├── Books ├── [HIT教材]计算方法学习指导(吴勃英).pdf ├── 数值分析原理_吴勃英.pdf └── 科学出版社 │ ├── 前言.doc │ ├── 第1章.doc │ ├── 第2章.doc │ ├── 第3章.doc │ ├── 第4章.doc │ ├── 第5章.doc │ ├── 第6章.doc │ └── 第7章.doc ├── Labs ├── 2020春-《计算方法》上机实验(一)插值.docx ├── 2020春计算方法实验指导及实验报告模板.doc ├── Lab1 │ ├── Lagrange.cpp │ ├── figure.ipynb │ ├── ~$实验报告1.docx │ ├── 实验报告1.docx │ └── 实验报告1.pdf ├── Lab2 │ ├── Romberg.cpp │ ├── 实验报告2.docx │ └── 实验报告2.pdf ├── Lab3 │ ├── Runge_Kutta.cpp │ └── 实验报告3.docx ├── Lab4 │ ├── Newton.cpp │ ├── figure.ipynb │ └── 实验报告4.docx ├── Lab5 │ ├── Gauss_1.cpp │ ├── Gauss_2.cpp │ └── 实验报告5.docx ├── 流程图 │ ├── 分段线性插值流程图.jpg │ ├── 四阶龙格-库塔流程图.jpg │ ├── 多项式最小二乘法流程图.jpg │ ├── 拉格朗日插值法流程图.jpg │ ├── 牛顿迭代法流程图.jpg │ └── 高斯列主消去法流程图.jpg └── 计算方法实验报告1183710109郭茁宁.docx ├── Notes ├── 第1章.pdf ├── 第2章.pdf ├── 第3章.pdf ├── 第4章.pdf ├── 第5章.pdf ├── 第6章.pdf └── 第7章.pdf ├── PPTs ├── 插值与逼近.ppt ├── 数值分析原理-第三章正文.pdf ├── 数值分析原理-第四章正文-2.pdf ├── 数值分析原理第六章-正文-3.pdf ├── 第三章---2(网课).pdf ├── 第四章-1.pdf ├── 线性方程组的数值解法.ppt ├── 绪论.ppt └── 非线性方程数值解法.ppt └── 大作业 ├── 1183710109+郭茁宁_课程论文.docx ├── 1183710109+郭茁宁_课程论文 ├── 1183710109+郭茁宁_课程论文.pdf ├── Gauss_1.cpp ├── Gauss_2.cpp ├── Lagrange.cpp ├── Newton.cpp ├── Romberg.cpp ├── Runge_Kutta.cpp ├── figure_1.ipynb └── figure_2.ipynb ├── 2020春季计算方法课程期末考核方案0623(1).pdf ├── 《计算方法》课程论文封面.doc └── 《计算方法》课程论文封面.pdf /Books/[HIT教材]计算方法学习指导(吴勃英).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/[HIT教材]计算方法学习指导(吴勃英).pdf -------------------------------------------------------------------------------- /Books/数值分析原理_吴勃英.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/数值分析原理_吴勃英.pdf -------------------------------------------------------------------------------- /Books/科学出版社/前言.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/前言.doc -------------------------------------------------------------------------------- /Books/科学出版社/第1章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第1章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第2章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第2章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第3章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第3章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第4章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第4章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第5章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第5章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第6章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第6章.doc -------------------------------------------------------------------------------- /Books/科学出版社/第7章.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Books/科学出版社/第7章.doc -------------------------------------------------------------------------------- /Labs/2020春-《计算方法》上机实验(一)插值.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/2020春-《计算方法》上机实验(一)插值.docx -------------------------------------------------------------------------------- /Labs/2020春计算方法实验指导及实验报告模板.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/2020春计算方法实验指导及实验报告模板.doc -------------------------------------------------------------------------------- /Labs/Lab1/Lagrange.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #define N1 1 // n amount 4 | #define N2 4 // x amount 5 | #define N3 20 // n max 6 | 7 | int Ns[N1] = {3}; 8 | double x[N2] = {5, 50, 115, 185}; 9 | double l = -1.0; 10 | double r = 1.0; 11 | 12 | double X(int k, int n) { return (k + 13) * (k + 13); } 13 | 14 | double Y(double x) { return sqrt(x); } 15 | 16 | int main() { 17 | for (int i = 0; i < N2; i++) printf("\tx=%.2lf", x[i]); 18 | printf("\n"); 19 | for (int i = 0; i < N1; i++) { 20 | double a[N3 + 1], b[N3 + 1]; 21 | int n = Ns[i]; 22 | for (int k = 0; k <= n; k++) { 23 | a[k] = X(k, n); // x 24 | b[k] = Y(a[k]); // y 25 | } 26 | printf("n=%d", n); 27 | for (int p = 0; p < N2; p++) { 28 | double y = 0.0; 29 | for (int k = 0; k <= n; k++) { 30 | double l = 1.0; 31 | for (int j = 0; j <= n; j++) { 32 | if (j != k) l *= (x[p] - a[j]) / (a[k] - a[j]); 33 | } 34 | y += l * b[k]; 35 | } 36 | printf("\t%.6lf", y); 37 | } 38 | printf("\n"); 39 | } 40 | printf("Actual"); 41 | for (int p = 0; p < N2; p++) printf("\t%.6lf", Y(x[p])); 42 | return 0; 43 | } -------------------------------------------------------------------------------- /Labs/Lab1/figure.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 6, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import math\n", 10 | "from matplotlib import pyplot as plt\n", 11 | "import seaborn as sns\n", 12 | "import numpy as np\n", 13 | "import pandas as pd\n", 14 | "%matplotlib inline\n", 15 | "sns.set_style(\"darkgrid\")" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 7, 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "output_type": "execute_result", 25 | "data": { 26 | "text/plain": "[]" 27 | }, 28 | "metadata": {}, 29 | "execution_count": 7 30 | }, 31 | { 32 | "output_type": "display_data", 33 | "data": { 34 | "text/plain": "
", 35 | "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", 36 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD3CAYAAAAALt/WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVhU9f4H8PfsLMO+yKLsiygiopnX\nXZFwqaxMwWuY3TKtvF2XUNOkEq9bWffnWmp6vd7bVdPbornihrspIqLswgDKvgjDALOd3x8mhakD\nyMw5M/N5PU/PEzMc5s3h8Hb4nnO+Xx7DMAwIIYQYLT7bAQghhDwdKnJCCDFyVOSEEGLkqMgJIcTI\nUZETQoiRExr6BbVaLTSajl0oIxDwOrytPlGu9qFc7cfVbJSrfZ4ml0gkeOxzBi9yjYZBba2iQ9va\n21t1eFt9olztQ7naj6vZKFf7PE0uFxebxz5HQyuEEGLkqMgJIcTIUZETQoiRoyInhBAjR0VOCCFG\njoqcEEKMXJuK/Pr164iLi/vD4ydOnMCECRMQExODPXv2dHo4Qgghuum8jnzLli346aefYGlp2epx\nlUqFFStWYO/evbC0tMTkyZMxYsQIuLi46C0sIZ2BYRiU1DXjzr1GVMiVKK9vRpNaCwsLEZqaVLAU\nCeAiFcNVKkFXewt0sZGAx+OxHZuQx9JZ5F5eXli3bh3mz5/f6vG8vDx4eXnBzs4OANC3b19cuXIF\nY8aMeeLXEwh4sLe36lBYgYDf4W31iXK1j6FzMQyD7DI5jmeWI6WoFmnFtahRqFp9zu97+uEZ+p2l\nYoR52iHCywGR3V3h72Jt8GKnn2X7mFsunUUeHR2N4uLiPzwul8thY/PbnUbW1taQy+U6X5Du7DQc\nc88lq1bghxulOJlTiTv3msAD4OtkhcG+jujhZgMfR6v777xtJLAUCVpyKZQalMubUSFvRn5VI26V\n1uFmaT1OZFXg82PZ8HKwxMhAZ7wU5gZPO0udOTqDuf8s28sUcz3pzs4O36IvlUrR0NDQ8nFDQ0Or\nYieEDVqGwZm8KnyXeheXZLUQ8HkY4O2A1/t3wxB/Jzhbi3V+DSuxAD6OVvBxtMIzXg4APAAAZfXN\nSM6rwuncSuz8pQg7LhdhoK8jJvbxwEAfBxp+IazpcJH7+/tDJpOhtrYWVlZWuHLlCt58883OzEZI\nmzEMgzO3q/HVuQLkVDTAVSrGzEHeGN/LvU3l3RZdbCSYGO6BieEeKKtvxg9pJfj+Rilm/y8dPdxs\n8M4gbzzrTYVODK/dRb5//34oFArExMRg4cKFePPNN8EwDCZMmIAuXbroIyMhT5ReUoc1J/OQXlKP\nrvYW+HRMMJ7r7gohX3+F2sVGghmDfPCXAV44eKsMWy8U4q/70tHH0xbzRgYg2FWqt9cm5GE8Qy++\nrFJpaIzcQEw9171GFTaeLcD3aSVwlooxY6A3xvXoAqGgY7dHPE0upVqLH9NLseW8DPeaVJjUxxMz\nBnpDKumcCUZN/WfZ2Uwxl17GyAlh08mcSqw4loO6JhUm9/XE2wO9YS1m73AWC/mYGO6B6O4u2Hi2\nALtT7iApqwIfRQdhkK8ja7mIeaA7O4lRUSg1SDyShfk/3YKbrQT/ei0Cc4b7s1riv2drIcLCUYHY\nPqUP7CyFmP2/dHx2PBdNKg3b0YgJ48bRT0gbZJbV48MDGbhT24Q3nu2G6X/yhqiDwyj61tPNBjum\nRGDDmXz8N+UOfimqxcoXQuDnZM12NGKCuPlbQMhDDt4qw1u7rkOp1uLrmN54d7AvZ0v8AYmQj7kj\n/LFuQijuNarwxn9ScSKnku1YxARx+zeBmD21Ros1J/Pw8aEs9HSzwc64CPTpasd2rHYZ4OOIf70W\nAV8nKyz46RY2ns2HRsu99SSJ8aIiJ5ylUGow94eb2JVyB7ERntjwai84WnXONeGG1sVGgs0xvTE+\n1A3bLxXhwwMZNG5OOg2NkRNOqmxQYs7/0pFTIceiqEC8HObOdqSnJhbysfi5QPg5W+Efp25jVoMS\nn7/UE/aWIrajESNH78gJ58iqFXjz22soqFbg85d6mkSJP8Dj8fDnvl2x/PkQZJTV463/pqKkront\nWMTIUZETTsmrbMDbu6+jUaXFVzG9MdjPie1IejEq2AXrXw1DtUKFt3ddR1FNI9uRiBGjIieckVUu\nx8w9aeDzePg6pjd6upn2JGx9utph08QwNKo0mLHnOgqquHcnIjEOVOSEE26V1uPd79IgEfKxOaY3\nfJ24N5e0PgR3keKrmN7QaBnM2HMduZUNujci5CFU5IR1ORVy/HXfDUjFAmyO6Y1uDoaZ45srApyt\n8XVMbwj4PLz3XRoKaZiFtBMVOWFVQbUCs/begIWQj42TwuBhZ8F2JFb4OFph46thYBjg3e/S6AQo\naRcqcsKau/ea8N53aQCADRPDDLbaDlf5OFlh3au9oFBq8O53aaiQN7MdiRgJKnLCihqFEn/ddwNN\nai3Wv9oLPo7mMSauS7CrFGsnhKK6QYX396VD3qxmOxIxAlTkxOAUSjXmfH8TZfXN+OKlngh0oUUY\nfi/U3RarX+yB/GoF4n+8CaVay3YkwnFU5MSg1FoGs/dcR0ZZPZaN7Y7ensY1b4qhPOvjgIToIFwp\nuodPD2dBS3OzkCegIicGwzAMPj+Ri5NZFYgfGYDhgc5sR+K0sT26YNYQXxzNqsBnx7LZjkM4jOZa\nIQaz+9pd7LtegumDffFquAfbcYzC1Ge6oqSuCVvP5sPdWoQXQ93YjkQ4iN6RE4M4l1+NL0/lYXiA\nEz6ICmI7jtHg8Xj4YIQ/Bvo7YcWxHKQU17IdiXAQFTnRu7zKBiw+kIEAZ2t8OqY7+Hpc3d4UCQV8\nrI0Jh6edBeb/eAvFtXTDEGmNipzoVV2TCh/8eBMWIgHWvNQTVmIB25GMkp2lCF+8HAoGwLwfbkKh\npLnMyW+oyIneaLQMlhzMRGldM1a/2ANutuZ512Zn8XKwxPLnQ1BQrUDikSwwDF3JQu6jIid6s/l8\nAc7n1yB+pD/CPGzZjmMSnvV2wKwhvkjKrsTOX4rZjkM4goqc6MWpnEpsu1SE8aFuJrUwBBe81q8r\nRgW5YMPZfFwqqGE7DuEAKnLS6YpqGvHJ4Sz0cLNBfGQAeDw6udmZeDwelkQHwdfJCot/zkApTbBl\n9qjISadqUmmwcP8tCPk8rHohBBIhHWL6YCUWYNULPaDSMFj8cybUGrqN35zRbxnpVF+cykN2RQM+\nGRNMJzf1zNvRCoufC0Ta3TpsOFvAdhzCIipy0mkO3irD92mleL1/N5Nda5Nrnuvuild7u+PfV4px\nOreS7TiEJVTkpFPIqhVYmZSDPp62mDnIh+04ZmXOcH+EdJHi08PZNF5upqjIyVNTqrVY/HMmxAI+\nEseFQEh3bhqUWMjH8udDoGUYJBzMhJpmSjQ7Ootcq9UiISEBMTExiIuLg0wma/X85s2bMX78eEyZ\nMgUnT57UW1DCXRvO5iOrXI4l0UHoYiNhO45Z6mpvifmRAbh2pw7bLxayHYcYmM7ZD5OSkqBUKrF7\n926kpqZi5cqV2LRpEwAgKysLBw4cwHfffQcAiI2NxYABA2Bpad5LdpmTc/nV+PbqHUwM98CwAJqW\nlk1je3TBJVkNtl6UoZ+XPfp0pbnezYXOd+RXr17FkCFDAADh4eFIT09veS4vLw/9+/eHRCKBRCKB\nt7c3srKy9JeWcEpVgxKfHspCgLM13h/qy3YcAmB+ZAA87Syw5GAm6ptomThzofMduVwuh1T621Jc\nAoEAarUaQqEQwcHB2Lx5M+RyOVQqFa5du4aYmJgnfj2BgAd7+46tzygQ8Du8rT6ZYy6GYTD/QAYa\nVBr8JzYcbi42nMj1NLiaC2h7NnsA/4jpg0lbLuLLM/n4YmJvTuQyNHPLpbPIpVIpGhoaWj7WarUQ\nCu9v5u/vjylTpmD69Onw9vZG79694eDg8MSvp9EwqK1VdCisvb1Vh7fVJ3PM9b/rd3EyqwJzR/jD\nRSJo1+uY4/56Wu3J5iUV4a0BXvj6vAzPdrVDdIgrJ3IZkinmcnnCmyWdQysRERFITk4GAKSmpiIo\n6LdFAaqrq1FTU4P//ve/WLx4MUpKShAYGNihkMR4yKoV+PLUbfT3skdMH1rph4umPeuFXu42WHk8\nhy5JNAM6izwqKgpisRixsbFYsWIFPvzwQ2zfvh3Hjx+Hg4MDiouLMWHCBEyfPh3z58+HQEDzTZsy\ntZbBx4eyIBby8fHoYPBpHhVOEvJ5WDq2OzRa5v7izTTlrUnTObTC5/OxdOnSVo/5+/u3/P/DzxHT\ntuNyIW6W1mP58yFwpUsNOa2rvSXmjfDHsqM52HPtLmIjPNmORPSEbggibZZVLsfWC4V4LtgFUcEu\nbMchbfBiqBsG+Tpi/Zl8yKq5N2ZMOgcVOWkTlUaLTw9nwc5ShPjIALbjkDbi8XhY/FwgJEI+Pj2c\nDQ3d9WmSqMhJm2y9IENORQMWRwXC3lLEdhzSDi5SCeJHBuBGSR3+c4VWFTJFVOREp5ul9fjn5SK8\n0LMLhvjTrIbGKLq7C0YGOuOr8wXIq2zQvQExKlTk5ImUai2WHs6Cs7UYc4b7696AcBKPx8OCUQGw\nFguReCSbJtYyMVTk5Im+uSjD7SoFFkUFwcZC50VOhMMcrcSIH+mPm6X1+JaGWEwKFTl5rMyyeuy4\nXIRxPVwxyM+R7TikE0QFu2B4gBO+Pl+Agiq6isVUUJGTR1JptFh6JBv2VjSkYkruD7EEwkIkwNIj\ndBWLqaAiJ4+043IRcioa8OGoANjRVSomxdlajHkj/HGjpA57Uu+yHYd0Aipy8gf5VQpsu1SIUUEu\nNMe4iRoT4oqBvg7YeCYfd+/RXCzGjoqctKJlGCw7mg1LkQAfjKQhFVPF4/GwcFQgeDxgxbEcMDQX\ni1GjIiet7E0tQdrdOswZ7gcnazHbcYgeudta4L3Bvrgoq8GhjHK245CnQEVOWpTWNWHDmXwM8HbA\nuB5d2I5DDODVcA/0crfFFyfzUK1Qsh2HdBAVOQFwf8WfVcdzoWUYLIwKAI+mpzULAj4PH0UHokGp\nwZenbrMdh3QQFTkBAJzIqcTZ29WYMcgHnna0eLY58XOyxrT+3XA4oxwXCqrZjkM6gIqcoL5Jjc9O\n5CHYVUpzVpupac96wdvBEiuP5aBRpWE7DmknKnKC9WfyUaNQYvFzgRDyaUjFHEmEfHwYFYi7dc3Y\ncl7GdhzSTlTkZu76nXv4X1oJYiM8EdLl8Yu7EtPXt5s9xoe64durxcgql7Mdh7QDFbkZU2m0WH4s\nB11sJJgx0IftOIQD/jrUF3aWIqw4lkO37xsRKnIz9u3VO7hdpUD8yABYiWnRbALYWYrwt2F+uFla\nj+/TStiOQ9qIitxM3bnXiC0XZBge4IRhAbRYBPnNmBBXPONljw1n81HZQNeWGwMqcjPEMAw+O54H\nAY+HeSPoNnzSGo/Hw4LIADSrtfjyZB7bcUgbUJGboZM5lTiXX40Zg7zhZmvBdhzCQd6OVnijvxeO\nZlXgIl1bznlU5GamQanGmpN5CHSxxqQ+dM04ebzX+3eDl4MlVh/PRbNay3Yc8gRU5GZm83kZKuRK\nfDiKrhknTyYW8rEgMgBFtU3YcbmQ7TjkCajIzUh2uRy7U+7gpTA39PKwZTsOMQL9vR0Q3d0FOy4X\nobCmke045DGoyM2ElmGwMikXthYivDfYl+04xIjMHuYHkYCPz47n0rzlHEVFbiZ+ulGKGyV1eH+Y\nLy3dRtrFWSrBO4N8cFFWg6TsSrbjkEegIjcDtY0qrD+Tjz6etjTPOOmQV8M9EOwqxZen8tCgVLMd\nhzyEitwMbDiTD3mzGvMjA2mecdIhAv79a8sr5EpsOU8nPrmGitzEpZfU4ccbpYiJ8ESAizXbcYgR\n6+Vhi5d6uWFXSjFyKxvYjkN+h4rchGm0DFYl5cJZKsbbA73ZjkNMwHtDfCGVCLE6iRZs5hKdRa7V\napGQkICYmBjExcVBJms9V/E333yDV155BRMmTMCxY8f0FpS0365fipBZLsfsYX6wFgvZjkNMgL2l\nCLOG+OLanTocvEULNnOFziJPSkqCUqnE7t27MW/ePKxcubLlubq6OuzcuRO7du3Ctm3bsHz5cr2G\nJW1XrVDii6RsPONlj6hgF7bjEBPyYi83hLrbYG3ybdQ1qtiOQwDofJt29epVDBkyBAAQHh6O9PT0\nlucsLS3h4eGBxsZGNDY2tulEmkDAg729VYfCCgT8Dm+rT1zMtfJkHhpVGiS+FAoHB26NjXNxfwHc\nzQVwL1vi+FC88vUFrDuZh8Vju7Md5w+4tr8e0FcunUUul8shlUp/F0QAtVoNofD+pu7u7hg3bhw0\nGg1mzJih8wU1Gga1tYoOhbW3t+rwtvrEtVxpd+uwL+UOpg/2hZOIz6lsAPf21wNczQVwL1tXaxFe\nCXPHvy4WICrAEUGuUt0bGRDX9tcDT5PLxeXxK3jpHFqRSqVoaPjtDLVWq20p8eTkZJSXl+P48eM4\ndeoUkpKSkJaW1qGQpHPcP8GZA1epGO8Npylqif68M8gHdpYifHaC7vhkm84ij4iIQHJyMgAgNTUV\nQUFBLc/Z2dnBwsICYrEYEokENjY2qKur019aotO+6yXIrmjAnOH+sJbQCU6iP3aWIsQ/F4xUOvHJ\nOp2/6VFRUTh37hxiY2PBMAyWL1+O7du3w8vLC5GRkTh//jwmTZoEPp+PiIgIDBo0yBC5ySNUK5T4\n6lwBnvGyR2SQM9txiBmY0McT316SYW3ybQwLcIKU3jywgscY+G8ilUpDY+R6kngkCz/fKsd/p/aF\nr5MVZ3I9jHK1H1ez2dtb4XxmGab95xpiIzwxlyMrTnF5f7EyRk6Mw427dfgpvQx/jvCErxP3ztYT\n09XDzQYvh7ljz7U7yK2gOz7ZQEVuAjRaBp+dyIWLVIw3/+TFdhxiht4Z7AOpREgnPllCRW4CfrxR\ngowyOf42lO7gJOywtxTh3cE+SCm+h6OZFWzHMTtU5EautlGFjWcLENHVDs91pzs4CXvG93JHSBcp\n/i/5Nk11a2BU5Ebuq3MFkDerET8ygKaoJawS8HmIH3l/qtttF2mqW0OiIjdimWX1+N/1EkzsQ1PU\nEm7o5WGLF3p2wbdX76CgintXjZgqKnIjpWUYrD6eBwcrEWbQFLWEQ2YN9YWFiI/PT9KJT0OhIjdS\nB2+V4UZJHf461JduwiCc4mglxsyBPrgkq8Wp3Cq245gFKnIjJG9WY11yPnq522AsrcFJOGhCuAcC\nnK3xxck8NKk0bMcxeVTkRmjzeRlqFCrMjwwAn05wEg4S8nn4YKQ/SuubseNyEdtxTB4VuZHJq2zA\nnmt38HKYO7p3efwtu4SwrW83e0R3d8G/filCcW0j23FMGhW5EWEYBp+fyIVUIsQ7g33YjkOITu8P\n9YOAz8M/Tt1mO4pJoyI3IknZlbhSdA/vDPaBvaWI7TiE6ORqI8FbA7xxOq8K5/Kr2Y5jsqjIjUSj\nSoN/nMpDsKsUL/VyZzsOIW02ua8nvBws8cXJPCjVWrbjmCQqciOx/VIhyuVKxI/0h4BPJziJ8RAJ\n+PhgpD8Kaxrx35Q7bMcxSVTkRqCwphH/vlKMcT1c0dvTju04hLTbn3wcMTzACd9clKGsvpntOCaH\nitwIfHEyD2IBH7OG+rEdhZAOmz3cD1oGWHuaTnx2Nipyjjvz60mi6X/yhrO1mO04hHSYp50lpj7T\nFUezKnC1qJbtOCaFipzDmtVarDmZB19HK8T08WA7DiFPbeoz3eBhK8FnJ3Kh1tI8LJ2FipzD/n2l\nCHfuNeGDkf4QCuhHRYyfhUiAOcP9kVepwN7Uu2zHMRnUDhxVUteE7ZeKMCrIGf29HdiOQ0inGRbg\nhAE+DvjqXAGqGpRsxzEJVOQc9eBOuL8NoxOcxLTweDzMG+GPZrUWG87ksx3HJFCRc9ClghqcyKnE\nX571gputBdtxCOl0Po5W+HNfT+y/WYYbd+vYjmP0qMg5RqXR4vOTuehqb4Ep/bqyHYcQvfnLAC+4\nSMVYfTwXGjrx+VSoyDlmV8odFFQ3Yt4If0iE9OMhpstaLMTfhvohs1yOH2+UsB3HqFFTcEh5fTO2\nXJBhiJ8jBvs5sR2HEL17rrsLIrraYePZAtQ2qtiOY7SoyDlkbfJtaLQM5o7wZzsKIQbB4/EQHxkA\nebMam84WsB3HaFGRc8TVolocyazA1Ge6oau9JdtxCDGYAGdrTOrjie/TSnCrtJ7tOEaJipwD1FoG\nn53IhbutBK/378Z2HEIM7u2B3nCwEuGzE7nQMnTis72oyDlgz7U7yKtUYM5wf1iIBGzHIcTgpBIh\n/jbMD+kl9TiQXsZ2HKNDRc6ySnkzNp+X4U8+DhgeQCc4ifkaE+KKcE9brDuTj7omOvHZHjqLXKvV\nIiEhATExMYiLi4NMJmt5LiMjA3FxcS3/9erVC8nJyXoNbGrWJudDqdHig5EB4PFowQhivng8HuJH\nBqCuSUUnPttJqOsTkpKSoFQqsXv3bqSmpmLlypXYtGkTACAkJAQ7d+4EABw6dAiurq4YOnSofhOb\nkGvF93AooxxvPNsNXg50gpOQIFcpJoZ74LvUu3iplzuCu0jZjmQUdL4jv3r1KoYMGQIACA8PR3p6\n+h8+R6FQYN26dVi8eHHnJzRRD05wutlI8MazXmzHIYQzZgy8v7j4quN04rOtdL4jl8vlkEp/+1dR\nIBBArVZDKPxt071792L06NFwdHTU+YICAQ/29lYdCisQ8Du8rT51JNc/LxQgp6IB62PD4e5iw5lc\nhkC52o+r2fSRyx7A/OhgLPw+HSfya/BqRPunqjCn/QW0ocilUikaGhpaPtZqta1KHAD279+PtWvX\ntukFNRoGtbWKdsa8z97eqsPb6lN7c1XKm/GPpBwM8HFAfw8bvX1PprK/DIWruQDuZtNXrhG+Dgjz\nsMWqw1no72EDWwsRJ3I9rafJ5fKEN3w6h1YiIiJaTmCmpqYiKCio1fP19fVQKpVwd3fvUDhz9OAE\nZzyd4CTkkfg8HuZH0onPttJZ5FFRURCLxYiNjcWKFSvw4YcfYvv27Th+/DgAID8/H56ennoPaipS\nimtxKKMccc/QCU5CniT41xOf+66XIKOM7vh8Eh7DGPZsgkqlMduhFbVGiyk7U9Co0mDPtH56v/nH\n2PeXoXE1F8DdbPrOVd+kxqvbf4GHnQW+mRwOfhv/gjXF/fVUQyuk8+y6dhe3qxSYS3dwEtImNha/\n3fH5441StuNwFhW5gZTXN2PLeRkG+TpiGN3BSUibjQlxRR9PW2w4k49aBd3x+ShU5Aby5anb0DAM\nPhjpTyc4CWkHHo+H+aMCIW9WY/1ZWuPzUajIDeCSrAZJ2RV4vT9NUUtIRwQ4WyM2oit+vFFKa3w+\nAhW5ninVWqw+fn8NzqnP0BS1hHTU9IFecJWKsYrW+PwDKnI9+/eVYhTWNCJ+ZACtwUnIU7AWCzFn\nuD+yyuXYm3qX7TicQs2iR8W1jdh2qRAjA50x0Ff39AWEkCeLDHLGAG8HbDpXgEp5M9txOIOKXE8Y\nhsHnJ/Ig4PFoDU5COgnv1zs+VRotvjx1m+04nEFFricnc6twLr8abw/0RhcbCdtxCDEZ3RwsMa2/\nF45mVeBSQQ3bcTiBilwPFEoN1pzIRaCLNWIiaPoCQjrb1P7d0M3eAqtP5KJZrWU7DuuoyPVg83kZ\nyuVKLIgMgJBP14wT0tkkQj7mRwagsKYR/7pcxHYc1lGRd7Lscjl2pRTjpV5u6O1px3YcQkzWAB9H\nRAW74J+XC1FY08h2HFZRkXciLcNgZVIObCxEmDXEl+04hJi8ucP9IBLwsSopBwae/49TqMg70Q83\nSnGjpB6zh/nBzrJ9E+ETQtrPWSrBu4N9cbmwFkczK9iOwxoq8k5S1aDE+uR89O1mh7E9XNmOQ4jZ\nmNDbHSFdpPjiVB7qm9Rsx2EFFXkn+cfp22hUabAwMpAmxSLEgAR8HhZFBaK2UYUNZjqpFhV5Jzib\nW4nDGeWY1r8bfJy4t+ArIaauexcbxEZ44n/XS5BmhpNqUZE/pSaVBh/vvwUvB0tMe9aL7TiEmK0Z\nA33gaiPB8mPZUGnM69pyKvKntP1SIQqrFVg4iibFIoRNVmIB4kcGIK9SgW3nCtiOY1DUPE8hr7IB\n//qlGC+He+AZLwe24xBi9oYFOGF4gBPWn8pFca35XFtORd5BWobB8mM5sBYLsGB0d7bjEEJ+9cHI\nAAh4PKw6nms215ZTkXfQ92n3T6rMHu4HJ2sx23EIIb/qYiPB3KggXCyowREzubacirwDKuTNWJec\nj35e9hjXowvbcQghD5nS3ws93Wzwxck81Daa/oLNVOQd8PmJPKi1DBaNomvGCeEiAZ+Hxc8Foq5Z\njf87bfrzllORt9Pp3CqcyKnEWwO80M2BFlImhKsCXaSI69cVB26W4ZdC0563nIq8HeTNaqw+noMA\nZ2u81q8r23EIITq8OcAL3ewtsPxYDppUGrbj6A0VeTusP5OPygYlPnouEEIB7TpCuM5CJMCiqCAU\n1zZhy4VCtuPoDbVRG6UW38O+6yWIjfBET3dbtuMQQtqon5c9xoe64T9XipBZVs92HL2gIm+DZrUW\ny45mw8NWgpmDfNiOQwhpp/eH+cLOUoRlR3Og1preteVU5G2w7VIhZDWNWBgVCEuRgO04hJB2srUQ\nYX5kALLK5fj2SjHbcTodFbkO2eVy7LhchDEhrviTjyPbcQghHTQy0BnD/J2w+YLM5JaGoyJ/ArWW\nwbKj2bCzEGLuCH+24xBCngKPx8OCUQEQCXj4+9FsaE3o9n2dRa7VapGQkICYmBjExcVBJpO1ev70\n6dOYNGkSJk2ahE8++cSk5jb49koxMsrkiB8ZAHtauo0Qo+cilWD2MD+kFN/D92klbMfpNDqLPCkp\nCUqlErt378a8efOwcuXKlufkcjk+++wzfPXVV9izZw88PT1RU2MaF97LqhXYfEGG4QFOiAxyZjsO\nIaSTvBjqhme87LEuOR+ldU1sx+kUPEbHW+gVK1YgLCwM48aNAwAMGTIEZ86cAQCcOXMG33//PUQi\nEYqKijBx4kS8/PLLT3xBrWRSf1kAABDhSURBVFYLjaZj79oFAj40BpgwXqtlMGXbZWSX1ePQ+4Ph\namPBiVztRbnah6u5AO5mM9ZcRTUKjFt3Dv19HLAlrq/Bptp4mv0lesKFFkJdG8vlckil0t8FEUCt\nVkMoFKKmpgaXLl3CDz/8ACsrK0yZMgXh4eHw9fV97NfTaBjU1ira+S3cZ29v1eFt22PPtTu4IqtB\nQnQQxBqtztc0VK72olztw9VcAHezGWsuGx7w7mAfrDmZh/+cz8fzPd04ketJXFxsHvuczqEVqVSK\nhoaGlo+1Wi2EQuGvoezRq1cvuLi4wNraGv369UNGRkaHQnJFcW0j1iXnY6CvA57vSTMbEmKqJvXx\nQLinLb44eRsV8ma24zwVnUUeERGB5ORkAEBqaiqCgoJangsNDUV2djaqq6uhVqtx/fp1BAQE6C+t\nnmkZBn8/mg0Bn4cPaWZDQkwan8fDkuhgKDVarDiWY9QXaugcWomKisK5c+cQGxsLhmGwfPlybN++\nHV5eXoiMjMS8efPw1ltvAQBGjx7dquiNzfdpJbhSdA+LogLhZvvkcXFCiPHzcrDEzEE++L/Tt3E4\nsxxjQozzr3CdJzs7m0ql4eQY+d17TZi84ypC3W2w/tVe7Xo3bqzjhGyhXO3H1WymkEujZTB9Vypk\nNY3Y/XpfOEslnMj1sKcaIzcHWoZB4tFs8HjAR9FBNKRCiBkR8HlIGB2MZrUWK5KMc51PKnIA+66X\n4EphLf42zA/uNKRCiNnxcbTCzEE+SM6rwqGMcrbjtJvZF3lxbSPWnr6NAd4OeKmXYS5BIoRwz+QI\nT4R52OLzE3lGdxWLWRe5lmGQeCS7ZX0/GlIhxHwJ+DwkRAdBqdFiuZFdxWLWRb4r5Q5Siu9h7gh/\nukqFEAJvRyu8N8QXZ29XY396Gdtx2sxsi7ygSoGNZwsw2M8RL9CNP4SQX8X08UDfbnb44lQeSoxk\nLhazLHK1lsEnh7NgIeRj8XN0lQoh5Dd8Hg8J0cFgGGDp4SyjmO7WLIt8x+VC3Cytx4JRgXC2FrMd\nhxDCMR52Fpgz3A9Xiu5hz7W7bMfRyeyKPKtMji0XChEV7IKoYBe24xBCOGp8LzcM9nPE+jP5KKji\n3k1Pv2dWRd6s1mLJoUw4WomwINJ454QhhOgfj8fD4qhAWAj5SDiUCTUHp+t9wKyKfOPZfORXKbAk\nOgh2tOIPIUQHZ6kEi6ICkVEmx7ZLhWzHeSyzKfLLshp8e/UOJoZ70CLKhJA2GxnkgnE9XLHtYiHS\nS+rYjvNIZlHk9U1qLD2SDS8HS7w/9PGLXhBCyKN8MDIALlIJPj6UhUaVhu04f2DyRc4wDFYm5aBS\n3oylY7vD4gnLJRFCyKNIJUJ8MiYYRTWN+PJUHttx/sDki/xwZjmOZlVg+kBv9HR7/DSQhBDyJH27\n2SPuma74Pq0Up3Or2I7TikkX+d17TViVlIveHraY1t+L7TiEECM3c5APgl2lWHY0G5UNSrbjtDDZ\nItdoGXxyKBMA8OnYYAj4dPcmIeTpiAR8JI7tjkaVBolHsjgzsZbJFvmOy0W4dqcO8SMD4GlnyXYc\nQoiJ8HWywt+G+eF8fg1n7vo0ySJPu1uHzecLEN3dBWN7uLIdhxBiYl7t7Y7Bfo5Ym3wbORVytuOY\nXpHLm9VY8nMGuthIsHAUzTFOCOl8PN79ucttLERY/HMmmli+JNHkinzV8VyU1t+/1FAqEbIdhxBi\nohysxPh0dDDyqxT4x+nbrGYxqSI/eKsMhzPK8dafvNHb047tOIQQE/esjwNe69cV+66X4FROJWs5\nTKbIZdUKrEzKQZ+udnjjWbrUkBBiGO8O9kFIFykSj2ajlKWFKEyiyJVqLRb/nAnxr5cGCelSQ0KI\ngYgEfPx9XAg0WgZLDmZCrTX8JYkmUeTrzuQjq1yOhNHB6GIjYTsOIcTMdHOwxMJRgUi9U4etF2QG\nf32jL/LkvCrsSrmD2AhPDPV3YjsOIcRMjQ5xxQs9u2DbxUL8Ulhj0Nc26iIvqWvCp4ez0N1Vir8O\noVkNCSHsio8MgLejJZYczEKVAW/hN9oiV2u0WHwgAxotgxUvhEAsNNpvhRBiIixFAqx4oQfkzWok\nHMyExkDj5UbbfhvPFuBGST0+ei4IXe3pFnxCCDcEOFsjfqQ/LhfW4p+XDbOqkFEW+dnbVdh5pRgT\nertjFC2gTAjhmBdD3TA6xBWbz8twtahW769ndEV+914TPj6UhSAXa8wZ7s92HEII+QMej4cPRwWi\nm70lFh3I0PuUtzqLXKvVIiEhATExMYiLi4NM1vrSmmXLluGVV15BXFwc4uLiUF9fr7ewzWotPvx1\nXHzViz0goXFxQghHWYkFWPliDzQoNfjo5wy9Xl+uczKSpKQkKJVK7N69G6mpqVi5ciU2bdrU8vzN\nmzexdetWODrqf0HjVYczcau0Hqte7EHj4oQQzgtwtsbCUQH49HA2Np8vwKLne+rldXS+pb169SqG\nDBkCAAgPD0d6enrLc1qtFjKZDAkJCYiNjcXevXv1EhIArhbVYuelQvy5rydGBjrr7XUIIaQzPd/T\nDeND3bD9UhHS79zTy2vofEcul8shlUpbPhYIBFCr1RAKhVAoFHjttdfwxhtvQKPRYOrUqQgNDUX3\n7t0f+/UEAh7s7a3aHTRAw+CvIwLwzjA/iATcGlIRCPgd+p70jXK1D1dzAdzNRrnaZtkrveDhaAVn\nWwvY6+Huc51FLpVK0dDQ0PKxVquFUHh/M0tLS0ydOhWWlveHOQYMGIDMzMwnFrlGw6C2VtHuoHYC\nHt4fGdChbfXN3t6KcrUD5Wo/rmajXG33l2e6wt5G0uFcLi6PXzxe51vbiIgIJCcnAwBSU1MRFBTU\n8lxBQQH+/Oc/Q6PRQKVSISUlBT176mcMiBBCyKPpfEceFRWFc+fOITY2FgzDYPny5di+fTu8vLwQ\nGRmJF154AZMmTYJIJML48eMRGBhoiNyEEEJ+xWMMvAy0SqXp8J8WXPxzCaBc7UW52o+r2ShX+zxN\nrqcaWiGEEMJtVOSEEGLkqMgJIcTIUZETQoiRoyInhBAjZ/CrVgghhHQuekdOCCFGjoqcEEKMHBU5\nIYQYOSpyQggxclTkhBBi5KjICSHEyFGRE0KIkdM5jS1bjh07hsOHD2PNmjV/eG7Pnj3YtWsXhEIh\n3nnnHYwYMQLV1dX44IMP0NTUBFdXV6xYsaJlwYvO0NTUhPj4eFRVVcHa2hqrVq1qtU5pcnIytmzZ\nAgBgGAZXr17FgQMH0NTUhJkzZ8LHxwcAMHnyZIwdO9ZguQBg5syZqK2thUgkgkQiwdatWyGTybBw\n4ULweDwEBgbi448/Bp/fef+utyXXqlWrkJKSArVajZiYGEyaNAm1tbWIjo5umfd+1KhReP311586\nj1arxSeffIKsrCyIxWIsW7YM3t7eLc+zcUy1Jdc///lP/PzzzwCAYcOGYdasWWAYBkOHDm05psLD\nwzFv3jyD5lq2bBlSUlJgbW0NANi4cSNUKhWr+ysjIwPLly9v+dzU1FRs2LABYWFhejmmHuX69ev4\n/PPPsXPnzlaPnzhxAhs2bIBQKMSECRMwadKkNv2OtBnDQYmJiUx0dDQze/bsPzxXXl7OPP/880xz\nczNTV1fX8v+JiYnMvn37GIZhmK+//prZvn17p2batm0bs3btWoZhGObAgQNMYmLiYz93y5YtzJo1\naxiGYZg9e/Yw33zzTadmaW+uMWPGMFqtttVjM2bMYC5evMgwDMMsWbKEOXr0qEFzXbhwgXn33XcZ\nhmGY5uZmZtSoUUxtbS1z7tw5ZunSpZ2ahWEY5siRI8yCBQsYhmGYa9euMTNnzmx5jq1jSleuwsJC\n5uWXX2bUajWj0WiYmJgYJiMjgykoKGBmzJjR6VnamothGCY2Npapqqpq9Rjb++v3Dh48yMydO5dh\nGEZvx9TDNm/ezDz//PPMxIkTWz2uVCpbju/m5mbmlVdeYcrLy9vVKbpwcmglIiICn3zyySOfS0tL\nQ58+fSAWi2FjYwMvLy9kZma2WiR66NChOH/+fKdmevjrX7hw4ZGfV1paih9//BGzZs0CAKSnp+PU\nqVOYMmUKFi1aBLlcbtBclZWVqKurw8yZMzF58mScPHkSAHDz5k3079+/ZTtD768+ffq0evek0Wgg\nFAqRnp6Omzdv4rXXXsP777+P8vLyTs/z8CLibB1TunK5ublh69atEAgE4PP5UKvVkEgkuHnzJsrK\nyhAXF4fp06fj9u3bBs31uEXX2d5fDygUCqxbtw6LFy8GAL0dUw/z8vLCunXr/vB4Xl4evLy8YGdn\nB7FYjL59++LKlStt7pS2YHVo5bvvvsOOHTtaPbZ8+XKMHTsWly5deuQ2crkcNja/TbBubW0NuVze\n6nFra2vU19d3ai4nJ6c2ff3t27dj2rRpEIvFAICwsDBMnDgRoaGh2LRpEzZs2IAFCxYYLJdKpcJf\n/vIXTJ06Fffu3cPkyZMRFhYGhmHA4/F0fj/6yiWRSCCRSKBSqbBw4ULExMTA2toafn5+CA0NxcCB\nA/HTTz9h2bJlWLt2bYezPfCkRcQNcUx1JJdIJIKjoyMYhsHq1avRo0cP+Pr6orKyEm+//TbGjBmD\nK1euID4+Hvv27TNYrsctus72/npg7969GD16dMswhb6OqYdFR0ejuLj4kZn1fXyxWuQTJ07ExIkT\n27XNw4tBNzQ0wMbGpuVxCwsLNDQ0wNbWtlNzzZo1q+V1H/f1tVotTp06hTlz5rQ8FhUV1fK5UVFR\nSExMNGguZ2dnxMbGQigUwsnJCSEhIcjPz281Hs7W/rp37x7ef/999O/fHzNmzABwfwHvB+OqUVFR\nnfYL96RFxA1xTHUkFwA0Nzdj0aJFsLa2xscffwwACA0NhUAgAAD069cPZWVlrf5h1neuxy26zoX9\nBQD79+9vddzo65hqK13H14PHnmZ/cXJo5UnCwsJw9epVNDc3o76+Hnl5eQgKCkJERAROnz4N4P6J\nx759+3bq67bl62dnZ8PX1xcWFhYtj7355ptIS0sDAFy4cKHTF6fWlev8+fOYPXs2gPsHS05ODvz8\n/NCjR4+Wv3qSk5PRr18/g+ZqamrCtGnTMGHCBLz33nstj3/00Uc4cuQIgM7dX09aRJytY0pXLoZh\n8O677yI4OBhLly5tKe/169e3/AWUmZkJDw+PTi1xXbket+g62/sLAOrr66FUKuHu7t7ymL6Oqbby\n9/eHTCZDbW0tlEolrly5gj59+nTq/uLs7IeXLl3Crl278OWXXwJAqwWf9+zZg927d4NhGMyYMQPR\n0dGorKzEggUL0NDQAAcHB6xZswZWVladlqexsRELFixARUUFRCIR1qxZAxcXF6xevRqjR49GWFgY\nDh06hJSUlJaxOeD+WHRiYiJEIhGcnZ2RmJjY6k9DQ+T6+9//juvXr4PP5+Ott97CqFGjkJ+fjyVL\nlkClUsHPzw/Lli1rKQpD5EpJScH69esREhLSss2DMfNFixYBuP/Ob9myZXB1dX3qPA+udsjOzm5Z\nRDw5OZnVY0pXLq1Wi7lz5yI8PLzl8+fOnQs/Pz/Ex8dDoVBAIBAgISEB/v7+BssVGRmJLVu24PDh\nwy2Lrk+ePJn1/RUZGYm0tDR89dVX2LhxY8s2RUVFejmmHqW4uBhz587Fnj17sH//figUCsTExLRc\ntcIwDCZMmIApU6Y89nekIzhb5IQQQtrG6IZWCCGEtEZFTgghRo6KnBBCjBwVOSGEGDkqckIIMXJU\n5IQQYuSoyAkhxMj9P7PgUJhWHqhSAAAAAElFTkSuQmCC\n" 37 | }, 38 | "metadata": {} 39 | } 40 | ], 41 | "source": [ 42 | "x = np.linspace(-1, 1, 100)\n", 43 | "plt.plot(x, 1 / (1 + x*x))" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": 33, 49 | "metadata": {}, 50 | "outputs": [ 51 | { 52 | "output_type": "execute_result", 53 | "data": { 54 | "text/plain": "([], )" 55 | }, 56 | "metadata": {}, 57 | "execution_count": 33 58 | }, 59 | { 60 | "output_type": "display_data", 61 | "data": { 62 | "text/plain": "
", 63 | "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", 64 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAD3CAYAAAC+eIeLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQaUlEQVR4nO3ce2zU5Z7H8U/bmbZQCshNcHMqlAMG\n6DbcwhITMC6QAktilJRSQcRrKxKCVVKCcllaMbA2Jty8gKLxH6yQEwUFNFGsK0gCVRoICAcBIRtB\ncAu92NvMs38gc2jptDPT6XfYnPfrL/n9nuf3ezp95s10phjnnHMCAJiIj/UCAOCfCdEFAENEFwAM\nEV0AMER0AcCQp62Tfr9fPl/HfrkhISGuw9eItjtxTRLrCteduK47cU0S6wpXR9fl9SYEPddmdH0+\np8rK2ohvLEk9e3bt8DWi7U5ck8S6wnUnrutOXJPEusLV0XX17Zsa9BxvLwCAIaILAIaILgAYIroA\nYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAh\nogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhogu\nABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBg\niOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGi\nCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4A\nGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI\n6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaIL\nAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgyNNZF95z4pJKvjqja3VNkqQunjh5E+JVVe/T3alJ\nWjBhoCRp87fndKmqPnBs2rC7tefEpVaP37xusHO33ru9MeGMC3dsJOMl6dOj/6P/2vdTWHMivVdH\n5sVy7v/XdVt/j1rOW5J1nybe2zOq9+qM509Hn9/BzrV2XPpHf7one9TQ5NMfTU6S1LOLRwUPDg5r\nX4YqYdWqVauCnfT7nerqGsO+6J4Tl1S095RqG/2BY01+qd534wuqbvDpv8/8rm9OX9H1el/g2MGz\n/6vL1XV67/sLqvwz1jePD+iRpL9fqdGaL063em5I326Be7c3JjnZq7/9cLHdcbd+PaGOjWT8zTn/\n+flJVf4R+pxI7xXuvORkb7N9EOk9Ozo3lvcOdW7Lx6oj943mvLLTv2lA97b3X2ft8bbG/utf7go8\nXqFcs60xwfrQWlNa9qe+ya+mf+RKdU1+ffv3q/qXnskh7cuWUlKSgp7rlLcXNn97To1+1+aYRr9T\nU4shdU1+/a3iV9Xd+tX/eXzzt+e0+dtzQc/deu/2xoQzLtyxkYwPzGkMb06k9+rIvFjOjeW9YzE3\nqvMaQ9h/nbTHo/mcbGtMsHOtNaW1/rTU5BTyvgxHp7y9cKmqPuK5wVrd1jVvPRdsXMvjoY4Ld2wk\nxyOdE4t5sZwby3vHYq7lvM7c49F8TkbytbXz+q9NHWlZMJ3ySvfu1OAvrdsTHxf8msGue+vxUMaE\nMy7csZEcj3ROLObFcm4s7x2LuZbzOnOPR/M52daYYOeCNSUUHWlZMJ0S3QUTBsrbzlfqjY+Tp8WQ\nZE+8Hs7sr2RP/G3HF0wYqAUTBgY9d+u92xsTzrhwx0YyPjDHG96cSO/VkXmxnBvLe8diblTneUPY\nf520x6P5nGxrTLBzrTWltf605IlTyPsyHJ3yQdqQvt10T89klV+4pvo/30vp4olTV2+CGnxO/VOT\n9NKkwXpgSB+d+LVaNQ0+9U9NUsG/D9YT/3avBvRIuu34tGF3a0jfbkHP3Xrv9sYkJ3v1l9SkdseF\nc82OjL8556/9u6viQmXIcyK9V7jzWn44FOk9Ozo3lvcOdW5rH6RZfI/am7f8P4Zr8l/7RO1e4Yxv\na+ytj1dHn9/BzrXWlJb96ZHsUbxc4MO0nl08WjplSMS/vdDWB2lxzrmg73g0NvpUWVkb0U1v6tmz\na4evEW134pok1hWuO3Fdd+KaJNYVro6uq2/f1KDn+McRAGCI6AKAIaILAIaILgAYIroAYIjoAoAh\nogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhogu\nABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBg\niOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGi\nCwCGiC4AGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4A\nGCK6AGCI6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI\n6AKAIaILAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaIL\nAIaILgAYIroAYIjoAoAhogsAhoguABgiugBgiOgCgCGiCwCGiC4AGCK6AGCI6AKAIaILAIaILgAY\nIroAYIjoAoAhogsAhoguABiKc865WC8CAP5Z8EoXAAwRXQAwRHQBwBDRBQBDRBcADBFdADBEdAHA\nkCdaF/ryyy+1d+9elZSU3HautLRU27dvl8fj0XPPPacHH3xQv//+u1566SXV1dWpX79+eu2119Sl\nS5doLUd1dXVasmSJrl69qpSUFK1du1a9evUKnC8rK9OWLVskSc45HTlyRLt371ZdXZ3y8/M1cOBA\nSVJubq6mT59uti5Jys/PV2Vlpbxer5KSkrR161adP39eS5cuVVxcnIYMGaKVK1cqPj56f2eGsq61\na9eqvLxcTU1NysnJ0axZs1RZWamsrCwNHTpUkjR58mQ9/vjjHVqL3+/XqlWr9NNPPykxMVHFxcW6\n9957A+djsZ9CWdf777+vzz77TJL0wAMPaOHChXLOaeLEiYH9NHLkSL344oum6youLlZ5eblSUlIk\nSZs3b1ZjY2NMH68TJ05ozZo1gbE//vijNm3apMzMzKjvp9YcPXpUr7/+uj788MNmx7/66itt2rRJ\nHo9HM2fO1KxZs0J6boTFRUFRUZHLyspyixcvvu3c5cuX3YwZM1x9fb27fv164L+Liorczp07nXPO\nvf32227btm3RWErAe++959avX++cc2737t2uqKgo6NgtW7a4kpIS55xzpaWl7t13343qWsJd17Rp\n05zf7292LC8vz33//ffOOeeWL1/uvvjiC9N1HTx40C1YsMA551x9fb2bPHmyq6ysdN99951bvXp1\nVNeyb98+V1hY6Jxz7ocffnD5+fmBc7HaT+2t65dffnEPP/ywa2pqcj6fz+Xk5LgTJ064c+fOuby8\nvKivJdR1Oefc7Nmz3dWrV5sdi/XjdavPP//cFRQUOOdcp+ynlt555x03Y8YMl52d3ex4Q0NDYF/X\n19e7Rx55xF2+fDmsloQiKi+VRo8erVWrVrV6rqKiQqNGjVJiYqJSU1OVlpamkydP6siRI5owYYIk\naeLEiTpw4EA0lhLQ8voHDx5sddyvv/6qTz75RAsXLpQkHTt2TPv379ecOXO0bNkyVVdXm67rypUr\nun79uvLz85Wbm6uvv/5aknT8+HGNGzcuMM/68Ro1alSzVyY+n08ej0fHjh3T8ePHNXfuXC1atEiX\nL1+O6lpGjhypY8eOBc7Faj+1t67+/ftr69atSkhIUHx8vJqampSUlKTjx4/r0qVLeuyxx/TMM8/o\n559/Nl2X3+/X+fPntWLFCs2ePVs7duy4bU4sHq+bamtrtWHDBr388suS1Cn7qaW0tDRt2LDhtuNn\nzpxRWlqaevToocTERI0ZM0aHDx8OuSWhCuvthY8//lgffPBBs2Nr1qzR9OnTdejQoVbnVFdXKzU1\nNfDnlJQUVVdXNzuekpKiqqqqcNfe5rp69+4d0vW3bdum+fPnKzExUZKUmZmp7OxsZWRk6M0339Sm\nTZtUWFhotq7GxkY9+eSTmjdvnq5du6bc3FxlZmbKOae4uLh2v57OWldSUpKSkpLU2NiopUuXKicn\nRykpKUpPT1dGRobuv/9+ffrppyouLtb69esjXpt0Y89069Yt8OeEhAQ1NTXJ4/GY7KdI1uX1etWr\nVy8557Ru3ToNHz5cgwYN0pUrV/Tss89q2rRpOnz4sJYsWaKdO3earau2tlZz587VE088IZ/Pp3nz\n5ikjIyPmj9dNO3bs0NSpUwM/rnfGfmopKytLFy9ebHW9FnsrrOhmZ2crOzs7rBt069ZNNTU1gT/X\n1NQoNTU1cDw5OVk1NTXq3r17WNdtb10LFy4M3DfY9f1+v/bv368XXnghcGzKlCmBsVOmTFFRUZHp\nuvr06aPZs2fL4/God+/eGjZsmM6ePdvs/dtYPV7Xrl3TokWLNG7cOOXl5UmSxo8fH3gvcMqUKVF5\ngrTcM36/P/BEtdhPkaxLkurr67Vs2TKlpKRo5cqVkqSMjAwlJCRIksaOHatLly41+wu0s9fVpUsX\nzZs3L/A9Gj9+vE6ePHlHPF6StGvXrmZ7pjP2U6ja21s3j3X0ser0317IzMzUkSNHVF9fr6qqKp05\nc0ZDhw7V6NGj9c0330i68aHWmDFjonrfUK5/6tQpDRo0SMnJyYFjTz31lCoqKiRJBw8e1IgRI0zX\ndeDAAS1evFjSjW/w6dOnlZ6eruHDhwd+migrK9PYsWNN11VXV6f58+dr5syZev755wPHX3nlFe3b\nt09S9B6v0aNHq6ysTNKND1hufqgixW4/tbcu55wWLFig++67T6tXrw6EduPGjYGfKk6ePKl77rkn\nqsFtb13nzp3To48+Kp/Pp8bGRpWXl2vEiBExf7wkqaqqSg0NDRowYEDgWGfsp1ANHjxY58+fV2Vl\npRoaGnT48GGNGjUq6o9V1P4vY4cOHdL27dv1xhtvSLrxY3taWpomTZqk0tJSffTRR3LOKS8vT1lZ\nWbpy5YoKCwtVU1Oju+66SyUlJeratWs0liJJ+uOPP1RYWKjffvtNXq9XJSUl6tu3r9atW6epU6cq\nMzNTe/bsUXl5eeD9JOnGe6dFRUXyer3q06ePioqKmv2IZLGuV199VUePHlV8fLyefvppTZ48WWfP\nntXy5cvV2Nio9PR0FRcXB57YFusqLy/Xxo0bNWzYsMCcm+/xLlu2TNKNV1XFxcXq169fh9Zy81Pv\nU6dOyTmnNWvWqKysLKb7qb11+f1+FRQUaOTIkYHxBQUFSk9P15IlS1RbW6uEhAStWLFCgwcPNlvX\npEmTtGXLFu3du1der1cPPfSQcnNzY/54TZo0SRUVFXrrrbe0efPmwJwLFy5EfT+15uLFiyooKFBp\naal27dql2tpa5eTkBH57wTmnmTNnas6cOUGfG5Hif+0IAIb4xxEAYIjoAoAhogsAhoguABgiugBg\niOgCgCGiCwCG/g+0XvEQjAabOwAAAABJRU5ErkJggg==\n" 65 | }, 66 | "metadata": {} 67 | } 68 | ], 69 | "source": [ 70 | "n = 30\n", 71 | "x = np.arange(n+1);\n", 72 | "z = (2*x+1)*math.pi/(2*(n+1))\n", 73 | "y = np.cos(z)\n", 74 | "ax = plt.scatter(y, np.zeros(n+1))\n", 75 | "plt.yticks([])" 76 | ] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "execution_count": null, 81 | "metadata": {}, 82 | "outputs": [], 83 | "source": [] 84 | } 85 | ], 86 | "metadata": { 87 | "language_info": { 88 | "codemirror_mode": { 89 | "name": "ipython", 90 | "version": 3 91 | }, 92 | "file_extension": ".py", 93 | "mimetype": "text/x-python", 94 | "name": "python", 95 | "nbconvert_exporter": "python", 96 | "pygments_lexer": "ipython3", 97 | "version": "3.6.8-final" 98 | }, 99 | "orig_nbformat": 2, 100 | "kernelspec": { 101 | "name": "python36864bit2eb17439148c485399fa2f77fed1b772", 102 | "display_name": "Python 3.6.8 64-bit" 103 | } 104 | }, 105 | "nbformat": 4, 106 | "nbformat_minor": 2 107 | } -------------------------------------------------------------------------------- /Labs/Lab1/~$实验报告1.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab1/~$实验报告1.docx -------------------------------------------------------------------------------- /Labs/Lab1/实验报告1.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab1/实验报告1.docx -------------------------------------------------------------------------------- /Labs/Lab1/实验报告1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab1/实验报告1.pdf -------------------------------------------------------------------------------- /Labs/Lab2/Romberg.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | #define N 20 6 | 7 | int n; 8 | long double a, b, e, T[N][N] = {{0.0}}; 9 | 10 | long double f(long double x) { return 1.0 / (1.0 + x); } 11 | long double x(int i, long double h) { return a + h * i; } 12 | 13 | int main() { 14 | scanf("%llf%llf%llf%d", &a, &b, &e, &n); 15 | int k = 0; 16 | for (; k < n; k++) { 17 | long double h = (b - a) / pow(2, k), sum = 0.0; 18 | for (int i = 1; i <= pow(2, k) - 1; i++) sum += f(x(i, h)); 19 | T[k][0] = 0.5 * h * (f(a) + 2 * sum + f(b)); 20 | for (int m = 1; m <= k; m++) 21 | T[k][m] = 22 | (pow(4, m) * T[k][m - 1] - T[k - 1][m - 1]) / (pow(4, m) - 1); 23 | for (int m = 0; m <= k; m++) printf("%.7Lf\t", T[k][m]); 24 | cout << endl; 25 | if (k > 0 && fabs(T[k][0] - T[k][k]) <= e) break; 26 | } 27 | return 0; 28 | } 29 | -------------------------------------------------------------------------------- /Labs/Lab2/实验报告2.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab2/实验报告2.docx -------------------------------------------------------------------------------- /Labs/Lab2/实验报告2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab2/实验报告2.pdf -------------------------------------------------------------------------------- /Labs/Lab3/Runge_Kutta.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | 6 | int n; 7 | double a, b, fa; 8 | 9 | double f(double x, double y) { return -y * y; } 10 | double f_(double x) { return 1.0 / (x + 1.0); } 11 | 12 | int main() { 13 | scanf("%lf%lf%lf%d", &a, &b, &fa, &n); 14 | double x = a, y = fa, h = (b - a) / n; 15 | for (int i = 1; i <= n; i++) { 16 | double k1 = h * f(x, y); 17 | double k2 = h * f(x + h / 2, y + k1 / 2); 18 | double k3 = h * f(x + h / 2, y + k2 / 2); 19 | double k4 = h * f(x + h, y + k3); 20 | x += h; 21 | y += 1.0 / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4); 22 | printf("%.2lf\t%lf\t%.2lf\n", x, y, fabs(f_(x) - y)); 23 | } 24 | return 0; 25 | } -------------------------------------------------------------------------------- /Labs/Lab3/实验报告3.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab3/实验报告3.docx -------------------------------------------------------------------------------- /Labs/Lab4/Newton.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | 6 | double x, e1, e2; 7 | int n; 8 | 9 | double f(double x) { return cos(x) - x; } 10 | double df(double x) { return -sin(x) - 1; } 11 | 12 | int main() { 13 | scanf("%lf%lf%lf%d", &x, &e1, &e2, &n); 14 | for (int i = 1; i <= n; i++) { 15 | double F = f(x), DF = df(x); 16 | if (fabs(F) < e1) { 17 | printf("%lf", x); 18 | return 0; 19 | } 20 | if (fabs(DF) < e2) { 21 | printf("Failed"); 22 | return 0; 23 | } 24 | double x1 = x - F / DF; 25 | double tol = fabs(x - x1); 26 | if (tol < e1) { 27 | printf("%lf", x1); 28 | return 0; 29 | } 30 | x = x1; 31 | printf("%lf, ", x1); 32 | } 33 | printf("Failed"); 34 | return 0; 35 | } -------------------------------------------------------------------------------- /Labs/Lab4/figure.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 7, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import math\n", 10 | "from matplotlib import pyplot as plt\n", 11 | "import seaborn as sns\n", 12 | "import numpy as np\n", 13 | "import pandas as pd\n", 14 | "%matplotlib inline\n", 15 | "sns.set_style(\"darkgrid\")" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 25, 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "output_type": "execute_result", 25 | "data": { 26 | "text/plain": "" 27 | }, 28 | "metadata": {}, 29 | "execution_count": 25 30 | }, 31 | { 32 | "output_type": "display_data", 33 | "data": { 34 | "text/plain": "
", 35 | "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", 36 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD6CAYAAABNu5eFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxVdf7H8deFyyK7IC64pSHmhrK0\nq5XmZOtYieBONU6bOjU1mWbmko5a0qLZYo0goiwtv2mxmsqUXEq5LrjvqYk7koAiyL2/PxyZyAy6\nLHd7P/+793uP5/N5HHhzPPD9fg0Wi8WCiIi4BDdbFyAiIvVHoS8i4kIU+iIiLkShLyLiQhT6IiIu\nRKEvIuJCjNYcZDabmThxIjt27MDT05MXX3yR1q1bV4xnZmaSnp6O0Wjk0Ucf5ZZbbiEvL49x48ZR\nXl6OxWJh8uTJtG3bttYaERGRqll1p//1119TWlpKRkYGTz31FNOnT68YO378OKmpqaSnp/Pee++R\nlJREaWkpr732GkOGDCE1NZWHH36YpKSkWmtCRESqx6o7fZPJRI8ePQDo1q0bmzdvrhjLzc0lKioK\nT09PPD09adWqFdu3b2fMmDH4+/sDUF5ejpeXV5XnMZvNlJdbP3fM3d1Qo+PthbP0AerFXjlLL87S\nB9SsFw8P98uOWXWnX1RUhJ+fX8Vrd3d3zp8/XzF2MdwBfH19KSoqIjg4GA8PD/bu3cuMGTN4/PHH\nrTn1H2Soh3PUB2fpA9SLvXKWXpylD6irXqy60/fz86O4uLjitdlsxmg0/uZYcXFxxQ+B77//nkmT\nJjFz5sxqPc8vL7dQUHDGmhIBCAryqdHx9sJZ+gD1Yq+cpRdn6QNq1ktoqP9lx6y604+OjiY7OxuA\nDRs2EBERUTEWGRmJyWTi3LlzFBYWsmfPHiIiIvj++++ZOnUq7777Ll26dLHmtCIiUkNW3en36dOH\nlStXkpCQgMViYdq0acyfP59WrVrRu3dvhg4dyqBBg7BYLDz55JN4eXkxbdo0ysrKePbZZwFo06YN\nkydPrtVmRETk9xnseZXNsrJyPd7BefoA9WKvnKUXZ+kD7OzxjoiIOCaFvoiIC1Hoi4i4EKcN/a92\nHGffieKqPygi4kKcMvTLzRZeXbaHu95YyfwfDnC+3GzrkkRE7IJThr67m4GUwVHcEhHK3BU/Mixt\nPVuOFNq6LBERm3PK0Ado5OfFnIFRvHRPRwrOlvHgovW8smwPZ8vKbV2aiIjNOG3oX3Rzu0ZkDI+l\nX5dmLDIdIiE5hx9+PGXrskREbMLpQx/A39vI2D7teDs+EqO7GyM/2MTEL3ZQcLbM1qWJiNQrlwj9\ni6JbBLFoWAwPXtuSL7YdY8D8HP6z/Rh2PClZRKRWuVToA3gZ3Xi0extSh0TRLNCb5z7bzt//bwtH\nTpfYujQRkTrncqF/UbtQP/41sBtP3tyWnAMFxCebyFyfh1l3/SLixFw29OHCn3YOimlBRmIskWEB\nvLR0NyPSN7L3pCZ1iYhzcunQvygs0JvX7+/MpNvbsz//DENS1zFv1X7KNKlLRJyMQv+/DAYDd3Rs\nQuYDsfRq14h3Vu9nSOo6cvNO27o0EZFao9D/lWAfT168swOv3NuJ4tJy/rJ4Ay8v3c2ZUk3qEhHH\np9C/jO5tQ8hIjCGuWxiZ6/OIT85h5b58W5clIlIjCv3f4etp5B+9w5mX0JUGHu488eFmnl+ynVNn\nSm1dmoiIVRT61dC1eSALh0bzl+ta8fWO4wxINvH5tqOa1CUiDkehX02eRjcevvEKFg6NpmWQNxOW\n7OBvH27msCZ1iYgDUej/QVc28mVeQjeevuVKNhz6mfjkHNLXHaLcrLt+EbF/Cn0ruLsZiI9uTkZi\nLFEtApn17R5GpG9gj3bqEhE7p9CvgWYB3rx6b2cm39GegwUlDEldxzurfqT0vCZ1iYh9UujXkMFg\n4PYOTchMjOHW9qHMW32AIQs1qUtE7JNCv5Y09PFkyh1X8ep9nTn7i0ldxaXnbV2aiEgFhX4tu7FN\nMOmJMQyIujCpKyHZpEldImI3FPp1wNfTyNO9wnl3YDcaeF6Y1DX+s22a1CUiNqfQr0ORYQEsHBLN\nX69vzTc7TxA3P4clWzWpS0RsR6FfxzyNboy4oTULh0bTqmEDXvh8B098pEldImIbCv168stJXet/\n0qQuEbENhX49+uWkrm7NNalLROqf1aFvNpuZMGEC8fHxDB06lP3791caz8zM5L777mPAgAF8++23\nAOTn5/Pggw8yaNAgnnjiCc6ePVuz6h1UswBvXrvvwqSuA6fOMiR1HW+v1KQuEal7Vof+119/TWlp\nKRkZGTz11FNMnz69Yuz48eOkpqaSnp7Oe++9R1JSEqWlpcydO5e77rqLRYsW0bFjRzIyMmqlCUd0\ncVJX1gOx9I5oxLvfH2Doe6vZf8PNNGocQMiVzXHbutXWZYqIkzFae6DJZKJHjx4AdOvWjc2bN1eM\n5ebmEhUVhaenJ56enrRq1Yrt27djMpl4+OGHAejZsydJSUkkJibWrIPL8Nr+Pu67sgg8b987XgUC\ns4HTYec5cKSA0gQj+4uupGXBUYLn98ISEAAdOxHo5m7rUmuFu9Hd7q9JdakX++MsfQAYYoZBq3tq\n/d+1OvSLiorw8/OreO3u7s758+cxGo0UFRXh7+9fMebr60tRUVGl9319fSksLPzdc7i7GwgK8rGq\nPoOPJwYDGI2OEZbBfu4EHd7JwaCmHPELIb9BAG3zDxFYWAjbtmLs2s3WJdYKR7omVVEv9sdZ+gDA\nzfr8+z1Wh76fnx/Fxf/7BaTZbMZoNP7mWHFxMf7+/hXve3t7U1xcTEBAwO+eo7zcQkHBGesKbHUP\nQZEJ1h9vAyFPNOeKwt3kN7+KZ/qOZnejVty7eSnjP0vHPN45HoUFBfk41DX5PerF/jhLH1CzXkJD\n/S87ZvUz/ejoaLKzswHYsGEDERERFWORkZGYTCbOnTtHYWEhe/bsISIigujoaJYvXw5AdnY2MTEx\n1p7eKZ365Css/v5EH9rOp8mjGb1yEZ926EGfoa/yxbZjmtQlIjVmsFiZJGazmYkTJ7Jz504sFgvT\npk0jOzubVq1a0bt3bzIzM8nIyMBisfDwww9z2223ceLECcaMGUNxcTENGzZk1qxZ+Phc/r8vZWXl\nNfqp7ag/9Q3HjhHwl2EYN+ey9ZrejLvrb+QePcONbYJ59tZwmgZ427pEqznqNfkt6sX+OEsfUHd3\n+laHfn1w1dD/Nf+ABrz97S7eXPEjbgYDj/doQ/9uzXAzGGxd2h/mLNcE1Is9cpY+wA4f70j9cXcz\nMCimBemJMXQJ8+elpbsZkb6RfSed44tbROqPQt+BNA9swOz7u/BC3wj2559hcKqJd1fvp6xck7pE\npHoU+g7GYDBwV6emZCTGcnN4I95etZ9hC9ez5bB26hKRqin0HVSIryfT7urAy3/uxOmSMh5cvIFX\nlu3hbJlzTEwRkbqh0HdwN4WHkJEYy72RzVhkOkRCiokf9p+ydVkiYqcU+k7Az8vIs7e24+34SIxu\nBka+v4nJX+zgdEmZrUsTETuj0Hci0S2CWDQshsRrWrJk61Hi5ufwzc7jmtQlIhUU+k7Gy+jG4z3a\nkDIkmsZ+Xjz7yTae+Xgrx4vO2bo0EbEDCn0n1b6xH/MHRzG6ZxtW/3iKuPk5fJR7WHf9Ii5Ooe/E\njG4Ghl7dksXDYriqiR/TvtrFo1m5HDzlmpvXiIhC3yW0bNiAN+MiGdenHTuOFTFwgYkFaw5yXvvz\nirgchb6LMBgM3BvZjMzEWK6/oiGzv9vHA2nr2XGsyNaliUg9Uui7mFA/L2be05Hpd3fgWNE5hi9c\nx5zv9lGiSV0iLkGh74IMBgO9I0LJTIzljo5NSFlzkMGp61j3U4GtSxOROqbQd2GBDTyY0Lc9c/p3\n4bzZwsMZuUz/ehdF587bujQRqSMKfeHa1g1JHx7DoJjmfJR7mPjkHLL3nLR1WSJSBxT6AkADD3ee\nvPlK/jWwG/7eRp76vy089+k28s+U2ro0EalFCn2ppFOzAFKHRPPXG1qzdNcJBszPYcnWo5rUJeIk\nFPpyCQ93N0Zc35q0YdG0aujDC5/v4G8fbubw6RJblyYiNaTQl8tqG+LLvISuPH3LlWw49DPxyTlk\nrj+EWXf9Ig5LoS+/y93NQHx0czISY+naPJCXlu7R/rwiDkyhL9XSLMCb1+/rzKTb22t/XhEHptCX\najMYDNzRsQmZD/xqf94jhbYuTUSqSaEvf1iwz//25/25pIwHF63n1WV7tZSDiANQ6IvVbgoPITMx\nln5dmpFm+omEFBNrD2h/XhF7ptCXGvHzMjK2TzveGhCJmwEey9rEi1/u1P68InZKoS+1Iqblhf15\nh13dkk+3HGFAsomlu07YuiwR+RWFvtQabw93RvVsw/zBUYT4eDDm462M+XgrJ4q1lIOIvVDoS63r\n0MSflMFRPNb9ClbsPcmA+Tl8svmIlnIQsQMKfakTRnc3Hri2FWnDYriykQ+Tv9zJqA82cfCUJnWJ\n2JJCX+rUFcE+vB3flWd6h7Mpr5A7Z69kkeknyrU/r4hNGK05qKSkhH/84x+cPHkSX19fZsyYQXBw\ncKXPzJkzh2XLlmE0Ghk3bhyRkZFs27aNKVOm4O7ujqenJzNmzKBRo0a10ojYLzeDgbhuYfRoG8ys\n5ft4ZdlevtpxnOf+FEF4I19blyfiUqy601+8eDEREREsWrSIfv36MXfu3ErjW7ZsYc2aNWRlZZGU\nlMSkSZMAmDp1Ks8//zypqan06dOHefPm1bwDcRhNA7x5Z0g0U+64ip8KShiauo55q7SUg0h9sir0\nTSYTPXr0AKBnz56sXr36kvHu3btjMBgICwujvLyc/Px8kpKS6NChAwDl5eV4eXnVsHxxNAaDgb4d\nGpOZGEPviEa8s3o/Q1LXsfnwaVuXJuISqny8k5WVRUpKSqX3QkJC8Pf3B8DX15fCwsprrxQVFREU\nFFTx+uJnWrduDcC6detYuHAhaWlpv3tud3cDQUE+1evkN493q9Hx9sJZ+oD/9RIU5MOcwTEs3XGM\nCR9v4cHFG0i8vjVP9G6Hj6dVTx3rnTNeF0fnLH1A3fVS5XdXXFwccXFxld4bOXIkxcXFABQXFxMQ\nEFBp3M/Pr2L84mcu/pBYsmQJb775Ju+8884lvwf4tfJyCwUF1v+1R1CQT42OtxfO0gdc2kt0Ez/S\nh8Uw57t9zF+1ny+3HOW5Pu24pnVDG1ZZPc58XRyVs/QBNeslNNT/smNWPd6Jjo5m+fLlAGRnZxMT\nE3PJ+IoVKzCbzeTl5WE2mwkODubf//43CxcuJDU1lZYtW1pzanFCfl5Gnr21HW/HR2J0M/D4+5uY\n8uUOLeUgUgcMFitmzJw9e5YxY8Zw/PhxPDw8mDVrFqGhocycOZO+ffsSGRnJ7Nmzyc7Oxmw2M3bs\nWKKiorj++utp1qxZxf8Mrr76akaPHn3Z85SVletOH+fpA6rupaSsnHe/P8DCtQcJ8vHkmd7h9Gpn\nn3/h5UrXxVE4Sx9Qd3f6VoV+fVHoX+AsfUD1e9l+tJApX+5k5/FierVrxD96h9PI17MeKqw+V7wu\n9s5Z+gA7e7wjUteu+tVSDvHJWspBpDYo9MVu/XIph7Yh/1vKIe/nEluXJuKwFPpi9369lEN8co6W\nchCxkkJfHMLFpRwyEmOIbhnIK8v2MiJ9A3tPFld9sIhUUOiLQ2ka4M2r93Zm0u3tOXDqLIMXrGPe\nai3lIFJdCn1xOAaDgTs6NiHzgVh6tWvEO6v2M3ThOrYcKaz6YBEXp9AXhxXs48nUuzowq18nCkvO\n8+Ci9by6bC8lZeW2Lk3Ebin0xeH1vDKEjMRY+nVpRprpJxJSTOQcKLB1WSJ2SaEvTsHPy8jYPu14\na0AkbgZ4NCuXqf/ZSWHJeVuXJmJXFPriVGJaBrFoWAxDY1vw8eYjxKfksHz3SVuXJWI3FPridLw9\n3Bl9U1vmD4oi0NuDp/+9hXGfbiP/TKmtSxOxOYW+OK2OTf1ZMCSKR25szbLdJxgwP4clW49qKQdx\naQp9cWoe7m48dF1rFg6NplVDH174fAdPfLSZI6e1lIO4JoW+uIS2Ib7MS+jKU7dcybqDPxOfbCJr\nQx5m3fWLi1Hoi8twdzOQEN2cjMRYuoT5M/Ob3TySsZH9+c6xFK9IdSj0xeWEBXoz+/4uTLgtgt0n\nzjBogYmUNQc5rwXcxAUo9MUlGQwG7u7clMzEGLq3DWHOd/tITFvPjqNFti5NpE4p9MWlNfLzYsY9\nHZlxdweOF51jeNo65q7Yx7nzWsBNnJNCXwToFRFK1gOx3NGxCfN/OMjgBSY2/PSzrcsSqXUKfZH/\nCvD2YELf9sy+vzOl5WZGZGxk5je7KS7VUg7iPBT6Ir9y3RXBpA+PJT4qjPc35JGQbGLVvnxblyVS\nKxT6Ir/Bx9Odp3uFMy+hK94ebvztw81M/Hw7BWfLbF2aSI0o9EV+R9fmgSwcGsOD17bki+3HiU/O\n4esdx7WUgzgshb5IFbyMbjzavQ0pg6No7OfF2E+38czHWzlWqKUcxPEo9EWqqX1jP+YPjmJ0zzas\n/vEUt7++go83HdFdvzgUhb7IH2B0MzD06pakDY2mfVN/pvxnJyPf38Shn8/aujSRalHoi1ihdbAP\nCx+4hjG9w9l8uJCEZBPp6w5RrqUcxM4p9EWs5OZmoH+3MDISY4huGcisb/cwIn0j+05qATexXwp9\nkRpqGuDNq/d2ZtLt7Tlw6gyDU0289/1+zpdrKQexPwp9kVpgMBi4o2MTMh+I5aYrG/HWyv0MS1vP\n9qOFti5NpBKFvkgtCvbx5J93d+DlP3fk1JkyEtPWMzt7HyVl5bYuTQSwMvRLSkoYNWoUgwYNYsSI\nEeTnXzpFfc6cOfTv35+EhARyc3MrjX3yySfEx8dbV7GIA7gpvBGZibHc1akpC9YeZHDqOtZrATex\nA1aF/uLFi4mIiGDRokX069ePuXPnVhrfsmULa9asISsri6SkJCZNmlQxtm3bNt5//339bbM4PX9v\nI+Nvi2BO/y6cN1v4a8ZGZny9Swu4iU1ZFfomk4kePXoA0LNnT1avXn3JePfu3TEYDISFhVFeXk5+\nfj6nTp3i5ZdfZty4cTWvXMRBXNu6IenDYxgY3ZwPNh4mPtnESi3gJjZirOoDWVlZpKSkVHovJCQE\nf39/AHx9fSksrPzLqqKiIoKCgipe+/r6UlBQUBH4Xl5e1SrO3d1AUJBPtT7728e71eh4e+EsfYDr\n9hIETL63C/fGtmTsR5t44sPN9Osaxrg7rqKhj2fdFloNznJdnKUPqLteqgz9uLg44uLiKr03cuRI\niouLASguLiYgIKDSuJ+fX8X4xc8UFRWxf/9+Jk6cyLlz59i9ezdTp07lueeeu+y5y8stFBRY/zfP\nQUE+NTreXjhLH6Be2vh7smBQFP/64QDJaw6Sves4z/QOp1e7RhgMhjqqtGrOcl2cpQ+oWS+hof6X\nHbPq8U50dDTLly8HIDs7m5iYmEvGV6xYgdlsJi8vD7PZTGRkJJ999hmpqakkJSURHh7+u4Ev4qw8\njW48cuMVLBgcRRN/L5795MICbieKztm6NHEBVoX+wIED2bVrFwMHDiQjI4ORI0cCMHPmTHJzc+nc\nuTOxsbHEx8czatQoJkyYUKtFiziDiMZ+/GtQFKN6XFjAbUCyiY83awE3qVsGix1/hZWVlevxDs7T\nB6iXy9mff4ap/9nJ+kOnubZ1EOP6RBAW6F0r/3Z1OMt1cZY+wM4e74hI7Wod7MNb8V15pnc4m/IK\nSUjJIWPdIcz2e08mDkqhL2In3AwG4v67gFu35oG8/O0e/pq+kR+1gJvUIoW+iJ1pGuDNa/ddWMDt\nx/wLC7jN/+GAFnCTWqHQF7FDFxdwy0iMpceVIcxd8SOJizaw42iRrUsTB6fQF7FjIb6eTL+7IzPu\n6cjxonMMT1vH3BX7OHded/1iHYW+iAPo1e7CAm63d2zC/B8OMiTVxMZDWsBN/jiFvoiDCGzgwQt9\n2/P6/Z0pKTMzIn0jLy/dzZlSLdss1afQF3Ew118RTEZi7IW/9Fmfx8CUHH7Yf8rWZYmDUOiLOCAf\nT3f+0TucefFdMbq7MfL9TUz5cgeFJVq2WX6fQl/EgXVrEciiYTEMv6Yln205yoDkHJbvPmHrssSO\nKfRFHJyX0Y2RPdowf3AUDX08ePrfWxn36TZOnSm1dWlihxT6Ik6iQxN/FgyO4pEbW7Ns9wni5ufw\nxbZjWsBNKlHoizgRo7sbD13XmoVDo2nZsAHPL9nO3/9vC0cLtWyzXKDQF3FCbUN8eTehG0/e3Ja1\nBwqIT87hw9zDWsBNFPoizsrdzcCgmBakD4+hQxM//vnVLh7LyuWngrO2Lk1sSKEv4uRaBDVgblwk\n4/q0Y/vRIhJSTKTl/ES5WXf9rkihL+ICDAYD90Y2IyMxlqtbBfHq8r38JX0De04UV32wOBWFvogL\naeLvRVK/Tky54yoOnjrLkNR1vLt6P6VawM1lKPRFXIzBYKBvh8ZkPhDLLe0a8faq/dz/1mq2HS20\ndWlSDxT6Ii4q2MeTaXd14OU/dyT/TCkPpK1ndraWbXZ2Cn0RF3dTeCM+H9Wduzo1ZcHagwxaYGLD\nT1q22Vkp9EWEgAYejL8tgjn9u3C+3MxfMzby0jdattkZKfRFpMK1rRuyeHgsA6LCyNqQR0JKDj/8\nqGWbnYlCX0Qq8fF05+le4cxL6IqnuxsjP9jE5C92cLqkzNalSS1Q6IvIb+raPJC0/y7bvGTrUeKT\nTVq22Qko9EXksrRss/NR6ItIlTo08SdFyzY7BYW+iFSLx2WWbT6mZZsdikJfRP6Qi8s2P3HThWWb\nByTn8H+5h3XX7yAU+iLyh7m7GRgce2HZ5qua+DH1q108/v4mDv2sZZvtnUJfRKx2cdnmZ28NZ+uR\nQhKSTaSvO6TNWuyYVaFfUlLCqFGjGDRoECNGjCA/P/+Sz8yZM4f+/fuTkJBAbm4uACdPnuTRRx9l\n8ODBJCQkcODAgZpVLyI252YwcH/XMNKHxxDdMpBZ3+5hRPpGfjx5xtalyW+wKvQXL15MREQEixYt\nol+/fsydO7fS+JYtW1izZg1ZWVkkJSUxadIkAF566SXuvvtu0tLSeOKJJ9i7d2/NOxARu9A0wJtX\n7+3MxL7t+TH/DINTTST/cIDz2qzFrlgV+iaTiR49egDQs2dPVq9efcl49+7dMRgMhIWFUV5eTn5+\nPuvWrePo0aMkJibyySefcM0119S8AxGxGwaDgTs7NSEjMZbubUN4Y8WPPJC2np3HimxdmvyXsaoP\nZGVlkZKSUum9kJAQ/P39AfD19aWwsPI63EVFRQQFBVW8vviZQ4cOERAQQHJyMnPmzGHevHn87W9/\nu+y53d0NBAX5/KGGKh/vVqPj7YWz9AHqxV7Vdi9BQT68PSyWzzcfYdKnWxmetp6He7bl0ZuuxMtY\nd79K1DWpWpWhHxcXR1xcXKX3Ro4cSXHxhW3WiouLCQgIqDTu5+dXMX7xM/7+/gQFBdGrVy8AevXq\nxSuvvPK75y4vt1BQYP1zwaAgnxodby+cpQ9QL/aqrnq5vkUA6cNjeHXZHt5Ytoclmw4z4bYIOjcL\nqPpgK+iaXBAa6n/ZMat+5EZHR7N8+XIAsrOziYmJuWR8xYoVmM1m8vLyMJvNBAcHExMTU3Hc2rVr\nCQ8Pt+b0IuJAghp4MPH2q3j13s4UnzvPQ4s38OqyvZSUadlmWzBYrJhRcfbsWcaMGcPx48fx8PBg\n1qxZhIaGMnPmTPr27UtkZCSzZ88mOzsbs9nM2LFjiY2N5dChQ4wfP56zZ8/i5+fHrFmzCAwMvOx5\nysrKdaeP8/QB6sVe1VcvRefOMzt7Hx/mHqZlkDfP/SmCmJZBVR9YTbomF/zenb5VoV9fFPoXOEsf\noF7sVX33knOggBf/s5NDP5fQv2szRvZsg69nlU+bq6RrckGtP94REamJ2FZBLB4ew6CY5nyw8TAJ\nySZW/3jpfB+pfQp9EbGJBh7uPHnzlbw7sBsNPNwZ/cFmJn6xg5/ParOWuqTQFxGbigwLIHVoNA9e\n25Ivth4lPsXEt7u0WUtdUeiLiM15Gd14tHsbUgZHE+LjwTMfb2XsJ9vI12YttU6hLyJ2o30TP1IG\nR/HojVewfM8JBszP4fNtR7Vscy1S6IuIXTG6u/Hgda0qNmuZsGSHNmupRQp9EbFL2qylbij0RcRu\nXdysZfGwGNo3vrBZy0ht1lIjCn0RsXstGzbgzQEXNmvZcqSQgSkmMrRZi1UU+iLiEH65WUu35oG8\n/O0eHs7YyP5855iBW18U+iLiUJoGePPafZ15oW8Ee06cYdACEylrDmqzlmpS6IuIwzEYDNzVqSmZ\niTHc0CaYOd/t48FF69lxpLDqg12cQl9EHFYjPy9m3tORqXdexZHT57j3rVXMW7WfsnKzrUuzWwp9\nEXFoBoOBP13VmMzEWPp2aso7q/czbOF6tuqu/zcp9EXEKQT5eJAU15VZ/Trxc0kZDyxaz+zsfdqs\n5VcU+iLiVHpeGULG8Fju7tSUBWsPMiR1HRsP/WzrsuyGQl9EnI6/t5Hxt0Uw+/7OlJabGZG+kZeX\n7uas7voV+iLivK67IpjFw2Po3y2MjPV5JKSYWHvglK3LsimFvog4NV9PI8/0Dued+K4Y3Qw8lrWJ\naV/tpOjceVuXZhMKfRFxCVEtAkkbGs3Q2Bb8e9MR4pNzWLnX9bZoVOiLiMvw9nBn9E1t+dfAbvh5\nGXnio8288Pl2l9qiUaEvIi6nU7MAUodE89B1rfhy+3EGJOew1EW2aFToi4hL8jS68ciNV5AyOIpQ\nPy/GfLyVsZ9s5WSxc2/RqNAXEZfWvrEfyYO68Vj3K1i+5yTxyTl8se2Y027WotAXEZdndHfjgWv/\nt0Xj80u285STbtGo0BcR+a9fbtG45kAB8Sk5fLzpiFPd9Sv0RUR+4eIWjYuGxdAu1I8p/9nJqA82\ncfh0ia1LqxUKfRGR39CqYQPeGhDJM73D2ZRXSEKyiawNeQ6/RaNCX0TkMtwMBuK6hZGeGENkWAAz\nv9nNI5m5HDzluBuzK/RFRP7JvBkAAAnQSURBVKrQLMCb1+/vzPN/imDX8SIGpuTwwWMTCLqyOYH3\n9MVw7JitS6w2hb6ISDUYDAbu6dKUjOGx3HBsJ9OvvJUBf36B/XvzCPjLMFuXV21WhX5JSQmjRo1i\n0KBBjBgxgvz8S9evmDNnDv379ychIYHc3FwAtm3bxoABAxg4cCBjx47FbNaWZiLiWBr7e/Fu+vO8\n9vFL7AsO486hr/COZxvOO8gWjVaF/uLFi4mIiGDRokX069ePuXPnVhrfsmULa9asISsri6SkJCZN\nmgRc+EHw+OOPs3jxYkpLS1m2bFmNGxARqW/lnSO5Z9dKvnr3MXrvWcPL1w/kgUUb2HmsyNalVcmq\n0DeZTPTo0QOAnj17snr16kvGu3fvjsFgICwsjPLycvLz8+nQoQMFBQVYLBaKi4sxGo0170BEpJ6d\nfncBZbHXEOJ2nteOLGdGzzCOFZ1jWNp63lr5o11vzF5l6mZlZZGSklLpvZCQEPz9/QHw9fWlsLDy\nBsRFRUUEBQVVvL74mSuuuILJkyfz5ptv4u/vz7XXXvu753Z3NxAU5FPtZi493q1Gx9sLZ+kD1Iu9\ncpZe6q2PoCsgO5tywADcB9xyYylTl2znve8P8N3efP55bxciWwRafYq66qXK0I+LiyMuLq7SeyNH\njqS4uBiA4uJiAgICKo37+flVjF/8jL+/P1OnTiUtLY127dqRlpbG9OnTeeGFFy577vJyCwUFZ/5Q\nQ78UFORTo+PthbP0AerFXjlLL7bswwCMvzWcm9s25J9f7SLundUMiW3BiOtb4+3h/of/vZr0Ehrq\nf9kxqx7vREdHs3z5cgCys7OJiYm5ZHzFihWYzWby8vIwm80EBwcTGBiIn58fAI0bN+b06dPWnF5E\nxG51bxtCRmIs93RuyoK1PzHYzjZmN1isWFTi7NmzjBkzhuPHj+Ph4cGsWbMIDQ1l5syZ9O3bl8jI\nSGbPnk12djZms5mxY8cSGxtLTk4OL7/8MkajEQ8PD6ZMmUKLFi0ue56ysnLd6eM8fYB6sVfO0ou9\n9fHD/lNM+89ODp8+x4CoMB7v0YYG1bzrr6s7fatCv74o9C9wlj5AvdgrZ+nFHvs4U1rOG9/tI3ND\nHs0DvRn/pwhiWwVVeZxdPd4REZHq8fF05x//3ZjdzQCPZuUy/etdNtuYXaEvIlIPoloEsmhYDINj\nWvBR7mESUkys2lf/G7Mr9EVE6om3hztP3NyWdxO64ePhzt8+3MykL3ZwuqT+NmZX6IuI1LMuYQEs\nHBrNA9e25POtR4lPNrF898l6ObdCX0TEBjyNbjzWvQ3Jg6No6OPB0//ewvjPtlFwpm7v+hX6IiI2\ndFUTf1IGR/HXG1rzzc4TDEjO4esdx+tsi0aFvoiIjXm4uzHi+takDommaYAXYz/dxmtLd9fJubTi\nmYiInQgP9eVfg6L4cGMerRpf/m/ta0KhLyJiR4xuBgZENa+ziWZ6vCMi4kIU+iIiLkShLyLiQhT6\nIiIuRKEvIuJCFPoiIi5EoS8i4kIU+iIiLsSud84SEZHapTt9EREXotAXEXEhCn0RERei0BcRcSEK\nfRERF6LQFxFxIQp9EREX4pCbqJjNZiZOnMiOHTvw9PTkxRdfpHXr1gBs27aNadOmVXx2w4YNvPHG\nG3To0IGnn36asrIyQkNDmT59Og0aNLBVCxWs6aVnz54ArF27lqeffprly5fbpPZfs6aXyMhIbrvt\nNiIiIgC49dZbGT58uE3q/yVreomNjWXixIn89NNPlJWV8fzzzxMZGWmrFgDr+vjuu+/Yvn07AMeP\nHycgIIDMzEyb1P9L1vQSHh7OM888g8ViITAwkFmzZjns932bNm149tlnsVgshIWFMWXKFOt6sTig\nL7/80jJmzBiLxWKxrF+/3vLII4/85ueWLFli+fvf/26xWCyWF1980fLRRx9ZLBaL5fXXX7fMnz+/\nXmqtijW9WCwWS15enuWRRx6x3HDDDfVSZ3VY08vKlSstkydPrrcaq8uaXl5//XXLO++8Y7FYLJZt\n27ZVfL3ZkrVfXxaLxVJaWmrp37+/Zfv27XVeZ3VY08vUqVMtCxcutFgsFktSUpJlwYIF9VNsFazp\nZdSoUZaPP/7YYrFYLJmZmZY33njDqnM75OMdk8lEjx49AOjWrRubN2++5DNnzpxh9uzZPPfccwCM\nGzeOe+65B7PZzOHDhwkJCanXmi/Hml7OnTvHCy+8wMSJE+uz1CpZ08vmzZvZsmULQ4YMYfTo0Rw7\ndqxea74ca3pZsWIFHh4ePPTQQ8ydO7fieFuypo+LFi5cyI033kj79u3rpdaqWNNLhw4dOH36NABF\nRUUYjfbxcMOaXnbv3l3xv/zo6GhMJpNV53bI0C8qKsLPz6/itbu7O+fPn6/0mffff5++ffsSHBwM\ngMFgoLy8nLvuuosffviB6Ojoeq35cqzpZfLkyTz44IM0adKkXmutijW9tG3bltGjR7Nw4UJuvfVW\nXnzxxXqt+XKs6eXUqVOcPn2a9957j169ejFjxox6rfm3WNMHQGlpKenp6Tz00EP1VmtVrOmladOm\npKWlceedd5KdnU3fvn3rtebLsaaXDh06sHTpUgC++eYbzp49a9W5HTL0/fz8KC4urnhtNpsv+Qn+\nySefEBcXV+k9Dw8PlixZwpQpUxgzZky91FqVP9rL0aNHycnJ4Y033mDo0KH8/PPPPPnkk/Va8+VY\nc12uu+46rr32WgD69OnD1q1b66fYKljTS1BQEL169QLglltu+c27t/pm7ffK6tWrufrqq/H396+X\nOqvDml5mzpzJP//5Tz777DOee+45h/2+BxgzZgxLly7loYcews3NjYYNG1p1bocM/ejoaLKzs4EL\nv+S4+EvAiwoLCyktLaVZs2YV702cOJHvv/8eAF9fXwwGQ/0V/Dv+aC9NmjThyy+/JDU1ldTUVAID\nA3nllVfqve7fYs11GT9+PF9++SVwIWg6depUfwX/Dmt6iYmJqfil+tq1awkPD6+/gi/Dmj4AVq1a\nVfEowV5Y00tAQEDFD67GjRtXPOqxNWt6WbVqFY8//jjvvfcebm5u3HDDDVad2z4ecP1Bffr0YeXK\nlSQkJGCxWJg2bRrz58+nVatW9O7dm3379tG8efNKxwwdOpSJEyfyxhtv4ObmZjfPw63pxV5Z08tT\nTz3FuHHjWLx4MQ0aNLCbxzvW9PLwww8zfvx44uPjMRqNdvF4x9qvr3379tGvXz8bVHx51vTy/PPP\nM3nyZMxmMxaLhQkTJtio+sqs6aVNmzaMGzcOT09P2rVrZ3UvWlpZRMSFOOTjHRERsY5CX0TEhSj0\nRURciEJfRMSFKPRFRFyIQl9ExIUo9EVEXMj/A/H6cQF2vyTVAAAAAElFTkSuQmCC\n" 37 | }, 38 | "metadata": {} 39 | } 40 | ], 41 | "source": [ 42 | "x = np.linspace(0.73, 0.79, 100)\n", 43 | "plt.plot(x, np.cos(x) - x)\n", 44 | "plt.plot(x, np.zeros(x.shape))\n", 45 | "a = np.array([0.785398163, 0.739536, 0.739085, 0.739085])\n", 46 | "plt.scatter(a, np.cos(a) - a, s=15, c=\"red\")" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [] 55 | } 56 | ], 57 | "metadata": { 58 | "language_info": { 59 | "codemirror_mode": { 60 | "name": "ipython", 61 | "version": 3 62 | }, 63 | "file_extension": ".py", 64 | "mimetype": "text/x-python", 65 | "name": "python", 66 | "nbconvert_exporter": "python", 67 | "pygments_lexer": "ipython3", 68 | "version": "3.6.8-final" 69 | }, 70 | "orig_nbformat": 2, 71 | "kernelspec": { 72 | "name": "python36864bit2eb17439148c485399fa2f77fed1b772", 73 | "display_name": "Python 3.6.8 64-bit" 74 | } 75 | }, 76 | "nbformat": 4, 77 | "nbformat_minor": 2 78 | } -------------------------------------------------------------------------------- /Labs/Lab4/实验报告4.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab4/实验报告4.docx -------------------------------------------------------------------------------- /Labs/Lab5/Gauss_1.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | #define N 10 6 | 7 | int n; 8 | double a[N][N], b[N], x[N]; 9 | 10 | int main() { 11 | scanf("%d", &n); 12 | for (int i = 1; i <= n; i++) 13 | for (int j = 1; j <= n; j++) scanf("%lf", &a[i][j]); 14 | for (int i = 1; i <= n; i++) scanf("%lf", &b[i]); 15 | for (int k = 1; k < n; k++) { 16 | int p = k; 17 | double maxabs = fabs(a[k][k]); 18 | for (int j = k + 1; j <= n; j++) 19 | if (fabs(a[j][k]) - maxabs > 0) { 20 | p = j; 21 | maxabs = fabs(a[j][k]); 22 | } 23 | if (a[p][k] == 0) { 24 | printf("Singular"); 25 | return 0; 26 | } 27 | if (p != k) { 28 | double tmp; 29 | for (int j = 1; j <= n; j++) { 30 | tmp = a[p][j]; 31 | a[p][j] = a[k][j]; 32 | a[k][j] = tmp; 33 | } 34 | tmp = b[p]; 35 | b[p] = b[k]; 36 | b[k] = tmp; 37 | } 38 | for (int i = k + 1; i <= n; i++) { 39 | double m_ik = a[i][k] / a[k][k]; 40 | for (int j = k + 1; j <= n; j++) a[i][j] -= a[k][j] * m_ik; 41 | b[i] -= b[k] * m_ik; 42 | } 43 | } 44 | if (a[n][n] == 0) { 45 | printf("Singular"); 46 | return 0; 47 | } 48 | x[n] = b[n] / a[n][n]; 49 | for (int k = n - 1; k >= 1; k--) { 50 | double sigma = 0.0; 51 | for (int j = k + 1; j <= n; j++) sigma += a[k][j] * x[j]; 52 | x[k] = (b[k] - sigma) / a[k][k]; 53 | } 54 | for (int i = 1; i <= n; i++) printf("%lf\t", x[i]); 55 | return 0; 56 | } -------------------------------------------------------------------------------- /Labs/Lab5/Gauss_2.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | 6 | #define N 4 7 | 8 | int main() { 9 | static double a[N][N] = {{0.4096, 0.1234, 0.3678, 0.2943}, 10 | {0.2246, 0.3872, 0.4015, 0.1129}, 11 | {0.3645, 0.1920, 0.3781, 0.0643}, 12 | {0.1784, 0.4002, 0.2786, 0.3927}}; 13 | double b[N] = {1.2951, 1.1262, 0.9989, 1.2499}; 14 | double x[N] = {0, 0, 0}; 15 | double r, s, e; 16 | int k, i, j, p, flag = 1; 17 | 18 | for (k = 0; k < N - 1; k++) { 19 | p = k; 20 | e = a[k][k]; 21 | for (i = k; i < N; i++) 22 | if (fabs(a[i][k]) > e) { 23 | e = fabs(a[i][k]); 24 | p = i; 25 | } 26 | for (j = k; j < N; j++) { 27 | s = a[k][j]; 28 | a[k][j] = a[p][j]; 29 | a[p][j] = s; 30 | } 31 | s = b[k]; 32 | b[k] = b[p]; 33 | b[p] = s; 34 | if (a[k][k] == 0) { 35 | printf("Gauss-Method does not run!"); 36 | flag = 0; 37 | break; 38 | } else { 39 | for (i = k + 1; i < N; i++) { 40 | r = a[i][k] / a[k][k]; 41 | if (a[k][k] != 0) { 42 | for (j = k; j < N; j++) a[i][j] = a[i][j] - r * a[k][j]; 43 | } 44 | b[i] -= r * b[k]; 45 | } 46 | } 47 | } 48 | 49 | if (flag) { 50 | x[N - 1] = b[N - 1] / a[N - 1][N - 1]; 51 | for (i = N - 2; i >= 0; i--) { 52 | s = b[i]; 53 | for (j = i + 1; j < N; j++) s -= a[i][j] * x[j]; 54 | x[i] = s / a[i][i]; 55 | } 56 | for (i = 0; i < N; i++) printf("%lf, ", x[i]); 57 | } 58 | return 0; 59 | } -------------------------------------------------------------------------------- /Labs/Lab5/实验报告5.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/Lab5/实验报告5.docx -------------------------------------------------------------------------------- /Labs/流程图/分段线性插值流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/分段线性插值流程图.jpg -------------------------------------------------------------------------------- /Labs/流程图/四阶龙格-库塔流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/四阶龙格-库塔流程图.jpg -------------------------------------------------------------------------------- /Labs/流程图/多项式最小二乘法流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/多项式最小二乘法流程图.jpg -------------------------------------------------------------------------------- /Labs/流程图/拉格朗日插值法流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/拉格朗日插值法流程图.jpg -------------------------------------------------------------------------------- /Labs/流程图/牛顿迭代法流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/牛顿迭代法流程图.jpg -------------------------------------------------------------------------------- /Labs/流程图/高斯列主消去法流程图.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/流程图/高斯列主消去法流程图.jpg -------------------------------------------------------------------------------- /Labs/计算方法实验报告1183710109郭茁宁.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Labs/计算方法实验报告1183710109郭茁宁.docx -------------------------------------------------------------------------------- /Notes/第1章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第1章.pdf -------------------------------------------------------------------------------- /Notes/第2章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第2章.pdf -------------------------------------------------------------------------------- /Notes/第3章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第3章.pdf -------------------------------------------------------------------------------- /Notes/第4章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第4章.pdf -------------------------------------------------------------------------------- /Notes/第5章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第5章.pdf -------------------------------------------------------------------------------- /Notes/第6章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第6章.pdf -------------------------------------------------------------------------------- /Notes/第7章.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/Notes/第7章.pdf -------------------------------------------------------------------------------- /PPTs/插值与逼近.ppt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/插值与逼近.ppt -------------------------------------------------------------------------------- /PPTs/数值分析原理-第三章正文.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/数值分析原理-第三章正文.pdf -------------------------------------------------------------------------------- /PPTs/数值分析原理-第四章正文-2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/数值分析原理-第四章正文-2.pdf -------------------------------------------------------------------------------- /PPTs/数值分析原理第六章-正文-3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/数值分析原理第六章-正文-3.pdf -------------------------------------------------------------------------------- /PPTs/第三章---2(网课).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/第三章---2(网课).pdf -------------------------------------------------------------------------------- /PPTs/第四章-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/第四章-1.pdf -------------------------------------------------------------------------------- /PPTs/线性方程组的数值解法.ppt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/线性方程组的数值解法.ppt -------------------------------------------------------------------------------- /PPTs/绪论.ppt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/绪论.ppt -------------------------------------------------------------------------------- /PPTs/非线性方程数值解法.ppt: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/PPTs/非线性方程数值解法.ppt -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文.docx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/大作业/1183710109+郭茁宁_课程论文.docx -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/1183710109+郭茁宁_课程论文.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/大作业/1183710109+郭茁宁_课程论文/1183710109+郭茁宁_课程论文.pdf -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Gauss_1.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | #define N 10 6 | 7 | int n; 8 | double a[N][N], b[N], x[N]; 9 | 10 | int main() { 11 | scanf("%d", &n); 12 | for (int i = 1; i <= n; i++) 13 | for (int j = 1; j <= n; j++) scanf("%lf", &a[i][j]); 14 | for (int i = 1; i <= n; i++) scanf("%lf", &b[i]); 15 | for (int k = 1; k < n; k++) { 16 | int p = k; 17 | double maxabs = fabs(a[k][k]); 18 | for (int j = k + 1; j <= n; j++) 19 | if (fabs(a[j][k]) - maxabs > 0) { 20 | p = j; 21 | maxabs = fabs(a[j][k]); 22 | } 23 | if (a[p][k] == 0) { 24 | printf("Singular"); 25 | return 0; 26 | } 27 | if (p != k) { 28 | double tmp; 29 | for (int j = 1; j <= n; j++) { 30 | tmp = a[p][j]; 31 | a[p][j] = a[k][j]; 32 | a[k][j] = tmp; 33 | } 34 | tmp = b[p]; 35 | b[p] = b[k]; 36 | b[k] = tmp; 37 | } 38 | for (int i = k + 1; i <= n; i++) { 39 | double m_ik = a[i][k] / a[k][k]; 40 | for (int j = k + 1; j <= n; j++) a[i][j] -= a[k][j] * m_ik; 41 | b[i] -= b[k] * m_ik; 42 | } 43 | } 44 | if (a[n][n] == 0) { 45 | printf("Singular"); 46 | return 0; 47 | } 48 | x[n] = b[n] / a[n][n]; 49 | for (int k = n - 1; k >= 1; k--) { 50 | double sigma = 0.0; 51 | for (int j = k + 1; j <= n; j++) sigma += a[k][j] * x[j]; 52 | x[k] = (b[k] - sigma) / a[k][k]; 53 | } 54 | for (int i = 1; i <= n; i++) printf("%lf\t", x[i]); 55 | return 0; 56 | } -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Gauss_2.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | #include 5 | 6 | #define N 4 7 | 8 | int main() { 9 | static double a[N][N] = {{0.4096, 0.1234, 0.3678, 0.2943}, 10 | {0.2246, 0.3872, 0.4015, 0.1129}, 11 | {0.3645, 0.1920, 0.3781, 0.0643}, 12 | {0.1784, 0.4002, 0.2786, 0.3927}}; 13 | double b[N] = {1.2951, 1.1262, 0.9989, 1.2499}; 14 | double x[N] = {0, 0, 0}; 15 | double r, s, e; 16 | int k, i, j, p, flag = 1; 17 | 18 | for (k = 0; k < N - 1; k++) { 19 | p = k; 20 | e = a[k][k]; 21 | for (i = k; i < N; i++) 22 | if (fabs(a[i][k]) > e) { 23 | e = fabs(a[i][k]); 24 | p = i; 25 | } 26 | for (j = k; j < N; j++) { 27 | s = a[k][j]; 28 | a[k][j] = a[p][j]; 29 | a[p][j] = s; 30 | } 31 | s = b[k]; 32 | b[k] = b[p]; 33 | b[p] = s; 34 | if (a[k][k] == 0) { 35 | printf("Gauss-Method does not run!"); 36 | flag = 0; 37 | break; 38 | } else { 39 | for (i = k + 1; i < N; i++) { 40 | r = a[i][k] / a[k][k]; 41 | if (a[k][k] != 0) { 42 | for (j = k; j < N; j++) a[i][j] = a[i][j] - r * a[k][j]; 43 | } 44 | b[i] -= r * b[k]; 45 | } 46 | } 47 | } 48 | 49 | if (flag) { 50 | x[N - 1] = b[N - 1] / a[N - 1][N - 1]; 51 | for (i = N - 2; i >= 0; i--) { 52 | s = b[i]; 53 | for (j = i + 1; j < N; j++) s -= a[i][j] * x[j]; 54 | x[i] = s / a[i][i]; 55 | } 56 | for (i = 0; i < N; i++) printf("%lf, ", x[i]); 57 | } 58 | return 0; 59 | } -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Lagrange.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #define N1 1 // n amount 4 | #define N2 4 // x amount 5 | #define N3 20 // n max 6 | 7 | int Ns[N1] = {3}; 8 | double x[N2] = {5, 50, 115, 185}; 9 | double l = -1.0; 10 | double r = 1.0; 11 | 12 | double X(int k, int n) { return (k + 13) * (k + 13); } 13 | 14 | double Y(double x) { return sqrt(x); } 15 | 16 | int main() { 17 | for (int i = 0; i < N2; i++) printf("\tx=%.2lf", x[i]); 18 | printf("\n"); 19 | for (int i = 0; i < N1; i++) { 20 | double a[N3 + 1], b[N3 + 1]; 21 | int n = Ns[i]; 22 | for (int k = 0; k <= n; k++) { 23 | a[k] = X(k, n); // x 24 | b[k] = Y(a[k]); // y 25 | } 26 | printf("n=%d", n); 27 | for (int p = 0; p < N2; p++) { 28 | double y = 0.0; 29 | for (int k = 0; k <= n; k++) { 30 | double l = 1.0; 31 | for (int j = 0; j <= n; j++) { 32 | if (j != k) l *= (x[p] - a[j]) / (a[k] - a[j]); 33 | } 34 | y += l * b[k]; 35 | } 36 | printf("\t%.6lf", y); 37 | } 38 | printf("\n"); 39 | } 40 | printf("Actual"); 41 | for (int p = 0; p < N2; p++) printf("\t%.6lf", Y(x[p])); 42 | return 0; 43 | } -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Newton.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | 6 | double x, e1, e2; 7 | int n; 8 | 9 | double f(double x) { return cos(x) - x; } 10 | double df(double x) { return -sin(x) - 1; } 11 | 12 | int main() { 13 | scanf("%lf%lf%lf%d", &x, &e1, &e2, &n); 14 | for (int i = 1; i <= n; i++) { 15 | double F = f(x), DF = df(x); 16 | if (fabs(F) < e1) { 17 | printf("%lf", x); 18 | return 0; 19 | } 20 | if (fabs(DF) < e2) { 21 | printf("Failed"); 22 | return 0; 23 | } 24 | double x1 = x - F / DF; 25 | double tol = fabs(x - x1); 26 | if (tol < e1) { 27 | printf("%lf", x1); 28 | return 0; 29 | } 30 | x = x1; 31 | printf("%lf, ", x1); 32 | } 33 | printf("Failed"); 34 | return 0; 35 | } -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Romberg.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | #define N 20 6 | 7 | int n; 8 | long double a, b, e, T[N][N] = {{0.0}}; 9 | 10 | long double f(long double x) { return 1.0 / (1.0 + x); } 11 | long double x(int i, long double h) { return a + h * i; } 12 | 13 | int main() { 14 | scanf("%llf%llf%llf%d", &a, &b, &e, &n); 15 | int k = 0; 16 | for (; k < n; k++) { 17 | long double h = (b - a) / pow(2, k), sum = 0.0; 18 | for (int i = 1; i <= pow(2, k) - 1; i++) sum += f(x(i, h)); 19 | T[k][0] = 0.5 * h * (f(a) + 2 * sum + f(b)); 20 | for (int m = 1; m <= k; m++) 21 | T[k][m] = 22 | (pow(4, m) * T[k][m - 1] - T[k - 1][m - 1]) / (pow(4, m) - 1); 23 | for (int m = 0; m <= k; m++) printf("%.7Lf\t", T[k][m]); 24 | cout << endl; 25 | if (k > 0 && fabs(T[k][0] - T[k][k]) <= e) break; 26 | } 27 | return 0; 28 | } 29 | -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/Runge_Kutta.cpp: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | #include 4 | using namespace std; 5 | 6 | int n; 7 | double a, b, fa; 8 | 9 | double f(double x, double y) { return -y * y; } 10 | double f_(double x) { return 1.0 / (x + 1.0); } 11 | 12 | int main() { 13 | scanf("%lf%lf%lf%d", &a, &b, &fa, &n); 14 | double x = a, y = fa, h = (b - a) / n; 15 | for (int i = 1; i <= n; i++) { 16 | double k1 = h * f(x, y); 17 | double k2 = h * f(x + h / 2, y + k1 / 2); 18 | double k3 = h * f(x + h / 2, y + k2 / 2); 19 | double k4 = h * f(x + h, y + k3); 20 | x += h; 21 | y += 1.0 / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4); 22 | printf("%.2lf\t%lf\t%.2lf\n", x, y, fabs(f_(x) - y)); 23 | } 24 | return 0; 25 | } -------------------------------------------------------------------------------- /大作业/1183710109+郭茁宁_课程论文/figure_2.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 7, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import math\n", 10 | "from matplotlib import pyplot as plt\n", 11 | "import seaborn as sns\n", 12 | "import numpy as np\n", 13 | "import pandas as pd\n", 14 | "%matplotlib inline\n", 15 | "sns.set_style(\"darkgrid\")" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 25, 21 | "metadata": {}, 22 | "outputs": [ 23 | { 24 | "output_type": "execute_result", 25 | "data": { 26 | "text/plain": "" 27 | }, 28 | "metadata": {}, 29 | "execution_count": 25 30 | }, 31 | { 32 | "output_type": "display_data", 33 | "data": { 34 | "text/plain": "
", 35 | "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", 36 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD6CAYAAABNu5eFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0\ndHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deVxVdf7H8deFyyK7IC64pSHmhrK0\nq5XmZOtYieBONU6bOjU1mWbmko5a0qLZYo0goiwtv2mxmsqUXEq5LrjvqYk7koAiyL2/PxyZyAy6\nLHd7P/+793uP5/N5HHhzPPD9fg0Wi8WCiIi4BDdbFyAiIvVHoS8i4kIU+iIiLkShLyLiQhT6IiIu\nRKEvIuJCjNYcZDabmThxIjt27MDT05MXX3yR1q1bV4xnZmaSnp6O0Wjk0Ucf5ZZbbiEvL49x48ZR\nXl6OxWJh8uTJtG3bttYaERGRqll1p//1119TWlpKRkYGTz31FNOnT68YO378OKmpqaSnp/Pee++R\nlJREaWkpr732GkOGDCE1NZWHH36YpKSkWmtCRESqx6o7fZPJRI8ePQDo1q0bmzdvrhjLzc0lKioK\nT09PPD09adWqFdu3b2fMmDH4+/sDUF5ejpeXV5XnMZvNlJdbP3fM3d1Qo+PthbP0AerFXjlLL87S\nB9SsFw8P98uOWXWnX1RUhJ+fX8Vrd3d3zp8/XzF2MdwBfH19KSoqIjg4GA8PD/bu3cuMGTN4/PHH\nrTn1H2Soh3PUB2fpA9SLvXKWXpylD6irXqy60/fz86O4uLjitdlsxmg0/uZYcXFxxQ+B77//nkmT\nJjFz5sxqPc8vL7dQUHDGmhIBCAryqdHx9sJZ+gD1Yq+cpRdn6QNq1ktoqP9lx6y604+OjiY7OxuA\nDRs2EBERUTEWGRmJyWTi3LlzFBYWsmfPHiIiIvj++++ZOnUq7777Ll26dLHmtCIiUkNW3en36dOH\nlStXkpCQgMViYdq0acyfP59WrVrRu3dvhg4dyqBBg7BYLDz55JN4eXkxbdo0ysrKePbZZwFo06YN\nkydPrtVmRETk9xnseZXNsrJyPd7BefoA9WKvnKUXZ+kD7OzxjoiIOCaFvoiIC1Hoi4i4EKcN/a92\nHGffieKqPygi4kKcMvTLzRZeXbaHu95YyfwfDnC+3GzrkkRE7IJThr67m4GUwVHcEhHK3BU/Mixt\nPVuOFNq6LBERm3PK0Ado5OfFnIFRvHRPRwrOlvHgovW8smwPZ8vKbV2aiIjNOG3oX3Rzu0ZkDI+l\nX5dmLDIdIiE5hx9+PGXrskREbMLpQx/A39vI2D7teDs+EqO7GyM/2MTEL3ZQcLbM1qWJiNQrlwj9\ni6JbBLFoWAwPXtuSL7YdY8D8HP6z/Rh2PClZRKRWuVToA3gZ3Xi0extSh0TRLNCb5z7bzt//bwtH\nTpfYujQRkTrncqF/UbtQP/41sBtP3tyWnAMFxCebyFyfh1l3/SLixFw29OHCn3YOimlBRmIskWEB\nvLR0NyPSN7L3pCZ1iYhzcunQvygs0JvX7+/MpNvbsz//DENS1zFv1X7KNKlLRJyMQv+/DAYDd3Rs\nQuYDsfRq14h3Vu9nSOo6cvNO27o0EZFao9D/lWAfT168swOv3NuJ4tJy/rJ4Ay8v3c2ZUk3qEhHH\np9C/jO5tQ8hIjCGuWxiZ6/OIT85h5b58W5clIlIjCv3f4etp5B+9w5mX0JUGHu488eFmnl+ynVNn\nSm1dmoiIVRT61dC1eSALh0bzl+ta8fWO4wxINvH5tqOa1CUiDkehX02eRjcevvEKFg6NpmWQNxOW\n7OBvH27msCZ1iYgDUej/QVc28mVeQjeevuVKNhz6mfjkHNLXHaLcrLt+EbF/Cn0ruLsZiI9uTkZi\nLFEtApn17R5GpG9gj3bqEhE7p9CvgWYB3rx6b2cm39GegwUlDEldxzurfqT0vCZ1iYh9UujXkMFg\n4PYOTchMjOHW9qHMW32AIQs1qUtE7JNCv5Y09PFkyh1X8ep9nTn7i0ldxaXnbV2aiEgFhX4tu7FN\nMOmJMQyIujCpKyHZpEldImI3FPp1wNfTyNO9wnl3YDcaeF6Y1DX+s22a1CUiNqfQr0ORYQEsHBLN\nX69vzTc7TxA3P4clWzWpS0RsR6FfxzyNboy4oTULh0bTqmEDXvh8B098pEldImIbCv168stJXet/\n0qQuEbENhX49+uWkrm7NNalLROqf1aFvNpuZMGEC8fHxDB06lP3791caz8zM5L777mPAgAF8++23\nAOTn5/Pggw8yaNAgnnjiCc6ePVuz6h1UswBvXrvvwqSuA6fOMiR1HW+v1KQuEal7Vof+119/TWlp\nKRkZGTz11FNMnz69Yuz48eOkpqaSnp7Oe++9R1JSEqWlpcydO5e77rqLRYsW0bFjRzIyMmqlCUd0\ncVJX1gOx9I5oxLvfH2Doe6vZf8PNNGocQMiVzXHbutXWZYqIkzFae6DJZKJHjx4AdOvWjc2bN1eM\n5ebmEhUVhaenJ56enrRq1Yrt27djMpl4+OGHAejZsydJSUkkJibWrIPL8Nr+Pu67sgg8b987XgUC\ns4HTYec5cKSA0gQj+4uupGXBUYLn98ISEAAdOxHo5m7rUmuFu9Hd7q9JdakX++MsfQAYYoZBq3tq\n/d+1OvSLiorw8/OreO3u7s758+cxGo0UFRXh7+9fMebr60tRUVGl9319fSksLPzdc7i7GwgK8rGq\nPoOPJwYDGI2OEZbBfu4EHd7JwaCmHPELIb9BAG3zDxFYWAjbtmLs2s3WJdYKR7omVVEv9sdZ+gDA\nzfr8+z1Wh76fnx/Fxf/7BaTZbMZoNP7mWHFxMf7+/hXve3t7U1xcTEBAwO+eo7zcQkHBGesKbHUP\nQZEJ1h9vAyFPNOeKwt3kN7+KZ/qOZnejVty7eSnjP0vHPN45HoUFBfk41DX5PerF/jhLH1CzXkJD\n/S87ZvUz/ejoaLKzswHYsGEDERERFWORkZGYTCbOnTtHYWEhe/bsISIigujoaJYvXw5AdnY2MTEx\n1p7eKZ365Css/v5EH9rOp8mjGb1yEZ926EGfoa/yxbZjmtQlIjVmsFiZJGazmYkTJ7Jz504sFgvT\npk0jOzubVq1a0bt3bzIzM8nIyMBisfDwww9z2223ceLECcaMGUNxcTENGzZk1qxZ+Phc/r8vZWXl\nNfqp7ag/9Q3HjhHwl2EYN+ey9ZrejLvrb+QePcONbYJ59tZwmgZ427pEqznqNfkt6sX+OEsfUHd3\n+laHfn1w1dD/Nf+ABrz97S7eXPEjbgYDj/doQ/9uzXAzGGxd2h/mLNcE1Is9cpY+wA4f70j9cXcz\nMCimBemJMXQJ8+elpbsZkb6RfSed44tbROqPQt+BNA9swOz7u/BC3wj2559hcKqJd1fvp6xck7pE\npHoU+g7GYDBwV6emZCTGcnN4I95etZ9hC9ez5bB26hKRqin0HVSIryfT7urAy3/uxOmSMh5cvIFX\nlu3hbJlzTEwRkbqh0HdwN4WHkJEYy72RzVhkOkRCiokf9p+ydVkiYqcU+k7Az8vIs7e24+34SIxu\nBka+v4nJX+zgdEmZrUsTETuj0Hci0S2CWDQshsRrWrJk61Hi5ufwzc7jmtQlIhUU+k7Gy+jG4z3a\nkDIkmsZ+Xjz7yTae+Xgrx4vO2bo0EbEDCn0n1b6xH/MHRzG6ZxtW/3iKuPk5fJR7WHf9Ii5Ooe/E\njG4Ghl7dksXDYriqiR/TvtrFo1m5HDzlmpvXiIhC3yW0bNiAN+MiGdenHTuOFTFwgYkFaw5yXvvz\nirgchb6LMBgM3BvZjMzEWK6/oiGzv9vHA2nr2XGsyNaliUg9Uui7mFA/L2be05Hpd3fgWNE5hi9c\nx5zv9lGiSV0iLkGh74IMBgO9I0LJTIzljo5NSFlzkMGp61j3U4GtSxOROqbQd2GBDTyY0Lc9c/p3\n4bzZwsMZuUz/ehdF587bujQRqSMKfeHa1g1JHx7DoJjmfJR7mPjkHLL3nLR1WSJSBxT6AkADD3ee\nvPlK/jWwG/7eRp76vy089+k28s+U2ro0EalFCn2ppFOzAFKHRPPXG1qzdNcJBszPYcnWo5rUJeIk\nFPpyCQ93N0Zc35q0YdG0aujDC5/v4G8fbubw6RJblyYiNaTQl8tqG+LLvISuPH3LlWw49DPxyTlk\nrj+EWXf9Ig5LoS+/y93NQHx0czISY+naPJCXlu7R/rwiDkyhL9XSLMCb1+/rzKTb22t/XhEHptCX\najMYDNzRsQmZD/xqf94jhbYuTUSqSaEvf1iwz//25/25pIwHF63n1WV7tZSDiANQ6IvVbgoPITMx\nln5dmpFm+omEFBNrD2h/XhF7ptCXGvHzMjK2TzveGhCJmwEey9rEi1/u1P68InZKoS+1Iqblhf15\nh13dkk+3HGFAsomlu07YuiwR+RWFvtQabw93RvVsw/zBUYT4eDDm462M+XgrJ4q1lIOIvVDoS63r\n0MSflMFRPNb9ClbsPcmA+Tl8svmIlnIQsQMKfakTRnc3Hri2FWnDYriykQ+Tv9zJqA82cfCUJnWJ\n2JJCX+rUFcE+vB3flWd6h7Mpr5A7Z69kkeknyrU/r4hNGK05qKSkhH/84x+cPHkSX19fZsyYQXBw\ncKXPzJkzh2XLlmE0Ghk3bhyRkZFs27aNKVOm4O7ujqenJzNmzKBRo0a10ojYLzeDgbhuYfRoG8ys\n5ft4ZdlevtpxnOf+FEF4I19blyfiUqy601+8eDEREREsWrSIfv36MXfu3ErjW7ZsYc2aNWRlZZGU\nlMSkSZMAmDp1Ks8//zypqan06dOHefPm1bwDcRhNA7x5Z0g0U+64ip8KShiauo55q7SUg0h9sir0\nTSYTPXr0AKBnz56sXr36kvHu3btjMBgICwujvLyc/Px8kpKS6NChAwDl5eV4eXnVsHxxNAaDgb4d\nGpOZGEPviEa8s3o/Q1LXsfnwaVuXJuISqny8k5WVRUpKSqX3QkJC8Pf3B8DX15fCwsprrxQVFREU\nFFTx+uJnWrduDcC6detYuHAhaWlpv3tud3cDQUE+1evkN493q9Hx9sJZ+oD/9RIU5MOcwTEs3XGM\nCR9v4cHFG0i8vjVP9G6Hj6dVTx3rnTNeF0fnLH1A3fVS5XdXXFwccXFxld4bOXIkxcXFABQXFxMQ\nEFBp3M/Pr2L84mcu/pBYsmQJb775Ju+8884lvwf4tfJyCwUF1v+1R1CQT42OtxfO0gdc2kt0Ez/S\nh8Uw57t9zF+1ny+3HOW5Pu24pnVDG1ZZPc58XRyVs/QBNeslNNT/smNWPd6Jjo5m+fLlAGRnZxMT\nE3PJ+IoVKzCbzeTl5WE2mwkODubf//43CxcuJDU1lZYtW1pzanFCfl5Gnr21HW/HR2J0M/D4+5uY\n8uUOLeUgUgcMFitmzJw9e5YxY8Zw/PhxPDw8mDVrFqGhocycOZO+ffsSGRnJ7Nmzyc7Oxmw2M3bs\nWKKiorj++utp1qxZxf8Mrr76akaPHn3Z85SVletOH+fpA6rupaSsnHe/P8DCtQcJ8vHkmd7h9Gpn\nn3/h5UrXxVE4Sx9Qd3f6VoV+fVHoX+AsfUD1e9l+tJApX+5k5/FierVrxD96h9PI17MeKqw+V7wu\n9s5Z+gA7e7wjUteu+tVSDvHJWspBpDYo9MVu/XIph7Yh/1vKIe/nEluXJuKwFPpi9369lEN8co6W\nchCxkkJfHMLFpRwyEmOIbhnIK8v2MiJ9A3tPFld9sIhUUOiLQ2ka4M2r93Zm0u3tOXDqLIMXrGPe\nai3lIFJdCn1xOAaDgTs6NiHzgVh6tWvEO6v2M3ThOrYcKaz6YBEXp9AXhxXs48nUuzowq18nCkvO\n8+Ci9by6bC8lZeW2Lk3Ebin0xeH1vDKEjMRY+nVpRprpJxJSTOQcKLB1WSJ2SaEvTsHPy8jYPu14\na0AkbgZ4NCuXqf/ZSWHJeVuXJmJXFPriVGJaBrFoWAxDY1vw8eYjxKfksHz3SVuXJWI3FPridLw9\n3Bl9U1vmD4oi0NuDp/+9hXGfbiP/TKmtSxOxOYW+OK2OTf1ZMCSKR25szbLdJxgwP4clW49qKQdx\naQp9cWoe7m48dF1rFg6NplVDH174fAdPfLSZI6e1lIO4JoW+uIS2Ib7MS+jKU7dcybqDPxOfbCJr\nQx5m3fWLi1Hoi8twdzOQEN2cjMRYuoT5M/Ob3TySsZH9+c6xFK9IdSj0xeWEBXoz+/4uTLgtgt0n\nzjBogYmUNQc5rwXcxAUo9MUlGQwG7u7clMzEGLq3DWHOd/tITFvPjqNFti5NpE4p9MWlNfLzYsY9\nHZlxdweOF51jeNo65q7Yx7nzWsBNnJNCXwToFRFK1gOx3NGxCfN/OMjgBSY2/PSzrcsSqXUKfZH/\nCvD2YELf9sy+vzOl5WZGZGxk5je7KS7VUg7iPBT6Ir9y3RXBpA+PJT4qjPc35JGQbGLVvnxblyVS\nKxT6Ir/Bx9Odp3uFMy+hK94ebvztw81M/Hw7BWfLbF2aSI0o9EV+R9fmgSwcGsOD17bki+3HiU/O\n4esdx7WUgzgshb5IFbyMbjzavQ0pg6No7OfF2E+38czHWzlWqKUcxPEo9EWqqX1jP+YPjmJ0zzas\n/vEUt7++go83HdFdvzgUhb7IH2B0MzD06pakDY2mfVN/pvxnJyPf38Shn8/aujSRalHoi1ihdbAP\nCx+4hjG9w9l8uJCEZBPp6w5RrqUcxM4p9EWs5OZmoH+3MDISY4huGcisb/cwIn0j+05qATexXwp9\nkRpqGuDNq/d2ZtLt7Tlw6gyDU0289/1+zpdrKQexPwp9kVpgMBi4o2MTMh+I5aYrG/HWyv0MS1vP\n9qOFti5NpBKFvkgtCvbx5J93d+DlP3fk1JkyEtPWMzt7HyVl5bYuTQSwMvRLSkoYNWoUgwYNYsSI\nEeTnXzpFfc6cOfTv35+EhARyc3MrjX3yySfEx8dbV7GIA7gpvBGZibHc1akpC9YeZHDqOtZrATex\nA1aF/uLFi4mIiGDRokX069ePuXPnVhrfsmULa9asISsri6SkJCZNmlQxtm3bNt5//339bbM4PX9v\nI+Nvi2BO/y6cN1v4a8ZGZny9Swu4iU1ZFfomk4kePXoA0LNnT1avXn3JePfu3TEYDISFhVFeXk5+\nfj6nTp3i5ZdfZty4cTWvXMRBXNu6IenDYxgY3ZwPNh4mPtnESi3gJjZirOoDWVlZpKSkVHovJCQE\nf39/AHx9fSksrPzLqqKiIoKCgipe+/r6UlBQUBH4Xl5e1SrO3d1AUJBPtT7728e71eh4e+EsfYDr\n9hIETL63C/fGtmTsR5t44sPN9Osaxrg7rqKhj2fdFloNznJdnKUPqLteqgz9uLg44uLiKr03cuRI\niouLASguLiYgIKDSuJ+fX8X4xc8UFRWxf/9+Jk6cyLlz59i9ezdTp07lueeeu+y5y8stFBRY/zfP\nQUE+NTreXjhLH6Be2vh7smBQFP/64QDJaw6Sves4z/QOp1e7RhgMhjqqtGrOcl2cpQ+oWS+hof6X\nHbPq8U50dDTLly8HIDs7m5iYmEvGV6xYgdlsJi8vD7PZTGRkJJ999hmpqakkJSURHh7+u4Ev4qw8\njW48cuMVLBgcRRN/L5795MICbieKztm6NHEBVoX+wIED2bVrFwMHDiQjI4ORI0cCMHPmTHJzc+nc\nuTOxsbHEx8czatQoJkyYUKtFiziDiMZ+/GtQFKN6XFjAbUCyiY83awE3qVsGix1/hZWVlevxDs7T\nB6iXy9mff4ap/9nJ+kOnubZ1EOP6RBAW6F0r/3Z1OMt1cZY+wM4e74hI7Wod7MNb8V15pnc4m/IK\nSUjJIWPdIcz2e08mDkqhL2In3AwG4v67gFu35oG8/O0e/pq+kR+1gJvUIoW+iJ1pGuDNa/ddWMDt\nx/wLC7jN/+GAFnCTWqHQF7FDFxdwy0iMpceVIcxd8SOJizaw42iRrUsTB6fQF7FjIb6eTL+7IzPu\n6cjxonMMT1vH3BX7OHded/1iHYW+iAPo1e7CAm63d2zC/B8OMiTVxMZDWsBN/jiFvoiDCGzgwQt9\n2/P6/Z0pKTMzIn0jLy/dzZlSLdss1afQF3Ew118RTEZi7IW/9Fmfx8CUHH7Yf8rWZYmDUOiLOCAf\nT3f+0TucefFdMbq7MfL9TUz5cgeFJVq2WX6fQl/EgXVrEciiYTEMv6Yln205yoDkHJbvPmHrssSO\nKfRFHJyX0Y2RPdowf3AUDX08ePrfWxn36TZOnSm1dWlihxT6Ik6iQxN/FgyO4pEbW7Ns9wni5ufw\nxbZjWsBNKlHoizgRo7sbD13XmoVDo2nZsAHPL9nO3/9vC0cLtWyzXKDQF3FCbUN8eTehG0/e3Ja1\nBwqIT87hw9zDWsBNFPoizsrdzcCgmBakD4+hQxM//vnVLh7LyuWngrO2Lk1sSKEv4uRaBDVgblwk\n4/q0Y/vRIhJSTKTl/ES5WXf9rkihL+ICDAYD90Y2IyMxlqtbBfHq8r38JX0De04UV32wOBWFvogL\naeLvRVK/Tky54yoOnjrLkNR1vLt6P6VawM1lKPRFXIzBYKBvh8ZkPhDLLe0a8faq/dz/1mq2HS20\ndWlSDxT6Ii4q2MeTaXd14OU/dyT/TCkPpK1ndraWbXZ2Cn0RF3dTeCM+H9Wduzo1ZcHagwxaYGLD\nT1q22Vkp9EWEgAYejL8tgjn9u3C+3MxfMzby0jdattkZKfRFpMK1rRuyeHgsA6LCyNqQR0JKDj/8\nqGWbnYlCX0Qq8fF05+le4cxL6IqnuxsjP9jE5C92cLqkzNalSS1Q6IvIb+raPJC0/y7bvGTrUeKT\nTVq22Qko9EXksrRss/NR6ItIlTo08SdFyzY7BYW+iFSLx2WWbT6mZZsdikJfRP6Qi8s2P3HThWWb\nByTn8H+5h3XX7yAU+iLyh7m7GRgce2HZ5qua+DH1q108/v4mDv2sZZvtnUJfRKx2cdnmZ28NZ+uR\nQhKSTaSvO6TNWuyYVaFfUlLCqFGjGDRoECNGjCA/P/+Sz8yZM4f+/fuTkJBAbm4uACdPnuTRRx9l\n8ODBJCQkcODAgZpVLyI252YwcH/XMNKHxxDdMpBZ3+5hRPpGfjx5xtalyW+wKvQXL15MREQEixYt\nol+/fsydO7fS+JYtW1izZg1ZWVkkJSUxadIkAF566SXuvvtu0tLSeOKJJ9i7d2/NOxARu9A0wJtX\n7+3MxL7t+TH/DINTTST/cIDz2qzFrlgV+iaTiR49egDQs2dPVq9efcl49+7dMRgMhIWFUV5eTn5+\nPuvWrePo0aMkJibyySefcM0119S8AxGxGwaDgTs7NSEjMZbubUN4Y8WPPJC2np3HimxdmvyXsaoP\nZGVlkZKSUum9kJAQ/P39AfD19aWwsPI63EVFRQQFBVW8vviZQ4cOERAQQHJyMnPmzGHevHn87W9/\nu+y53d0NBAX5/KGGKh/vVqPj7YWz9AHqxV7Vdi9BQT68PSyWzzcfYdKnWxmetp6He7bl0ZuuxMtY\nd79K1DWpWpWhHxcXR1xcXKX3Ro4cSXHxhW3WiouLCQgIqDTu5+dXMX7xM/7+/gQFBdGrVy8AevXq\nxSuvvPK75y4vt1BQYP1zwaAgnxodby+cpQ9QL/aqrnq5vkUA6cNjeHXZHt5Ytoclmw4z4bYIOjcL\nqPpgK+iaXBAa6n/ZMat+5EZHR7N8+XIAsrOziYmJuWR8xYoVmM1m8vLyMJvNBAcHExMTU3Hc2rVr\nCQ8Pt+b0IuJAghp4MPH2q3j13s4UnzvPQ4s38OqyvZSUadlmWzBYrJhRcfbsWcaMGcPx48fx8PBg\n1qxZhIaGMnPmTPr27UtkZCSzZ88mOzsbs9nM2LFjiY2N5dChQ4wfP56zZ8/i5+fHrFmzCAwMvOx5\nysrKdaeP8/QB6sVe1VcvRefOMzt7Hx/mHqZlkDfP/SmCmJZBVR9YTbomF/zenb5VoV9fFPoXOEsf\noF7sVX33knOggBf/s5NDP5fQv2szRvZsg69nlU+bq6RrckGtP94REamJ2FZBLB4ew6CY5nyw8TAJ\nySZW/3jpfB+pfQp9EbGJBh7uPHnzlbw7sBsNPNwZ/cFmJn6xg5/ParOWuqTQFxGbigwLIHVoNA9e\n25Ivth4lPsXEt7u0WUtdUeiLiM15Gd14tHsbUgZHE+LjwTMfb2XsJ9vI12YttU6hLyJ2o30TP1IG\nR/HojVewfM8JBszP4fNtR7Vscy1S6IuIXTG6u/Hgda0qNmuZsGSHNmupRQp9EbFL2qylbij0RcRu\nXdysZfGwGNo3vrBZy0ht1lIjCn0RsXstGzbgzQEXNmvZcqSQgSkmMrRZi1UU+iLiEH65WUu35oG8\n/O0eHs7YyP5855iBW18U+iLiUJoGePPafZ15oW8Ee06cYdACEylrDmqzlmpS6IuIwzEYDNzVqSmZ\niTHc0CaYOd/t48FF69lxpLDqg12cQl9EHFYjPy9m3tORqXdexZHT57j3rVXMW7WfsnKzrUuzWwp9\nEXFoBoOBP13VmMzEWPp2aso7q/czbOF6tuqu/zcp9EXEKQT5eJAU15VZ/Trxc0kZDyxaz+zsfdqs\n5VcU+iLiVHpeGULG8Fju7tSUBWsPMiR1HRsP/WzrsuyGQl9EnI6/t5Hxt0Uw+/7OlJabGZG+kZeX\n7uas7voV+iLivK67IpjFw2Po3y2MjPV5JKSYWHvglK3LsimFvog4NV9PI8/0Dued+K4Y3Qw8lrWJ\naV/tpOjceVuXZhMKfRFxCVEtAkkbGs3Q2Bb8e9MR4pNzWLnX9bZoVOiLiMvw9nBn9E1t+dfAbvh5\nGXnio8288Pl2l9qiUaEvIi6nU7MAUodE89B1rfhy+3EGJOew1EW2aFToi4hL8jS68ciNV5AyOIpQ\nPy/GfLyVsZ9s5WSxc2/RqNAXEZfWvrEfyYO68Vj3K1i+5yTxyTl8se2Y027WotAXEZdndHfjgWv/\nt0Xj80u285STbtGo0BcR+a9fbtG45kAB8Sk5fLzpiFPd9Sv0RUR+4eIWjYuGxdAu1I8p/9nJqA82\ncfh0ia1LqxUKfRGR39CqYQPeGhDJM73D2ZRXSEKyiawNeQ6/RaNCX0TkMtwMBuK6hZGeGENkWAAz\nv9nNI5m5HDzluBuzK/RFRP7JvBkAAAnQSURBVKrQLMCb1+/vzPN/imDX8SIGpuTwwWMTCLqyOYH3\n9MVw7JitS6w2hb6ISDUYDAbu6dKUjOGx3HBsJ9OvvJUBf36B/XvzCPjLMFuXV21WhX5JSQmjRo1i\n0KBBjBgxgvz8S9evmDNnDv379ychIYHc3FwAtm3bxoABAxg4cCBjx47FbNaWZiLiWBr7e/Fu+vO8\n9vFL7AsO486hr/COZxvOO8gWjVaF/uLFi4mIiGDRokX069ePuXPnVhrfsmULa9asISsri6SkJCZN\nmgRc+EHw+OOPs3jxYkpLS1m2bFmNGxARqW/lnSO5Z9dKvnr3MXrvWcPL1w/kgUUb2HmsyNalVcmq\n0DeZTPTo0QOAnj17snr16kvGu3fvjsFgICwsjPLycvLz8+nQoQMFBQVYLBaKi4sxGo0170BEpJ6d\nfncBZbHXEOJ2nteOLGdGzzCOFZ1jWNp63lr5o11vzF5l6mZlZZGSklLpvZCQEPz9/QHw9fWlsLDy\nBsRFRUUEBQVVvL74mSuuuILJkyfz5ptv4u/vz7XXXvu753Z3NxAU5FPtZi493q1Gx9sLZ+kD1Iu9\ncpZe6q2PoCsgO5tywADcB9xyYylTl2znve8P8N3efP55bxciWwRafYq66qXK0I+LiyMuLq7SeyNH\njqS4uBiA4uJiAgICKo37+flVjF/8jL+/P1OnTiUtLY127dqRlpbG9OnTeeGFFy577vJyCwUFZ/5Q\nQ78UFORTo+PthbP0AerFXjlLL7bswwCMvzWcm9s25J9f7SLundUMiW3BiOtb4+3h/of/vZr0Ehrq\nf9kxqx7vREdHs3z5cgCys7OJiYm5ZHzFihWYzWby8vIwm80EBwcTGBiIn58fAI0bN+b06dPWnF5E\nxG51bxtCRmIs93RuyoK1PzHYzjZmN1isWFTi7NmzjBkzhuPHj+Ph4cGsWbMIDQ1l5syZ9O3bl8jI\nSGbPnk12djZms5mxY8cSGxtLTk4OL7/8MkajEQ8PD6ZMmUKLFi0ue56ysnLd6eM8fYB6sVfO0ou9\n9fHD/lNM+89ODp8+x4CoMB7v0YYG1bzrr6s7fatCv74o9C9wlj5AvdgrZ+nFHvs4U1rOG9/tI3ND\nHs0DvRn/pwhiWwVVeZxdPd4REZHq8fF05x//3ZjdzQCPZuUy/etdNtuYXaEvIlIPoloEsmhYDINj\nWvBR7mESUkys2lf/G7Mr9EVE6om3hztP3NyWdxO64ePhzt8+3MykL3ZwuqT+NmZX6IuI1LMuYQEs\nHBrNA9e25POtR4lPNrF898l6ObdCX0TEBjyNbjzWvQ3Jg6No6OPB0//ewvjPtlFwpm7v+hX6IiI2\ndFUTf1IGR/HXG1rzzc4TDEjO4esdx+tsi0aFvoiIjXm4uzHi+takDommaYAXYz/dxmtLd9fJubTi\nmYiInQgP9eVfg6L4cGMerRpf/m/ta0KhLyJiR4xuBgZENa+ziWZ6vCMi4kIU+iIiLkShLyLiQhT6\nIiIuRKEvIuJCFPoiIi5EoS8i4kIU+iIiLsSud84SEZHapTt9EREXotAXEXEhCn0RERei0BcRcSEK\nfRERF6LQFxFxIQp9EREX4pCbqJjNZiZOnMiOHTvw9PTkxRdfpHXr1gBs27aNadOmVXx2w4YNvPHG\nG3To0IGnn36asrIyQkNDmT59Og0aNLBVCxWs6aVnz54ArF27lqeffprly5fbpPZfs6aXyMhIbrvt\nNiIiIgC49dZbGT58uE3q/yVreomNjWXixIn89NNPlJWV8fzzzxMZGWmrFgDr+vjuu+/Yvn07AMeP\nHycgIIDMzEyb1P9L1vQSHh7OM888g8ViITAwkFmzZjns932bNm149tlnsVgshIWFMWXKFOt6sTig\nL7/80jJmzBiLxWKxrF+/3vLII4/85ueWLFli+fvf/26xWCyWF1980fLRRx9ZLBaL5fXXX7fMnz+/\nXmqtijW9WCwWS15enuWRRx6x3HDDDfVSZ3VY08vKlSstkydPrrcaq8uaXl5//XXLO++8Y7FYLJZt\n27ZVfL3ZkrVfXxaLxVJaWmrp37+/Zfv27XVeZ3VY08vUqVMtCxcutFgsFktSUpJlwYIF9VNsFazp\nZdSoUZaPP/7YYrFYLJmZmZY33njDqnM75OMdk8lEjx49AOjWrRubN2++5DNnzpxh9uzZPPfccwCM\nGzeOe+65B7PZzOHDhwkJCanXmi/Hml7OnTvHCy+8wMSJE+uz1CpZ08vmzZvZsmULQ4YMYfTo0Rw7\ndqxea74ca3pZsWIFHh4ePPTQQ8ydO7fieFuypo+LFi5cyI033kj79u3rpdaqWNNLhw4dOH36NABF\nRUUYjfbxcMOaXnbv3l3xv/zo6GhMJpNV53bI0C8qKsLPz6/itbu7O+fPn6/0mffff5++ffsSHBwM\ngMFgoLy8nLvuuosffviB6Ojoeq35cqzpZfLkyTz44IM0adKkXmutijW9tG3bltGjR7Nw4UJuvfVW\nXnzxxXqt+XKs6eXUqVOcPn2a9957j169ejFjxox6rfm3WNMHQGlpKenp6Tz00EP1VmtVrOmladOm\npKWlceedd5KdnU3fvn3rtebLsaaXDh06sHTpUgC++eYbzp49a9W5HTL0/fz8KC4urnhtNpsv+Qn+\nySefEBcXV+k9Dw8PlixZwpQpUxgzZky91FqVP9rL0aNHycnJ4Y033mDo0KH8/PPPPPnkk/Va8+VY\nc12uu+46rr32WgD69OnD1q1b66fYKljTS1BQEL169QLglltu+c27t/pm7ffK6tWrufrqq/H396+X\nOqvDml5mzpzJP//5Tz777DOee+45h/2+BxgzZgxLly7loYcews3NjYYNG1p1bocM/ejoaLKzs4EL\nv+S4+EvAiwoLCyktLaVZs2YV702cOJHvv/8eAF9fXwwGQ/0V/Dv+aC9NmjThyy+/JDU1ldTUVAID\nA3nllVfqve7fYs11GT9+PF9++SVwIWg6depUfwX/Dmt6iYmJqfil+tq1awkPD6+/gi/Dmj4AVq1a\nVfEowV5Y00tAQEDFD67GjRtXPOqxNWt6WbVqFY8//jjvvfcebm5u3HDDDVad2z4ecP1Bffr0YeXK\nlSQkJGCxWJg2bRrz58+nVatW9O7dm3379tG8efNKxwwdOpSJEyfyxhtv4ObmZjfPw63pxV5Z08tT\nTz3FuHHjWLx4MQ0aNLCbxzvW9PLwww8zfvx44uPjMRqNdvF4x9qvr3379tGvXz8bVHx51vTy/PPP\nM3nyZMxmMxaLhQkTJtio+sqs6aVNmzaMGzcOT09P2rVrZ3UvWlpZRMSFOOTjHRERsY5CX0TEhSj0\nRURciEJfRMSFKPRFRFyIQl9ExIUo9EVEXMj/A/H6cQF2vyTVAAAAAElFTkSuQmCC\n" 37 | }, 38 | "metadata": {} 39 | } 40 | ], 41 | "source": [ 42 | "x = np.linspace(0.73, 0.79, 100)\n", 43 | "plt.plot(x, np.cos(x) - x)\n", 44 | "plt.plot(x, np.zeros(x.shape))\n", 45 | "a = np.array([0.785398163, 0.739536, 0.739085, 0.739085])\n", 46 | "plt.scatter(a, np.cos(a) - a, s=15, c=\"red\")" 47 | ] 48 | }, 49 | { 50 | "cell_type": "code", 51 | "execution_count": null, 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [] 55 | } 56 | ], 57 | "metadata": { 58 | "language_info": { 59 | "codemirror_mode": { 60 | "name": "ipython", 61 | "version": 3 62 | }, 63 | "file_extension": ".py", 64 | "mimetype": "text/x-python", 65 | "name": "python", 66 | "nbconvert_exporter": "python", 67 | "pygments_lexer": "ipython3", 68 | "version": "3.6.8-final" 69 | }, 70 | "orig_nbformat": 2, 71 | "kernelspec": { 72 | "name": "python36864bit2eb17439148c485399fa2f77fed1b772", 73 | "display_name": "Python 3.6.8 64-bit" 74 | } 75 | }, 76 | "nbformat": 4, 77 | "nbformat_minor": 2 78 | } -------------------------------------------------------------------------------- /大作业/2020春季计算方法课程期末考核方案0623(1).pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/大作业/2020春季计算方法课程期末考核方案0623(1).pdf -------------------------------------------------------------------------------- /大作业/《计算方法》课程论文封面.doc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/大作业/《计算方法》课程论文封面.doc -------------------------------------------------------------------------------- /大作业/《计算方法》课程论文封面.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/gzn00417/2020Spring-Computational-Method/11c99df6e18702d6c34556556098b75ead5a6823/大作业/《计算方法》课程论文封面.pdf --------------------------------------------------------------------------------