0:
1449 | return q1
1450 | d = numpy.dot(q0, q1)
1451 | if abs(abs(d) - 1.0) < _EPS:
1452 | return q0
1453 | if shortestpath and d < 0.0:
1454 | # invert rotation
1455 | d = -d
1456 | numpy.negative(q1, q1)
1457 | angle = math.acos(d) + spin * math.pi
1458 | if abs(angle) < _EPS:
1459 | return q0
1460 | isin = 1.0 / math.sin(angle)
1461 | q0 *= math.sin((1.0 - fraction) * angle) * isin
1462 | q1 *= math.sin(fraction * angle) * isin
1463 | q0 += q1
1464 | return q0
1465 |
1466 |
1467 | def random_quaternion(rand=None):
1468 | """Return uniform random unit quaternion.
1469 |
1470 | rand: array like or None
1471 | Three independent random variables that are uniformly distributed
1472 | between 0 and 1.
1473 |
1474 | >>> q = random_quaternion()
1475 | >>> numpy.allclose(1, vector_norm(q))
1476 | True
1477 | >>> q = random_quaternion(numpy.random.random(3))
1478 | >>> len(q.shape), q.shape[0]==4
1479 | (1, True)
1480 |
1481 | """
1482 | if rand is None:
1483 | rand = numpy.random.rand(3)
1484 | else:
1485 | assert len(rand) == 3
1486 | r1 = numpy.sqrt(1.0 - rand[0])
1487 | r2 = numpy.sqrt(rand[0])
1488 | pi2 = math.pi * 2.0
1489 | t1 = pi2 * rand[1]
1490 | t2 = pi2 * rand[2]
1491 | return numpy.array([numpy.cos(t2)*r2, numpy.sin(t1)*r1,
1492 | numpy.cos(t1)*r1, numpy.sin(t2)*r2])
1493 |
1494 |
1495 | def random_rotation_matrix(rand=None):
1496 | """Return uniform random rotation matrix.
1497 |
1498 | rand: array like
1499 | Three independent random variables that are uniformly distributed
1500 | between 0 and 1 for each returned quaternion.
1501 |
1502 | >>> R = random_rotation_matrix()
1503 | >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
1504 | True
1505 |
1506 | """
1507 | return quaternion_matrix(random_quaternion(rand))
1508 |
1509 |
1510 | class Arcball(object):
1511 | """Virtual Trackball Control.
1512 |
1513 | >>> ball = Arcball()
1514 | >>> ball = Arcball(initial=numpy.identity(4))
1515 | >>> ball.place([320, 320], 320)
1516 | >>> ball.down([500, 250])
1517 | >>> ball.drag([475, 275])
1518 | >>> R = ball.matrix()
1519 | >>> numpy.allclose(numpy.sum(R), 3.90583455)
1520 | True
1521 | >>> ball = Arcball(initial=[1, 0, 0, 0])
1522 | >>> ball.place([320, 320], 320)
1523 | >>> ball.setaxes([1, 1, 0], [-1, 1, 0])
1524 | >>> ball.constrain = True
1525 | >>> ball.down([400, 200])
1526 | >>> ball.drag([200, 400])
1527 | >>> R = ball.matrix()
1528 | >>> numpy.allclose(numpy.sum(R), 0.2055924)
1529 | True
1530 | >>> ball.next()
1531 |
1532 | """
1533 | def __init__(self, initial=None):
1534 | """Initialize virtual trackball control.
1535 |
1536 | initial : quaternion or rotation matrix
1537 |
1538 | """
1539 | self._axis = None
1540 | self._axes = None
1541 | self._radius = 1.0
1542 | self._center = [0.0, 0.0]
1543 | self._vdown = numpy.array([0.0, 0.0, 1.0])
1544 | self._constrain = False
1545 | if initial is None:
1546 | self._qdown = numpy.array([1.0, 0.0, 0.0, 0.0])
1547 | else:
1548 | initial = numpy.array(initial, dtype=numpy.float64)
1549 | if initial.shape == (4, 4):
1550 | self._qdown = quaternion_from_matrix(initial)
1551 | elif initial.shape == (4, ):
1552 | initial /= vector_norm(initial)
1553 | self._qdown = initial
1554 | else:
1555 | raise ValueError("initial not a quaternion or matrix")
1556 | self._qnow = self._qpre = self._qdown
1557 |
1558 | def place(self, center, radius):
1559 | """Place Arcball, e.g. when window size changes.
1560 |
1561 | center : sequence[2]
1562 | Window coordinates of trackball center.
1563 | radius : float
1564 | Radius of trackball in window coordinates.
1565 |
1566 | """
1567 | self._radius = float(radius)
1568 | self._center[0] = center[0]
1569 | self._center[1] = center[1]
1570 |
1571 | def setaxes(self, *axes):
1572 | """Set axes to constrain rotations."""
1573 | if axes is None:
1574 | self._axes = None
1575 | else:
1576 | self._axes = [unit_vector(axis) for axis in axes]
1577 |
1578 | @property
1579 | def constrain(self):
1580 | """Return state of constrain to axis mode."""
1581 | return self._constrain
1582 |
1583 | @constrain.setter
1584 | def constrain(self, value):
1585 | """Set state of constrain to axis mode."""
1586 | self._constrain = bool(value)
1587 |
1588 | def down(self, point):
1589 | """Set initial cursor window coordinates and pick constrain-axis."""
1590 | self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
1591 | self._qdown = self._qpre = self._qnow
1592 | if self._constrain and self._axes is not None:
1593 | self._axis = arcball_nearest_axis(self._vdown, self._axes)
1594 | self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
1595 | else:
1596 | self._axis = None
1597 |
1598 | def drag(self, point):
1599 | """Update current cursor window coordinates."""
1600 | vnow = arcball_map_to_sphere(point, self._center, self._radius)
1601 | if self._axis is not None:
1602 | vnow = arcball_constrain_to_axis(vnow, self._axis)
1603 | self._qpre = self._qnow
1604 | t = numpy.cross(self._vdown, vnow)
1605 | if numpy.dot(t, t) < _EPS:
1606 | self._qnow = self._qdown
1607 | else:
1608 | q = [numpy.dot(self._vdown, vnow), t[0], t[1], t[2]]
1609 | self._qnow = quaternion_multiply(q, self._qdown)
1610 |
1611 | def next(self, acceleration=0.0):
1612 | """Continue rotation in direction of last drag."""
1613 | q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
1614 | self._qpre, self._qnow = self._qnow, q
1615 |
1616 | def matrix(self):
1617 | """Return homogeneous rotation matrix."""
1618 | return quaternion_matrix(self._qnow)
1619 |
1620 |
1621 | def arcball_map_to_sphere(point, center, radius):
1622 | """Return unit sphere coordinates from window coordinates."""
1623 | v0 = (point[0] - center[0]) / radius
1624 | v1 = (center[1] - point[1]) / radius
1625 | n = v0*v0 + v1*v1
1626 | if n > 1.0:
1627 | # position outside of sphere
1628 | n = math.sqrt(n)
1629 | return numpy.array([v0/n, v1/n, 0.0])
1630 | else:
1631 | return numpy.array([v0, v1, math.sqrt(1.0 - n)])
1632 |
1633 |
1634 | def arcball_constrain_to_axis(point, axis):
1635 | """Return sphere point perpendicular to axis."""
1636 | v = numpy.array(point, dtype=numpy.float64, copy=True)
1637 | a = numpy.array(axis, dtype=numpy.float64, copy=True)
1638 | v -= a * numpy.dot(a, v) # on plane
1639 | n = vector_norm(v)
1640 | if n > _EPS:
1641 | if v[2] < 0.0:
1642 | numpy.negative(v, v)
1643 | v /= n
1644 | return v
1645 | if a[2] == 1.0:
1646 | return numpy.array([1.0, 0.0, 0.0])
1647 | return unit_vector([-a[1], a[0], 0.0])
1648 |
1649 |
1650 | def arcball_nearest_axis(point, axes):
1651 | """Return axis, which arc is nearest to point."""
1652 | point = numpy.array(point, dtype=numpy.float64, copy=False)
1653 | nearest = None
1654 | mx = -1.0
1655 | for axis in axes:
1656 | t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
1657 | if t > mx:
1658 | nearest = axis
1659 | mx = t
1660 | return nearest
1661 |
1662 |
1663 | # epsilon for testing whether a number is close to zero
1664 | _EPS = numpy.finfo(float).eps * 4.0
1665 |
1666 | # axis sequences for Euler angles
1667 | _NEXT_AXIS = [1, 2, 0, 1]
1668 |
1669 | # map axes strings to/from tuples of inner axis, parity, repetition, frame
1670 | _AXES2TUPLE = {
1671 | 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
1672 | 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
1673 | 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
1674 | 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
1675 | 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
1676 | 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
1677 | 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
1678 | 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
1679 |
1680 | _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
1681 |
1682 |
1683 | def vector_norm(data, axis=None, out=None):
1684 | """Return length, i.e. Euclidean norm, of ndarray along axis.
1685 |
1686 | >>> v = numpy.random.random(3)
1687 | >>> n = vector_norm(v)
1688 | >>> numpy.allclose(n, numpy.linalg.norm(v))
1689 | True
1690 | >>> v = numpy.random.rand(6, 5, 3)
1691 | >>> n = vector_norm(v, axis=-1)
1692 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
1693 | True
1694 | >>> n = vector_norm(v, axis=1)
1695 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1696 | True
1697 | >>> v = numpy.random.rand(5, 4, 3)
1698 | >>> n = numpy.empty((5, 3))
1699 | >>> vector_norm(v, axis=1, out=n)
1700 | >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1701 | True
1702 | >>> vector_norm([])
1703 | 0.0
1704 | >>> vector_norm([1])
1705 | 1.0
1706 |
1707 | """
1708 | data = numpy.array(data, dtype=numpy.float64, copy=True)
1709 | if out is None:
1710 | if data.ndim == 1:
1711 | return math.sqrt(numpy.dot(data, data))
1712 | data *= data
1713 | out = numpy.atleast_1d(numpy.sum(data, axis=axis))
1714 | numpy.sqrt(out, out)
1715 | return out
1716 | else:
1717 | data *= data
1718 | numpy.sum(data, axis=axis, out=out)
1719 | numpy.sqrt(out, out)
1720 |
1721 |
1722 | def unit_vector(data, axis=None, out=None):
1723 | """Return ndarray normalized by length, i.e. Euclidean norm, along axis.
1724 |
1725 | >>> v0 = numpy.random.random(3)
1726 | >>> v1 = unit_vector(v0)
1727 | >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
1728 | True
1729 | >>> v0 = numpy.random.rand(5, 4, 3)
1730 | >>> v1 = unit_vector(v0, axis=-1)
1731 | >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
1732 | >>> numpy.allclose(v1, v2)
1733 | True
1734 | >>> v1 = unit_vector(v0, axis=1)
1735 | >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
1736 | >>> numpy.allclose(v1, v2)
1737 | True
1738 | >>> v1 = numpy.empty((5, 4, 3))
1739 | >>> unit_vector(v0, axis=1, out=v1)
1740 | >>> numpy.allclose(v1, v2)
1741 | True
1742 | >>> list(unit_vector([]))
1743 | []
1744 | >>> list(unit_vector([1]))
1745 | [1.0]
1746 |
1747 | """
1748 | if out is None:
1749 | data = numpy.array(data, dtype=numpy.float64, copy=True)
1750 | if data.ndim == 1:
1751 | data /= math.sqrt(numpy.dot(data, data))
1752 | return data
1753 | else:
1754 | if out is not data:
1755 | out[:] = numpy.array(data, copy=False)
1756 | data = out
1757 | length = numpy.atleast_1d(numpy.sum(data*data, axis))
1758 | numpy.sqrt(length, length)
1759 | if axis is not None:
1760 | length = numpy.expand_dims(length, axis)
1761 | data /= length
1762 | if out is None:
1763 | return data
1764 |
1765 |
1766 | def random_vector(size):
1767 | """Return array of random doubles in the half-open interval [0.0, 1.0).
1768 |
1769 | >>> v = random_vector(10000)
1770 | >>> numpy.all(v >= 0) and numpy.all(v < 1)
1771 | True
1772 | >>> v0 = random_vector(10)
1773 | >>> v1 = random_vector(10)
1774 | >>> numpy.any(v0 == v1)
1775 | False
1776 |
1777 | """
1778 | return numpy.random.random(size)
1779 |
1780 |
1781 | def vector_product(v0, v1, axis=0):
1782 | """Return vector perpendicular to vectors.
1783 |
1784 | >>> v = vector_product([2, 0, 0], [0, 3, 0])
1785 | >>> numpy.allclose(v, [0, 0, 6])
1786 | True
1787 | >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
1788 | >>> v1 = [[3], [0], [0]]
1789 | >>> v = vector_product(v0, v1)
1790 | >>> numpy.allclose(v, [[0, 0, 0, 0], [0, 0, 6, 6], [0, -6, 0, -6]])
1791 | True
1792 | >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
1793 | >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
1794 | >>> v = vector_product(v0, v1, axis=1)
1795 | >>> numpy.allclose(v, [[0, 0, 6], [0, -6, 0], [6, 0, 0], [0, -6, 6]])
1796 | True
1797 |
1798 | """
1799 | return numpy.cross(v0, v1, axis=axis)
1800 |
1801 |
1802 | def angle_between_vectors(v0, v1, directed=True, axis=0):
1803 | """Return angle between vectors.
1804 |
1805 | If directed is False, the input vectors are interpreted as undirected axes,
1806 | i.e. the maximum angle is pi/2.
1807 |
1808 | >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3])
1809 | >>> numpy.allclose(a, math.pi)
1810 | True
1811 | >>> a = angle_between_vectors([1, -2, 3], [-1, 2, -3], directed=False)
1812 | >>> numpy.allclose(a, 0)
1813 | True
1814 | >>> v0 = [[2, 0, 0, 2], [0, 2, 0, 2], [0, 0, 2, 2]]
1815 | >>> v1 = [[3], [0], [0]]
1816 | >>> a = angle_between_vectors(v0, v1)
1817 | >>> numpy.allclose(a, [0, 1.5708, 1.5708, 0.95532])
1818 | True
1819 | >>> v0 = [[2, 0, 0], [2, 0, 0], [0, 2, 0], [2, 0, 0]]
1820 | >>> v1 = [[0, 3, 0], [0, 0, 3], [0, 0, 3], [3, 3, 3]]
1821 | >>> a = angle_between_vectors(v0, v1, axis=1)
1822 | >>> numpy.allclose(a, [1.5708, 1.5708, 1.5708, 0.95532])
1823 | True
1824 |
1825 | """
1826 | v0 = numpy.array(v0, dtype=numpy.float64, copy=False)
1827 | v1 = numpy.array(v1, dtype=numpy.float64, copy=False)
1828 | dot = numpy.sum(v0 * v1, axis=axis)
1829 | dot /= vector_norm(v0, axis=axis) * vector_norm(v1, axis=axis)
1830 | return numpy.arccos(dot if directed else numpy.fabs(dot))
1831 |
1832 |
1833 | def inverse_matrix(matrix):
1834 | """Return inverse of square transformation matrix.
1835 |
1836 | >>> M0 = random_rotation_matrix()
1837 | >>> M1 = inverse_matrix(M0.T)
1838 | >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
1839 | True
1840 | >>> for size in range(1, 7):
1841 | ... M0 = numpy.random.rand(size, size)
1842 | ... M1 = inverse_matrix(M0)
1843 | ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print(size)
1844 |
1845 | """
1846 | return numpy.linalg.inv(matrix)
1847 |
1848 |
1849 | def concatenate_matrices(*matrices):
1850 | """Return concatenation of series of transformation matrices.
1851 |
1852 | >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
1853 | >>> numpy.allclose(M, concatenate_matrices(M))
1854 | True
1855 | >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
1856 | True
1857 |
1858 | """
1859 | M = numpy.identity(4)
1860 | for i in matrices:
1861 | M = numpy.dot(M, i)
1862 | return M
1863 |
1864 |
1865 | def is_same_transform(matrix0, matrix1):
1866 | """Return True if two matrices perform same transformation.
1867 |
1868 | >>> is_same_transform(numpy.identity(4), numpy.identity(4))
1869 | True
1870 | >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
1871 | False
1872 |
1873 | """
1874 | matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
1875 | matrix0 /= matrix0[3, 3]
1876 | matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
1877 | matrix1 /= matrix1[3, 3]
1878 | return numpy.allclose(matrix0, matrix1)
1879 |
1880 |
1881 | def _import_module(name, package=None, warn=False, prefix='_py_', ignore='_'):
1882 | """Try import all public attributes from module into global namespace.
1883 |
1884 | Existing attributes with name clashes are renamed with prefix.
1885 | Attributes starting with underscore are ignored by default.
1886 |
1887 | Return True on successful import.
1888 |
1889 | """
1890 | import warnings
1891 | from importlib import import_module
1892 | try:
1893 | if not package:
1894 | module = import_module(name)
1895 | else:
1896 | module = import_module('.' + name, package=package)
1897 | except ImportError:
1898 | if warn:
1899 | warnings.warn("failed to import module %s" % name)
1900 | else:
1901 | for attr in dir(module):
1902 | if ignore and attr.startswith(ignore):
1903 | continue
1904 | if prefix:
1905 | if attr in globals():
1906 | globals()[prefix + attr] = globals()[attr]
1907 | elif warn:
1908 | warnings.warn("no Python implementation of " + attr)
1909 | globals()[attr] = getattr(module, attr)
1910 | return True
1911 |
1912 |
1913 | _import_module('_transformations')
1914 |
1915 | if __name__ == "__main__":
1916 | import doctest
1917 | import random # used in doctests
1918 | numpy.set_printoptions(suppress=True, precision=5)
1919 | doctest.testmod()
1920 |
1921 |
--------------------------------------------------------------------------------