├── .travis.yml
├── DESCRIPTION
├── LICENSE
├── NAMESPACE
├── R
├── Functions.R
├── dada2.R
├── data.R
├── glmr.R
├── misc.R
├── plot.R
└── zzz.R
├── README.md
├── data
└── Physeq.rda
├── man
├── betadiv.Rd
├── betatest.Rd
├── biomarker.Rd
├── buildTree.Rd
├── data-Physeq.Rd
├── data-physeq.Rd
├── difftest.Rd
├── distcolor.Rd
├── do_aov.Rd
├── do_ttest.Rd
├── do_wilcox.Rd
├── dot-checkfile.Rd
├── dot-getstar.Rd
├── dot-lda.fun.Rd
├── glmr.Rd
├── ldamarker.Rd
├── lightcolor.Rd
├── normalize.Rd
├── otu_table.Rd
├── phy_tree.Rd
├── plotLDA.Rd
├── plotalpha.Rd
├── plotbar.Rd
├── plotbeta.Rd
├── plotdiff.Rd
├── plotmarker.Rd
├── plotquality.Rd
├── preRef.Rd
├── prefilter.Rd
├── processSeq.Rd
├── psmelt.Rd
├── richness.Rd
├── sample_data.Rd
├── subset_samples.Rd
├── subset_taxa.Rd
└── tax_table.Rd
├── microbial.Rproj
├── tests
├── testthat.R
└── testthat
│ └── test-microbial.R
└── vignettes
└── microbial.Rmd
/.travis.yml:
--------------------------------------------------------------------------------
1 | #----------------------------------------------------------------
2 | # Travis-CI configuration for R packages
3 | #
4 | # REFERENCES:
5 | # * Travis CI: https://docs.travis-ci.com/user/languages/r#
6 | # YAML validated using http://www.yamllint.com/
7 | #----------------------------------------------------------------
8 | language: r
9 | sudo: false
10 | cache: packages
11 | warnings_are_errors: false
12 | r_check_args: --as-cran
13 | r:
14 | - bioc-devel
15 |
16 | cache: packages
17 | bioc_required: true
18 | bioc_use_devel: true
19 | latex: false
20 |
21 | matrix:
22 | include:
23 | - os: osx
24 | r_check_args: '--ignore-vignettes'
25 | r_build_args: '--no-build-vignettes'
26 | - dist: linux
27 | r_check_args: '--ignore-vignettes'
28 | r_build_args: '--no-build-vignettes'
29 |
--------------------------------------------------------------------------------
/DESCRIPTION:
--------------------------------------------------------------------------------
1 | Package: microbial
2 | Type: Package
3 | Title: Do 16s Data Analysis and Generate Figures
4 | Version: 0.0.22
5 | Authors@R: c(person("Kai","Guo",email = "guokai8@gmail.com",
6 | role = c("aut", "cre")
7 | ),
8 | person("Pan","Gao",role = "aut"))
9 | Description: Provides functions to enhance the available
10 | statistical analysis procedures in R by providing simple functions to
11 | analysis and visualize the 16S rRNA data.Here we present a tutorial
12 | with minimum working examples to demonstrate usage and dependencies.
13 | License: GPL-3
14 | Depends: R (>= 3.5.0)
15 | Imports:
16 | dplyr,
17 | plyr,
18 | magrittr,
19 | broom,
20 | phyloseq,
21 | vegan,
22 | rlang,
23 | ggplot2,
24 | ggpubr,
25 | DESeq2,
26 | SummarizedExperiment,
27 | S4Vectors,
28 | rstatix,
29 | tidyr,
30 | phangorn,
31 | randomForest,
32 | edgeR,
33 | testthat
34 | Encoding: UTF-8
35 | LazyData: true
36 | Suggests: markdown,dada2,rmarkdown,knitr,tools,Biostrings, DECIPHER, MASS
37 | VignetteBuilder: knitr
38 | biocViews: Software,GraphAndNetwork
39 | RoxygenNote: 7.1.1
40 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/NAMESPACE:
--------------------------------------------------------------------------------
1 | # Generated by roxygen2: do not edit by hand
2 |
3 | export(betadiv)
4 | export(betatest)
5 | export(biomarker)
6 | export(buildTree)
7 | export(difftest)
8 | export(distcolor)
9 | export(do_aov)
10 | export(do_ttest)
11 | export(do_wilcox)
12 | export(glmr)
13 | export(ldamarker)
14 | export(lightcolor)
15 | export(normalize)
16 | export(otu_table)
17 | export(phy_tree)
18 | export(plotLDA)
19 | export(plotalpha)
20 | export(plotbar)
21 | export(plotbeta)
22 | export(plotdiff)
23 | export(plotmarker)
24 | export(plotquality)
25 | export(preRef)
26 | export(prefilter)
27 | export(processSeq)
28 | export(psmelt)
29 | export(richness)
30 | export(sample_data)
31 | export(subset_samples)
32 | export(subset_taxa)
33 | export(tax_table)
34 | importFrom(DESeq2,DESeq)
35 | importFrom(DESeq2,DESeqDataSetFromMatrix)
36 | importFrom(DESeq2,counts)
37 | importFrom(DESeq2,estimateDispersions)
38 | importFrom(DESeq2,estimateSizeFactors)
39 | importFrom(DESeq2,results)
40 | importFrom(DESeq2,varianceStabilizingTransformation)
41 | importFrom(S4Vectors,DataFrame)
42 | importFrom(SummarizedExperiment,assay)
43 | importFrom(broom,tidy)
44 | importFrom(dplyr,bind_rows)
45 | importFrom(dplyr,do)
46 | importFrom(dplyr,filter)
47 | importFrom(dplyr,group_by)
48 | importFrom(dplyr,group_by_at)
49 | importFrom(dplyr,left_join)
50 | importFrom(dplyr,mutate)
51 | importFrom(dplyr,one_of)
52 | importFrom(dplyr,pull)
53 | importFrom(dplyr,select)
54 | importFrom(dplyr,summarise)
55 | importFrom(dplyr,summarize)
56 | importFrom(dplyr,ungroup)
57 | importFrom(dplyr,vars)
58 | importFrom(edgeR,calcNormFactors)
59 | importFrom(ggplot2,aes)
60 | importFrom(ggplot2,aes_string)
61 | importFrom(ggplot2,coord_flip)
62 | importFrom(ggplot2,element_blank)
63 | importFrom(ggplot2,element_text)
64 | importFrom(ggplot2,geom_bar)
65 | importFrom(ggplot2,geom_point)
66 | importFrom(ggplot2,ggplot)
67 | importFrom(ggplot2,scale_color_manual)
68 | importFrom(ggplot2,scale_fill_manual)
69 | importFrom(ggplot2,scale_y_continuous)
70 | importFrom(ggplot2,stat_ellipse)
71 | importFrom(ggplot2,theme)
72 | importFrom(ggplot2,theme_light)
73 | importFrom(ggplot2,xlab)
74 | importFrom(ggplot2,ylab)
75 | importFrom(ggpubr,facet)
76 | importFrom(ggpubr,ggboxplot)
77 | importFrom(ggpubr,ggdotchart)
78 | importFrom(ggpubr,ggdotplot)
79 | importFrom(ggpubr,ggviolin)
80 | importFrom(ggpubr,stat_pvalue_manual)
81 | importFrom(magrittr,"%>%")
82 | importFrom(phangorn,NJ)
83 | importFrom(phangorn,dist.ml)
84 | importFrom(phangorn,optim.pml)
85 | importFrom(phangorn,phyDat)
86 | importFrom(phangorn,pml)
87 | importFrom(phangorn,pml.control)
88 | importFrom(phyloseq,'tax_table<-')
89 | importFrom(phyloseq,`otu_table<-`)
90 | importFrom(phyloseq,distance)
91 | importFrom(phyloseq,estimate_richness)
92 | importFrom(phyloseq,get_taxa_unique)
93 | importFrom(phyloseq,nsamples)
94 | importFrom(phyloseq,ordinate)
95 | importFrom(phyloseq,otu_table)
96 | importFrom(phyloseq,phyloseq)
97 | importFrom(phyloseq,prune_taxa)
98 | importFrom(phyloseq,psmelt)
99 | importFrom(phyloseq,sample_data)
100 | importFrom(phyloseq,subset_taxa)
101 | importFrom(phyloseq,t)
102 | importFrom(phyloseq,tax_table)
103 | importFrom(phyloseq,taxa_are_rows)
104 | importFrom(phyloseq,taxa_sums)
105 | importFrom(phyloseq,transform_sample_counts)
106 | importFrom(plyr,ddply)
107 | importFrom(randomForest,importance)
108 | importFrom(randomForest,randomForest)
109 | importFrom(rlang,`!!`)
110 | importFrom(rstatix,anova_test)
111 | importFrom(rstatix,t_test)
112 | importFrom(rstatix,wilcox_test)
113 | importFrom(stats,as.formula)
114 | importFrom(stats,binomial)
115 | importFrom(stats,glm)
116 | importFrom(stats,kruskal.test)
117 | importFrom(stats,p.adjust)
118 | importFrom(stats,reorder)
119 | importFrom(stats,update)
120 | importFrom(tidyr,gather)
121 | importFrom(tidyr,spread)
122 | importFrom(utils,download.file)
123 | importFrom(utils,head)
124 | importFrom(utils,read.delim)
125 | importFrom(utils,write.table)
126 | importFrom(vegan,adonis)
127 | importFrom(vegan,diversity)
128 | importFrom(vegan,rarefy)
129 | importFrom(vegan,specnumber)
130 |
--------------------------------------------------------------------------------
/R/Functions.R:
--------------------------------------------------------------------------------
1 | #' Download the reference database
2 | #' @importFrom utils download.file
3 | #' @param ref_db the reference database
4 | #' @param path path for the database
5 | #' @return the path of the database
6 | #' @author Kai Guo
7 | #' @examples
8 | #' \donttest{
9 | #' preRef(ref_db="silva",path=tempdir())
10 | #' }
11 | #' @export
12 | preRef<-function(ref_db,path="."){
13 | if (ref_db == "rdp"){
14 | ifelse(!file.exists(paste0(path,"/rdp_train_set_16.fa.gz")),
15 | download.file(url = "https://zenodo.org/record/801828/files/rdp_train_set_16.fa.gz?download=1",
16 | destfile = file.path(paste0(path, "/rdp_train_set_16.fa.gz")),
17 | method = "auto"),
18 | FALSE);
19 | ifelse(!file.exists(paste0(path,"/rdp_species_assignment_16.fa.gz")),
20 | download.file(url = "https://zenodo.org/record/801828/files/rdp_species_assignment_16.fa.gz?download=1",
21 | destfile = file.path(paste0(path, "/rdp_species_assignment_16.fa.gz")),
22 | method = "auto"),
23 | FALSE);
24 | message("Database: ")
25 | message(paste0(path,"/rdp_train_set_16.fa.gz"))
26 | message(paste0(path, "/rdp_species_assignment_16.fa.gz"))
27 | } else if (ref_db == "silva"){
28 | ifelse(!file.exists(paste0(path,"/silva_nr99_v138_train_set.fa.gz")),
29 | download.file(url = "https://zenodo.org/record/4587955/files/silva_nr99_v138.1_train_set.fa.gz?download=1",
30 | destfile = file.path(paste0(path, "/silva_nr99_v138_train_set.fa.gz")),
31 | method = "auto"),
32 | FALSE);
33 | ifelse(!file.exists(paste0(path,"/silva_species_assignment_v138.fa.gz?")),
34 | download.file(url = 'https://zenodo.org/record/4587955/files/silva_species_assignment_v138.1.fa.gz?download=1',
35 | destfile = file.path(paste0(path,"/silva_species_assignment_v138.fa.gz")),
36 | method = 'auto'),
37 | FALSE);
38 | message("Database: ")
39 | message(paste0(path,"/silva_nr99_v138_train_set.fa.gz"))
40 | message(paste0(path, "/silva_species_assignment_v138.fa.gz"))
41 | } else {
42 | ifelse(!dir.exists(paste0(path,"/gg_13_8_train_set_97.fa.gz")),
43 | download.file(url = "https://zenodo.org/record/158955/files/gg_13_8_train_set_97.fa.gz?download=1",
44 | destfile = file.path(paste0(path, "/gg_13_8_train_set_97.fa.gz")),
45 | method = "auto"),
46 | FALSE);
47 | message("Database: ")
48 | message(paste0(path,"/gg_13_8_train_set_97.fa.gz"))
49 | }
50 | }
51 |
52 | #' filter the phyloseq
53 | #' @importFrom phyloseq subset_taxa prune_taxa otu_table taxa_are_rows tax_table
54 | #' @importFrom phyloseq taxa_sums get_taxa_unique
55 | #' @importFrom phyloseq 'tax_table<-'
56 | #' @importFrom plyr ddply
57 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
58 | #' taxonomic assignment, sample data including the measured variables and categorical information
59 | #' of the samples, and / or phylogenetic tree if available.
60 | #' @param min Numeric, the threshold for mininal Phylum shown in samples
61 | #' @param perc Numeric, input the percentage of samples for which to filter low counts.
62 | #' @examples
63 | #' \donttest{
64 | #' data("Physeq")
65 | #' physeqs<-prefilter(physeq)
66 | #' }
67 | #' @return filter phyloseq object
68 | #' @author Kai Guo
69 | #' @export
70 |
71 | prefilter<-function(physeq,min=10,perc=0.05){
72 | ##remove "" in phylum level
73 | ps <- subset_taxa(physeq, !is.na(Phylum) & !Phylum %in% c("", "uncharacterized"))
74 | # Compute prevalence of each feature, store as data.frame
75 | prevdf = apply(X = otu_table(ps),
76 | MARGIN = ifelse(taxa_are_rows(ps), yes = 1, no = 2),
77 | FUN = function(x){sum(x > 0)})
78 | # Add taxonomy and total read counts to this data.frame
79 | prevdf = data.frame(Prevalence = prevdf,
80 | TotalAbundance = taxa_sums(ps),
81 | tax_table(ps))
82 | #compute the total and the average prevalences of the features in each phylum
83 | prer<-ddply(prevdf, "Phylum", function(df1){cbind(mean(df1$Prevalence),sum(df1$Prevalence))})
84 | colnames(prer)[2:3]<-c("average","total")
85 | filterPhyla<-prer$Phylum[which(prer$total/prer$average= prevalenceThreshold)]
94 | prevdfr<-prevdf1[keepTaxa,]
95 | psf = prune_taxa(keepTaxa, ps)
96 | }
97 |
98 | #' @title calculat the richness for the phyloseq object
99 | #' @importFrom phyloseq estimate_richness otu_table
100 | #' @importFrom vegan rarefy
101 | #' @importFrom vegan diversity
102 | #' @importFrom vegan specnumber
103 | #' @importFrom phyloseq otu_table
104 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
105 | #' taxonomic assignment, sample data including the measured variables and categorical information
106 | #' of the samples, and / or phylogenetic tree if available.
107 | #' @param method A list of character strings specifying \code{method} to be used to calculate for alpha diversity
108 | #' in the data. Available methods are: "Observed","Chao1","ACE","Richness", "Fisher", "Simpson", "Shannon", "Evenness","InvSimpson".
109 | #' @examples
110 | #' {
111 | #' data("Physeq")
112 | #' rich <-richness(physeq,method=c("Simpson", "Shannon"))
113 | #' }
114 | #' @return data.frame of alpha diversity
115 | #' @export
116 | #' @author Kai Guo
117 | richness<-function(physeq,method=c("Observed","Simpson", "Shannon")){
118 | method<-as.character(sapply(method,function(x)simpleCap(x),simplify = T))
119 | method<- match.arg(method,c("Observed","Chao1","ACE","Richness", "Fisher", "Simpson", "Shannon", "Evenness","InvSimpson"), several.ok = TRUE)
120 | df <- estimate_richness(physeq)
121 | if(!isTRUE(taxa_are_rows(physeq))){
122 | tab<-t(otu_table(physeq))
123 | }else{
124 | tab<-otu_table(physeq)
125 | }
126 | rownames(df)<-colnames(tab)
127 | if("Evenness"%in%method){
128 | ta<-as.data.frame(t(tab))
129 | H<-diversity(ta)
130 | S <- specnumber(ta)
131 | J <- H/log(S)
132 | df_J<-data.frame(Evenness=J)
133 | df<-cbind(df,df_J)
134 | }
135 | if("Richness"%in%method){
136 | ta<-as.data.frame(t(tab))
137 | R<- rarefy(ta,min(rowSums(ta)))
138 | df_R<-data.frame(Richness=R)
139 | df<-cbind(df,df_R)
140 | }
141 | df<-df[,method,drop=FALSE]
142 | return(df)
143 | }
144 | #' @title calcaute beta diversity
145 | #' @importFrom phyloseq ordinate
146 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
147 | #' taxonomic assignment, sample data including the measured variables and categorical information
148 | #' of the samples, and / or phylogenetic tree if available.
149 | #' @param method A character string specifying ordination method. All methods available to the \code{ordinate} function
150 | #' of \code{phyloseq} are acceptable here as well.
151 | #' @param distance A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
152 | #' "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
153 | #' "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".
154 | #' @export
155 | #' @author Kai Guo
156 | #' @examples
157 | #' {
158 | #' data("Physeq")
159 | #' phy<-normalize(physeq)
160 | #' res <- betadiv(phy)
161 | #' }
162 | #' @return list with beta diversity data.frame and PCs
163 | betadiv<-function(physeq,distance="bray",method="PCoA"){
164 | beta<-ordinate(physeq,method = method,distance = distance)
165 | pcs<-beta$values[,2]
166 | df<-beta$vectors
167 | return(list(beta=df,PCs=pcs))
168 | }
169 | #' @title PERMANOVA test for phyloseq
170 | #' @importFrom phyloseq distance
171 | #' @importFrom vegan adonis
172 | #' @importFrom tidyr gather
173 | #' @importFrom dplyr group_by
174 | #' @importFrom dplyr do
175 | #' @importFrom magrittr %>%
176 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
177 | #' taxonomic assignment, sample data including the measured variables and categorical information
178 | #' of the samples, and / or phylogenetic tree if available.
179 | #' @param distance A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
180 | #' "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
181 | #' "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".
182 | #' @param group (Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
183 | #' information.
184 | #' @examples
185 | #'{
186 | #' data("Physeq")
187 | #' phy<-normalize(physeq)
188 | #' beta <-betatest(phy,group="SampleType")
189 | #' }
190 | #' @return PERMANOVA test result
191 | #' @export
192 | #' @author Kai Guo
193 | betatest<-function(physeq,group,distance="bray"){
194 | message("Do PERMANOVA for: ",group)
195 | dist<-distance(physeq,method = distance)
196 | tab <- as(sample_data(physeq),"data.frame")
197 | tab<-tab[,group,drop=F]
198 | res<-NULL
199 | if(length(group)>1){
200 | res<- tab%>%gather(Group,val)%>%group_by(Group)%>%do(as.data.frame(adonis(dist~val,.)$aov.tab))
201 | }else{
202 | tab$Group <- tab[,group]
203 | res<-as.data.frame(adonis(dist~Group,tab)$aov.tab)
204 | }
205 | return(as.data.frame(res))
206 | }
207 |
208 | #' Normalize the phyloseq object with different methods
209 | #' @importFrom phyloseq transform_sample_counts sample_data
210 | #' @importFrom phyloseq taxa_are_rows nsamples otu_table psmelt
211 | #' @importFrom DESeq2 DESeqDataSetFromMatrix estimateSizeFactors
212 | #' @importFrom DESeq2 estimateDispersions varianceStabilizingTransformation
213 | #' @importFrom SummarizedExperiment assay
214 | #' @importFrom S4Vectors DataFrame
215 | #' @importFrom edgeR calcNormFactors
216 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
217 | #' taxonomic assignment, sample data including the measured variables and categorical information
218 | #' of the samples, and / or phylogenetic tree if available.
219 | #' @param method A list of character strings specifying \code{method} to be used to normalize the phyloseq object
220 | #' Available methods are: "relative","TMM","vst","log2".
221 | #' @param group group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.
222 | #' @param table return a data.frame or not
223 | #' @examples
224 | #' {
225 | #' data("Physeq")
226 | #' phy<-normalize(physeq)
227 | #' }
228 | #' @return phyloseq object with normalized data
229 | #' @author Kai Guo
230 | #' @export
231 | normalize<-function(physeq,group,method="relative",table=FALSE){
232 | if(!taxa_are_rows(physeq)){
233 | physeq<-t(physeq)
234 | }
235 | otu<-as(otu_table(physeq),"matrix")
236 | tab<-as(sample_data(physeq),"data.frame")
237 | group<-tab[,group]
238 | if(method=="vst"){
239 | message("Normalization using DESeq2 varianceStabilizingTransformation method")
240 | otu <- otu+1
241 | condition=group
242 | dds = DESeqDataSetFromMatrix(otu, DataFrame(condition), ~ condition)
243 | dds = estimateSizeFactors(dds)
244 | dds = estimateDispersions(dds)
245 | vst <- varianceStabilizingTransformation(dds)
246 | otu_table(physeq) <- otu_table(assay(vst), taxa_are_rows=TRUE)
247 | }
248 | if(method=="relative"){
249 | message("Normalization using relative method ")
250 | physeq<-transform_sample_counts(physeq,function(x)x/sum(x))
251 | }
252 | if(method=="TMM"){
253 | # modified from https://github.com/aametwally/MetaLonDA/blob/master/R/Normalization.
254 | message("Normalization using TMM method ")
255 | otu = otu + 1
256 | # Check `group` argument
257 | factors = calcNormFactors(otu, method="TMM")
258 | eff.lib.size = colSums(otu) * factors
259 | ref.lib.size = mean(eff.lib.size) #Use the mean of the effective library sizes as a reference library size
260 | count = sweep(otu, MARGIN = 2, eff.lib.size, "/") * ref.lib.size
261 | otu_table(physeq) <- otu_table(count, taxa_are_rows=TRUE)
262 | }
263 | if(method=="log2"){
264 | message("Normalization using log2 of the RA method ")
265 | physeq<-transform_sample_counts(physeq,function(x)log2(x/sum(x)+1))
266 | }
267 | if(isTRUE(table)){
268 | physeq <- psmelt(physeq)
269 | }
270 | return(physeq)
271 | }
272 | #' @title Calculate differential bacteria with DESeq2
273 | #' @importFrom DESeq2 DESeqDataSetFromMatrix counts
274 | #' @importFrom phyloseq otu_table taxa_are_rows
275 | #' @importFrom phyloseq sample_data
276 | #' @importFrom DESeq2 results DESeq
277 | #' @importFrom stats as.formula
278 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
279 | #' taxonomic assignment, sample data including the measured variables and categorical information
280 | #' of the samples, and / or phylogenetic tree if available.
281 | #' @param group group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.
282 | #' @param ref reference group
283 | #' @param pvalue pvalue threshold for significant results
284 | #' @param padj adjust p value threshold for significant results
285 | #' @param log2FC log2 Fold Change threshold
286 | #' @param gm_mean TRUE/FALSE calculate geometric means prior to estimate size factors
287 | #' @param fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to the mean intensity.
288 | #' @param quiet whether to print messages at each step
289 | #' @examples
290 | #' \donttest{
291 | #' data("Physeq")
292 | #' res <- difftest(physeq,group="group")
293 | #' }
294 | #' @return datafame with differential test with DESeq2
295 | #' @author Kai Guo
296 | #' @export
297 | #'
298 | difftest<-function(physeq,group,ref=NULL,pvalue=0.05,padj=NULL,log2FC=0,gm_mean=TRUE,fitType="local",quiet=FALSE){
299 | if(!taxa_are_rows(physeq)){
300 | physeq<-t(physeq)
301 | }
302 | otu <- as(otu_table(physeq),"matrix")
303 | tax <- as.data.frame(as.matrix(tax_table(physeq)))
304 | colData<-as(sample_data(physeq),"data.frame")
305 | colData$condition<-colData[,group]
306 | contrasts<-levels(factor(unique(colData$condition)))
307 | if(!is.null(ref)){
308 | contrasts <- c(setdiff(contrasts,ref),ref)
309 | }
310 | if(isTRUE(gm_mean)){
311 | countData<-round(otu, digits = 0)
312 | }else{
313 | countData<-round(otu, digits = 0)+1
314 | }
315 | dds <- DESeqDataSetFromMatrix(countData, colData, as.formula(~condition))
316 | if(isTRUE(gm_mean)){
317 | geoMeans = apply(counts(dds), 1, gm_mean)
318 | dds = estimateSizeFactors(dds, geoMeans = geoMeans)
319 | }
320 | dds <- DESeq(dds, fitType=fitType)
321 | res <- results(dds,contrast=c("condition",contrasts),cooksCutoff = FALSE)
322 | res_tax = cbind(as.data.frame(res), as.matrix(countData[rownames(res), ]))
323 | if(!is.null(padj)){
324 | pval<-padj
325 | sig <- rownames(subset(res,padjlog2FC))
326 | }else{
327 | pval<-pvalue
328 | sig <- rownames(subset(res,pvaluelog2FC))
329 | }
330 | res_tax$Significant<- "No"
331 | res_tax$Significant <- ifelse(rownames(res_tax) %in% sig, "Yes", "No")
332 | res_tax <- cbind(res_tax, tax[rownames(res),])
333 | return(as.data.frame(res_tax))
334 | }
335 |
336 | #' @title Identify biomarker by using randomForest method
337 | #' @importFrom phyloseq taxa_are_rows otu_table sample_data t
338 | #' @importFrom randomForest randomForest importance
339 | #' @importFrom tidyr gather
340 | #' @importFrom dplyr group_by filter
341 | #' @importFrom dplyr do
342 | #' @importFrom magrittr %>%
343 | #' @importFrom broom tidy
344 | #' @importFrom stats kruskal.test
345 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
346 | #' taxonomic assignment, sample data including the measured variables and categorical information
347 | #' of the samples, and / or phylogenetic tree if available.
348 | #' @param group group. A character string specifying the name of a categorical variable containing grouping information.
349 | #' @param ntree Number of trees to grow. This should not be set to too small a number,
350 | #' to ensure that every input row gets predicted at least a few times.
351 | #' @param pvalue pvalue threshold for significant results from kruskal.test
352 | #' @param normalize to normalize the data before analysis(TRUE/FALSE)
353 | #' @param method A list of character strings specifying \code{method} to be used to normalize the phyloseq object
354 | #' Available methods are: "relative","TMM","vst","log2".
355 | #' @examples
356 | #' \donttest{
357 | #' data("Physeq")
358 | #' res <- biomarker(physeq,group="group")
359 | #' }
360 | #' @return data frame with significant biomarker
361 | #' @author Kai Guo
362 | #' @export
363 | biomarker<-function(physeq,group,ntree=500,pvalue=0.05,normalize=TRUE,method="relative"){
364 | if(isTRUE(normalize)){
365 | physeq<-normalize(physeq,method = method)
366 | }
367 | if(taxa_are_rows(physeq)){
368 | physeq<-t(physeq)
369 | }
370 | tax <- as.data.frame(as.matrix(tax_table(physeq)))
371 | sam <- as(sample_data(physeq),"data.frame")
372 | tab <- as.data.frame(otu_table(physeq))
373 | tab$group<-sam[,group]
374 | sel<-tab%>%gather(OTU,val,-group)%>%group_by(OTU)%>%do(tidy(kruskal.test(val~group,.)))%>%
375 | filter(p.value<0.05)
376 | data<-tab[,sel$OTU]
377 | #change the colnames in case only have number in the colname
378 | colnames(data)<-paste0("X",colnames(data))
379 | data$group<-tab$group
380 | data$group<-factor(data$group)
381 | val<-randomForest(group ~ ., data=data, importance=TRUE, proximity=TRUE,ntree=ntree)
382 | print(val)
383 | imp<- importance(val)
384 | res<-data.frame(row.names=NULL,OTU=sub('X','',rownames(imp)),
385 | Value=abs(as.numeric(imp[,"MeanDecreaseAccuracy"])),
386 | Index=rep("Mean Decrease Accuracy",dim(imp)[1]))
387 | #Rearrange the features in terms of importance for ggplot2 by changing factor levels
388 | res$rank <- rank(res$Value, ties.method = "min")
389 | res$rank <- max(res$rank)-res$rank+1
390 | res<-cbind(res,tax[res$OTU,])
391 | res<-res[order(res$rank),]
392 | res
393 | }
394 | #' Identify biomarker by using LEfSe method
395 | #' @importFrom phyloseq taxa_are_rows otu_table sample_data
396 | #' @importFrom phyloseq `otu_table<-`
397 | #' @importFrom dplyr group_by summarize do left_join
398 | #' @importFrom dplyr ungroup bind_rows mutate
399 | #' @importFrom broom tidy
400 | #' @importFrom magrittr %>%
401 | #' @importFrom stats p.adjust
402 | #'
403 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
404 | #' taxonomic assignment, sample data including the measured variables and categorical information
405 | #' of the samples, and / or phylogenetic tree if available.
406 | #' @param group group. A character string specifying the name of a categorical variable containing grouping information.
407 | #' @param pvalue pvalue threshold for significant results from kruskal.test
408 | #' @param normalize to normalize the data before analysis(TRUE/FALSE)
409 | #' @param method A list of character strings specifying \code{method} to be used to normalize the phyloseq object
410 | #' Available methods are: "relative","TMM","vst","log2".
411 | #' @examples
412 | #' \donttest{
413 | #' data("Physeq")
414 | #' res <- ldamarker(physeq,group="group")
415 | #' }
416 | #'
417 | #' @author Kai Guo
418 | #' @export
419 | ldamarker<-function(physeq,group,pvalue=0.05,normalize=TRUE,method="relative"){
420 | if(isTRUE(normalize)){
421 | physeq<-normalize(physeq,method = method)
422 | # count per million *10e6 (CPM)
423 | otu_table(physeq)<-otu_table(physeq)*10e6
424 | }
425 | if(!taxa_are_rows(physeq)){
426 | physeq<-t(physeq)
427 | }
428 | tax <- as.data.frame(as.matrix(tax_table(physeq)))
429 | sam<-as(sample_data(physeq),"data.frame")
430 | level<-colnames(tax)
431 | tab<-psmelt(physeq)
432 | otul <- lapply(1:length(level),function(i) {
433 | lvls <- level[1:i]
434 | lvl <- level[i]
435 | otu_lev <- tab
436 | otu_lev$tax <- do.call(paste,c(lapply(lvls,function(l) tab[[l]]),sep="|"))
437 | otu_lev$rank <- lvl
438 | otu_lev2 <- otu_lev %>% group_by(Sample,tax,rank) %>%
439 | summarize(seqs=sum(Abundance)) %>% ungroup()
440 | return(otu_lev2)
441 | })
442 | otu <- bind_rows(otul) %>%
443 | mutate(tax=gsub("\\|","_",tax))
444 | ###
445 | otu$group<-sam[otu$Sample,group]
446 | ###
447 | pvalues<-otu%>%group_by(rank,tax)%>%do(tidy(kruskal.test(seqs~group,.)))
448 | pvalues$p.adj<-p.adjust(pvalues$p.value, method ="fdr");
449 | ##
450 | df<-pvalues%>%left_join(otu,by=c("tax"="tax"))
451 | dd<-df[df$p.value%left_join(resTable,by=c("tax"="tax"))
458 | return(resTable)
459 | }
460 |
--------------------------------------------------------------------------------
/R/dada2.R:
--------------------------------------------------------------------------------
1 | #' Perform dada2 analysis
2 | #' @importFrom phyloseq phyloseq otu_table sample_data tax_table
3 | #' @importFrom utils read.delim write.table
4 | #' @param path working dir for the input reads
5 | #' @param truncLen (Optional). Default 0 (no truncation). Truncate reads after truncLen bases. Reads shorter than this are discarded.
6 | #' @param trimLeft (Optional). The number of nucleotides to remove from the start of each read.
7 | #' @param trimRight (Optional). Default 0. The number of nucleotides to remove from the end of each read.
8 | #' If both truncLen and trimRight are provided, truncation will be performed after trimRight is enforced.
9 | #' @param sample_info (Optional).sample information for the sequence
10 | #' @param minLen (Optional). Default 20. Remove reads with length less than minLen. minLen is enforced after trimming and truncation.
11 | #' @param maxLen Optional). Default Inf (no maximum). Remove reads with length greater than maxLen. maxLen is enforced before trimming and truncation.
12 | #' @param train_data (Required).training database
13 | #' @param train_species (Required). species database
14 | #' @param outpath (Optional).the path for the filtered reads and th out table
15 | #' @param saveobj (Optional).Default FALSE. save the phyloseq object output.
16 | #' @param buildtree build phylogenetic tree or not(default: FALSE)
17 | #' @param verbose (Optional). Default TRUE. Print verbose text output.
18 | #' @author Kai Guo
19 | #' @return list include count table, summary table, taxonomy information and phyloseq object
20 | #' @export
21 | processSeq <- function(path=".",
22 | truncLen = c(0, 0),
23 | trimLeft=0,
24 | trimRight=0,
25 | minLen=20,
26 | maxLen=Inf,
27 | sample_info=NULL,
28 | train_data="silva_nr99_v138_train_set.fa.gz",
29 | train_species="silva_species_assignment_v138.fa.gz",
30 | outpath=NULL,
31 | saveobj=FALSE,
32 | buildtree=FALSE,
33 | verbose=TRUE){
34 | OS<-.Platform$OS.type
35 | if(OS=="windows"){
36 | multithread<-FALSE
37 | }else{
38 | multithread<-TRUE
39 | }
40 | fnFs <- sort(list.files(path, pattern="R1", full.names = TRUE))
41 | fnRs <- sort(list.files(path, pattern="R2", full.names = TRUE))
42 | message("check the filename ......")
43 | if(any(grepl('R1|R2',fnFs)==FALSE)){
44 | stop("All fastq name should be either contain R1 or R2 \n")
45 | }
46 | sample.names <-sub('@@@@.*','',sub('(\\.|_)R(1|2)','@@@@',basename(fnFs)))
47 | if(sum(duplicated(sample.names))>=1){
48 | stop('The fastq filenames are not unique!\n')
49 | }
50 | #filter and trim;
51 | if(isTRUE(verbose)){
52 | message("Filtering......");
53 | }
54 | if(is.null(outpath)){
55 | outpath<-path
56 | }
57 | ifelse(!dir.exists(paste0(outpath,"/filtered")),dir.create(file.path(outpath,"filtered"),recursive=TRUE),FALSE);
58 | filtFs <- file.path(outpath, "filtered", paste0(sample.names, "_F_filt.fastq.gz"))
59 | filtRs <- file.path(outpath, "filtered", paste0(sample.names, "_R_filt.fastq.gz"))
60 | out <- dada2::filterAndTrim(fnFs, filtFs, fnRs, filtRs, truncLen=truncLen,trimLeft=trimLeft,trimRight=trimRight,
61 | maxN=0, maxEE=c(2,2), truncQ=2, rm.phix=TRUE,minLen=minLen,maxLen = maxLen,
62 | compress=TRUE, multithread=multithread) # On Windows set multithread=FALSE
63 | if(isTRUE(verbose)){
64 | message("Learning error......")
65 | }
66 | errF <- dada2::learnErrors(filtFs, multithread=multithread)
67 | errR <- dada2::learnErrors(filtRs, multithread=multithread)
68 | if(isTRUE(verbose)){
69 | message("Dereplicating......")
70 | }
71 | derepFs <- dada2::derepFastq(filtFs, verbose=FALSE)
72 | derepRs <- dada2::derepFastq(filtRs, verbose=FALSE)
73 | # Name the derep-class objects by the sample names
74 | names(derepFs) <- sample.names
75 | names(derepRs) <- sample.names
76 | if(isTRUE(verbose)){
77 | message("Error correction......")
78 | }
79 | dadaFs <- dada2::dada(derepFs, err=errF, multithread=TRUE)
80 | dadaRs <- dada2::dada(derepRs, err=errR, multithread=TRUE)
81 | if(isTRUE(verbose)){
82 | message("Mergering.......")
83 | }
84 | mergers <- dada2::mergePairs(dadaFs, derepFs, dadaRs, derepRs, verbose=FALSE)
85 | if(isTRUE(verbose)){
86 | message("Making table.......")
87 | }
88 | seqtab <- dada2::makeSequenceTable(mergers)
89 | if(isTRUE(verbose)){
90 | message("Remove chimeras.......")
91 | }
92 | seqtab.nochim <- dada2::removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=FALSE)
93 | asv_seqs <- colnames(seqtab.nochim)
94 | asv_headers <- vector(dim(seqtab.nochim)[2], mode="character")
95 | for (i in 1:dim(seqtab.nochim)[2]) {
96 | asv_headers[i] <- paste(">ASV", i, sep="_")
97 | }
98 | getN <- function(x) sum(dada2::getUniques(x))
99 | track <- cbind(out, sapply(dadaFs, getN), sapply(dadaRs, getN), sapply(mergers, getN), rowSums(seqtab.nochim))
100 | # If processing a single sample, remove the sapply calls: e.g. replace sapply(dadaFs, getN) with getN(dadaFs)
101 | colnames(track) <- c("input", "filtered", "denoisedF", "denoisedR", "merged", "nonchim")
102 | rownames(track) <- sample.names
103 | # count table:
104 | asv_count <- t(seqtab.nochim)
105 | rownames(asv_count) <- sub(">", "", asv_headers)
106 | ### set back to the previous work dir
107 | if(isTRUE(verbose)){
108 | message("Write out the count table.......")
109 | }
110 | write.table(asv_count,paste0(outpath, "/ASVs_counts.txt"), sep="\t", quote=F)
111 | if(isTRUE(verbose)){
112 | message("Assign taxonomy........")
113 | }
114 | if(is.null(train_data)|is.null(train_species)){
115 | stop("Please specify the path for the sliva database......\n ")
116 | }else{
117 | taxa <- dada2::assignTaxonomy(seqtab.nochim, train_data, multithread=multithread)
118 | taxa <- dada2::addSpecies(taxa, train_species)
119 | ###
120 | taxtab<-unname(taxa)
121 | ### get sequence and do phylo anaylsis
122 | seqs <- dada2::getSequences(seqtab.nochim)
123 | names(seqs) <- seqs # This propagates to the tip labels of the tree
124 | if(isTRUE(verbose)){
125 | message("write out sequence and taxonomy results")
126 | }
127 | # fasta:
128 | asv_fasta <- c(rbind(asv_headers, asv_seqs))
129 | write(asv_fasta,paste0(outpath, "/ASVs.fa"))
130 | # tax table:
131 | asv_taxa <- taxa
132 | row.names(asv_taxa) <- sub(">", "", asv_headers)
133 | write.table(asv_taxa, paste0(outpath,"/ASVs_taxonomy.txt"), sep="\t", quote=F)
134 | }
135 | if(isTRUE(verbose)){
136 | message("creating phyloseq object......")
137 | }
138 | if(!is.null(sample_info)){
139 | if(is.character(sample_info)){
140 | ext<-.checkfile(sample_info)
141 | if(ext=="txt"){
142 | sampdf<-read.delim(sample_info,sep="\t",header = TRUE,row.names = 1)
143 | }
144 | if(ext=="csv"){
145 | sampdf<-read.delim(sample_info,sep=",",header = TRUE,row.names = 1)
146 | }
147 | sampdf<-sampdf[rownames(seqtab.nochim),]
148 | }else{
149 | sampdf<-sample_info
150 | sampdf<-sampdf[rownames(seqtab.nochim),]
151 | }
152 | }else{
153 | sampdf<-data.frame(ID=colnames(asv_count))
154 | rownames(sampdf)<-colnames(asv_count)
155 | }
156 | if(isTRUE(buildtree)){
157 | tree <- buildTree(seqs)
158 | }
159 | ps <- phyloseq(otu_table(asv_count, taxa_are_rows=T),
160 | sample_data(sampdf),
161 | tax_table(asv_taxa))
162 | if(isTRUE(saveobj)){
163 | save(ps,file=paste0(outpath,"phyloseq.rdata"),compress=TRUE)
164 | }
165 | res<-list(track=track,count=asv_count,taxonomy=asv_taxa,physeq=ps)
166 | return(res)
167 | }
168 |
--------------------------------------------------------------------------------
/R/data.R:
--------------------------------------------------------------------------------
1 | ################################################################################
2 | #' The physeq data was modified from the (Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)
3 | #'
4 | #' Published in PNAS in early 2011. This work compared the microbial
5 | #' communities from 25 environmental samples and three known ``mock communities''
6 | #' -- a total of 9 sample types -- at a depth averaging 3.1 million reads per sample.
7 | #' Authors were able to reproduce diversity patterns seen in many other
8 | #' published studies, while also invesitigating technical issues/bias by
9 | #' applying the same techniques to simulated microbial communities of known
10 | #'
11 | #' @references
12 | #' Caporaso, J. G., et al. (2011).
13 | #' Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
14 | #' PNAS, 108, 4516-4522.
15 | #' PMCID: PMC3063599
16 | #'
17 | #' @name data-physeq
18 | #' @aliases physeq
19 | #' @docType data
20 | #' @keywords data
21 | #' @examples
22 | #' data(Physeq)
23 | ################################################################################
24 | NA
25 |
--------------------------------------------------------------------------------
/R/glmr.R:
--------------------------------------------------------------------------------
1 | #' @title Do the generalized linear model regression
2 | #' @importFrom phyloseq taxa_are_rows otu_table sample_data
3 | #' @importFrom broom tidy
4 | #' @importFrom stats binomial glm
5 | #' @param physeq phyloseq object
6 | #' @param group the group factor to regression
7 | #' @param factors a vector to indicate adjuested factors
8 | #' @param ref the reference group
9 | #' @param family binomial() or gaussian()
10 | #' @examples
11 | #' \donttest{
12 | #' data("Physeq")
13 | #' phy<-normalize(physeq)
14 | #' fit <-glmr(phy,group="SampleType")
15 | #' }
16 | #' @export
17 | #' @author Kai Guo
18 |
19 | glmr<-function(physeq,group,factors=NULL,ref=NULL,family=binomial(link = "logit")){
20 | if (!taxa_are_rows(physeq)) {
21 | physeq <- t(physeq)
22 | }
23 | otu <- as(otu_table(physeq), "matrix")
24 | otu <- as.data.frame(t(otu))
25 | colnames(otu)<-paste0('ASV_',colnames(otu))
26 | samd <- sample_data(physeq)[,c(group,factors)]
27 | dd <- cbind(samd[rownames(otu),],otu)
28 | if(!is.null(ref)){
29 | level <- unique(dd[,group])
30 | level <- c(ref,setdiff(level,ref))
31 | }else{
32 | level <- unique(dd[,group])
33 | }
34 | dd[,group]<-factor(dd[,group],levels = level)
35 | cat('##########################################\n')
36 | cat('Do the generalized linear model regression with ',factors,'adjusted',"\n")
37 | cat(paste0(group,"~",paste0(factors,collapse="+"),"+x"),"\n")
38 | cat('##########################################\n')
39 | rr<-lapply(colnames(otu)[1:50],function(x)tidy(glm(as.formula(paste0(group,"~",paste0(factors,collapse="+"),"+",x)),data=dd,family=family)))
40 | names(rr)<- sub('ASV_','',colnames(otu)[1:50])
41 | res <- do.call(rbind,rr)
42 | res <- res[grep('ASV_',res$term),]
43 | res$term<-sub('ASV_','',res$term)
44 | res$padj <- p.adjust(res$p.value,method="BH")
45 | res <- res[order(res$padj),]
46 | return(res)
47 | }
48 |
--------------------------------------------------------------------------------
/R/misc.R:
--------------------------------------------------------------------------------
1 | simpleCap <- function(x) {
2 | s <- strsplit(x, " ")[[1]]
3 | paste(toupper(substring(s, 1,1)), substring(s, 2),
4 | sep="", collapse=" ")
5 | }
6 |
7 | #' light colors for making figures
8 | #' @author Kai Guo
9 | #' @export
10 | lightcolor<-c('#E5D2DD', '#53A85F', '#F1BB72', '#F3B1A0', '#D6E7A3', '#57C3F3', '#476D87',
11 | '#E95C59', '#E59CC4', '#AB3282', '#23452F', '#BD956A', '#8C549C', '#585658',
12 | '#9FA3A8', '#E0D4CA', '#5F3D69', '#C5DEBA', '#58A4C3', '#E4C755', '#F7F398',
13 | '#AA9A59', '#E63863', '#E39A35', '#C1E6F3', '#6778AE', '#91D0BE', '#B53E2B',
14 | '#712820', '#DCC1DD', '#CCE0F5', '#CCC9E6', '#625D9E', '#68A180', '#3A6963',
15 | '#968175','#e6194b', '#3cb44b', '#ffe119', '#4363d8','#f58231', '#911eb4',
16 | '#46f0f0', '#f032e6', '#bcf60c',
17 | '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8',
18 | '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075',
19 | '#808080'
20 | )
21 | #' distinguish colors for making figures
22 | #' @author Kai Guo
23 | #' @export
24 | distcolor<-c("#A6761D","#D95F02","#66A61E","#1B9E77","#E7298A","#7570B3","#E6AB02",
25 | "#A6CEE3", "#1F78B4", "#B2DF8A", "#33A02C", "#FB9A99", "#E31A1C",
26 | "#A6761D","#D95F02","#66A61E","#1B9E77","#E7298A","#7570B3","#E6AB02",'#e6194b', '#3cb44b', '#4363d8',
27 | '#f58231', '#911eb4', '#46f0f0', '#f032e6', '#bcf60c',
28 | '#fabebe', '#008080', '#e6beff', '#9a6324', '#fffac8',
29 | '#800000', '#aaffc3', '#808000', '#ffd8b1', '#000075',
30 | '#808080', '#ffffff', '#000000')
31 | #' do anova test and return results as data.frame
32 | #' @importFrom rstatix anova_test
33 | #' @importFrom tidyr gather
34 | #' @importFrom magrittr %>%
35 | #' @importFrom dplyr group_by
36 | #' @param x data.frame with sample id as the column name, genes or otu as rownames
37 | #' @param group group factor used for comparison
38 | #' @param ... parameters to anova_test
39 | #' @examples
40 | #' {
41 | #' data("ToothGrowth")
42 | #' do_aov(ToothGrowth,group="supp")
43 | #' }
44 | #' @export
45 | #' @author Kai Guo
46 | do_aov<-function(x,group,...){
47 | d<-x[,setdiff(colnames(x),group)]
48 | d$group<-x[,group]
49 | d<-d%>%gather(type,val,-group)
50 | res<-d%>%group_by(type)%>%anova_test(val~group,...)
51 | return(res)
52 | }
53 |
54 | #' do t.test
55 | #' @importFrom rstatix t_test
56 | #' @importFrom tidyr gather
57 | #' @importFrom magrittr %>%
58 | #' @importFrom dplyr group_by
59 | #' @param x data.frame with sample id as the column name, genes or otu as rownames
60 | #' @param group group factor used for comparison
61 | #' @param ref reference group
62 | #' @param ... parameters to t_test
63 | #' @examples
64 | #' {
65 | #' data("mtcars")
66 | #' do_ttest(mtcars,group="vs")
67 | #' do_ttest(mtcars,group="cyl",ref="4")
68 | #' }
69 | #' @export
70 | #' @author Kai Guo
71 | do_ttest<-function(x,group,ref=NULL,...){
72 | d<-x[,setdiff(colnames(x),group)]
73 | d$group<-x[,group]
74 | d<-d%>%gather(type,val,-group)
75 | res<-d%>%group_by(type)%>%t_test(val~group,ref.group = ref,...)
76 | res$p.adj<-p.adjust(res$p,method="BH")
77 | return(res)
78 | }
79 |
80 | #' do wilcox test
81 | #' @importFrom rstatix wilcox_test
82 | #' @importFrom tidyr gather
83 | #' @importFrom magrittr %>%
84 | #' @importFrom dplyr group_by
85 | #' @param x data.frame with sample id as the column name, genes or otu as rownames
86 | #' @param group group factor used for comparison
87 | #' @param ref reference group
88 | #' @param ... parameters to wilcox_test
89 | #' @examples
90 | #' {
91 | #' data("mtcars")
92 | #' do_wilcox(mtcars,group="vs")
93 | #' do_wilcox(mtcars,group="cyl",ref="4")
94 | #' }
95 | #' @export
96 | #' @author Kai Guo
97 | do_wilcox<-function(x,group,ref=NULL,...){
98 | d<-x[,setdiff(colnames(x),group)]
99 | d$group<-x[,group]
100 | d<-d%>%gather(type,val,-group)
101 | res<-d%>%group_by(type)%>%wilcox_test(val~group,ref.group = ref,...)
102 | res$p.adj<-p.adjust(res$p,method="BH")
103 | return(res)
104 | }
105 | #'
106 | gm_mean = function(x, na.rm=TRUE){
107 | exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
108 | }
109 |
110 | #' replace p value with star
111 | #' @param x a (non-empty) numeric data values
112 | .getstar<-function(x){
113 | if(x>=0.05){
114 | return("ns")
115 | }else if(x>=0.01 & x<0.05){
116 | return("*")
117 | }else if(x<0.01){
118 | return("**")
119 | }else{
120 | return("***")
121 | }
122 | }
123 | #' check file format
124 | #' @param file filename
125 | .checkfile <- function(file){
126 | ex <- strsplit(basename(file), split="\\.")[[1]]
127 | return(ex[-1])
128 | }
129 |
130 | #' LEfse function
131 | #' @param df a dataframe with groups and bacteria abundance
132 | .lda.fun<-function(df){
133 | # modified from https://github.com/xia-lab/MicrobiomeAnalystR/blob/
134 | # 0a8d81afeb3b637122c97c2d17146a44fa978c4f/R/general_anal.R
135 | ldares <- MASS::lda(group~seqs,df,tol = 1.0e-10);
136 | ldamean <- as.data.frame(t(ldares$means));
137 | class_no <- length(unique(df$group));
138 | ldamean$max <- apply(ldamean[,1:class_no],1,max);
139 | ldamean$min <- apply(ldamean[,1:class_no],1,min);
140 | ldamean$LDAscore <- signif(log10(1+abs(ldamean$max-ldamean$min)/2),digits=3);
141 | resTable <- ldamean;
142 | resTable$direction <- colnames(resTable)[which(resTable[,1:class_no]==resTable$max)]
143 | return(resTable)
144 | }
145 |
146 | #' contruction of plylogenetic tree (extreme slow)
147 | #' @importFrom phangorn phyDat dist.ml NJ pml optim.pml pml.control
148 | #' @importFrom stats update
149 | #' @param seqs DNA sequences
150 | #' @author Kai Guo
151 | #' @return tree object
152 | #' @export
153 | buildTree<-function(seqs){
154 | alignment <- DECIPHER::AlignSeqs(Biostrings::DNAStringSet(seqs), anchor=NA,verbose=T)
155 | phangAlign <- phyDat(as(alignment, "matrix"), type="DNA")
156 | dm <- dist.ml(phangAlign)
157 | treeNJ <- NJ(dm) # Note, tip order != sequence order
158 | fit = pml(treeNJ, data=phangAlign)
159 | fitGTR <- update(fit, k=4, inv=0.2)
160 | fitGTR <- optim.pml(fitGTR, model="GTR", optInv=TRUE, optGamma=TRUE,
161 | rearrangement = "stochastic", control = pml.control(trace = 0))
162 | return(fitGTR)
163 | }
164 | #' extract otu table
165 | #' @param physeq (Required). An integer matrix, otu_table-class, or phyloseq-class.
166 | #' @param ... parameters for the otu_table function in phyloseq package
167 | #' @export
168 | otu_table<-function(physeq,...){
169 | phyloseq::otu_table(physeq,...)
170 | }
171 | #' extract taxonomy table
172 | #' @param physeq An object among the set of classes defined by the phyloseq package that contain taxonomyTable.
173 | #' @param ... parameters for the tax_table function in phyloseq package
174 | #' @export
175 | tax_table<-function(physeq,...){
176 | phyloseq::tax_table(physeq,...)
177 | }
178 | #' extract sample information
179 | #' @param physeq (Required). A data.frame-class, or a phyloseq-class object.
180 | #' @param ... parameters for the sample_data function in phyloseq package
181 | #' @export
182 | sample_data<-function(physeq,...){
183 | phyloseq::sample_data(physeq,...)
184 | }
185 |
186 | #' Retrieve phylogenetic tree (phylo-class) from object.
187 | #' @param physeq (Required). An instance of phyloseq-class that contains a phylogenetic tree.
188 | #' If physeq is a phylogenetic tree (a component data class), then it is returned as-is.
189 | #' @param ... parameters for the phy_tree function in phyloseq package
190 | #' @export
191 | phy_tree<-function(physeq,...){
192 | phyloseq::phy_tree(physeq,...)
193 | }
194 |
195 | #' Subset the phyloseq based on sample
196 | #' @param physeq A sample_data-class, or a phyloseq-class object with a sample_data.
197 | #' If the sample_data slot is missing in physeq, then physeq will be returned as-is,
198 | #' and a warning will be printed to screen.
199 | #' @param ... parameters for the subset_samples function in phyloseq package
200 | #' @export
201 | subset_samples<-function(physeq,...){
202 | phyloseq::subset_samples(physeq,...)
203 | }
204 |
205 | #' Subset species by taxonomic expression
206 | #' @param physeq A sample_data-class, or a phyloseq-class object with a sample_data.
207 | #' If the sample_data slot is missing in physeq, then physeq will be returned as-is,
208 | #' and a warning will be printed to screen.
209 | #' @param ... parameters for the subset_taxa function in phyloseq package
210 | #' @export
211 | subset_taxa<-function(physeq,...){
212 | phyloseq::subset_taxa(physeq,...)
213 | }
214 |
215 | #' Melt phyloseq data object into large data.frame
216 | #' @param physeq A sample_data-class, or a phyloseq-class object with a sample_data.
217 | #' If the sample_data slot is missing in physeq, then physeq will be returned as-is,
218 | #' and a warning will be printed to screen.
219 | #' @param ... parameters for the subset_samples function in phyloseq package
220 | #' @export
221 | psmelt<-function(physeq,...){
222 | phyloseq::psmelt(physeq,...)
223 | }
224 |
225 |
226 |
227 |
--------------------------------------------------------------------------------
/R/plot.R:
--------------------------------------------------------------------------------
1 | #' plot beta diversity
2 | #'
3 | #' @importFrom ggplot2 ggplot aes_string
4 | #' @importFrom ggplot2 geom_point
5 | #' @importFrom ggplot2 scale_color_manual
6 | #' @importFrom ggplot2 xlab ylab stat_ellipse
7 | #' @importFrom ggplot2 theme_light
8 | #' @importFrom phyloseq taxa_are_rows
9 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
10 | #' taxonomic assignment, sample data including the measured variables and categorical information
11 | #' of the samples, and / or phylogenetic tree if available.
12 | #' @param group (Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
13 | #' information.
14 | #' @param shape shape(Optional) Character string specifying shape of a categorical variable
15 | #' @param method A character string specifying ordination method. All methods available to the \code{ordinate} function
16 | #' of \code{phyloseq} are acceptable here as well.
17 | #' @param distance A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
18 | #' "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
19 | #' "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".
20 | #' @param color user defined color for group
21 | #' @param size the point size
22 | #' @param ellipse draw ellipse or not
23 | #' @examples
24 | #' {
25 | #' data("Physeq")
26 | #' phy<-normalize(physeq)
27 | #' plotbeta(phy,group="SampleType")
28 | #' }
29 | #' @return ggplot2 object
30 | #' @author Kai Guo
31 | #' @export
32 | plotbeta<-function(physeq,group,shape=NULL,distance="bray",method="PCoA",color=NULL,size=3,ellipse=FALSE){
33 | if(!taxa_are_rows(physeq)){
34 | physeq <- t(physeq)
35 | }
36 | beta<-betadiv(physeq,distance = distance,method=method)
37 | df <- as.data.frame(beta$beta)
38 | PCs <- beta$PCs
39 | tab <- as(sample_data(physeq),"data.frame")
40 | df <- cbind(df[,1:4],tab[rownames(df),])
41 | df$group<-tab[,group]
42 | if(is.null(color)){
43 | color<-distcolor[1:length(unique(df$group))]
44 | }
45 | if(!is.null(shape)){
46 | df$shape<-tab[,shape]
47 | p <- ggplot(df,aes_string("Axis.1","Axis.2",color="group",shape="shape"))
48 | }else{
49 | p <- ggplot(df,aes_string("Axis.1","Axis.2",color="group"))
50 | }
51 | p<-p+geom_point(size=size)+scale_color_manual(values=color)
52 | p <- p+theme_light(base_size=15)+xlab(paste0("Axis1 (",round(PCs[1]*100,2),"%)"))+ylab(paste0("Axis2 (",round(PCs[2]*100,2),"%)"))
53 | if(isTRUE(ellipse)){
54 | p <- p + stat_ellipse()
55 | }
56 | p
57 | }
58 |
59 | #' plot alpha diversity
60 | #' @importFrom rstatix t_test
61 | #' @importFrom rstatix wilcox_test
62 | #' @importFrom ggpubr ggboxplot
63 | #' @importFrom ggpubr ggviolin
64 | #' @importFrom ggpubr ggdotplot
65 | #' @importFrom ggpubr stat_pvalue_manual
66 | #' @importFrom ggpubr facet
67 | #' @importFrom ggplot2 xlab ylab scale_color_manual theme
68 | #' @importFrom dplyr summarise group_by
69 | #' @importFrom tidyr gather spread
70 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
71 | #' taxonomic assignment, sample data including the measured variables and categorical information
72 | #' of the samples, and / or phylogenetic tree if available.
73 | #' @param group group (Required). A character string specifying the name of a categorical variable containing grouping information.
74 | #' @param method A list of character strings specifying \code{method} to be used to calculate for alpha diversity
75 | #' in the data. Available methods are: "Observed","Chao1","ACE","Richness", "Fisher", "Simpson", "Shannon", "Evenness","InvSimpson".
76 | #' @param color A vector of character use specifying the color
77 | #' @param geom different geom to display("boxplot","violin","dotplot")
78 | #' @param pvalue pvalue threshold for significant dispersion results
79 | #' @param sig.only display the significant comparsion only(TRUE/ FALSE)
80 | #' @param padj adjust p value threshold for significant dispersion results
81 | #' @param wilcox use wilcoxon test or not
82 | #' @param show.number to show the pvalue instead of significant symbol(TRUE/FALSE)
83 | #' @examples
84 | #' {
85 | #' data("Physeq")
86 | #' plotalpha(physeq,group="SampleType")
87 | #' }
88 | #' @return Returns a ggplot object. This can further be manipulated as preferred by user.
89 | #' @author Kai Guo
90 | #' @export
91 | plotalpha<-function(physeq,group,method=c("Observed","Simpson", "Shannon"),color=NULL,geom="boxplot",
92 | pvalue=0.05,padj=NULL,sig.only=TRUE, wilcox=FALSE,show.number=FALSE){
93 | if (!taxa_are_rows(physeq)) {
94 | physeq <- t(physeq)
95 | }
96 | rich<-richness(physeq,method = method)
97 | name<-levels(factor(colnames(rich)))
98 | tab<-as(sample_data(physeq),"data.frame")
99 | rich$group<-tab[rownames(rich),group]
100 | if(isTRUE(wilcox)){
101 | res<-do_wilcox(rich,"group")
102 | }else{
103 | res<-do_ttest(rich,"group")
104 | }
105 | if(sum(res$p%gather(type,val,-group)%>%group_by(type,group)%>%summarise(ma=max(val))%>%spread(group,ma)
116 | pos <- apply(res, 1, function(x)max(vals[vals$type==x[1],x[3:4]]))
117 | mpos <- apply(res, 1, function(x)min(vals[vals$type==x[1],x[3:4]]))
118 | if(geom=="boxplot"){
119 | p<-rich%>%gather(type,val,-group)%>%ggboxplot(x="group",y="val",color="group")
120 | }else if(geom=="violin"){
121 | p<-rich%>%gather(type,val,-group)%>%ggviolin(x="group",y="val",color="group")
122 | }else if(geom=="dotplot"){
123 | p<-rich%>%gather(type,val,-group)%>%ggdotplot(x="group",y="val",color="group")
124 | }else{
125 | stop("Please specify one type of boxplot,violin,dotplot")
126 | }
127 | if(!isTRUE(show.number)){
128 | res$p.signif<-sapply(res$p,function(x).getstar(x))
129 | res$p.adj.signif<-sapply(res$p.adj,function(x).getstar(x))
130 | }else{
131 | res$p.signif<-res$p
132 | res$p.adj.signif<-res$p.adj
133 | }
134 | if(is.null(color)){
135 | color<-distcolor[1:length(unique(rich$group))]
136 | }
137 | p<-facet(p,facet.by = "type",scales = "free_y",ncol = length(method))
138 | if(!is.null(padj)){
139 | p<-p+stat_pvalue_manual(res,label = "p.adj.signif",y.position = pos+2*mpos/nrow(res))
140 | }else{
141 | p<-p+stat_pvalue_manual(res,label = "p.signif",y.position = pos+mpos/nrow(res))
142 | }
143 | p<-p+xlab("")+ylab("")+
144 | theme(legend.position = "none",axis.text.x=element_text(angle=90,vjust=0.5, hjust=1))+
145 | scale_color_manual(values=color)
146 | p
147 | }
148 |
149 |
150 | #' plot bar for relative abundance for bacteria
151 | #' @importFrom phyloseq psmelt
152 | #' @importFrom ggplot2 ggplot
153 | #' @importFrom ggplot2 geom_bar
154 | #' @importFrom ggplot2 scale_fill_manual
155 | #' @importFrom ggplot2 theme
156 | #' @importFrom ggplot2 element_text
157 | #' @importFrom ggplot2 aes_string
158 | #' @importFrom ggplot2 element_blank scale_y_continuous
159 | #' @importFrom dplyr group_by_at
160 | #' @importFrom dplyr vars pull
161 | #' @importFrom dplyr one_of
162 | #' @importFrom dplyr summarise
163 | #' @importFrom dplyr mutate
164 | #' @importFrom dplyr select
165 | #' @importFrom rlang `!!`
166 | #' @importFrom utils head
167 | #' @param physeq A \code{phyloseq} object containing merged information of abundance,
168 | #' taxonomic assignment, sample data including the measured variables and categorical information
169 | #' of the samples, and / or phylogenetic tree if available.
170 | #' @param level the level to plot
171 | #' @param color A vector of character use specifying the color
172 | #' @param group group (Optional). A character string specifying the name of a categorical variable containing grouping information.
173 | #' @param top the number of most abundance bacteria to display
174 | #' @param return return the data with the relative abundance
175 | #' @param fontsize.x the size of x axis label
176 | #' @param fontsize.y the size of y axis label
177 | #' @examples
178 | #' \donttest{
179 | #' data("Physeq")
180 | #' phy<-normalize(physeq)
181 | #' plotbar(phy,level="Phylum")
182 | #' }
183 | #' @return Returns a ggplot object. This can further be manipulated as preferred by user.
184 | #' @author Kai Guo
185 | #' @export
186 | plotbar<-function(physeq,level="Phylum",color=NULL,group=NULL,top=5,return=FALSE,fontsize.x = 5, fontsize.y = 12){
187 | pm <- psmelt(physeq)
188 | if(is.null(color)){
189 | len<-length(unique(pm[,level]))
190 | color<-distcolor[1:len]
191 | }
192 | if(is.null(group)){
193 | group_var<-c("Sample",level)
194 | }else{
195 | group_var<-c(group,level)
196 | }
197 | d<-pm%>%group_by_at(vars(one_of(group_var)))%>%summarise(su=sum(Abundance))
198 | d <- as.data.frame(d)
199 | d[,level][is.na(d[,level])]<-"NA"
200 | dx <- pm%>%group_by_at(vars(one_of(level)))%>%summarise(su=sum(Abundance))
201 | dx <- dx[order(dx$su,decreasing = T),]
202 | sel <- dx%>%head(top)%>%select(!!level)%>%pull(1)
203 | d <- d[d[,level]%in%sel,]
204 | if(is.null(group)){
205 | p<-ggplot(d,aes_string("Sample","su",fill=level))
206 | }else{
207 | p<-ggplot(d,aes_string(group,"su",fill=level))
208 | }
209 | p<-p+geom_bar(stat = "identity",position = "fill")+scale_fill_manual(values=color)+
210 | theme_light()+
211 | scale_y_continuous(expand = c(0, 0.001)) +
212 | theme(axis.text.x=element_text(angle=90,size=fontsize.x, vjust=0.5, hjust=1),
213 | axis.text.y=element_text(size=fontsize.y),
214 | panel.background = element_blank(),axis.ticks.x = element_blank())+
215 | xlab("")+ylab("")
216 | if(isTRUE(return)){
217 | return(pm[,c("OTU","Abundance",group_var)])
218 | }else{
219 | return(p)
220 | }
221 | }
222 |
223 | #' @title plot differential results
224 | #' @importFrom ggplot2 ggplot theme geom_point element_text xlab
225 | #' @importFrom ggplot2 aes_string scale_color_manual theme_light coord_flip
226 | #' @param res differential test results from diff_test
227 | #' @param level the level to plot
228 | #' @param color A vector of character use specifying the color
229 | #' @param pvalue pvalue threshold for significant results
230 | #' @param padj adjust p value threshold for significant results
231 | #' @param log2FC log2 Fold Change threshold
232 | #' @param size size for the point
233 | #' @param fontsize.x the size of x axis label
234 | #' @param fontsize.y the size of y axis label
235 | #' @param horiz horizontal or not (TRUE/FALSE)
236 | #' @examples
237 | #' \donttest{
238 | #' data("Physeq")
239 | #' res <- difftest(physeq,group="group")
240 | #' plotdiff(res,level="Genus",padj=0.001)
241 | #' }
242 | #' @return ggplot object
243 | #' @author Kai Guo
244 | #' @export
245 | plotdiff<-function(res,level="Genus",color=NULL,pvalue=0.05,padj=NULL,log2FC=0,size=3,fontsize.x=5,fontsize.y=10,horiz=TRUE){
246 | if(!is.null(padj)){
247 | pval<-padj
248 | sigtab <- subset(res,padjlog2FC)
249 | }else{
250 | pval<-pvalue
251 | sigtab <- subset(res,pvaluelog2FC)
252 | }
253 | x <- tapply(sigtab$log2FoldChange, sigtab$Phylum, function(x) max(x))
254 | x <- sort(x, TRUE)
255 | sigtab$Phylum <- factor(as.character(sigtab$Phylum), levels=names(x))
256 | if(is.null(color)){
257 | len<-length(unique(sigtab$Phylum))
258 | color<-distcolor[1:len]
259 | }
260 | # Genus order
261 | sigtab$name<-paste0(sigtab[,level],"(",rownames(sigtab),")")
262 | x <- tapply(sigtab$log2FoldChange, sigtab$name, function(x) max(x))
263 | x <- sort(x, TRUE)
264 | sigtab$name <- factor(as.character(sigtab$name), levels=names(x))
265 | p <- ggplot(sigtab, aes_string(x="name", y="log2FoldChange", color="Phylum"))+
266 | geom_point(size=3) +theme_light()+xlab(level)+
267 | theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5,size=fontsize.x),
268 | axis.text.y = element_text(size=fontsize.y))+
269 | scale_color_manual(values=color)
270 | if(isTRUE(horiz)){
271 | p<-p+coord_flip()+theme(axis.text.x=element_text(angle=0,size=fontsize.x))
272 | }
273 | p
274 | }
275 |
276 | #' plot LEfSe results from ldamarker function
277 | #' @importFrom ggplot2 ggplot geom_bar coord_flip theme_light element_text
278 | #' @importFrom ggplot2 scale_fill_manual xlab
279 | #' @importFrom ggplot2 aes
280 | #' @importFrom dplyr mutate
281 | #' @importFrom magrittr %>%
282 | #' @importFrom stats reorder
283 | #' @param x LEfse results from ldamarker
284 | #' @param group a vector include two character to show the group comparsion
285 | #' @param lda LDA threshold for significant biomarker
286 | #' @param pvalue pvalue threshold for significant results
287 | #' @param padj adjust p value threshold for significant results
288 | #' @param color A vector of character use specifying the color
289 | #' @param fontsize.x the size of x axis label
290 | #' @param fontsize.y the size of y axis label
291 | #' @examples
292 | #' \donttest{
293 | #' data("Physeq")
294 | #' res <- ldamarker(physeq,group="group")
295 | #' plotLDA(res,group=c("A","B"),lda=5,pvalue=0.05)
296 | #' }
297 | #' @return ggplot2 object
298 | #' @author Kai Guo
299 | #' @export
300 | plotLDA<-function(x,group,lda=2,pvalue=0.05,padj=NULL,color=NULL,fontsize.x=4,fontsize.y=5){
301 | x <- subset(x,LDAscore>lda)
302 | if(!is.null(padj)){
303 | x <- subset(x,p.adj%mutate(LDA=ifelse(direction==group[1],LDAscore,-LDAscore))
309 | p<-ggplot(x,aes(x=reorder(tax,LDA),y=LDA,fill=direction))+
310 | geom_bar(stat="identity",color="white")+coord_flip()+
311 | theme_light()+theme(axis.text.x = element_text(size=fontsize.x),
312 | axis.text.y = element_text(size=fontsize.y))
313 | if(is.null(color)){
314 | color <- distcolor[c(2:3)]
315 | }
316 | p<-p+scale_fill_manual(values=color)+xlab("")
317 | p
318 | }
319 |
320 | #'
321 | #' plot the biomarker from the biomarker function with randomForest
322 | #' @importFrom ggpubr ggdotchart
323 | #' @importFrom ggplot2 xlab ylab
324 | #' @param x biomarker results from randomForest
325 | #' @param level the bacteria level to display
326 | #' @param top the number of important biomarker to draw
327 | #' @param rotate TRUE/FALSE
328 | #' @param dot.size size for the dot
329 | #' @param label.size label size
330 | #' @param label.color label color
331 | #' @return ggplot2 object
332 | #' @examples
333 | #' \donttest{
334 | #' data("Physeq")
335 | #' res <- biomarker(physeq,group="group")
336 | #' plotmarker(res,level="Genus")
337 | #' }
338 | #' @export
339 | #' @author Kai Guo
340 | plotmarker<-function(x,level="Genus",top=30,rotate=FALSE,dot.size=8,label.color="black",label.size=6){
341 | x <- x[1:top,]
342 | x <- x[order(x$Value),]
343 | x$label<-paste0(x[,level],"(",x$OTU,")")
344 | p<-ggdotchart(x,x="label",y="Value",add="segments",color=I("#00AFBB"),rotate=rotate,dot.size=dot.size,sorting="descending",
345 | add.params = list(color = "#00AFBB", size = 1.5),
346 | label=round(x$Value,2),font.label = list(color = label.color, size = label.size,vjust=0.2))
347 | if(isTRUE(rotate)){
348 | p<-p+xlab(level)+ylab("Mean Decrease Accuracy")
349 | }else{
350 | p<-p+xlab(level)+ylab("Mean Decrease Accuracy")
351 | }
352 | p
353 | }
354 |
355 | #' plot the quality for the fastq file
356 | #' @param file (Required). character. File path(s) to fastq or fastq.gz file(s).
357 | #' @param n (Optional). Default 500,000. The number of records to sample from the fastq file.
358 | #' @param aggregate (Optional). Default FALSE. If TRUE, compute an aggregate quality profile for all fastq files provided.
359 | #' @examples
360 | #' \donttest{
361 | #' plotquality(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
362 | #' }
363 | #' @export
364 | #' @return figure
365 | plotquality<-function(file,n = 5e+05, aggregate = FALSE){
366 | dada2::plotQualityProfile(file,n=n,aggregate = aggregate)
367 | }
368 |
--------------------------------------------------------------------------------
/R/zzz.R:
--------------------------------------------------------------------------------
1 | .onLoad <- function(libname, pkgname) {
2 | old <- options()
3 | options(stringsAsFactors = FALSE)
4 | on.exit(options(old))
5 | }
6 | if(getRversion() >= "2.15.1") {
7 | utils::globalVariables(c(".","Abundance", "Group","LDA","LDAscore", "OTU",
8 | "Phylum","Sample","direction",
9 | "log2FoldChange","ma","p.adj",
10 | "p.value", "tax","type", "val"))
11 | }
12 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # microbial
2 |
3 | [](https://zenodo.org/badge/latestdoi/298122205)
4 | 
5 | [](http://www.repostatus.org/#active)
6 | [](https://github.com/guokai8/microbial)
7 | [](https://cran.r-project.org/package=microbial)
8 |
9 |
10 | An R package for microbial community analysis with dada2 and phyloseq
11 |
12 | _microbial_ is a R package for microbial community analysis with dada2 and phyloseq
13 | This package is developed to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data.Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.
14 |
15 | ## 1. Data format/ requirement
16 | To use the package user can start with the raw fastq files with sample information ready or user can start with a phyloseq object (phloseq-class) comprising taxa abundance information, taxonomy assignment, sample data which is a combination of the measured environmental variables and any categorical variables present in the sample.
17 |
18 | If the phylogenetic tree is available, it can also be part of it, but it has nothing to do with most of the functions implemented here so far. We chose to use this format because as the analysis and visualization proceed, we have many options to process the data.User can go to the https://github.com/joey711/phyloseq to check the detail format of phyloseq object.
19 |
20 | ## 2 Example data
21 | The physeq data were the Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011). The data was published in PNAS in early 2011. This work compared the microbial communities from 25 environmental samples and three known “mock communities” – a total of 9 sample types – at a depth averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in many other published studies, while also invesitigating technical issues/bias by applying the same techniques to simulated microbial communities of known composition. We simple modified the data with add one more group factor to display some functions implemented in the package.
22 |
23 | ## 3. Software Usage
24 | ### 3.1 Installation
25 | Install the package with its dependencies and load it for usage in R.
26 | ``` {r install, eval = FALSE}
27 | install.packages("microbial")
28 | #or install the develop version
29 | library(devtools) # Load the devtools package
30 | install_github("guokai8/microbial") # Install the package
31 | ```
32 | ```
33 | # You can use processSeq function to do analysis start from fastq files
34 | ?processSeq
35 | # You may need to first download the reference database
36 | preRef(ref_db="silva")
37 | # to check the quality of you reads
38 | ?plotquality
39 | ```
40 |
41 | ### 3.2 Data normalisation
42 | Microbial community data is mainly OTU abundance (counts) with different design data.It is usually necessary that data is transformed by a suitable normalisation method.
43 | We provided different methods including; “relative”, “TMM”,variance stabilisation "vst" and "log2" for normalisation of taxa abundance. The function takes a phyloseq object physeq and returns a similar object whose otu-table component is normalised by a selected method as shown in the following examples.
44 | ``` {r quick, message=FALSE}
45 | library(microbial)
46 | data("Physeq")
47 | #default normalize method is relative
48 | phy <- normalize(physeq, method = "relative")
49 | ```
50 | ### 3.3 relative abundance among all samples or groups
51 | We first use relative normalised bacteria abundance to obtain the proportion of per sample. Then we generate the figure to show the proportion among all samples based on "Phylum" level. The _group_ parameter is provided to show the proportion based on group level.
52 | ```{r plotbar, message=FALSE}
53 | plotbar(phy,level="Phylum")
54 | #or among two group
55 | plotbar(phy,level="Phylum", group="group")
56 |
57 | ```
58 |
59 | ### 3.4 Alpha diversity with wilcoxon test or t-test
60 | The _richness_ calculate the alpha diversity of provided community data using selected indices/method(s). Alpha diversity refers to the diversity within a particular area or ecosystem, and is usually expressed by the number of species. The _plotalpha_ function performs pair-wise wilcoxon test or t-test of diversity measures between groups and outputs a plot for each of the selected methods(indices) annotated with significance labels.
61 |
62 | The _method_ in the _richness_ function include: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness" and "InvSimpson". The _group_ paramater in the _plotalpha_ function is a categorical variable for which the grouping should be based on during the analysi, the _group_ should be one of the _sample_data_ column. _pvalue_ specifies the p-value threshold for significance in wilcoxon, default is set to 0.05. User can also choose to use the _padj_ paramter instead of _pvalue_. The _plotalpha_ function return a _ggplot2_ object which will easy to modified by user.
63 | ```{r alpha, message = FALSE}
64 | plotalpha(physeq, group = "group")
65 | ```
66 |
67 | ### 3.5 Beta diversity
68 | Beta diversity is a comparison of of diversity between groups, usually measured as the amount of species change between the groups. In the example provided below, we first normalize the taxa abundance to relative abundance to obtain the proportion of most abundant taxa per sample.
69 | The arguments in the _plotbeta_ function include: _physeq_ which a required phyloseq object, the _distance_ which is a dissimilarity distance measure with otions of “bray” (default), "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard" and other distance methods, the _group_ is a character string specifying a variable whose levels are the groups in the data, the _method_ paramater is a character string specifying ordination method. All methods available to the ordinate function of phyloseq are acceptable here as well. The _plotbeta_ function will return _ggplot2_ object.
70 | ```{r plotbeta, message = FALSE}
71 | plotbeta(phy, group="SampleType")
72 | ```
73 |
74 | We also provide _betatest_ function by doing permutation analysis of variance (PERMANOVA) and return corresponding r-squared and p-values, beta dispersion between all posible pairwise combinations of levels in the grouping variable is calculated and results return as a table.
75 | ```{r betatest, message = FALSE}
76 | beta <-betatest(phy,group="SampleType")
77 | ```
78 |
79 | ### 3.6 Differentail expression
80 | Here we provide _difftest_ function to find features that are up or down regulated in the compared groups using DESeq2 package. The _plotdiff_ function produce figure of the top most features annotated with corresponding adjusted p-values and abundance distribution. The _difftest_ require a _phyloseq_ object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples. Raw count values are preferred for this function. The _group_ paramater is a character string specifying the name of a categorical variable containing grouping information. The _pvalue_ and _log2FC_ are thresholds for p values and log2 fold change. Adjusted p value cutoff is also supported by specify the _padj_ paramater.
81 | ```{r difftest, message = FALSE}
82 | res <- difftest(physeq,group="group")
83 | ```
84 |
85 | The _plotdiff_ function require the differential test results from diff_test. And the _level_ parameter provide which level to show: "Genus", "Species" or other level. Other paramaters can be found in the man page of _plotdiff_.
86 |
87 |
88 | ```{r plotdiff, message = FALSE}
89 | plotdiff(res,level="Genus",padj=0.001,log2FC = 7,fontsize.y = 3)
90 |
91 | ```
92 |
93 | ### 3.7 Biomarker selection
94 | In addition we implement classification using random forest classifier and LEfSe method to find most import features among the groups.
95 | Random forests or random decision forests are an ensemble learning method for classification.
96 | And the random forest classifier is used to determine the importance of differentially expressed bacteria/taxa to the microbial community. Typically, we will use the Mean Descrease in Accuracy to measure the importance for each bacteria/taxa. The _biomarker_ function do the random forest classification and return the sigificant table include the importance values. Raw count values are preferred for this function, and user can specify the normalize method with the _method_ parameter.
97 | ```{r biomarker,message=FALSE}
98 | res <- biomarker(physeq,group="group")
99 | ```
100 |
101 | The _plotmarker_ function will generate the figures based on the _biomarker_ result. User can specify level to show with the _level_ parameter and also the _top_ parameter will choose the number of top most importance bacteria and taxa to draw.
102 | ```{r plotmarker,message = FALSE}
103 | plotmarker(res,level="Genus")
104 | ```
105 | We also provide _ldamarker_ function to do the LEfSe analysis which base on the kruskal-wallis test and the LDA analysis. The parameters include _physeq_ (A phyloseq object) and _group_ (a character string specifying the name of a categorical variable containing grouping information. ). Raw count values are preferred for this function, and user can also specify the normalize method with the _method_ parameter.
106 | ```{r lda, message=FALSE}
107 | res <- ldamarker(physeq,group="group")
108 | ```
109 | The _plotLDA_ function take the results from _ldamarker_ and _group_ factor which was used for the LEfSe analysis to generate figure with the significant bacteria marker.
110 |
111 | ```{r plotlda, message = FALSE}
112 | plotLDA(res,group=c("A","B"),lda=5,pvalue=0.05)
113 | ```
114 |
115 | ## 4. Dependencies
116 | This packages depends on a number of other packages which include: phyloseq, vegan, DESeq2, ggplot2,randomForest. The package is still under development. New functions will be provided soon.
117 |
118 | ## 5. Contact information
119 | For any questions please contact guokai8@gmail.com or submit the issues to https://github.com/guokai8/microbial/issues
120 |
--------------------------------------------------------------------------------
/data/Physeq.rda:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/guokai8/microbial/b587bd20c6467a365512af56fbc9d36e29ae7966/data/Physeq.rda
--------------------------------------------------------------------------------
/man/betadiv.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{betadiv}
4 | \alias{betadiv}
5 | \title{calcaute beta diversity}
6 | \usage{
7 | betadiv(physeq, distance = "bray", method = "PCoA")
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{distance}{A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
15 | "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
16 | "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".}
17 |
18 | \item{method}{A character string specifying ordination method. All methods available to the \code{ordinate} function
19 | of \code{phyloseq} are acceptable here as well.}
20 | }
21 | \value{
22 | list with beta diversity data.frame and PCs
23 | }
24 | \description{
25 | calcaute beta diversity
26 | }
27 | \examples{
28 | {
29 | data("Physeq")
30 | phy<-normalize(physeq)
31 | res <- betadiv(phy)
32 | }
33 | }
34 | \author{
35 | Kai Guo
36 | }
37 |
--------------------------------------------------------------------------------
/man/betatest.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{betatest}
4 | \alias{betatest}
5 | \title{PERMANOVA test for phyloseq}
6 | \usage{
7 | betatest(physeq, group, distance = "bray")
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{group}{(Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
15 | information.}
16 |
17 | \item{distance}{A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
18 | "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
19 | "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".}
20 | }
21 | \value{
22 | PERMANOVA test result
23 | }
24 | \description{
25 | PERMANOVA test for phyloseq
26 | }
27 | \examples{
28 | {
29 | data("Physeq")
30 | phy<-normalize(physeq)
31 | beta <-betatest(phy,group="SampleType")
32 | }
33 | }
34 | \author{
35 | Kai Guo
36 | }
37 |
--------------------------------------------------------------------------------
/man/biomarker.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{biomarker}
4 | \alias{biomarker}
5 | \title{Identify biomarker by using randomForest method}
6 | \usage{
7 | biomarker(
8 | physeq,
9 | group,
10 | ntree = 500,
11 | pvalue = 0.05,
12 | normalize = TRUE,
13 | method = "relative"
14 | )
15 | }
16 | \arguments{
17 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
18 | taxonomic assignment, sample data including the measured variables and categorical information
19 | of the samples, and / or phylogenetic tree if available.}
20 |
21 | \item{group}{group. A character string specifying the name of a categorical variable containing grouping information.}
22 |
23 | \item{ntree}{Number of trees to grow. This should not be set to too small a number,
24 | to ensure that every input row gets predicted at least a few times.}
25 |
26 | \item{pvalue}{pvalue threshold for significant results from kruskal.test}
27 |
28 | \item{normalize}{to normalize the data before analysis(TRUE/FALSE)}
29 |
30 | \item{method}{A list of character strings specifying \code{method} to be used to normalize the phyloseq object
31 | Available methods are: "relative","TMM","vst","log2".}
32 | }
33 | \value{
34 | data frame with significant biomarker
35 | }
36 | \description{
37 | Identify biomarker by using randomForest method
38 | }
39 | \examples{
40 | \donttest{
41 | data("Physeq")
42 | res <- biomarker(physeq,group="group")
43 | }
44 | }
45 | \author{
46 | Kai Guo
47 | }
48 |
--------------------------------------------------------------------------------
/man/buildTree.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{buildTree}
4 | \alias{buildTree}
5 | \title{contruction of plylogenetic tree (extreme slow)}
6 | \usage{
7 | buildTree(seqs)
8 | }
9 | \arguments{
10 | \item{seqs}{DNA sequences}
11 | }
12 | \value{
13 | tree object
14 | }
15 | \description{
16 | contruction of plylogenetic tree (extreme slow)
17 | }
18 | \author{
19 | Kai Guo
20 | }
21 |
--------------------------------------------------------------------------------
/man/data-Physeq.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/data.R
3 | \docType{data}
4 | \name{data-Physeq}
5 | \alias{data-Physeq}
6 | \alias{Physeq}
7 | \title{The physeq data was modified from the (Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)}
8 | \description{
9 | Published in PNAS in early 2011. This work compared the microbial
10 | communities from 25 environmental samples and three known ``mock communities''
11 | -- a total of 9 sample types -- at a depth averaging 3.1 million reads per sample.
12 | Authors were able to reproduce diversity patterns seen in many other
13 | published studies, while also invesitigating technical issues/bias by
14 | applying the same techniques to simulated microbial communities of known
15 | }
16 | \examples{
17 | data(Physeq)
18 | plot_richness(physeq, x="SampleType", measures=c("Observed", "Shannon"))
19 | }
20 | \references{
21 | Caporaso, J. G., et al. (2011).
22 | Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
23 | PNAS, 108, 4516-4522.
24 | PMCID: PMC3063599
25 | }
26 | \keyword{data}
27 |
--------------------------------------------------------------------------------
/man/data-physeq.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/data.R
3 | \docType{data}
4 | \name{data-physeq}
5 | \alias{data-physeq}
6 | \alias{physeq}
7 | \title{The physeq data was modified from the (Data) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011)}
8 | \description{
9 | Published in PNAS in early 2011. This work compared the microbial
10 | communities from 25 environmental samples and three known ``mock communities''
11 | -- a total of 9 sample types -- at a depth averaging 3.1 million reads per sample.
12 | Authors were able to reproduce diversity patterns seen in many other
13 | published studies, while also invesitigating technical issues/bias by
14 | applying the same techniques to simulated microbial communities of known
15 | }
16 | \examples{
17 | data(Physeq)
18 | }
19 | \references{
20 | Caporaso, J. G., et al. (2011).
21 | Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.
22 | PNAS, 108, 4516-4522.
23 | PMCID: PMC3063599
24 | }
25 | \keyword{data}
26 |
--------------------------------------------------------------------------------
/man/difftest.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{difftest}
4 | \alias{difftest}
5 | \title{Calculate differential bacteria with DESeq2}
6 | \usage{
7 | difftest(
8 | physeq,
9 | group,
10 | ref = NULL,
11 | pvalue = 0.05,
12 | padj = NULL,
13 | log2FC = 0,
14 | gm_mean = TRUE,
15 | fitType = "local",
16 | quiet = FALSE
17 | )
18 | }
19 | \arguments{
20 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
21 | taxonomic assignment, sample data including the measured variables and categorical information
22 | of the samples, and / or phylogenetic tree if available.}
23 |
24 | \item{group}{group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.}
25 |
26 | \item{ref}{reference group}
27 |
28 | \item{pvalue}{pvalue threshold for significant results}
29 |
30 | \item{padj}{adjust p value threshold for significant results}
31 |
32 | \item{log2FC}{log2 Fold Change threshold}
33 |
34 | \item{gm_mean}{TRUE/FALSE calculate geometric means prior to estimate size factors}
35 |
36 | \item{fitType}{either "parametric", "local", or "mean" for the type of fitting of dispersions to the mean intensity.}
37 |
38 | \item{quiet}{whether to print messages at each step}
39 | }
40 | \value{
41 | datafame with differential test with DESeq2
42 | }
43 | \description{
44 | Calculate differential bacteria with DESeq2
45 | }
46 | \examples{
47 | \donttest{
48 | data("Physeq")
49 | res <- difftest(physeq,group="group")
50 | }
51 | }
52 | \author{
53 | Kai Guo
54 | }
55 |
--------------------------------------------------------------------------------
/man/distcolor.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \docType{data}
4 | \name{distcolor}
5 | \alias{distcolor}
6 | \title{distinguish colors for making figures}
7 | \format{
8 | An object of class \code{character} of length 41.
9 | }
10 | \usage{
11 | distcolor
12 | }
13 | \description{
14 | distinguish colors for making figures
15 | }
16 | \author{
17 | Kai Guo
18 | }
19 | \keyword{datasets}
20 |
--------------------------------------------------------------------------------
/man/do_aov.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{do_aov}
4 | \alias{do_aov}
5 | \title{do anova test and return results as data.frame}
6 | \usage{
7 | do_aov(x, group, ...)
8 | }
9 | \arguments{
10 | \item{x}{data.frame with sample id as the column name, genes or otu as rownames}
11 |
12 | \item{group}{group factor used for comparison}
13 |
14 | \item{...}{parameters to anova_test}
15 | }
16 | \description{
17 | do anova test and return results as data.frame
18 | }
19 | \examples{
20 | {
21 | data("ToothGrowth")
22 | do_aov(ToothGrowth,group="supp")
23 | }
24 | }
25 | \author{
26 | Kai Guo
27 | }
28 |
--------------------------------------------------------------------------------
/man/do_ttest.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{do_ttest}
4 | \alias{do_ttest}
5 | \title{do t.test}
6 | \usage{
7 | do_ttest(x, group, ref = NULL, ...)
8 | }
9 | \arguments{
10 | \item{x}{data.frame with sample id as the column name, genes or otu as rownames}
11 |
12 | \item{group}{group factor used for comparison}
13 |
14 | \item{ref}{reference group}
15 |
16 | \item{...}{parameters to t_test}
17 | }
18 | \description{
19 | do t.test
20 | }
21 | \examples{
22 | {
23 | data("mtcars")
24 | do_ttest(mtcars,group="vs")
25 | do_ttest(mtcars,group="cyl",ref="4")
26 | }
27 | }
28 | \author{
29 | Kai Guo
30 | }
31 |
--------------------------------------------------------------------------------
/man/do_wilcox.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{do_wilcox}
4 | \alias{do_wilcox}
5 | \title{do wilcox test}
6 | \usage{
7 | do_wilcox(x, group, ref = NULL, ...)
8 | }
9 | \arguments{
10 | \item{x}{data.frame with sample id as the column name, genes or otu as rownames}
11 |
12 | \item{group}{group factor used for comparison}
13 |
14 | \item{ref}{reference group}
15 |
16 | \item{...}{parameters to wilcox_test}
17 | }
18 | \description{
19 | do wilcox test
20 | }
21 | \examples{
22 | {
23 | data("mtcars")
24 | do_wilcox(mtcars,group="vs")
25 | do_wilcox(mtcars,group="cyl",ref="4")
26 | }
27 | }
28 | \author{
29 | Kai Guo
30 | }
31 |
--------------------------------------------------------------------------------
/man/dot-checkfile.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{.checkfile}
4 | \alias{.checkfile}
5 | \title{check file format}
6 | \usage{
7 | .checkfile(file)
8 | }
9 | \arguments{
10 | \item{file}{filename}
11 | }
12 | \description{
13 | check file format
14 | }
15 |
--------------------------------------------------------------------------------
/man/dot-getstar.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{.getstar}
4 | \alias{.getstar}
5 | \title{replace p value with star}
6 | \usage{
7 | .getstar(x)
8 | }
9 | \arguments{
10 | \item{x}{a (non-empty) numeric data values}
11 | }
12 | \description{
13 | replace p value with star
14 | }
15 |
--------------------------------------------------------------------------------
/man/dot-lda.fun.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{.lda.fun}
4 | \alias{.lda.fun}
5 | \title{LEfse function}
6 | \usage{
7 | .lda.fun(df)
8 | }
9 | \arguments{
10 | \item{df}{a dataframe with groups and bacteria abundance}
11 | }
12 | \description{
13 | LEfse function
14 | }
15 |
--------------------------------------------------------------------------------
/man/glmr.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/glmr.R
3 | \name{glmr}
4 | \alias{glmr}
5 | \title{Do the generalized linear model regression}
6 | \usage{
7 | glmr(
8 | physeq,
9 | group,
10 | factors = NULL,
11 | ref = NULL,
12 | family = binomial(link = "logit")
13 | )
14 | }
15 | \arguments{
16 | \item{physeq}{phyloseq object}
17 |
18 | \item{group}{the group factor to regression}
19 |
20 | \item{factors}{a vector to indicate adjuested factors}
21 |
22 | \item{ref}{the reference group}
23 |
24 | \item{family}{binomial() or gaussian()}
25 | }
26 | \description{
27 | Do the generalized linear model regression
28 | }
29 | \examples{
30 | \donttest{
31 | data("Physeq")
32 | phy<-normalize(physeq)
33 | fit <-glmr(phy,group="SampleType")
34 | }
35 | }
36 | \author{
37 | Kai Guo
38 | }
39 |
--------------------------------------------------------------------------------
/man/ldamarker.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{ldamarker}
4 | \alias{ldamarker}
5 | \title{Identify biomarker by using LEfSe method}
6 | \usage{
7 | ldamarker(physeq, group, pvalue = 0.05, normalize = TRUE, method = "relative")
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{group}{group. A character string specifying the name of a categorical variable containing grouping information.}
15 |
16 | \item{pvalue}{pvalue threshold for significant results from kruskal.test}
17 |
18 | \item{normalize}{to normalize the data before analysis(TRUE/FALSE)}
19 |
20 | \item{method}{A list of character strings specifying \code{method} to be used to normalize the phyloseq object
21 | Available methods are: "relative","TMM","vst","log2".}
22 | }
23 | \description{
24 | Identify biomarker by using LEfSe method
25 | }
26 | \examples{
27 | \donttest{
28 | data("Physeq")
29 | res <- ldamarker(physeq,group="group")
30 | }
31 |
32 | }
33 | \author{
34 | Kai Guo
35 | }
36 |
--------------------------------------------------------------------------------
/man/lightcolor.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \docType{data}
4 | \name{lightcolor}
5 | \alias{lightcolor}
6 | \title{light colors for making figures}
7 | \format{
8 | An object of class \code{character} of length 56.
9 | }
10 | \usage{
11 | lightcolor
12 | }
13 | \description{
14 | light colors for making figures
15 | }
16 | \author{
17 | Kai Guo
18 | }
19 | \keyword{datasets}
20 |
--------------------------------------------------------------------------------
/man/normalize.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{normalize}
4 | \alias{normalize}
5 | \title{Normalize the phyloseq object with different methods}
6 | \usage{
7 | normalize(physeq, group, method = "relative", table = FALSE)
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{group}{group (DESeq2). A character string specifying the name of a categorical variable containing grouping information.}
15 |
16 | \item{method}{A list of character strings specifying \code{method} to be used to normalize the phyloseq object
17 | Available methods are: "relative","TMM","vst","log2".}
18 |
19 | \item{table}{return a data.frame or not}
20 | }
21 | \value{
22 | phyloseq object with normalized data
23 | }
24 | \description{
25 | Normalize the phyloseq object with different methods
26 | }
27 | \examples{
28 | {
29 | data("Physeq")
30 | phy<-normalize(physeq)
31 | }
32 | }
33 | \author{
34 | Kai Guo
35 | }
36 |
--------------------------------------------------------------------------------
/man/otu_table.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{otu_table}
4 | \alias{otu_table}
5 | \title{extract otu table}
6 | \usage{
7 | otu_table(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{(Required). An integer matrix, otu_table-class, or phyloseq-class.}
11 |
12 | \item{...}{parameters for the otu_table function in phyloseq package}
13 | }
14 | \description{
15 | extract otu table
16 | }
17 |
--------------------------------------------------------------------------------
/man/phy_tree.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{phy_tree}
4 | \alias{phy_tree}
5 | \title{Retrieve phylogenetic tree (phylo-class) from object.}
6 | \usage{
7 | phy_tree(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{(Required). An instance of phyloseq-class that contains a phylogenetic tree.
11 | If physeq is a phylogenetic tree (a component data class), then it is returned as-is.}
12 |
13 | \item{...}{parameters for the phy_tree function in phyloseq package}
14 | }
15 | \description{
16 | Retrieve phylogenetic tree (phylo-class) from object.
17 | }
18 |
--------------------------------------------------------------------------------
/man/plotLDA.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotLDA}
4 | \alias{plotLDA}
5 | \title{plot LEfSe results from ldamarker function}
6 | \usage{
7 | plotLDA(
8 | x,
9 | group,
10 | lda = 2,
11 | pvalue = 0.05,
12 | padj = NULL,
13 | color = NULL,
14 | fontsize.x = 4,
15 | fontsize.y = 5
16 | )
17 | }
18 | \arguments{
19 | \item{x}{LEfse results from ldamarker}
20 |
21 | \item{group}{a vector include two character to show the group comparsion}
22 |
23 | \item{lda}{LDA threshold for significant biomarker}
24 |
25 | \item{pvalue}{pvalue threshold for significant results}
26 |
27 | \item{padj}{adjust p value threshold for significant results}
28 |
29 | \item{color}{A vector of character use specifying the color}
30 |
31 | \item{fontsize.x}{the size of x axis label}
32 |
33 | \item{fontsize.y}{the size of y axis label}
34 | }
35 | \value{
36 | ggplot2 object
37 | }
38 | \description{
39 | plot LEfSe results from ldamarker function
40 | }
41 | \examples{
42 | \donttest{
43 | data("Physeq")
44 | res <- ldamarker(physeq,group="group")
45 | plotLDA(res,group=c("A","B"),lda=5,pvalue=0.05)
46 | }
47 | }
48 | \author{
49 | Kai Guo
50 | }
51 |
--------------------------------------------------------------------------------
/man/plotalpha.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotalpha}
4 | \alias{plotalpha}
5 | \title{plot alpha diversity}
6 | \usage{
7 | plotalpha(
8 | physeq,
9 | group,
10 | method = c("Observed", "Simpson", "Shannon"),
11 | color = NULL,
12 | geom = "boxplot",
13 | pvalue = 0.05,
14 | padj = NULL,
15 | sig.only = TRUE,
16 | wilcox = FALSE,
17 | show.number = FALSE
18 | )
19 | }
20 | \arguments{
21 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
22 | taxonomic assignment, sample data including the measured variables and categorical information
23 | of the samples, and / or phylogenetic tree if available.}
24 |
25 | \item{group}{group (Required). A character string specifying the name of a categorical variable containing grouping information.}
26 |
27 | \item{method}{A list of character strings specifying \code{method} to be used to calculate for alpha diversity
28 | in the data. Available methods are: "Observed","Chao1","ACE","Richness", "Fisher", "Simpson", "Shannon", "Evenness","InvSimpson".}
29 |
30 | \item{color}{A vector of character use specifying the color}
31 |
32 | \item{geom}{different geom to display("boxplot","violin","dotplot")}
33 |
34 | \item{pvalue}{pvalue threshold for significant dispersion results}
35 |
36 | \item{padj}{adjust p value threshold for significant dispersion results}
37 |
38 | \item{sig.only}{display the significant comparsion only(TRUE/ FALSE)}
39 |
40 | \item{wilcox}{use wilcoxon test or not}
41 |
42 | \item{show.number}{to show the pvalue instead of significant symbol(TRUE/FALSE)}
43 | }
44 | \value{
45 | Returns a ggplot object. This can further be manipulated as preferred by user.
46 | }
47 | \description{
48 | plot alpha diversity
49 | }
50 | \examples{
51 | {
52 | data("Physeq")
53 | plotalpha(physeq,group="SampleType")
54 | }
55 | }
56 | \author{
57 | Kai Guo
58 | }
59 |
--------------------------------------------------------------------------------
/man/plotbar.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotbar}
4 | \alias{plotbar}
5 | \title{plot bar for relative abundance for bacteria}
6 | \usage{
7 | plotbar(
8 | physeq,
9 | level = "Phylum",
10 | color = NULL,
11 | group = NULL,
12 | top = 5,
13 | return = FALSE,
14 | fontsize.x = 5,
15 | fontsize.y = 12
16 | )
17 | }
18 | \arguments{
19 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
20 | taxonomic assignment, sample data including the measured variables and categorical information
21 | of the samples, and / or phylogenetic tree if available.}
22 |
23 | \item{level}{the level to plot}
24 |
25 | \item{color}{A vector of character use specifying the color}
26 |
27 | \item{group}{group (Optional). A character string specifying the name of a categorical variable containing grouping information.}
28 |
29 | \item{top}{the number of most abundance bacteria to display}
30 |
31 | \item{return}{return the data with the relative abundance}
32 |
33 | \item{fontsize.x}{the size of x axis label}
34 |
35 | \item{fontsize.y}{the size of y axis label}
36 | }
37 | \value{
38 | Returns a ggplot object. This can further be manipulated as preferred by user.
39 | }
40 | \description{
41 | plot bar for relative abundance for bacteria
42 | }
43 | \examples{
44 | \donttest{
45 | data("Physeq")
46 | phy<-normalize(physeq)
47 | plotbar(phy,level="Phylum")
48 | }
49 | }
50 | \author{
51 | Kai Guo
52 | }
53 |
--------------------------------------------------------------------------------
/man/plotbeta.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotbeta}
4 | \alias{plotbeta}
5 | \title{plot beta diversity}
6 | \usage{
7 | plotbeta(
8 | physeq,
9 | group,
10 | shape = NULL,
11 | distance = "bray",
12 | method = "PCoA",
13 | color = NULL,
14 | size = 3,
15 | ellipse = FALSE
16 | )
17 | }
18 | \arguments{
19 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
20 | taxonomic assignment, sample data including the measured variables and categorical information
21 | of the samples, and / or phylogenetic tree if available.}
22 |
23 | \item{group}{(Required). Character string specifying name of a categorical variable that is preferred for grouping the information.
24 | information.}
25 |
26 | \item{shape}{shape(Optional) Character string specifying shape of a categorical variable}
27 |
28 | \item{distance}{A string character specifying dissimilarity index to be used in calculating pairwise distances (Default index is "bray".).
29 | "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard", "gower", "altGower",
30 | "morisita", "horn", "mountford", "raup" , "binomial", "chao", "cao" or "mahalanobis".}
31 |
32 | \item{method}{A character string specifying ordination method. All methods available to the \code{ordinate} function
33 | of \code{phyloseq} are acceptable here as well.}
34 |
35 | \item{color}{user defined color for group}
36 |
37 | \item{size}{the point size}
38 |
39 | \item{ellipse}{draw ellipse or not}
40 | }
41 | \value{
42 | ggplot2 object
43 | }
44 | \description{
45 | plot beta diversity
46 | }
47 | \examples{
48 | {
49 | data("Physeq")
50 | phy<-normalize(physeq)
51 | plotbeta(phy,group="SampleType")
52 | }
53 | }
54 | \author{
55 | Kai Guo
56 | }
57 |
--------------------------------------------------------------------------------
/man/plotdiff.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotdiff}
4 | \alias{plotdiff}
5 | \title{plot differential results}
6 | \usage{
7 | plotdiff(
8 | res,
9 | level = "Genus",
10 | color = NULL,
11 | pvalue = 0.05,
12 | padj = NULL,
13 | log2FC = 0,
14 | size = 3,
15 | fontsize.x = 5,
16 | fontsize.y = 10,
17 | horiz = TRUE
18 | )
19 | }
20 | \arguments{
21 | \item{res}{differential test results from diff_test}
22 |
23 | \item{level}{the level to plot}
24 |
25 | \item{color}{A vector of character use specifying the color}
26 |
27 | \item{pvalue}{pvalue threshold for significant results}
28 |
29 | \item{padj}{adjust p value threshold for significant results}
30 |
31 | \item{log2FC}{log2 Fold Change threshold}
32 |
33 | \item{size}{size for the point}
34 |
35 | \item{fontsize.x}{the size of x axis label}
36 |
37 | \item{fontsize.y}{the size of y axis label}
38 |
39 | \item{horiz}{horizontal or not (TRUE/FALSE)}
40 | }
41 | \value{
42 | ggplot object
43 | }
44 | \description{
45 | plot differential results
46 | }
47 | \examples{
48 | \donttest{
49 | data("Physeq")
50 | res <- difftest(physeq,group="group")
51 | plotdiff(res,level="Genus",padj=0.001)
52 | }
53 | }
54 | \author{
55 | Kai Guo
56 | }
57 |
--------------------------------------------------------------------------------
/man/plotmarker.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotmarker}
4 | \alias{plotmarker}
5 | \title{plot the biomarker from the biomarker function with randomForest}
6 | \usage{
7 | plotmarker(
8 | x,
9 | level = "Genus",
10 | top = 30,
11 | rotate = FALSE,
12 | dot.size = 8,
13 | label.color = "black",
14 | label.size = 6
15 | )
16 | }
17 | \arguments{
18 | \item{x}{biomarker results from randomForest}
19 |
20 | \item{level}{the bacteria level to display}
21 |
22 | \item{top}{the number of important biomarker to draw}
23 |
24 | \item{rotate}{TRUE/FALSE}
25 |
26 | \item{dot.size}{size for the dot}
27 |
28 | \item{label.color}{label color}
29 |
30 | \item{label.size}{label size}
31 | }
32 | \value{
33 | ggplot2 object
34 | }
35 | \description{
36 | plot the biomarker from the biomarker function with randomForest
37 | }
38 | \examples{
39 | \donttest{
40 | data("Physeq")
41 | res <- biomarker(physeq,group="group")
42 | plotmarker(res,level="Genus")
43 | }
44 | }
45 | \author{
46 | Kai Guo
47 | }
48 |
--------------------------------------------------------------------------------
/man/plotquality.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/plot.R
3 | \name{plotquality}
4 | \alias{plotquality}
5 | \title{plot the quality for the fastq file}
6 | \usage{
7 | plotquality(file, n = 5e+05, aggregate = FALSE)
8 | }
9 | \arguments{
10 | \item{file}{(Required). character. File path(s) to fastq or fastq.gz file(s).}
11 |
12 | \item{n}{(Optional). Default 500,000. The number of records to sample from the fastq file.}
13 |
14 | \item{aggregate}{(Optional). Default FALSE. If TRUE, compute an aggregate quality profile for all fastq files provided.}
15 | }
16 | \value{
17 | figure
18 | }
19 | \description{
20 | plot the quality for the fastq file
21 | }
22 | \examples{
23 | \donttest{
24 | plotquality(system.file("extdata", "sam1F.fastq.gz", package="dada2"))
25 | }
26 | }
27 |
--------------------------------------------------------------------------------
/man/preRef.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{preRef}
4 | \alias{preRef}
5 | \title{Download the reference database}
6 | \usage{
7 | preRef(ref_db, path = ".")
8 | }
9 | \arguments{
10 | \item{ref_db}{the reference database}
11 |
12 | \item{path}{path for the database}
13 | }
14 | \value{
15 | the path of the database
16 | }
17 | \description{
18 | Download the reference database
19 | }
20 | \examples{
21 | \donttest{
22 | preRef(ref_db="silva",path=tempdir())
23 | }
24 | }
25 | \author{
26 | Kai Guo
27 | }
28 |
--------------------------------------------------------------------------------
/man/prefilter.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{prefilter}
4 | \alias{prefilter}
5 | \title{filter the phyloseq}
6 | \usage{
7 | prefilter(physeq, min = 10, perc = 0.05)
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{min}{Numeric, the threshold for mininal Phylum shown in samples}
15 |
16 | \item{perc}{Numeric, input the percentage of samples for which to filter low counts.}
17 | }
18 | \value{
19 | filter phyloseq object
20 | }
21 | \description{
22 | filter the phyloseq
23 | }
24 | \examples{
25 | \donttest{
26 | data("Physeq")
27 | physeqs<-prefilter(physeq)
28 | }
29 | }
30 | \author{
31 | Kai Guo
32 | }
33 |
--------------------------------------------------------------------------------
/man/processSeq.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/dada2.R
3 | \name{processSeq}
4 | \alias{processSeq}
5 | \title{Perform dada2 analysis}
6 | \usage{
7 | processSeq(
8 | path = ".",
9 | truncLen = c(0, 0),
10 | trimLeft = 0,
11 | trimRight = 0,
12 | minLen = 20,
13 | maxLen = Inf,
14 | sample_info = NULL,
15 | train_data = "silva_nr99_v138_train_set.fa.gz",
16 | train_species = "silva_species_assignment_v138.fa.gz",
17 | outpath = NULL,
18 | saveobj = FALSE,
19 | buildtree = FALSE,
20 | verbose = TRUE
21 | )
22 | }
23 | \arguments{
24 | \item{path}{working dir for the input reads}
25 |
26 | \item{truncLen}{(Optional). Default 0 (no truncation). Truncate reads after truncLen bases. Reads shorter than this are discarded.}
27 |
28 | \item{trimLeft}{(Optional). The number of nucleotides to remove from the start of each read.}
29 |
30 | \item{trimRight}{(Optional). Default 0. The number of nucleotides to remove from the end of each read.
31 | If both truncLen and trimRight are provided, truncation will be performed after trimRight is enforced.}
32 |
33 | \item{minLen}{(Optional). Default 20. Remove reads with length less than minLen. minLen is enforced after trimming and truncation.}
34 |
35 | \item{maxLen}{Optional). Default Inf (no maximum). Remove reads with length greater than maxLen. maxLen is enforced before trimming and truncation.}
36 |
37 | \item{sample_info}{(Optional).sample information for the sequence}
38 |
39 | \item{train_data}{(Required).training database}
40 |
41 | \item{train_species}{(Required). species database}
42 |
43 | \item{outpath}{(Optional).the path for the filtered reads and th out table}
44 |
45 | \item{saveobj}{(Optional).Default FALSE. save the phyloseq object output.}
46 |
47 | \item{buildtree}{build phylogenetic tree or not(default: FALSE)}
48 |
49 | \item{verbose}{(Optional). Default TRUE. Print verbose text output.}
50 | }
51 | \value{
52 | list include count table, summary table, taxonomy information and phyloseq object
53 | }
54 | \description{
55 | Perform dada2 analysis
56 | }
57 | \author{
58 | Kai Guo
59 | }
60 |
--------------------------------------------------------------------------------
/man/psmelt.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{psmelt}
4 | \alias{psmelt}
5 | \title{Melt phyloseq data object into large data.frame}
6 | \usage{
7 | psmelt(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{A sample_data-class, or a phyloseq-class object with a sample_data.
11 | If the sample_data slot is missing in physeq, then physeq will be returned as-is,
12 | and a warning will be printed to screen.}
13 |
14 | \item{...}{parameters for the subset_samples function in phyloseq package}
15 | }
16 | \description{
17 | Melt phyloseq data object into large data.frame
18 | }
19 |
--------------------------------------------------------------------------------
/man/richness.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/Functions.R
3 | \name{richness}
4 | \alias{richness}
5 | \title{calculat the richness for the phyloseq object}
6 | \usage{
7 | richness(physeq, method = c("Observed", "Simpson", "Shannon"))
8 | }
9 | \arguments{
10 | \item{physeq}{A \code{phyloseq} object containing merged information of abundance,
11 | taxonomic assignment, sample data including the measured variables and categorical information
12 | of the samples, and / or phylogenetic tree if available.}
13 |
14 | \item{method}{A list of character strings specifying \code{method} to be used to calculate for alpha diversity
15 | in the data. Available methods are: "Observed","Chao1","ACE","Richness", "Fisher", "Simpson", "Shannon", "Evenness","InvSimpson".}
16 | }
17 | \value{
18 | data.frame of alpha diversity
19 | }
20 | \description{
21 | calculat the richness for the phyloseq object
22 | }
23 | \examples{
24 | {
25 | data("Physeq")
26 | rich <-richness(physeq,method=c("Simpson", "Shannon"))
27 | }
28 | }
29 | \author{
30 | Kai Guo
31 | }
32 |
--------------------------------------------------------------------------------
/man/sample_data.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{sample_data}
4 | \alias{sample_data}
5 | \title{extract sample information}
6 | \usage{
7 | sample_data(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{(Required). A data.frame-class, or a phyloseq-class object.}
11 |
12 | \item{...}{parameters for the sample_data function in phyloseq package}
13 | }
14 | \description{
15 | extract sample information
16 | }
17 |
--------------------------------------------------------------------------------
/man/subset_samples.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{subset_samples}
4 | \alias{subset_samples}
5 | \title{Subset the phyloseq based on sample}
6 | \usage{
7 | subset_samples(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{A sample_data-class, or a phyloseq-class object with a sample_data.
11 | If the sample_data slot is missing in physeq, then physeq will be returned as-is,
12 | and a warning will be printed to screen.}
13 |
14 | \item{...}{parameters for the subset_samples function in phyloseq package}
15 | }
16 | \description{
17 | Subset the phyloseq based on sample
18 | }
19 |
--------------------------------------------------------------------------------
/man/subset_taxa.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{subset_taxa}
4 | \alias{subset_taxa}
5 | \title{Subset species by taxonomic expression}
6 | \usage{
7 | subset_taxa(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{A sample_data-class, or a phyloseq-class object with a sample_data.
11 | If the sample_data slot is missing in physeq, then physeq will be returned as-is,
12 | and a warning will be printed to screen.}
13 |
14 | \item{...}{parameters for the subset_taxa function in phyloseq package}
15 | }
16 | \description{
17 | Subset species by taxonomic expression
18 | }
19 |
--------------------------------------------------------------------------------
/man/tax_table.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/misc.R
3 | \name{tax_table}
4 | \alias{tax_table}
5 | \title{extract taxonomy table}
6 | \usage{
7 | tax_table(physeq, ...)
8 | }
9 | \arguments{
10 | \item{physeq}{An object among the set of classes defined by the phyloseq package that contain taxonomyTable.}
11 |
12 | \item{...}{parameters for the tax_table function in phyloseq package}
13 | }
14 | \description{
15 | extract taxonomy table
16 | }
17 |
--------------------------------------------------------------------------------
/microbial.Rproj:
--------------------------------------------------------------------------------
1 | Version: 1.0
2 |
3 | RestoreWorkspace: Default
4 | SaveWorkspace: Default
5 | AlwaysSaveHistory: Default
6 |
7 | EnableCodeIndexing: Yes
8 | UseSpacesForTab: Yes
9 | NumSpacesForTab: 4
10 | Encoding: UTF-8
11 |
12 | RnwWeave: Sweave
13 | LaTeX: pdfLaTeX
14 |
15 | AutoAppendNewline: Yes
16 | StripTrailingWhitespace: Yes
17 |
18 | BuildType: Package
19 | PackageUseDevtools: Yes
20 | PackageInstallArgs: --no-multiarch --with-keep.source
21 |
--------------------------------------------------------------------------------
/tests/testthat.R:
--------------------------------------------------------------------------------
1 | library(testthat)
2 | library(microbial)
3 | test_check("microbial")
4 |
--------------------------------------------------------------------------------
/tests/testthat/test-microbial.R:
--------------------------------------------------------------------------------
1 | library(microbial)
2 | expect_silent(1+1)
3 |
--------------------------------------------------------------------------------
/vignettes/microbial.Rmd:
--------------------------------------------------------------------------------
1 | ---
2 | title: "The microbial package for microbial community analysis"
3 | author:
4 | - Kai Guo, University of Michigan
5 | - Pan Gao, University of North Dakota
6 | date: "`r Sys.Date()`"
7 | output:
8 | html_document:
9 | df_print: paged
10 | word_document:
11 | toc: yes
12 | toc_depth: '6'
13 | rmarkdown::html_vignette: default
14 | pdf_document:
15 | toc: yes
16 | toc_depth: 6
17 | vignette: |
18 | \usepackage[utf8]{inputenc}
19 | %\VignetteIndexEntry{microbial}
20 | %\VignetteEngine{knitr::knitr}
21 | ---
22 | _microbial_ is a R package for microbial community analysis with dada2 (https://benjjneb.github.io/dada2/) and phyloseq (https://joey711.github.io/phyloseq/).
23 | _microbial_ package is developed to enhance the available statistical analysis procedures in R by providing simple functions to analysis and visualize the 16S rRNA data.Here we present a tutorial with minimum working examples to demonstrate usage and dependencies.
24 |
25 | ## 1. Data format/ requirement
26 | To use the package user can start with the raw fastq files with sample information ready or user can start with a phyloseq object (phloseq-class) comprising taxa abundance information, taxonomy assignment, sample data which is a combination of the measured environmental variables and any categorical variables present in the sample.
27 |
28 | If the phylogenetic tree is available, it can also be part of it, but it has nothing to do with most of the functions implemented here so far. We chose to use this format because as the analysis and visualization proceed, we have many options to process the data.User can go to the https://github.com/joey711/phyloseq to check the detail format of phyloseq object.
29 |
30 | ## 2 Example data
31 | The physeq data were the Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample (2011). The data was published in PNAS in early 2011. This work compared the microbial communities from 25 environmental samples and three known “mock communities” – a total of 9 sample types – at a depth averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in many other published studies, while also invesitigating technical issues/bias by applying the same techniques to simulated microbial communities of known composition. We simple modified the data with add one more group factor to display some functions implemented in the package.
32 |
33 | ## 3. Software Usage
34 | ### 3.1 Installation
35 | Install the package with its dependencies and load it for usage in R.
36 | ``` {r install, eval = FALSE}
37 | library(devtools) # Load the devtools package
38 | install_github("guokai8/microbial") # Install the package
39 | ```
40 | ### 3.2 Start from fastq files
41 | To start with the raw _fastq_ files, the users need first have the reference database ready. The _preRef_ function provides easy way to download the references. The _ref_db_ parameter is a character to choose which database to download: _silva_, _rdp_ and Greengenes. The _path_ parameter show the location to store the database.
42 | ```{r download, eval=FALSE}
43 | preRef(ref_db = "silva", path=".")
44 | ```
45 |
46 | Then users can use the _plotquality_ function to show the quality of the reads which will help the users to specify _processSeq_ to perform the analysis with _dada2_ package. The parameters included in this function were same as the _dada2_ function. The _path_ is the working path for the input reads. The _truncLen_ is an optional parameter with the default 0 (no truncation): Truncate reads after truncLen bases. Reads shorter than this are discarded. The _trimLeft_ and _trimRight_ are the number of nucleotides to remove from the start and end of each read.
47 | ```{r processSeq, eval=FALSE}
48 | ?processSeq
49 | ```
50 |
51 | ### 3.3 Data normalisation
52 | Microbial community data is mainly OTU abundance (counts) with different design data.It is usually necessary that data is transformed by a suitable normalisation method.
53 | We provided different methods including; “relative”, “TMM”,variance stabilisation "vst" and "log2" for normalisation of taxa abundance. The function takes a phyloseq object physeq and returns a similar object whose otu-table component is normalised by a selected method as shown in the following examples.
54 | ``` {r quick, message=FALSE}
55 | library(microbial)
56 | data("Physeq")
57 | #default normalize method is relative
58 | phy <- normalize(physeq, method = "relative")
59 | ```
60 | ### 3.4 Relative abundance among all samples or groups
61 | We first use relative normalised bacteria abundance to obtain the proportion of per sample. Then we generate the figure to show the proportion among all samples based on "Phylum" level. The _group_ parameter is provided to show the proportion based on group level.
62 | ```{r plotbar, message=FALSE}
63 | plotbar(phy,level="Phylum")
64 | #or among two group
65 | # plotbar(phy,level="Phylum", group="group")
66 |
67 | ```
68 |
69 | ### 3.5 Alpha diversity with wilcoxon test or t-test
70 | The _richness_ calculate the alpha diversity of provided community data using selected indices/method(s). Alpha diversity refers to the diversity within a particular area or ecosystem, and is usually expressed by the number of species. The _plotalpha_ function performs pair-wise wilcoxon test or t-test of diversity measures between groups and outputs a plot for each of the selected methods(indices) annotated with significance labels.
71 |
72 | The _method_ in the _richness_ function include: "Observed", "Chao1", "ACE", "Richness", "Fisher", "Simpson", "Shannon", "Evenness" and "InvSimpson". The _group_ paramater in the _plotalpha_ function is a categorical variable for which the grouping should be based on during the analysi, the _group_ should be one of the _sample_data_ column. _pvalue_ specifies the p-value threshold for significance in wilcoxon, default is set to 0.05. User can also choose to use the _padj_ paramter instead of _pvalue_. The _plotalpha_ function return a _ggplot2_ object which will easy to modified by user.
73 | ```{r alpha, message = FALSE}
74 | plotalpha(physeq, group = "group")
75 | ```
76 |
77 | ### 3.6 Beta diversity
78 | Beta diversity is a comparison of of diversity between groups, usually measured as the amount of species change between the groups. In the example provided below, we first normalize the taxa abundance to relative abundance to obtain the proportion of most abundant taxa per sample.
79 | The arguments in the _plotbeta_ function include: _physeq_ which a required phyloseq object, the _distance_ which is a dissimilarity distance measure with otions of “bray” (default), "unifrac","wunifrac","manhattan", "euclidean", "canberra", "bray", "kulczynski", "jaccard" and other distance methods, the _group_ is a character string specifying a variable whose levels are the groups in the data, the _method_ paramater is a character string specifying ordination method. All methods available to the ordinate function of phyloseq are acceptable here as well. The _plotbeta_ function will return _ggplot2_ object.
80 | ```{r plotbeta, message = FALSE}
81 | plotbeta(phy, group="SampleType")
82 | ```
83 |
84 | We also provide _betatest_ function by doing permutation analysis of variance (PERMANOVA) and return corresponding r-squared and p-values, beta dispersion between all posible pairwise combinations of levels in the grouping variable is calculated and results return as a table.
85 | ```{r betatest, message = FALSE,eval=FALSE}
86 | beta <-betatest(phy,group="SampleType")
87 | ```
88 |
89 | ### 3.7 Differentail expression
90 | Here we provide _difftest_ function to find features that are up or down regulated in the compared groups using DESeq2 package. The _plotdiff_ function produce figure of the top most features annotated with corresponding adjusted p-values and abundance distribution. The _difftest_ require a _phyloseq_ object containing merged information of abundance, taxonomic assignment, sample data including the measured variables and categorical information of the samples. Raw count values are preferred for this function. The _group_ paramater is a character string specifying the name of a categorical variable containing grouping information. The _pvalue_ and _log2FC_ are thresholds for p values and log2 fold change. Adjusted p value cutoff is also supported by specify the _padj_ paramater.
91 | ```{r difftest, message = FALSE,eval=FALSE}
92 | res <- difftest(physeq,group="group")
93 | ```
94 |
95 | The _plotdiff_ function require the differential test results from diff_test. And the _level_ parameter provide which level to show: "Genus", "Species" or other level. Other paramaters can be found in the man page of _plotdiff_.
96 |
97 |
98 | ```{r plotdiff, message = FALSE,eval=FALSE}
99 | plotdiff(res,level="Genus",padj=0.001,log2FC = 7,fontsize.y = 3)
100 |
101 | ```
102 |
103 | ### 3.8 Biomarker selection
104 | In addition we implement classification using random forest classifier and LEfSe method to find most import features among the groups.
105 | Random forests or random decision forests are an ensemble learning method for classification.
106 | And the random forest classifier is used to determine the importance of differentially expressed bacteria/taxa to the microbial community. Typically, we will use the Mean Descrease in Accuracy to measure the importance for each bacteria/taxa. The _biomarker_ function do the random forest classification and return the sigificant table include the importance values. Raw count values are preferred for this function, and user can specify the normalize method with the _method_ parameter.
107 | ```{r biomarker,message=FALSE,eval=FALSE}
108 | res <- biomarker(physeq,group="group",ntree = 100)
109 | ```
110 |
111 | The _plotmarker_ function will generate the figures based on the _biomarker_ result. User can specify level to show with the _level_ parameter and also the _top_ parameter will choose the number of top most importance bacteria and taxa to draw.
112 | ```{r plotmarker,message = FALSE,eval=FALSE}
113 | plotmarker(res,level="Genus")
114 | ```
115 |
116 | We also provide _ldamarker_ function to do the LEfSe analysis which base on the kruskal-wallis test and the LDA analysis. The parameters include _physeq_ (A phyloseq object) and _group_ (a character string specifying the name of a categorical variable containing grouping information. ). Raw count values are preferred for this function, and user can also specify the normalize method with the _method_ parameter.
117 | ```{r lda, message=FALSE,eval=FALSE}
118 | res <- ldamarker(physeq,group="group")
119 | ```
120 | The _plotLDA_ function take the results from _ldamarker_ and _group_ factor which was used for the LEfSe analysis to generate figure with the significant bacteria marker.
121 |
122 | ```{r plotlda, message = FALSE,eval=FALSE}
123 | plotLDA(res,group=c("A","B"),lda=5,pvalue=0.05)
124 | ```
125 |
126 | ## 4. Dependencies
127 | This packages depends on a number of other packages which include: phyloseq, vegan, DESeq2, ggplot2,randomForest. The package is still under development. New functions will be provided soon.
128 |
129 | ## 5. Contact information
130 | For any questions please contact guokai8@gmail.com or submit the issues to https://github.com/guokai8/microbial/issues
131 |
132 |
--------------------------------------------------------------------------------