├── China Annual GDP.xls ├── README.md ├── LICENSE ├── ISM Data.ipynb ├── Durable and Indurable Goods.ipynb ├── House Price Index.ipynb ├── Corporate Profit Cycle.ipynb ├── US Recession Shades.ipynb ├── Log Returns.ipynb └── Bureau of Economic Analysis (BEA).ipynb /China Annual GDP.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/guowat/notesf/HEAD/China Annual GDP.xls -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Notes_For_Macroeconomic_Analysis 2 | This a series of training notes for macroeconomic analysts who are practioners (such as analysts in banks, hedge funds, prop shops) or market observers. All notes are written by myself. 3 | 4 | We all know there is a huge gap between textbook macroeconomics and practioning macreconomics, the latter is even esoteric for a new economics graduate. However, textbook knowledge are fundemental skills before any meaningful macroeconomic analysis can be formulated. 5 | 6 | # Prerequisite 7 | It's perfectly alright if you do not have any formal economics education. I have seen the group of analysts with a wide range of educational backgroud, however they all walked through intermediate level textbooks by themselves. Here are recommendations of textbooks for new recruits. 8 | 1. Principles of Economics, Gregory Mankiw 9 | 2. Microeconomic Theory: Basic Principles and Extensions, Walter Nicholson 10 | 3. Macroeconomics: Williamson 11 | 12 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Weijie Chen 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /ISM Data.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": {}, 16 | "source": [ 17 | "ISM is shorted for Institute for Supply Management (ISM)." 18 | ] 19 | }, 20 | { 21 | "cell_type": "code", 22 | "execution_count": null, 23 | "metadata": {}, 24 | "outputs": [], 25 | "source": [ 26 | " " 27 | ] 28 | } 29 | ], 30 | "metadata": { 31 | "kernelspec": { 32 | "display_name": "Python 3", 33 | "language": "python", 34 | "name": "python3" 35 | }, 36 | "language_info": { 37 | "codemirror_mode": { 38 | "name": "ipython", 39 | "version": 3 40 | }, 41 | "file_extension": ".py", 42 | "mimetype": "text/x-python", 43 | "name": "python", 44 | "nbconvert_exporter": "python", 45 | "pygments_lexer": "ipython3", 46 | "version": "3.7.4" 47 | }, 48 | "toc": { 49 | "base_numbering": 1, 50 | "nav_menu": {}, 51 | "number_sections": true, 52 | "sideBar": true, 53 | "skip_h1_title": false, 54 | "title_cell": "Table of Contents", 55 | "title_sidebar": "Contents", 56 | "toc_cell": true, 57 | "toc_position": {}, 58 | "toc_section_display": true, 59 | "toc_window_display": false 60 | } 61 | }, 62 | "nbformat": 4, 63 | "nbformat_minor": 2 64 | } 65 | -------------------------------------------------------------------------------- /Durable and Indurable Goods.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 1, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "from pandas_datareader import data, wb\n", 20 | "import pandas_datareader as pdr\n", 21 | "import matplotlib.pyplot as plt\n", 22 | "import datetime as dt\n", 23 | "import pandas as pd\n", 24 | "from pandas.plotting import register_matplotlib_converters\n", 25 | "register_matplotlib_converters() # Allow matplotlib have access to timestamp \n", 26 | "import matplotlib.ticker as mplticker" 27 | ] 28 | }, 29 | { 30 | "cell_type": "markdown", 31 | "metadata": {}, 32 | "source": [ 33 | "Household spending on durable goods $(\\geq 3y)$ is most sensitive to business cycle. Because durable goods do not bring utility at one time, but rather brings utility in longer run, consumer does not suffer from great reduction of utility even if they cut down the durable good consumption.\n", 34 | "\n", 35 | "It usually have higher value than non-durable goods, more likely to be financed by personal credit." 36 | ] 37 | } 38 | ], 39 | "metadata": { 40 | "kernelspec": { 41 | "display_name": "Python 3", 42 | "language": "python", 43 | "name": "python3" 44 | }, 45 | "language_info": { 46 | "codemirror_mode": { 47 | "name": "ipython", 48 | "version": 3 49 | }, 50 | "file_extension": ".py", 51 | "mimetype": "text/x-python", 52 | "name": "python", 53 | "nbconvert_exporter": "python", 54 | "pygments_lexer": "ipython3", 55 | "version": "3.7.4" 56 | }, 57 | "toc": { 58 | "base_numbering": 1, 59 | "nav_menu": {}, 60 | "number_sections": true, 61 | "sideBar": true, 62 | "skip_h1_title": false, 63 | "title_cell": "Table of Contents", 64 | "title_sidebar": "Contents", 65 | "toc_cell": true, 66 | "toc_position": {}, 67 | "toc_section_display": true, 68 | "toc_window_display": false 69 | } 70 | }, 71 | "nbformat": 4, 72 | "nbformat_minor": 2 73 | } 74 | -------------------------------------------------------------------------------- /House Price Index.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 10, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "import pandas_datareader as pdr\n", 20 | "import matplotlib.pyplot as plt\n", 21 | "import pandas as pd\n", 22 | "import datetime as dt" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 17, 28 | "metadata": { 29 | "scrolled": true 30 | }, 31 | "outputs": [ 32 | { 33 | "data": { 34 | "text/html": [ 35 | "
\n", 36 | "\n", 53 | "\n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | "
UNITQuarterly index...Quarterly rate of change
GEOAustriaBelgiumBulgariaCyprusCzechiaGermany (until 1990 former territory of the FRG)DenmarkEstoniaGreeceSpain...LatviaMaltaNetherlandsPolandPortugalRomaniaSwedenSloveniaSlovakiaUnited Kingdom
FREQQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterly...QuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterlyQuarterly
TIME_PERIOD
2005-01-01NaN69.6876.0193.41NaN84.275.4950.59NaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
2005-04-01NaN71.2479.2695.38NaN82.779.4657.07NaNNaN...NaN-0.31.1-0.9NaNNaN3.3NaNNaN2.9
2005-07-01NaN73.7881.5598.79NaN84.485.5660.25NaNNaN...NaN8.31.30.0NaNNaN3.9NaNNaN2.4
2005-10-01NaN75.2483.52100.64NaN82.091.1968.14NaN123.7...NaN-2.80.55.9NaNNaN2.6NaNNaN0.2
2006-01-01NaN76.7087.47103.04NaN83.297.6877.03NaN128.3...NaN4.91.14.3NaNNaN3.5NaNNaN0.6
\n", 257 | "

5 rows × 84 columns

\n", 258 | "
" 259 | ], 260 | "text/plain": [ 261 | "UNIT Quarterly index \\\n", 262 | "GEO Austria Belgium Bulgaria Cyprus Czechia \n", 263 | "FREQ Quarterly Quarterly Quarterly Quarterly Quarterly \n", 264 | "TIME_PERIOD \n", 265 | "2005-01-01 NaN 69.68 76.01 93.41 NaN \n", 266 | "2005-04-01 NaN 71.24 79.26 95.38 NaN \n", 267 | "2005-07-01 NaN 73.78 81.55 98.79 NaN \n", 268 | "2005-10-01 NaN 75.24 83.52 100.64 NaN \n", 269 | "2006-01-01 NaN 76.70 87.47 103.04 NaN \n", 270 | "\n", 271 | "UNIT \\\n", 272 | "GEO Germany (until 1990 former territory of the FRG) Denmark \n", 273 | "FREQ Quarterly Quarterly \n", 274 | "TIME_PERIOD \n", 275 | "2005-01-01 84.2 75.49 \n", 276 | "2005-04-01 82.7 79.46 \n", 277 | "2005-07-01 84.4 85.56 \n", 278 | "2005-10-01 82.0 91.19 \n", 279 | "2006-01-01 83.2 97.68 \n", 280 | "\n", 281 | "UNIT ... Quarterly rate of change \\\n", 282 | "GEO Estonia Greece Spain ... Latvia \n", 283 | "FREQ Quarterly Quarterly Quarterly ... Quarterly \n", 284 | "TIME_PERIOD ... \n", 285 | "2005-01-01 50.59 NaN NaN ... NaN \n", 286 | "2005-04-01 57.07 NaN NaN ... NaN \n", 287 | "2005-07-01 60.25 NaN NaN ... NaN \n", 288 | "2005-10-01 68.14 NaN 123.7 ... NaN \n", 289 | "2006-01-01 77.03 NaN 128.3 ... NaN \n", 290 | "\n", 291 | "UNIT \\\n", 292 | "GEO Malta Netherlands Poland Portugal Romania Sweden \n", 293 | "FREQ Quarterly Quarterly Quarterly Quarterly Quarterly Quarterly \n", 294 | "TIME_PERIOD \n", 295 | "2005-01-01 NaN NaN NaN NaN NaN NaN \n", 296 | "2005-04-01 -0.3 1.1 -0.9 NaN NaN 3.3 \n", 297 | "2005-07-01 8.3 1.3 0.0 NaN NaN 3.9 \n", 298 | "2005-10-01 -2.8 0.5 5.9 NaN NaN 2.6 \n", 299 | "2006-01-01 4.9 1.1 4.3 NaN NaN 3.5 \n", 300 | "\n", 301 | "UNIT \n", 302 | "GEO Slovenia Slovakia United Kingdom \n", 303 | "FREQ Quarterly Quarterly Quarterly \n", 304 | "TIME_PERIOD \n", 305 | "2005-01-01 NaN NaN NaN \n", 306 | "2005-04-01 NaN NaN 2.9 \n", 307 | "2005-07-01 NaN NaN 2.4 \n", 308 | "2005-10-01 NaN NaN 0.2 \n", 309 | "2006-01-01 NaN NaN 0.6 \n", 310 | "\n", 311 | "[5 rows x 84 columns]" 312 | ] 313 | }, 314 | "execution_count": 17, 315 | "metadata": {}, 316 | "output_type": "execute_result" 317 | } 318 | ], 319 | "source": [ 320 | "start = dt.datetime(2005, 1, 1)\n", 321 | "end = dt.datetime(2020, 5, 28)\n", 322 | "df = pdr.data.DataReader('tipsho40', 'eurostat', start, end)\n", 323 | "df.head()" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": 18, 329 | "metadata": {}, 330 | "outputs": [ 331 | { 332 | "data": { 333 | "text/plain": [ 334 | "[('Quarterly index', 'Austria', 'Quarterly'),\n", 335 | " ('Quarterly index', 'Belgium', 'Quarterly'),\n", 336 | " ('Quarterly index', 'Bulgaria', 'Quarterly'),\n", 337 | " ('Quarterly index', 'Cyprus', 'Quarterly'),\n", 338 | " ('Quarterly index', 'Czechia', 'Quarterly'),\n", 339 | " ('Quarterly index',\n", 340 | " 'Germany (until 1990 former territory of the FRG)',\n", 341 | " 'Quarterly'),\n", 342 | " ('Quarterly index', 'Denmark', 'Quarterly'),\n", 343 | " ('Quarterly index', 'Estonia', 'Quarterly'),\n", 344 | " ('Quarterly index', 'Greece', 'Quarterly'),\n", 345 | " ('Quarterly index', 'Spain', 'Quarterly'),\n", 346 | " ('Quarterly index', 'Finland', 'Quarterly'),\n", 347 | " ('Quarterly index', 'France', 'Quarterly'),\n", 348 | " ('Quarterly index', 'Croatia', 'Quarterly'),\n", 349 | " ('Quarterly index', 'Hungary', 'Quarterly'),\n", 350 | " ('Quarterly index', 'Ireland', 'Quarterly'),\n", 351 | " ('Quarterly index', 'Italy', 'Quarterly'),\n", 352 | " ('Quarterly index', 'Lithuania', 'Quarterly'),\n", 353 | " ('Quarterly index', 'Luxembourg', 'Quarterly'),\n", 354 | " ('Quarterly index', 'Latvia', 'Quarterly'),\n", 355 | " ('Quarterly index', 'Malta', 'Quarterly'),\n", 356 | " ('Quarterly index', 'Netherlands', 'Quarterly'),\n", 357 | " ('Quarterly index', 'Poland', 'Quarterly'),\n", 358 | " ('Quarterly index', 'Portugal', 'Quarterly'),\n", 359 | " ('Quarterly index', 'Romania', 'Quarterly'),\n", 360 | " ('Quarterly index', 'Sweden', 'Quarterly'),\n", 361 | " ('Quarterly index', 'Slovenia', 'Quarterly'),\n", 362 | " ('Quarterly index', 'Slovakia', 'Quarterly'),\n", 363 | " ('Quarterly index', 'United Kingdom', 'Quarterly'),\n", 364 | " ('Annual rate of change', 'Austria', 'Quarterly'),\n", 365 | " ('Annual rate of change', 'Belgium', 'Quarterly'),\n", 366 | " ('Annual rate of change', 'Bulgaria', 'Quarterly'),\n", 367 | " ('Annual rate of change', 'Cyprus', 'Quarterly'),\n", 368 | " ('Annual rate of change', 'Czechia', 'Quarterly'),\n", 369 | " ('Annual rate of change',\n", 370 | " 'Germany (until 1990 former territory of the FRG)',\n", 371 | " 'Quarterly'),\n", 372 | " ('Annual rate of change', 'Denmark', 'Quarterly'),\n", 373 | " ('Annual rate of change', 'Estonia', 'Quarterly'),\n", 374 | " ('Annual rate of change', 'Greece', 'Quarterly'),\n", 375 | " ('Annual rate of change', 'Spain', 'Quarterly'),\n", 376 | " ('Annual rate of change', 'Finland', 'Quarterly'),\n", 377 | " ('Annual rate of change', 'France', 'Quarterly'),\n", 378 | " ('Annual rate of change', 'Croatia', 'Quarterly'),\n", 379 | " ('Annual rate of change', 'Hungary', 'Quarterly'),\n", 380 | " ('Annual rate of change', 'Ireland', 'Quarterly'),\n", 381 | " ('Annual rate of change', 'Italy', 'Quarterly'),\n", 382 | " ('Annual rate of change', 'Lithuania', 'Quarterly'),\n", 383 | " ('Annual rate of change', 'Luxembourg', 'Quarterly'),\n", 384 | " ('Annual rate of change', 'Latvia', 'Quarterly'),\n", 385 | " ('Annual rate of change', 'Malta', 'Quarterly'),\n", 386 | " ('Annual rate of change', 'Netherlands', 'Quarterly'),\n", 387 | " ('Annual rate of change', 'Poland', 'Quarterly'),\n", 388 | " ('Annual rate of change', 'Portugal', 'Quarterly'),\n", 389 | " ('Annual rate of change', 'Romania', 'Quarterly'),\n", 390 | " ('Annual rate of change', 'Sweden', 'Quarterly'),\n", 391 | " ('Annual rate of change', 'Slovenia', 'Quarterly'),\n", 392 | " ('Annual rate of change', 'Slovakia', 'Quarterly'),\n", 393 | " ('Annual rate of change', 'United Kingdom', 'Quarterly'),\n", 394 | " ('Quarterly rate of change', 'Austria', 'Quarterly'),\n", 395 | " ('Quarterly rate of change', 'Belgium', 'Quarterly'),\n", 396 | " ('Quarterly rate of change', 'Bulgaria', 'Quarterly'),\n", 397 | " ('Quarterly rate of change', 'Cyprus', 'Quarterly'),\n", 398 | " ('Quarterly rate of change', 'Czechia', 'Quarterly'),\n", 399 | " ('Quarterly rate of change',\n", 400 | " 'Germany (until 1990 former territory of the FRG)',\n", 401 | " 'Quarterly'),\n", 402 | " ('Quarterly rate of change', 'Denmark', 'Quarterly'),\n", 403 | " ('Quarterly rate of change', 'Estonia', 'Quarterly'),\n", 404 | " ('Quarterly rate of change', 'Greece', 'Quarterly'),\n", 405 | " ('Quarterly rate of change', 'Spain', 'Quarterly'),\n", 406 | " ('Quarterly rate of change', 'Finland', 'Quarterly'),\n", 407 | " ('Quarterly rate of change', 'France', 'Quarterly'),\n", 408 | " ('Quarterly rate of change', 'Croatia', 'Quarterly'),\n", 409 | " ('Quarterly rate of change', 'Hungary', 'Quarterly'),\n", 410 | " ('Quarterly rate of change', 'Ireland', 'Quarterly'),\n", 411 | " ('Quarterly rate of change', 'Italy', 'Quarterly'),\n", 412 | " ('Quarterly rate of change', 'Lithuania', 'Quarterly'),\n", 413 | " ('Quarterly rate of change', 'Luxembourg', 'Quarterly'),\n", 414 | " ('Quarterly rate of change', 'Latvia', 'Quarterly'),\n", 415 | " ('Quarterly rate of change', 'Malta', 'Quarterly'),\n", 416 | " ('Quarterly rate of change', 'Netherlands', 'Quarterly'),\n", 417 | " ('Quarterly rate of change', 'Poland', 'Quarterly'),\n", 418 | " ('Quarterly rate of change', 'Portugal', 'Quarterly'),\n", 419 | " ('Quarterly rate of change', 'Romania', 'Quarterly'),\n", 420 | " ('Quarterly rate of change', 'Sweden', 'Quarterly'),\n", 421 | " ('Quarterly rate of change', 'Slovenia', 'Quarterly'),\n", 422 | " ('Quarterly rate of change', 'Slovakia', 'Quarterly'),\n", 423 | " ('Quarterly rate of change', 'United Kingdom', 'Quarterly')]" 424 | ] 425 | }, 426 | "execution_count": 18, 427 | "metadata": {}, 428 | "output_type": "execute_result" 429 | } 430 | ], 431 | "source": [ 432 | "list(df)" 433 | ] 434 | }, 435 | { 436 | "cell_type": "code", 437 | "execution_count": 19, 438 | "metadata": {}, 439 | "outputs": [ 440 | { 441 | "data": { 442 | "text/plain": [ 443 | "MultiIndex([( 'Quarterly index', ...),\n", 444 | " ( 'Quarterly index', ...),\n", 445 | " ( 'Quarterly index', ...),\n", 446 | " ( 'Quarterly index', ...),\n", 447 | " ( 'Quarterly index', ...),\n", 448 | " ( 'Quarterly index', ...),\n", 449 | " ( 'Quarterly index', ...),\n", 450 | " ( 'Quarterly index', ...),\n", 451 | " ( 'Quarterly index', ...),\n", 452 | " ( 'Quarterly index', ...),\n", 453 | " ( 'Quarterly index', ...),\n", 454 | " ( 'Quarterly index', ...),\n", 455 | " ( 'Quarterly index', ...),\n", 456 | " ( 'Quarterly index', ...),\n", 457 | " ( 'Quarterly index', ...),\n", 458 | " ( 'Quarterly index', ...),\n", 459 | " ( 'Quarterly index', ...),\n", 460 | " ( 'Quarterly index', ...),\n", 461 | " ( 'Quarterly index', ...),\n", 462 | " ( 'Quarterly index', ...),\n", 463 | " ( 'Quarterly index', ...),\n", 464 | " ( 'Quarterly index', ...),\n", 465 | " ( 'Quarterly index', ...),\n", 466 | " ( 'Quarterly index', ...),\n", 467 | " ( 'Quarterly index', ...),\n", 468 | " ( 'Quarterly index', ...),\n", 469 | " ( 'Quarterly index', ...),\n", 470 | " ( 'Quarterly index', ...),\n", 471 | " ( 'Annual rate of change', ...),\n", 472 | " ( 'Annual rate of change', ...),\n", 473 | " ( 'Annual rate of change', ...),\n", 474 | " ( 'Annual rate of change', ...),\n", 475 | " ( 'Annual rate of change', ...),\n", 476 | " ( 'Annual rate of change', ...),\n", 477 | " ( 'Annual rate of change', ...),\n", 478 | " ( 'Annual rate of change', ...),\n", 479 | " ( 'Annual rate of change', ...),\n", 480 | " ( 'Annual rate of change', ...),\n", 481 | " ( 'Annual rate of change', ...),\n", 482 | " ( 'Annual rate of change', ...),\n", 483 | " ( 'Annual rate of change', ...),\n", 484 | " ( 'Annual rate of change', ...),\n", 485 | " ( 'Annual rate of change', ...),\n", 486 | " ( 'Annual rate of change', ...),\n", 487 | " ( 'Annual rate of change', ...),\n", 488 | " ( 'Annual rate of change', ...),\n", 489 | " ( 'Annual rate of change', ...),\n", 490 | " ( 'Annual rate of change', ...),\n", 491 | " ( 'Annual rate of change', ...),\n", 492 | " ( 'Annual rate of change', ...),\n", 493 | " ( 'Annual rate of change', ...),\n", 494 | " ( 'Annual rate of change', ...),\n", 495 | " ( 'Annual rate of change', ...),\n", 496 | " ( 'Annual rate of change', ...),\n", 497 | " ( 'Annual rate of change', ...),\n", 498 | " ( 'Annual rate of change', ...),\n", 499 | " ('Quarterly rate of change', ...),\n", 500 | " ('Quarterly rate of change', ...),\n", 501 | " ('Quarterly rate of change', ...),\n", 502 | " ('Quarterly rate of change', ...),\n", 503 | " ('Quarterly rate of change', ...),\n", 504 | " ('Quarterly rate of change', ...),\n", 505 | " ('Quarterly rate of change', ...),\n", 506 | " ('Quarterly rate of change', ...),\n", 507 | " ('Quarterly rate of change', ...),\n", 508 | " ('Quarterly rate of change', ...),\n", 509 | " ('Quarterly rate of change', ...),\n", 510 | " ('Quarterly rate of change', ...),\n", 511 | " ('Quarterly rate of change', ...),\n", 512 | " ('Quarterly rate of change', ...),\n", 513 | " ('Quarterly rate of change', ...),\n", 514 | " ('Quarterly rate of change', ...),\n", 515 | " ('Quarterly rate of change', ...),\n", 516 | " ('Quarterly rate of change', ...),\n", 517 | " ('Quarterly rate of change', ...),\n", 518 | " ('Quarterly rate of change', ...),\n", 519 | " ('Quarterly rate of change', ...),\n", 520 | " ('Quarterly rate of change', ...),\n", 521 | " ('Quarterly rate of change', ...),\n", 522 | " ('Quarterly rate of change', ...),\n", 523 | " ('Quarterly rate of change', ...),\n", 524 | " ('Quarterly rate of change', ...),\n", 525 | " ('Quarterly rate of change', ...),\n", 526 | " ('Quarterly rate of change', ...)],\n", 527 | " names=['UNIT', 'GEO', 'FREQ'])" 528 | ] 529 | }, 530 | "execution_count": 19, 531 | "metadata": {}, 532 | "output_type": "execute_result" 533 | } 534 | ], 535 | "source": [ 536 | "df.columns" 537 | ] 538 | }, 539 | { 540 | "cell_type": "code", 541 | "execution_count": 20, 542 | "metadata": {}, 543 | "outputs": [ 544 | { 545 | "data": { 546 | "text/plain": [ 547 | "MultiIndex([(1, 'red'),\n", 548 | " (1, 'blue'),\n", 549 | " (2, 'red'),\n", 550 | " (2, 'blue')],\n", 551 | " names=['number', 'color'])" 552 | ] 553 | }, 554 | "execution_count": 20, 555 | "metadata": {}, 556 | "output_type": "execute_result" 557 | } 558 | ], 559 | "source": [ 560 | "arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]\n", 561 | "pd.MultiIndex.from_arrays(arrays, names=('number', 'color'))" 562 | ] 563 | }, 564 | { 565 | "cell_type": "code", 566 | "execution_count": null, 567 | "metadata": {}, 568 | "outputs": [], 569 | "source": [] 570 | } 571 | ], 572 | "metadata": { 573 | "kernelspec": { 574 | "display_name": "Python 3", 575 | "language": "python", 576 | "name": "python3" 577 | }, 578 | "language_info": { 579 | "codemirror_mode": { 580 | "name": "ipython", 581 | "version": 3 582 | }, 583 | "file_extension": ".py", 584 | "mimetype": "text/x-python", 585 | "name": "python", 586 | "nbconvert_exporter": "python", 587 | "pygments_lexer": "ipython3", 588 | "version": "3.7.4" 589 | }, 590 | "toc": { 591 | "base_numbering": 1, 592 | "nav_menu": {}, 593 | "number_sections": true, 594 | "sideBar": true, 595 | "skip_h1_title": false, 596 | "title_cell": "Table of Contents", 597 | "title_sidebar": "Contents", 598 | "toc_cell": true, 599 | "toc_position": {}, 600 | "toc_section_display": true, 601 | "toc_window_display": false 602 | } 603 | }, 604 | "nbformat": 4, 605 | "nbformat_minor": 2 606 | } 607 | -------------------------------------------------------------------------------- /Corporate Profit Cycle.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 1, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "from pandas_datareader import data, wb\n", 20 | "import pandas_datareader as pdr\n", 21 | "import matplotlib.pyplot as plt\n", 22 | "import datetime as dt\n", 23 | "import pandas as pd\n", 24 | "from pandas.plotting import register_matplotlib_converters\n", 25 | "register_matplotlib_converters() # Allow matplotlib have access to timestamp \n", 26 | "import matplotlib.ticker as mplticker" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": 3, 32 | "metadata": {}, 33 | "outputs": [], 34 | "source": [ 35 | "# Retrieve data from FRED, check my notebook for pandareader's user guide\n", 36 | "start = dt.datetime(2000, 1, 1)\n", 37 | "end = dt.datetime.today()\n", 38 | "Cprofit = pdr.data.DataReader('CP', 'fred', start, end) # Corporate Profits After Tax (without IVA and CCAdj)\n", 39 | "GDP_growth = pdr.data.DataReader('A191RL1Q225SBEA', 'fred', start, end)" 40 | ] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "execution_count": 8, 45 | "metadata": {}, 46 | "outputs": [ 47 | { 48 | "data": { 49 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwYAAAHSCAYAAABW9tzEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdd3hc9bXv//eeKs2o2FZzBQn3JguwjSkG20AghAOhHSAkmJAckhBykl/O4UluwuWm1/MLuUlIAxIMoQUILSEQ4gLYOGAbZONeZSzLtoqtNqPp+/4xs8dNZWYkezT483oePSNN81eWNLPXXt+1lmGaJiIiIiIicmqzZXsBIiIiIiKSfQoMREREREREgYGIiIiIiCgwEBERERERFBiIiIiIiAgKDEREREREBHBkewGpKC0tNSsrK7O9DBEZZAKBANFoNNvLGBB2u528vLxsL0NERDKUynvSYHitX7NmTbNpmmXd3ZYTgUFlZSWrV6/O9jJEZJBZtWoVRUVF2V7GgGhvb2fWrFnZXoaIiGQolfekwfBabxjG7p5u01YiERERERFRYCAiIiIiIgoMRERERESEHKkx6E44HKa+vp5AIJDtpYh0Ky8vj9GjR+N0OrO9FBEREZE+5WxgUF9fT2FhIZWVlRiGke3liBzFNE1aWlqor6+nqqoq28sRERER6VPObiUKBAKUlJQoKJBByTAMSkpKlNESERGRnJGzgQGgoEAGNf1+ioiISC7J6cAg2/bv389NN93E2LFjmTJlCldccQVbt27N9rIAeP7559m4cWNaj3n44YcpKyujpqaGKVOm8MADD6T1+M2bN1NTU8OZZ57Jjh07OO+88wCoq6vj8ccfT+u5AN577z0Mw+DVV19NXhcMBrnkkkuoqanhqaee4gc/+EHaz3ukL37xi8nvNz8/n5qaGmpqanjmmWf69bwiIiIiuUaBQYZM0+Saa65h3rx57Nixg40bN/KDH/yAAwcOpPT4gZjW2ttzZBIYANx4443U1taybNkyvvGNbxz3/UQikV7/zauvvpr33nuPsWPH8tZbbwGZBwZPPPEEF1xwAU888UTyuvfee49wOExtbS033nhjRoHBkf9v999/P7W1tbz88suMHTuW2tpaamtruf7669N+XhEREZFcpsAgQ0uXLsXpdPL5z38+eV1NTQ1z587FNE3uvvtupk2bxvTp03nqqacAWLZsGfPnz+cTn/gE06dPp66ujkmTJrFw4UKqq6u5/vrr8fv9ACxevJgzzzyT6dOnc/vttxMMBoH4FOjvfOc7XHDBBTz99NM88MADzJo1ixkzZnDdddfh9/t56623ePHFF7n77rupqalhx44d7Nixg8svv5yzzz6buXPnsnnz5l6/v/LycsaOHcvu3bu57bbb+OpXv8r8+fP52te+Rm1tLXPmzKG6upprrrmGQ4cO8fLLL/Pzn/+cBx98kPnz5wNQUFAAwNe//nXefPNNampquO+++9iwYQOzZ8+mpqaG6upqtm3bdty/b5omzzzzDA8//DD/+Mc/CAQCNDY28slPfpLa2lpqamq44YYb6OrqoqamhltuuQWAP/3pT8nn/tznPpcMAgoKCrj33ns555xzWLlyZa/fe11dHXPnzuWss87irLPOSgY4zz33HJdccgmmabJv3z4mTJjA/v37e/9FEREREckROduV6EjffmkDGxvaB/Q5p4ws4v/829Qeb1+/fj1nn312t7f95S9/oba2lrVr19Lc3MysWbO48MILAXjnnXdYv349VVVV1NXVsWXLFh566CHOP/98br/9dn79619z1113cdttt7F48WImTJjArbfeym9+8xu+8pWvAPE2mMuXLwegpaWF//iP/wDgnnvu4aGHHuJLX/oSV111FVdeeWXyzPfFF1/Mb3/7W8aPH8/bb7/NnXfeyZIlS3r8/nbu3MnOnTsZN24cAFu3buWf//wndrud6upqfvnLX3LRRRdx77338u1vf5uf//znfP7zn6egoID//u//Puq5fvSjH/E///M//PWvfwXgS1/6El/+8pe55ZZbCIVC3WY+VqxYQVVVFWPHjmXevHm8/PLLXHvttTz44INHPVdBQQG1tbUAbNq0iaeeeooVK1bgdDq58847eeyxx7j11lvx+XxMmzaN73znOz1+z5by8nJee+018vLy2LZtGzfffDOrV6/mmmuu4dlnn+X+++/nlVde4dvf/jbDhw/v8/lEREREcsGHIjAYbJYvX87NN9+M3W6noqKCiy66iFWrVlFUVMTs2bOPal85ZswYzj//fAA++clP8otf/IJLL72UqqoqJkyYAMDChQu5//77k4HBjTfemHz8+vXrueeee2htbaWzs5PLLrvsuPV0dnby1ltvccMNNySvszIQx3rqqadYvnw5breb3/3udwwbNgyAG264AbvdTltbG62trVx00UXJtR35vKk499xz+f73v099fT3XXnst48ePP+4+TzzxBDfddBMAN910E48++ijXXnttr8+7ePFi1qxZw6xZswDo6uqivLwcALvdznXXXZfS+sLhMHfddRe1tbXY7faj6kZ++ctfMm3aNObMmcPNN9+c0vOJiIiI5IIPRWDQ25n9E2Xq1Kk9Fqiaptnj47xe71FfH9u5xjCMXh9/7HPcdtttPP/888yYMYOHH36YZcuWHXf/WCzGkCFDkmfWe3PjjTfyq1/9qs9198cnPvEJzjnnHP72t79x2WWX8eCDD7JgwYLk7dFolGeffZYXX3yR73//+8mZAB0dHb0+r2maLFy4kB/+8IfH3ZaXl4fdbk9pfffddx8VFRWsXbuWWCxGXl5e8ra9e/dis9k4cOAAsVgMm0278UREROTDQUc1GVqwYAHBYPCozj2rVq3i9ddf58ILL+Spp54iGo3S1NTEG2+8wezZs7t9ng8++CC5590qtp00aRJ1dXVs374dgEcffTR5hv5YHR0djBgxgnA4zGOPPZa8vrCwMHkgXVRURFVVFU8//TQQP4Beu3ZtRt93cXExQ4cO5c033+xzbd2tBeLblM444wz+8z//k6uuuop169Yddf9//vOfzJgxgz179lBXV8fu3bu57rrreP755497bqfTSTgcBuLbpZ555hkaGxsBOHjwILt37077e2xra2PEiBHYbDYeffTR5FanSCTCpz/9aR5//HEmT57Mz372s7SfW0RERGSwUmCQIcMweO6553jttdcYO3YsU6dO5Vvf+hYjR47kmmuuobq6mhkzZrBgwQJ+8pOf9LgXffLkySxatIjq6moOHjzIF77wBfLy8vjjH//IDTfcwPTp07HZbEcVOR/pu9/9Lueccw6XXnopkyZNSl5/00038dOf/jTZOvSxxx7joYceYsaMGUydOpUXXngh4+990aJF3H333VRXV1NbW8u9997b6/2rq6txOBzMmDGD++67j6eeeopp06ZRU1PD5s2bufXWW4+6/xNPPME111xz1HXXXXddt52N7rjjDqqrq7nllluYMmUK3/ve9/jIRz5CdXU1l156Kfv27Uv7+7vzzjtZtGgRc+bMYevWrclsyQ9+8APmzp3L3Llz+dnPfsaDDz7Ipk2b0n5+ERERkcHI6GvbymAwc+ZMc/Xq1Uddt2nTJiZPnpylFQ2Muro6rrzyStavX5/tpcgJ8mH4PR3MrNqdD4P29vZkfYyIiOSeVN6TBsNrvWEYa0zTnNndbcoYiIiIiIiIAoNsqqysVLZAREREpJ98wQizvv9PXt/alO2l5DQFBiIiIiKS05o7gzR1BNl2oPcOhtK7nA4McqE+Qk5d+v0UERE5OXzB6FGXkpmcDQzy8vJoaWnRwZcMStbshSNnIIiIiMiJ4Q9FAPAlLiUzOTvgbPTo0dTX19PUpL1kMjjl5eUxevTobC9DRETkQ88XsjIGCgz6I2cDA6fTSVVVVbaXISIiIiJZ5k8EBP6QthL1R85uJRIRERERAWUMBkq/AwPDMPIMw3jHMIy1hmFsMAzj24nrqwzDeNswjG2GYTxlGIYrcb078fX2xO2V/V2DiIiIiJy6rIBANQb9MxAZgyCwwDTNGUANcLlhGHOAHwP3maY5HjgEfCZx/88Ah0zTHAfcl7ifiIiIiEhGrIBAXYn6p9+BgRnXmfjSmfgwgQXAM4nrFwEfT3x+deJrErdfbBiG0d91iIiIiMipyZ8ICPzKGPTLgBQfG4ZhB9YA44D7gR1Aq2ma1k+nHhiV+HwUsAfANM2IYRhtQAnQfMxz3gHcAVBRUcGyZcsGYqki8iHi9/s5ePBgtpcxIKLRqF7nREQytGVnEICWNl/WXktTeU8a7K/1AxIYmKYZBWoMwxgCPAdM7u5uicvusgPHDSMwTfP3wO8BZs6cac6bN28glioiHyKrVq2iqKgo28sYEO3t7cyaNSvbyxARyUl/b14Hu/cQtTnI1jFjKu9Jg/21fkC7Epmm2QosA+YAQwzDsAKP0UBD4vN6YAxA4vZi4MNxyk9ERERETjqrxsCvGoN+GYiuRGWJTAGGYeQDlwCbgKXA9Ym7LQReSHz+YuJrErcvMTW+WEREREQyZM0vCEVjhCKxLK8mdw3EVqIRwKJEnYEN+LNpmn81DGMj8KRhGN8D3gMeStz/IeBRwzC2E88U3DQAaxARERGRU9SR8wu6QlFcDo3qykS/AwPTNNcBZ3Zz/U5gdjfXB4Ab+vvvioiIiIjA0ROPO0MRij3OLK4mdymcEhEREZGc5gtGsCXa2/g1/ThjCgxEREREJKf5QhFKCtyJz1WAnCkFBiIiIiKS0/zBKGWJwEAZg8wpMBARERGRnGWaJr5QhPKieGDQqcAgYwoMRERERCRnBSMxYiaHMwbaSpQxBQYiIiIikrOsVqVlhVaNgTIGmVJgICIiIiI5y8oQlBdaNQbKGGRKgYGIiIiI5CwrQ1BaqBqD/lJgICIiIiI5y5fIEBTmOcl32vFrK1HGFBiIiIiISM6yagy8Ljtet11zDPpBgYGIiIiI5CwrQ+BxOfC4HJpj0A8KDEREREQkZ1lbibxuO163g04VH2dMgYGIiIiI5KwjMwZel2oM+kOBgYiIiIjkLKumwOu243E7VGPQDwoMRERERCRn+YMRDAPynfZ4xkA1BhlTYCAiIiIiOcsXiuJ1OTAMA6/bkexSJOlTYCAiIiIiOcsfiuBx2YF4y1JtJcqcAgMRERERyVmdwShetwMAj9uh4uN+UGAgIiIiIjnLHzw6YxCOmoQisSyvKjcpMBARERGRnOULRfC64hkDK3OgOoPMKDAQERERkZzlD0XxuK2MQSIw0HaijCgwEBEREZGc5QsezhhYAYJfBcgZUWAgIiIiIjnLH4oeUWOgrUT9ocBARERERHKWLxhJ1hYcrjFQxiATCgxEREREJCeZpok/FMWb2EJkZQ5UY5AZBQYiIiIikpNC0RiRmInnmK5EmmWQGQUGIiIiIpKTrC1DXqvGIJE50FaizCgwEBEREZGcZBUZe6waAxUf94sCAxERERHJSVZbUisgyHdaNQbKGGRCgYGIiIiI5CSryNiaX2CzGXhcdvzKGGREgYGIiIiI5CR/8OiMAcQLkJUxyIwCAxERERHJSVbGwCo6hnghsmoMMqPAQERERERyktWW9MiMgcflULvSDCkwEBEREZGcZLUl9RyZMXDb1a40QwoMRERERCQndZcx8LqVMciUAgMRERERyUmdicyA1aYU4kFCp2oMMqLAQERERERykj8YweOyY7MZyes8LntyvoGkR4GBiIiIiOQkXyiK54htRJBoV6qMQUYUGIiIiIhITvKHIke1KoV48bE/FMU0zSytKncpMBARERGRnOQLHp8x8LgcRGImwUgsS6vKXQoMRERERCQn+UMRCo7NGLjsidtUZ5AuBQYiIiIikpO6qzHwuONfq84gfQoMRERERCQn+YPH1xgUWIGBZhmkTYGBiIiIiOQkXzDSTY2BPXGbthKlS4GBiIiIiOQkXyiarCmweBMZA00/Tp8CAxERERHJSf5QJFlTYFHGIHMKDEREREQk54QiMcJR87iMQYGKjzPW78DAMIwxhmEsNQxjk2EYGwzD+HLi+mGGYbxmGMa2xOXQxPWGYRi/MAxju2EY6wzDOKu/axARERGRU4u1Vai7OQZH3i6pG4iMQQT4L9M0JwNzgC8ahjEF+Dqw2DTN8cDixNcAHwXGJz7uAH4zAGsQERERkVOILzGnoLvJx0feLqnrd2BgmuY+0zTfTXzeAWwCRgFXA4sSd1sEfDzx+dXAI2bcv4AhhmGM6O86REREROTU4U9sFfIeU2OQ77RjGIdvl9QNaI2BYRiVwJnA20CFaZr7IB48AOWJu40C9hzxsPrEdSIiIiIiKUlmDI7ZSmQYBl6Xg04VH6fN0fddUmMYRgHwLPAV0zTbDcPo8a7dXGd283x3EN9qREVFBcuWLRuglYrIh4Xf7+fgwYPZXsaAiEajep0TEUnDxpb4gf/Wje9j7D96O5GDKNt372HZssaTtp5U3pMG+2v9gAQGhmE4iQcFj5mm+ZfE1QcMwxhhmua+xFYh6ydTD4w54uGjgYZjn9M0zd8DvweYOXOmOW/evIFYqoh8iKxatYqioqJsL2NAtLe3M2vWrGwvQ0QkZ4Q27IdVazj/nJlMG1V81G1DVy+juKSYefPOPGnrSeU9abC/1g9EVyIDeAjYZJrmz4646UVgYeLzhcALR1x/a6I70RygzdpyJCIiIiKSCn9iK5HnmHal1nWqMUjfQGQMzgc+BbxvGEZt4rpvAD8C/mwYxmeAD4AbEre9DFwBbAf8wKcHYA0iIiIicgrxhbovPrau61RgkLZ+BwamaS6n+7oBgIu7ub8JfLG//66IiIiInLr8wZ4zBl6XnebO0MleUs7T5GMRERERyTm+HgacAXjcjuTtkjoFBiIiIiKSc/yhKPlOO3bb8RtXvC57MqMgqVNgICIiIiI5xxeMHDf12OJ1O/CpxiBtCgxEREREJOf4Q9FutxFBfOiZLxQhXtoqqVJgICIiIiI5xxeMdFt4DOBx24mZEIzETvKqcpsCAxERERHJOb5QpNtWpRDPGADaTpQmBQYiIiIiknN8wWiPGQMrYPCpADktCgxEREREJOf4Q5FkZuBY3kTAoJal6VFgICIiIiI5xxeM4umhK5EnkTHwKzBIiwIDEREREck5vWUMChIBg7YSpUeBgYiIiIjkHF8o2mPxsUfFxxlRYCAiIiIiOSUcjRGKxJK1BMdKdiUKKWOQDgUGIiIiIpJT/IkDfk9PGYPEViLVGKRHgYGIiIiI5BTrgL+njEGB2pVmRIGBiIiIiOQUq3agp4yB22HDZqjGIF0KDEREREQkp1iZgJ4yBoZh4HU5NMcgTQoMRERERCSnWAf8nh7alUK8zsCvrURpUWAgIiIiIlmzs6mTiff8nW0HOlJ+jHXA7+1hwFn8NmUM0qXAQERERESyZvP+DoKRGJv2px4YpJIx8LocqjFIkwIDEREREcmaxvbAUZepsNqVFvRQfAzgcdk1xyBNCgxEREREJGuaOoNHXabicFei3rcSaY5BehQYiIiIiEjWNLYnAoP21AOD5IAzZx+BgYqP06LAQERERESyprEjeNRlKnzBCG6HDYe950NZr8tOp2oM0qLAQERERESyxgoImtIJDEIRvL3UF0C8MNmvGoO0KDAQERERkaxp6kgUH3ekUXwcjOLpYbiZxeu24wtFME2zX+s7lSgwEBEREZGsiERjtPhCuOw2DvnDhCKxlB7nC0Xw9tKqFOI1BqYJgXBqzykKDEREREQkS5o7Q5gmTBxemPg6te1E/lC0145EEK8xAFRnkAYFBiIiIiKSFdb2oakjixJfpxYY+IKRXmcYwOHhZ2pZmjoFBiIiIiKSFVar0qmjioHUC5D9odRqDAB8almaMgUGIiIiIpIVVoZgWjJjkFoBcqo1BqCMQToUGIiIiIhIVliBwKThRRjG4QxCX/zBvmsMrK1EqjFInQIDEREREcmKxo4gw7wu8l12hnlcNKVYfNwZTCVjEA8cNMsgdQoMRCTnvbqtnRa/zgiJiOSaxvYg5YVuAMoK3SllDCLRGMFILJkR6IkVOPiUMUiZAgMRyWmtXRF+tryRv29tz/ZSREQkTU0dAcoSgUF5UV5y2Flv/OF4BsDbV7vSZI2BMgapUmAgIjmt0Rc/E9TUqTNCIiK5prEjSHlhHgBlBe6UuhL5E12G+soYeDTHIG0KDEQkpzUmAoImXzjLKxERkXTEYiZNHUHKi6yMgZumziCmafb6OF+iy1BfGQO3w4bdZqgrURoUGIhITrMyBtaliIjkhkP+EJGYebjGoMBNOGpyyN/7iR4rY9BX8bFhGHhcds0xSIMCAxHJaU3WViJfpM+zTCIiMnhYMwysrURW5qCv7URWxqCvdqUABW6HMgZpUGAgIjnN2kIUiJh0hGJZXo2IiKQqGRhYW4kSAUJfQ86sA/2+MgaAMgZpUmAgIjmtsTOCkfi8SduJRERyRmN7PAA4sl0ppJAxCKbWlSh+H0cywyB9U2AgIjmtyRehcqgr+bmIiOSG47YSJQKDxj4Dg8RWohQzBn5lDFKmwEBEclY4anKwK8qU8vibilqWiojkjqaOIIVuB/mJtqJetwOvy97nkDNfKLXiY4jXGKhdaeoUGIhIzjrYFa8pmFCah8OmlqUiIrmkqSNIWaK+wFJWGG9Z2ht/4kDfCih643Gp+DgdCgxEJGc1d8XPGlUUOCj1ONSyVEQkhzR2BJLbhyzlhXnJ2oOe+EJRXHYbLkffh7Fetz2ZYZC+KTAQkZzV7I+/2Jd7HZQXOFRjICKSQ46cemwpK+x7+rE/FEmpVSkkMgbaSpQyBQYikrOa/fGtRKVeB2VepwIDEZEcYZomje3B4zIGqQQGvmA0pfoCsLoSRYnFNOcmFQoMRCRnNXdFKc6z43bYKPM6aPZFiOrFX0Rk0OsMRugKR5MtSi3lRW46ghG6etn+4w9FUmpVCuBN1CF0hbWdKBUDEhgYhvEHwzAaDcNYf8R1wwzDeM0wjG2Jy6GJ6w3DMH5hGMZ2wzDWGYZx1kCsQUROPc3+GOXe+FmjMq+DqAmHuvTiLyIy2B073MxSVtD3LANfKJpSq1IAj9uReIwyyqkYqIzBw8Dlx1z3dWCxaZrjgcWJrwE+CoxPfNwB/GaA1iAip5hmfzQZGFiX2k4kIjL4WS1Jj60xKC/qe/qxL5h6xqAgcT/NMkjNgAQGpmm+ARw85uqrgUWJzxcBHz/i+kfMuH8BQwzDGDEQ6xCRU4dpmjR3xSgrOJwxAAUGIiK5wDrwP74rUd9DznzBSOoZg8T9NMsgNSeyxqDCNM19AInL8sT1o4A9R9yvPnGdiEjK2gMRAhEzGRBYl42aZSAiMug1dXSfMbBqDnrbSuQPRZO1A32xipT9almaktTCrYFldHPdcdWChmHcQXyrERUVFSxbtuwEL0tEcsmejnhHIsN/iLq6NkzTJM8OO/YdpK6gLcurS180GtXrnIicMlZvDuGwwbtvL8cwDh8axkwTmwGr1m/l9FBdt49t7fTT2hJK6TVze2s8IPjX6nfx7z6xh71+v5+DB4/dQHO0wf5afyL/hw4YhjHCNM19ia1CjYnr64ExR9xvNNBw7INN0/w98HuAmTNnmvPmzTuBSxWRXLN40wFYsZqpVSOpLIufcSqv/YCgzUllZe7tTmxvb2fWrFnZXoaIyEnx/P73GN52iPnz5x93W9nKf5I/tIx582Z0+9jw4lcYXzmGefOm9PnvjDzQAf96g7ETpzKv+sS+N6xatYqioqJe7zPYX+tP5FaiF4GFic8XAi8ccf2tie5Ec4A2a8uRiEiqGlq7gMNbiCBegNzk1z5SEZHBLj7czN3tbeWFeTR1dr+VKBoz6QpH8bpTrTGIbznyqcYgJQPVrvQJYCUw0TCMesMwPgP8CLjUMIxtwKWJrwFeBnYC24EHgDsHYg0icmrZ2xrAbsDQ/MP7TMu8Dho79eIvIjLYdTf12FJe6E52LTqWNY8g5QFnLrUrTceAbCUyTfPmHm66uJv7msAXB+LfFZFT1762LkrybdiO2Jta7nXQGogSisRwOTS/UURksGpsD3De2JJubysrdLO2vvtaMX/izL8nxXal1v1UfJwavXOKSE5qaO2i1HP0G0OyZam2E4mIDFqBcJT2QKSXrURuDvqC3U6y94XSyxi4HXacdkNbiVKkwEBEclJDa6DnwECzDEREBq2eWpVayoryiJnQ0k2dgXWA70mxXWn8vg4FBilSYCAiOScaM9nfHqDUc/RLmDXsTIGBiMjgZQ03KyvqPmNQVtDzkDPrAD/V4mMAr8uezDRI7xQYiEjOaewIEI2ZlOYfkzHwJAIDFSCLiAxaVmFxj1uJinoecmbVCqSVMXA78Kv4OCUKDEQk51itSo/NGLgcNobk2ZUxEBEZxBr72kqUzBgEjrvN6i6UVsbA7cAXVMYgFQoMRCTn7G2Nv1kcW2MAiZalCgxERAatxo4AdptBidfV7e1lhb1kDILpZwy8LrtqDFKkwEBEco6VMSjJP/4lrNzrUMZARGQQa+oIUlrgwmYzur09z2mnON/ZfY1BImNQkEbGwONyqMYgRQoMRCTnNLR2UZTnwOM8/iWszOugyRfOwqpERCQVvQ03s5T1MOTscI1BOluJ7KoxSJECAxHJOQ2tAUYOye/2tlKvA3/Y1NkhEZFBqrE92GPhsaW80E1TD+1KnXYjrSGWqjFInQIDEck5Da1dPQYG5YmWpY3qTCQiMig1dgSTnYd6Ul7o7rb42B+KppUtANUYpEOBgYjknIa2LkYO6aGbhYaciYgMWpFojBZfkLIUtxKZ5tHTjzuDEbxpFB5DfNtRVzja7SRlOZoCAxHJKb5ghFZ/uOeMgdcJoM5EIiKDUIsvhGn2PMPAUl6YRzASo+OYM/3+UARPGoXHEK8xAOgKaztRXxQYiEhO2dcW70g0qofAYGi+HbuhjIGIyGBkFRSX9REYWLcfW4DsC0bTzhhYMw/82k7UJwUGIpJTGhIzDEYUdx8Y2G0GpWpZKiIyKFl1A6kUH8Pxswz8oUgGNQbx+3cqMOiTAgMRySnWDIOeagyARGCglqUiIgD25MsAACAASURBVINNcupxUe81BlZx8rEFyL5gNK2px3B4GJpf3er6pMBARHJKQ2sXNgMqenlTKVPGQERkUEpuJSroYytRQfw1vruMgVUzkCorkFBnor4pMBCRnLK3NUBFUR5Oe88vX9b045ipDhQiIoNJY0eAoR5nn3MIivIduBy24wIDXybtSq0aA2UM+qTAQERyyr62nmcYWMq8DiIxaO3Sm4CIyGCSytRjAMMwErMMjskYZNCu1Lq/agz6psBARHJKQ2sXI4r72JuqlqUiIoNSKsPNLGXHDDmLxeJT7dNtV+pJZgz0ntAXBQYikjNiMZOGtkCPrUotGnImIjI4NbUH+mxVaikvdB+1lciaQ5BpxsAXVBa5LwoMRCRntPhChCKxvrcSFSgwEBEZbEzTpKkzta1EYGUMDgcGvsQZ/7QzBi5lDFKlwEBEcsbhVqW9BwaFLhtuh6GWpXLSdQTCySF8InK0Q/4w4ajZ5wwDS3lhHq3+MMFI/Ey/P5hZxsDlsOGy2+hUxqBPCgxEJGdYB1y9zTCAeNGaWpZKNtz7wgY+fv8KYjF1xBI5VnK4WYo1BlYA0dwZAo7IGKTZlQjA47YrY5ACBQYikjP2JqYej+xh6vGRyr0OGjv1JiAnTyQaY/GmAxxoD7K2vjXbyxEZdKwZBulsJYo/Lv7ab7UbLUhzKxHEpx+rxqBvCgxEJGc0tHaR77QzxOPs877KGMjJ9u4HrbQH4r9zSzY3Znk1IoNPcupxGluJ4PCQM2tAmSfNAWcAXmUMUqLAQERyRkNrFyOH5GEYRp/3Lfc6OdQVJRzVlg45OZZsbsRhM5g6sojFmxQYiBwr7a1EiftZAYWVMfBmspXI5dAcgxQoMBCRnNHQFuiz8NhS5nVgAi1+vRHIybF0cyOzq4bxbzNGsnFfu4qQRY7R2B6kwO1IuUagxOvCMA4HBsmMQZrFx2BlDLSVqC8KDEQkZzS0dqVUXwCHW5ZqyJmcDHtbu9hyoIMFk8pZMKkcgKWbm7K8KpHBJd6qNLVsAYDDbqPE6zpuK5E3gxoDj8uRfLz0TIGBiOSEYCRKU0cwrYwBaJaBnBxLEzUF8yaWM768gNFD81my+UCWVyUyuDS1B1MebmYpK8yjKbEFyZc4459JxqDA7VDGIAUKDEQkJ+xvS3Qk6qNVqcUKDBo7NctATrylmxs5bZiHsWVeDMPg4knlLN/eTCCsAxERS2NHgPKi1F7DLUcOOfOHIthtBm5H+oevHpddGYMUKDAQkZywNzHcbFSKGYM8h40it00ZAznhAuEoK3Y0s2BSebIwfsHkCgLhGCt3tGR5dSKDR2NHeluJIN7B6PBWoigelz2lBhTH8rodyTkI0jMFBiKSE/ZZMwxSDAxALUvl5PjXzhYC4RjzJpYlrzunahgel53F2k4kAkBnMII/FE07MChLBAaxmIk/FMmoIxHEOxkFwjGiGj7YKwUGIpITGhIZg+HFqaehy7xOBQZywi3d3Ei+086cM0qS1+U57Zw/rpSlm5swTR2IiFhDylJtVWopL3QTiZm0doXxhaJ4M5hhACQfp1kGvVNgICdENGby/z1Vy9It6uUtA6OhrYvSAhd5ztTfFJQxkBPNNE2WbGnk/HElx/1uXjypPNmtSORUd3i4WXo1Btb9GzsC+IORjDoSAckWqZp+3DsFBnJCvLJ+P8+9t5fvvrRRaTsZEHtbU59hYCkvcNAZiuEPx07QquRUt6Opkz0Hu5ifaFF6JOs6DTsTSX/qscXqYtTYHsQXimbUkQgOZwxUZ9A7BQYy4EzT5NfLtpPvtLOz2cff3t+X7SXJh8C+NGYYWNSyVE40a1bBvInHBwYVRXlMH1XMks0KDESsrUTptiu1AommjmC/awwA/MoY9EqBgQy4N7Y1s6Ghnf/zb1MYV17A/Uu2E1PWQPrBNM34cLM0MwZqWSon2pLNjUwaXthjt6z5k8p594NDHPSFTvLKRAaXpo4gLoeN4nxnWo9LZgw6gvGuRJluJVLGICUKDGTA/WbZdoYX5XHtWaO5a/44thzo4B8b1ZlDMtfeFcEXiqY8w8BSroyBnEDtgTCr6g52u43IcvGkckwTlqneSk5xjR1Bygrcabca9bodeF12GjsC+IIRvJluJUrWGOj9oDcKDGRAvfvBIf618yCfnVuFy2HjyuoRVJZ4+OWSberMIRmzZhikmzEo8TiwGQoM5MRYsa2ZSMxkfjfbiCzTRxVTWuDWdiI55cWHm6W3jchSXpSX2EoUTRYRp+twjYG2EvVGgYEMqN8s28EQj5ObZ58GgMNu485549jQ0M6yLU1ZXp3kqoYMAwO7zWBYvjoTyYmxZHMjxflOzjptSI/3sdkMFkwq4/WtTYSjKoI/kfa1dekE1CDW2J7+cDNLWYE7UXwc6Ue7UqvGQO8HvVFgIANm64EOXtt4gNvOqzyqndg1Z41i1JB8fqGsgWRoX5sVGKS3lQjUslROjFjMZOmWJi6cUIbD3vtb6YJJFXQEIqyuO3SSVnfqeWX9Ps794RK+97dN2V6K9CA+9Tj913CAsiI3ew75MU36365UGYNeKTCQAfPbZTvwuOwsPLfyqOuddhtfmDeW9z5o5a0dLdlZnOS0va0BnHaDUm/6Z5vKCxw0diowkIG1vqGN5s4g84+YdtyTC8aX4rQbLNEU5BNiV7OPu59eh9dl56Hlu3juvfpsL0mOEQhHaesKZ5wxKC90s68t3tUo0xoDq82pagx6p8BABkT9IT8vrG3g5tmnMdTrOu72688eTUWRm18s3paF1Umua2jtYkRxPjZbekVrkMgY+CPKVsmAWrq5CcOAiyb0HRgUuB3MOaOExaozGHCBcJQv/GkNdrvBy1+eyzlVw/j6s++zfm9btpcmR2iyZhhkWGNwZIvTTGsMnHYbLodNXYn6oMBggDR1BGnuDGZ7GVnzwBs7sRnw2blV3d6e57TzuQvH8vaug7yz6+BJXp3kunir0gxT0F4H4ahJW0DpYxk4S7Y0UjNmCCUFqR3oLJhUzs4mH3XNvhO8slPLvS+sZ/P+Du67sYbTS7zcf8tZlHhdfO7RNbScwu/Jg02mU48tRz4u0xoDiAfpmmPQOwUGA2DplkYW/P/LuORnr/PWjuZsL+eka+4M8uSqPVxz5ihG9DKA6ubZp1Fa4OKXS5Q1kPTsa0t/6rFFLUtloDV3BllX38qCXroRHWtBoqWpuhMNnD+v3sOfV9fzpQXjkp2hSgvc/PZTZ9PUGeSux98jooLvQaGpI7PhZpbyAcgYxB9r11aiPigw6AfTNLl/6XZuf3gVo4d6KC1wc+tD7/DY27uzvbST6uEVdYSiMT530dhe75fvsvPZuWfw5rZmave0nqTVSa6LRGPsbw/0OECqL8khZwoMZIC8vqUJ06TX+QXHOr3Ey9gyrwKDAbKxoZ3//fx6zhtbwlcumXDUbdWjh/DDa6azcmcLP3h5c5ZWKEdqHMCtRP3JGHhdDm0l6oMCgwz5ghG++Pi7/PTVLVxZPZK/fOE8/nLneVwwvpRvPreeb7244ZQ4U9ERCLNoZR2XTx3O2LKCPu//yTmnM8Tj5FfKGkiKGjuCRGNmr9mo3pQVxKdsKmMgA2XJlkbKC91MHVmU1uMunlzB27ta6AhoEnd/dATCfPHxdynOd/J/bzoTeze1R9edPZrbzqvkDyt28Zd3VYycbY3tQWwGlGTQQAIGMGPgtuNXV6JeZS0wMAzjcsMwthiGsd0wjK9nax2Z2N3i49pfv8Ur6/fzjSsm8Yubash32SnKc/LQwll89oIqHn6rjtv+uIo2f99vAKZp8sbWJj754NvM+PY/+M5LG5N92we7x9/+gI5AhC/M6z1bYClwO7j9/Cr+uamRDQ0qDpO+HZ5hkNne1GK3DZfdUGciGRDhaIw3tjYxf2J52hNcF0wqJxw1Wb7t1NtyOlBM0+Rrz67jg4N+fvWJs3rdmvLNj03mnKph/K+/qBg52xo7ApQWuLsN4lIx1OPCkXistx+BQYHboa1EfchKYGAYhh24H/goMAW42TCMKdlYS7pe39rEVb9awf72AItun80dF4496s3BbjO458op/OS6at7e1cI1v17BzqbObp8rHI3x/Ht7ueIXy7n1D++w9UAHc84YxiMr67jwJ0v5rz+vZduBjpP0naUvEI7y4PJdXDCulOrRPQ/4OdbC8yopdDu4f+n2Xu/3QYufP67Yxf1Lt7N2TyuxmLrKnIqsqceZbiUyDEOzDGTArNl9iI5AhPmT+u5GdKyzTx9KUZ5D24n64Y8r6nj5/f187fKJzK4a1ut9nXabipEHiaaOYMbbiCA+KLA0Uejv6cdWoniNQc8Zg/ZAmNc2HmDF9mYC4VMzs5B52NU/s4HtpmnuBDAM40ngamBjltbTJ9M0+f0bO/nxK5uZUFHI7z81k9NKPD3e/99njaGy1Mvn/7SGj9+/gl/fcjYXjC8F4tuQnly1hz8s38Xe1i7GlRfwk+urubpmJG6HnfpDfh58cxdPrdrDs+/Wc+mUCr4wbyxnnTb0ZH27KfnLu3tp6gjyf2+sSetxxflOFp5Xyf3LtrPtQAfjKwqB+F7yNbsPsWRzI4s3N7K98XBA9dNXtzDU42Tu+DIunFDGheNLKS/K7Ayy5Bard/WIDAMDsIacdZ+9C0Ri1LeF2dMWwgBKvQ5KPA6G5dtxO3Jvt2UoEmN3i4/GjiDnVA3rc/iWpGfplkacdoMLxqcfGDjtNi6aWM7SLY3EYmZG7XdPZWt2H+IHL2/iI1Mq+I+5Z6T0mNICN7/71Eyu/+1bfPHxd3n0M+fg1N/ESeUPRfrVQMJSXuRmf3uAggwHnMHxNQaxmMn6hjbe2NrE61ubePeDVqKJk5Buh41ZlcM4f1wpF4wrZcrIoowzHrkkW4HBKGDPEV/XA+dkaS198ocifO3Z93lpbQMfmz6Cn95QndIet9lVw3jhi+fz2UWrWfjHd/ja5RNp9Yf507920x6IMLtqGN+5eirzJ5Yf9QYxeqiHb101lf+8eDyL3qpj0co6Xvv1AWZXDeML88Yyd1xp1t/sI9EYv3tjBzNGF3Pu2JK0H3/7BVX8YcUufvbaVi6fNpzFmxp5fWsTbV1hnHaDc6pK+MTs01gwqZzCPAfLtzfz+pYm3tjWzItrGwCYPKKICyeUMndcGaWFLgwMbEb8DLHNAJthYCQuh3pd/XoxAVhVd5BgOEa+y06+047HFf+wvs72z+RkM02Tps4gpV73CTnAMU2TSMzkg4N+ivOd/fr5lXkdrNnrZ8OBLva0hdndGmJPa4gP2kI0dkboKRdV6LZRku+gxGNnmMfBMI8Dr9NGvtMg32Ejz2nD47SR5zDId9rId9qwGxCImAQjMQIRk8Axl5GoyZkj86kcmvnZM4BgJMquZh/bDnSy7UAH2xo72dbYSV2zj0jije3hT89iXhqdc7IpHI3RFY4SCEcJhA5/bl1OHF6YcZ3JQFq6uZHZVcMy/n1cMKmMl9Y28E7dQc4o9dIeiNAZjNARCNMZiNARiNARjFBa4OKqGSPT3q402Jlm4m8j8bPtCkUJhGMEIlEcNgOXwxbvN2+3JfvOO+0G/lCUux5/l5FD8vnpDTPS+n+ZPrqYH147na/+eS1fe3YdV1aPoLwwj/JCNyX92N4yUALhKLtb/Gxv7GRH0+GPxvYgY8sKmDaqiGmjipk6spiqUm/W1wvxA+qucBR/KIo/FKGtK0xDaxf1h7rY29rF3kNdNLTFLw8ltlTPquw9w9OXsgI3NoN+nbDxuO20d4V5dk09r29tYvn2Zg76QgBMH1XM5y86g7njy+gKR1mxrZnl25v58Sub+THxk5rnjS1JBgqnl3g+dH+fAEY2hv4YhnEDcJlpmp9NfP0pYLZpml864j53AHcAVFRUnP3kk0+e9HValu8N89D7Ia6f4OSKKmfavwhdEZPfrQ1S2xTFAM6usPPRKidjh6SWDgtETF6vj/BqXZiDARMDKHBBscugyG1Q5DKO+tzjNPCFTTpCJh0h6AiZdCa/jn8+s8LBZ6ZnfmDy9r4Iv1kb5Etnujm7IrM3yKe2hPj7rvgLRqELZpQ5mFFmZ1qpnXxH9//HMdNkT0eM95ujrG+Osu1QjGgKv8JFLrhvnifjF9S6tijfWhno9T4OA9wO8DiM+IGiA/ITl/GvDfLsYP36HPmnZx7xdb7DYEaZnREF6b34xUyTjS1R3qyPsL4lngK1GWA3DOwG2G3xrx2JYGnOSDtXVB0/jC5VSz4I88jGEHl2GFlgY3ShjdFHXBa5j/6/DkZNmrtMmvyx5GVTl8mhgEkoZhKOQSgK4cTn4SjJA/bTi2x8+7zjDwr9fj92e99/Ry/tivLXusP/4U4bVHhghMdguMdghBeGe+LrbQuZtAaJf4RM2oLQGjRpC0FbCAZqR9uEIQbzRxnMKDWw2wyi0SgeT89ZSICWrhjv7I/y9r4Iu9tjyf8fAyj3GIwssDGqwEa+A57eGuaOajfnjczs79MfNvnG8i78EROXDZw2A5c9/n/nshvJy5EFBjdNdGX8BrmzLcqP3wnQV2vxkQUG3zs/H1uG/87q/REWbQjidRoUu4/5cB3+3GYYBCImXRGTQJREUAeBqIkvbPJqXYSbJrq4vMqZ0To6QyZfWuLvMRg90hVVTm6YkP57DsDapgiPbAhxVoWdyyudlOSn93oSjJgsq4/wRn2Yf5/oYkZZZr9Hpmny+/eDrG+KEjzm7zpdDhvcc04elcWZbSV5cnOIV+qOzhwakPzZD0lcumwQMSEag4hpxi9j1nXx1Y/w2qgstlFZZGeE10jpvSUUNdnni1HfEaO+06ShM8Y+X4wmv3nU/0lJnsGIAhvFLoMGX4w9HTEiiV4mbjuMKbRxepGNyiIb+Q6DYNSkK/E7GkxcWr+zkVj8+Sq8Nio8BsO9Nkryel5vNBZ/nd7ni7HPZ7LfF2O/L4YvHP97CEZNgtH4a3VP3HYoyTcozbMxLN+gNM+gJN/G9FI7Ba7MD6Qf3hDknX0Rfn2JN+PneHpLiL8ljjuKXAbTSu1ML7UztdROUQ9rawuabGqJsiHxcTAQ/2l9vtrNnGNeX1N5T0rltf5Emz9//hrTNGd2d1u2AoNzgW+ZpnlZ4uv/BWCa5g+7u//MmTPN1atXn8QVHs00TTbua2fqyOKMnyMaM/nb+/uoHlVMZWlmv9ShSIxXNuxne2MnzZ1BmhND1Zo7QzR3BruttHc7bJR4XQz1uhiW+FhX34Zpmiy7e37G38//+sv7/H39Pt6959KMzxZ3BML8eXU9Z502hBmjh2T0PJ3BCGt2H8IfjBAz4wfH8YNsk5hpEovBuvpWFq3czStfmcuk4el1EbE8srKOe1/YwO8+dTZuh42uUPxMiXXGy/rcF7TO/kXoDIbpDEboDBy+LhhJvVPV+PICLp82nMumDmfqyKIeDw7qmn08s6aeZ9+tZ19bgOJ8Jx+ZUoHHZScSi5+hjsRMIrEYkZhJNGqytbGDxvYgq++5hDxnZm+yH79/Ba3+EPMmlrNlfwdbDnQkz7wAlHhdTKgoJBSN8cFBf3LypSXPaWPMUA8jhuTjcdrJc9pwO+y4nTbynPFtPG5H/PPZVcO6rWNZtWoVRUV9/0xb/BGW13VSUejk9CEuyr2OjIJE0zQJRU26wjG6IonLcDwT4A/HCIRjREyTPIeNPIcNdyJIPPy5jZgJS3Z08LctbRzojFDqsfOxicVcMNLGpXOPT5we8oV4ef0+XqhtSA4HnDFmCHPHlTK+ooDx5YWcUeY96ufY0NrFeT9awg+vnc7Ns09L+/sE2Hqgg4/c9wYXTypn5JD8+Jn8xJneQDhKMBxjX3sXew52sfqeS5L7f9P18IpdfOuljXxpwTiK853kOe3kOeNZuHyXjTyHnXV72/jR3zfz0MKZXDy5Iu1/IxYzueznb+APRak5bQhNHcHkR2cahYguh42yAjdPfW4Oo4dm/sb+t3X72HPIT4HbQWFe/KPA7Uxcxr/+6atbeOztD/jqpRP4z4vHp/X8r27Yz12Pv0t5YR4H2gMYBlx75mg+P28sVX28/7QHwjy6cjcPLd/FQV8Ij8tOcb6Txf91UUbdYJ5ZU89/P72WK6YPZ9SQfPKddvJcdvIch7Otec74330sZhKKxAhFY4Sj8c/D0fhHKBpjVuWwfp91bmjtYn97gMb2IE0dARo7gjS2B2nsCHCgPUhjR5BwNIbTbuBMZC2O/TwaM9l6oJOuxB70PKeNySOKmD6qmGmjipk+qhivy8Hm/e1s3t/Blv0dbN7fTl2LPxlYuOw2zijzMra8gLFlBYwt8zK2rIAzyrzH/T+HozG2N3ayoaGd9Xvb2NDQxsaGdnzdvOfbDPC6479HHpcdh81G/SH/Ufd12g3GDPVQWeqlssSL22ljZ1NnfABfi4/wEWfbhnldnFHqpaTAhdflIN9lZcsdyay5xxX/nR05JJ/RQ/Mpzs8smO3L7hYfO5t9yZkVmag/5Oe1jfEdGJOHF6V93GGaJnUtfpZvb+ayKRXHbWlO5T2pvb2dWbNmpb32gWQYRo+BQba2Eq0CxhuGUQXsBW4CPpGltfTJMIx+BQUQL0q+asbIfj2Hy2Hr9Tn8oQgtnSHaA2GK850M87q6fSH/1osbeLaf7dtaOoOUF/ZvC0lhnpPPXND9pORUFbgdXDSh972+M8YMYdHK3ayrb8s4MFi7p43SAhcfmVLRrxe8cDSGacazBgbx3634Zfx2wzDY19bFPzYc4JX1+7l/6XZ+uWQ7Y4blc/nU4Vw+bThnjhlKVzjKy+/v4+k19byz6yCGAXPHl/HNj03mkskVfR7sr9jezC0Pvs2SzY1cMX1E2t/HBy1+ave08vWPTuLzR8yvaOoIsvVAR+LNsJ2tBzrJc9qYP7GMMUM9nFbiYfRQD2OG5VNW4D5padgSj4Orp6ReIN8TwzBwOwzcDhv9ebYbq4dy/bQhvFPv56VNrSx67yB/qoUr977HredWMnlEIa9tPMCLtQ28vrWJSMzkjDIvX710AlfNGNnnyYX8xM+/P8VzXYkDiVvmnMaCSd0fjP9z4wE++8hq6g91ZRwY1B/qIs9p46uXTujx92FW1TAeXbmb372+M6PAYMnmRrY1dvLzG2v4+JmjjrrNH4rQ3BGisSNAU0cQk/jrinVw5XXbk18P1N70j1X3/Tf33aun0RWO8rPXtuJJzIBJxd/W7ePLT77H9NHFPPzp2XQEwjzwxk6eXLWHp9fs4YrpI7hz3jimHNNq9aAvxB9X7OLht+rixdUTy7hrwTgArvvNSn65ZDtfu3xSWt9nmz/MD1/exFmnDeFXN581KGoqRg7J7/ded4if7NvV3Mn7e9t4vz5+wP7smnoeWXn8HKPThnmYOLyQK6aPYOLwQiYNL6SyxJvy9lOnPR54TB5RxPVnjwbiwW5di4+ucPSo31e3w3bc35G17bOu2U9ds49dLfEJ3Luafazc0UIkFuO0YR7GlhVw8eSKeMCSCFaGeDLPKg+000u8nF6SebYA4lu1P31+5scdhmFQVertM8DOZVkJDEzTjBiGcRfwKmAH/mCa5oZsrOXDxONy4BnW9490mNdFRyBCKBLDleFevYO+EMO8g+cFozdnlHopcDtYV9/Kv88ck9FzvL+3lemjivt9IJvKgcWI4nwWnlfJwvMqaekM8s9N8SDh4bfqeODNXZQVuvEHI/hCUSpLPNx92USuPav3qdPHmnNGCWWFbl6o3ZtRYPDSunidx78dE6iWFbopK3Rz/rjStJ/zVGO3GZx7mpdzT/Oypy3Es2ubWLKpkRdqG3DYDCIxk+FFedx+QRVXzRjZa9boWPmueGDQ1Y/AwMpA9hZkjh4W/52rP+SnZkxmodLe1i5GDcnv9Xtz2m3cfkEV3/3rRt794FBajRhM0+TXy7Yzemg+V3ZzQO5xOTitxNFrM4lssNkMfnJdNcFwjO/9bRN5TjufnHN6r495/r29fPXPtZx9+lD++OnZFLgdFOc7+fbV07hrwXj+sGIXj67czV/X7WPBpHK+OH8sY4Z5ePDNXfzpX7vxh6JcPnU4dy0Yx7RRh0+GXXfWaB58cyfXnz06pXk1lp/+YzOH/CEe+czsQREUDCS7zWBceSHjygu55sz4dbGYyc5mH+v3thGMRJlQUciEikK8/axv647NZnBGij8LwzASNRV5x3VyimfXGRR1CzI4ZCtjgGmaLwMvZ+vfP5VZB/QHfSGGF2fW2eegL8TkEZmdfT/ZbDaDaaOKeL8+sz7WvmCE7Y2dfHRa+gfQ/VVS4ObGWadx46zTaA+EWbq5kdc2HsDrcnD9zNHMPH1oRsGK3Wbwb9Uj+dO/dtPWFc8wpePF2gZmnj404xaicrQxxS5urynkf249k+dr97KzycelUyqYXTksowMqqzgv0I9BPla2Ib+3wCCxnab+UOZzV/a2djEqhW05N80awy8Wb+P3r+/kt586O+XnX1V3iHc/aOU7V0/NuQYBDruN+26soSsc5Z7n15PvtHNd4ozxsf68eg9fe3Ydc6pKeOi2mcdli8sK3Xzt8niG79GVdTy0fBfX/WYlDptBzDS5asZI7pw/jgmJLnFH+vpHJ/GPjfv51osbeOT22Sm95qyrb+Wxtz9g4bmV/c645wqbzWBceQHjylMPnrLNSNSgiViyFhhI9pQWxAODFl8w88DAnzsZA4AZo4fwxxV1GWVJNjS0EzOhenR239yK8pxcXTOKq2tG9X3nFFxdM5I/rNjFq+v38++zUs+kWPUE37l66oCsQw7zuh3cck7vZ4VTYRgG+U57vzIG1mN721de4HYw1OOk/pA/43+n/lDXUWene+J1O/jUnNO5f9l2djX7Uk7l/2bZdoZ5XdxwdmbZwmxzOWz8+paz+MyiVdz9zFrynPbjtiI99vZuvvnceuaOL+X3n5qZzBh1pzjfyV0LxnP7BVU8+c4e9rV1ccs5PTkVGwAAIABJREFUp/e6Pa2s0M1XL53At1/ayKsb9nN5HydJojGT//38ekoL3Hz1IxPS+4ZFJKty6/SJDIhhiZHkRxaKpiMSjdHqD+dUYFA9egihaIwt+9MfGLeuvhWIt7z7MKkeXUxliYcX1u5N63EvrW3AZpCVDIqkLt/Vz8Ag1HfGAOJZg0wzBv5QhIO+UMqZp4XnVeK023jgzZ0p3X/TvnaWbmni0+dV9nqwPNjlOe08cOtMzjptKF9+8j0WbzqQvO3hFbv45nPrWTCpnAdu7T0oOJLH5eD2C6r45sempNQQ41NzTmfS8EK++9dN+EO9F2w/ueoD1ta38c0rJlOUl1n3JhHJDgUGpyDrgL6lM7PAwOpJXFKQS4FB/KB+beIgPx3v721jRHF8f+aHiWEYXFUzird2tNDY3nsrVotpmry4toHzx5VSVti/PvxyYuU77XSFUu+CdaxkxxVX728To4fms+dgZhmDhsRU69FDUwsMygrdXHfWaJ5ZU39cl6vu/O71HXhddm49tzKj9Q0mHpeDP3x6FlNGFvGFx95lxfZmfv/GDr710kYum1rBbz95dsYdxlLhsNv47sensbe1q9ep9S2dQX7yyhbmnDGMq2v613BDRE4+BQanoMNbiTILDKxMQy5lDEYPzWeox5lRncG6+jamp7DVIRddNWMkpgkvrduX0v3X1rfxwUH/cUXHMvjkOW396kqUSo0BxP+26g91kUnr6z2H0gsMAP5jbhXhaIxHVtb1/twH/by0bh+fOOc0ij0fjrPWRXlOFn16NlUlXm774zv84OXNXFk9gl994qyMG0mkY1blMK49cxQPvLGLXc2+bu/z41c24wtG+O7V0z6Uw59EPuwUGJyCivKc2G0GB319n3HrTkvicbkUGBiGwfTRQ9LOGLR1hdnV7Mt6fcGJMq48PlXzxdrUthO9WNuAy27jsqnDT/DKpL8GaitRX2ehRw/1EIzEaM4gA7k3ERiMGpJ6R6Azygr4yJQKHlm5G18vMwgeeHMnNgM+c0FqbT5zxVCviz999hwmDS/ipllj+PmNNQPWRjUVX79iEm6HjW+9uOG4YHDN7oP8eXU9n7mgivHdFDGLyOCnwOAUZLMZDPW4Mt5KZGUMSry5tZVkxuhitjV2Jg94UrFhbzzDML2b4VofFlfPGMXa+rYezwBaojGTv65r4KKJZWl3MZKTL76VqB/tSsPR5GCn3lhn+zMpQN7b2oXTblCe5ra0Oy4cS1tXmD+v3tPt7c2dQZ5atYdrzhyVcYOFways0M1LX7qAH11XfdI7LZUX5vGVSyfw+tYm/rHxcK1DJBrjnuc3MKI4L+2BbCIyeCgwOEWVFrhOqa1EANNHFRONmWzcl/p2orWJrUfVH9KtRABXzhiBYcSzAb15Z9dBGjuC/R7UJydHXn+7EoWiKe1ZHzMs85al9Ye6GDkkP+2WrGefPpRZlUN58M1dRKLH11EsequOUDTGHReO7ebR0l8Lzz2diRWFfOeljcng85GVu9m0r517r5xyQvr2i8jJocDgFDXM68q4K5GVaRiaY/t2ZyQGMK1Lo87g/b2tjBmWz9AcC4LS8f/au/cguc7yzuO/p890T/fMaKQZSdZtZLBBgC/IxkjYEGJPAsE22bVDSLYgqcULqXWRQGW3stkNxFWhEspVqWQ3u5vlsnERb8FWshSVkLKymDUmQVySGIsAkjDmImSwZiTL9lw00nT39O3dP/qcVo+mZ6ZvM315v58qlWdOt3rOlI+6+9fv87zPnq0p3XrNuB45Pr1mnfiR42c1lAj0puuaH0ePzZOKBy33GAzVscNNtKPQmWZWDObSTc/CuP/2l2l6PqPPnVzeH3NpqaBP/uOPdef1u3tqP/leMhDE9Af33qDp+Yw+dvSUnl/I6k8e/4Fuf8VO3XUjZYZALyMYeGp8OKGZS831GMwu5rRtKN5zw4J2jSZ11ZbBhoLBiakLOrivf8uIIvfevE+nX1jUU2cXat6eK5T0+e+c05uv27XmvvboHi33GOSL6zYeS+X5AuPDiaZWDKKpx81406uu0st2DuvPvnx6WaD9P19/VgvZgt47yWrBRrr12u36hZv36s++fFq/9ZnjyhVK+v17bqDhGOhxvfXODm2zY2SwpVKiXisjihyc2FaZS7CemUtLmprL9G3jcbW7b9yteGB6ZJUm5K+dekHz6TxlRD2k1R6DekuJpMs7EzViqVDU+YWlyvTkRsVipvtvv1bfPbegfzg1U3nMT3zttN7wsu26eX//B/pO+923XqfEQExfO/Wi3nvHtXUPnQPQvQgGnhofTuhitqBcofF9zmcWl7S9Z4PBVp1+cVEXs/l173uy0njc/8Fg21BCd7ziKh05flbF0spyor89fk5bU3Hd/oqdHTg7NKPlHoN8se5hWeVg0Fgp0bn58uyMfQ1sVXqlX3jNPu3cMqg/+8qPJEmPfOuszi8s6b13sFqwGa4aTer377lBP31gh37jZ17e6dMB0AYEA09Fn/jPpRtfNZhdzGlsqHeDgXPSd6Zrl8xUi2Ye3NjHjcfV7r15r84vLOnJZ2aXHc/kivrCU8/p7ht3b8pe6WiPVKK1HoNMrr5SIqm8Zel0g7MMpipblTYfDAYHAr3np67RV3/4ok5OXdD//MqPdMPeUf30gR1NPyYa8/bXTuh//9qtGzpcDcDm4VXeU9GQsxeb6DOYXcz11NTjagcnogbk9cuJTkxf0LU7hzWa7K0m62a9+bpdGk4EOnJ8eTnR33/veS3migw16zGpeKB80SlfY9eeetTbYyBJ+8dSWiqU9EIDzyfT8+UVhkaGm9XyK7dereFEoN/4y3/W6RcW9euTL6POHQCaRDDw1Hg4g6DRnYlKJae5dL5newzGhxOaGEvV1YB8Ymq+r7cpvVIqEejOG3br0ZPPaalw+ZPmI8entXPLoG67dnsHzw6Nit7UN7tqkMkXlay7lKjcJ3Bmtv4+g+m5jGKmlucMbE3F9Su3Xq0zsxm9ZPuQ7r5xT0uPBwA+Ixh4Knpj32gwuJDJq1hylWDRi26a2KYT02uvGJxfyOr8wlJfDzar5Z6b9+pCJq+v/OBFSdJCNq8vff8F/fyr9yhocK95dFb0pr7ZPoNsrqihBpqPpcaGnE3NZbR7NNmWqb3veeM12jI4oN/82QNcpwDQAoKBpy6XEjUWDGYqU497c8VAKjcTn5nNrBmKov6CmzxoPK72Uy/foe3DicruRF946rxyhZLuuZkyol5TWTHItVBKVOeKwb5KMKh/xWBqPtP0jkRX2rM1pW/93s/p7a+daMvjAYCvCAaeGk3GFcRMs4uN9RhEzcq9WkokqbL9aLTrUC0npuYVM+n6vaObdVpdIR7E9PMH9+iLT5/XpaWCjhw/q4mxlF7D1o89JwoGza4YNNJjMJQY0PYGZxlMz2Va2pHoSr02VwUAuhHPpJ6KxUxjQ41PP46mHvdyMIh2GTpxZvVyohPTF3Tgqi1eDvO69+a9yuZL+vSTz+ofTr2of3nTXpo5e1AqUX56byYYlEpO2XypoZ1mJsaH6i4lKhRLem4h29KORACA9iMYeGzHSKLhUqIoSPTqrkRSebXk2p3DOrHKioFzTienLngx2KyWW64e08RYSn/82PdVLDmGmvWo6E19M0POsmHzeb2lRFJjQ86eW8iqWHIt70gEAGgvgoHHxocbXzGISo96ecVAkg7u27rqlqXT8xnNLOa8DQZmpntu2qulQkkHrhrRq3Zv6fQpoQmt7EoUhYl6S4mkcjCYnsuoVGNA3pWmoxkGBAMA6CoEA481EwxmFnMaGRzQ4EBvD7M5OLFN5xeWdH4hu+K2qPHYtx2Jqt178z5J0j2UEfWsVAu7EkV/p7EVgyHlivXNMmjHcDMAQPsRDDy2Y2Sw4QFns4u5nl8tkKSb9od9BjXmGZyYvqB4YLpuj7+flL9y9xb99a+/Xv/29ms7fSpoUqqVUqJ8cysGUn1blk7Pl4PBXoIBAHQVgoHHxocTupgtKFeofzvDfgkG1+/ZqiBmOlmjnOjE1LxeuXtLz6+KtOq1LxlvqPkU3aWVXYky4RanjQSD/Q1sWTo9l9HOLYNcXwDQZQgGHove4EdbkNZj5lKup2cYRFKJQAeuGtHxK1YMnHM6MXVBr97nbxkR+kM04KypHoMmS4mk+oLB1HyaMiIA6EIEA49dHnJWfzlRv6wYSOV5BienL8i5y82SP5lJ62K24G3jMfpHK6VEUTBo5BP9ZDzQjpFBnZmto5RoLsOORADQhQgGHhsfHpSkuhuQnXPlYNDDW5VWOzixTbOLuWWfcB4PS4sIBuh18SCmgZg1WUpUkNRYKZFU35alpZLT2fksOxIBQBciGHgs+uS/3mBwaamgXLHUF6VEUu0JyCenLigxENMrdvnbeIz+kYoHm7YrkRQFg7VXDF64tKRcsaQJSokAoOsQDDx2uZSovmAQBYhopaHXvXL3FiWCWGWVQCrvSHT9nlHFA/5poPclE0GTcwzKzcdDDQeDIU3Prz3LIFpRiHoSAADdg3c/HhtNxhXErDK0bD0zlWAQ38jT2jSDA4FetWdLZW5BseT0nekLuokyIvSJVDzYtB4DqbxikC86PX9x9eeUaKtSSokAoPsQDDwWi5nGhuofcjZ7qb9WDKSwAXnqgkolp9MvXFI6V/R6sBn6S7OlRM3MMZCk/ePlVYAza5QTRaVG7EoEAN2HYOC5HSOJhkuJ+qXHQJIO7tumi0sFPTOzWBl2RuMx+kUyESiTr39OSSSTKyqImeJBY1Ov6xlyNj2X0dhQXMODAw2fFwBgYxEMPDc+XP+KweVSoj4KBuEE5JNTF3Rial5DiUAv2znS4bMC2iMVjynbZClRKh7IrLFgEK0CTM2uvjPR9HyGMiIA6FIEA881EgxmF5c0OBBruCGxm71854hS8UDHp+Z1YvqCbtxbnogM9INkk6VE6VyxqanEyXignVsG19yydGouQxkRAHQpgoHndowM1j3gbHYxr+3DiYY/RexmA0FMN+wd1Tefndd3zy7o1ZQRoY+00mOQSjT38jAxltLUfO1SIudcONyMHYkAoBsRDDw3PpzQxWxBucL6dcizi0t9M9ys2sGJbTp+Zl5LhRL9BegrqXiz25UWNRRvrgdg/9iQzqxSSjSXziuTL7JiAABdimDguahfYC69fjnR7GKur3YkilSHgYPsSIQ+0vQcg3xRySZLBifGUjo7n1GxxiyDyo5E9BgAQFciGHguGnI2U8fORDOLub7akSgSBYMtyQG9ZJwSB/SPVuYYpOLNlhINqVByOr+QXXHbdGW4GcEAALoRwcBz0QrATB1DzsorBv0XDF66fVhbBgd0cGKrYjQeo49EPQbOrT6JuJZsuCtRMy5vWbqynCgabjaxjQAOAN2IjaQ9F73RX29nomy+qHSu2JfBIBYzPfiLr9aerclOnwrQVqlEoJKTcsWSBgfqf6OfyRWVGms1GKT1umvGl902NZfRyOCARlO89ABAN+LZ2XP1lhLN9OFws2r33LS306cAtF205Wg211gwaHa7Uknau231FYOpuYwmxlJ9tbMZAPQTSok8N5qMK4jZuqVEs5f6b7gZ0O+icqBGtyxtpZQoGQ+0a3RQZ2ZXblk6Pc8MAwDoZgQDz8ViprGh9YecRcFhex9uVwr0q2gWQaPBIJMvtjTIcGJsaJUVgzQ7EgFAFyMYQDtGEuuWEkXBoR+3KwX6VWXFoIGdiZxz4a5ErQSDlUPOFrJ5XcwW2JEIALoYwQAaH05UeghWczkYsGIA9IpkE6VES4WSnFPTcwykcjA4N59VoXh5cGK0Vek+diQCgK5FMIDGh+spJcppIGYaTdKvDvSK6FP/RoacRfdtbcUgnGVw8XLvUlRaRCkRAHQvggG0Y2RQM5fWbz4eG06wmwjQQ1KJxkuJ0rl2BIPym//qBuTpcOoxpUQA0L0IBtD4cEIL2YJyhdKq9+nXqcdAP2tmV6LovqkWSon2j5XLhaobkKfnM0rGYzyPAEAXIxig0jcwl169nGh2cYn+AqDHNNNjkGnDisGebUmZlXchikzNZbR3GzMMAKCbtRQMzOyXzewpMyuZ2aErbvugmZ0ys++b2Z1Vx+8Kj50ysw+08vPRHvUMOZtdzBEMgB4TferfVI9BCysGgwOBdm1JrlgxmBij8RgAulmrKwbfkfSLkr5SfdDMrpf0Dkk3SLpL0sfMLDCzQNJHJd0t6XpJ7wzviw6KtiBda8jZLKVEQM9pZrvSTBuaj6Vwy9K56h4DhpsBQLdraYsZ59zTkmotDd8r6dPOuSVJz5jZKUmvC2875Zw7Hf69T4f3/W4r54HWRCsBq+1MlC+WtJAtMMMA6DGtlBIl2xAMvvGTOUlSOlfQzGKOxmMA6HIbtffkPklPVH0/FR6TpDNXHL+11gOY2f2S7pekXbt26ejRo+0/S0iSLuWcJOnr3/6uts7/cMXt89lyU/LM2R/r6NHpTT03YC3pdFqzs7OdPo22KBaLG/I8NxCTfvCjH+vowNm67v/NswVJ0slv/bNe/GHzi8rFizmdnc/r7/7+SzqfLj/HLJz7sY4enWr6MQGgm9XzmrRRz/Xtsm4wMLMvStpd46YHnHOPrPbXahxzql265Go9gHPuIUkPSdKhQ4fc5OTkeqeKJpVKTsHRz2tsz35NTr5qxe1Pn1uQjn5Vt73mRk2+ek8HzhCo7dixYxodHe30abTFwsKCDh8+3PbHHf7yF7Rz915NTt5Y1/2fe/JZ6cRJ3fHG12tvC6U/54ef1d/+6KRecfOtCl64JH3tmH7uDbfo0EvHm35MAOhm9bwmbdRzfbusGwycc29u4nGnJO2v+n5CUvRx1WrH0SGxmGlsaPUhZ0w9BnpXKh40t11py6VEl7csZbgZAPSGjdqu9Iikd5jZoJldI+mApCclHZN0wMyuMbOEyg3KRzboHNCAHSOJVXclmgmDAc3HQO9JJQJl8qvPKLlSO+YYSJcHmU3NpTU9n1E8MF21JdnSYwIANlZLPQZm9jZJ/0PSTkmfM7NvO+fudM49ZWafUbmpuCDpfc65Yvh33i/pMUmBpIedc0+19BugLcaHE5UAcKXZcCoyKwZA70nGg4Z2JcrmijKTBgda+9xoz9ZUOMsgo+m5jPZsTSmIMcMAALpZq7sS/Y2kv1nltgclPVjj+KOSHm3l56L9xocTeursQs3bZhdzMpO2DREMgF6TiscammOQyReVigctDyJLDMS0ezSpM3NpTc2l2aoUAHoAk48hqVwmNHOp9hyDmcWcxoYSfNoH9KByKVHjwaAd9o8NlVcM5jNsVQoAPYBgAEnS9pFBLWQLyhVW1iIz9RjoXakGS4kyuVLLMwwiE2MpPfPiop6/uETjMQD0AIIBJF3uH5hLr+wzmCEYAD0rGQ8aLCUqtNx4HJkYS+mFi0tyTpQSAUAPIBhA0uUdh2rtTDS7mGNHIqBHNbxdaa59pUTRlqVXfg0A6E4EA0gqlxJJqjnLgFIioHc11WPQxhWDWl8DALoTwQCSLpcSzSwub0Aulpzm0gQDoFc13GOQL7V9xSBm0u6tzDAAgG5HMICk1UuJ5tM5OccMA6BXJeOBlgollUqurvtn21hKtGdbshwKRpOKB7zcAEC345kakqStqbiCmK0oJYq+JxgAvSkqC8oW6ls1aGcpUTyIac/WFDsSAUCPaGnAGfpHLGYaG0qsKCWKgsH24cFOnBaAFkWf/mdyRQ0l1n/Kz+SLbduuVJJ+7Y3X8MECAPQIggEqykPOWDEA+kklGNTZgNzOXYkk6T1vvKZtjwUA2FiUEqFi+0hiRSnRTLRiMEIwAHpRMiolqiMYOOfCUiJeGgDARzz7o2J8OFEJApEoKIwNEQyAXnS5lGjlVPMr5YtOxZKrq+QIANB/CAaoKJcSrewx2JIcUGKASwXoRY2UEkX3aWePAQCgd/BuDxXbRwa1kC0oV7j8yeIMU4+BnhaVBdUTDKJyo3b2GAAAegfBABVRg/Fc+nI50eziEo3HQA8bHKi/xyAahEaPAQD4iWd/VNQacjZzKadxtioFelaqgebjDCsGAOA1ggEqto+UA0D1zkSzlBIBPa16jsF60jl6DADAZwQDVEQlQ9GQM+ec5tI5jbNVKdCzGmk+jlYV2JUIAPxEMEDFlaVEC9mC8kXHigHQw6JSorp2JcpRSgQAPiMYoGJrKq4gZpVSIqYeA71vMNxqOFtHKVGlx4DmYwDwEs/+qIjFTGNDiUop0Wz4X4IB0LvMTKl4wBwDAMC6CAZYpjzkrLxSEP13O7sSAT0tlagvGDDHAAD8RjDAMttHEitKicaG4508JQAtSsUDZXKlde+XrswxIBgAgI8IBlhmfDihmTAQRP9lxQDobcl4rKEBZ8kBggEA+IhggGXKpURRj0FOqXjAp4dAj2uklCgZjykWs004KwBAtyEYYJntI4NayBaUK5Q0t5ij8RjoA+VSovqaj+kvAAB/EQywTBQE5tI5zSzmtJ3hZkDPS9a7K1GOYAAAPiMYYJnqIWezrBgAfSEVD+rrMcgXlaR0EAC8RTDAMttHyo3Gs4sEA6BfNNJjwIoBAPiLYIBloiAws7ikmcWlygoCgN5Vb49BmlIiAPAawQDLREFgai6jbL6kcbYqBXpe3T0G+SK7kAGAxwgGWGZrKq4gZjr1/CVJYsUA6AOpRJ09BqwYAIDXCAZYJhYzjQ0l9IPzFyWJHgOgD6TigfJFp3xx7enHWVYMAMBrBAOssH04oR+9UF4xGGe7UqDnRasA660aMMcAAPxGMMAK20cSyubLnyxSSgT0vmgL0vX6DDK5opIEAwDwFsEAK1SXD1FKBPS+yopBbr1SohKlRADgMYIBVohWCRJBTCODAx0+GwCtioLBWisGhWJJuWKJUiIA8BjBACtEQ87GhxMysw6fDYBWpRLlp/q1gkF0G8EAAPxFMMAKUfnQGGVEQF+I+gbWGnJWCQaUEgGAtwgGWCEqJaLxGOgP9exKFPUfsGIAAP4iGGCF6lIiAL0vVceuRKwYAAAIBlghCgQEA6A/pBopJWLFAAC8RTDACjvCoWY7GG4G9IV6diWKQgNzDADAX+xFiRW2DSX0R790ULcf2NnpUwHQBtGAs7V6DDL5giRKiQDAZwQD1PSvDu3v9CkAaJO6SoloPgYA71FKBAB9Lh7ENBCzupqPh1gxAABvEQwAwAOpeFBXMKDHAAD81VIwMLM/NrPvmdkJM/sbM9tWddsHzeyUmX3fzO6sOn5XeOyUmX2glZ8PAKhPMhGsM8eA7UoBwHetrhg8LulG59xBST+Q9EFJMrPrJb1D0g2S7pL0MTMLzCyQ9FFJd0u6XtI7w/sCADZQKh7UtV1pcoCFZADwVUuvAM65LzjnCuG3T0iaCL++V9KnnXNLzrlnJJ2S9Lrwzynn3GnnXE7Sp8P7AgA20HqlROlcUYkgpoGAYAAAvmrnK8B7JH0+/HqfpDNVt02Fx1Y7DgDYQOVSotKqt2fzRSXjhAIA8Nm625Wa2Rcl7a5x0wPOuUfC+zwgqSDpL6K/VuP+TrWDiFvl594v6X5J2rVrl44ePbreqQLwTDqd1uzsbKdPoy2KxeKGPs8tLWb03CWt+jNOP7ukwG3sOQBAP6vnNWmjn+tbtW4wcM69ea3bzew+Sf9C0pucc9Gb/ClJ1RvhT0g6G3692vErf+5Dkh6SpEOHDrnJycn1ThWAZ44dO6bR0dFOn0ZbLCws6PDhwxv2+J985knNLOY0OfnGmrd/9ty3tC17QTzXAkBz6nlN2ujn+la1uivRXZJ+R9I9zrl01U1HJL3DzAbN7BpJByQ9KemYpANmdo2ZJVRuUD7SyjkAANaXrKP5mK1KAcBvrU4+/oikQUmPm5kkPeGce69z7ikz+4yk76pcYvQ+51xRkszs/ZIekxRIetg591SL5wAAWMd6zcfZfFEpegwAwGstBQPn3MvXuO1BSQ/WOP6opEdb+bkAgMasN8cgkysywwAAPMfHQwDggfXmGKRzRaUoJQIArxEMAMADUSnR5T0ilsvSYwAA3iMYAIAHUolAJSflirVnGWTyRQ1RSgQAXiMYAIAHotWAbG71YEApEQD4jWAAAB6I3vSvtjNRJldUkhUDAPAawQAAPJBKlJ/uawWDUslpqVBixQAAPEcwAAAPVFYMauxMlC0Ul90HAOAnggEAeCC5RilROgwLzDEAAL8RDADAA9FqQK0hZ9EqAtuVAoDfCAYA4IFoNaBmKVEYFtiuFAD8RjAAAA+stStRdIweAwDwG8EAADywVo9BtIpAMAAAvxEMAMADUSlRzR6D8BhzDADAbwQDAPDAmtuVUkoEABDBAAC8UNd2pQQDAPAawQAAPBDETImB2NrNx5QSAYDXCAYA4IlUPFC2RilRhgFnAAARDADAG6l4UHPFgB4DAIBEMAAAb6QSgTL50orjmXxRAzFTPOAlAQB8xqsAAHgiGQ9q7kqUyZVYLQAAEAwAwBepeGzVOQbMMAAAEAwAwBPlUqJaKwYFVgwAAAQDAPBFarVSonxRQ6wYAID3CAYA4IlkPFillKhUGYAGAPAXwQAAPLHqdqW5IqVEAACCAQD4YtUeg3yR4WYAAIIBAPhirR4DVgwAAAQDAPBEMh5oqVBSqeSWHc/kivQYAAAIBgDgi6hcKFtYvmpQLiXi5QAAfMcrAQB4IioXurKcKJMraigx0IlTAgB0EYIBAHiiEgyqGpCdc+XJx5QSAYD3CAYA4IlkVEqUL1WOLRXKX9N8DAAgGACAJ6I3/9VDzqKyolSclwMA8B2vBADgiVqlRNHXzDEAABAMAMAT0c5D1c3H6fBregwAAAQDAPDE4MDKFYOorIgeAwAAwQAAPFGZY1CjlIjtSgEABAMA8EStOQaV5mMGnAGA93glAABPrNV8TI8BAIBgAACeiEqJ6DEAANRCMAAATwwOlJ/yszVLiQgnyI4mAAAMV0lEQVQGAOA7ggEAeMLMlIoHy1YM0jlWDAAAZQQDAPBIKhHQYwAAqIlgAAAeScUDZXKlyvfZfFExu1xmBADwF68EAOCRZDy2fI5BrqhUPJCZdfCsAADdgGAAAB6pVUpE4zEAQCIYAIBXyqVEy4MB/QUAAKnFYGBmHzazE2b2bTP7gpntDY+bmf2pmZ0Kb7+l6u/cZ2Y/DP/c1+ovAACoX/KKXYmy+SI7EgEAJLW+YvDHzrmDzrmbJf1fSb8XHr9b0oHwz/2SPi5JZjYu6UOSbpX0OkkfMrOxFs8BAFCnVDxY1mOQzlFKBAAoaykYOOcWqr4dluTCr++V9ClX9oSkbWa2R9Kdkh53zs065+YkPS7prlbOAQBQvxU9BjlKiQAAZQOtPoCZPSjpXZIuSPqZ8PA+SWeq7jYVHlvtOABgE1zZY5DNFzU2nOjgGQEAusW6wcDMvihpd42bHnDOPeKce0DSA2b2QUnvV7lUqNa+d26N47V+7v0qlyFp165dOnr06HqnCsAz6XRas7OznT6NtigWi5vyPDfz/JIuZgqVn/XifFrxfIznWABoUT2vSZv1XN+sdYOBc+7NdT7WX0r6nMrBYErS/qrbJiSdDY9PXnH86Co/9yFJD0nSoUOH3OTkZK27AfDYsWPHNDo62unTaIuFhQUdPnx4w3/O17Pf09Gp04qeU2NP/r2u3juuycmbN/xnA0A/q+c1abOe65vV6q5EB6q+vUfS98Kvj0h6V7g70W2SLjjnzkl6TNJbzGwsbDp+S3gMALAJUvFA+aJTvliefpzJlZSk+RgAoNZ7DP7QzF4pqSTpJ5LeGx5/VNJbJZ2SlJb0bklyzs2a2YclHQvv9wfOuf6oAwCAHhBtTZrNFxUPYmxXCgCoaCkYOOfevspxJ+l9q9z2sKSHW/m5AIDmRKsDmXxRI4MDSucKBAMAgCQmHwOAVyorBrmScsWSSk7MMQAASCIYAIBXomCQyReVzZWWHQMA+I1gAAAeSSXKT/uZfLEy6IwVAwCARDAAAK9EU44zuapgwIoBAEAEAwDwSvWuRNEE5CTBAAAgggEAeCVVtStRJl9YdgwA4DeCAQB4JFVdSkTzMQCgCsEAADxSvStR1GMwxIoBAEAEAwDwSjTgLFsVDOgxAABIBAMA8Ep1KVE2x3alAIDLCAYA4JF4ENNAzJbPMWDFAAAgggEAeCcVDwgGAIAVCAYA4JlkIlA2X1I6LCUaHOClAABAMAAA76TigbL5orL5opLxmGIx6/QpAQC6AMEAADyTigfhHIOihhIDnT4dAECXIBgAgGeSics9BvQXAAAiBAMA8EwqHqsEg2SclwEAQBmvCADgmUqPQa7IDAMAQAXBAAA8k4x6DCglAgBUIRgAgGeiOQbpXFFJggEAIEQwAADPlOcYlLcrZcUAABAhGACAZ1JVpURD9BgAAEIEAwDwTHUpEc3HAIAIwQAAPJNKBCo56UImT48BAKCCYAAAnonCQK5QoscAAFBBMAAAz1SHAYIBACBCMAAAz6QSsaqvCQYAgDKCAQB4ZtmKAcEAABAiGACAZ5KUEgEAaiAYAIBn6DEAANRCMAAAz1SXDyUpJQIAhAgGAOAZVgwAALUQDADAM/QYAABqIRgAgGeqS4nYlQgAECEYAIBnKCUCANRCMAAAzySZYwAAqIFgAACeCWKmxED56Z8VAwBAhGAAAB6KAkGSYAAACBEMAMBDqXigxEBMQcw6fSoAgC5BMAAAD6USAWVEAIBlCAYA4KFknGAAAFhuoNMnAADYfKl4TEvsSAQAqEIwAAAPpRKBsvlSp08DANBFCAYA4KG3vWZCl7L5Tp8GAKCLEAwAwEO/9NqJTp8CAKDL0HwMAAAAgGAAAAAAoE3BwMx+28ycme0Ivzcz+1MzO2VmJ8zslqr73mdmPwz/3NeOnw8AAACgNS33GJjZfkk/J+nZqsN3SzoQ/rlV0scl3Wpm45I+JOmQJCfpn83siHNurtXzAAAAANC8dqwY/FdJ/0nlN/qReyV9ypU9IWmbme2RdKekx51zs2EYeFzSXW04BwAAAAAtaCkYmNk9kqadc8evuGmfpDNV30+Fx1Y7DgAAAKCD1i0lMrMvStpd46YHJP2upLfU+ms1jrk1jtf6ufdLul+Sdu3apaNHj653qgA8k06nNTs72+nTaItiscjzHAD0sHpek7r9uX7dYOCce3Ot42b2aknXSDpuZpI0IembZvY6lVcC9lfdfULS2fD45BXHj67ycx+S9JAkHTp0yE1OTta6GwCPHTt2TKOjo50+jbZYWFjQ4cOHO30aAIAm1fOa1O3P9U2XEjnnTjrnrnLOvdQ591KV3/Tf4px7TtIRSe8Kdye6TdIF59w5SY9JeouZjZnZmMqrDY+1/msAAAAAaMVGTT5+VNJbJZ2SlJb0bklyzs2a2YclHQvv9wfOuf6oAwAAAAB6WNuCQbhqEH3tJL1vlfs9LOnhdv1cAAAAAK1j8jEAAAAAggEAAAAAggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAAJBk5ZED3c3MXpD0k06fBzpmh6QXO30S6HpcJ1gP1wjqwXWCevTydfIS59zOWjf0RDCA38zsG865Q50+D3Q3rhOsh2sE9eA6QT369TqhlAgAAAAAwQAAAAAAwQC94aFOnwB6AtcJ1sM1gnpwnaAefXmd0GMAAAAAgBUDAAAAAAQDdICZ7TezL5nZ02b2lJn9u/D4uJk9bmY/DP87Fh43M/tTMztlZifM7JYrHm/UzKbN7COd+H2wMdp5nZjZH4WP8XR4H+vU74X2aeIaeZWZ/ZOZLZnZb6/3OOgP7bpOwtu2mdlfmdn3wsd7fSd+J7RfE9fJr4avNSfM7B/N7Kaqx7rLzL4fvh59oFO/UzMIBuiEgqT/4Jy7TtJtkt5nZtdL+oCkv3POHZD0d+H3knS3pAPhn/slffyKx/uwpC9vxoljU7XlOjGzN0j6KUkHJd0o6bCkOzbx98DGafQamZX0m5L+c52Pg/7QrutEkv67pP/nnHuVpJskPb3RJ49N0+h18oykO5xzB1V+H/KQJJlZIOmjKr8mXS/pnb30fEIwwKZzzp1zzn0z/Pqiyk+s+yTdK+mT4d0+KekXwq/vlfQpV/aEpG1mtkeSzOy1knZJ+sIm/grYBG28TpykpKSEpEFJcUnnN+0XwYZp9Bpxzj3vnDsmKV/n46APtOs6MbNRSbdL+vPwfjnn3Pym/BLYcE1cJ//onJsLjz8haSL8+nWSTjnnTjvncpI+HT5GTyAYoKPM7KWSXiPp65J2OefOSeV/oJKuCu+2T9KZqr82JWmfmcUk/RdJ/3Gzzhed0cp14pz7J0lfknQu/POYc45P+fpMnddIo4+DPtPidXKtpBck/S8z+5aZfcLMhjfwdNEhTVwnvybp8+HXNV+LNupc241ggI4xsxFJfy3p3zvnFta6a41jTtJvSHrUOXemxu3oE61eJ2b2cknXqfxpzj5JP2tmt7f/TNEpDVwjm/I46E5t+P87IOkWSR93zr1G0qIul5WgTzR6nZjZz6gcDH4nOlTjbj2zBSjBAB1hZnGV/+H9hXPus+Hh81UlQnskPR8en5K0v+qvT0g6K+n1kt5vZj9WuRb0XWb2h5tw+tgkbbpO3ibpCefcJefcJZU/1bltM84fG6/Ba6TRx0GfaNN1MiVpyjkXrSb9lcpBAX2i0evEzA5K+oSke51zM+Hh1V6LegLBAJsu3BHmzyU97Zz7k6qbjki6L/z6PkmPVB1/V7jrzG2SLoS1gL/qnLvaOfdSSb+tcn05n970iXZdJ5KelXSHmQ2ET/p3iIbBvtDENdLo46APtOs6cc49J+mMmb0yPPQmSd9t8+miQxq9TszsakmflfSvnXM/qLr/MUkHzOwaM0tIekf4GD2BAWfYdGb2RklflXRSUik8/Lsq1/J9RtLVKr+Z+2Xn3Gz4j/Ujku6SlJb0bufcN654zH8j6ZBz7v2b8ktgw7XrOgl3iPiYyk2DTuUdRX5rU38ZbIgmrpHdkr4haTS8/yWVdw05WOtxnHOPbtKvgg3UruvEObdgZjer/AlxQtJplZ9n5oSe18R18glJb5f0k/C+BefcofCx3irpv0kKJD3snHtw036RFhEMAAAAAFBKBAAAAIBgAAAAAEAEAwAAAAAiGAAAAAAQwQAAAACACAYAAAAARDAAAAAAIIIBAAAAAEn/H9o+UmrIF9dnAAAAAElFTkSuQmCC\n", 50 | "text/plain": [ 51 | "
" 52 | ] 53 | }, 54 | "metadata": { 55 | "needs_background": "light" 56 | }, 57 | "output_type": "display_data" 58 | } 59 | ], 60 | "source": [ 61 | "Cprofit = Cprofit.pct_change()\n", 62 | "fig, ax = plt.subplots(figsize = (13, 8))\n", 63 | "ax.plot(Cprofit, label = 'Corporate Profits After Tax ')\n", 64 | "#ax.plot(GDP_growth, label = 'GDP Growth')\n", 65 | "ax.legend()\n", 66 | "alp = .3\n", 67 | "ax.axvspan('2007-12-1','2009-6-1',color = 'gray', alpha = alp, zorder = -1)\n", 68 | "ax.axvspan('2020-3-1','2020-6-1',color = 'gray', alpha = alp, zorder = -1)\n", 69 | "ax.yaxis.grid(True) # only horizontal grid\n", 70 | "plt.show()" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": null, 76 | "metadata": {}, 77 | "outputs": [], 78 | "source": [] 79 | } 80 | ], 81 | "metadata": { 82 | "kernelspec": { 83 | "display_name": "Python 3", 84 | "language": "python", 85 | "name": "python3" 86 | }, 87 | "language_info": { 88 | "codemirror_mode": { 89 | "name": "ipython", 90 | "version": 3 91 | }, 92 | "file_extension": ".py", 93 | "mimetype": "text/x-python", 94 | "name": "python", 95 | "nbconvert_exporter": "python", 96 | "pygments_lexer": "ipython3", 97 | "version": "3.7.4" 98 | }, 99 | "toc": { 100 | "base_numbering": 1, 101 | "nav_menu": {}, 102 | "number_sections": true, 103 | "sideBar": true, 104 | "skip_h1_title": false, 105 | "title_cell": "Table of Contents", 106 | "title_sidebar": "Contents", 107 | "toc_cell": true, 108 | "toc_position": {}, 109 | "toc_section_display": true, 110 | "toc_window_display": false 111 | } 112 | }, 113 | "nbformat": 4, 114 | "nbformat_minor": 2 115 | } 116 | -------------------------------------------------------------------------------- /US Recession Shades.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 43, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "import pandas_datareader as pdr\n", 20 | "import matplotlib.pyplot as plt\n", 21 | "import datetime as dt\n", 22 | "import pandas as pd\n", 23 | "from pandas.plotting import register_matplotlib_converters\n", 24 | "register_matplotlib_converters() # Allow matplotlib have access to timestamp \n", 25 | "import matplotlib.ticker as mplticker" 26 | ] 27 | }, 28 | { 29 | "cell_type": "code", 30 | "execution_count": 44, 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "USRec = pd.read_excel('recDates.xlsx')" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 45, 40 | "metadata": {}, 41 | "outputs": [ 42 | { 43 | "data": { 44 | "text/html": [ 45 | "
\n", 46 | "\n", 59 | "\n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | "
PeakTrough
231953-07-01 00:00:001954-05-01 00:00:00
241957-08-01 00:00:001958-04-01 00:00:00
251960-04-01 00:00:001961-02-01 00:00:00
261969-12-01 00:00:001970-11-01 00:00:00
271973-11-01 00:00:001975-03-01 00:00:00
281980-01-01 00:00:001980-07-01 00:00:00
291981-07-01 00:00:001982-11-01 00:00:00
301990-07-01 00:00:001991-03-01 00:00:00
312001-03-01 00:00:002001-11-01 00:00:00
322007-12-01 00:00:002009-06-01 00:00:00
\n", 120 | "
" 121 | ], 122 | "text/plain": [ 123 | " Peak Trough\n", 124 | "23 1953-07-01 00:00:00 1954-05-01 00:00:00\n", 125 | "24 1957-08-01 00:00:00 1958-04-01 00:00:00\n", 126 | "25 1960-04-01 00:00:00 1961-02-01 00:00:00\n", 127 | "26 1969-12-01 00:00:00 1970-11-01 00:00:00\n", 128 | "27 1973-11-01 00:00:00 1975-03-01 00:00:00\n", 129 | "28 1980-01-01 00:00:00 1980-07-01 00:00:00\n", 130 | "29 1981-07-01 00:00:00 1982-11-01 00:00:00\n", 131 | "30 1990-07-01 00:00:00 1991-03-01 00:00:00\n", 132 | "31 2001-03-01 00:00:00 2001-11-01 00:00:00\n", 133 | "32 2007-12-01 00:00:00 2009-06-01 00:00:00" 134 | ] 135 | }, 136 | "execution_count": 45, 137 | "metadata": {}, 138 | "output_type": "execute_result" 139 | } 140 | ], 141 | "source": [ 142 | "USRec = USRec.iloc[23:]; USRec" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": 46, 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [ 151 | "for col in USRec.columns:\n", 152 | " USRec[col] = pd.to_datetime(USRec[col]) " 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "execution_count": 49, 158 | "metadata": {}, 159 | "outputs": [], 160 | "source": [ 161 | "start = dt.datetime(1950, 1, 1)\n", 162 | "end = dt.datetime.today()\n", 163 | "FFR = pdr.data.DataReader('FEDFUNDS', 'fred', start, end)\n", 164 | "#TrWt_DollarIndex = pdr.data.DataReader('FEDFDTWEXBGSUNDS', 'fred', start, end)" 165 | ] 166 | }, 167 | { 168 | "cell_type": "code", 169 | "execution_count": 53, 170 | "metadata": {}, 171 | "outputs": [ 172 | { 173 | "data": { 174 | "text/plain": [ 175 | "FEDFUNDS 19.1\n", 176 | "dtype: float64" 177 | ] 178 | }, 179 | "execution_count": 53, 180 | "metadata": {}, 181 | "output_type": "execute_result" 182 | } 183 | ], 184 | "source": [ 185 | "FFR.max()+1" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 70, 191 | "metadata": { 192 | "scrolled": false 193 | }, 194 | "outputs": [ 195 | { 196 | "data": { 197 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAGrCAYAAAAy4QohAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdeZxcVZ3///fpPZ1OJ+l00oaE0GwiYTFABxBFOiKLwRH9mp+jgw7osEhmHMcZnBm+41dn1Pniw3EcHfxGIYigMAYGQVFRthEFZUmCrGFLSAghIUmnu9PdqV6rzu+Pe29q6drrVtWtqtfz8cgjXVW3bp17q+rW5577OZ9jrLUCAAAAEFVX7gYAAAAAQUOQDAAAACQgSAYAAAASECQDAAAACQiSAQAAgAQEyQAAAEACgmQAyJIxptsYY40xDUVa/zZjzHuLse4c2mCNMUeVsw0AEAQEyQBqghuAjhpjRmL+HVLudmXLGHOTMWYiof1/Wu52SZIx5hJjTNht05Ax5mljzPtzeH7ZTw4AIBFBMoBa8ifW2raYfztL9cI+9T5/PaH9t/mwTr88aq1tkzRH0hpJ64wxc8rcJgDIG0EygJpmjJltjPm+MWaXMeYNY8xXjTH17mP1xphvGGP6jDGvSrogh+deYoz5vTHmP4wx/ZL+2RhzpDHmf4wx+9x13lpoIOn2MH815navMWZHzO1txpirjDHPGGP2G2NuM8a0xDz+ebf9O40xn0pY90pjzCZjzLC7fVdlao+1NiLpR5JmSjraXU/K7TbG/EjSEkk/d3ui/969/3RjzB+MMYNuz3RvIfsJAHJFkAyg1t0saUrSUZJOknSupEvdxy6T9H73/h5Jq3J4riSdJulVSQsk/askI+kaSYdIOlbSoZL+2eftSeYjks6XdLikEyVdIknGmPMlXSXpHDkBbWLKw/clXWGtnSXpeEn/k+mF3JOET0qalPSad7dSbLe19hOStivay/91Y8wiSb+U9FVJHW4bf2KMmZ/7pgNAfgiSAdSSn7o9k4PGmJ8aY7okvU/S31hrD1hr90j6D0kfdZf/iKRvWWtft9b2ywn0JElZPFeSdlprr7XWTllrR621m62191trx621eyV9U9JZObT/qpj29+XwvP+01u50t+HnkpbFbN8PrLXPWWsPaHrAPilpqTGm3Vo7YK19Ms1rnG6MGZQ0Jukbkj7u7hPlsd0fl3SPtfYea23EWnu/pA2SVuawzQBQEIJkALXkg9baOe6/D0o6TFKjpF1e8CnpOjk9v5LT8/l6zPNfi/k703OV8FwZYxYYY9a5qQtDkm6R1JlD+78R0/5cnvdmzN8hSW3u3+m2T5I+LCcwfc0Y81tjzDvSvMZj1to5kuZKulvSmd4DeWz3YZL+v5gTgkFJ75K0MM1zAMBXBMkAatnrksYldcYEn+3W2uPcx3fJSQ3wLMnhuZJkE17vGve+E6217XJ6TE2B23BAUmvM7bfk8Nx02ydr7Xpr7YVyAv+fSro90wqttSOSVkv6hDHmJPfuTNuduJ9el/SjmP06x1o701r7tRy2DQAKQpAMoGZZa3dJuk/Svxtj2o0xde4gMy8V4HZJf22MWWyMmSvpH3N4bjKzJI1IGnTzbj/vw2Y8JWmlMabDGPMWSX+Tw3Nvl3SJMWapMaZV0pe8B4wxTcaYi4wxs621k5KGJIWzWam1dp+kGyR90b0r03bvlnREzO1bJP2JMeY8d/BkizsgcXEO2wYABSFIBlDr/lxSk6RNkgYk3aHoZf21ku6V9LSkJyXdmcNzk/kXSSdL2i9nYFri+vLxI7d92+QE7VmXhbPW/krSt+QMyNus6QPzPiFpm5si8Wk5PcDZ+pac4P1EZd7uayR9wU2tuMpa+7qkCyX9b0l75fQsf178ZgEoIWNt4lUuAAAAoLZxVg4AAAAkIEgGAAAAEhAkAwAAAAkyBsnGmEONMb8xxrxgjHneGPNZ9/4OY8z9xphX3P/npnj+xe4yrxhjLvZ7AwAAAAC/ZRy4Z4xZKGmhtfZJY8wsSRslfVDOtKb91tqvGWP+UdJca+0/JDy3Q84sST1y6mBulHSKtXYg3Wt2dnba7u7u/LaoAKOjo4pEIikfr6ur04wZM0rYotRt8rMt6ba7HNtcbYL0ucrUlkSV9v4n275stqHa90uplOJ4hfRq9T3I9TssVf8+QXY2btzYZ61NOuV9Q6Ynu7VAd7l/DxtjXpC0SE55nl53sZslPSTpHxKefp6k+92pUGWMuV/S+ZJ+nO41u7u7tWHDhkxN89369evV3t6e8vGhoSEtX768hC1K3SY/25Juu8uxzdUmSJ+rTG1JVGnvf7Lty2Ybqn2/lEopjldIr1bfg1y/w1L17xNkxxiTONNo9LFcSsAZY7ol/U7S8ZK2u1OQeo8NWGvnJix/laQWa+1X3dv/R9KotfYbSdZ9uaTLJamrq+uUdevWZd0uv4RCIdXX16d8PBwOq7W1NeXjxZCqTX62Jd12l2Obq02QPleZ2pKo0t7/ZNuXzTZU+34plVIcr5Berb4HuX6HperfJ8jOihUrNlpre5I9lrEn2WOMaZP0E0l/Y60dMiarmVSTLZQ0KrfWXi/peknq6emxvb292TbNN0Hq8fPQk1z5gvS5qvYeU3qSy6tWezGDpFbfA3qSUQxZVbcwxjTKCZBvtdZ6MyXtdvOVvbzlPUmeukPSoTG3F0vamX9zAQAAgOLLprqFkfR9SS9Ya78Z89DdkrxqFRdL+lmSp98r6VxjzFy3+sW57n0AAABAYGXTk/xOSZ+Q9B5jzFPuv5WSvibpHGPMK5LOcW/LGNNjjLlBktwBe1+RtN7992VvEB8AAAAQVNlUt3hEyXOLJensJMtvkHRpzO0bJd2YbwMBAACAUmPGPQAAACABQTIAAACQgCAZAAAASECQDAAAACQgSAYAAAASECQDAAAACQiSAQAAgAQEyQAAAEACgmQAAAAgAUEyAAAAkIAgGUBN+fsf9isUCkmS/umWfl22pl99oTI3CgAQOATJAGrGZWv6NTAife7mMUnSniHn/jufP7yMrQIABBFBMoCaY23iPaYczQAABBhBMoCaY4iJAQAZECQDqAleHjIAANkgSAZQE4iRAQC5IEgGUBP2xATJ03OSAQCIR5AMoCYMjUb/JkYGAGRCkAygJhwYjb/dF5d/YUjHAADEIUgGUBOGRiNxt//wbPzt14dK2RoAQNARJAOoCaHJ+CSL53dMxd3etb+5lM0BAAQcQTKAmjA6Fh8k790f35M8ONZQyuYAAAKOIBlATRidig+SJ+M7kjUyVl/C1gAAgo4gGUBNmEwIksMJJS5GJzkcAgCi+FUAUBPGJ9M/PhlmrmoAQBRBMoCakNiTnDihyBTFkwEAMQiSAdSEqXD87UhCUByO0JMMAIgiSAZQEyYTk5ATMFU1ACAWQTKAmpAqRvb6jyOiJxkAEEWQDKAm2IR0C6/nuJ6jIAAgCX4eANSExJ5k72YD5ZEBAEkQJAOoCeFI8vtbmGgPAJAEQTKAmpBYzcIzq5VcZADAdATJAGqCTdGTPHdWnZzkC4JlAEAUQTKAmpAiRlZbM8ExAGA6gmQAtSFFukVrE0EyAGA6gmQANSHVXCFtMzgMAgCm49cBQE1INXBvNgP3AABJZCx+ZIy5UdL7Je2x1h7v3nebpGPcReZIGrTWLkvy3G2ShiWFJU1Za3t8ajcAJBUKSWse7dSi9nF9bPlwxuXbZ5SgUQCAipNNhdCbJH1H0g+9O6y1f+r9bYz5d0n70zx/hbW2L98GAkAufrB+riSjN4aa5ZyjpzdnVtGbBACoQBmDZGvt74wx3ckeM8YYSR+R9B5/mwUA+RmfSp4+YVOkW3S2FrExAICKZWyqX47YhZwg+RdeukXM/e+W9M1UaRTGmK2SBuSMmbnOWnt9mte4XNLlktTV1XXKunXrstwE/4RCIdXXp56jNhwOq7W1tL+oqdrkZ1vSbXc5trnaBOlzlaktiSrt/Q+FQrpr26lyhltYrTpyw8FtuHXT8Qfvj3XR0md166YTJEmrjtyQ1etU2n4plVIcr5Berb4HuR7bpOrfJ8jOihUrNqaKYwudkPVjkn6c5vF3Wmt3GmMWSLrfGPOitfZ3yRZ0A+jrJamnp8f29vYW2LTcrV+/Xu3t7SkfHxoa0vLly0vYotRt8rMt6ba7HNtcbYL0ucrUlkSV9v6vX79e2ha93d3dfXAbbt3U794b39Pc29urWzftO7h8Niptv5RKKY5XSK9W34Ncj21S9e8TFC7v6hbGmAZJ/0vSbamWsdbudP/fI+kuSafm+3oAkB0vCM58lQwAgFQKKQH3XkkvWmt3JHvQGDPTGDPL+1vSuZKeK+D1AAAAgJLIGCQbY34s6VFJxxhjdhhj/sJ96KNKSLUwxhxijLnHvdkl6RFjzNOSnpD0S2vtr/1rOgAAAFAc2VS3+FiK+y9Jct9OSSvdv1+V9PYC2wcAAACUHDPuAQAAAAkIkgEAAIAEBMkAAABAAoJkAAAAIAFBMgAAAJCAIBkAAABIQJAMoEqZzIsAAJACQTIAAACQgCAZAAAASECQDACykoz6QuVuBwAgKAiSAcA1OFLuFgAAgoIgGUDVCIWkQgbsDRyo960tAIDKRpAMoGoUmi0xPNHoSzsAAJWPIBlA1RgJNRT0/NA4h0QAgINfBABVYyzcVNDzQ5McEgEADn4RAFSNsXBhz5+Y4pAIAHDwiwCgakyECxt4Nx5mlj4AgIMgGUDVyLcn2MhKksIRgmQAgIMgGUDVGCuwJ3kq4lNDAAAVjyAZQNWYCufbk+ygJxkA4CFIBlA1pvIMco37NOtjWwAAlY0gGUDVmLL5HdLqjJuTbOlJBgA4CJIBVI1wJM8g2e1DtuQkAwBcBMkAqka+OcV1dUTHAIB4BMkAqkYkzyC5wU23ICcZAOAhSAZQNcLKL0ie0TglSbJ5Ph8AUH0IkgFUjUieXcEdreP+NgQAUPEIkgFUDZtFdYpkSyyZNeJ/YwAAFY0gGUDVyCpITrLIgtYpORnJpFsAABwEyQCqRiSLILc+ySKtrUVoDACgohEkA6ga2aQk19FZDADIAkEygKqRTbpFfUMJGgIAqHgEyQCqhs2iK7k5JkimVxkAkApBMoCaMqMpGhkny08GAEAiSAZQRbLJSZ7RHBMk1xevLQCAykaQDKCmzJ0ZPey1kJ8MAEiBIBlATVnQHj3sxfYqAwAQiyAZQBVKnXixZH70sDenjSAZAJBcxiDZGHOjMWaPMea5mPv+2RjzhjHmKfffyhTPPd8Y85IxZrMx5h/9bDgAJLJZTCZy2CHRv7vmxCYlOzPubevzvVkAgAqUTU/yTZLOT3L/f1hrl7n/7kl80BhTL+n/SXqfpKWSPmaMWVpIYwGgUJ0x0+sd2TV95N7mvTNK2RwAQEBlDJKttb+T1J/Huk+VtNla+6q1dkLSOkkX5rEeACiKow6dft/IBFloAADJ2Cyq7xtjuiX9wlp7vHv7nyVdImlI0gZJf2etHUh4zipJ51trL3Vvf0LSadbav0rxGpdLulySurq6Tlm3bl1eG1SIUCik+jQ1ocLhsFpjeqFKIVWb/GxLuu0uxzZXmyB9rjK1JVGlvf+3bjpezrm/c1xbdeSGg9tw66YTJEkXLX1Wt2460f37GUnOfrlr26mS6jSvaUArDt0sSbpzy0ma2TCm8w57Ie51Km2/lEopjldIr1bfg1yPbVL17xNkZ8WKFRuttT3JHsu3ANJ3JX1Fzi/RVyT9u6RPJSyTLDkwZURurb1e0vWS1NPTY3t7e/NsWv7Wr1+v9vb2lI8PDQ1p+fLlJWxR6jb52ZZ0212Oba42QfpcZWpLokp7/2/dFJ9Q3N3dfXAbbt3kXBDr7e2N+1ty9ou2Oc8xjTPV3d2tUEiKbGnQ8FSburu749ZbafulVEpxvEJ6tfoe5Hpsk6p/n6BweV1XtNbuttaGrbURSWvlpFYk2iEp9mLmYkk783k9AChEXyiUcRnjnsNPTjnn9795lR4mAKhleQXJxpiFMTc/JOm5JIutl3S0MeZwY0yTpI9Kujuf1wOAQhwYyX7ZqYj05LY6vbCbIBkAalnGdAtjzI8l9UrqNMbskPQlSb3GmGVy0ie2SbrCXfYQSTdYa1daa6eMMX8l6V5J9ZJutNY+X5StAIA0+oYyL2PkHNCmIkb/s2WukmeMAQBqRcYg2Vr7sSR3fz/FsjslrYy5fY+kaeXhAKCURkYzL2PqJEWSDZywCoUkxvcAQG2h1hGAqrc/FIm73d4izUkoh1xvnPA4HEnsQTZ6eV8RGwcACKR8q1sAQMUYnYjvH/73T3VMW8YLjeOrYkYk1WnTm7O07NDhYjUPABBA9CQDqHqhicz14BvrnGVil/QqXvSH6E8AgFpDkAyg6o1OZg6S692joY0ZsNdU7zxvYopBfABQawiSAVSR5MHsRBY9yU0N8X3IktW8mVOSpAiVLgCg5hAkA6gy0wPisanMz2puiEy7b8WRw+76CJIBoNYQJAOoepPhzD3JM5qmB8kLp4/vAwDUCIJkAFUvHHb+T9cfPKs5XJK2AAAqA0EygKo3OZW5J3lO80QJWgIAqBQEyQCq3pSbSWHSdCV3tE1Pt3A4OckPv9Lkd7MAAAFGkAyg6kWyyKRYkGHa6c19M9IvAACoKgTJAKpeFuP21NoqJatk4U0oMhmmwgUA1BKCZABVzwuS6/OIc72nTBEkA0BNIUgGUBW294VSPma9dON8gmT3Odn0RgMAqgdBMoCqcNvDE/Jmyktk3bvy6Quur3OeHLH0JANALSFIBlAVtu5xuosb6qYHyV4vcF0B6RYRepIBoKY0lLsBAFCIq3/Ur/0HpMmIJFm9dcGYNr2ZvFSFyaNboKHOajwc7Y0GANQGepIBVLS+YS9AliSrlcdNz022BfQkN9R5awYA1BKCZABVoy5FKBspoLpFU4PzZJtXRjMAoFIRJAOoGo11qWbNc9TX577O5ob06wQAVCeCZABVY2bTZNrH6/I44rU1ZTFdHwCg6hAkA6gaC9pGk97v5SQ35JGU3NZMkAwAtYggGUDVWLpgMOn9XqZyY9bpFtFguqNtvKA2AQAqE0EygKrROTP94w05Fb10Quv5M/JuDgCgghEkA6gZzY25p1vMbpGcgJnqFgBQSwiSAdSMxjxykluTz0sCAKhyBMkAakZLE73BAIDsECQDqBkzswqSCaQBAATJAGpIS3P2AbBhImoAqGkEyQCqwtrVHRmXmdWS6ZAXDYzzSF8GAFQRgmQANWNmS/bL1tfRkwwAtYwgGUDNaM+h5nFzPUEyANQygmSgxv3kj236xoPzyt2MkpgzK/tlZzZFitcQAEDgESQDNW5rf4ukOj3zRrlbUnydGWoexw7W62ibKnJrAABBRpAMQJK0a7D6519uzTAzSOxgvcPmhorcGgBAkBEkA5Ak7Qs1lLsJZRc7WO/wOWVsCACg7AiSAUiSDozXl7sJZdcQEyQzHTUA1DaCZACSpLEpCgO3NFDRAgDgyBgkG2NuNMbsMcY8F3PfvxljXjTGPGOMucsYk/TCpDFmmzHmWWPMU8aYDX42HIC/pmzlBcl9ff7mDc9qCfu6PgBA5cqmJ/kmSecn3He/pOOttSdKelnS1Wmev8Jau8xa25NfEwGUQqQCK57t8Xls3fyZk/6uEABQsTIGydba30nqT7jvPmutVx/pMUmLi9A2ACVkVXk9yf0j/q6ve964vysEAFQsY23mHDxjTLekX1hrj0/y2M8l3WatvSXJY1slDUiykq6z1l6f5jUul3S5JHV1dZ2ybt26LDfBP6FQSPX1qQcvhcPhjCWk/JaqTX62Jd12l2Obq02QPlfJ2nLHlh5JRlJEq47cWLa25ePpNzv0XP9iSRFdtPS5g9vnbdOqI9crHA7rrm2nSZIuWvps0vV4zwuFpHt2LZckrTpy/cHHnfVJq450ssaCvl/KpRTHK6RXq+9BpuNsMtW+T5CdFStWbEyV7VBQzSdjzD9JmpJ0a4pF3mmt3WmMWSDpfmPMi27P9DRuAH29JPX09Nje3t5CmpaX9evXq729PeXjQ0NDWr58eQlblLpNfrYl3XaXY5urTZA+V0nbsiX6Z3d3d9xDQX//3/jdsNQ/KalOvb290e1zt2nBgm5NTQ1J25xe8lTHldj9cs8u5764fbEl/r6g75dyKcXxCunV6nuQ6TibTLXvExQu7+oWxpiLJb1f0kU2RXe0tXan+/8eSXdJOjXf1wOARCOjqa6EFVqlgioXAFDr8gqSjTHnS/oHSR+w1iYdOmOMmWmMmeX9LelcSc8lWxZAEFReTvLoePrRhvmM6zu8Y1RnHTGQX4MAAFUjY7qFMebHknoldRpjdkj6kpxqFs1yUigk6TFr7aeNMYdIusFau1JSl6S73McbJP2XtfbXRdkKADVpbCr945NjUlOOSWUfPsnn0YAAgIqU8efDWvuxJHd/P8WyOyWtdP9+VdLbC2odgKLqG5EqsQfZMz6RPi1i0reydlZSnUIhZuIDgFrBjHtADdu6t7Knop505/5IFeZP+Fz72ee5SwAAAUaQDNSw3cPN5W5CQSbDTk+ySRElh30OkgcpowwANYMgGahh+8cquyc5kmEW6XGfZ5kOjRdUNRMAUEEIkoEadmCisoNkL+e4LkVPst9TbYcmCZIBoFYQJAM1bHzKiy4rsy5wxG12qnSLySl/TwJGJzlkAkCt4IgP1LCpSOVWtpCi6RaptiJs/d2+MYJkAKgZHPGBGpYYRIYqrHqDl01Rn+JINhn29xA3MVXZJxUAgOwRJANwGT2/u7JylK2XbpEqSI74e4ir9J53AED2CJIByMtJ3to/o8ztyI2Xk9yQcuCev0HtZJggGQBqBUEyUNOMJCvjBsmDo5VZvaE+RbMnfAqSvf3jR0/yl28b0Orr+gteDwCguCrzFxGAr+qMFLbSWIXl3HrpFo0pTvetz0U7/Cgp9/q+yqwkAgC1hp5kAGqud3tKKyydwAs3G1PkW0xFjC+DEb21+1kt47fPVtgoSQCoMQTJADSrxamlFklZTC3YmhuTt9taaXCi8PV7dZgjPnYC3/f0mH8rAwD4jiAZgBa0TZa7CQVpbkx+fzhiNDTeWvgLuEGyn4kS/SM+rgwA4DuCZAA6tmu03E0oyIJZyUvXRaw0MlH4Ya7eWHd9hfW0P7IpmmIx5fOU2QAAfxEkA9CSTsnpJ63MdIvzT0geJIcjRqGpwscnH5y8u8Cu5N88P15wWwAApUGQDNQoZ0BbZQbFiTo7k6dUWCuFJnwIkr10iwKD5D0DVLYAgEpBCTigRkVn16vewC1ipalI4bMIeukWhe6p8amCmwIAKBF6koEa9cZQS7mbUHTWGk35MDV1vU9Hyuo9HQGA6kOQDNSogVD1X0gKW3Ow9nMhiSX1dV5PcnWkpwAAMiNIBmrUqFv1oa6K+zetpEm3J9kUEN82+HCkfGYrk4cAQCUhSAZq1GTEiRr9SiUotU3bMwedkUjhZdskqbG+8Hptdz5OZQsAqCQV+vMIoFBhN+5rrKvMnuT7n848AUo4YhSxzmGuvoBYubmh8H00FHLWUUfGBgBUBIJkoEZ5U1DPaKrMWS129DlTaScLOo2bQhK2Tl6yVFi6RbMPPcljbkzfVHixDQBACRAkAzVuzoxwuZuQlwNu9kJLkimpvXh4MmwO1jYuJK2kpbHwnmSv535G9RcVAYCqQJAM1IB/+GF/3JTIsRbPrswpqSfdoHPBnOldxMY9sllFy641FtCD29acObUjk4jbkI42DrsAUAk4WgNV7q5HR9Q/It380FjCI05weVxXZfYke04/qnnafd7kH+FINIBuStLjnK3WZv9mATl8PvkWAFAJCJKBKvfICxNpHrVqTT6jc8V4x1un31cfM420V9u4tSX/pOT26XF43k4+Ihokh0KUhQOAoCJIBqrccGIHcpVpTRLlN9ZPn0Z6zsz8D3dtPp5IHL0ourI3BvxbLwDAXwTJQJXLdchZNXRuRoPkaO/xgln5H+46W521FTZv33Sv7vZ1dQAAHxEkA3A5QWBfFQTJLQ3TS7Ytmhe8XOC9+ys7HxwAqhlBMoA4u4eDF0zmqrV5epD8tgVlaEgGfcMEyQAQVATJQBX72xv7c37O3pCPo9SK5LGX0nd3z46rRuGkSHR2Bm+E4tBoZc52CAC1gCAZqGL5DNobGQv+YeHW3zoblmqK54628RK2Jndeu0MTBMkAEFTB/zUEUFKhyeCnW4y5HcVnvi158eP5M4r32g+8kPvKU03kMln4HCUAgCIhSAYgSTJuHYyJKX8rOPjtma3RgPPjK2YlXWZ2i+R/NQojyeipnTNzfqY3kYvXGm+K7ElSkgEgsAiSgRqSrrybF8BNhIMdJF/7q/SpFpICO0HK9as7JEkN7pF3avr4QgBAQBAkAzVk+3Dq6LHOPRpEKiRN9rorO8rdhLw1uhktYYJkAAisrIJkY8yNxpg9xpjnYu7rMMbcb4x5xf1/bornXuwu84ox5mK/Gg4gdzuGWyR5PcrxXbH1xomOw5Hg9iR/9obcq3WUW1+SwtNNyVOpAQABkm1P8k2Szk+47x8lPWitPVrSg+7tOMaYDklfknSapFMlfSlVMA2g+F4bbJck7Rzx7ol2GzfUOX8HrSc5FArpsjX9umxNv0IT5WtHncLKff5C6fYN00fnzWhyTkSCtq8BAFFZBcnW2t9JSuzCuVDSze7fN0v6YJKnnifpfmttv7V2QNL9mh5sAygyL383bOt111Nt2rW/adoyM5qmT+UcBF9Yl0cduyL427Pz68V++Q1ndF5sDnX7jGDtYwDAdA0FPLfLWrtLkqy1u4wxyeazWiTp9ZjbO9z7pjHGXC7pcknq6urSQw89VEDT8hMKhdTfn/qHMBwOl7xdqdrkZ1vSbXc5trnalPdzdYIk6eT5W7Vhz+GSjLbsa9HogYNdydq2bZskaZYWqU+HxN0XhPd/eOx4SXWa1zykw9r79eTew3R8xxt66KFnpi0bv687Yx6xabcj03sU5axz7969We+XA+PHSapXS93oweeED3RKOkRSpOz710+lOF4hvVp9D7L/DkdV+z5B4QoJkrORrOn25owAACAASURBVLsk6QVGa+31kq6XpJ6eHtvb21vEZiW3fv16tbe3p3x8aGhIy5cvL2GLUrfJz7ak2+5ybHO1Kefn6tZNzo/GFat6dIWky9bskyRFGqLt6e7uliS1dUpbH4+/Lwjvv7cNV124QJ2d3e6985IuG7evt8Q+YpTumJLpPTrIXef8+fOz3i9e+888YbZ6z3DacHxfSFffPiapLm27Kk0pjldIr1bfg6y/wzGqfZ+gcIUEybuNMQvdXuSFkvYkWWaHpN6Y24slPVTAawLwQWjSybQyMeesnW2S/7WF/ROkaaXTldJLZeWyaHabsy3BSCNJ5bI1TnA/o0n6z0srt5IIAOSrkBJwd0vyqlVcLOlnSZa5V9K5xpi57oC9c937AJSFEwSPjHtBMnLj7L+XB3MP2FuDWrw5g9EJ6cYHhsrdDAAouWxLwP1Y0qOSjjHG7DDG/IWkr0k6xxjziqRz3NsyxvQYY26QJGttv6SvSFrv/vuyex+AMvB6jiNueFxHpfS8bN/fVu4mFNVre+K7yjdsmSpTSwCgfLJKt7DWfizFQ2cnWXaDpEtjbt8o6ca8WgfAV7ObJzQ4PkNeH7JXGzmoNm3PI6+hiIysrKT9Y9Org1ST+5+KD4qZPhtALaIfCaghpy/aGXe7sT7YQfIft/kRnfmXVOLtr4mp7IZzvPJGsIL8bG3d4wTJpOMAqGUEyUANWTJPii0w09wQ7CD59b5gdWHObHLmkQ6nCB+/9OMB/dMt0Yyyr/8s2IPzUhlyY/uG+vK2AwDKiSAZqElOkDezKVhBaKKBEScorcu7S9PfvtDFs9NP+bdzwGrPkNQXCum6e6OD3f7klNTpGUHsbZ5wPxZtLeVtBwCUE0EyUMNmtyQGyU71hs3JCjqWwagbk9YXeKTKP8iOd8rho0pVJu+ZrdFg9+qbxg4Odjuiq04fOC31QL/fPh+8QXHedNmLOqJdyUHLDweAYiNIBmpYV/to0vtffDMY5cqm3PixscDL/k0+TZuUrlTz9x9Mnlpx9YfnJL3fC7O9/N8getexjQf/XvfIeBlbAgClR5AM1LDFySeu08BosSfjzM6Uk22h1uZ8nh3Nt26f4Utz0gq5vd6Hzsuu29rrHR9Nn8FRVqcc1apZbsrF7v3Bzl8HAL8RJANVKpRxWjg7rWfUq6McmgjGocELy+bPLqw9S+aXLuj/4p/OPfj3aUelft16N5aemCx2iwrTe5yTTx0hRgZQY4LxSwjAd315pJB6ubsT4WAV/zo8jyC3oS4a1Z15bGl7xq/5SItO7K7Xpee2p1ymwW1SOODBZ7p8agCoZgTJgI+294V02Zp+PbKp/IOcdu7L/Tn1bmA5FQlWkHzK0bkfqtpiKncsXVLaHOvOzlZ9ZuXstMu0uAUvgtZDGzsAEQBqGUEy4KN/u9MZvHXzQ2Pqy5juUFz7hlNFX6mjsiY3SA5a4LYk3Yi5FI7oLNZAM2fnPPZSYe/vrBnOiUjQ9vUtDzuf4WCdJgFA6REkAz6aiKmo9vX/Lu9EEoOhSM7PaWlyIjZbBSHS6YcWc/8b3fl4dP35nBDNbQvm4XdgxPl/3qzpj/1yw4HSNgYAyiiYR2mgQsX2Cg6UOZ7Yn0eQPL1ucuVqLVKGRXuzs48GR6L3/fzR3Mu4LZ4b7OnsLjglOpOIl6v+sycoAwegdhAkA0V05ff6df36I/TNBztK/tqh8dyv4y9oC3A9srxYpUsvycdZRw1KsnFrfWGHEyTnMmnJsYuDffh919LoWUan26tsJX3+B/3JnwAAVSbYR2mgwjl1fo0iZfiqjU4kDw6b650eZqPpPc1HdFRXkHzV2X26fPmrvq7zmLdMv2+/m23Rknr26WkWzc28TFBccX60V3kw+fwzAFB1CJIBn1y2JtrDFj+NcnlGZo278W5i5+Znegd02pL9+ruzp/cILuyQUk27jNS8NJuli7MvNddarHyQIljS2aq1q0t/NQQAyokgGSiCj72zJfNCRTbhFuA1SeLdM4+urh7jcukLhdQXU5D6w2cGY6ZCAEDhCJIBH9z4wFDc7bNOaFVLg3TSEeUbnBXOfSxZoGSeMbCcnBOQf7p5TFffHq1y0VlBvcPJZFvf+7fPBvm9AQB/ECQDPtiwZXpEeu3lHVp9fvoJJYppyk05rq/QzImHXyx3C1JrqHN2btBqHBfqgWfSV6/wBib+8o/lLW8IAKVAkAz4YDJt5TQnx7dvJN0y/ot44/IqNEh+cmtwU0K65wxlXqgC9e13ov7GFBdA2t0sov2USwZQAwiSgRLZub+0r+emJCcMIqwce/c7UX4Q23/6woFyN6EovMlwOtqSn1mdf5ITJVdbDzoAJBPAnx+gsqXquO0faS5pO2yFB8mjbkdyS2N525FMstTjQuoeX/m9fl22pl833FfeHmov9j3liOQ7/exllZ1zDQC5YCg24KN0ZbIGxxoklW7GMq+3r7FCg2Qvp3r+7ODnixRaHs3b1vVbpnSpD+0p1Hlvz/yhCYVCFVXGDgByVaE/n0DlOTBe2q+b15PcUOGnwsu6c5iho4R6jnR27Dve6t8ODkoaQzbB79//iMF7AKpbhf98ApVjdLLEQbL7f9fsyj4XXrE0mD3JV5zXrivK3Ygy+PS5LfrefWMaTztYFQAqX2X/egIVwLjh6mS4PMHesYuD2RObLS7pl0a2dalPOYr3A0BtoCcZKDIjp1d3KlKeIPmUt5XlZZGFD57arJ8+kT5Pva8vpIdfiehD72grals+e1Pu6RNfuHVA4YjV7Jl12vJmRJcvL0LDAKBMCJKBIqurs4pEpIgtT5Bc6bPAVbMLembqgp6ZkqTL1vRLmj4gzpvRL2xHtOqM4gTKfTG9yN++JPsp1Xe7dZX7hp2Rh3e/sEAfP41cZQDVgXQLoMjq3XSLcCTDgoHhTn7CzMNlcdeG5Mm+9z5VvMlV/uWWaGCbTXrL3BSx+psjbfrGg5264fflm2kSAPxCkAwUWb07hXFAChdkbfdg+V574+bai9C9KZ83bp4s+WuPubOqf/zM7HqRv/7nHfrCqhatXd2h1riUdyPJaHAsgMWtASBHBMlAkTXVe0Fyvf7zobllbk329g6XdvKTWPc9HdwpqYulw+2dHYnJVti0vbQnC2edkH1qzmELnGW/fWmH1q7ucIN8K+908KnX/W8fAJQSQTJQZM0N0cvnE+H6MrYkN/vHyzdkYWe/c2LRWDm7q2AXnOL04sZecfjOr+Lzex97yf+g+bU9/qzzuis7dPnyV+Wl6zy+bY4v6wWAciFIBopsZlPpL5/7odSTn8Qac3fZonnBrJFcDO9aGt+Lu3FzSJMJ6cl3Pe7/oLjv/NJZp197urXRafTIBD8vACobRzGgyOY0x6YOGD2/s2xNyclYiSc/SeaKleVL+Sinx14K6Xv3OcFrY700Z4Zz/+AB/19rcNT5f4FP03+//RCnZ9r6FnYDQHmU/1cQqHCZJmGYOyO+J/nRrcUf+Z/txBDJeJOfTJRp8pNYtVq+7vsPRnuM11zRofNPclIxijlt9cW9/pyQvPOoCXkpFwBQyQiSgQLtHUn/+MLW+MkihsaKn2j75Lb8n+uFNuWaIbCQAL+a1Blp7eoOSdLZy4p/snD0oto8IQGAVAiSgQJtzpA+kdgZGilBD9sz2/PPg65zjwrlKlm39sHKzOH22yfOyn5SDwCA/5hxDyjQroHkkz/E80pjGZXiMvSbbnWIfF6pzniTn5SnJ/nFN5z9OaPGS+0mDuQrhlfeoNceAFKhJxko0J7hzEHyVWf36aqz95WgNY79o06gW5/HN7yhznmuLVNX8pQ7M+F5J9XeoL26Ep+X3PSb4k4hzayNACpZ3kGyMeYYY8xTMf+GjDF/k7BMrzFmf8wyXyy8yUCwDIeCN5fepJux0JTHtaLGMqdbeC7omVnmFpReS1PmZfp8jDz7hp3/veoZ/nGummzc6vuKAaBk8g6SrbUvWWuXWWuXSTpFUkjSXUkWfdhbzlr75XxfDwiq0IQTTpa6FzAdrze2LY+01pZGb4bAAG1QjVjckfmQ/JONU769nlct48NnFCf/+fXBLKJ+AAgov9Itzpa0xVr7mk/rAyrGpBuzmBxiymIXcPB6gRfMzr2SRmtTxN/G5KDU0zAHzXnLUgeV3knY5p3+Bcme04/xN/+53k3ZCQWg1jYA5MtYHxIPjTE3SnrSWvudhPt7Jf1E0g5JOyVdZa19PsU6Lpd0uSR1dXWdsm7duoLblatQKKT6+tRBRTgcVmuJ67amapOfbUm33eXY5kpz2wvHaso2ql5T+ujSTdMej92/d2w5RVKdDmvdpeULd0gqzj6+ddPxkup08vxtOnb+UNK2pLLxzUXaeuAQSRF9qPuJkr7/d710tELhGZIiumjpczk/P9n2ZbN/s9kvua4zXw+9tkjHz39DnQmrv/2FYzVpG2UU1p8tTXoYzdmtm06QJF209Flf1uftx19sPV5jkRmSwlp15JMcR0qoFL8ZQZTrd1iq/n2C7KxYsWKjtbYn2WMFV7cwxjRJ+oCkq5M8/KSkw6y1I8aYlZJ+KunoZOux1l4v6XpJ6unpsb29vYU2LWfr169Xe3t7yseHhoa0fPnyErYodZv8bEu67S7HNlea21/sl6zU1NSgZJ/b2P1rtlhZSfumOtXd7Xz9irGPb93UL0m6+IK3xf0IZPqMS1K/6rR1i/P3/PnzS/r+e+0+ZG590n2ZSbLty2b/ZrNfcl1nvnolJTtM/r5vQNv2WFnlt2+S8fa3X+vz9uPi/Vab+yTJqLu7m+NICZXiNyOIcv0OS9W/T1A4P66FvU9OL/LuxAestUPW2hH373skNRpjOn14TSAwvPzf1iyKMTTVu5ehJ0pzGTqfXpLOtvKlW3j+4pzaq2yRSc8R/u6TYk7asmxREebPBoAS8+OX+mOSfpzsAWPMW4xxMjWNMae6r1e6OlhACXgJSwvnZL7U1zXLKTtRiglF8uVc5i/vtMJLEnMNoDPflv9zL1vTr8vW9Mfd98CzxTsZ6u6Uyv0ZAoBCFRQkG2NaJZ0j6c6Y+z5tjPm0e3OVpOeMMU9L+k9JH7V+JEEDAXTKkZlnvzj9sAxzWAcAKXrBlG/u5Od/0J/0/g1bmNkQANIpKCfZWhuSNC/hvu/F/P0dSd9JfB5QjU7uzrzMEnrYUGKDo8nv7xt2+iuaci+AAgA1gfo8gE+CMkq6r9j15VAVJt2JIjvbOWEDgGQIkoEqc/VNxZ1quFiKOZAMqZ16dHEn/OBtBVCpCJKBKvXtS4ozi1qxFHMgGRzJJmsp3vTfTlrRY69X1ucQADwEyUCVCkr6R7b+uJWBZNm64w/5DQD9w4v+z9aXinHrvmzeS5AMoDIRJAMIhH3uQLJGBpKlNMMtoHLvUxO64rvRqhW3/m5Yl63pn5aPnpjCsm2vk4i8va/4ORCNbk3wAyWqCQ4AfuPoBZSFUQnilIoy6nYkt1dWB3hJXfWhaK9sJKaY5kPPOTvviz9y8tG/8t8DWn1dvx5+Mf75QyGrZ7aGdMN940Vv69wZTkAetgwMBFCZCJKBAuRXScKJbp4hV/Oge5+M7scvfpj9kkqmSVbCblr39r1Wk2HpgafjB3GOTkrX/mpMbw46n8H2Iu7qhe2kzwCobATJQAF+8nD+OZ5vDPpfVeC1PZXXPd3XF9Idj0WDuUrLpS61tas7Uj4WSZiqKVWNZG+xs44rXmWL47pSvDgAVAiCZKAAT77qBMkzMk+2d1CdG6LsH/M/+fbh58O+rq8U5bv+9+3RADldAIjpsi2blyrP+wOntfnYmngLOyQmzgFQyQiSgQJ4PXcfeWf21629AU2TYf+Dhy27/ape4AQ3e0IFTcqZ9StJ0jUVVrIuCO55KruyeZ97P/sWAHJFkAz44F1Ls08RmNnkBDbFGNDUf8AJORt8+mZvHy5eT6MkPbIp2hPaSZpF1urcj86GLRNZLX/0olatXd1BTz0A5KD43UQA4iw7ZFj/s2VeUdY94Y6Vasoh/SOd/tFmf1aUws0POakWlH3LTUujFJqQ9h+Y/thjL8WnYJDsUF1ue3hYDzzrfNFntUgL5tRp5UlNOvFwTjIBv9GTDOQp30FyJ3dHVKxczSn36vvcmYWt25sI4sCET9F2Equ/F63z+2UqWuTksAXOoXsqSbbFIy9Ge5ev+UiLrk/oPb7mkhb1Ht9Ir3KF8gJkSRoek7a8GdG1vxpTHzUlAd8RJAN5+uFvi19rNl+HzS+sa9a7nD8RLl4X76Qb4J23rEmdGUqbId6HT09dlWLXPmfH1hkl3a+dra266N2zitY2lMcXfzKWeSEAOSHdAsjTrn1Ob2sulS1K5T0nFPbVbqizCoelcKQ4F+tje71WnVHcvOdqdNiCVknJg6KQ25HcUrzqbggA70rAM1tDuvZXY5r0t7ANANGTDOTN6wk9bkn+AWmxSqw5QVT+mhucEwCbYbl83fKH7AacIXdeCsahncE5vJeilGAtSFbyj1xkoHiCcxQFKtQnzswnSHZyku98tt3v5viirdnplrJFGvb16h4nkmvkCFQ0l5wThK5k53O+eT+BnB/ufJzuYqCU+IkCCpTPDHGHtE9IsnpzJAiBzHQL2pLXW75sTb8uW9Of9LFcjLodyZ3t1F4oliCV1Htx75xyN6EqPP6KM2iPk0ugNPiqAWXwZ8uHy92EtI6aP31K4b+9sfDgONG5y4pbYq4WxNaaDpquNieoGxznffbDmHvuesTC5D/dieX/ABSGIBnI4LPfd3pPY/MBq73ckpPSHC1T99tnQxouwuD5XCZhQTyvD/5njwe3qsEnThsSU1P7L1UqzYPPBrfiDlCJCJKBDELu785nbxo7WBv5h74MPHOCh219wSsyk3il/paHgxuI1apZbmnpwemd/jrjmOB9ppINOiuXHzw4pCu+2x+oNuUiMZXGS7/YPVCsobZAbSJIBnLw1TvGdO09+7V5lzvwzIcywi8PzC58JSW2cXP+wUWlBiZB854Tp6cwXPORFq1d3aFPnh2kAaHOyeD/uzcYFU1CoZD+8NKUItY58f32z/eXu0kFa3Nj5vHkQwkA5IkgGcjRc6+FD9YkPfnwwnvsBkL+5Gs+s7V0wef/PJt/wLP2wcnMCyGjC3pmxt2e25Z88pBym9HgnFBufjPJ9IBl8Lmb46+KPPd6ZVSMWPPr1MH8sYuc41CEjmTAVwTJQBqbtsdMenG6c3079ofo0nPz77GrN86KQlP+zEby6MvF70ZqcI8YO/blH/C89IYTlLQELyOgov3VymBO7X3esQOSrCLWqY6S73TufvG+v9d8JLq/KuHqxlOvOt+b9iRv85+8nS8TUAwEyUAadz0RHQhz3sn+9tI11zu/1lM+zWq3fa8TJBdziFSb2+k9VkBnsDcJy7FLijfldS1aEsBeZEk6akH87a/eUb789thKILG97v96Z/Bz7r1z889+YHqUHMQrCEA1IEgG0vCmnvYj9zhRe4u/E3YMuwO4GooYex51iH+XdS84OYDzeVeYz7zPCZjqAl88Ihh5AA8+E1/94cRu58uyZyhaA/wbPxssR9PSiu3pDurJEFCNCJJRM/72RudH8F/WDWT9nHE3XXF+wqQXM5qkj55R2OXtwzr87b3yBu3MKGLseeax/l3WLXTqbDhTEq9d3aHrruwod1PSmtMcH5yWa7Dcnv3xJ72fWTl90OxLbwQjdzrWl24Lfk83UI1IZELN8Or87ujPvVfrre7AmGsuadGePmnpksIDvFMWTejx7f7VkPV6dztnF+/c19lufrCRm4+cuFN1c4/Tbb8f08CB8g2Wm0hy0ttYr4MDcYPKK/MXxNJ+QDXjGwdk4V1vc7qeOltb1bnEn3UWa9bgtx3i79e6EgY1IfhOOapVhx0iXX1T+U+y3n1stKLMmiuivfB+TLleTMEq7QdUP9ItgCyUIzXgmp8M6gcPDuX8vDPf7tfX2unlfvhFn1aHmpc4CUa5nL0sfTv+em1uwfJdj47otofjp5rvC4Xi8psffCqkb949qL4in3TuDF5KNVCx6ElG1fvrtf0arbDSvA8+FdKruyN6dXdEW94c0Fcvmpv1c/0ORH6xofw9f6g+z2wN6cTDgxE0e844pkF/eGkq6+NFKBTSVT8aO5iu8cCz04Pry9f061uXtGjdH5zvkdOTPqa1q4uTR/7snnl625IKO+ABAUVPMqpepQXIkvTLJ6OBqTfYqNTmtU5JshpzBwQ2pjlahEIhXbamX5+9IX0P3PY+UjdqnVeJ46bflPbk68YHMl+ViU1nyKae8+duHsuYz2zlzOyXKNsBxL99NrvvjLdf9xyYkdXyADIjSAYCaDjmN7VcxbM++Y74CgTzZ6ceYLjmfmcGvlCGifhu/s14+gVQ9Q7vcn52hkt8gcKbbGdxR3YDZW//ffTD/G93DaovyQmeN1i2sV5au7pDa1d36NB5Ri0NTtB63rKmuOWv+UjLwUl0dmdx8rv6un7d8rCzozKV+euc5fw/6tPkRAAIklHlUk3VzGC0bEV/yN93curps1/OomzWv94xoO17nfXNbSu8ZahMl57flHmhIvrSR9OnLnnl4bbvdT7TX7tzUC/viujq2+Oj+tjZOGMH/33xT+fq2sudsnyrzmjTty9p0cxm6e8vbFFnZ6vmuZU1sqmoEbvM6W9Nnx35ufO9kpSBL5oNVAyCZFS1Hz0U/WGL7dW59+ng1UINIm/qbEk6/Zj4/NHYE5DYPrHP/yB5ysW2Pc5S7S3S1/882HV9UTzlGLy3cXP2J8Vd7hWTsSnplt8Ma8ub0WPF3//QqbX+V9f16wcPOseWTCFpa2urvvUXHTp6kbPdJx+eXU9vYrpHpsoWzLoH+I+Be6hqXn3RJfONVp3RpnufcgK4p7ZN6kPvKGPDEoRCIbUWEDwUa8T8IbNG9PrQ9AkXJOfy9YmHT79/cFS64rv9KSe4+PdPESCjtH74UHYpC5L0odOade2vnOV/+0L8gIaBEef/8bA07h5bDskyfcPz3hPq9PONmZf73r21OWD2i/81oF2D0dPuOpN8hs9ZLdI3OZagyOhJRk34uwucVAHvUmr/cDCmyfXKrL2ws7C13HR/hmTgPJ11aN+0+7yQYMOWqWmPeZMd+DFtNarfXY+OlOR1xtxYd/bMzMvmWnHjr96bOg0pmWxOhtf8er/63Ipys1qcXObsGe0KdrnnlDZuDsUFyFLqY0mpc9pRmwiSUbUe2RTtXfV+mNrd36fx6fHdNMkG6hTL09uiDYpttyfT5eJX3UvCLT5fG/J+z1tj0kg/fHr0BzuxBzv2knCqfHDA69H9w4vFOblL5AVah3bW5/zcebOk3uOdFIljF9dp1ekt+sz7ot+BYqQ5/PHVaDLyZ9/fkvNrPLEji7OBALrt99HIt/f4Rr3jrQ1qbZZWntSktas7tOr0loPvBVAKBf+kGmO2SRqWFJY0Za3tSXjcSPq2pJWSQpIusdY+WejrApnc+dj0S6zHHOLUQc2mo/PhV0qXt7xjX/RH8TfPRytAGDl9zXc8OqZTjkr9Q+kN8Dl2Se5BQCaJ9VzPO7lVd7j79vbfTeqcE+KDYa/Ntzw8pq8HrA4ugmFms9MTOFTi3sCzjs0uwEpWw/iid8ff/ugZ0thUcS+Z5FpL2UtN2D1UmYHk4AHn/4426aJ3z5r2+HknO8eTh55zuspfeSN0MNcbKAa/epJXWGuXJQbIrvdJOtr9d7mk7/r0mkBa3uW4hXOjUfKfvD3788LNb2bR3VygOjdc338g+mO7x73c2FjvXGqVpP40V6UffCoapF7y7tL8ODa4R46XdoT166fj8zYXuAOfBmLaXOxZxlBZDn+LczJX6rQcPycvOXtZqy7o8b/H9u7H809B8WqZhyYr8yKx93G46Mzs0ktu/B9yLlBcpfgmXSjph9bxmKQ5xpiFJXhdQJL0qZicwdjLlpkmvtg14PQkZzPYJ1/17jcwdsKTcffvuTOls45z8hzSBRPeTF5SdvmOfpjvlrEanZC273a6sb39dNk503M0H99EkjKiLjy1Mns6/ZYsIP75RicFZW4e8fcs9+s/FansMnCZTmbmuZ3MfcNpFwMK5kcGo5V0nzHGSrrOWnt9wuOLJL0ec3uHe9+u2IWMMZfL6WlWV1eXHnroIR+alptQKKT+/tSBUzgcLnm7UrXJz7ak2+5ybLN/TpAkvfrcE3o17v4TJUmhCZt220bGjpNUr6a6sYL2Qbr9W6c2STM0FbOfrY6XVKeO+p1qH+07uB2p2+A8ftHSZ5WpmZk+44lSvf/dza3apaNkFdHQqJVUrzpNxizrtOlv176uDxy9Rb9/tVtSu6RIUT9PybYvm8+wX/ul1uV2vMr0ufZTKV8rM6PjZFWvXz15QO2jGxIeddq68rDM3+dEbVqoPs2XJG3bti3usaB/Zm974Vh5IUmmdr57nnTXsLOf7rjnIXW25v4dloK/T1B+fgTJ77TW7jTGLJB0vzHmRWvt72IeT3ZKO61byQ2ur5eknp4e29vb60PTcrN+/Xq1t6euRTk0NKTly5eXsEWp2+RnW9Jtdzm22S+3bnIOmImfJe9+yUx7LNlypx87S73vTr1cJun279zddXpzRLKqP9gW73WvvPAItbYen3I7JDeNYdNYysdzaUsyqd7/XkmPrumXVCcvc/stc5sOtuGx/kFteTOi4cmZ6u3t1T2vOdtQZ+qyame+km1fNp9hv/ZLrcvleJXuc+23Ur5WNtYPOBOUTNnGuDY9szW373OiI/pC+srtY5KMuru74x4L+mfWe48+eGqzent6My7/0zX9spIe3nmivn1pR87fYSn4+wTlV3C6hbV2p/v/Hkl3STo1YZEdkg6Nub1YUoEFr4D00lVWyHUwzId6/B8M55nfNpnysWxSJ774w+Dk5J0UM0nCpe+On1Ut5DazoTJTJQFfffK8+O/HM1tD2t4X0i2/L+ABXQAAIABJREFUy26CklSWdLaqfBPZ5y92zEK2ed6nHuX08YVKUyAFNaqgnyxjzExjzCzvb0nnSnouYbG7Jf25cZwuab+1dpeAIrr14cJ+bGIVM8/3mK7Rgp4/6Xbjfu79udRRLY73nhA9nCSWrPLa2RofGwA1KXbWwbsfH9G1vxrTV24f04Bb3eEtcyo7pzhXX//v3E/2Lz03t15jIB+F9ut0SXrEGPO0pCck/dJa+2tjzKeNMZ92l7lH0quSNktaK2l1ga8JZORVVpjbVt52ZNLdKcX2/ORSBSK2nvLSJaUvg/TBU6MD9C7ubUl7MuENPFwwh65kxNu0vbiVTy5bE+yZNbyBerH+IscJSiqdd3JwzCKODwiWgnKSrbWvSnp7kvu/F/O3lfSXhbwOkItQKJR1KaFU00G/8kZ5Spb98IHsrx3+7PHsp9othgt6ZurwBUbdnel722ODlA+eSlcy4t29YaIkJ3kX95b/akusGY3xVW08s1qkwxbUZu3f1efkd3x47KWQipcUh1rGaRuqzmdvil66y1RK6DcpSpN9425nHaXOod28y8lLaE5yxN+eMAPgoJupUc5Ls0uXtGadjnLs4joK/+Mgr6bvzv7iTdrz2p7od+ZdS4P12fu7C+OD9rWrO7R2dYe++ancxkxUk1xT27wj312PB2dsBqoLQTKqyo0PDB38+wurMvccPbk1ec+tlx5wdRbr8JM3c97i+dO/mk9tSR5MfOrsYF6aXRUzffXn3t+iv/3AnDK2BkHT7o7PGiviwKvvPzCeeaEyOWxBqw6d54R5sd+VWlPI5CmzZzj/ezP1AX7zowQcEBiPv+LMktfanP6SZUOdNBWR+vZP70m++kfR9IAlneXpfXrX26Zfdnx1d/IZAIN6afa8k1t15tukvSPBbSPKp+fIJt371ERRazHsdr/f7QGNQb/4p3OLtu6+kFSmw1dOvJzsfN6j9/e06JaHx0o+cyNqBz3JqCrewfKKc9Ifcb0qC2NJcgK9WZze8dbynUPGXhr2Lin2DUd/Cf7uxmAPRvK0trYSICOplcuK//PjHQ9WnhzQKLkorCSj514P5hWmVL7y0dzfo7NO4NiC4iJIRlXKNBBo4Tzno5+uB+JT7w1GiSFv6uqRsWhjh9wUvNgKE0AlKdUU6pJ09rLaC6Z2DAb/2NAXM86ilJ8HIFsEyagaX/yvgayXTZbOEFSN7iC+iSTZFtkW3gdQG4ybwDI0Fvx6D9+6N7g544BEkIwqsmvQ+XE445jMaRKnHxO8XotQihrJLW6HUNgdt9fXV57ydEAl+eWG2hzN1VDnHAfHw8GfkMTLGe+aXXhb/7BtdsHrABIRJKPqfPLsYKRJZM/5odi8O/mjc2fGp4Z8/ZeUO0J1SXWCWMj6fvqE00tZa1Ohz6h3LjmFbfCDZM/fnJd/aohXJ/7lfVTPgf9q7PCBauXXj2wuM9757YlXklevOLQj/rKpNzvVWcc2FrtJQEmkqleer3//ZfQy/kXvrqVBe9Lc1so4iY6t+544jX0uDpnrRMkTEcIZ+I9PFSraM1tDuvfJkP7z1/4UW/35o8kD1VJ4dnvy1z6xO3lu4cdXzCpmc4Ci8/o6H33J32LJO/qcoHtWS/AmESm2nsX75FW4CLJ/u8ufGUMveY/XCx3s7UVlok4yKs4V3+1PWZViZoEDup99zQlUSznVs5GVlRSa8G7HO6or+nchhfeBoGlukMampP4Rf3uSvePDhctrqxdZkuZVyDmBV37zgpMLG0TtlJisjN5zVB56klFRPnN96gBZkj73J7n/KMYOhBt2j7UL55YuSm5piO9BbkroOI4tjfSI2+NWyiAeKJYF7vdsMix9/gf+1/6u9Tq6Zcwey9oHTmsrdxOAlOhJriGJPbBds42+elHxZnzy2/a+kMbceLJrttHu/VYtbk+UJF1zSYs6c6i1WWecHqerbx/TsYsn9MKO6LTPn3pv6WqMdrWNaltMTdOOWakj4P1uPnKhPeZAEHz4tGb9xy+cM9PB0TI3pqpYSXX61Utt+vBJwbv6tGl7caL3UEii3DL8RE9yDUnsgd293+rK7/Wrr0IqJX3l9mgO21cvmqu1qzt07eUdmjNDOumI+pwCZEn6y/Ojvc6xAbJU2umoT1m0L+72cYemPnf13sPjl3B+i8q3dEmr1q7uOHj7lTcqoOuzAjTVO8ez1/qDWQ/+Bw/6k48cz+gXL9ArDX8RJNeI3z4b/fGJ/VGaikh3bjqiHE3KybfuHjz4939cHJ9S8W+f7NDq83OvkXni4cHockjMITz7lMyTAHz0DIJkVJ+bHyp8cont1BHXqUuGJUmRgA5m864aHOJTWpsXbO87wHER/iJIrhE/Wx9/5r64I/7gFPTctefdnt6Fc4yv05fGnjB4yp3vm02POFO4oprMmeH8v3u/1Td+Nph+4Qzue7J8FWqC4vQjplQJFS7+0qe0tno3kpmMBHt7UXkIkmuENyBtkRscf+mjsbnIRk+8XhlJrl/+s+LmUK9d3aHrrpweOAMong+fEb069NIbkYLSLl5+s/QVapCfQuojx2p0L76FCZLhM4LkGrP67GgwHNuLum0guKWS/J6NK9EXVjnb/pn3BXcfANUscZr4/yxgVskR91J+U81feXd6ktdtCFY99WIM2mtxU6/TVT4C8lHzh5Fak3jm3lgnTUak4bHgni/d+Xi4qOs/bEGr1q4ub/qCV2kDqFWx34GJAr7yk+5zO9NUiakFC2dNaNdwi3bsD9bgve/d6/+gvfZWo/4RKxvw9BJUnuBGRigJr5TYZDi4B5c/bnWqzlfz5dPrruzQ2tUdSXOkgVpw3ZUd6jnS6bfx44Sx56hgBYeldtGpwwpiXvKoO4nIOW/37/3pas882BnIB0FyDfjlhtQ13hbMcT4CQR0FLUkj7oD39hrOhqjmEwTA857j/bu4uWIpX5ogW3WGf+XaDl/ARXEUB5+sgNs5KF2/fp6OnDeuDy3Lryj8PRudKDNZoHXqUU16eVfpp/S8+kf96h9xeoxOOqJe9cZp3Dve2qBrf+W0p7HOGbXs9Sqddkzt9gzV10mR4madAGV39CL/phimAkzw/Mu6gaKs9+2LpXVFWTNqHUFywP3ilSMkGW3Z1yIp9yD5hvuGDub3nf7W6W/38iOlWx4u/SW5vuHo3398NRr9bdgSLd80GXH+eVYuq90LH7Nbo/uMXmUAlWhHv9PjceRb/D2WO2NtRhW01BJUvtqNOmrE45udoHPeLOmTZ7dPe7wcvS19GYr9pwoCa7ln6MqYyhtNpN8BSaVLLatNTgfIrv5ytyPeX59fu1cFUVkIkgPstoeHFXtmXEgltK99IjgDwn7+dLS3+P98JBr8ffzMFh35ljpdd2WHjllUR49pjNhpsmfOKGNDgAD79R+d1LJ6ftniPLMrWAeNWu7wQGXhUBJgj7zgDgN2ewN++WJx56Uv1ax7L+90gmQjJ/jrPb5RF/e26KwTWvWP/2uOJOmqC+fouis79FF3koGLe2t41F6ChXPoSkb1u2xN7t2fY+4h87SjySSMtXOo/D23xa53DxQDQXKAjR3scHXyuF4fyO1A98imbA9KThB+wxPFnc3Os99tVrP7O3bRu2fpXUuT9yycvaxVa1d3pHy8lng96x88rbG8DQFK5Cv/nf1Ar9f2RI93yVLLalGd+9sxMl7+n/rrH5godxOAnHG6HXhWR88f0yt7W3Mu0/boS9kdlM4+fKce3LpIE+HS9FBOueP05raRT5ELpstGLZgzQxp0Z83bvjf7gsnfcWfp46gS1VhvNR4ORh38l3Y6o7BncI6PClL+00tkdM5RB5RPUfhdA85BKVNu75Gd4/k1LE/ez96J3RwtAcT7t0/GT6qTaaCvxwusD+/iZ80zq8X5DQhCHfwpt1LRe08sf+oHkC16kgMqNn8r3zEOIbcj2ZtVL2h6a7ikG4D0jJwT6qtvH9MXVkkPPjOlDZuntObTHXrspZDufHxMA25VzNig+rPvIwjzLJ49ob4DwdofHzituGNrAD8RJAfIM1tDOqRLuu6ece0e8Ppb85+fNeyeuXuz6qVnJdXp95ub9M6j/M0dC4VC+s0mqwt6ZroVOxydjHAGkML//UiLrr7dSaH46h3RCUaSDeiLvY/KCVHLDh3VUzvbVO4kFErzoVIRJJfRDfcNaf2WKX3yPS3aN2z10yempz3Um/ggORTKrmd54+ZoT/Q7js7ck1Anq4ikJ3fM9D1I/uxNzg9csu0DgGQ6O1t1YvekntnGVJP56myTCulo8Yt37G/g4iEqDEFyGXkTfXz/wdTTsF64dJukdnk9vfdvnqkLT8x8Vv69+6LrXH5k5rbMbQ1rX6he4+HCjmKhUOhgUJzOp8+lpBuA9D6zcvbBXuJjFtXppTecy2NvXVinz39ojvr6Qgd7myXp7y/kuBJk3/108Qcf9414JwdA4QiSy+Tux5NPMf3BU5t1Qc/Mg7fXr98iyelRDltp675mSbldusrm8uNJi/frgZfn57Rez9fuHFRnW50uPbdda+5P3gvdWC9Nuh1CsfmDAJCNqy6co+19IbW2RlO1OjtbtXa18/dre0I6bAGpFkHzzNZS1Ud2OpJ++0qbPnxS8t9XIFcEyWVy/9PJg8nYADlWd8eEtuyboalI5tyy7TGjwU87Kru3eNmh0gMv515BQ5K2vBnRFkV0zrKQXnHL/EhS9wKjf1oVrb187T37dcZbqWgBIHuxJ9WxM08mIkAOppt/4/T0F3sGVSMrK2nXEL8x8A9Bcon99Q39aqyLThTSc2SDrjivXV/68YDmzkx9FDnvrSNa82iLsglib7gvmvt76bmlK6ofO7jm4t6WaROAfGbl7JK1BQBQfkPuz0L3guImJLc0TGl0ql7jU+Uvd4fqQZBcQnc/PqLRCWk05r5PnOm8Bf/ysfSz3eUyYLtv2Bmo0VKCdzfVVKPMkAcA8BS7NN+i9gPa3N8sG4Ca0KgejDUtoZ9vjE+xmNVSnHJFXu7v/NnFP1j8ZlP5R04DANJL0Z9RVLETwRS7NN/pCweUz6RbQDp59zUaYw6V9ENJb5EUkXS9tfbbCcv0SvqZpK3uXXdaa7+c72tWi2suaSlJjeCzluY3i8iufmlhhrF13ojz7gXTD0gMzAOAoHAGtL04MFNnlfiV/+/dpZsqnPLYKIZCLshPSfo7a+2TxphZkjYaY+631m5KWO5ha+37C3idqvDIpugZdakm0TjrhFxfxzmY3vHMXH2md0A3PzZb/aEOLV+e+hn7huhJBoCge31/6euiDbv5yO8+lsF0qEx5B8nW2l2Sdrl/DxtjXpC0SFJikFzTvvGzQW19M6IJNwWiub64r3fjA0N5P/e0JcN6fHu7xsNOI/ceSH5g64u5bjfq77wjAAAfeVUfhsbLF6h+fMWssr02UAhjbeE9gcaYbkm/k3S8tXYo5v5eST+RtEPSTklXWWufT7GOyyVdLkldXV2nrFu3ruB25SoUCqm+PnUUGw6Hc86runXTCYpebLL6QPez+v/bu/M4Oco6j+OfX8+RYTIJOYbJATkghECEsCQTgqzIRBQCSJAXuCCoQRDQqBtdccVjPVh3UZYVWTEr4RJW1qyLqGFBEKKAymEOIeEQTEIIQyLDZJJMQmfuZ/+o6kxPT/dMn9XVM9/369Wv1FRXV1X/ptLz66d+z/OMymAX8ed07+Z6AC6YsTbpuWzbXc3vts/wj+e4ZPbGrI9RTiddeB+q503f2OdW1uPbDqVx33j/px680vZYLVj6xx0uCnFdFepcEgV5bvmQ7P2l8x6GelyCkiqOildwEn8Hv9h8PF1UEqGLD80Org1rbxRWbT0OIJC/CdFolJ9vXQBAw6T11Fb3DPIKXZeFFo3Cb944gpljm5hVG96xqxcuXLjOOVef7Lmcxz8wsxq8RPiz8Qmybz0wzTm3z8zOAn4BzEy2H+fcCmAFQH19vWtoaMj11DK2Zs0aRo9OPWRaa2sr8weqPUjw/Qf3AF4TckUZLL9qPNCQ/TltBjDq6qbT1dX/XGJ1wh4j3RjGH2PyW+1sbx1xIEEGo2ziiTTM7f0gWXVH/HEiB7bL9LjDRb6vq0KeS6Igzy0fkr2/dN7DUI9LUFLFUfEKTuLvoO6tHra3Qg+RQD+bv7Ey1pGOQI67Zs0a2OqVDL687x3Uz9476Gt0XRbGA2vfPjAVOcDaphrWNnnLpdZnKafRLcysAi9Bvsc5d1/i8865VufcPn/5QaDCzGpzOWYp2bDVS5AnHGwsvyofF4b3gfPq7oG3uu7vqrjp0uymZ714fv8Plj9t7VtT8XZ7v00OKPSA8SIikr4Tpw2eLBbC9hbv79XY5PNjFURFxDtmU4pSQQlGfIKcKH6ys1KQdZJsZgbcDrzknPtuim0m+tthZif6x9uZ7TFL1ZfPy26UiVR27Dmo37r4oXZqa6vzegvprd19b1v1JKnQue7SKirK4MYl2SXnIiKSf0fWQTGGRov9mbjivcH9Tair6QSgO42ZaaXwrru0iluXjuvTenzXbwdoZQuhXMot/hb4CLDRzJ71130ZmArgnPshcAHwSTPrwptD4yKXjyLoEvDFu3tLEvJd89QS7V/zd/Ojhbvw0umcV1tdzfKrVNslIiK9Zh4a3N+F9x2zlx89MwKNlVw8X//JrgPL8SN5HVTp5RJv7CytFDCX0S1+zyBXonPuZuDmbI9Rylr8GvWGY/N/22dve/8kOTYUW0UBRs/oHLz/g4iICADX/s+uwTcqgNrgR7mTOEtvaTkwmdmCI/umlwuOquCx5zvpLrF8QjPuFcBtv+7tv3jJu/M39E3Ev4GVbG762BBzo/PypT2zW3PluopERMT3ut9aeMxh+uMwnMQS5JEj4OOn9+3Am89cKEi6ggtg/ZYuAKpyHjukL/Pz1q4k9VaxOuFZk/N50IET5ZsuraJ6BPznJ0qrt6qIyHD0WlOwnab+YfGYQI8n4fC9ywfOCR7fWDqd95QkF0CsPGHR3Px22Cv3e+4O1CnhnONzT5KN1DVDy27rW2t90yD/GUREpNi8u4N3P15anaay473XG1aP54bV4/nDpspin5D4qv2U6Me/ayvuiWRASXIBnV2f37FvKsq85DXZ6BIxtbW511vEjhPviuUtfP0nu4hqhj0RkZJSWea13GwPoNNU/IysxRUBIjz1Wvrjn0v2Vj87+O/9ug+V3uhXSpJLSFWF9wHnCtxzd3RV8sr67bt6P2A1HrKISGmYdYjXctcVQKepWx4sbmv1Oe/YCfQweXQbDHBXVPLnyuUtrHzSu8YGGjygFGc3VJKcZ4X8Fj1qRHfB9h1v+tjBb4XU5LeSRERECuSUw/cTVMK4tck7zvgi9dOaNRGuPm1nn4mxSmz+ipLy+xejfa6sdCdOC7o+PltKkvPs7kcLV48wvroz6fponhPzE6e0M9gH6r9fplpkEZFSUIwGvKvPD8Otda8++efr1YGwUO56zGtUq67MbMrpFb8ujbrkPI+/IJt2ePezKgswXvFhY9tZ29h//bIf5fdi6/uB2n84uDH9J/wTEZFQ8z7Lr1jeknKLE44oY+mig/NytNoQ3FofUdZDe3eEfR1qDyy06y5O70vRmINg935oLs5s6RnTlZNnsXECj56S/yx5cg0MNIbxTZcG88295iAVJIuIlJJjD0mdHMf8aUtuJX3LH9qT0+vzrap88M7ukr34L1zp1hu/93gvTymV34mS5Dxa9cy+A8uXN+R/pr1k12B8DXRQRfETxxagmVxERArm5Ol7OHZKGUdMiHDUpAi3Lh3H595fxaQxxuWn5aeB5Vk/yR4dhkoLoMbvx1Pozu7D0T1P9DYF189IvyjhjLnFv8OQCZVb5NH967x65IpIcAlrMXoSH53XCUtERCQIy87pW0oxe2o1117s/a26fXXuZXuxxsFli8ORJR9S08UbrYNvJ5l74gWvj1RVBVx1RnbD7D28Psp9z7Rx45Kq0I58oZbkArj2guA+ILa95X0sjSrYIfvfE3nHjEIdS0RESt3UPIzXnw/Tx+8v9ikMWbFyiUsXZp983Pt0Gz0Orvnv8HbiU5JcAPmY0CNdsQv1lGPyPatQ6oKhMHTIEBGR8Ii//R4Wg/XjkdzNOzLzfGBswjxrHV15OpkCUJKcJwP1GA7CKTML86usG1kaYxmKiEjxxG6/V4doFmi15xRGrvnO9UvGcevScdT5VRo9AUxyky0lyTnY8GqUK5a39LlgCjH0Wzry3Xr9nhm7gB4+MPtNbl06TsO+iYgMA81ZzrwRu6v56TPDUY8shbH0lt5855x5uX0jGjPSS0HDPNCFkuQc3PyrvnU0c6aX8YM0Z5vJnnfraNvOwh5l7vQerj6t9yB1Y3SpiIgMdXc/mduEWDMPVfPtUBYb5vaceZUsXlCT075qR4c/r9AwBTlI/PbzmbPyMwh7Oh7acjjnB3Y0mDOtkld2hLe4XkREsjfhYOPNPY6XGnv63B2dNMa49uKxA772gbVvF/r0JARWP9t7lyHXBBlg5qRynnw5xAXJqCU5Y1csb2HpD/vX43zu/UHfYorw9MvB1QufcnRghxIRkYB965LkifCO3Y6v3rNrwNc+sM4birRCQ+gPaT99ymsoy1dZ6dHT87OfQlJLchY6eyAaN4lHJvOV56qmopt9nd53m/WvdgZ2XG8MQ7Uki4gMVVPGG6/vdFSUwchKqKyAplZ4c8/AVaOxW/AnH5X/SbSkuL7y4xaaEsaa/myeGgVrSyCvUJKcgea4O0q3PxZcghrvE+/ezQ2rxwMRtu8Mvktoue49iIgMSV+7sH9rciYjGXx44ah8no4UWXNztF+CDMOr7lxJcgbWNNYeWN6wNbc57nNRZo5uB3v3B9snNMgWcxERCY8Xt0WZPXX4JEcC37yvt5V3zvQyJo0p44KTc69FLiVKkjPw1tv9x0GrKELLakWZo7sr3ANwi4jI0HHj/7UR9lvjkl9tfo6xpKGKd80enl+QdPM8A+3d/avVa4owfnDNCK/MoivEA3CLiEjpO2pSemnCO48Kd5tbVPNiZSR+vOzhmiCDWpIz4pJMbTljYvAhrBvVSfPbIZrWSEREhqQvnDemz893rm7lxW1dfPPCKr9Dd9g5IMKGv5Zz0hG6/ZqO15qifOte765BZJjP6K0kOSP9r5Yz5wUfwmMnRHnxryMH31BERCSPPnba6GKfQla27DyIk47YW+zTKAn/+rPespqrFw/vGRRVbpGF+NtPU/M8HXQ6ptYOvo2IiMhwF/Gn/dq9X4M4pys2xfhXL6gaViNZJKOW5Ix4U0J/4bwx3tAoqnESEREJrfIyR0c3tHepTTAd6zb1JjbT6oZ3ggxKkjNy5fxXmT9/PgC1tdWoQVdERCS8Rlb20LEfut0wL65N04pHvFKLYozcFUYKwxBQq/HbRURE+pk4ujgTf5WiZbe1HCi1+MQZw7sWOUYtySXLK/3QBB8iIiLJHTcxyktvqqN7OqId3r9jDoI5hwdbavFaUzSU5R1qSS5RV87fogRZRERkAF5Hd69RSVJ7YO3bB5b/7WPB5xa/2RjO4fmUJIuIiIgMY7/8YzsA1UWaguG1t7qLc+BBqNxCREREZJh5eH2UVWva6HH4A+XBP10cbC1yRQQ6e2DXPjf4xkWgJFlERERkCIufRW8gtQHPolhVCZ1t0B7OagslySIiIjL0RaNQEjNpF0CqBLmiDCrLYfxo4/Nnjwj4rGDMSGNvm6O7J/BDp0VJsoiIiAxhDojwq5drOP+EfcU+mcBta+6dICRsHf5nTS7n9Z3hHaZPSbKIiIgMWZVlPXR0R3i1pYobVlcxaVQ7b+6toIdaukdHOWlW/+blK5e34ICqcm+a5k6/X1lZBM48oZLFC2qCfRM5uM5vRY6EcICP044p49GNSpJFREREAjdnUpS1jaOJDQO3Y++IA8u3r27j9tVtTDjYWNIwgrEj4Es/7S1NaEuole3qgfvXdXD/uhYiBrd8MnXLbHNzlK/9rO1Agj2Y6y6tyqomOBqNUu2/7rWmKD/9Qwev7+xhf4eXGMcmCFl2dvgmCKmtrQYGr5UulpySZDNbBNwElAG3Oee+nfD8COBuYB6wE7jQObc1l2OKiIiIpKthVjtrG2OjJ8TGTHbEyjAA3tzjuP6XfZO1s06o5KFnOygzGDfKiBi07HW0+0lvj4Mrlrf0ec24Gmjr8J5ry7CB9Es/agPaKIvQp0b32CllvPxGN50D1u0mTzR74gaNmD11mBZk5yDrJNnMyoAfAO8DGoE1ZrbKOfdi3GaXA7ucc0ea2UXAd4ALczlhERERkUxcfVpzv3Wtra3Mnz+f7z+4hw1be5t7IwY3Lqmiurqa896ZfH+pRotoSVLy/OFTqjj1uGpWPbOPx1/o4O/fX8W0umq2NUfZF4XXm+Hep3v3ldiJ7fnXMx9DuDwCk8cbjc2OHgfHHBb+aTGuXN7CipDVTOfSknwisMk5twXAzFYC5wLxSfK5wDf85XuBm83MnHPhHBBPREREhpXPnHVwxq+ZVlfNrUu9RPfOR9vZvssxeazR2OIO1P4unj+Cs+t7p8RevKCGxQt69zG11mvZnT0Vzpjr7euJjd2s2dzJ2Boj2uHY3+aVfFREYNEJlZw8I8KudtjpJ+PVlcFPIV0oYUwMLdt81cwuABY55z7u//wRYIFz7tNx2zzvb9Po/7zZ36bfVzozuxK4EmDChAnzVq5cmdV55aKtrY2entT3MyKRCFVVwdb0pDqnfJ7LQO+7GO95qAnTdTXYuSQqtd9/sveXznsY6nEJShCfVzKw4fo7yPT/MAz9mEh6Fi5cuM45V5/suVxakpP1k0zMuNPZxlvp3ApgBUB9fb1raGjI4dRERERERLKXS5FKIzAl7ufDgO2ptjGzcuBgoAURERERkRDLpSV5DTDTzA4H3gAuAi5O2GYVsAR4CrgA+E069cjr1q1rNrMnDVufAAAGZUlEQVTXcjg3GVwt0L8ngxSCYh0cxTo4inWwFO/gKNbBCUOsp6V6Iusk2TnXZWafBh7GGwLuDufcC2Z2LbDWObcKuB34LzPbhNeCfFGa+z4k2/OS9JjZ2lQ1OJJfinVwFOvgKNbBUryDo1gHJ+yxzmmcZOfcg8CDCeu+FrfcBnwwl2OIiIiIiAQt/APniYiIiIgETEny8LWi2CcwjCjWwVGsg6NYB0vxDo5iHZxQxzrrcZJFRERERIYqtSSLiIiIiCRQkiwiIiIikkBJ8hBiZneYWZM/HXhs3fFm9pSZbTSz+81sdNxzc/znXvCfr/LXz/N/3mRm/2FmyWZOHNYyibWZXWJmz8Y9eszsb/znFOtBZBjrCjO7y1//kpl9Ke41i8zsZT/W1xTjvYRdhrGuNLM7/fXPmVlD3Gt0XQ/CzKaY2W/96/QFM1vmrx9nZo+Y2V/8f8f6682P5SYz22Bmc+P2tcTf/i9mtqRY7ymssoj10f41325mVyfsS58jA8gi1pf41/MGM3vSzI6P21fxY+2c02OIPIB3A3OB5+PWrQFO9ZcvA/7ZXy4HNgDH+z+PB8r85T8C78SbVvxXwJnFfm9he2QS64TXHQdsiftZsc5jrPEmNFrpL1cDW4HpeGO5bwaOACqB54DZxX5vYXtkGOtPAXf6y3XAOiDi/6zrevBYTwLm+sujgFeA2cD1wDX++muA7/jLZ/mxNOAk4Bl//Thgi//vWH95bLHfX5geWcS6DpgP/Atwddx+9DmS/1ifHLtegTPjrutQxFotyUOIc+4J+k/7PQt4wl9+BDjfXz4d2OCce85/7U7nXLeZTQJGO+eect6VejfwgcKffWnJMNbxPgT8BECxTk+GsXbASDMrBw4COoBW4ERgk3Nui3OuA1gJnFvocy81GcZ6NrDaf10TsBuo13WdHufcDufcen95L/AScCjedXmXv9ld9MbuXOBu53kaGOPH+gzgEedci3NuF97vaFGAbyX0Mo21c67JObcG6EzYlT5HBpFFrJ/0r1uAp4HD/OVQxFpJ8tD3PLDYX/4gMMVfPgpwZvawma03s3/01x8KNMa9vtFfJ4NLFet4F+InySjWuUgV63uBt4EdwDbgBudcC15cX497vWKdvlSxfg4418zKzexwYJ7/nK7rDJnZdOAE4BlggnNuB3gJB16rJqS+hnVtZyDNWKeiWGcgi1hfjne3BEISayXJQ99lwKfMbB3erY8Of3058C7gEv/f88zsNLxbeYk0TmB6UsUaADNbAESdc7F6T8U6e6lifSLQDUwGDgc+b2ZHoFjnIlWs78D7w7UW+B7wJNCFYp0RM6sBfgZ81jnXOtCmSda5AdZLggxinXIXSdYp1klkGmszW4iXJH8xtirJZoHHOqdpqSX8nHN/xiutwMyOAs72n2oEHnfONfvPPYhXi/hjem934C9vD+yES9gAsY65iN5WZPB+B4p1FgaI9cXAQ865TqDJzP4A1OO1SMS37CvWaUoVa+dcF/C52HZm9iTwF2AXuq7TYmYVeInEPc65+/zVb5rZJOfcDr+coslf30jya7gRaEhY/1ghz7sUZRjrVFL9DiROprE2sznAbXh9F3b6q0MRa7UkD3FmVuf/GwG+CvzQf+phYI6ZVfv1m6cCL/q3Qfaa2Ul+j/SPAr8swqmXnAFiHVv3Qby6KuDALSfFOgsDxHob8B5/JICReB2c/ozX+WymmR1uZpV4X1hWBX/mpSdVrP3PjpH+8vuALuecPkPS5MfmduAl59x3455aBcRGqFhCb+xWAR/1r+2TgD1+rB8GTjezsf6IAaf768SXRaxT0efIIDKNtZlNBe4DPuKceyVu+3DEOuiegnoU7oHXSrkDr7NBI96ti2V4vUtfAb6NP8uiv/2HgRfwag6vj1tf76/bDNwc/xo9so51A/B0kv0o1nmMNVAD/K9/Xb8IfCFuP2f5228GvlLs9xXGR4axng68jNcx51FgWtx+dF0PHut34d0+3gA86z/OwhtpaDVeq/xqYJy/vQE/8GO6EaiP29dlwCb/8bFiv7ewPbKI9UT/+m/F65DaiNcZVZ8j+Y/1bXh3n2Lbro3bV9FjrWmpRUREREQSqNxCRERERCSBkmQRERERkQRKkkVEREREEihJFhERERFJoCRZRERERCSBkmQRERERkQRKkkVEREREEvw/VpQohFp/WAkAAAAASUVORK5CYII=\n", 198 | "text/plain": [ 199 | "
" 200 | ] 201 | }, 202 | "metadata": { 203 | "needs_background": "light" 204 | }, 205 | "output_type": "display_data" 206 | } 207 | ], 208 | "source": [ 209 | "fig, ax = plt.subplots(figsize = (12, 7))\n", 210 | "for ix, row in USRec.iterrows():\n", 211 | " ax.fill_between(row,FFR.max()+1, color='gray', alpha=.3)\n", 212 | " ax.plot(FFR, color = 'CornflowerBlue')\n", 213 | "ax.yaxis.grid(True)\n", 214 | "ax.set_title('Federal Funds Rate')\n", 215 | "ax.set_ylim((FFR.min()-.2).iloc[0], (FFR.max()+1).iloc[0])\n", 216 | "plt.show()" 217 | ] 218 | }, 219 | { 220 | "cell_type": "code", 221 | "execution_count": 72, 222 | "metadata": {}, 223 | "outputs": [ 224 | { 225 | "data": { 226 | "text/html": [ 227 | "
\n", 228 | "\n", 241 | "\n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | "
PeakTrough
231953-07-011954-05-01
241957-08-011958-04-01
251960-04-011961-02-01
261969-12-011970-11-01
271973-11-011975-03-01
281980-01-011980-07-01
291981-07-011982-11-01
301990-07-011991-03-01
312001-03-012001-11-01
322007-12-012009-06-01
\n", 302 | "
" 303 | ], 304 | "text/plain": [ 305 | " Peak Trough\n", 306 | "23 1953-07-01 1954-05-01\n", 307 | "24 1957-08-01 1958-04-01\n", 308 | "25 1960-04-01 1961-02-01\n", 309 | "26 1969-12-01 1970-11-01\n", 310 | "27 1973-11-01 1975-03-01\n", 311 | "28 1980-01-01 1980-07-01\n", 312 | "29 1981-07-01 1982-11-01\n", 313 | "30 1990-07-01 1991-03-01\n", 314 | "31 2001-03-01 2001-11-01\n", 315 | "32 2007-12-01 2009-06-01" 316 | ] 317 | }, 318 | "execution_count": 72, 319 | "metadata": {}, 320 | "output_type": "execute_result" 321 | } 322 | ], 323 | "source": [ 324 | "USRec" 325 | ] 326 | }, 327 | { 328 | "cell_type": "code", 329 | "execution_count": 73, 330 | "metadata": {}, 331 | "outputs": [], 332 | "source": [ 333 | "USRec.iterrows?" 334 | ] 335 | }, 336 | { 337 | "cell_type": "code", 338 | "execution_count": null, 339 | "metadata": {}, 340 | "outputs": [], 341 | "source": [] 342 | } 343 | ], 344 | "metadata": { 345 | "kernelspec": { 346 | "display_name": "Python 3", 347 | "language": "python", 348 | "name": "python3" 349 | }, 350 | "language_info": { 351 | "codemirror_mode": { 352 | "name": "ipython", 353 | "version": 3 354 | }, 355 | "file_extension": ".py", 356 | "mimetype": "text/x-python", 357 | "name": "python", 358 | "nbconvert_exporter": "python", 359 | "pygments_lexer": "ipython3", 360 | "version": "3.7.4" 361 | }, 362 | "toc": { 363 | "base_numbering": 1, 364 | "nav_menu": {}, 365 | "number_sections": true, 366 | "sideBar": true, 367 | "skip_h1_title": false, 368 | "title_cell": "Table of Contents", 369 | "title_sidebar": "Contents", 370 | "toc_cell": true, 371 | "toc_position": {}, 372 | "toc_section_display": true, 373 | "toc_window_display": false 374 | } 375 | }, 376 | "nbformat": 4, 377 | "nbformat_minor": 2 378 | } 379 | -------------------------------------------------------------------------------- /Log Returns.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 22, 16 | "metadata": {}, 17 | "outputs": [], 18 | "source": [ 19 | "import pandas as pd\n", 20 | "import numpy as np\n", 21 | "import scipy as sp\n", 22 | "import scipy.stats\n", 23 | "import matplotlib.pyplot as plt" 24 | ] 25 | }, 26 | { 27 | "cell_type": "code", 28 | "execution_count": 28, 29 | "metadata": {}, 30 | "outputs": [], 31 | "source": [ 32 | "import warnings\n", 33 | "warnings.filterwarnings('ignore')" 34 | ] 35 | }, 36 | { 37 | "cell_type": "markdown", 38 | "metadata": {}, 39 | "source": [ 40 | "# Adjustification of Log Returns " 41 | ] 42 | }, 43 | { 44 | "cell_type": "markdown", 45 | "metadata": {}, 46 | "source": [ 47 | "The adjustification of using log return/growth is to avoid positive bias of arithmic return. An example will show the difference." 48 | ] 49 | }, 50 | { 51 | "cell_type": "markdown", 52 | "metadata": {}, 53 | "source": [ 54 | "Suppose you are hold a stock share for four periods." 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": 6, 60 | "metadata": {}, 61 | "outputs": [ 62 | { 63 | "data": { 64 | "text/html": [ 65 | "
\n", 66 | "\n", 79 | "\n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | "
price
0100
1200
2150
390
\n", 105 | "
" 106 | ], 107 | "text/plain": [ 108 | " price\n", 109 | "0 100\n", 110 | "1 200\n", 111 | "2 150\n", 112 | "3 90" 113 | ] 114 | }, 115 | "execution_count": 6, 116 | "metadata": {}, 117 | "output_type": "execute_result" 118 | } 119 | ], 120 | "source": [ 121 | "data = pd.DataFrame([100, 200, 150, 90], columns = ['price']);data" 122 | ] 123 | }, 124 | { 125 | "cell_type": "markdown", 126 | "metadata": {}, 127 | "source": [ 128 | "To calculate the simple arithmetic return:" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": 13, 134 | "metadata": {}, 135 | "outputs": [ 136 | { 137 | "data": { 138 | "text/plain": [ 139 | "price 0.116667\n", 140 | "dtype: float64" 141 | ] 142 | }, 143 | "execution_count": 13, 144 | "metadata": {}, 145 | "output_type": "execute_result" 146 | } 147 | ], 148 | "source": [ 149 | "data.pct_change().mean()" 150 | ] 151 | }, 152 | { 153 | "cell_type": "markdown", 154 | "metadata": {}, 155 | "source": [ 156 | "We found a ludicrous outcome, that even if you lost money comparing to your initial investment, you have an average of $11.67\\%$ annual return." 157 | ] 158 | }, 159 | { 160 | "cell_type": "code", 161 | "execution_count": 19, 162 | "metadata": {}, 163 | "outputs": [ 164 | { 165 | "data": { 166 | "text/html": [ 167 | "
\n", 168 | "\n", 181 | "\n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | "
price
0NaN
10.693147
2-0.287682
3-0.510826
\n", 207 | "
" 208 | ], 209 | "text/plain": [ 210 | " price\n", 211 | "0 NaN\n", 212 | "1 0.693147\n", 213 | "2 -0.287682\n", 214 | "3 -0.510826" 215 | ] 216 | }, 217 | "execution_count": 19, 218 | "metadata": {}, 219 | "output_type": "execute_result" 220 | } 221 | ], 222 | "source": [ 223 | "logReturn = np.log(data) - np.log(data.shift(1)); logReturn" 224 | ] 225 | }, 226 | { 227 | "cell_type": "markdown", 228 | "metadata": {}, 229 | "source": [ 230 | "We can that annual log return gives us a fairly precise measurement of the performance, annual growth rate of $-3.51\\%$" 231 | ] 232 | }, 233 | { 234 | "cell_type": "code", 235 | "execution_count": 20, 236 | "metadata": {}, 237 | "outputs": [ 238 | { 239 | "data": { 240 | "text/plain": [ 241 | "price -0.03512\n", 242 | "dtype: float64" 243 | ] 244 | }, 245 | "execution_count": 20, 246 | "metadata": {}, 247 | "output_type": "execute_result" 248 | } 249 | ], 250 | "source": [ 251 | "logReturn.mean()" 252 | ] 253 | }, 254 | { 255 | "cell_type": "markdown", 256 | "metadata": {}, 257 | "source": [ 258 | "# Relations of Log Return and Simple Return" 259 | ] 260 | }, 261 | { 262 | "cell_type": "markdown", 263 | "metadata": {}, 264 | "source": [ 265 | "The log return is calculated by\n", 266 | "\n", 267 | "$$\n", 268 | "r_t = \\ln \\frac{P_t}{P_{t-1}} = p_t-p_{t-1}\n", 269 | "$$\n", 270 | "\n", 271 | "where $p_t$ is $\\ln P_t$." 272 | ] 273 | }, 274 | { 275 | "cell_type": "markdown", 276 | "metadata": {}, 277 | "source": [ 278 | "We take the exponential to recover single return $R_t$\n", 279 | "\n", 280 | "$$\n", 281 | "e^{r_t} = \\frac{P_t}{P_{t-1}} = 1+R_{t} \\quad \\Longrightarrow \\quad R_t = e^{r_t}-1\n", 282 | "$$" 283 | ] 284 | }, 285 | { 286 | "cell_type": "code", 287 | "execution_count": 29, 288 | "metadata": {}, 289 | "outputs": [], 290 | "source": [ 291 | "R = np.linspace(-1,1,100)\n", 292 | "r = np.log(R+1)\n" 293 | ] 294 | }, 295 | { 296 | "cell_type": "code", 297 | "execution_count": 47, 298 | "metadata": {}, 299 | "outputs": [ 300 | { 301 | "data": { 302 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAJXCAYAAAAAbSnZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nOzdZ3gV1f728e8kpBISCCEBQu8tQOhIC02KCCgoTWwgRFHxKD6KR+UcjyL2QrFgASyAiqAoiihEUHqkV2mBhBIgQArpez0vNvKnBEjfO8n9ua5cZM9eM/PbyxBuZ2atZRljEBEREZHiw8XRBYiIiIhI/lLAExERESlmFPBEREREihkFPBEREZFiRgFPREREpJhRwBMREREpZko5ugBnEhAQYGrUqOHoMq4pKSmJ0qVLO7qMIkv9l3vqu7xR/+WN+i/31Hd545T9l5kOZw9DajyRx2ynjDEVsmqmgHeJGjVqsHHjRkeXcU0RERGEhYU5uowiS/2Xe+q7vFH/5Y36L/fUd3njlP139jB81BM6v4rVdkzUtZrpFq2IiIiIM0s6BStfB2OgbDUYvwXaPHDdXXQFT0RERMRZ7foBFo+H1Hio1wsqhoCb5w13U8ATERERcTbJZ+Hnp2HLXKjYFG5bDEGNsr27Ap6IiIiIMzEGvhgMMX9Bl6eg85Pg6pajQyjgiYiIiDiD1ERwdYdS7tDjP+DmBcEtc3UoBbwciI+PJzY2lvT0dIec38/Pj127djnk3MVBYfafm5sbgYGB+Pr6Fsr5RESkiItaA4sehKZ3QtdnoEbHPB1OAS+b4uPjOXHiBMHBwXh5eWFZVqHXkJCQQJkyZQr9vMVFYfWfMYbk5GRiYmIAFPJEROTa0lNgxYuwepp9hGzNzvlyWAW8bIqNjSU4OBhvb29HlyJOzrIsvL29CQ4O5ujRowp4IiKStePbYMEDcHIXtLwXbn4RPPLnQoQCXjalp6fj5eXl6DKkCPHy8nLY7XwRESkCjA3Sk2DEAqjbI18PrYmOc8ARt2Wl6NLPi4iIXCV2N/zxlv37Ss3gkb/yPdyBAp6IiIhIwbNlwuqp8EFn+5+JJ+3bczj9SXbpFq2IiIhIQYo7CIsegsOrof4tcOvb4FOhQE+pK3iSr+6991769euXo33OnDlDUFAQ+/fvL6Cq8t/gwYN58803HV2GiIg4u4xU+LQPnNgOA9+DoV+AT2CBn1YBTxxu8uTJ9O3bl9q1a1+2vVu3bliWhWVZuLm5UbduXWbOnFng9axcuZL+/fsTHByMZVnMmjXrqjaTJk3ixRdf5Ny5cwVej4iIFEGJJ+0rUpTygP7T4MHV0Hw4FNLz2Qp4JVRGRoajSwDg/PnzfPTRR4waNeqq9zZt2sTkyZM5duwY+/btY+jQoYwdO5ZNmzbl6lzh4eH85z//uWG7xMREmjRpwjvvvHPNkdMhISHUqlWLzz//PFe1iIhIMWUMbP0KprWEyFn2bXV7QNmqhVqGAl4JEB0djWVZzJs3j27duuHp6cmcOXMK5dxhYWE89NBDPPPMMwQEBBAYGMiECROw2WwALFmyBBcXFzp06HDZfvv37+fs2bP07t2bihUrUr16dcaOHYsxhh07dhRozX379mXy5MkMHjwYF5dr/xXp378/c+fOLdBaRESkCEk6BV+NhG8fgAoN8m3S4txQwCsBNm/eDMArr7zChAkT2LFjBwMGDLhm+8mTJ+Pj43Pdr1WrVmX7/F988QWlSpVi9erVTJs2jbfffpv58+cDsGrVKlq2bHnVlCKRkZH4+vrStGlTAI4fP86TTz6Ji4sLLVq0yGkXFIg2bdqwfv16kpOTHV2KiIg42t/LYHpb2LsUevwX7vsJyte+8X4FRKNoS4AtW7bg6enJ119/TZ06dQA4dOgQf/zxR5ZBLzw8nDvvvPO6xwwODs72+Rs1asQLL7wAQL169Zg5cya//fYbw4YNIyoqikqVKl21T2RkJImJifj5+WGz2UhOTsbd3Z033niDRo0aXWx36NAhtmzZct3AWlAqV65Meno6R48ever5QRERKWks8AuGgYshqNGNmxcwBbw8+O/iHew8Gl9o58vMzCSkajkm3do4R/tt3ryZvn37Xgx3AEuXLuXUqVNZBiN/f3/8/f3zXO8//rkK94/KlSsTGxsLQHJyMkFBQVftExkZyejRo3nyySeJj4/nmWeeoU6dOjz22GOXtbve55g8eTKTJ0+++Do1NRXLsnj99dcvbvvpp5/o1KlTrj7XP8/n6QqeiEgJtX85nNwL7cLtz9nV7gbXebSnMDlHFVKgtmzZQpcuXS6+/v3335k4cSKzZs2iefPmV40Eze9btG5ul0/iaFnWxWfwAgICOHPmzFX7bNq0iZtuuok6derQokULPvjgA2bMmMG2bduy/TnCw8PZvHnzxa++ffteta1Vq1bZ/hxXiouLA6BChYKdy0hERJxMWhL8+AR8dhv8NQcy0uzbnSTcga7g5UlOr6TlVUJCAmXK5GwR4qSkJPbv33/Zc2tdunShadOmfPrpp9SsWfOqffL7Fu31hIaGXjUNycGDB4mLiyMkJOTiturVqxMaGspnn33Gq6++Ctz4c1x5JdLHxwd/f//LrmTmxfbt26lcuXKWVyBFRKSYOrwWFj1on7y4/cPQ7Vko5e7oqq6igFfMbd26FYDmzZtftv3QoUPUqFEjy33y+xbt9fTq1YunnnqK06dPU758ecB+e9bFxYWGDRte1rZnz54sWLDgYsCD63+O3EpMTGTfvn0A2Gw2Dh8+zObNm/H396datWoX261atYrevXvn67lFRMSJJZyA2f2hTBDc+wPU6Ojoiq7Jea4lSoHYsmULdevWxcfH5+K26OhoKlaseNXIVUcICQmhTZs2zJs37+K2yMhIateufdUcdD179mTfvn0Xp0kpqM+xceNGQkNDCQ0NJTk5mUmTJhEaGsrzzz9/sU1KSgoLFy7kgQceyNdzi4iIEzoXbf+zTBAM+cw+abEThzvQFbxiLzw8nPDw8Mu2HTlyhMqVKxfI+a683RoREXHDNpMmTWL8+PGEh4fj6urKyy+/zMsvv3zVft27d8cYc/F1Tj/H+++/n61b3GFhYZedJysff/wxbdu2pV27dtk+v4iIFC2WLQMiXoGVr8KweVC3J9Tr5eiyskVX8EqgRo0aERUVRUhIyGWDFhyld+/ejBs3jujo6Bzt58jP4ebmxtSpUwv1nCIiUohidxO66SmImAyNb4Pglo6uKEd0Ba8E8vPzIzIy0tFlXObRRx/N8T6O/BxjxoxxyHlFRKQQbPgIfn4GL8sd7pgNjQc6uqIc0xU8ERERkUu5ekDtbmxoPbVIhjtQwBMREZGSzhjY+Als/tL+OvQuGDaXNI9yjq0rDxTwREREpOSKPwqfD4If/gW7f7SHPcuyfxVhegZPRERESh5jYNvXsGQCZKZD39eh1agiH+z+oYAnIiIiJc+xLfDtA1C1LQx8D8rXdnRF+UoBT0REREqOU/sgoA5Ubg4jFkDtruDi6uiq8p2ewRMREZHiL/ksLAyH6W3gmH0ZT+r2KJbhDnQFT0RERIq7/Svgu3GQcBw6PQEVGji6ogKngCciIiLF18/PwNrpEFAPRi2DKkVrRYrcUsATERGR4surHLR7CLo/D25ejq6m0CjgiYiISPGRkQorJkP1DlDvZujypKMrcggFPBERESkejm62D6Q4ucs+eKLezY6uyGE0irYEqFKlCm+++eZl27Zt24anpyc7d+7Ml3N8/fXXeHh4EBUVdXHb+PHjqV27NidOnMiXc4iIiGQpMx0iXoGPukPyGRj+tf2WbAmmgFcCtG/fng0bNly27bHHHmP06NE0atTosu2TJ0/Gx8fnul+rVq266hyDBw8mJCSEF198EYDXX3+duXPn8vPPPxMUFFRwH05ERGTPEoiYDI0GwkNrSvSVu3/oFm1efXrL1dsaD4Q2D0Daefjijqvfbz4cQkdA0mn46u6r3299PzQZBOei4duxFzd7ZWbA6KU5LrF9+/bMmDHj4utFixaxadMmvvrqq6vahoeHc+edd173eMHBwVdtsyyLyZMnc8stt1C7dm1eeuklli9fTt26dXNcr4iIyA3ZbPZbsUGNoWF/uOcHqNnJ0VU5DQW8EqBdu3Y88cQTxMXFUbp0aSZMmMDzzz9P+fLlr2rr7++Pv79/rs5z880307p1a5599lkWL15M69at81q6iIjI1c4cgkUP2ZcbeyQSylRUuLuCAl5e3ffjtd9z977++6XLX/99vyqXvZ+ckECZXJTYsmVL3N3d2bhxI5s2baJUqVKMGzcuy7aTJ09m8uTJ1z3eTz/9RKdOV/9FWr58OVu2bMEYo9uyIiKS/4yByFnwy7NguUCfV8FH/95kRQGvBPDw8CA0NJTFixcze/ZsvvzyS9zc3LJsm9tbtFu2bOH2229n6tSp/Pjjj0ycOJGlS3N+O1lERCRLmekwdxjsWwY1O8OAGVC2qqOrcojE1AwWbzl63TYKeCVE+/bteeedd+jZsyf9+vW7Zrvc3KKNioqib9++PP7449x///20adOGpk2bEhERQVhYWB4rFxERAVzdIKAu1L0ZWo8Gl5I3TnTH0XN8ue4wizbFkJSWed22CnglRPPmzXFxcblqupS8iouLo3fv3vTr14/nn7cPSW/SpAl33HEHEydOZM2aNfl6PhERKUGSTsGSJ6HDo1A5FHq/7OiKCl1yWiaLtx7li3WH2XLkLB6lXLilaSVGtK1Gq1euvZ8CXgnxxRdfMHbsWBo3bpyvx/X392fXrl1XbZ8/f36+nkdEREqY3Utg8aOQcg7q9LAHvBJk74kEvlx3mAV/RZOQkkHtCqV5rl8jBrUIpqy3+w33V8Arxmw2GydPnmTWrFls27ZNoUtERJxfyjn46WnY8iVUDIG7v7NPhVICpGZk8vP243yx9jDrD8Xh7upC7yYVGdG2Gm1q+mNZVraPpYBXjK1cuZJu3bpRv359FixYQLly5RxdkoiIyPVFzoat86Hzk9D5/0GpG1+tKuoOnz7PF+uj+HpjNHFJaVQv783EPg0Y3LIK5X08cnVMpw54lmX1Bt4BXIGPjDFTrnj/XuA1IObCpmnGmI8uvHcP8OyF7S8aY2YXStFOJCwsDJvN5ugyREREri8tCeIOQsUm0O5BqNUFKjVzdFUFKtNmWL47ls/XRrHy75O4WBY9GgYyom11OtYJwMUl+1frsuK0Ac+yLFdgOtATiAY2WJb1vTHmysVT5xtjHr5iX39gEtAKMEDkhX3PFELpIiIikl2H18GicEhPgUc3gZtnsQ53sQkpzF9/hLnrD3P0XApBvh482q0uQ9tUpZKfV76dx2kDHtAG2GeMOQBgWdY8YABwZcDLSi9gmTEm7sK+y4DewNwCqlVERERyIiMVVkyG1e/aJ/a//UN7uCuGjDGsPxjHZ2uj+Hn7cTJshk51A3j+1sZ0bxiIm2v+T/nizAEvGDhyyetooG0W7QZZltUZ2Av8yxhz5Br7Xj07r4iIiBS+pNMwux/E7oQW90Cvl8AjN2s1ObeElHQWbYrhs7VR7D2RiK9nKe69qQYj2lWnZkDpAj23Mwe8rG4+myteLwbmGmNSLcsKB2YD3bK5r/0kljUGGAMQFBRERERElsX4+fmRkJCQvcoLSGZmpsNrKMoc0X8pKSnX/JkqShITE4vF53AU9V/eqP9yz2n7zhjqu1TmZMgg4nxbwZpIR1eUpdz235EEGysOp7P6aAYpmVDD14VRTdxpU6kUHq6xRG2PJSr/y72MMwe8aODSNUiqAJety2GMOX3Jy5nAP1P+RQNhV+wbkdVJjDEfAh8CtGrVylxr5YVdu3bh4+OToyHK+S0hIYEyZYrf/+EUlsLuP2MMnp6ehIYW/bmbtCpJ3qj/8kb9l3tO1Xcn98CSCdB/GpSrDl27UsnRNd1ATvovPdPG0h3HmbM6ivWH4vAo5cKtzaswsl11mlUtW7CFZsGZA94GoK5lWTWxj5IdCgy/tIFlWZWMMccuvOwP/DPj7lJgsmVZ/8wLcjMwMS/FuLm5kZycjLe3d14OIyVIcnLyNdf8FREpMWw2WPce/PYCuHnBmUP2gFdMnIhP4ct1h5m7/jCxCalU8/fmmb4NuKNlVcqVdtwUL04b8IwxGZZlPYw9rLkCnxhjdliW9QKw0RjzPfCoZVn9gQwgDrj3wr5xlmX9D3tIBHjhnwEXuRUYGEhMTAzBwcF4eXk59EqeODdjDMnJycTExBAUFOTockREHOfMIVj0EET9CfV6w63vQpmi/3vxn0ETc9ZGsXT7cTKNoUu9CrzSvgZd6lXI8xQn+cFpAx6AMWYJsOSKbc9f8v1ErnFlzhjzCfBJftXi6+sLwNGjR0lPT8+vw+ZISkoKnp7Fc4RRYSjM/nNzcyMoKOjiz42ISIm0ehoc2woDpkPzEVDEL46cT8tg0aajzFlziN3HE/D1LMV9HWpwV7vqVC9fsIMmcsqpA56z8fX1deg/2BEREcXieS5HUf+JiBSC+GP25cYCG0CPSdDhUShbzdFV5cnh0+eZs+YQX208QnxKBg0r+fLKoBD6NwvGy93V0eVlSQFPRERE8s4Y2L4AfnwC/GvBA8vtU58U0elPbDbD9lMZfDZrA8v3xOJqWfRuUpF7bqpBq+rlnP5RLQU8ERERyZukU/Dj47DzO6jSGga+X2RvxyakpLMgMpo5a6I4cCqVAJ+zPNK1DsPbVqeiX9F5TEoBT0RERHLv5B6YdQskn4Xuk6DDeHBxztuW13PwVBKzVx/im8hoElMzaF61LGOaevDEnV3xKFX0Po8CnoiIiOScMfardP61oE5PaD8OKjZxdFU5YrMZVu07xaw/D7Jiz0ncXC36Na3MPTfVoHnVskRERBTJcAcKeCIiIpJTByJg+Ysw/Cvw9ofb3nN0RTmSlJrBt39FM2v1IfafTCLAx4PHetRleNtqBJYpOrdhr0cBT0RERLInLQl+/Q+s/xDK14Gkk/aAV0QciTvP7NWHmL/xCAkpGTSr4sfbQ5rTN6QS7qVcHF1evlLAExERkRs7sh4WjoW4A9D2Qej+PLg7/+pOxhjWHYzj0z8PsmznCVwsiz4hlbi/Qw1Cq5W78QGKKAU8ERERubFVb0JmBtzzA9Ts5OhqbiglPZPFW47yyZ+H2HUsnnLebjwYVpuR7WoUqdGwuaWAJyIiIlk7thU8/exrxw6YBq7u4OncK/TEJqTw+drDfLkuilOJadQL8mHK7SEMDA3G061oDpjIDQU8ERERuVxmBvzxFvw+BRreCnfMgtIBjq7qunYejefjPw6yeMtR0jJtdG8QyP0da3JT7fJOPylxQVDAExERkf9zci8sCoeYSGgyGPq+5uiKrslmMyzfHcvHfxxkzYHTeLm5MrRNVe69qQa1Kvg4ujyHUsATERERu/0rYO5QcPO2X7VrfJujK8rS+bQMvomM5tM/D3HwVBKV/Dx5uk8DhrWuhp+3m6PLcwoKeCIiIiXdP5MWB7eEpkOg67+hTJCjq7rKsXPJzF4dxZfroohPyaBZ1bK8OyyUPk0q4uZavKY5ySsFPBERkZLKGPhrNmz63D461tMX+r/r6Kqusj3m3MXn62zG0KtxRUZ3qkmLauVK5PN12aGAJyIiUhLFH4PFj8Lfv0CNTpCaAG7OM32IzWZYsSeWj1bZn68r7e7KyPbVub9DTar6O//8e46mgCciIlKSGAPbF8CPT0BGKvR5FVo/AC7OcYszJT2TBX9F8/EfBzlw0v583TN9GzCkdTX8vPR8XXYp4ImIiJQktkxYPdW+1NhtH0BAHUdXBMDpxFTmrInis7VRxCWlERLsxztD7cuI6fm6nFPAExERKQn2/gJVWtnXjh3+FXiXB1fHx4ADJxP56I+DLIiMJjXDRo+GgYzuVIu2Nf31fF0eOP6/rIiIiBSclHPw8zOw+XPo+Dj0mOTwEbLGGDZGneHDlQf4ddcJ3FxdGNQimFEda1EnsGTPX5dfFPBERESKqbJntsB7D0N8DHSaAF2ecmg9mTbD0h3H+XDlATYfOUtZbzce6VqHke1rUKGMh0NrK24U8ERERIqjyFk03/K8/Vm7Ucvst2cdJCU9k68jo/lo1QGiTp+nmr83LwxozOCWVfB2VxQpCOpVERGR4sSWCS6uULcXh6veTrWR08HdMdOKnElKY86aKOasOcTppDSaVfHjqREt6NW4Iq4uer6uICngiYiIFAcZqRDxMsT8BSMXgW8lDtS+h2oOCHdH4s7z8R8Hmb/hCMnpmXStX4GxXWpr4EQhUsATEREp6o5vg4XhcGI7hI6EzDRwKfxJi3ccPcf7vx/gx61HcXWx6N8smDGda1G/YplCr6WkU8ATEREpqjIz4M+3IOKV/5v+pF6vQi3BGMOaA6d5//cDrNx7Eh+PUozqWJP7O9akkp9XodYi/0cBT0REpKjKSIbIOdDwVrjlDXvIKySZNsMvO47z/u/72RJ9jgAfd57sVZ+72lXXihNOQAFPRESkKLHZYMuXEHIHeJSBMSugdEChnT41I5OFf8Xw4coDHDiVRPXy3rw4sAmDW1bB08210OqQ61PAExERKSrORMF34+DQKvuasi1GFlq4S0zN4Mt1UXy06iCxCak0CfZl2vBQ+jSppBGxTkgBT0RExNkZA3/NgaXPABb0nwahdxXKqeOS0pj150Fmr4niXHI6N9Uuzxt3NqNjnQCNiHViCngiIiLObtlzsHoq1OgEA6ZDueoFfsqjZ5OZueoA89bbpzq5uVEQD3WtQ/OqZQv83JJ3CngiIiLOKiMNSrlD8xHgGwxtxoKLS4Gecv/JRN6P2M+izTEYA/2bV+bBLrWpG6SpTooSBTwRERFnk3QaljwBLm4waCYENrR/FaDtMed4L2I/S7Yfw6OUCyPaVmd0p5pUKeeYVTAkbxTwREREnMmen+H7RyD5DIQ9bX/+rgCfdYuMimPa8n2s2HOSMh6leLBLbe7vWJMAH48CO6cUPAU8ERERZ5ASD0snwqbPIagJjPwWKoYUyKmMMfyx7xTTlu9j3cE4/Eu7M+HmeoxsX0Nz2BUTCngiIiLOIC0J9vwEnZ6ALk/bn73LZzab4dddJ5i+Yh9bos9R0deT5/s1Ymibqni7KxIUJ/qvKSIi4ihp52HTZ9D6AfCtBI9uAk+/fD9Nps2wZNsxpq/Yx+7jCVQv783Lt4dwe4tgPEppcuLiSAFPRETEEY5sgIVjIW4/BDWGGh3zPdxl2AwLIqOZHrGPAyeTqBPow9tDmtOvaSVKuRbsaFxxLAU8ERGRwpSRChFT4M+37VOf3LPYHu7yUWpGJgsiY3hrVTInk7fQsJIvM0a0oHfjirho1YkSQQFPRESkMH11D+z9CUJHQq/J4Ombb4dOSc9k3vrDfLDyAMfOpVDLz4Upd7akW4NArTpRwijgiYiIFLTMDDA2+8CJmx6BlvdC/d75dvjktEy+WBfFBysPcDIhlTY1/Hl1cFMyorfTtWFQvp1Hig4FPBERkYJ06m9YGG6/Ddvzv1CjQ74dOik1g8/XRjFz1QFOJabRvlZ5pg4LpV2t8gBExOiqXUmlgCciIlIQbDZY/wH8+h9w84L2D+XboRNTM5iz5hAfrTpIXFIaneoG8Ei3urSp6Z9v55CiTQFPREQkv509DIsegkOroG4v6P8ulKmY58MmpKQze/UhPvrjIGfPpxNWvwKPdKtLy+rl8qFoKU4U8ERERPJbaiLE7oT+0yD0rjwvNfZPsJu56iDnktPp3iCQR7vXpVnVsvlUsBQ3CngiIiL5IeE4bP/Wfis2qBE8th3cvfN2yCuCXY+GgYzvXo+QKvk/GbIULwp4IiIiebXtG/jxCchIgfp9wL9mnsKdgp3klQKeiIhIbiWdhiVPwI6FENwSbvvAHu5yKTE1g1l/HlSwkzxTwBMREckNWyZ82gfiDkC356DDY+Cau39Wk1IzmLMmig9X7ufMefszdo/1ULCT3FPAExERyYnUBHArDS6ucPP/wLcyVAzJ1aGS0zL5fG0U7/++n9NJaYTVr8C/etTT4AnJMwU8ERGR7DrwO3z3MNz0MLQdC/V65eowKemZfLnuMDMi9nMqMZVOdQP4V896tKim6U4kfyjgiYiI3EjaefuExes/gPJ1oHKLXB0mNSOT+RuOMH3FPk7Ep3JT7fK8d1cLWtfQBMWSvxTwREREricmEr4dA6f3Qdtw6D4pxyNk0zNtfPtXNO/+to+Ys8m0rlGOt4eE0r52+QIqWko6BTwREZHrSU2EjDS4+3uo1SVHu2baDN9vieHtX/8m6vR5mlUty5RBIXSsE4CVx8mPRa5HAU9ERORKx7fB4bXQ5gF7qHskEkq5Z3t3m83w847jvLlsL/tiE2lYyZeP72lFtwaBCnZSKBTwRERE/pGZAavfgRUvQ+kAaDYUPMpkO9wZY1ixJ5Y3ftnLjqPx1An0YcaIFvRuXBEXFwU7KTwKeCIiIgCn/oaF4RCzERoNhFvetIe7bFqz/zSvLd3NX4fPUr28N28NaUb/ZsG4KtiJAyjgiYiIpMTDR93BcoHBn0CTQdnedcuRs7z+yx5W/X2Kir6evHx7CINbVsHN1aUACxa5PgU8EREpuZJOQ+ny4OkL/adB1TZQpmK2dt17IoE3ftnD0h0n8C/tzrO3NOSudtXxdHMt4KJFbsypA55lWb2BdwBX4CNjzJQr3n8cGA1kACeB+40xURfeywS2XWh62BjTv9AKFxER52YMbPoMfn4GBs6ARv3tX9lw+PR53v51Lws3x+DjXorHe9bj/o418fFw6n9SpYRx2p9Gy7JcgelATyAa2GBZ1vfGmJ2XNNsEtDLGnLcs60HgVWDIhfeSjTHNC7VoERFxfgnH4ftH4e+lUKMTVGqWrd1iE1KY+ts+5q4/jKuLxZhOtQjvUptypbM/ulaksDhtwAPaAPuMMQcALMuaBwwALgY8Y8yKS9qvBe4q1ApFRKRo2bUYvn8E0pOh9xRoMxZcrv+s3LnkdD5cuZ9P/jhEWqaNoa2r8mj3ugT5ehZS0SI558wBLxg4csnraKDtddqPAn665LWnZVkbsd++nWKMWZT/JYqISJGSngz+tWDg+1Ch3j/d39AAACAASURBVHWbpqRnMnv1IWZE7Odccjq3NqvM4z3rUTOgdCEVK5J7ljHG0TVkybKsO4BexpjRF16PBNoYYx7Jou1dwMNAF2NM6oVtlY0xRy3LqgUsB7obY/Znse8YYAxAUFBQy3nz5hXYZ8qrxMREfHx8HF1GkaX+yz31Xd6o//Imr/3nf3oj7mnnOF6pu/3ZO2xgXXsgRKbN8EdMBov2pXMm1RAS4Mrgem5U9y16gyf0s5c3zt5/Xbt2jTTGtMrqPWe+ghcNVL3kdRXg6JWNLMvqAfybS8IdgDHm6IU/D1iWFQGEAlcFPGPMh8CHAK1atTJhYWH59wnyWUREBM5cn7NT/+We+i5v1H95k+v+S4mHpc/Ats+gSmsadP7vdW/HGmP4eftxXlu6hwOn0gitVpYZvRoU6fVi9bOXN0W5/5w54G0A6lqWVROIAYYCwy9tYFlWKPAB0NsYE3vJ9nLAeWNMqmVZAUAH7AMwRESkJDi4EhaNg/ho6Pg4hD193XC37sBpXv5pN5uPnKVOoA8fjGzJzY2CtKyYFFlOG/CMMRmWZT0MLMU+TconxpgdlmW9AGw0xnwPvAb4AF9f+Ev4z3QoDYEPLMuyAS7Yn8HbmeWJRESkeDm9H+YMgHI14f6l9rntrmH38Xhe/XkPy3fHUtHXk1cHNeX2FsGU0iTFUsQ5bcADMMYsAZZcse35S77vcY39VgMhBVudiIg4lfhj4FsJyteGO2ZBnR7gnvWAiJizyby1bC8L/orGx6MUT/dpwL031dAkxVJsOHXAExERuaGMNPh9CqyeCvcugaqtodGALJueO5/OjIh9fLr6EAAPdKrFQ2G1KeutueykeFHAExGRouv4dlg4Fk5sh+Z3XXPqk9SMTD5bE8XU5fuIT0nn9tAqPH5zPYLLehVywSKFQwFPRESKptVT4df/glc5GDYP6ve5qonNZli89SivLd1D9JlkutSrwNN9GtCwkq8DChYpPAp4IiJSNNkyoMEtcMubUPrqqUzW7D/Nyz/tYmv0ORpV8uXzUU3pWDfAAYWKFD4FPBERKRpsNtgwE/yq2INdh8cgi2lM9p5IYMpPu1m+O5bKfp68eWczBjYPxsVFU55IyaGAJyIizu/sYfhunH1+u2bD7AHvinB3MiGVN5ftZf6Gw5TWyFgp4RTwRETEeRlDxWO/wupZgIFb34UWd1/WJDktk49WHeD93/eTmmHj7vY1GN+9LuVKa2SslFwKeCIi4rwO/k6DPVOhekcYOB3K1bj4ls1mWLgphtd/2cOxcyn0ahzE030aUjMg67nvREoSBTwREXE+cQfBvybU7MK2Js8QcvuTly01tmb/aV5aspPtMfE0reLH20Oa07ZW0V0zViS/KeCJiIjzOB8HSybA7iXw0Brwr8npgLYXw92Bk4lMXrKbX3edoLKfJ28PaU7/ZpU1gELkCgp4IiLiHPYuhe8fgfOnIexp8Kt68a2z59N457e/+WxNFJ5urjzZqz6jOtbUAAqRa1DAExERx7LZ4Ifx8NccCGwEI76BSk0BSM+0sSwqncdWRhCfnM6Q1tV4vGc9KpTxcHDRIs5NAU9ERBzLxQXcStvntev6DJTywBjDij2xvPTjLvafTKNDnfI8e0sjrUAhkk0KeCIiUvjSk+G3F6DxbVC1DfR++eK8dnuOJ/DijztZ9fcpagWUZnwLDx67oy1WFpMai0jWFPBERKRwRW+EheFw+m8oXcEe8CyLuKQ03lq2ly/WRVHG043n+zXirnbVWf3HSoU7kRxSwBMRkcKRkQa/vwJ/vAllKsPd30GtMNIzbXy+Noq3lu0lKS2Tke2q81iPepqoWCQPFPBERKRwbPkSVr0OzUfYb8l6+vH73pP874ed7ItNpFPdAJ7r14h6QWUcXalIkaeAJyIiBSczA84chIC6EDoS/GtBzc4cOJnIS/M28NvuWGqU92bm3a3o0TBQt2JF8okCnoiIFIxT+2BRuH1Vikciwass8ZXaM23JLj798yAepVyZ2KcB93aogUcpzWcnkp8U8EREJH/ZbLBhJiybBKU84JY3sLn7smDjEV75eQ+nk1K5o2UVJvSqT2AZT0dXK1IsKeCJiEj+SUuCuUPh4Eqo0xP6T2XzOS8mvb+GLUfOElqtLJ/c24qmVco6ulKRYk0BT0RE8o+bN/gGw63vcLLuUF77ZQ9fbYymQhkP3rijGbeFBmvdWJFCoIAnIiJ5k3ACfn4Kuj0H5WuT3n8Gs1cf4p03ficlI5OxnWvxcLc6lPF0c3SlIiWGAp6IiOTejoXww+OQfh4aDeDPM35M+n4H+2IT6VyvApNubUTtCj6OrlKkxFHAExGRnDsfB0smwPYFENyS2O5v8981Gfy4bR3V/DXtiYijKeCJiEjOrX4Xdn5HRti/mWnrz7ufHsJmDP/qUY+xXWrh6aZpT0QcSQFPRESyJyUeEk/YJy3u/CSRZbrx5CobB07t5+ZGQTzXrxFV/b0dXaWIoIAnIiLZcXAVLHoI3DyJGb6C//24h593JFCjvDez7mtNWP1AR1coIpdQwBMRkWtLT4Zf/wvr3sNWrhYLqzzNv99aBcCTveozulNNrUIh4oQU8EREJGvnYmDOADj9N0frj2R0TD92rs2kd+NAnru1EcFlvRxdoYhcgwKeiIhkrUxFUso35COvsby+pTLVy3sw677Guh0rUgQo4ImIyP85sQN+eZaMAR8wZ2sSb+65i7RMG4/1qE14l9oaHStSRCjgiYgIZGbYpz5ZMZl0d1/+38zvWHiyMl3qVeCFAY2pXr60oysUkRxQwBMRKelO7YNF4RC9ga2+YdwTOxRPv0Dev6sRvRpX1GTFIkWQAp6ISAlnIl4m/cQe/mONZ/6ptozqXIvx3etS2kP/RIgUVfrbKyJSEp09AiaTfekBvHJyMFsSulKlWk1+uC2EhpV8HV2diOSRAp6ISEliDGz+EvPzU0R5NaLPycfwcnNl4u2dGdKqKi4uuh0rUhwo4ImIlBQJJ+CHx2DPEra4NObh+GH0a16Zf9/SkAAfD0dXJyL5SAFPRKQkOLoJ25zbyUxNYEr6XawoO4hXhjelQ50AR1cmIgVAAU9EpJgzxrAgyguflAa8kz6Im8M6syRMc9qJFGcKeCIixdXeX0j+/U3GZD7FqkPnaVPzeabeFkKdQB9HVyYiBUwBT0SkuElNIPPnZ3DdNIcjpgqnrGheGdSFO1pqEIVISaGAJyJSnBz6g9RvxuKWGMP7Gbeyt+EjzOnfnAplNIhCpCRRwBMRKSbik9OI++ppSExniudLDBl2B+H1Ax1dlog4gAKeiEhRFxPJ8hNePP3TUUoljmFg+8a82bsZ3u76FS9SUulvv4hIUZWRRtKvk/Fc+w5HM7pSvsK/eOWe/jStUtbRlYmIgyngiYgUQeb4ds5+OYpy8bv51taZ5C7P8X23Zri5uji6NBFxAgp4IiJFTOz6b/BfMpYM482r/pMYPHwMtSpo6hMR+T8KeCIiRURmpo2P/zzIrGUZTHDphOn+HyZ0bKapT0TkKgp4IiLOzmbjxIrpHF37LVMSHqdbwzrcNHAeFf08HV2ZiDgpBTwRESeWHhfFsTmjqXZ2PftozvRBdendqj6Wpat2InJtCngiIs7IGKIjPqbc789R3mQyt+IT3HzX/6N8GV21E5EbU8ATEXEyKemZzFi2jdvXvcYelxok9nmXYW1bO7osESlCFPBERJzI/j++5pG1vuw8lUFS02k8OqAzfqW1zJiI5IwCnoiIE0iJP8W+2Q/S5PQv9HW9m/9333OEaZkxEcklBTwREQfb9+e3lP31CerbzrGs4ijuuftFypT2dnRZIlKEKeCJiDhISnomf3z2H3ocfpcDVlUO9/mEnu26OrosESkGFPBERBxg8+E4JnyzDdvJarhWGUHLe16llo9WoxCR/OH0ixZaltXbsqw9lmXtsyzr6Sze97Asa/6F99dZllXjkvcmXti+x7KsXoVZt4hIVlLOJ7L+/XCiZw4jKSWdSfcNpOu4Gfgq3IlIPnLqgGdZliswHegDNAKGWZbV6Ipmo4Azxpg6wFvAKxf2bQQMBRoDvYEZF44nIlIoFm2KocOU5WyLOUeHKcuZv2gRsa+3pc3xufhXqMTSxzrQpV4FR5cpIsWQUwc8oA2wzxhzwBiTBswDBlzRZgAw+8L33wDdLfsU7wOAecaYVGPMQWDfheOJiBS4RZtimPjtNmLOJmNsGQxJnM2gTffhbktmc9gn3PToLHy9vRxdpogUU84e8IKBI5e8jr6wLcs2xpgM4BxQPpv7iogUiNeW7iE5PROAJftTGOH6G9/ZOjDS7W2ahw1ycHUiUtw5+yCLrBZbNNlsk519sSxrDDAGICgoiIiIiByWWHgSExOduj5np/7LPfVdzg0JPoeny2peO9OJIxl+vFHxZSqV86U/Rn2ZQ/r5yz31Xd4U5f5z9oAXDVS95HUV4Og12kRbllUK8APisrkvxpgPgQ8BWrVqZcLCwvKr9nwXERGBM9fn7NR/uae+y5mj+7fju3wCLVz+JtIqTc06oby/2x+iIbisF4+MCHN0iUWKfv5yT32XN0W5/5z9Fu0GoK5lWTUty3LHPmji+yvafA/cc+H7wcByY4y5sH3ohVG2NYG6wPpCqltESiBjy2TDV69Qdk43altHeSJjHEttrSjtZn/fy82VJ3vVd2yRIlIiOPUVPGNMhmVZDwNLAVfgE2PMDsuyXgA2GmO+Bz4GPrMsax/2K3dDL+y7w7Ksr4CdQAYwzhiT6ZAPIiLFXmxCCjs/uI+wxCVs9WxF4MiZdDrpwdqle4AEgst68WSv+gwM1aPAIlLwnDrgARhjlgBLrtj2/CXfpwB3XGPfl4CXCrRAESnZjGHpthieXrSTBmltcQ9pQbvBT+Di6sLAKjAwNJiIiAjdlhWRQuX0AU9ExFklno4hatYDxJwpQ3DQw/xvyCjqBJZxdFkiIgp4IiK58XfEFwREPE0dk0xsnXF8e1cH3Es5+2PNIlJSKOCJiORAWkIcf88Kp/Hppex2qU3mgPfp2kxzqIuIc9H/boqIZNO+2ATGzVxK1VMrWRZ0P1Un/EljhTsRcUK6gicicgMmJZ6138/k3q0NKe0RQORtK+nZvJ6jyxIRuSYFPBGR6zi7K4L0BWNpm36CwVXeY/yI2wgs4+noskRErksBT0QkK+nJHPlmIsF7ZnHEBLK+zSf8r89tuLhktQqiiIhzUcATEblCSloGJ97tRfXELSx270v9kW9zS9UgR5clIpJtCngiIv/ISGPXiSTGf7WVKnE96db4fgbfORJPN1dHVyYikiMKeCIigDmxg7jP7+e7sy0543k7/743nC71Kji6LBGRXFHAE5GSzZbJ+Yi3cVv5MsZ44V1pGD/f3YnyPh6OrkxEJNcU8ESk5Io7QPzc0fiejGSprQ2nu07hkbAWWJYGUohI0aaJjkWkRErPtPHFbxvIiN3DZM9/UWXs1wzv2lLhTkSKBV3BE5GS5Vw0pzcvYdT2xmw+4sOeFgt4emArvN3161BEig/9RhORksEY2DKX9B+exCM9kzPWu0wb3pF+TSs7ujIRkXyngCcixV9iLJnfj8d17xI22erzacD/4/O7+lLV39vRlYmIFAgFPBEp3jJSSX+/CybxJFMyRuDRcRxTezaklKseQRaR4ksBT0SKp9REjJs3X2+OZU38YGLcavLw8FvprLntRKQEUMATkeLn71+xfTeOz33H8PyBBtxU+xamDWlOoK+noysTESkUCngiUnykJsIvz0Lkpxx2qco3ce483rMe47rWwdVF05+ISMmhgCcixUPUGszCsXD2MB/b+jHbbQSvjW5Lu1rlHV2ZiEihU8ATkWIh+ewxEpPSeTD1OUrX7cSiO5tpuTERKbEU8ESk6Ir5C07uYVfQLYxb5s/RxMk82iuE8M61cdEtWREpwRTwRKToyUiDVa/DytdJ8KrMHfE+eHt5MeuBzrolKyKCAp6IFDUndsLCsXB8Kxv9enH/iUE0q1OBt4eEUqGMbsmKiIACnogUJYmxMLMbGW7eTPaeyKexITzSvS7ju9fVKFkRkUso4ImI80s+A17lwCeQyGaTGL/Bn/Nu/sy+r7kmLhYRyYLW6hER52UMbPgI3mpC+v5VTPpuO4P+rEbFSlX58dGOCnciItegK3gi4pzORcN3D8OBFaRWD2Pckjh+jYlndMeaPNWnAW5aS1ZE5JoU8ETE+Wz9Gn58AmwZ7G/zP+7Y2IDUDBvThzfjlqaVHF2diIjTU8ATEeeTdBIT2IjPKz3FpFXnqVXBg/fvakmdQB9HVyYiUiQo4ImIc9j5PVgWNLyVc81GMWFPS5atPEW/ppV4ZVBTSnvo15WISHbpN6aIOFbyGfjpKdg6H2p1ZadvZx788i9iziQz6dZG3HtTDSxLU6CIiOSEAp6IOM6+X+0DKRJjocvTfOc7jKfeX42flxvzxrSjVQ1/R1coIlIkKeCJiGMc3QyfD4IKDUgf8iWTN3nw6dIdtKnpz/ThLbQqhYhIHijgiUjhSowFn0Co3Bxun8nJqr0Y99VO1h88xn0davBM34aaAkVEJI/0W1RECkd6Ciz9N7zdFGJ3A7C53M3c+t5Gthw5y1tDmjHp1sYKdyIi+UBX8ESk4MX8BQvD4dQeaHkf+FVh/obDPLdoB4G+Hix48CaaBPs5ukoRkWJDAU9ECtbvr0LEFPAJgrsWkFqjK/9dvJMv1x2mY50Apg4LpVxpd0dXKSJSrCjgiUjBSjkHIXdAnynEpnsR/uFa/jp8lvAutXmyV31cXTQFiohIflPAE5H8ZcuENdMhuCXU6AA9/wcuLmw+cpaxn/1BfHIG04aH0q9pZUdXKiJSbCngiUj+Ob0fFj0ER9ZCm7H2gOfiwoLIaCYu3EZgGQ++fegmGlbydXSlIiLFmgKeiOSdMbDxY/jlOXBxg9s+gKZDyMi0MeWn3Xz0x0Ha1yrP9BEt8NfzdiIiBU4BT0Tybud38OMTUKsrDJgOfsGcO5/Ow3P/YtXfp7infXWe7ddIU6CIiBQSBTwRyR1j4NwRKFsNGvaHO+fY/7Qs/j6RwANzNhJzNpkpt4cwtE01R1crIlKi6H+nRSTnEk/C/Lvgg872lSlcXKDRALAslu08wcDpf5KYmsm8Me0U7kREHEBX8EQkZ3YthsWPQWo8dHsOvMsDYIxhRsR+Xv9lDyHBfnwwsiWV/LwcXKyISMmkgCci2ZOZDt89DFvnQaVmcNsPENgQgJT0TCZ+u42Fm2Lo36wyrw5uiqebq4MLFhEpuRTwRCR7XN0AA12ehs4TLryG2IQUxn4WyabDZ5lwcz3Gda2DZWnyYhERR1LAE5FrS02E3/6Ltwmxv77tA7gkvO04eo4HZm/kzPl03hvRgj4hlRxUqIiIXEoBT0SyFrUGFoXDmSjK1n3Avu2ScLd0x3Eem7cZPy83vg5vT5NgPwcVKiIiV1LAE5HLpafAihdh9TQoVx3uW8LRg2nUu/D2P4MpXlu6h2ZVyzJzZEsCfT0dWrKIiFxOAU9ELrfuPVg9FVrdb19H1sMHDkYAlw+muLVZZV7TYAoREaekgCci9hGy56LBvya0fRAqt4BaXS5rcjoxlbGfRbIx6gxP9KzHw900mEJExFkp4ImUdLG7YOFYSD4L49aDm+dV4e5ooo3nZ6zmeHwK04aH0q9pZQcVKyIi2aGAJ1JS2TJhzXRY/iJ4lIF+b9nD3RVW7zvFi2uT8fJwZ96YdrSoVs4BxYqISE4o4ImUROfjYN5wOLwGGvSDfm+DT4Wrmn218QjPfLuNQC+L+eM6UNXf2wHFiohITingiZREnmXBy98+r13TIZdNfwJgsxle/2UPMyL207FOAMOqn1e4ExEpQlwcXYCIFJJzMfD1vZBwHFxcYNiX0GzoVeEuJT2TR+ZuYkbEfoa1qcqn97WmtJsGU4iIFCVOGfAsy/K3LGuZZVl/X/jzqod+LMtqblnWGsuydliWtdWyrCGXvDfLsqyDlmVtvvDVvHA/gYgTMQa2zIcZ7WHvUji29ZpNTyWmMmzmWpZsP8YzfRsw+bYQ3Fyd8teEiIhch7Peon0a+M0YM8WyrKcvvH7qijbngbuNMX9bllUZiLQsa6kx5uyF9580xnxTiDWLOJ/Ek/Djv2DXYqjaDgbOgPK1s2y6/2Qi9366npMJqbw3ogW9m2jZMRGRospZA94AIOzC97OBCK4IeMaYvZd8f9SyrFigAnAWEbFb8ZL9ql3PF6D9w+CS9aTEGw/FMXrORlwti7kPtCNUI2VFRIo0Z733EmSMOQZw4c/A6zW2LKsN4A7sv2TzSxdu3b5lWZZHwZUq4mSSz8KZKPv33Z+HMb9Dh/HXDHc/bTvG8I/WUc7bnW8fuknhTkSkGLCMMY45sWX9ClTM4q1/A7ONMWUvaXvGGJPlvzqWZVXCfoXvHmPM2ku2Hcce+j4E9htjXrjG/mOAMQBBQUEt582bl+vPVNASExPx8fFxdBlFVknov3Jxm2iweyopngFsCn3lqgEUV1p6KJ15u9OoXdaF8S08KeOedfuS0HcFSf2XN+q/3FPf5Y2z91/Xrl0jjTGtsnrPYQHveizL2gOEGWOO/RPgjDH1s2jniz3cvWyM+foaxwoDJhhj+t3ovK1atTIbN27MU+0FKSIigrCwMEeXUWQV6/5LTYRlz8PGjyGgPtz2PgS3uGbzTJvhxR938umfh+jduCJvD21+3TVli3XfFQL1X96o/3JPfZc3zt5/lmVdM+A56zN43wP3AFMu/PndlQ0sy3IHFgJzrgx3lmVVuhAOLWAgsL3gSxZxkNP74fNBcOaQ/Tm7bs+Cm9c1m6ekZzJ+3iaW7jjB/R1q8u9bGuLqomlQRESKE2cNeFOAryzLGgUcBu4AsCyrFRBujBkN3Al0BspblnXvhf3uNcZsBr6wLKsCYAGbgfBCrl+k8PhWhoB6MGA61Ohw3aZxSWmMmr2BzUfO8ly/RozqWLOQihQRkcLklAHPGHMa6J7F9o3A6Avffw58fo39uxVogSKOdnQzRLwMgz4GDx8Y8dUNdzkSd557PllP9NlkZgxvQZ8QTYMiIlJcOWXAE5FryEyHVW/AytegdAU4cxAqhtxwt51H47nn0/Wkpmfyxei2tK7hXwjFioiIoyjgiRQVsbth4Vg4thlC7oS+r4LXjac0Wb3/FGPnROLjWYovHryJekFlCqFYERFxJAU8kaJi6UQ4dwTunAONBmRrlx+3HuNf8zdTvbw3s+9vQ+Wy1x58ISIixUeeAp5lWe3+mXtORApA3AFwKw1lgqD/VHB1B5/rzvt90aw/D/LfH3bSqno5Prq7NX7ebgVcrIiIOIu8rmTxS1YbLcuqkcfjipRsxsCGj+G9jvYrdwB+VbIV7owxvPrzbv6zeCc9Gwbx2ai2CnciIiVMrq7gWZZ1B/bpR65lK+Cbq4pESrpzMfD9w7B/OdQKs68jm03pmTYmfruNbyKjGd62Gv8b0ERz3ImIlEC5vUU7AQgB3C3LWg1swh74Nl14PzMfahMpeQ79CXOHgS0d+r4OrUaBS/YutKekZ/Lwl3/x665Y/tWjHo92r4N1g6XKRESkeLphwLMsyw1oAWw3xiQBGGPaWpblCsQD71x4/05gMlAWeL3AKhYpzgIbQs1O9qt25Wtne7f4lHRGz9rIhqg4XhzYhLvaVS/AIkVExNll5wpeBvAn8Cz2FSYAMMZkWpZV2xhzHJj/z3bLskoZYzLyvVKR4mrXD/DXHBj6JXj7w9AvcrT7yYRU7vlkPX/HJvDu0FBubVa5gAoVEZGi4oYBzxhjLMs6jv1q3ZXvHc9im8KdSHYkn4Wfn4Ytc6FiUzh/CspUzNEhjsSdZ+TH6zjx/9u77zApy4Nt4+fN0kFBQDoqSFEU6fYCiCV2E40Ve2zRGBPzar5omnkTS4wtajSxG8XeuyhqLCAoIr2pgBTpve3u/f0xY94NWWDZMs+U83cce+zMM8/MXHuzy157P235Ov5xZn8O6rp9DYWVJOWSiu6D9wxwOHBnDWaRCse0YfD8JbByPhx0JRz4CyjauiNdp8xfwZB7R7B2QymPnLcXfXfc8kmPJUmFoaKnSfkr0C2E8POaDCMVhJJieP3/pa4he96bMPD/bXW5+2zmEn5490fECE9csI/lTpL0Hyo6gzcJWA3cEEI4BngIeCfGOKPGkkn5ZtZIaNk9VexOGZraHFtn668s8f7UBVzw8Gi236YeD5+zFzs0b1gDYSVJuayiM3g3kjrQYhFwAPB3YGoIYXEI4a0QwvUhhB/WVEgpp21YC29cA/ceCv/6S2pZs46VKnevfjGXcx74hB2aNeTJC/ex3EmSylWhGbwY45Xf3Q4htCN1WpTeZT4GARF4ogYySrlrzhh49kJYMBH6ngX7X17pl3pq9Gz+56nP6b3Ddtx3Vn+aNPDqFJKk8m31iY5jjN8A3wAvfrcshLAdqaIn6TufPw7PXwyNtofTnoYugyv9Ug9/9BXXPD+e/To35+9n9KNh3SpdRlqSlOeq5bdEjHEJ8HZ1vJaU82KEEKDDntDzZDj0D9Cg8gdB/O3d6Vz36iQG79qSv57ah/p1iqoxrCQpH1V0HzxJW1JaAh/eDk+elSp5zTrCsXdUutzFGPnLG5O57tVJHN2zLXed3tdyJ0mqEAueVB0WfwkPHAVvXA0l62HDmiq9XIyRP7w8kdvensZJ/Tpwy0m9qFPkj6skqWLckUeqihhh9P3w+tVQqwiOuwt6npLaRFtJJaWRXz37BUM/mcVZ++7Er4/qTq1alX89SVLhseBJVbF2GbzzJ+jQP7U5tkn7Kr3chpJSfv7E57zw+RwuGdiZnx/alVCFsihJKkwWPGlrxQhTXoPOh0CDpqmrUTTZAWpVbRPq+uJSLn3sU14fP58rD9+FiwbsXE2BJUmFxp16pK2xaiE8MQQeOxnG/DO1bLudfk5jJgAAIABJREFUqlzu1hWXcNEjo3l9/Hx+c3R3y50kqUqcwZMqauJL8OJlsG45DP4t9D69Wl527YYSLnh4NO9OWcAfjtud0/fesVpeV5JUuCx40pbECMP/BO9eD617wPEvQKvdquWl16wv4UcPjeKD6Qu5/gc9OKn/DtXyupKkwmbBkzantDS1+bXrYRBL4cD/gdp1q+WlV60r5twHP2Hkl4v58wk9+UHfqh2gIUnSdyx4UnnWr4I3rkmd7uTIm6Bd39RHNVm5rpiz7x/JpzOXcvNJvTi2V7tqe21JkjzIQtrYzI/hrv1g1H1Qu35qE201Wr52A0PuHcFnM5dy28m9LXeSpGrnDJ70nQ1rYfgf4YPboGkHOOsl2Gn/an2LZas3MOS+EUycu5w7TuvDYbu1rtbXlyQJLHjS/1k5Dz65F/qeCYf+AeptU60vv2z1Bk6792OmzFvJ307vy8G7tqrW15ck6TsWPBW2kg0w/jnocULqfHaXjIJt21T72yxbs4HT7x3BlHkrufuMvgzs1rLa30OSpO9Y8FS4FkyGZy+AOZ/BNq2h4wE1Vu7OuHcEk+Yt5+4hljtJUs2z4KnwlJbCx3fCsN9D3UZw4oOpclcDlq/dwBn3jWTC3OXcdVpfBu3iZllJUs2z4KnwPH0OjH8Wuh0BR98KjWtmRm3F2g2cce9IJsxZxp2n9WVwd8udJCkzLHgqDDFCLEnd7nkqdD4Eep2aOs9dDVixdgNn3jeScd8s447T+nCI5U6SlEEWPOW/5XPghUvZoaQVcDB0PbRG327lumLOuv8Txs5exl9P9VQokqTM80THyl8xwtgn4M694asPKK5dvac9Kc/KdcWcdd9Ixsxayu2n9Obw3S13kqTMs+ApP61aCE+cAc/8CFp0g4s+YE6779XoW65ZX8I5D3zCZ7NSV6j4Xo/qPyJXkqSKcBOt8tPSr2HaWzD4t7DvT6BWETCrxt5u7YYSfvTQKEZ9tZhbTu7NkXtY7iRJybHgKX+sXQaTX4WeJ0O7vnD5eGjYrMbfdn1xKRf/81P+NW0hN56wB8f0bFvj7ylJ0uZY8JQfpr8Dz1+SutzYDnunrkqRgXJXXFLKZUM/4+1J33LtcbtzYr8ONf6ekiRtifvgKbetXwUvXwEPHwd1G8I5b6TKXQaUlEauePJzXh03j6uP3JUhe++YkfeVJGlLnMFT7iothfsOg3njYO8fw8HXQJ0GGXrryK+e/YLnxszhikO7ct4BnTLyvpIkVYQFT7mneD0U1YFatWC/n6auI7vT/hl7+xgjv39pAkM/mcWPB+7MJYO6ZOy9JUmqCDfRKrfM/RzuPhDGPJq63+OEjJe7616bxAMffsW5+3fkikO7Zey9JUmqKAueckNJMbx7A/x9EKxZAo2TufTXbcOmcfe7Mzhtrx24+shdCTV0qTNJkqrCTbTKfgsmw7MXwpxPYfcT4IgbM3KE7Mbu+9eX3PzWFL7fpx3XHru75U6SlLUseMp+i6bDkq/gxAdgt+MTifDU6Nn8/qUJHLZbK274wR7UqmW5kyRlLwuestOSr2DWJ7DHibDLEbDT51B/20SivD5+Hlc+PZb9Ojfn1pN7U7vIPRskSdnNgqfsEiN8+iC8/iuoXQ+6HQ71tkms3H04bSGXPvoZPdo14Z4h/ahfpyiRHJIkbQ0LnrLH8rnwwqUw7U3oeCAce2eq3CVkzKylnPfQKDq2aMQDZ/enUT1/XCRJucHfWMoOa5fD3/ZPXZniezdC//NS57lLyOR5Kzjr/pG0aFyPh8/dk6YN6yaWRZKkrWXBU7LWr05dYqz+tjD4t7DjvtB850QjzVq8miH3jqBuUS0eOXcvWm5bP9E8kiRtLfcWV3ImvQy39oTpb6fu9xmSeLn7dvlaTvvHCNYVl/LwuXuxQ/OGieaRJKkynMFT5q1dBq9eBZ8/Cq16JHbS4o0tW7OBM+4bycKV6/jneXvRrXVy+/9JklQVFjxl1ox34bmLYcUcOOAKOOhKqJ38/m1rN5Two4dGMX3BSu4/a09677Bd0pEkSao0C54ya9E0qNMAzn0T2vdLOg0AJaWRnw4dw8gvF3PbKb3Zv0uLpCNJklQlFjzVvJkjYNW3sOvR0O8c6HVqquRlgRgj1zw/jtfGz+PXR3XnmJ5tk44kSVKVWfBUc4rXwTt/hA9vg5a7QbcjU6c+yZJyB3DrsKk8OmImFw3YmXP275h0HEmSqkXWHkUbQmgWQngzhDA1/bncnaJCCCUhhDHpjxfKLO8YQhiRfv7jIYTkd/QqJHM/h3sGwAe3QO8hcM6riZ7Xrjz/HPE1t7w1lRP6tud/DuuWdBxJkqpNdv3G/U9XAcNijF2AYen75VkTY+yV/jimzPLrgZvTz18CnFuzcfVvi6bD3wfB6sVw6pNwzG2JXpGiPK+Nm8c1z41jYLft+dP3exBCSDqSJEnVJpsL3rHAg+nbDwLHVfSJIfXbehDwVGWer0pauyz1ufnOcMSf4eKPoOuhyWYqx4gZi/jJ0M/o2aEpd5zWhzpF2fxjIEnS1svm32ytYoxzAdKfW25ivfohhFEhhI9DCN+VuObA0hhjcfr+bKBdzcYtYKWl8NEdcPPuMO+L1LJ+Z0PDZsnmKsekecs576FRdNiuAfed2Z+Gdd0NVZKUf0KMMbk3D+EtoHU5D/0KeDDG2LTMuktijP+1H14IoW2McU4IoRPwNnAwsBz4KMbYOb1OB+CVGGOPcp5/PnA+QKtWrfoOHTq0Gr6ymrFy5UoaN26cdIz/UH/NfHaZdBtNl41jYfP+TOn6Y9bXy85zyM1atJK/jK1FBK7Zuz7NG2Tz3zfZJRu/93KJ41c1jl/lOXZVk+3jN3DgwNExxnLPOZbo9EWMcfCmHgshzA8htIkxzg0htAG+3cRrzEl/nhFCGA70Bp4GmoYQaqdn8doDczbx/HuAewD69esXBwwYUIWvqGYNHz6crMr36cPw4VVAgGPvoEWv02iRpfuyLV+7gav//CYbKOLJC/dh1zbbJh0pp2Td916OcfyqxvGrPMeuanJ5/LJ5CuMF4Mz07TOB5zdeIYSwXQihXvp2C2A/YEJMTUu+A5ywueeripZ8Be36wMUfQu/TIUvL3YaSUi5+5FPmrorcdXofy50kKe9l8w5I1wFPhBDOBWYCJwKEEPoBF8YYzwN2Be4OIZSSKqvXxRgnpJ9/JTA0hPAH4DPg3kx/AXknRhj3NDTaHjodBAN+CaFW1p3+pKwYI7985gv+NW0h5+5elwO6bJ90JEmSalzWFrwY4yJS+9NtvHwUcF769ofAf+1Xl35sBrBnTWYsKKsWwcs/gwnPQffjUgWvKGu/ff7t1mFTeWr0bH46uAu9ape7lV6SpLyTvVMvyh6TX4U794ZJL8PBv4Ef5MZk6FOjZ//7RMaXHdwl6TiSJGVM9k/BKFkzhsNjJ0OrHjDkWWi9e9KJKuRfUxdy1dNj2b9zC/54vCcyliQVFgueyrdqITRqAR0PgmNuhz1Ohtq5cbW3SfOWc9Ejo+ncsjF3nt6HurWdqJYkFRZ/8+k/rV8Fr/wCbu8Dy2anjoztc0bOlLt5y9Zy9v2f0Khebe4/uz/b1q+TdCRJkjLOGTz9n1kj4dkLYfF02OsiaJB9V6LYnFXrijn7gU9YsbaYJy7YhzZNGiQdSZKkRFjwlDr9ybDfwQe3wrbt4MwXoeOBSafaKiWlkcuGfsaU+Su476z+dG/rue4kSYXLgqfUZtiV30Kv0+CwP0L93CtH1706kbcmfsu1x+7GQV09150kqbBZ8ApVSTH862bodji07pE6kKJWUdKpKuWxkTP5+/tfcta+OzFkn52SjiNJUuIseIVowRR49gKY8ymUrE8VvBwtdx9OW8g1z43joK7bc/WRuyYdR5KkrGDBKySlpTDib6n97eo0hBPuh92/n3SqSpuxYCUXPjKaTts34vZTe1O7yIPCJUkCC15h+fRBeP2X0PVwOPo22KZV0okqbcmq9ZzzwCfUKarFvWd6OhRJksqy4OW7GGHFXNi2beogigZNU9eSzeErO6wvLuXCR0YzZ+laHjt/Lzo0a5h0JEmSsorbtPLZ8rnw6A/hH4Nh7fLUyYp3Oz6ny12Mkauf+4IRXy7mhhP2oO+OuXWuPkmSMsEZvHz1xVPw8s+heB0c8juo2zjpRNXinvdm8MSo2fxkUGeO690u6TiSJGUlC16+Wb8anr8Yxj8L7fvDcX+DFp2TTlUthk2cz3WvTeLIPdrw08Fdk44jSVLWsuDlmzoNUiXv4F/DvpdBUX78E0/7dgWXDR3Dbm235c8n9KRWrdzdzCxJUk3Lj9/+hW7tMhj2e9j/cmjSHk59PKf3s9vYstUb+NFDo6lfpxZ3D+lHg7q5ec4+SZIyxYMsct2M4XDXfjDqPvjy/dSyPCp3JaWRS4d+xuwlq7nr9L60a9og6UiSJGU9Z/By1frV8NZvYOQ90LwznPMGdOifdKpqd/1rk3hvygL+9P0e9N/JI2YlSaoIC16ueve6VLnb60I4+DdQN//OBffsZ7O5570ZDNl7R07Zc4ek40iSlDMseDkklG6AZbNT+9nt/zPofAh0PCDpWDXi81lLufLpL9irYzN+fXT3pONIkpRT3AcvV8wdS9/RP4dHT4bSktQVKfK03H27fC3nPzyK7RvX487T+lDHa8xKkrRVnMHLdiXF8MHNMPx66tRuDINugFr5exTpuuISLnxkNMvXFPP0RfvSvHG9pCNJkpRzLHjZbMU8GHoqfDMadvs+nzQ9nv27HZ50qhoTY+Sa58bx6cyl3HlaH7q33TbpSJIk5SS3fWWzBttBnYZwwn1w4v0U18nvwvPPETN5YtRsLh3UmSN6tEk6jiRJOcuCl22WfA1Pn5c6eXHtenDmi7D7D5JOVeM+nbmE3704ngHdtudyL0MmSVKVWPCyRYww+kG4a1+Y/BrM+yK1PI9OWrwpC1as4+JHPqV1k/rcclIvL0MmSVIVuQ9eNlgxD174CUx9HXY6AI67E5oWxnnfiktKufSxT1myej3PXLwvTRvWTTqSJEk5z4KXDV69Er58Fw6/HvY8H2oVzsTq9a9N4uMZi7npxJ7s1rZJ0nEkScoLFrykrF4MJethm9Zw2B9h0NXQokvSqTLq5bFz+fv7XzJk7x35Qd/2SceRJClvFM5UUTaZ/CrcsRe8eFnqfpN2BVfups5fwS+e+pw+OzTlmqO8UoUkSdXJgpdJa5fDcz+Gx06Gxi1Ts3YFaMXaDVzw8Gga1i3iztP6Ure234aSJFUnN9FmyrxxqWK3/JvUdWQHXJU6DUqBiTFyxZOf8/Xi1fzzvL1o3aR+0pEkSco7FrxMadIemnWCEx+A9v2STpOYu96dzuvj53P1kbuyd6fmSceRJCkvuW2sJs0aCU+cAcXroUFTOPOFgi53H01fxJ9fn8xRe7Th3P07Jh1HkqS8ZcGrCcXr4K3fwn2HwTefwrJZSSdK3Lcr1vKToZ/RsUUjrv/BHoQCOIGzJElJcRNtdZv3BTx7IcwfB71PT50CpX5hn9+tpDRy2WNjWLF2A4+cuxeN6vltJ0lSTfI3bXWKEV64FFYtgFMeh26HJ50oK9w6bCofzVjEjSfsQbfW2yQdR5KkvGfBqw4Lp6ZOe1K/CfzgXmiwHTRslnSqrPDelAXc/vZUTujbnhP7dUg6jiRJBcF98KqitBQ+vgv+tj8Muza1rPnOlru0+cvXcvnjY+jSsjHXHrt70nEkSSoYzuBV1pKv4fkfw1fvQ5fD4MArkk6UVYpLSrn00c9Ys6GEO0/rQ4O6RUlHkiSpYFjwKmPqm/Dk2UCEY26H3kPAo0L/w01vTmHkV4u55aRedG7pfneSJGWSBa8yWu4KHQ+Aw6+D7XZMOk3WeWfSt9w1fDqn7NmB43q3SzqOJEkFx33wKmrcM/DUuakjZZu0h1Mes9yV45ula7j8iTHs2mZbfnP0bknHkSSpIFnwtmT14tTm2KfOhiVfwZolSSfKWhtKSrn00U8pLonceVof6tdxvztJkpLgJtrNmfJ66rx2qxfDoGtgv59CkUO2KTe/OYVPZy7l9lN607FFo6TjSJJUsGwrm7JhDbx0OTTaHk5/Glr3SDpRVvtg2kLuenc6J/fvwNE92yYdR5KkgmbB29jMj6FtH6jTAIY8l9rPrna9pFNltUUr13H542Po1KIRvz66e9JxJEkqeO6DV9ay2XDfYTDy7tT97bta7rYgxsj/PDWWpas3cPspfWhY178ZJElKmgWvrFULYM8LoN+5SSfJGQ9++BXDJn3LL4/Yhe5tt006jiRJwk20/6l5ZzjihqRT5IwJc5bzx1cmMWiXlpy1705Jx5EkSWnO4JVVzysuVNTq9cVc+tinNG1YhxtP2IPglTwkScoazuCpUq59aQIzFq7ikXP3onlj91OUJCmbOIOnrfby2Lk8NnIWFx60M/t1bpF0HEmStBELnrbK7CWrueqZsfTs0JSfHdI16TiSJKkcFjxVWHFJKT8dOoYY4faTe1OnyG8fSZKykfvgqcLuGj6dUV8v4daTe7FD84ZJx5EkSZvgFIwqZOzspdw6bCrH9GzLsb3aJR1HkiRthgVPW7RmfQmXPz6GFo3rce2xuycdR5IkbUFWFrwQQrMQwpshhKnpz9uVs87AEMKYMh9rQwjHpR97IITwZZnHemX+q8gf1706kekLVnHTD3vSpGGdpONIkqQtyMqCB1wFDIsxdgGGpe//hxjjOzHGXjHGXsAgYDXwRplVfvHd4zHGMRlJnYfenbKABz/6mnP26+gpUSRJyhHZWvCOBR5M334QOG4L658AvBpjXF2jqQrMklXr+cWTn9OlZWP+5/BuSceRJEkVlK0Fr1WMcS5A+nPLLax/MvDYRsv+N4QwNoRwcwjBSy1spRgjVz83jiWr13PzSb2oX6co6UiSJKmCQowxmTcO4S2gdTkP/Qp4MMbYtMy6S2KM/7UfXvqxNsBYoG2McUOZZfOAusA9wPQY4+838fzzgfMBWrVq1Xfo0KGV/6Jq2MqVK2ncuHFG3uvDOcXcM3YdJ3Spw1E7183Ie9a0TI5fvnHsqsbxqxrHr/Icu6rJ9vEbOHDg6Bhjv/IeS6zgbU4IYTIwIMY4N13WhscYy91GGEK4DNgtxnj+Jh4fAFwRYzxqS+/br1+/OGrUqCokr1nDhw9nwIABNf4+3yxdw+G3vEe3Vtvw+AX7UFQr1Ph7ZkKmxi8fOXZV4/hVjeNXeY5d1WT7+IUQNlnwsnUT7QvAmenbZwLPb2bdU9ho82y6FBJCCKT23xtXAxnzUmlp5OdPjKG0NPKXH/bKm3InSVIhydaCdx1wSAhhKnBI+j4hhH4hhH98t1IIYSegA/DuRs//ZwjhC+ALoAXwhwxkzgv3ffAlH89YzG+O3s2rVUiSlKOy8lJlMcZFwMHlLB8FnFfm/lfAf11WIcY4qCbz5asp81dww2uTObR7K07s1z7pOJIkqZKydQZPGVZcUsoVT35O4/q1+eP3e5Daui1JknJRVs7gKfPufm8GY2cv445T+9CisWeVkSQplzmDJ6bMX8Gtb03lyB5tOHKPNknHkSRJVWTBK3BlN83+7tjdko4jSZKqgZtoC9w977tpVpKkfOMMXgGbMn8Ft7w5lSN6tHbTrCRJecSCV6DKbpr9/bG7Jx1HkiRVIzfRFig3zUqSlL+cwStAbpqVJCm/WfAKTHFJKb9w06wkSXnNTbQF5p73Z/D57GX89dTebpqVJClPOYNXQKZ9+3+bZo/ao23ScSRJUg2x4BWI0tLIVU9/QcN6RW6alSQpz1nwCsSjI2cy6uslXH1kdzfNSpKU5yx4BWDesrVc9+ok9u/cgh/0aZd0HEmSVMMseAXg18+Po7i0lP89fndCCEnHkSRJNcyCl+deGzeXNybM56eDu7Jj80ZJx5EkSRlgwctjy9Zs4NfPj6d7m205b/+OSceRJEkZ4nnw8tj1r01i4cp13Htmf2oX2eUlSSoU/tbPUyO/XMyjI2Zyzn4d6dG+SdJxJElSBlnw8tC64hJ++cxY2m/XgJ8d2jXpOJIkKcPcRJuH7nhnOtMXrOLBc/akYV3/iSVJKjTO4OWZKfNXcNfwaRzXqy0Hdd0+6TiSJCkBFrw8Uloa+eUzX9C4Xm2uOap70nEkSVJCLHh55LFPZjI6fTmy5l6OTJKkgmXByxOLVq7jhtcms3enZnzfy5FJklTQLHh54rpXJ7FqXTHXHuvlyCRJKnQWvDww6qvFPDl6Nucd0IkurbZJOo4kSUqYBS/HFZeUcvVz42jbpD4/Obhz0nEkSVIWsODluAc/+ppJ81bw66O7e847SZIEWPBy2vzla7n5zSkM6LY9h+3WOuk4kiQpS1jwctgfXp7I+pJSfnfMbh5YIUmS/s2Cl6M+mLaQFz+fw8UDdmbH5o2SjiNJkrKIBS8HrSsu4Zrnx7Fj84ZceNDOSceRJElZxr3yc9A/3v+SGQtWcf/Z/alfpyjpOJIkKcs4g5djZi9Zze1vT+Xw3VozsFvLpONIkqQsZMHLMb97cQKBwK+P7p50FEmSlKUseDnk8wXFvDlhPpcN7kLbpg2SjiNJkrKUBS9HrC8u5bGJ6+m0fSPO2a9j0nEkSVIW8yCLHPHQR18xb3Xk/pO6U7e2vVySJG2aTSEHLFy5jlvfmsoeLYo8sEKSJG2RBS8H3PTGZNZsKOHkXeomHUWSJOUAC16WG/fNMoZ+Mosz992Jto3955IkSVtmY8hiMUZ+/9IEtmtYl58c3CXpOJIkKUdY8LLYK1/MY+SXi7ni0G40aVAn6TiSJClHWPCy1NoNJfzxlYns2mZbTurfIek4kiQph1jwstQ9783gm6Vr+M3R3SmqFZKOI0mScogFLwvNWbqGO4dP44gerdm7U/Ok40iSpBxjwctC1782idIIv/zerklHkSRJOciCl2VGfbWY58fM4YIDO9GhWcOk40iSpBxkwcsipaWR3704gdbb1ueiATsnHUeSJOUoC14Weeazb/jim2Vc9b1daFjXywRLkqTKseBlibUbSrjpjcn0bN+EY3q2TTqOJEnKYRa8LHHfB18yd9lafnnErtTytCiSJKkKLHhZYPGq9dz1znQG79rS06JIkqQqs+BlgduGTWXV+mKuPHyXpKNIkqQ8YMFL2FcLV/HIx19zUv8OdGm1TdJxJElSHrDgJezGNyZTp6gWlw/umnQUSZKUJyx4Cfps5hJeHjuXHx3YiZbb1k86jiRJyhNZW/BCCCeGEMaHEEpDCP02s97hIYTJIYRpIYSryizvGEIYEUKYGkJ4PIRQNzPJKybGyJ9emUSLxnU5/8BOSceRJEl5JGsLHjAO+D7w3qZWCCEUAXcA3wO6A6eEELqnH74euDnG2AVYApxbs3G3zlsTv2XkV4v56eCuNK7nSY0lSVL1ydqCF2OcGGOcvIXV9gSmxRhnxBjXA0OBY0MIARgEPJVe70HguJpLu3WKS0q57tWJdNq+ESf175B0HEmSlGeytuBVUDtgVpn7s9PLmgNLY4zFGy3PCk+Mms30Bau48vBdqFOU6/8EkiQp2yS6bTCE8BbQupyHfhVjfL4iL1HOsriZ5eVlOB84H6BVq1YMHz68Am9beWuLI9e9t4YuTWtR99uJDF8wqcLPXblyZY3ny2eOX+U5dlXj+FWN41d5jl3V5PL4JVrwYoyDq/gSs4Gy2zjbA3OAhUDTEELt9Czed8vLy3APcA9Av3794oABA6oYafNueWsKy9dP5YHz9qHPDttt1XOHDx9OTefLZ45f5Tl2VeP4VY3jV3mOXdXk8vjl+vbBT4Au6SNm6wInAy/EGCPwDnBCer0zgYrMCNaob1es5Z73ZnBEj9ZbXe4kSZIqKmsLXgjh+BDCbGAf4OUQwuvp5W1DCK8ApGfnLgFeByYCT8QYx6df4krgZyGEaaT2ybs301/Dxv769jTWF5fyi8O8JJkkSao5WXt+jhjjs8Cz5SyfAxxR5v4rwCvlrDeD1FG2WWHW4tU8NnImP+zfgY4tGiUdR5Ik5bGsncHLN7cNm0oIgUsHdU46iiRJynMWvAyYsWAlT386m9P32pE2TRokHUeSJOU5C14G3PzWVOrVLuLigTsnHUWSJBUAC14Nmzh3OS9+Poez99uJFo3rJR1HkiQVAAteDbvpjSlsU782Fxzo7J0kScoMC14NGjNrKW9NnM/5B3SiScM6SceRJEkFwoJXg256YzLNGtXl7P07Jh1FkiQVEAteDfl4xiLen7qQiw7amcb1svZ0g5IkKQ9Z8GpAjJGb3phMy23qMWSfHZOOI0mSCowFrwa8O2UBn3y1hEsHdaZ+naKk40iSpAJjwatmqdm7KbTfrgEn9d8h6TiSJKkAWfCq2evj5/PFN8u47OAu1K3t8EqSpMyzgVSjktLIX96cTKftG3F873ZJx5EkSQXKgleNXho7hynzV3L54K7ULnJoJUlSMmwh1aSkNHLbsKl0a7UNR/Zok3QcSZJUwCx41eTVcXOZvmAVlwzqTK1aIek4kiSpgFnwqkFpaeSvb0+j0/aNOMLZO0mSlDALXjV4c+J8Js1bwSUDO1Pk7J0kSUqYBa+KYozc/vZUdmzekGN6tk06jiRJkgWvqoZPXsC4b5bz4wGdPXJWkiRlBRtJFcQYuXXYVNo1bcDxfTzvnSRJyg4WvCr417SFjJm1lIsG7EwdZ+8kSVKWsJVUwe3DptF62/qc2K990lEkSZL+zYJXSR/PWMTIrxZzwUGdqFe7KOk4kiRJ/2bBq6Tb355Ki8b1OGXPHZKOIkmS9B8seJUw+uslfDBtERcc2In6dZy9kyRJ2cWCVwm3vz2VZo3qctrezt5JkqTsY8HbSmNnL2X45AWcu39HGtatnXQcSZKk/2LB20q3vz2NJg3qcMY+OyYdRZIkqVwWvK0wce5y3pwwn7P324lt6tdJOo4kSVK5LHhb4c4wksybAAALTUlEQVTh02lcrzZn79sx6SiSJEmbZMGroFmLV/Py2DmcttcONGno7J0kScpeFrwKuvdfX1JUK3D2fs7eSZKk7GbBq4Alq9bz+CezOLZXO1o3qZ90HEmSpM2y4FXAwx9/zZoNJZx/YKeko0iSJG2RBW8L1m4o4cEPv2LQLi3p2mqbpONIkiRtkQVvC54aPZtFq9Y7eydJknKGBW8zSkojf39/Bj07NGWvjs2SjiNJklQhFrzNeGP8PL5etJoLDuxECCHpOJIkSRViwduEGCN/e28GOzZvyGG7tU46jiRJUoVZ8DZh5JeL+XzWUs47oBNFtZy9kyRJucOCtwl3vzeD5o3qcmLf9klHkSRJ2ioWvHJMmb+Ctyd9yxn77ET9OkVJx5EkSdoqFrxy3PPeDOrXqcWQfXZMOookSdJWs+BtZN6ytTw/5htO6teBZo3qJh1HkiRpq1nwNnL/h19SUho57wBPbCxJknKTBa+M0hh59OOZHNGjDR2aNUw6jiRJUqXUTjpANlm0aj1hXTEXHLhz0lEkSZIqzRm8MhatXM9eHZvRo32TpKNIkiRVmgWvjA0lpZy9X8ekY0iSJFWJBa+MOkW1GLxry6RjSJIkVYkFr4zmjepSu8ghkSRJuc02U4bnvZMkSfnAgldGUa2QdARJkqQqs+BJkiTlGQueJElSnrHgSZIk5RkLniRJUp6x4EmSJOWZrCx4IYQTQwjjQwilIYR+m1inQwjhnRDCxPS6l5V57LchhG9CCGPSH0dkLr0kSVKyaicdYBPGAd8H7t7MOsXAz2OMn4YQtgFGhxDejDFOSD9+c4zxzzUdVJIkKdtkZcGLMU4ECGHT56WLMc4F5qZvrwghTATaARM2+SRJkqQCkJWbaLdWCGEnoDcwosziS0IIY0MI94UQtkskmCRJUgJCjDGZNw7hLaB1OQ/9Ksb4fHqd4cAVMcZRm3mdxsC7wP/GGJ9JL2sFLAQicC3QJsZ4ziaefz5wPkCrVq36Dh06tNJfU01buXIljRs3TjpGznL8Ks+xqxrHr2ocv8pz7Kom28dv4MCBo2OM5R+rkFTBq4gtFbwQQh3gJeD1GONfNrHOTsBLMcbdt/R+/fr1i6NGbbJLJm748OEMGDAg6Rg5y/GrPMeuahy/qnH8Ks+xq5psH78QwiYLXs5uog2pHfTuBSZuXO5CCG3K3D2e1EEbkiRJBSErC14I4fgQwmxgH+DlEMLr6eVtQwivpFfbDxgCDCrndCg3hBC+CCGMBQYCl2f6a5AkSUpKth5F+yzwbDnL5wBHpG//Cyj3MNsY45AaDShJkpTFsnIGT5IkSZVnwZMkScozFjxJkqQ8Y8GTJEnKMxY8SZKkPGPBkyRJyjMWPEmSpDxjwZMkScozFjxJkqQ8E2KMSWfIGiGEBcDXSefYjBbAwqRD5DDHr/Icu6px/KrG8as8x65qsn38dowxbl/eAxa8HBJCGBVj7Jd0jlzl+FWeY1c1jl/VOH6V59hVTS6Pn5toJUmS8owFT5IkKc9Y8HLLPUkHyHGOX+U5dlXj+FWN41d5jl3V5Oz4uQ+eJElSnnEGT5IkKc9Y8LJYCKFZCOHNEMLU9OftNrHeDiGEN0IIE0MIE0IIO2U2aXaq6Pil1902hPBNCOGvmcyYrSoydiGEXiGEj0II40MIY0MIJyWRNZuEEA4PIUwOIUwLIVxVzuP1QgiPpx8f4c/q/6nA2P0s/f/b2BDCsBDCjknkzFZbGr8y650QQoghhJw8MrSmVGT8Qgg/TH8Pjg8hPJrpjFvLgpfdrgKGxRi7AMPS98vzEHBjjHFXYE/g2wzly3YVHT+Aa4F3M5IqN1Rk7FYDZ8QYdwMOB24JITTNYMasEkIoAu4Avgd0B04JIXTfaLVzgSUxxs7AzcD1mU2ZnSo4dp8B/WKMewBPATdkNmX2quD4EULYBvgJMCKzCbNbRcYvhNAF+CWwX/r/vJ9mPOhWsuBlt2OBB9O3HwSO23iF9Ddh7RjjmwAxxpUxxtWZi5jVtjh+ACGEvkAr4I0M5coFWxy7GOOUGOPU9O05pP6wKPeEmwViT2BajHFGjHE9MJTUOJZVdlyfAg4OIYQMZsxWWxy7GOM7Zf5v+xhon+GM2awi33uQ+kP2BmBtJsPlgIqM34+AO2KMSwBijFk/kWLBy26tYoxzAdKfW5azTldgaQjhmRDCZyGEG9N/jagC4xdCqAXcBPwiw9myXUW+9/4thLAnUBeYnoFs2aodMKvM/dnpZeWuE2MsBpYBzTOSLrtVZOzKOhd4tUYT5ZYtjl8IoTfQIcb4UiaD5YiKfP91BbqGED4IIXwcQjg8Y+kqqXbSAQpdCOEtoHU5D/2qgi9RGzgA6A3MBB4HzgLurY582a4axu9i4JUY46xCm0iphrH77nXaAA8DZ8YYS6sjW44q7xto49MUVGSdQlThcQkhnA70Aw6q0US5ZbPjl/5D9mZSvxv03yry/Vcb6AIMIDV7/H4IYfcY49IazlZpFryExRgHb+qxEML8EEKbGOPc9C/R8qaEZwOfxRhnpJ/zHLA3BVLwqmH89gEOCCFcDDQG6oYQVsYYN7e/Xl6ohrEjhLAt8DJwdYzx4xqKmitmAx3K3G8PzNnEOrNDCLWBJsDizMTLahUZO0IIg0n9AXJQjHFdhrLlgi2N3zbA7sDw9B+yrYEXQgjHxBhHZSxl9qroz+7HMcYNwJchhMmkCt8nmYm49dxEm91eAM5M3z4TeL6cdT4BtgshfLfv0yBgQgay5YItjl+M8bQY4w4xxp2AK4CHCqHcVcAWxy6EUBd4ltSYPZnBbNnqE6BLCKFjemxOJjWOZZUd1xOAt6MnI4UKjF16E+PdwDG5sP9Thm12/GKMy2KMLWKMO6X/r/uY1Dha7lIq8rP7HDAQIITQgtQm2xkZTbmVLHjZ7TrgkBDCVOCQ9H1CCP1CCP8AiDGWkComw0IIX5Caav57QnmzzRbHT5tUkbH7IXAgcFYIYUz6o1cycZOX3qfuEuB1YCLwRIxxfAjh9yGEY9Kr3Qs0DyFMA37G5o/sLhgVHLsbSc2yP5n+Xtv4F3DBquD4aRMqOH6vA4tCCBOAd4BfxBgXJZO4YryShSRJUp5xBk+SJCnPWPAkSZLyjAVPkiQpz1jwJEmS8owFT5IkKc9Y8CRJkvKMBU+SJCnPWPAkqRqEELYNIZSGEGKZj2UhhJEhhJOTziepsHgtWkmqHn1IXUnmceCl9O0OwKXAYyGE9THGZxLMJ6mAWPAkqXr0SX9+NMb478tohRA+At4GTgMseJIywk20klQ9+qY/f7bR8unpz00ymEVSgbPgSVL16AMsiDHO2mj5UenPH2Y4j6QCFmKMSWeQpJwWQmgMLAPeB05IL94eOAb4DTAT2CvGuCyZhJIKjQVPkqoohLA/qXK3sWLgL8B1McYlmU0lqZC5iVaSqu67/e+uAg4htVn2eqAI2Ke8cpc+fcpJmYsoqZB4FK0kVd13R9D+M8Y4O3375RBCM+BHIYSDY4zDvls5hFAE9ADGZDinpALhDJ4kVV1fYFGZcvede9KfT/luQQihDbACqAeMDiGsDCHsm5mYkgqF++BJUhWEEBqQKmzDY4yDy3l8NlAXaBNjLEkvOxn4aYxx74yGlVQwnMGTpKrpRWpfu01tbn2F1BG1+5VZ1of/Pl+eJFUbC54kVc13+99tquC9lP58/EbPcf87STXGTbSSlGEhhIXAETHGkUlnkZSfnMGTpAwKIdQBtks6h6T8ZsGTpAyKMW4A/gy8kT6CtlPSmSTlHzfRSpIk5Rln8CRJkvKMBU+SJCnPWPAkSZLyjAVPkiQpz1jwJEmS8owFT5IkKc9Y8CRJkvKMBU+SJCnP/H/hNb9ra79PaQAAAABJRU5ErkJggg==\n", 303 | "text/plain": [ 304 | "
" 305 | ] 306 | }, 307 | "metadata": { 308 | "needs_background": "light" 309 | }, 310 | "output_type": "display_data" 311 | } 312 | ], 313 | "source": [ 314 | "fig, ax = plt.subplots(figsize = (10, 10))\n", 315 | "ax.plot(R, r, label = '$r_t = \\ln(R_t+1)$')\n", 316 | "ax.plot(R, R, label = '$y =x$', ls = '--')\n", 317 | "ax.set_xlabel('$R_t$', size = 18)\n", 318 | "ax.set_ylabel('$r_t$', size = 18)\n", 319 | "ax.scatter(0, 0)\n", 320 | "ax.set_xlim([-.7, .7])\n", 321 | "ax.set_ylim([-1.3, .7])\n", 322 | "ax.legend(fontsize = 14)\n", 323 | "ax.grid()" 324 | ] 325 | }, 326 | { 327 | "cell_type": "markdown", 328 | "metadata": {}, 329 | "source": [ 330 | "As we can see if $R_t$ is small enough, it can be approximated by $r_t$." 331 | ] 332 | } 333 | ], 334 | "metadata": { 335 | "kernelspec": { 336 | "display_name": "Python 3", 337 | "language": "python", 338 | "name": "python3" 339 | }, 340 | "language_info": { 341 | "codemirror_mode": { 342 | "name": "ipython", 343 | "version": 3 344 | }, 345 | "file_extension": ".py", 346 | "mimetype": "text/x-python", 347 | "name": "python", 348 | "nbconvert_exporter": "python", 349 | "pygments_lexer": "ipython3", 350 | "version": "3.7.4" 351 | }, 352 | "toc": { 353 | "base_numbering": 1, 354 | "nav_menu": {}, 355 | "number_sections": true, 356 | "sideBar": true, 357 | "skip_h1_title": false, 358 | "title_cell": "Table of Contents", 359 | "title_sidebar": "Contents", 360 | "toc_cell": true, 361 | "toc_position": {}, 362 | "toc_section_display": true, 363 | "toc_window_display": false 364 | } 365 | }, 366 | "nbformat": 4, 367 | "nbformat_minor": 2 368 | } 369 | -------------------------------------------------------------------------------- /Bureau of Economic Analysis (BEA).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "toc": true 7 | }, 8 | "source": [ 9 | "

Table of Contents

\n", 10 | "
    " 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 4, 16 | "metadata": {}, 17 | "outputs": [ 18 | { 19 | "name": "stdout", 20 | "output_type": "stream", 21 | "text": [ 22 | "Collecting pybea\n", 23 | " Using cached https://files.pythonhosted.org/packages/89/74/f4639713b2ec002435847498bc21bf011e99c75f499157369cc310252790/pybea-0.7.0a0-py2.py3-none-any.whl\n", 24 | "Installing collected packages: pybea\n", 25 | "Successfully installed pybea-0.7.0a0\n", 26 | "Note: you may need to restart the kernel to use updated packages.\n" 27 | ] 28 | } 29 | ], 30 | "source": [ 31 | "pip install pybea" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 1, 37 | "metadata": {}, 38 | "outputs": [], 39 | "source": [ 40 | "import pybea" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 2, 46 | "metadata": {}, 47 | "outputs": [], 48 | "source": [ 49 | "pybea.get_data_set_list?" 50 | ] 51 | }, 52 | { 53 | "cell_type": "code", 54 | "execution_count": 3, 55 | "metadata": {}, 56 | "outputs": [], 57 | "source": [ 58 | "# replace this with your BEA data API key!\n", 59 | "USER_ID = '8D6E4F9E-A6D9-4B12-B240-6704A2A4B454'" 60 | ] 61 | }, 62 | { 63 | "cell_type": "code", 64 | "execution_count": 4, 65 | "metadata": {}, 66 | "outputs": [ 67 | { 68 | "data": { 69 | "text/html": [ 70 | "
    \n", 71 | "\n", 84 | "\n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | "
    DatasetNameDatasetDescription
    0NIPAStandard NIPA tables
    1NIUnderlyingDetailStandard NI underlying detail tables
    2MNEMultinational Enterprises
    3FixedAssetsStandard Fixed Assets tables
    4ITAInternational Transactions Accounts
    5IIPInternational Investment Position
    6GDPbyIndustryGDP by Industry
    7InputOutputInput-Output Data
    8UnderlyingGDPbyIndustryUnderlying GDP by Industry
    9IntlServTradeInternational Services Trade
    10RegionalRegional data sets
    11APIDatasetMetaDataMetadata about other API datasets
    \n", 155 | "
    " 156 | ], 157 | "text/plain": [ 158 | " DatasetName DatasetDescription\n", 159 | "0 NIPA Standard NIPA tables\n", 160 | "1 NIUnderlyingDetail Standard NI underlying detail tables\n", 161 | "2 MNE Multinational Enterprises\n", 162 | "3 FixedAssets Standard Fixed Assets tables\n", 163 | "4 ITA International Transactions Accounts\n", 164 | "5 IIP International Investment Position\n", 165 | "6 GDPbyIndustry GDP by Industry\n", 166 | "7 InputOutput Input-Output Data\n", 167 | "8 UnderlyingGDPbyIndustry Underlying GDP by Industry\n", 168 | "9 IntlServTrade International Services Trade\n", 169 | "10 Regional Regional data sets\n", 170 | "11 APIDatasetMetaData Metadata about other API datasets" 171 | ] 172 | }, 173 | "execution_count": 4, 174 | "metadata": {}, 175 | "output_type": "execute_result" 176 | } 177 | ], 178 | "source": [ 179 | "# access the BEA data API...\n", 180 | "available_datasets = pybea.get_data_set_list(USER_ID)\n", 181 | "available_datasets" 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": 5, 187 | "metadata": {}, 188 | "outputs": [ 189 | { 190 | "data": { 191 | "text/html": [ 192 | "
    \n", 193 | "\n", 206 | "\n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | "
    DatasetNameDatasetDescription
    0NIPAStandard NIPA tables
    1NIUnderlyingDetailStandard NI underlying detail tables
    2MNEMultinational Enterprises
    3FixedAssetsStandard Fixed Assets tables
    4ITAInternational Transactions Accounts
    5IIPInternational Investment Position
    6GDPbyIndustryGDP by Industry
    7InputOutputInput-Output Data
    8UnderlyingGDPbyIndustryUnderlying GDP by Industry
    9IntlServTradeInternational Services Trade
    10RegionalRegional data sets
    11APIDatasetMetaDataMetadata about other API datasets
    \n", 277 | "
    " 278 | ], 279 | "text/plain": [ 280 | " DatasetName DatasetDescription\n", 281 | "0 NIPA Standard NIPA tables\n", 282 | "1 NIUnderlyingDetail Standard NI underlying detail tables\n", 283 | "2 MNE Multinational Enterprises\n", 284 | "3 FixedAssets Standard Fixed Assets tables\n", 285 | "4 ITA International Transactions Accounts\n", 286 | "5 IIP International Investment Position\n", 287 | "6 GDPbyIndustry GDP by Industry\n", 288 | "7 InputOutput Input-Output Data\n", 289 | "8 UnderlyingGDPbyIndustry Underlying GDP by Industry\n", 290 | "9 IntlServTrade International Services Trade\n", 291 | "10 Regional Regional data sets\n", 292 | "11 APIDatasetMetaData Metadata about other API datasets" 293 | ] 294 | }, 295 | "execution_count": 5, 296 | "metadata": {}, 297 | "output_type": "execute_result" 298 | } 299 | ], 300 | "source": [ 301 | "request = pybea.api.DataSetListRequest(USER_ID,\n", 302 | " ResultFormat=\"JSON\")\n", 303 | "request.data_set_list" 304 | ] 305 | }, 306 | { 307 | "cell_type": "code", 308 | "execution_count": 9, 309 | "metadata": {}, 310 | "outputs": [ 311 | { 312 | "data": { 313 | "text/html": [ 314 | "
    \n", 315 | "\n", 328 | "\n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | "
    MultipleAcceptedFlagParameterDataTypeParameterDefaultValueParameterDescriptionParameterIsRequiredFlagParameterName
    01stringA - Annual, Q-Quarterly, M-Monthly1Frequency
    10stringNA flag indicating that million-dollar data sho...0ShowMillions
    20integerNoneThe standard NIPA table identifier0TableID
    30stringNoneThe new NIPA table identifier0TableName
    41integerList of year(s) of data to retrieve (X for All)1Year
    \n", 388 | "
    " 389 | ], 390 | "text/plain": [ 391 | " MultipleAcceptedFlag ParameterDataType ParameterDefaultValue \\\n", 392 | "0 1 string \n", 393 | "1 0 string N \n", 394 | "2 0 integer None \n", 395 | "3 0 string None \n", 396 | "4 1 integer \n", 397 | "\n", 398 | " ParameterDescription ParameterIsRequiredFlag \\\n", 399 | "0 A - Annual, Q-Quarterly, M-Monthly 1 \n", 400 | "1 A flag indicating that million-dollar data sho... 0 \n", 401 | "2 The standard NIPA table identifier 0 \n", 402 | "3 The new NIPA table identifier 0 \n", 403 | "4 List of year(s) of data to retrieve (X for All) 1 \n", 404 | "\n", 405 | " ParameterName \n", 406 | "0 Frequency \n", 407 | "1 ShowMillions \n", 408 | "2 TableID \n", 409 | "3 TableName \n", 410 | "4 Year " 411 | ] 412 | }, 413 | "execution_count": 9, 414 | "metadata": {}, 415 | "output_type": "execute_result" 416 | } 417 | ], 418 | "source": [ 419 | "NIPA_params = pybea.get_parameter_list(USER_ID, DataSetName='NIPA', ResultFormat='XML')\n", 420 | "NIPA_params" 421 | ] 422 | }, 423 | { 424 | "cell_type": "code", 425 | "execution_count": 10, 426 | "metadata": {}, 427 | "outputs": [ 428 | { 429 | "data": { 430 | "text/html": [ 431 | "
    \n", 432 | "\n", 445 | "\n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | "
    ParameterNameParameterDataTypeParameterDescriptionParameterIsRequiredFlagParameterDefaultValueMultipleAcceptedFlagAllValue
    0FrequencystringA - Annual, Q-Quarterly, M-Monthly11
    1ShowMillionsstringA flag indicating that million-dollar data sho...0N0
    2TableIDintegerThe standard NIPA table identifier0NaN0
    3TableNamestringThe new NIPA table identifier0NaN0
    4YearintegerList of year(s) of data to retrieve (X for All)11X
    \n", 511 | "
    " 512 | ], 513 | "text/plain": [ 514 | " ParameterName ParameterDataType \\\n", 515 | "0 Frequency string \n", 516 | "1 ShowMillions string \n", 517 | "2 TableID integer \n", 518 | "3 TableName string \n", 519 | "4 Year integer \n", 520 | "\n", 521 | " ParameterDescription ParameterIsRequiredFlag \\\n", 522 | "0 A - Annual, Q-Quarterly, M-Monthly 1 \n", 523 | "1 A flag indicating that million-dollar data sho... 0 \n", 524 | "2 The standard NIPA table identifier 0 \n", 525 | "3 The new NIPA table identifier 0 \n", 526 | "4 List of year(s) of data to retrieve (X for All) 1 \n", 527 | "\n", 528 | " ParameterDefaultValue MultipleAcceptedFlag AllValue \n", 529 | "0 1 \n", 530 | "1 N 0 \n", 531 | "2 NaN 0 \n", 532 | "3 NaN 0 \n", 533 | "4 1 X " 534 | ] 535 | }, 536 | "execution_count": 10, 537 | "metadata": {}, 538 | "output_type": "execute_result" 539 | } 540 | ], 541 | "source": [ 542 | "request = pybea.api.ParameterListRequest(USER_ID,\n", 543 | " DataSetName='NIPA',\n", 544 | " ResultFormat='JSON')\n", 545 | "request.parameter_list" 546 | ] 547 | }, 548 | { 549 | "cell_type": "code", 550 | "execution_count": 14, 551 | "metadata": {}, 552 | "outputs": [], 553 | "source": [ 554 | "data = pybea.get_data(USER_ID,\n", 555 | " DataSetName='NIPA',\n", 556 | " TableName='T10101',\n", 557 | " Frequency=['A', 'Q'],\n", 558 | " Year='ALL',\n", 559 | " ResultFormat=\"XML\"\n", 560 | " )" 561 | ] 562 | }, 563 | { 564 | "cell_type": "code", 565 | "execution_count": 15, 566 | "metadata": {}, 567 | "outputs": [ 568 | { 569 | "data": { 570 | "text/html": [ 571 | "
    \n", 572 | "\n", 585 | "\n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | "
    TableNameSeriesCodeLineNumberLineDescriptionTimePeriodCL_UNITUNIT_MULTMETRIC_NAMEDataValue
    0T10101A191RL1Gross domestic product1947Q2Percent change, annual rate0Fisher Quantity Index-1.0
    1T10101A191RL1Gross domestic product1947Q3Percent change, annual rate0Fisher Quantity Index-0.8
    2T10101A191RL1Gross domestic product1947Q4Percent change, annual rate0Fisher Quantity Index6.4
    3T10101A191RL1Gross domestic product1948Q1Percent change, annual rate0Fisher Quantity Index6.2
    4T10101A191RL1Gross domestic product1948Q2Percent change, annual rate0Fisher Quantity Index6.8
    ..............................
    7295T10101A191RP27Gross domestic product, current dollars2019Q1Percent change, annual rate0Current Dollars3.9
    7296T10101A191RP27Gross domestic product, current dollars2019Q2Percent change, annual rate0Current Dollars4.7
    7297T10101A191RP27Gross domestic product, current dollars2019Q3Percent change, annual rate0Current Dollars3.8
    7298T10101A191RP27Gross domestic product, current dollars2019Q4Percent change, annual rate0Current Dollars3.5
    7299T10101A191RP27Gross domestic product, current dollars2020Q1Percent change, annual rate0Current Dollars-3.4
    \n", 735 | "

    7300 rows × 9 columns

    \n", 736 | "
    " 737 | ], 738 | "text/plain": [ 739 | " TableName SeriesCode LineNumber \\\n", 740 | "0 T10101 A191RL 1 \n", 741 | "1 T10101 A191RL 1 \n", 742 | "2 T10101 A191RL 1 \n", 743 | "3 T10101 A191RL 1 \n", 744 | "4 T10101 A191RL 1 \n", 745 | "... ... ... ... \n", 746 | "7295 T10101 A191RP 27 \n", 747 | "7296 T10101 A191RP 27 \n", 748 | "7297 T10101 A191RP 27 \n", 749 | "7298 T10101 A191RP 27 \n", 750 | "7299 T10101 A191RP 27 \n", 751 | "\n", 752 | " LineDescription TimePeriod \\\n", 753 | "0 Gross domestic product 1947Q2 \n", 754 | "1 Gross domestic product 1947Q3 \n", 755 | "2 Gross domestic product 1947Q4 \n", 756 | "3 Gross domestic product 1948Q1 \n", 757 | "4 Gross domestic product 1948Q2 \n", 758 | "... ... ... \n", 759 | "7295 Gross domestic product, current dollars 2019Q1 \n", 760 | "7296 Gross domestic product, current dollars 2019Q2 \n", 761 | "7297 Gross domestic product, current dollars 2019Q3 \n", 762 | "7298 Gross domestic product, current dollars 2019Q4 \n", 763 | "7299 Gross domestic product, current dollars 2020Q1 \n", 764 | "\n", 765 | " CL_UNIT UNIT_MULT METRIC_NAME DataValue \n", 766 | "0 Percent change, annual rate 0 Fisher Quantity Index -1.0 \n", 767 | "1 Percent change, annual rate 0 Fisher Quantity Index -0.8 \n", 768 | "2 Percent change, annual rate 0 Fisher Quantity Index 6.4 \n", 769 | "3 Percent change, annual rate 0 Fisher Quantity Index 6.2 \n", 770 | "4 Percent change, annual rate 0 Fisher Quantity Index 6.8 \n", 771 | "... ... ... ... ... \n", 772 | "7295 Percent change, annual rate 0 Current Dollars 3.9 \n", 773 | "7296 Percent change, annual rate 0 Current Dollars 4.7 \n", 774 | "7297 Percent change, annual rate 0 Current Dollars 3.8 \n", 775 | "7298 Percent change, annual rate 0 Current Dollars 3.5 \n", 776 | "7299 Percent change, annual rate 0 Current Dollars -3.4 \n", 777 | "\n", 778 | "[7300 rows x 9 columns]" 779 | ] 780 | }, 781 | "execution_count": 15, 782 | "metadata": {}, 783 | "output_type": "execute_result" 784 | } 785 | ], 786 | "source": [ 787 | "data" 788 | ] 789 | }, 790 | { 791 | "cell_type": "code", 792 | "execution_count": 20, 793 | "metadata": {}, 794 | "outputs": [ 795 | { 796 | "data": { 797 | "text/plain": [ 798 | "" 799 | ] 800 | }, 801 | "execution_count": 20, 802 | "metadata": {}, 803 | "output_type": "execute_result" 804 | }, 805 | { 806 | "data": { 807 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8GearUAAAgAElEQVR4nO3dd3wUZf4H8M83CaELhE4ooXdpMTRBelXhLCc2kB+Kp9i9QxDPw855Z/+dnlixoHKWgx8gShUQQYL0HiFAAEnoIDXJ8/tjn93MbmZ3Zzdbh8/79cors7OzO99t33nmaSNKKRARkb0kRDsAIiIKPSZ3IiIbYnInIrIhJnciIhticicisqGkaAcAANWqVVNpaWnRDoOIKK6sWbPmsFKqutl9MZHc09LSkJmZGe0wiIjiiojs8XYfq2WIiGyIyZ2IyIaY3ImIbIjJnYjIhpjciYhsiMmdiMiGmNyJiGyIyZ0oTuzKO40VWYejHQbFiZgYxERE/vV56QcAQPaUoVGOhOKBpZK7iGSLyEYRWScimXpdiojMF5Gd+n8VvV5E5HURyRKRDSLSMZwvgIiIigukWqa3Uqq9Uipd354AYKFSqimAhfo2AAwG0FT/jQXwVqiCJSIia0pS5z4MwDS9PA3AcMP6j5TDSgCVRaR2CfZDREQBsprcFYDvRWSNiIzV62oqpQ4CgP5fQ69PBbDP8Ngcvc6NiIwVkUwRyczLywsueiIiMmW1QbW7UuqAiNQAMF9EtvnYVkzWFbsKt1JqKoCpAJCens6rdBMRhZClkrtS6oD+nwvgGwAZAA45q1v0/1y9eQ6AeoaH1wVwIFQBExGRf36Tu4iUF5GKzmUAAwBsAjALwCi92SgAM/XyLAAjda+ZLgBOOKtviIgoMqxUy9QE8I2IOLefrpSaJyKrAcwQkTEA9gK4UW8/F8AQAFkAzgAYHfKoiYjIJ7/JXSm1C0A7k/VHAPQ1Wa8AjAtJdEREFBROP0BEZENM7kRENsTkTkRkQ0zuREQ2xORORGRDTO5ERDbE5E5EZENM7kRENsTkTkRkQ0zuREQ2xORORGRDTO5ERDbE5E5EZENM7kRENsTkTkRkQ0zuREQ2xORORGRDTO5ERDbE5E5EZENM7kRENsTkTkRkQ0zuREQ2xORORGRDTO5ERDbE5E5EZEOWk7uIJIrIWhGZrW83FJFVIrJTRL4QkWS9vrS+naXvTwtP6ERE5E0gJfcHAWw13P47gFeUUk0BHAMwRq8fA+CYUqoJgFf0dkREFEGWkruI1AUwFMC7+rYA6APgS73JNADD9fIwfRv6/r56eyIiihCrJfdXAYwHUKhvVwVwXCmVr2/nAEjVy6kA9gGAvv+E3t6NiIwVkUwRyczLywsyfCIiMuM3uYvI1QBylVJrjKtNNlUW7itaodRUpVS6Uiq9evXqloIlIiJrkixs0x3AtSIyBEAZAJfBUZKvLCJJunReF8ABvX0OgHoAckQkCUAlAEdDHjkREXnlt+SulJqolKqrlEoDMALAIqXUrQAWA7hBbzYKwEy9PEvfhr5/kVKqWMmdiIjCpyT93B8D8IiIZMFRp/6eXv8egKp6/SMAJpQsRCIiCpSVahkXpdQSAEv08i4AGSbbnANwYwhiIyKiIHGEKhGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDflN7iJSRkR+FpH1IrJZRJ7S6xuKyCoR2SkiX4hIsl5fWt/O0venhfclEBGRJysl9/MA+iil2gFoD2CQiHQB8HcAryilmgI4BmCM3n4MgGNKqSYAXtHbERFRBPlN7srhtL5ZSv8pAH0AfKnXTwMwXC8P07eh7+8rIhKyiImIyC9Lde4ikigi6wDkApgP4FcAx5VS+XqTHACpejkVwD4A0PefAFDV5DnHikimiGTm5eWV7FUQEZEbS8ldKVWglGoPoC6ADAAtzTbT/81K6arYCqWmKqXSlVLp1atXtxovERFZEFBvGaXUcQBLAHQBUFlEkvRddQEc0Ms5AOoBgL6/EoCjoQiWiIissdJbprqIVNbLZQH0A7AVwGIAN+jNRgGYqZdn6dvQ9y9SShUruRMRUfgk+d8EtQFME5FEOA4GM5RSs0VkC4DPReRZAGsBvKe3fw/AxyKSBUeJfUQY4iYiIh/8Jnel1AYAHUzW74Kj/t1z/TkAN4YkOiIiCgpHqBIR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMR2RCTOxGRDTG5ExHZEJM7EZENMbkTEdkQkzsRkQ0xuRMRmdh//CzO5xdEO4ygMbkTEXnILyhE9ymL8OBn66IdStCY3ImIPBQoBQBYtC03ypEEj8mdiMiGmNyJiGyIyZ2IyIaY3ImIbMhvcheReiKyWES2ishmEXlQr08RkfkislP/r6LXi4i8LiJZIrJBRDqG+0UQEZE7KyX3fACPKqVaAugCYJyItAIwAcBCpVRTAAv1bQAYDKCp/hsL4K2QR01EFEa6s4yr10w88pvclVIHlVK/6OVTALYCSAUwDMA0vdk0AMP18jAAHymHlQAqi0jtkEdORBRmBYU2Tu5GIpIGoAOAVQBqKqUOAo4DAIAaerNUAPsMD8vR6zyfa6yIZIpIZl5eXuCRExGFiUi0Iyg5y8ldRCoA+ArAQ0qpk742NVlX7PCnlJqqlEpXSqVXr17dahhERGSBpeQuIqXgSOyfKqW+1qsPOatb9H/nUK4cAPUMD68L4EBowiUiIius9JYRAO8B2KqUetlw1ywAo/TyKAAzDetH6l4zXQCccFbfEBFRZCRZ2KY7gNsBbBQR5yw6jwOYAmCGiIwBsBfAjfq+uQCGAMgCcAbA6JBGTEREfvlN7kqp5TCvRweAvibbKwDjShgXEVHUxHEPSBeOUCUisiEmdyJy+X7zb0ibMAcnzlyMdihRdUl1hSQi+3t76S4AwM7cU1GOhEqKyZ2IyIaY3ImIbIjJnYjIhpjciYg8sCskEdna5gMncPT3C9EOg4LA5E4UJUdOn0fahDmYtyl2Z+cY+vpyXPPG8miHQUFgcieKku2HHN0NP1yRHd1A/Nh//Gy0Q4g49nMnIltRdqhsJgBM7kRkwg4lV6Ptv53CxpwT0Q4joqzMCklElxi7FeAHvroUAJA9ZWiUI4kcltyJoiyWEqnYrcgepFj6TILF5E5ELqxztw8mdwsWb8/Fr3mnox2GV7PWH8APO3iR8XgVi4XlWIyJAsM6dwtGf7AaQOzW1z3w2VoAsRsfRcc3a3NQOikRQ9rWjnYoFAVM7kQ29fAX6wEEd9Bn7Uz8Y7UMUZQxkVI4MLkTRYl4vTRx9LHOPf4xuROFwIvztiFtwpyAHqPAIjuFD5M7UQi8ueTXoB/LUjKFA5M7UZTFYp17MDGtyDqMtXuPhT4YCgp7yxBFSSzXuQfjlndXAWCX3FjBkjsRFRPLVUVr9hzDmQv50Q4j5vlN7iLyvojkisgmw7oUEZkvIjv1/yp6vYjI6yKSJSIbRKRjOIMnimeRbFDdeegUrnljOU6duxixfYbD4dPncf1bK/DwF+sits+tB0/ifH5BxPYXKlZK7h8CGOSxbgKAhUqppgAW6tsAMBhAU/03FsBboQmTvMk5dibaIcS9d5ftwvwth6K2/0BLyVsOnAx4Hy99vwMb95/A8p2HA35sLDl7wZFkN+0P/D0IhLHNYfBry9Dqye/Cur9w8JvclVJLARz1WD0MwDS9PA3AcMP6j5TDSgCVRYRjn8No3qbfoh1C3Ht2zlbc9VFmxPf70Yo9AAJvvBzy+jIs3pYbhoiCc7GgEIdPn492GGFVUBiDrd5+BFvnXlMpdRAA9P8aen0qgH2G7XL0umJEZKyIZIpIZl4eJ72iS8+8zcEfmHcf/j2EkZTMIzPWI/3ZBRHZVyy3BcSaUDeomr31poc8pdRUpVS6Uiq9evXqIQ7j0sH5t+PPp6v24Kdfj0Q7jJD5v/UHIr5PTk3sX7BdIQ+JSG2l1EFd7eI8R8wBUM+wXV0Akf/kiWLYpG82+d/Ij0intoJChcSE6BcknIUZpnb/gi25zwIwSi+PAjDTsH6k7jXTBcAJZ/WNHeQXFEY7BIqgGZn7kDZhDo7YvD7Z6OQ58y6GB0+cjXAk5qJ/eIkfVrpCfgbgJwDNRSRHRMYAmAKgv4jsBNBf3waAuQB2AcgC8A6Ae8MSdZQUxOCpIL/s4fPpqr0AgD1HffdIWrMn8qMyg/3c/X2Ds3Jj96I0RjH4U4w5fqtllFI3e7mrr8m2CsC4kgYVq/iFIjNLtpes58qq3Z6d0cifcI8RsMOkbhyhSuSFHc+KAnlNk2dttvacEXyj4j/lRg6TOxGZ+nBFtqXtInlG6+wlw7No/5jciUog3ga3rNt33OKWsXnewqRuHZM7kR/eEsqPWYfR+PG5ASTM0Ak2x729dFdI44g052fBHO8fk3uc4xim8PH33v6wwzGy2p4NorGZPp0NnSzB+8fkTlRCF/Ktj3+YutT8ik2f/bw3oH2G+5g+f0v45655d9kupE2YE9CMiyVN6pfSyFYmd4pZa/cew+pse5WKn5+7zXT9xK834vfzoZujPPfkObfbgZ7h/fsH94NQOHKi89KEp70MnDJT6AokuICsNpHY4RjA5B7n7Fwr84c3V+DGf/8Usf0ZS3U7Dp3C2r3OuvTiv3SlFH7MCu30ucHkk8JChUKTjPWfNTnuz22DZAWUvLKosARvxBsLd5Zw75HF5G5Dz83ZEvLEcynIL1S4kF+Ij1fuweDXlrnWm+WDWesPYLPJvOqBVNGEwnVvrUCjx+f63Ob38/klmoESCL5t56//3YQPf9ztc5tA0m1Ju0KWJLlPjbPGaF5DNc6ZzQr5zrLdeGfZ7ri+lmV2FKa0bfXkPFwsMCmlm2ybc8x8rpW/fLker43oENT+g8mfVnrq5J6K3tw4H690zFl/R/eGIXm+kvaWKbyEpodiyT0ASjnqMtMmzMHcjbaZDy0mrc+JfPdCs8QOBFZKnLnuAHblhX9+losRnsQunHPOBPL+RrNaJt4wuQdo62+nAATeuyESOj+/AIu2FV0u7syF/Ji9Qs75/AKfCSMhhvp4BjpQqc9LPwS1H18v2fPap5H+XO/4YHXIn9P5cgNJuIWuaplgG1SZ3MlEgVL45pcc/xtGkDEhHDp5Hv/zYdHl4lo9+V2xK+RkH/4duafce1JEw8SvNqLfyz/g+JkL0Q7Fr2h3nzt+5gLaTv7ebd07y3zXY8eTQA6eJf0oSlItc+p8ftS/C4Fgcg/A3R9n4r/rYuvaI4GWb3v9cwkynluI3FPn8Pd520x7Wviy9eBJvBOChqWVuxxXIjrtpfufMapzF937Qc9ctz+iB6hozzBwyktXQauJZs6G0HxnPc8eArVp/wl8YGhcdRZMAknurpJ7kDFYLbl72yoao5GDxeTux85Dp1zLP2a5XxptyfZcpE2Ygy0HTmL9vuN4fu7WyB/Zg6y+yHhuId5a8itW7g7scm+DX1uG5+ZuDWqfRq4r6nh5u57+vy2u5U90oxzgKMU++Pk6jPZSTfDS99uRNmFOSHutROpU3ttuvF28e69hnvnz+QU4e8F8MNA/v9/hdnvf0TNBVeu0nfw9dhh+D4G6+o3leMrwuToFVOeutw20UOJU0s/Sudt9fub4jwWXVHJXSmFDgA11eV5+BEdOX8DXv+wHAKzZewzD3/wRU5fuingpr6Q106FoKHv7h18Dvo6m85jk7bdmTD45x87iqzU5eHfZLrR/ej4ARxWUmQ9+zAYAnL1ofdSjP9G+SMu238wT6uHTRVVazZ+Yh5ZPzsN6CyXLHi8uDvqC1lsPFu/+6SnQxBvJ9zcU+1q2Mw89XlyMWVG4dmwgLqnk/snKPbj2f390zQlihbeGvS0HT8bEh2ul4O5ZrWH05Ez3Obv3H7d2OTXjGcoL327D/Z+ttfS4TftPIPvw7664h7y+zO3+cxcLsMKjj/6HK7Lx6H/W49k5RWcMiYZv7oX8Qry2YCfOXihwVfNszDlhKR4rzM7GwtHee+S0e/vDvqNn3M4cPZlNZTDsXz9a/iyCYSU3fpG5z+f9RT19HG9iJKtlQnEc2XbQ8ZlsiPEqmksquTtLQHsDOKU6dNJ/3a7xdx7pahkrvUr+8OYKS8+1dEceuk9ZZKmb58UChdkbDgT8eq9+Yzl6/XMJRL9rnnXuk2dtxi3vrvL7PMbX/fUvOXhlwQ68vqhoBGEgn7E/wTbCXcgvDOjaoze/sxKLtxXN6dLjxcXo/8pSr9t/t/mQ6fpAz6ICYeXg/9uJczhw/KzX7pqfGqrZgMCqSoybFhQqvLpgB04G0BZQ0mqZR2esC0m1ZCRcUsk9mI/1wc/X+d3m3MWCqE1FaqUAufXgSaRNmIOr31hmev9Xeqi6c8TlzHX7TZP2ibNFP6LHvtqA+6avxZeGYe5Pztxk+vwHjp9166IJeC/5brFw2g84SrlpE+bgu82/uU613122C3UqlQEAtKpzmaXnsWLR9lzsyjuNnGNnsDr7KJo98S2+3eh7xOf5/AL85cv16PrCIpy7WIDn527F3iO+Dzj7j5/F6A9X4+S5izHbK+Mf3213LZ8+n296ZnH2YgG6TVmEJ74p+j4YLy7vbCAuSYMqFDBtRTZeXbATLwSQbAsKFR77cgM+XbXH/8Ymsg2f4bvLzXssHbB49mt0/2dr0eKv37qty8o9hRl+zoJ8idsRqjsPncLp8/noUL9KwI899ntou9/lRXEEYCDVA5v2myfOR/+zHtd3qosjup77u82HsGBrLvq3qum+3Yz1ruVv1jraG4yjHz/6aQ+eHtam2PMPfX0Zjp256DZi1ljyzso9hX4vL0XF0kk4ZXHyrAs6Wdz98RpMua4tAMfZRI3LyuDAiXPYcegU2ter7Nr+7IUClE1OtPTcnqav2ovpq9zHNWzc77vap/kT81zLmw+cxNSlu7B8p7UpIS6f/D3u79Mk8EAjrM3fvjNdv1+P3jVWz6w1VGEc0Gczzm9AQF0hDf+fnu1onD3jpSHZ9PHKEdcXmftwa+cGlh9n1cKthzBmWibeG5WOvi1r+n+AZna2NeCVpShUwB/T6wUVS9yW3Pu/stRydYOT86D/8vwdvjcM0IKtRaXSppO+dQ25jgQJ0dRhC7YcciuJrNt3rNg2v50sXiIxluQA90brL1bvxScr9+DYGUeJ/4ihkXS3YXqBLboO02pi9/TRT0Xv91F94B7/5QZk5Z7GxYJC7D78O1o+OQ8zMvfh9Pl8jJv+i1ss4easegokib2xKKtE+7Qyt1DuqXOu6XbTJsyx3Mi6dEeez+rKOSbVesb3+7OfHUnfeSZYqBSW7cyz1BCb66Uh3Spf1TIX8gvx4OdrsefI7wF0Mz2I/zVUB67XbT0bStjmk19Q6OqcEWwPpZgoue88dBr7jp5BvZRyrnXztxxCm9TLULtS2RDuqegDyzt1HpsOnEDv5jWKbVVYqCBiPm+LmV/z3OdBeWfpLtzepahUcPzMBeQXKlSrUDrIuH0IUcPenR7d7fYcOYOJX2/EM8Na49iZi7jiOWs//DunZWLhtly8Nyodj3210e2+Tl6SxwMlbAA0VuUY69r7vfwDbuxU1zVD4vgvN+CL1fuwZs8xzNlwMGJz74x6/+eI7Mfo4An/bUUZzy10u221e+TIIF7Pnz75pdi687q76tyNv7mmGPb3mfzpkzUA3Nu2Ajlo/mqYGuLXvNNYv+84HpmxHpueGojlOw9j5roDyDt1Hm/f3snS842b7nhd9/Vp6nhO3fvstYU70adFDbQznD16Y9bhocmkoiqaW95Zicwn+luKxygmSu7n8gvQ48XFbuvu+igT11komWflBndUu+K5BRj9wWpX3VvOsTPYe+QMLhYUotHjczH6w+CHW+89egYvziuat7v90/OD7nrmT7gG6c/ecBCf/bwXTSZ9i64vLPT/AG2hbhAcM828b3akeU59u2ZP0RnJV2tywtr4GE27ozDxWiCM/cSD6Y77u6EqZvYGx5nCDW+tQIYuhFz9xjKkTZgDwL3kaxzB3felH/CIrmq84a0VrgOHt66nvtz27irsPHTK7axl2L9+xNHfL6CgUOHgibNee639bLiS19P/t6VYd+3Dp4OrRo6JkrvT4u25WL7zsKsR4eCJc1BK+SxBL9yai/FfbkDtymXx9LWtUTXA0vGkbzZhkqHhp1nNCgCAJdutd5c08+aSX1G3Sjnc0rm+a93kWZsx+drWXh9TWKjQ6PG5AdXXRWIOlvxoD9EMk0f/s97/RiG0vQQDgOzGWJgzVmvmnjqHrQdP4Yq0KiiXbD09pT8735UE31u+29W+tDr7qN+GbMA9oR/9/QL2WHiM0fKsw6Y9mzo+Mx81KpZG7qnzyEhLwYw/dS22jbGq6P0fd+N9kymS1+07joZVy2PbbyeR0TDFUq2CxEKrfOnaTVXtUa+a3tezWXW8/Md2+NfiLHRtVBUDWtcCANdR2ZtbO9dHWtXyGHp5bdSpXNbSYzxd065O2Ep2y8b3xicr9+Dtpbvw1T3d0KlBFTz4+VrM1NMb/GVgc5QtlYjEBMHgtrWw7+hZnDh7Ae3qVsZlZUshKUEgIvj6lxxX6YPIbj644wos2Z6LSUNbITkpIeDfcKy5vmNdvPTHdpjy7TacOHsRL1zXFj/syAu46m7KdW1xoaAQo7o1XKOUSjfbJizJXUQGAXgNQCKAd5VSU3xt7yu5h8oj/ZuFvCE1mprXrIjpd3XG6A9Xl7jxhigeDGxd02vf/nj13qj0ElVh7vn71ZFL7iKSCGAHgP4AcgCsBnCzUqr4pBJaJJI7EZHd+Eru4WhQzQCQpZTapZS6AOBzAMPCsB8iIvIiHMk9FYBxWFWOXudGRMaKSKaIhK1bxd1XNcK7I00PanFh81MDMWlIS9ftB/o0wc0Z9bFsfG881K9pFCOLT3MeuBKfj+0S7TCI/Pp5Ul9seXogruuYiscGtUC/ljWxYkIf/GVgc8vPEY7kbtaMW6zuRyk1VSmV7nlK0c+jl0ifFjXwxNCW2PncYLSoVREAMLx9HbdtPhx9Bcb1buz2HBMHt8D4gS3Qt2UNXNchFdPv7FwsqFKJ5i3Ou54f4lp+6cZ2ptsE4uMxGZg4uIXrdvcmVQEA13VMRdMaFVzrN04egBl3d8VLN7ZD9pShKF86CXf1bITvH+6J12/ugEcGNMcL17VFvZRyeKhfM+x+YQh6NK1W4vjsqHalMlg9qZ/r9q/PD0HrOpXQpVFV3BTkiL9A/fCXXgE/pkq5UqEPJM5NGtIStS4rE+0wAta/VU38d1x39GtZNJbm87FdkD1lKLY/Owiv3+z9Wrs1KpZBueQkvPzH9rinV2O8OyoddSqXxbjeRSOXr+tYrMzsJhxdIXMAGH89dQH47HJSt0pZOHuAvjOyEy4WKLT467coVMDbt3dCKT0FYNvUStj22ync16ep66IZn4zpjCubVkPPptWxevcx/Jx9FJ0aVMHdVxUl+5dvam+6353PDSnW+v7VPd2QkFCU9Ls3KVnyXP/kAFQqVwqdG1bFC99uwwN9muBPvRq7dfNauesIqlUojYplSiGjYQoyGqa4PUezmhXRrGbFYs8tIkhMCH9XyJK4+vLarn7IkfTTxL5QSmFsz0YY3j7V7X3627Wt0KxWRTwz22szUEg0qFre7baV6RVWPt7XbeqCSCqVKF6vIxtuf+iQ6prSYsp1bZFz7CxGdm2Ai4UKqZXL4pbO9bE86zDu/nhNVOILxju61mDS0FZYsNUx/qNRdcd3onRSIq5tVweVypZCRloKWj45D42qlceQtrVxf1/fU0+US07EqG5peGxQC7xyk/ftwlFyXw2gqYg0FJFkACMAzPL1gCrlknF9x7ro0bQaRATJSQlY/7cBWPV4X1diB4BnhrfBJ2M6o0mNCq7RnlfqkmtCguCzsV3wwnVtcWcP8yutv6DnIAGAr+4p3t8084l+6NTAfa6aWpWslRhWPd7XtVw6qSjmSroklpyUgOwpQ/HIgObF+u92aVQVTQwl+EAkhTG5Z6SluI3Uq1TWvVT5t2taFXvM8sd6u83pUjopuPlcglGhtPv7KiJ4fEjLYpOIlUtOwh3d0gAAY640/66Y6exx0A3U5fUq+d0mku8X4DjDcbI6IrtckHP0GJUp5Z56XrmpPbKnDEX2lKEYkVEffx7YHDUuK4NU3Y25fOkkDGxdy+275U9GWorfaoxvH+xRbF3H+tb34fTYIMeZ+e1dGhQrnDWsVt712mpUdM8nVzWrjrLJicieMhSL/twLfx7Y3O93YMvTg1z78yXkyV0plQ/gPgDfAdgKYIZSarPvRwEv/bEdPh5TVHVSsUwp1PQ4FStTKtGVzGfc3QUz7nZP0IkJgpsz6rsdENxjc/wfcUU9dGpQ/IdqnB5gyZ974VOTqhxval5WxnWadKUu7U8Y7P8DKCmrP0h/PId9b316ED69qzMG6nEFAPCwRz1/nxbuUzcsevQq1K1SDtPv6oz79OljJK9z7dzXJ2P8f26JCYIdzw7GE0Nb+t3W6alh3gegWWF1wNlkk4OmN8ZpLpw+u6sLhl5e2+9js6cMxcxx3V3fUyvlhMnXtCr2u7PCWRVp5pH+zSw/T8va3mf7vK1LfQxsXVSt+8zwNhjXu4mrOtfb893X272kPHVkesBtWs4DQs9m1THj7q4Rm9rCl7BMP6CUmquUaqaUaqyUei4c+2hUvUKxI6TfuHTVv/E39sTQlqiXUhZPe/xw06qVt1wlc3OGoxaqua46aVS9PJaN7427ezYKKL5ghCt3lk1OLHaQvLJpdbfbDaqWd5WsgKKznHLJSaiXUtYVX8UyjhL17heGIHvKUHz/cM8Sx7dsfG9sfXqQ2wjg/rq9pnGN8t4e5iY5KSGgg6PnmYEvZnXnVvcVSEzPDG+D9vUqo01qUbzQwQMAAA4OSURBVNLr2riq37mnb85wvG81LiuD4e0dhZIKpf3X9/+hQ120Sa2Ev1/f1u+2QFEyfm1EBwwyFBScBbd7ezXGA32tJ1Lj2eOMu7viSz3i84E+TfDs8LZ4+/Z0Vym5uUlS79IoBbPvv9Jt3eC2tdxuV6tQGg/1Mz/gvDaiPVoZDjAfjr4C/7qlIzo3qop1T/YvNpNqNMXE3DKR0qaO47S4W+OipH1nj0ZYNr4PRnZNK/HzO0tmhQqol1IuZKVqX6zuYtKQlrisTMmaWMyqjpyn6K/e1N50uLiIo7pr2zODXO9HWlVrydfo3l6N3W7XSymHssmJeP4PbdGomuP57u3dGGue6BfiyeaKWP08v7m3G5Y91gcAMP2uzqhe0XFGaPXbUDnARtX/juuO2fcXr14w8jwwtU0tqiJyviwrJffSujrlpiuKDqrGpA0AW54e6FqeensnzHngSlSrUBpv3dYRu54fgn/f1gk3dqrrf2cmHurXFJfXrYRezasjo2EK0tNSMOPurnjQSzL2VKF0EtqkulePta5Tye3g6EuVcsluZw+9mtdwnSVVLpds8VVExiWV3NvVq4w1T/TDNe3q+N/YC2PXRCfnvNDOH0mkLqgMmJ/qe/YmmnxNK9zZoyF+NvQe+eEvvfC3a1ph8jWtMF+XpN+8tWPA+3//jivwaP9mGOaxT+NbUDopEWVKFdUjOtsfFv+5l+X9/HmA97pT565EJOC5hay4+6pG+GJsF7ezFF861K/iSqbdGlfD/3RvqOPz/pjPx3bB+r8NAABc265OUL20lo3vjRUTHAcV45Hkrh4Nix2YlaFo7y2sBY8UP8Myfo5OnlVAxoN8ncpl0VoXqkQECQmCQW3cDwaBKFMqEbPuuxIfjs5wrctomGK5Y0EvwyywFQ0HvNn393CV+L15ZnibuOqddkkldwAl+vHf26sxRnZzr+O8pXN9V0mgagXHkTslgkdws4TRtq57g9Ad3Rs6fliGjRtULY/R3Rviju4N0VRXJw1p67+e1um/47oDcJSg7+/btFip1rmvJC/tH4CjocnptRHuPZo8T/sTfPx4naOsw3WeNHFwS3Ru5L3O2MjsAGClwN+lUVVXlYOI4PogSrb1Usq55lEymjS0eB2+2fTTnkWSulXKFdvGTHKS98/YX9KNRJvM9R0d7+V3D/XErboab9szg7D6iX6+HlbMiCvqReRsPFQuueReEuMHtUDppETXaTYA3GPocjmsXSr+ccPl+JNHFUI4PdjXemNUsB1rejYrqmt/sG9TpJRP9ttrYViHOhjZtQHGWxx04dmP2Xja77RsfG98MqazW88kwL3kHgxnm0m4ONtiWvloDPTFc+yHs6ePTx6Z2vjWdG6Y4mqfcNypH+LxGKsNwP1NZjBd+9f+WP/kAK+PcXbtbVErdJdD9ObOHg2x49nBaF6rous7UqZUoulZiBXOs55/3HB5yGIMh5ia8jceGUuUCQmCGyM0QMYprZq10hXgvxQFOEZxVvE48/jgjiuQr68S/XD/ZnjYQu+G0kmJppfc88aZVxIEmHK9+Y+mXko5twu6eAq2TNW0hiPRXNuuDhZvyw36ilAA0KBq8fh6t6iBBY/0hFKOqaABR1XP2z/ssvScFT3aSiZf2xofrsi29NiMNEengzKG7nV9W9bwcibknt09N5n3kHm9fkKCoG+LGq65/AGgSnnfZ68DWtfCgkd6okkN7z1ZQsXRvTp+StyhwpJ7EN4fdYVrOdpTJvsrXRn781sp2bauU6nYqX1igoSt//UTQ1ti7gM9kJGWgj9d1RgrH+8b8DUjQ/URpJRPLtbY5un+Pk181ru+dav5FXya1Kjo9v4HMg9/UGlJP+j2ro5qxFduau86O/IcEHdZGUd10C0ZRWdLN2fULxajr1K2r+sUeBOJxH4pY3IPQtu6lVxdJ6uWD8Ol8wLg+cM3Dmoa3T3NtD9/LLmzRyO0qnMZEhIEEwa3KDbIAwDu8VPN5bzMWiguXPLPP7Yz7Tvu9OiA5m7jMQD3YeCVfPR0MYZnpYrs1ZvaY/qdnYOqbnK2+zh7M9WqVAY/TeyD7x/u6daoCDiqKLKeG1zsjMzfbo29enydUdlFOAcMhgOTe5BGdk1D9pShKBuC0XolYUxoKyb0cZtPxcy43o3x9b3dwh1WSPkbjfevWzticJtaSK1S8i6QqZXL4pnh/quTPrjjCtf2zkE4xgE0Zowjl5taKLUO75CKbk2qoWODwEdMThzSAs8Ma+020ExETKexABwN354HEePtZ03ek6Xje+PnSX2LrbereGpMBVjnHveM3zdndYqvqqK/DAz/qNlIa1+vMt66zdoFjc043zez+nJvnNu2r18ZdauUszQi0dj7ZFj7Onjoi3WW9nVLRn1c2aQarvrHEsvxlUtOwu0lGLvhPBAlJyVg/MDmuM3kbOayMqVcVTqXolhP9kzucc7XF0zC1jnQXga2ronpd3ZGF0N3x13PD0Gjx+d6fUyj6hXw/h3p6NzQWhdJp/dGpeP0+Xy3z23jZO+9SgDHZ+w5CVm4TL+rM77MzMGjAxxnIzueHRyR/VLoMblbsPav/SM6R0qgxvVujP6tigaGOBNHLMdsxTsj0332oQ4VEUE3j6kmfPWrd+rTIvCh5sYLn39zbzfUqlQGFYMo/Y7q2gBfZO7zv2GAujWu5jaCOxDXtqtjOuTfbpxTJ5R0xHe4xXZ0McJft65o86xquSWjPrJyTwU0Z0csiqV5OsKhQ/0q/jfy4qlhbfBUAF1NI8HX/OTxzjj52MP9mqFZzQox//1kcrehssmJeOG62B5gQRQv7ryyIcYaJgFMTkrAHzoENzdOJDG5E3nxv7d0cJsiIdpm339lsXnQKfyGd0hFjTi8EhSTO5EXV18e/ARz4eBvgBWFR7y2XbEYQERkwlnPHq+9zpjciYhMOIeLJMRplozTsImIwsvZvpEYp/UyrHMnIjLx5m2d8J/MfUFfvD7amNyJiEykVi7r9Vqq8YDVMkRENsTkTkRkQ0zuREQ2xORORGRDTO5ERDbE5E5EZENM7kRENsTkTkRkQ+LrepsRC0LkFIDt0Y4jCNUAHI52EEFg3JEVj3HHY8zApRd3A6VUdbM7YmWE6nalVHq0gwiUiGQy7shh3JETjzEDjNuI1TJERDbE5E5EZEOxktynRjuAIDHuyGLckROPMQOM2yUmGlSJiCi0YqXkTkREIcTkTkRkQ1FP7iIySES2i0iWiEyIgXjeF5FcEdlkWJciIvNFZKf+X0WvFxF5Xce+QUQ6Gh4zSm+/U0RGhTnmeiKyWES2ishmEXkwTuIuIyI/i8h6HfdTen1DEVmlY/hCRJL1+tL6dpa+P83wXBP1+u0iMjCccev9JYrIWhGZHS8x631mi8hGEVknIpl6Xax/TyqLyJcisk1/x7vGQczN9Xvs/DspIg9FNG6lVNT+ACQC+BVAIwDJANYDaBXlmHoC6Ahgk2HdiwAm6OUJAP6ul4cA+BaAAOgCYJVenwJgl/5fRS9XCWPMtQF01MsVAewA0CoO4hYAFfRyKQCrdDwzAIzQ6/8N4B69fC+Af+vlEQC+0Mut9HenNICG+juVGObvySMApgOYrW/HfMx6v9kAqnmsi/XvyTQAd+rlZACVYz1mj/gTAfwGoEEk4w77C/PzorsC+M5weyKAidGMSceRBvfkvh1Abb1cG45BVwDwNoCbPbcDcDOAtw3r3baLQPwzAfSPp7gBlAPwC4DOcIzUS/L8jgD4DkBXvZyktxPP741xuzDFWhfAQgB9AMzWMcR0zIb9ZKN4co/Z7wmAywDshu78EQ8xm7yGAQB+jHTc0a6WSQWwz3A7R6+LNTWVUgcBQP+vodd7iz9qr0uf9neAoxQc83Hr6o11AHIBzIejBHtcKZVvEoMrPn3/CQBVoxD3qwDGAyjUt6vGQcxOCsD3IrJGRMbqdbH8PWkEIA/AB7oa7F0RKR/jMXsaAeAzvRyxuKOd3MVkXTz1zfQWf1Rel4hUAPAVgIeUUid9bWqyLipxK6UKlFLt4SgNZwBo6SOGqMctIlcDyFVKrTGu9rH/qMfsobtSqiOAwQDGiUhPH9vGQuxJcFSTvqWU6gDgdziqM7yJhZhddNvLtQD+429Tk3UlijvayT0HQD3D7boADkQpFl8OiUhtAND/c/V6b/FH/HWJSCk4EvunSqmv4yVuJ6XUcQBL4KhvrCwiznmPjDG44tP3VwJwFJGNuzuAa0UkG8DncFTNvBrjMbsopQ7o/7kAvoHjgBrL35McADlKqVX69pdwJPtYjtloMIBflFKH9O2IxR3t5L4aQFPd0yAZjtOXWVGOycwsAM5W6lFw1Gk714/ULd1dAJzQp1rfARggIlV0a/gAvS4sREQAvAdgq1Lq5TiKu7qIVNbLZQH0A7AVwGIAN3iJ2/l6bgCwSDkqImcBGKF7pjQE0BTAz+GIWSk1USlVVymVBsf3dZFS6tZYjtlJRMqLSEXnMhyf7ybE8PdEKfUbgH0i0lyv6gtgSyzH7OFmFFXJOOOLTNyRaFDw09gwBI7eHb8CmBQD8XwG4CCAi3AcNcfAUUe6EMBO/T9FbysA/qVj3wgg3fA8/wMgS/+NDnPMV8JxqrYBwDr9NyQO4r4cwFod9yYAT+r1jeBIdFlwnM6W1uvL6NtZ+v5GhueapF/PdgCDI/Rd6YWi3jIxH7OOcb3+2+z8vcXB96Q9gEz9PfkvHL1GYjpmvb9yAI4AqGRYF7G4Of0AEZENRbtahoiIwoDJnYjIhpjciYhsiMmdiMiGmNyJiGyIyZ2IyIaY3ImIbOj/Ac/m8CfuqtpiAAAAAElFTkSuQmCC\n", 808 | "text/plain": [ 809 | "
    " 810 | ] 811 | }, 812 | "metadata": { 813 | "needs_background": "light" 814 | }, 815 | "output_type": "display_data" 816 | } 817 | ], 818 | "source": [ 819 | "data['DataValue'].plot()" 820 | ] 821 | }, 822 | { 823 | "cell_type": "code", 824 | "execution_count": 26, 825 | "metadata": {}, 826 | "outputs": [ 827 | { 828 | "data": { 829 | "text/plain": [ 830 | "" 831 | ] 832 | }, 833 | "execution_count": 26, 834 | "metadata": {}, 835 | "output_type": "execute_result" 836 | } 837 | ], 838 | "source": [ 839 | "data.groupby('METRIC_NAME')" 840 | ] 841 | }, 842 | { 843 | "cell_type": "code", 844 | "execution_count": null, 845 | "metadata": {}, 846 | "outputs": [], 847 | "source": [] 848 | } 849 | ], 850 | "metadata": { 851 | "kernelspec": { 852 | "display_name": "Python 3", 853 | "language": "python", 854 | "name": "python3" 855 | }, 856 | "language_info": { 857 | "codemirror_mode": { 858 | "name": "ipython", 859 | "version": 3 860 | }, 861 | "file_extension": ".py", 862 | "mimetype": "text/x-python", 863 | "name": "python", 864 | "nbconvert_exporter": "python", 865 | "pygments_lexer": "ipython3", 866 | "version": "3.7.4" 867 | }, 868 | "toc": { 869 | "base_numbering": 1, 870 | "nav_menu": {}, 871 | "number_sections": true, 872 | "sideBar": true, 873 | "skip_h1_title": false, 874 | "title_cell": "Table of Contents", 875 | "title_sidebar": "Contents", 876 | "toc_cell": true, 877 | "toc_position": {}, 878 | "toc_section_display": true, 879 | "toc_window_display": false 880 | } 881 | }, 882 | "nbformat": 4, 883 | "nbformat_minor": 2 884 | } 885 | --------------------------------------------------------------------------------