├── mmsegmentation
├── mmsegmentation.egg-info
│ ├── not-zip-safe
│ ├── dependency_links.txt
│ └── top_level.txt
├── docs
│ ├── zh_cn
│ │ ├── user_guides
│ │ │ ├── deployment.md
│ │ │ └── index.rst
│ │ ├── imgs
│ │ │ ├── zhihu_qrcode.jpg
│ │ │ ├── qq_group_qrcode.jpg
│ │ │ └── seggroup_qrcode.jpg
│ │ ├── migration
│ │ │ └── index.rst
│ │ ├── _static
│ │ │ ├── images
│ │ │ │ └── mmsegmentation.png
│ │ │ └── css
│ │ │ │ └── readthedocs.css
│ │ └── switch_language.md
│ └── en
│ │ ├── _static
│ │ ├── images
│ │ │ └── mmsegmentation.png
│ │ └── css
│ │ │ └── readthedocs.css
│ │ ├── migration
│ │ └── index.rst
│ │ ├── switch_language.md
│ │ └── user_guides
│ │ └── index.rst
├── tests
│ ├── data
│ │ ├── pseudo_dataset
│ │ │ ├── splits
│ │ │ │ ├── val.txt
│ │ │ │ └── train.txt
│ │ │ ├── gts
│ │ │ │ ├── 00000_gt.png
│ │ │ │ ├── 00001_gt.png
│ │ │ │ ├── 00002_gt.png
│ │ │ │ ├── 00003_gt.png
│ │ │ │ └── 00004_gt.png
│ │ │ └── imgs
│ │ │ │ ├── 00000_img.jpg
│ │ │ │ ├── 00001_img.jpg
│ │ │ │ ├── 00002_img.jpg
│ │ │ │ ├── 00003_img.jpg
│ │ │ │ └── 00004_img.jpg
│ │ ├── pseudo_isaid_dataset
│ │ │ ├── img_dir
│ │ │ │ ├── P0000_0_896_1024_1920.png
│ │ │ │ └── P0000_0_896_1536_2432.png
│ │ │ ├── splits
│ │ │ │ ├── val.txt
│ │ │ │ └── train.txt
│ │ │ └── ann_dir
│ │ │ │ ├── P0000_0_896_1024_1920_instance_color_RGB.png
│ │ │ │ └── P0000_0_896_1536_2432_instance_color_RGB.png
│ │ ├── seg.png
│ │ ├── color.jpg
│ │ ├── gray.jpg
│ │ ├── biomedical.npy
│ │ ├── biomedical.pkl
│ │ ├── biomedical.nii.gz
│ │ ├── biomedical_ann.nii.gz
│ │ ├── pseudo_loveda_dataset
│ │ │ ├── ann_dir
│ │ │ │ ├── 0.png
│ │ │ │ ├── 1.png
│ │ │ │ └── 2.png
│ │ │ └── img_dir
│ │ │ │ ├── 0.png
│ │ │ │ ├── 1.png
│ │ │ │ └── 2.png
│ │ ├── pseudo_lip_dataset
│ │ │ ├── val_images
│ │ │ │ └── 86_185913.jpg
│ │ │ ├── train_images
│ │ │ │ └── 684_2150041.jpg
│ │ │ ├── val_segmentations
│ │ │ │ └── 86_185913.png
│ │ │ └── train_segmentations
│ │ │ │ └── 684_2150041.png
│ │ ├── pseudo_refuge_dataset
│ │ │ ├── ann_dir
│ │ │ │ └── pseudo_g0001.png
│ │ │ └── img_dir
│ │ │ │ └── pseudo_g0001.png
│ │ ├── pseudo_potsdam_dataset
│ │ │ ├── ann_dir
│ │ │ │ └── 2_10_0_0_512_512.png
│ │ │ └── img_dir
│ │ │ │ └── 2_10_0_0_512_512.png
│ │ ├── pseudo_synapse_dataset
│ │ │ ├── ann_dir
│ │ │ │ ├── case0005_slice000.png
│ │ │ │ └── case0005_slice001.png
│ │ │ └── img_dir
│ │ │ │ ├── case0005_slice000.jpg
│ │ │ │ └── case0005_slice001.jpg
│ │ ├── pseudo_vaihingen_dataset
│ │ │ ├── ann_dir
│ │ │ │ └── area1_0_0_512_512.png
│ │ │ └── img_dir
│ │ │ │ └── area1_0_0_512_512.png
│ │ ├── pseudo_mapillary_dataset
│ │ │ ├── v1.2
│ │ │ │ └── __CRyFzoDOXn6unQ6a3DnQ.png
│ │ │ ├── v2.0
│ │ │ │ └── __CRyFzoDOXn6unQ6a3DnQ.png
│ │ │ └── images
│ │ │ │ └── __CRyFzoDOXn6unQ6a3DnQ.jpg
│ │ └── pseudo_cityscapes_dataset
│ │ │ ├── gtFine
│ │ │ └── val
│ │ │ │ └── frankfurt
│ │ │ │ ├── frankfurt_000000_000294_gtFine_labelIds.png
│ │ │ │ ├── frankfurt_000000_000294_gtFine_instanceIds.png
│ │ │ │ └── frankfurt_000000_000294_gtFine_labelTrainIds.png
│ │ │ └── leftImg8bit
│ │ │ └── val
│ │ │ └── frankfurt
│ │ │ └── frankfurt_000000_000294_leftImg8bit.png
│ ├── __init__.py
│ └── test_models
│ │ ├── __init__.py
│ │ ├── test_heads
│ │ └── __init__.py
│ │ ├── test_necks
│ │ └── __init__.py
│ │ ├── test_utils
│ │ └── __init__.py
│ │ ├── test_backbones
│ │ └── __init__.py
│ │ └── test_segmentors
│ │ └── __init__.py
├── requirements
│ ├── optional.txt
│ ├── mminstall.txt
│ ├── runtime.txt
│ ├── tests.txt
│ ├── readthedocs.txt
│ └── docs.txt
├── demo
│ └── demo.png
├── resources
│ ├── 3dogs.jpg
│ ├── seg_demo.gif
│ ├── test_step.png
│ ├── 3dogs_mask.png
│ ├── mmseg-logo.png
│ ├── train_step.png
│ ├── encoder_decoder_dataflow.png
│ └── cascade_encoder_decoder_dataflow.png
├── projects
│ ├── isnet
│ │ └── decode_heads
│ │ │ └── __init__.py
│ ├── sam_inference_demo
│ │ └── sam
│ │ │ ├── __init__.py
│ │ │ └── utils
│ │ │ └── __init__.py
│ ├── example_project
│ │ ├── dummy
│ │ │ └── __init__.py
│ │ └── configs
│ │ │ └── fcn_dummy-r50-d8_4xb2-40k_cityscapes-512x1024.py
│ └── hssn
│ │ ├── losses
│ │ └── __init__.py
│ │ └── decode_head
│ │ └── __init__.py
├── requirements.txt
├── mmseg
│ ├── __pycache__
│ │ ├── __init__.cpython-38.pyc
│ │ └── version.cpython-38.pyc
│ ├── utils
│ │ └── __pycache__
│ │ │ ├── io.cpython-38.pyc
│ │ │ ├── misc.cpython-38.pyc
│ │ │ ├── set_env.cpython-38.pyc
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── class_names.cpython-38.pyc
│ │ │ ├── collect_env.cpython-38.pyc
│ │ │ └── typing_utils.cpython-38.pyc
│ ├── datasets
│ │ ├── __pycache__
│ │ │ ├── ade.cpython-38.pyc
│ │ │ ├── hrf.cpython-38.pyc
│ │ │ ├── lip.cpython-38.pyc
│ │ │ ├── voc.cpython-38.pyc
│ │ │ ├── drive.cpython-38.pyc
│ │ │ ├── isaid.cpython-38.pyc
│ │ │ ├── isprs.cpython-38.pyc
│ │ │ ├── loveda.cpython-38.pyc
│ │ │ ├── refuge.cpython-38.pyc
│ │ │ ├── stare.cpython-38.pyc
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── chase_db1.cpython-38.pyc
│ │ │ ├── decathlon.cpython-38.pyc
│ │ │ ├── mapillary.cpython-38.pyc
│ │ │ ├── potsdam.cpython-38.pyc
│ │ │ ├── synapse.cpython-38.pyc
│ │ │ ├── cityscapes.cpython-38.pyc
│ │ │ ├── coco_stuff.cpython-38.pyc
│ │ │ ├── dark_zurich.cpython-38.pyc
│ │ │ ├── basesegdataset.cpython-38.pyc
│ │ │ ├── night_driving.cpython-38.pyc
│ │ │ ├── pascal_context.cpython-38.pyc
│ │ │ └── dataset_wrappers.cpython-38.pyc
│ │ └── transforms
│ │ │ └── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── loading.cpython-38.pyc
│ │ │ ├── formatting.cpython-38.pyc
│ │ │ └── transforms.cpython-38.pyc
│ ├── engine
│ │ ├── __pycache__
│ │ │ └── __init__.cpython-38.pyc
│ │ ├── hooks
│ │ │ ├── __pycache__
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ └── visualization_hook.cpython-38.pyc
│ │ │ └── __init__.py
│ │ ├── optimizers
│ │ │ ├── __pycache__
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ └── layer_decay_optimizer_constructor.cpython-38.pyc
│ │ │ └── __init__.py
│ │ └── __init__.py
│ ├── models
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── builder.cpython-38.pyc
│ │ │ └── data_preprocessor.cpython-38.pyc
│ │ ├── necks
│ │ │ ├── __pycache__
│ │ │ │ ├── fpn.cpython-38.pyc
│ │ │ │ ├── jpu.cpython-38.pyc
│ │ │ │ ├── ic_neck.cpython-38.pyc
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── mla_neck.cpython-38.pyc
│ │ │ │ ├── featurepyramid.cpython-38.pyc
│ │ │ │ └── multilevel_neck.cpython-38.pyc
│ │ │ └── __init__.py
│ │ ├── utils
│ │ │ └── __pycache__
│ │ │ │ ├── embed.cpython-38.pyc
│ │ │ │ ├── ppm.cpython-38.pyc
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── encoding.cpython-38.pyc
│ │ │ │ ├── res_layer.cpython-38.pyc
│ │ │ │ ├── se_layer.cpython-38.pyc
│ │ │ │ ├── wrappers.cpython-38.pyc
│ │ │ │ ├── basic_block.cpython-38.pyc
│ │ │ │ ├── make_divisible.cpython-38.pyc
│ │ │ │ ├── shape_convert.cpython-38.pyc
│ │ │ │ ├── up_conv_block.cpython-38.pyc
│ │ │ │ ├── inverted_residual.cpython-38.pyc
│ │ │ │ └── self_attention_block.cpython-38.pyc
│ │ ├── backbones
│ │ │ └── __pycache__
│ │ │ │ ├── mae.cpython-38.pyc
│ │ │ │ ├── mit.cpython-38.pyc
│ │ │ │ ├── vit.cpython-38.pyc
│ │ │ │ ├── beit.cpython-38.pyc
│ │ │ │ ├── cgnet.cpython-38.pyc
│ │ │ │ ├── erfnet.cpython-38.pyc
│ │ │ │ ├── hrnet.cpython-38.pyc
│ │ │ │ ├── icnet.cpython-38.pyc
│ │ │ │ ├── mscan.cpython-38.pyc
│ │ │ │ ├── pidnet.cpython-38.pyc
│ │ │ │ ├── resnet.cpython-38.pyc
│ │ │ │ ├── stdc.cpython-38.pyc
│ │ │ │ ├── swin.cpython-38.pyc
│ │ │ │ ├── twins.cpython-38.pyc
│ │ │ │ ├── unet.cpython-38.pyc
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── resnest.cpython-38.pyc
│ │ │ │ ├── resnext.cpython-38.pyc
│ │ │ │ ├── bisenetv1.cpython-38.pyc
│ │ │ │ ├── bisenetv2.cpython-38.pyc
│ │ │ │ ├── fast_scnn.cpython-38.pyc
│ │ │ │ ├── mobilenet_v2.cpython-38.pyc
│ │ │ │ ├── mobilenet_v3.cpython-38.pyc
│ │ │ │ └── timm_backbone.cpython-38.pyc
│ │ ├── losses
│ │ │ └── __pycache__
│ │ │ │ ├── utils.cpython-38.pyc
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── accuracy.cpython-38.pyc
│ │ │ │ ├── dice_loss.cpython-38.pyc
│ │ │ │ ├── focal_loss.cpython-38.pyc
│ │ │ │ ├── lovasz_loss.cpython-38.pyc
│ │ │ │ ├── boundary_loss.cpython-38.pyc
│ │ │ │ ├── tversky_loss.cpython-38.pyc
│ │ │ │ ├── cross_entropy_loss.cpython-38.pyc
│ │ │ │ └── ohem_cross_entropy_loss.cpython-38.pyc
│ │ ├── segmentors
│ │ │ ├── __pycache__
│ │ │ │ ├── base.cpython-38.pyc
│ │ │ │ ├── seg_tta.cpython-38.pyc
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── encoder_decoder.cpython-38.pyc
│ │ │ │ └── cascade_encoder_decoder.cpython-38.pyc
│ │ │ └── __init__.py
│ │ └── decode_heads
│ │ │ └── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── ann_head.cpython-38.pyc
│ │ │ ├── apc_head.cpython-38.pyc
│ │ │ ├── cc_head.cpython-38.pyc
│ │ │ ├── da_head.cpython-38.pyc
│ │ │ ├── dm_head.cpython-38.pyc
│ │ │ ├── dnl_head.cpython-38.pyc
│ │ │ ├── dpt_head.cpython-38.pyc
│ │ │ ├── ema_head.cpython-38.pyc
│ │ │ ├── enc_head.cpython-38.pyc
│ │ │ ├── fcn_head.cpython-38.pyc
│ │ │ ├── fpn_head.cpython-38.pyc
│ │ │ ├── gc_head.cpython-38.pyc
│ │ │ ├── ham_head.cpython-38.pyc
│ │ │ ├── isa_head.cpython-38.pyc
│ │ │ ├── nl_head.cpython-38.pyc
│ │ │ ├── ocr_head.cpython-38.pyc
│ │ │ ├── pid_head.cpython-38.pyc
│ │ │ ├── psa_head.cpython-38.pyc
│ │ │ ├── psp_head.cpython-38.pyc
│ │ │ ├── aspp_head.cpython-38.pyc
│ │ │ ├── knet_head.cpython-38.pyc
│ │ │ ├── point_head.cpython-38.pyc
│ │ │ ├── stdc_head.cpython-38.pyc
│ │ │ ├── uper_head.cpython-38.pyc
│ │ │ ├── decode_head.cpython-38.pyc
│ │ │ ├── lraspp_head.cpython-38.pyc
│ │ │ ├── sep_aspp_head.cpython-38.pyc
│ │ │ ├── sep_fcn_head.cpython-38.pyc
│ │ │ ├── setr_mla_head.cpython-38.pyc
│ │ │ ├── setr_up_head.cpython-38.pyc
│ │ │ ├── maskformer_head.cpython-38.pyc
│ │ │ ├── segformer_head.cpython-38.pyc
│ │ │ ├── mask2former_head.cpython-38.pyc
│ │ │ ├── cascade_decode_head.cpython-38.pyc
│ │ │ └── segmenter_mask_head.cpython-38.pyc
│ ├── registry
│ │ └── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ └── registry.cpython-38.pyc
│ ├── evaluation
│ │ ├── __pycache__
│ │ │ └── __init__.cpython-38.pyc
│ │ ├── __init__.py
│ │ └── metrics
│ │ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ ├── iou_metric.cpython-38.pyc
│ │ │ └── citys_metric.cpython-38.pyc
│ │ │ └── __init__.py
│ ├── structures
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ └── seg_data_sample.cpython-38.pyc
│ │ ├── sampler
│ │ │ ├── __pycache__
│ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ ├── builder.cpython-38.pyc
│ │ │ │ ├── base_pixel_sampler.cpython-38.pyc
│ │ │ │ └── ohem_pixel_sampler.cpython-38.pyc
│ │ │ └── __init__.py
│ │ └── __init__.py
│ ├── visualization
│ │ ├── __init__.py
│ │ └── __pycache__
│ │ │ ├── __init__.cpython-38.pyc
│ │ │ └── local_visualizer.cpython-38.pyc
│ └── apis
│ │ └── __init__.py
├── MANIFEST.in
├── configs
│ ├── icnet
│ │ ├── icnet_r101-d8_4xb2-160k_cityscapes-832x832.py
│ │ ├── icnet_r101-d8_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r18-d8_4xb2-160k_cityscapes-832x832.py
│ │ ├── icnet_r18-d8_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py
│ │ ├── icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py
│ │ ├── icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r50-d8_4xb2-80k_cityscapes-832x832.py
│ │ ├── icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py
│ │ └── icnet_r50-d8_4xb2-160k_cityscapes-832x832.py
│ ├── stdc
│ │ ├── stdc2_4xb12-80k_cityscapes-512x1024.py
│ │ ├── stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py
│ │ └── stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py
│ ├── ann
│ │ ├── ann_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── ann_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── ann_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── ann_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── ann_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── ann_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── ann_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── ann_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── ann_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── ann_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── dnlnet
│ │ ├── dnl_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── dnl_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── dnl_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── dnl_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── fcn
│ │ ├── fcn_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── fcn_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── fcn_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── fcn_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── fcn_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── fcn_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py
│ │ ├── fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r101-d8_4xb4-40k_pascal-context-480x480.py
│ │ ├── fcn_r101-d8_4xb4-80k_pascal-context-480x480.py
│ │ ├── fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py
│ │ ├── fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py
│ │ ├── fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
│ │ ├── fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn_r18-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ └── fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py
│ ├── apcnet
│ │ ├── apcnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── apcnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── ccnet
│ │ ├── ccnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── ccnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── danet
│ │ ├── danet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── danet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── danet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── danet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── danet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── danet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── danet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── danet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── danet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── danet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── dmnet
│ │ ├── dmnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── dmnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── encnet
│ │ ├── encnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── encnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── encnet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── encnet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── encnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── encnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── gcnet
│ │ ├── gcnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── gcnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── isanet
│ │ ├── isanet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── isanet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── isanet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── isanet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── isanet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── isanet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── psanet
│ │ ├── psanet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── psanet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── psanet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── psanet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── psanet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── psanet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── pspnet
│ │ ├── pspnet_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-80k_loveda-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-80k_potsdam-512x512.py
│ │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py
│ │ ├── pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py
│ │ ├── pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py
│ │ ├── pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py
│ │ ├── pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py
│ │ ├── pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py
│ │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py
│ │ ├── pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py
│ │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py
│ │ ├── pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py
│ │ ├── pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r18-d8_4xb4-80k_isaid-896x896.py
│ │ ├── pspnet_r18-d8_4xb4-80k_loveda-512x512.py
│ │ ├── pspnet_r18-d8_4xb4-80k_potsdam-512x512.py
│ │ ├── pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py
│ │ ├── pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ └── pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py
│ ├── sem_fpn
│ │ ├── fpn_r101_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fpn_r101_4xb4-160k_ade20k-512x512.py
│ │ ├── fpn_r50_4xb2-80k_cityscapes-512x1024.py
│ │ └── fpn_r50_4xb4-160k_ade20k-512x512.py
│ ├── upernet
│ │ ├── upernet_r101_4xb4-160k_ade20k-512x512.py
│ │ ├── upernet_r101_4xb4-80k_ade20k-512x512.py
│ │ ├── upernet_r101_4xb2-40k_cityscapes-769x769.py
│ │ ├── upernet_r101_4xb2-80k_cityscapes-769x769.py
│ │ ├── upernet_r101_4xb4-20k_voc12aug-512x512.py
│ │ ├── upernet_r101_4xb4-40k_voc12aug-512x512.py
│ │ ├── upernet_r101_4xb2-40k_cityscapes-512x1024.py
│ │ ├── upernet_r101_4xb2-80k_cityscapes-512x1024.py
│ │ ├── upernet_r18_4xb2-40k_cityscapes-512x1024.py
│ │ ├── upernet_r18_4xb2-80k_cityscapes-512x1024.py
│ │ ├── upernet_r50_4xb2-40k_cityscapes-512x1024.py
│ │ └── upernet_r50_4xb2-80k_cityscapes-512x1024.py
│ ├── deeplabv3
│ │ ├── deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py
│ │ ├── deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py
│ │ ├── deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py
│ │ ├── deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py
│ │ ├── deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py
│ │ ├── deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py
│ │ └── deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── emanet
│ │ ├── emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── emanet_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ └── emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── nonlocal_net
│ │ ├── nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── point_rend
│ │ ├── pointrend_r101_4xb4-160k_ade20k-512x512.py
│ │ └── pointrend_r101_4xb2-80k_cityscapes-512x1024.py
│ ├── deeplabv3plus
│ │ ├── deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_ade20k-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py
│ │ ├── deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py
│ │ ├── deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py
│ │ ├── deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py
│ │ ├── deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-40k_pascal-context-480x480.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_pascal-context-480x480.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py
│ │ ├── deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py
│ │ ├── deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py
│ │ ├── deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py
│ │ ├── deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py
│ │ └── deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py
│ ├── vit
│ │ ├── vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py
│ │ ├── vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py
│ │ ├── vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py
│ │ └── vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py
│ ├── setr
│ │ └── setr_vit-l_mla_8xb2-160k_ade20k-512x512.py
│ ├── bisenetv1
│ │ ├── bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py
│ │ ├── bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
│ │ ├── bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py
│ │ └── bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py
│ ├── mask2former
│ │ ├── mask2former_r101_8xb2-160k_ade20k-512x512.py
│ │ ├── mask2former_r101_8xb2-90k_cityscapes-512x1024.py
│ │ └── mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py
│ ├── maskformer
│ │ └── maskformer_r101-d32_8xb2-160k_ade20k-512x512.py
│ ├── fastfcn
│ │ ├── fastfcn_r50-d32_jpu_aspp_4xb4-80k_cityscapes-512x1024.py
│ │ ├── fastfcn_r50-d32_jpu_enc_4xb4-80k_cityscapes-512x1024.py
│ │ └── fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py
│ ├── bisenetv2
│ │ └── bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py
│ ├── segformer
│ │ ├── segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py
│ │ ├── segformer_mit-b1_8xb2-160k_ade20k-512x512.py
│ │ ├── segformer_mit-b2_8xb2-160k_ade20k-512x512.py
│ │ ├── segformer_mit-b3_8xb2-160k_ade20k-512x512.py
│ │ ├── segformer_mit-b4_8xb2-160k_ade20k-512x512.py
│ │ ├── segformer_mit-b5_8xb2-160k_ade20k-512x512.py
│ │ ├── segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py
│ │ ├── segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py
│ │ ├── segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py
│ │ └── segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py
│ ├── unet
│ │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
│ │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
│ │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
│ │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
│ │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
│ │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py
│ │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py
│ │ ├── unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
│ │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
│ │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py
│ │ ├── unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
│ │ ├── unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py
│ │ ├── unet-s5-d16_fcn_4xb4-40k_drive-64x64.py
│ │ ├── unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py
│ │ └── unet-s5-d16_fcn_4xb4-40k_stare-128x128.py
│ ├── hrnet
│ │ ├── fcn_hr18_4xb2-160k_cityscapes-512x1024.py
│ │ ├── fcn_hr18_4xb2-40k_cityscapes-512x1024.py
│ │ ├── fcn_hr18_4xb2-80k_cityscapes-512x1024.py
│ │ ├── fcn_hr18_4xb4-80k_isaid-896x896.py
│ │ ├── fcn_hr18_4xb4-80k_loveda-512x512.py
│ │ ├── fcn_hr18_4xb4-160k_ade20k-512x512.py
│ │ ├── fcn_hr18_4xb4-80k_ade20k-512x512.py
│ │ ├── fcn_hr18_4xb4-80k_potsdam-512x512.py
│ │ ├── fcn_hr18_4xb4-80k_vaihingen-512x512.py
│ │ ├── fcn_hr18_4xb4-20k_voc12aug-512x512.py
│ │ └── fcn_hr18_4xb4-40k_voc12aug-512x512.py
│ ├── ocrnet
│ │ ├── ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py
│ │ ├── ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py
│ │ └── ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py
│ ├── resnest
│ │ ├── resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py
│ │ ├── resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py
│ │ ├── resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py
│ │ ├── resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py
│ │ ├── resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py
│ │ ├── resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py
│ │ ├── resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py
│ │ └── resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py
│ ├── pidnet
│ │ └── pidnet-m_2xb6-120k_1024x1024-cityscapes.py
│ └── twins
│ │ ├── twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
│ │ └── twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py
├── docker
│ └── serve
│ │ ├── config.properties
│ │ └── entrypoint.sh
└── CITATION.cff
├── figures
└── 0.png
├── test.py
└── train.py
/mmsegmentation/mmsegmentation.egg-info/not-zip-safe:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/user_guides/deployment.md:
--------------------------------------------------------------------------------
1 | # 模型部署
2 |
--------------------------------------------------------------------------------
/mmsegmentation/mmsegmentation.egg-info/dependency_links.txt:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/splits/val.txt:
--------------------------------------------------------------------------------
1 | 00004
2 |
--------------------------------------------------------------------------------
/mmsegmentation/mmsegmentation.egg-info/top_level.txt:
--------------------------------------------------------------------------------
1 | mmseg
2 | tests
3 |
--------------------------------------------------------------------------------
/figures/0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/figures/0.png
--------------------------------------------------------------------------------
/mmsegmentation/requirements/optional.txt:
--------------------------------------------------------------------------------
1 | cityscapesscripts
2 | nibabel
3 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/img_dir/P0000_0_896_1024_1920.png:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/img_dir/P0000_0_896_1536_2432.png:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/mmsegmentation/requirements/mminstall.txt:
--------------------------------------------------------------------------------
1 | mmcv>=2.0.0rc4
2 | mmengine>=0.5.0,<1.0.0
3 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/splits/val.txt:
--------------------------------------------------------------------------------
1 | P0000_0_896_1024_1920
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/splits/train.txt:
--------------------------------------------------------------------------------
1 | P0000_0_896_1536_2432
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/splits/train.txt:
--------------------------------------------------------------------------------
1 | 00000
2 | 00001
3 | 00002
4 | 00003
5 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/ann_dir/P0000_0_896_1024_1920_instance_color_RGB.png:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_isaid_dataset/ann_dir/P0000_0_896_1536_2432_instance_color_RGB.png:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/mmsegmentation/demo/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/demo/demo.png
--------------------------------------------------------------------------------
/mmsegmentation/requirements/runtime.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | packaging
4 | prettytable
5 | scipy
6 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/test_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/test_necks/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/test_utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/test_backbones/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/test_models/test_segmentors/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
--------------------------------------------------------------------------------
/mmsegmentation/requirements/tests.txt:
--------------------------------------------------------------------------------
1 | codecov
2 | flake8
3 | interrogate
4 | pytest
5 | xdoctest>=0.10.0
6 | yapf
7 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/seg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/seg.png
--------------------------------------------------------------------------------
/mmsegmentation/resources/3dogs.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/3dogs.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/color.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/color.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/gray.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/gray.jpg
--------------------------------------------------------------------------------
/mmsegmentation/projects/isnet/decode_heads/__init__.py:
--------------------------------------------------------------------------------
1 | from .isnet_head import ISNetHead
2 |
3 | __all__ = ['ISNetHead']
4 |
--------------------------------------------------------------------------------
/mmsegmentation/projects/sam_inference_demo/sam/__init__.py:
--------------------------------------------------------------------------------
1 | from .modeling import * # noqa
2 | from .utils import * # noqa
3 |
--------------------------------------------------------------------------------
/mmsegmentation/requirements.txt:
--------------------------------------------------------------------------------
1 | -r requirements/optional.txt
2 | -r requirements/runtime.txt
3 | -r requirements/tests.txt
4 |
--------------------------------------------------------------------------------
/mmsegmentation/resources/seg_demo.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/seg_demo.gif
--------------------------------------------------------------------------------
/mmsegmentation/resources/test_step.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/test_step.png
--------------------------------------------------------------------------------
/mmsegmentation/resources/3dogs_mask.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/3dogs_mask.png
--------------------------------------------------------------------------------
/mmsegmentation/resources/mmseg-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/mmseg-logo.png
--------------------------------------------------------------------------------
/mmsegmentation/resources/train_step.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/train_step.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/biomedical.npy:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/biomedical.npy
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/biomedical.pkl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/biomedical.pkl
--------------------------------------------------------------------------------
/mmsegmentation/projects/example_project/dummy/__init__.py:
--------------------------------------------------------------------------------
1 | from .dummy_resnet import DummyResNet
2 |
3 | __all__ = ['DummyResNet']
4 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/biomedical.nii.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/biomedical.nii.gz
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/imgs/zhihu_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/docs/zh_cn/imgs/zhihu_qrcode.jpg
--------------------------------------------------------------------------------
/mmsegmentation/requirements/readthedocs.txt:
--------------------------------------------------------------------------------
1 | mmcv>=2.0.0rc1,<2.1.0
2 | mmengine>=0.4.0,<1.0.0
3 | prettytable
4 | scipy
5 | torch
6 | torchvision
7 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/biomedical_ann.nii.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/biomedical_ann.nii.gz
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/imgs/qq_group_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/docs/zh_cn/imgs/qq_group_qrcode.jpg
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/imgs/seggroup_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/docs/zh_cn/imgs/seggroup_qrcode.jpg
--------------------------------------------------------------------------------
/mmsegmentation/resources/encoder_decoder_dataflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/encoder_decoder_dataflow.png
--------------------------------------------------------------------------------
/mmsegmentation/docs/en/_static/images/mmsegmentation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/docs/en/_static/images/mmsegmentation.png
--------------------------------------------------------------------------------
/mmsegmentation/docs/en/migration/index.rst:
--------------------------------------------------------------------------------
1 | Migration
2 | ***************
3 |
4 | .. toctree::
5 | :maxdepth: 1
6 |
7 | interface.md
8 | package.md
9 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/migration/index.rst:
--------------------------------------------------------------------------------
1 | 迁移
2 | ***************
3 |
4 | .. toctree::
5 | :maxdepth: 1
6 |
7 | interface.md
8 | package.md
9 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/__pycache__/version.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/__pycache__/version.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/io.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/io.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/misc.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/misc.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/gts/00000_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/gts/00000_gt.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/gts/00001_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/gts/00001_gt.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/gts/00002_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/gts/00002_gt.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/gts/00003_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/gts/00003_gt.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/gts/00004_gt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/gts/00004_gt.png
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/_static/images/mmsegmentation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/docs/zh_cn/_static/images/mmsegmentation.png
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/ade.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/ade.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/hrf.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/hrf.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/lip.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/lip.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/voc.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/voc.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/set_env.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/set_env.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/projects/sam_inference_demo/sam/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .amg import * # noqa: F403 F401
2 | from .transforms import ResizeLongestSide # noqa: F403 F401
3 |
--------------------------------------------------------------------------------
/mmsegmentation/resources/cascade_encoder_decoder_dataflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/resources/cascade_encoder_decoder_dataflow.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/imgs/00000_img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/imgs/00000_img.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/imgs/00001_img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/imgs/00001_img.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/imgs/00002_img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/imgs/00002_img.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/imgs/00003_img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/imgs/00003_img.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_dataset/imgs/00004_img.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_dataset/imgs/00004_img.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/0.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/1.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/ann_dir/2.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/0.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/1.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_loveda_dataset/img_dir/2.png
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/drive.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/drive.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/isaid.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/isaid.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/isprs.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/isprs.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/loveda.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/loveda.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/refuge.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/refuge.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/stare.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/stare.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/engine/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/__pycache__/builder.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/__pycache__/builder.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/chase_db1.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/chase_db1.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/decathlon.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/decathlon.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/mapillary.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/mapillary.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/potsdam.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/potsdam.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/synapse.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/synapse.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/fpn.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/fpn.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/jpu.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/jpu.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/embed.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/embed.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/ppm.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/ppm.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/registry/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/registry/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/registry/__pycache__/registry.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/registry/__pycache__/registry.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/class_names.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/class_names.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/collect_env.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/collect_env.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/utils/__pycache__/typing_utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/utils/__pycache__/typing_utils.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/cityscapes.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/cityscapes.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/coco_stuff.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/coco_stuff.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/dark_zurich.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/dark_zurich.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/evaluation/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/mae.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/mae.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/mit.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/mit.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/vit.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/vit.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/utils.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/utils.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/ic_neck.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/ic_neck.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/basesegdataset.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/basesegdataset.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/night_driving.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/night_driving.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/pascal_context.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/pascal_context.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/hooks/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/engine/hooks/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/beit.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/beit.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/cgnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/cgnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/erfnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/erfnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/hrnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/hrnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/icnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/icnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/mscan.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/mscan.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/pidnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/pidnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/resnet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/resnet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/stdc.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/stdc.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/swin.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/swin.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/twins.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/twins.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/unet.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/unet.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/accuracy.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/accuracy.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/dice_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/dice_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/mla_neck.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/mla_neck.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__pycache__/base.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/segmentors/__pycache__/base.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/encoding.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/encoding.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/res_layer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/res_layer.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/se_layer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/se_layer.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/wrappers.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/wrappers.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/visualization/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .local_visualizer import SegLocalVisualizer
3 |
4 | __all__ = ['SegLocalVisualizer']
5 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/visualization/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/visualization/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_lip_dataset/val_images/86_185913.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_lip_dataset/val_images/86_185913.jpg
--------------------------------------------------------------------------------
/mmsegmentation/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include requirements/*.txt
2 | include mmseg/.mim/model-index.yml
3 | recursive-include mmseg/.mim/configs *.py *.yaml
4 | recursive-include mmseg/.mim/tools *.py *.sh
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py'
2 | model = dict(backbone=dict(backbone_cfg=dict(depth=101)))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py'
2 | model = dict(backbone=dict(backbone_cfg=dict(depth=101)))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/stdc/stdc2_4xb12-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './stdc1_4xb12-80k_cityscapes-512x1024.py'
2 | model = dict(backbone=dict(backbone_cfg=dict(stdc_type='STDCNet2')))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/__pycache__/dataset_wrappers.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/__pycache__/dataset_wrappers.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/hooks/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .visualization_hook import SegVisualizationHook
3 |
4 | __all__ = ['SegVisualizationHook']
5 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/__pycache__/data_preprocessor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/__pycache__/data_preprocessor.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/resnest.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/resnest.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/resnext.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/resnext.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/focal_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/focal_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/lovasz_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/lovasz_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__pycache__/seg_tta.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/segmentors/__pycache__/seg_tta.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/basic_block.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/basic_block.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_lip_dataset/train_images/684_2150041.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_lip_dataset/train_images/684_2150041.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_refuge_dataset/ann_dir/pseudo_g0001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_refuge_dataset/ann_dir/pseudo_g0001.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_refuge_dataset/img_dir/pseudo_g0001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_refuge_dataset/img_dir/pseudo_g0001.png
--------------------------------------------------------------------------------
/mmsegmentation/docs/en/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/transforms/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/transforms/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/transforms/__pycache__/loading.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/transforms/__pycache__/loading.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/optimizers/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/engine/optimizers/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .metrics import CityscapesMetric, IoUMetric
3 |
4 | __all__ = ['IoUMetric', 'CityscapesMetric']
5 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/metrics/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/evaluation/metrics/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/bisenetv1.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/bisenetv1.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/bisenetv2.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/bisenetv2.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/fast_scnn.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/fast_scnn.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/ann_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/ann_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/apc_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/apc_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/cc_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/cc_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/da_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/da_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/dm_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/dm_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/dnl_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/dnl_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/dpt_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/dpt_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/ema_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/ema_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/enc_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/enc_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/fcn_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/fcn_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/fpn_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/fpn_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/gc_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/gc_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/ham_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/ham_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/isa_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/isa_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/nl_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/nl_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/ocr_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/ocr_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/pid_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/pid_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/psa_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/psa_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/psp_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/psp_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/boundary_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/boundary_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/tversky_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/tversky_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/featurepyramid.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/featurepyramid.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__pycache__/multilevel_neck.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/necks/__pycache__/multilevel_neck.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/segmentors/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/make_divisible.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/make_divisible.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/shape_convert.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/shape_convert.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/up_conv_block.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/up_conv_block.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/__pycache__/seg_data_sample.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/__pycache__/seg_data_sample.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/sampler/__pycache__/__init__.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/sampler/__pycache__/__init__.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/sampler/__pycache__/builder.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/sampler/__pycache__/builder.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_lip_dataset/val_segmentations/86_185913.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_lip_dataset/val_segmentations/86_185913.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/transforms/__pycache__/formatting.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/transforms/__pycache__/formatting.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/datasets/transforms/__pycache__/transforms.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/datasets/transforms/__pycache__/transforms.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/metrics/__pycache__/iou_metric.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/evaluation/metrics/__pycache__/iou_metric.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/mobilenet_v2.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/mobilenet_v2.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/mobilenet_v3.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/mobilenet_v3.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/backbones/__pycache__/timm_backbone.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/backbones/__pycache__/timm_backbone.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/aspp_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/aspp_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/knet_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/knet_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/point_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/point_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/stdc_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/stdc_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/uper_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/uper_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/inverted_residual.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/inverted_residual.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/visualization/__pycache__/local_visualizer.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/visualization/__pycache__/local_visualizer.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_potsdam_dataset/ann_dir/2_10_0_0_512_512.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_potsdam_dataset/ann_dir/2_10_0_0_512_512.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_potsdam_dataset/img_dir/2_10_0_0_512_512.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_potsdam_dataset/img_dir/2_10_0_0_512_512.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_synapse_dataset/ann_dir/case0005_slice000.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_synapse_dataset/ann_dir/case0005_slice000.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_synapse_dataset/ann_dir/case0005_slice001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_synapse_dataset/ann_dir/case0005_slice001.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_synapse_dataset/img_dir/case0005_slice000.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_synapse_dataset/img_dir/case0005_slice000.jpg
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_synapse_dataset/img_dir/case0005_slice001.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_synapse_dataset/img_dir/case0005_slice001.jpg
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | # Single gpu
4 | # os.system("CUDA_VISIBLE_DEVICES=0 python ./mmsegmentation/tools/test.py rdrnet-s-simple_2xb6-120k_cityscapes-1024x1024.py ./weight/seg/rdrnet_weight.pth")
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_loveda-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/hooks/__pycache__/visualization_hook.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/engine/hooks/__pycache__/visualization_hook.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/metrics/__pycache__/citys_metric.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/evaluation/metrics/__pycache__/citys_metric.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/decode_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/decode_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/lraspp_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/lraspp_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/sep_aspp_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/sep_aspp_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/sep_fcn_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/sep_fcn_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/setr_mla_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/setr_mla_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/setr_up_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/setr_up_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/cross_entropy_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/cross_entropy_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__pycache__/encoder_decoder.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/segmentors/__pycache__/encoder_decoder.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/utils/__pycache__/self_attention_block.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/utils/__pycache__/self_attention_block.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_lip_dataset/train_segmentations/684_2150041.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_lip_dataset/train_segmentations/684_2150041.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_vaihingen_dataset/ann_dir/area1_0_0_512_512.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_vaihingen_dataset/ann_dir/area1_0_0_512_512.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_vaihingen_dataset/img_dir/area1_0_0_512_512.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_vaihingen_dataset/img_dir/area1_0_0_512_512.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './ann_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './dnl_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r50b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_potsdam-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/maskformer_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/maskformer_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/segformer_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/segformer_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_mapillary_dataset/v1.2/__CRyFzoDOXn6unQ6a3DnQ.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_mapillary_dataset/v1.2/__CRyFzoDOXn6unQ6a3DnQ.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_mapillary_dataset/v2.0/__CRyFzoDOXn6unQ6a3DnQ.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_mapillary_dataset/v2.0/__CRyFzoDOXn6unQ6a3DnQ.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './apcnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './danet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/emanet/emanet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './emanet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './encnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101-d16_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101-d16_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './isanet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/point_rend/pointrend_r101_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pointrend_r50_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './psanet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r101_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/en/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../images/mmsegmentation.png");
3 | background-size: 201px 40px;
4 | height: 40px;
5 | width: 201px;
6 | }
7 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../images/mmsegmentation.png");
3 | background-size: 201px 40px;
4 | height: 40px;
5 | width: 201px;
6 | }
7 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/mask2former_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/mask2former_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/losses/__pycache__/ohem_cross_entropy_loss.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/losses/__pycache__/ohem_cross_entropy_loss.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/sampler/__pycache__/base_pixel_sampler.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/sampler/__pycache__/base_pixel_sampler.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/sampler/__pycache__/ohem_pixel_sampler.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/structures/sampler/__pycache__/ohem_pixel_sampler.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/projects/hssn/losses/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .hiera_triplet_loss_cityscape import HieraTripletLossCityscape
3 |
4 | __all__ = ['HieraTripletLossCityscape']
5 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_mapillary_dataset/images/__CRyFzoDOXn6unQ6a3DnQ.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_mapillary_dataset/images/__CRyFzoDOXn6unQ6a3DnQ.jpg
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-40k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-40k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb4-80k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb4-80k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/point_rend/pointrend_r101_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pointrend_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/cascade_decode_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/cascade_decode_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/decode_heads/__pycache__/segmenter_mask_head.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/decode_heads/__pycache__/segmenter_mask_head.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r50b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(layer_channels=(128, 512), backbone_cfg=dict(depth=18)))
4 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(layer_channels=(128, 512), backbone_cfg=dict(depth=18)))
4 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './nonlocal_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-40k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__pycache__/cascade_encoder_decoder.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/models/segmentors/__pycache__/cascade_encoder_decoder.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/requirements/docs.txt:
--------------------------------------------------------------------------------
1 | docutils==0.16.0
2 | myst-parser
3 | -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
4 | sphinx==4.0.2
5 | sphinx_copybutton
6 | sphinx_markdown_tables
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-20k_coco-stuff10k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-20k_coco-stuff10k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_coco-stuff10k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_coco-stuff10k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-80k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-40k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/docker/serve/config.properties:
--------------------------------------------------------------------------------
1 | inference_address=http://0.0.0.0:8080
2 | management_address=http://0.0.0.0:8081
3 | metrics_address=http://0.0.0.0:8082
4 | model_store=/home/model-server/model-store
5 | load_models=all
6 |
--------------------------------------------------------------------------------
/mmsegmentation/projects/hssn/decode_head/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .sep_aspp_contrast_head import DepthwiseSeparableASPPContrastHead
3 |
4 | __all__ = ['DepthwiseSeparableASPPContrastHead']
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-160k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-160k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-320k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-320k_coco-stuff164k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/evaluation/metrics/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .citys_metric import CityscapesMetric
3 | from .iou_metric import IoUMetric
4 |
5 | __all__ = ['IoUMetric', 'CityscapesMetric']
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-40k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb4-80k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb4-40k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(pretrained='torchvision://resnet50', backbone=dict(type='ResNet'))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50-d16_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn-d6_r101b-d16_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn-d6_r50b-d16_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/optimizers/__pycache__/layer_decay_optimizer_constructor.cpython-38.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/mmseg/engine/optimizers/__pycache__/layer_decay_optimizer_constructor.cpython-38.pyc
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-40k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb4-80k_pascal-context-59-480x480.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py' # noqa
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py' # noqa
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelIds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelIds.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/vit/vit_deit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | )
7 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_cityscapes_dataset/leftImg8bit/val/frankfurt/frankfurt_000000_000294_leftImg8bit.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/setr/setr_vit-l_mla_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./setr_vit-l-mla_8xb1-160k_ade20k-512x512.py']
2 |
3 | # num_gpus: 8 -> batch_size: 16
4 | train_dataloader = dict(batch_size=2)
5 | val_dataloader = dict(batch_size=1)
6 | test_dataloader = val_dataloader
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/vit/vit_deit-b16_upernet_8xb2-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-80k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | neck=None)
7 |
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_instanceIds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_instanceIds.png
--------------------------------------------------------------------------------
/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/gyyang23/RDRNet/HEAD/mmsegmentation/tests/data/pseudo_cityscapes_dataset/gtFine/val/frankfurt/frankfurt_000000_000294_gtFine_labelTrainIds.png
--------------------------------------------------------------------------------
/mmsegmentation/configs/vit/vit_deit-b16_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1),
6 | neck=None)
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/vit/vit_deit-b16-ln_mln_upernet_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './vit_vit-b16_mln_upernet_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
5 | backbone=dict(drop_path_rate=0.1, final_norm=True))
6 |
--------------------------------------------------------------------------------
/mmsegmentation/docker/serve/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | if [[ "$1" = "serve" ]]; then
5 | shift 1
6 | torchserve --start --ts-config /home/model-server/config.properties
7 | else
8 | eval "$@"
9 | fi
10 |
11 | # prevent docker exit
12 | tail -f /dev/null
13 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py' # noqa
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py' # noqa
2 | model = dict(
3 | pretrained='torchvision://resnet101',
4 | backbone=dict(type='ResNet', depth=101))
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/bisenetv1/bisenetv1_r18-d32-in1k-pre_4xb8-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './bisenetv1_r18-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py'
2 | train_dataloader = dict(batch_size=8, num_workers=4)
3 | val_dataloader = dict(batch_size=1, num_workers=4)
4 | test_dataloader = val_dataloader
5 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | optim_wrapper = dict(
3 | _delete_=True,
4 | type='AmpOptimWrapper',
5 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
6 | loss_scale=512.)
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/mask2former/mask2former_r101_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./mask2former_r50_8xb2-160k_ade20k-512x512.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/apis/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .inference import inference_model, init_model, show_result_pyplot
3 | from .mmseg_inferencer import MMSegInferencer
4 |
5 | __all__ = [
6 | 'init_model', 'inference_model', 'show_result_pyplot', 'MMSegInferencer'
7 | ]
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | backbone_cfg=dict(
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'))))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/maskformer/maskformer_r101-d32_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './maskformer_r50-d32_8xb2-160k_ade20k-512x512.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fastfcn/fastfcn_r50-d32_jpu_aspp_4xb4-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | _base_ = './fastfcn_r50-d32_jpu_aspp_4xb2-80k_cityscapes-512x1024.py'
3 | train_dataloader = dict(batch_size=4, num_workers=4)
4 | val_dataloader = dict(batch_size=1, num_workers=4)
5 | test_dataloader = val_dataloader
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fastfcn/fastfcn_r50-d32_jpu_enc_4xb4-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | # model settings
2 | _base_ = './fastfcn_r50-d32_jpu_enc_4xb2-80k_cityscapes-512x1024.py'
3 | train_dataloader = dict(batch_size=4, num_workers=4)
4 | val_dataloader = dict(batch_size=1, num_workers=4)
5 | test_dataloader = val_dataloader
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | backbone_cfg=dict(
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'))))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/mask2former/mask2former_r101_8xb2-90k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./mask2former_r50_8xb2-90k_cityscapes-512x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | optim_wrapper = dict(
3 | _delete_=True,
4 | type='AmpOptimWrapper',
5 | optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005),
6 | loss_scale=512.)
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './fpn_r50_4xb4-160k_ade20k-512x512.py'
2 | model = dict(pretrained='open-mmlab://resnet101_v1c', backbone=dict(depth=101))
3 | crop_size = (512, 512)
4 | data_preprocessor = dict(size=crop_size)
5 | model = dict(data_preprocessor=data_preprocessor)
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py'
2 | optim_wrapper = dict(
3 | _delete_=True,
4 | type='AmpOptimWrapper',
5 | optimizer=dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005),
6 | loss_scale=512.)
7 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/sampler/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_pixel_sampler import BasePixelSampler
3 | from .builder import build_pixel_sampler
4 | from .ohem_pixel_sampler import OHEMPixelSampler
5 |
6 | __all__ = ['build_pixel_sampler', 'BasePixelSampler', 'OHEMPixelSampler']
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r18_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-40k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(in_channels=[64, 128, 256, 512]),
6 | auxiliary_head=dict(in_channels=256))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r18_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './upernet_r50_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(in_channels=[64, 128, 256, 512]),
6 | auxiliary_head=dict(in_channels=256))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/optimizers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .layer_decay_optimizer_constructor import (
3 | LayerDecayOptimizerConstructor, LearningRateDecayOptimizerConstructor)
4 |
5 | __all__ = [
6 | 'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor'
7 | ]
8 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/structures/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .sampler import BasePixelSampler, OHEMPixelSampler, build_pixel_sampler
3 | from .seg_data_sample import SegDataSample
4 |
5 | __all__ = [
6 | 'SegDataSample', 'BasePixelSampler', 'OHEMPixelSampler',
7 | 'build_pixel_sampler'
8 | ]
9 |
--------------------------------------------------------------------------------
/mmsegmentation/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | message: "If you use this software, please cite it as below."
3 | authors:
4 | - name: "MMSegmentation Contributors"
5 | title: "OpenMMLab Semantic Segmentation Toolbox and Benchmark"
6 | date-released: 2020-07-10
7 | url: "https://github.com/open-mmlab/mmsegmentation"
8 | license: Apache-2.0
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/bisenetv1/bisenetv1_r101-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './bisenetv1_r101-d32_4xb4-160k_coco-stuff164k-512x512.py'
2 | model = dict(
3 | backbone=dict(
4 | backbone_cfg=dict(
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_coco-stuff164k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './bisenetv1_r50-d32_4xb4-160k_coco-stuff164k-512x512.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | backbone_cfg=dict(
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'))))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | backbone_cfg=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | backbone_cfg=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://resnet101_v1c'))))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r101-d8_4xb2-40k_cityscapes-512x1024.py'
2 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
3 | optim_wrapper = dict(
4 | _delete_=True,
5 | type='AmpOptimWrapper',
6 | optimizer=optimizer,
7 | loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b1_8xb1-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b1.pth'),
6 | embed_dims=64),
7 | decode_head=dict(in_channels=[64, 128, 320, 512]))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_drive-64x64.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_stare-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ann_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fpn_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_drive-64x64.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_hrf-256x256.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/bisenetv1/bisenetv1_r50-d32-in1k-pre_4xb4-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './bisenetv1_r50-d32_4xb4-160k_cityscapes-1024x1024.py'
2 | model = dict(
3 | type='EncoderDecoder',
4 | backbone=dict(
5 | backbone_cfg=dict(
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://resnet50_v1c'))))
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0005)
3 | optim_wrapper = dict(
4 | _delete_=True,
5 | type='AmpOptimWrapper',
6 | optimizer=optimizer,
7 | loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dnlnet/dnl_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dnl_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_drive-64x64.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_drive-64x64.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_hrf-256x256.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_hrf-256x256.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_fcn_4xb4-40k_chase-db1-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_stare-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/apcnet/apcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/apcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ccnet/ccnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ccnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/danet/danet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/danet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/dmnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/emanet/emanet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/emanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/encnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/gcnet/gcnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/gcnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/isanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ocrnet_hr18.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/psanet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/pspnet_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_stare-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_deeplabv3_4xb4-40k_stare-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_pspnet_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet-s5-d16_pspnet_4xb4-40k_chase-db1-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r50_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/upernet/upernet_r50_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/upernet_r50.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_isaid-896x896.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_loveda-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_fcn_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = '../fcn/fcn_r101-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b1_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py']
2 |
3 | # model settings
4 | model = dict(
5 | pretrained='pretrain/mit_b1.pth',
6 | backbone=dict(
7 | embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[2, 2, 2, 2]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b2_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py']
2 |
3 | # model settings
4 | model = dict(
5 | pretrained='pretrain/mit_b2.pth',
6 | backbone=dict(
7 | embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 4, 6, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b3_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py']
2 |
3 | # model settings
4 | model = dict(
5 | pretrained='pretrain/mit_b3.pth',
6 | backbone=dict(
7 | embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 4, 18, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b4_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py']
2 |
3 | # model settings
4 | model = dict(
5 | pretrained='pretrain/mit_b4.pth',
6 | backbone=dict(
7 | embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 8, 27, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b5_8xb2-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb2-160k_ade20k-512x512.py']
2 |
3 | # model settings
4 | model = dict(
5 | pretrained='pretrain/mit_b5.pth',
6 | backbone=dict(
7 | embed_dims=64, num_heads=[1, 2, 5, 8], num_layers=[3, 6, 40, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_deeplabv3_4xb4-ce-1.0-dice-3.0-40k_chase-db1-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = './unet_s5-d16_deeplabv3_4xb4-40k_chase-db1-128x128.py'
2 | model = dict(
3 | decode_head=dict(loss_decode=[
4 | dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0),
5 | dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)
6 | ]))
7 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | # Multiple gpus
4 | os.system("CUDA_VISIBLE_DEVICES=0,1 bash ./mmsegmentation/tools/dist_train.sh rdrnet-s-simple_2xb6-120k_cityscapes-1024x1024.py 2 --work-dir ./weight/seg")
5 |
6 | # Single gpu
7 | # os.system("CUDA_VISIBLE_DEVICES=0 python ./mmsegmentation/tools/train.py rdrnet-s-simple_2xb6-120k_cityscapes-1024x1024.py --work-dir ./weight/seg")
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r18-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-80k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | layer_channels=(128, 512),
5 | backbone_cfg=dict(
6 | depth=18,
7 | init_cfg=dict(
8 | type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/icnet_r50-d8.py',
3 | '../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_80k.py'
5 | ]
6 | crop_size = (832, 832)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(data_preprocessor=data_preprocessor)
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/nonlocal_net/nonlocal_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/nonlocal_r50-d8.py', '../_base_/datasets/cityscapes.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(data_preprocessor=data_preprocessor)
8 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_potsdam-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_fcn_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = '../fcn/fcn_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_pspnet_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = '../pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/projects/example_project/configs/fcn_dummy-r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['mmseg::fcn/fcn_r50-d8_4xb2-40k_cityscapes-512x1024.py']
2 |
3 | custom_imports = dict(imports=['dummy'])
4 |
5 | crop_size = (512, 1024)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, backbone=dict(type='DummyResNet'))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = './icnet_r50-d8_4xb2-160k_cityscapes-832x832.py'
2 | model = dict(
3 | backbone=dict(
4 | layer_channels=(128, 512),
5 | backbone_cfg=dict(
6 | depth=18,
7 | init_cfg=dict(
8 | type='Pretrained', checkpoint='open-mmlab://resnet18_v1c'))))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/icnet_r50-d8.py',
3 | '../_base_/datasets/cityscapes_832x832.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_160k.py'
5 | ]
6 | crop_size = (832, 832)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(data_preprocessor=data_preprocessor)
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/stdc/stdc1_in1k-pre_4xb12-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/stdc/stdc1_20220308-5368626c.pth' # noqa
2 | _base_ = './stdc1_4xb12-80k_cityscapes-512x1024.py'
3 | model = dict(
4 | backbone=dict(
5 | backbone_cfg=dict(
6 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint))))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/stdc/stdc2_in1k-pre_4xb12-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/stdc/stdc2_20220308-7dbd9127.pth' # noqa
2 | _base_ = './stdc2_4xb12-80k_cityscapes-512x1024.py'
3 | model = dict(
4 | backbone=dict(
5 | backbone_cfg=dict(
6 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint))))
7 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fcn/fcn_r18b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcn_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/isaid.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (896, 896)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=16))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/loveda.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=7))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_deeplabv3_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_pspnet_4xb2-80k_cityscapes512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = '../pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b2_8xb1-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b2.pth'),
6 | embed_dims=64,
7 | num_layers=[3, 4, 6, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r18-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnet18_v1c',
4 | backbone=dict(depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/potsdam.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=6))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b3_8xb1-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b3.pth'),
6 | embed_dims=64,
7 | num_layers=[3, 4, 18, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b4_8xb1-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b4.pth'),
6 | embed_dims=64,
7 | num_layers=[3, 8, 27, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/segformer/segformer_mit-b5_8xb1-160k_cityscapes-1024x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./segformer_mit-b0_8xb1-160k_cityscapes-1024x1024.py']
2 |
3 | model = dict(
4 | backbone=dict(
5 | init_cfg=dict(type='Pretrained', checkpoint='pretrain/mit_b5.pth'),
6 | embed_dims=64,
7 | num_layers=[3, 6, 40, 3]),
8 | decode_head=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fpn_r50.py', '../_base_/datasets/ade20k.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=150))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/segmentors/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base import BaseSegmentor
3 | from .cascade_encoder_decoder import CascadeEncoderDecoder
4 | from .encoder_decoder import EncoderDecoder
5 | from .seg_tta import SegTTAModel
6 |
7 | __all__ = [
8 | 'BaseSegmentor', 'EncoderDecoder', 'CascadeEncoderDecoder', 'SegTTAModel'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_40k.py'
5 | ]
6 | crop_size = (512, 1024)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(data_preprocessor=data_preprocessor)
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/deeplabv3plus_r50-d8.py',
3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_80k.py'
5 | ]
6 | crop_size = (512, 1024)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(data_preprocessor=data_preprocessor)
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/fastfcn/fastfcn_r50-d32_jpu_psp_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fastfcn_r50-d32_jpu_psp.py',
3 | '../_base_/datasets/cityscapes.py', '../_base_/default_runtime.py',
4 | '../_base_/schedules/schedule_80k.py'
5 | ]
6 | crop_size = (512, 1024)
7 | data_preprocessor = dict(size=crop_size)
8 | model = dict(data_preprocessor=data_preprocessor)
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/vaihingen.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_80k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=6))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pidnet/pidnet-m_2xb6-120k_1024x1024-cityscapes.py:
--------------------------------------------------------------------------------
1 | _base_ = './pidnet-s_2xb6-120k_1024x1024-cityscapes.py'
2 | checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/pidnet/pidnet-m_imagenet1k_20230306-39893c52.pth' # noqa
3 | model = dict(
4 | backbone=dict(channels=64, init_cfg=dict(checkpoint=checkpoint_file)),
5 | decode_head=dict(in_channels=256))
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_deeplabv3_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3/deeplabv3_r101-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-769x769.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-769x769.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=21))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_hr18.py', '../_base_/datasets/pascal_voc12_aug.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (512, 512)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor, decode_head=dict(num_classes=21))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb4-160k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py'
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/engine/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .hooks import SegVisualizationHook
3 | from .optimizers import (LayerDecayOptimizerConstructor,
4 | LearningRateDecayOptimizerConstructor)
5 |
6 | __all__ = [
7 | 'LearningRateDecayOptimizerConstructor', 'LayerDecayOptimizerConstructor',
8 | 'SegVisualizationHook'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/deeplabv3/deeplabv3_r18b-d8_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = './deeplabv3_r50-d8_4xb2-80k_cityscapes-512x1024.py'
2 | model = dict(
3 | pretrained='torchvision://resnet18',
4 | backbone=dict(type='ResNet', depth=18),
5 | decode_head=dict(
6 | in_channels=512,
7 | channels=128,
8 | ),
9 | auxiliary_head=dict(in_channels=256, channels=64))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/zh_cn/user_guides/index.rst:
--------------------------------------------------------------------------------
1 | 训练 & 测试
2 | **************
3 |
4 | .. toctree::
5 | :maxdepth: 1
6 |
7 | 1_config.md
8 | 2_dataset_prepare.md
9 | 3_inference.md
10 | 4_train_test.md
11 |
12 | 实用工具
13 | *************
14 |
15 | .. toctree::
16 | :maxdepth: 2
17 |
18 | visualization.md
19 | useful_tools.md
20 | deployment.md
21 | visualization_feature_map.md
22 |
--------------------------------------------------------------------------------
/mmsegmentation/mmseg/models/necks/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .featurepyramid import Feature2Pyramid
3 | from .fpn import FPN
4 | from .ic_neck import ICNeck
5 | from .jpu import JPU
6 | from .mla_neck import MLANeck
7 | from .multilevel_neck import MultiLevelNeck
8 |
9 | __all__ = [
10 | 'FPN', 'MultiLevelNeck', 'MLANeck', 'ICNeck', 'JPU', 'Feature2Pyramid'
11 | ]
12 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/mask2former/mask2former_swin-b-in22k-384x384-pre_8xb2-160k_ade20k-640x640.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./mask2former_swin-b-in1k-384x384-pre_8xb2-160k_ade20k-640x640.py']
2 |
3 | pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window12_384_22k_20220317-e5c09f74.pth' # noqa
4 | model = dict(
5 | backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
6 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/resnest/resnest_s101-d8_deeplabv3plus_4xb2-80k_cityscapes-512x1024.py:
--------------------------------------------------------------------------------
1 | _base_ = '../deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py' # noqa
2 | model = dict(
3 | pretrained='open-mmlab://resnest101',
4 | backbone=dict(
5 | type='ResNeSt',
6 | stem_channels=128,
7 | radix=2,
8 | reduction_factor=4,
9 | avg_down_stride=True))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/docs/en/user_guides/index.rst:
--------------------------------------------------------------------------------
1 | Train & Test
2 | **************
3 |
4 | .. toctree::
5 | :maxdepth: 1
6 |
7 | 1_config.md
8 | 2_dataset_prepare.md
9 | 3_inference.md
10 | 4_train_test.md
11 |
12 | Useful Tools
13 | *************
14 |
15 | .. toctree::
16 | :maxdepth: 2
17 |
18 | visualization.md
19 | useful_tools.md
20 | deployment.md
21 | visualization_feature_map.md
22 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/twins/twins_pcpvt-b_fpn_fpnhead_8xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py']
2 |
3 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/pcpvt_base_20220308-0621964c.pth' # noqa
4 |
5 | model = dict(
6 | backbone=dict(
7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
8 | depths=[3, 4, 18, 3]), )
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/twins/twins_pcpvt-l_fpn_fpnhead_8xb4-80k_ade20k-512x512.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./twins_pcpvt-s_fpn_fpnhead_8xb4-80k_ade20k-512x512.py']
2 |
3 | checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/pcpvt_large_20220308-37579dc6.pth' # noqa
4 |
5 | model = dict(
6 | backbone=dict(
7 | init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
8 | depths=[3, 8, 27, 3]))
9 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-40k_drive-64x64.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/drive.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (64, 64)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor,
9 | test_cfg=dict(crop_size=(64, 64), stride=(42, 42)))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-40k_hrf-256x256.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/hrf.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (256, 256)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor,
9 | test_cfg=dict(crop_size=(256, 256), stride=(170, 170)))
10 |
--------------------------------------------------------------------------------
/mmsegmentation/configs/unet/unet-s5-d16_fcn_4xb4-40k_stare-128x128.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/fcn_unet_s5-d16.py', '../_base_/datasets/stare.py',
3 | '../_base_/default_runtime.py', '../_base_/schedules/schedule_40k.py'
4 | ]
5 | crop_size = (128, 128)
6 | data_preprocessor = dict(size=crop_size)
7 | model = dict(
8 | data_preprocessor=data_preprocessor,
9 | test_cfg=dict(crop_size=(128, 128), stride=(85, 85)))
10 |
--------------------------------------------------------------------------------