├── VERSION
├── CITATION.cff
├── setup.py
├── .gitignore
├── CONTRIBUTING.md
├── CODE_OF_CONDUCT.md
├── src
├── flex2traj.py
├── main.py
├── diagnosis.py
├── validation.py
├── biascorrection.py
└── attribution.py
├── README.md
└── LICENSE
/VERSION:
--------------------------------------------------------------------------------
1 | 1.2.0
2 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | message: "If you use this software, please cite the paper in discussion below."
3 | authors:
4 | - family-names: "Keune"
5 | given-names: "Jessica"
6 | orcid: "https://orcid.org/0000-0001-6104-2165"
7 | - family-names: "Schumacher"
8 | given-names: "Dominik L."
9 | orcid: "https://orcid.org/0000-0003-2699-2880"
10 | - family-names: "Miralles"
11 | given-names: "Diego G."
12 | orcid: "https://orcid.org/0000-0001-6186-5751"
13 | title: "Heat- And MoiSture Tracking framEwoRk - h-cel/hamster v1.2.0"
14 | version: 1.2.0
15 | doi: 10.5281/zenodo.5788506
16 | date-released: 2021-12-14
17 | url: "http://doi.org/10.5281/zenodo.5788506"
18 | preferred-citation:
19 | type: article
20 | authors:
21 | - family-names: "Keune"
22 | given-names: "Jessica"
23 | orcid: "https://orcid.org/0000-0001-6104-2165"
24 | - family-names: "Schumacher"
25 | given-names: "Dominik L."
26 | orcid: "https://orcid.org/0000-0003-2699-2880"
27 | - family-names: "Miralles"
28 | given-names: "Diego G."
29 | orcid: "https://orcid.org/0000-0001-6186-5751"
30 | doi: "10.5194/gmd-15-1875-2022"
31 | journal: "Geoscientific Model Development"
32 | title: "A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models"
33 | year: 2022
34 | url: "https://gmd.copernicus.org/articles/15/1875/2022/"
35 | volume: 15
36 | year: 2022
37 | start: 1875
38 | end: 1898
39 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 | from setuptools import find_packages
3 |
4 | setup(
5 | name='hamster-tracking',
6 | version='1.0.0',
7 | license='gpl-3.0',
8 | description = 'HAMSTER: a Heat And MoiSture Tracking framEwoRk for tracking air parcels through the atmosphere',
9 | author = 'Jessica Keune, Dominik L. Schumacher, Diego G. Miralles',
10 | author_email = 'jessica.keune@ugent.be',
11 | url = 'https://github.com/h-cel/hamster',
12 | download_url ='https://github.com/h-cel/hamster/archive/v1.0.0.tar.gz',
13 | keywords = ['Lagrangian models', 'moisture tracking', 'precipitation recycling', 'origins of precipitation',
14 | 'origins of heat', 'source regions of moisture', 'source regions of heat', 'air parcel tracking',
15 | 'land--atmosphere interactions'], # Keywords
16 | install_package_data = True,
17 | packages=find_packages("."),
18 | install_requires=['numpy','pandas','gzip','hdf5','netcdf4','argparse','calendar','os','fnmatch','imp','math','random','re','struct','sys','time','timeit','warnings','datetime','functools','dateutil'],
19 | long_description=open('README.md').read(),
20 | classifiers=[
21 | 'Development Status :: 4 - Beta',
22 | 'Intended Audience :: Atmospheric sciences, Hydrology',
23 | 'Topic :: Tracking the origins of heat and moisture in the atmosphere',
24 | 'License :: gpl-3.0',
25 | 'Programming Language :: Python :: 3',
26 | ],
27 | package_dir={"": "src"},
28 | packages=setuptools.find_packages(where="src"),
29 | python_requires=">=3.6",
30 | )
31 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # job-related
2 | *.e*
3 | *.o*
4 | *.worker*
5 | *.log*
6 | *.sh*
7 | *.run*
8 | *.pbs*
9 |
10 | # Copy of mainpy to work-dir
11 | work/
12 | paths.txt
13 | load_modules
14 | tmp/
15 |
16 | # profiling output
17 | profile_output*
18 |
19 | # Byte-compiled / optimized / DLL files
20 | __pycache__/
21 | *.py[cod]
22 | *$py.class
23 |
24 | # C extensions
25 | *.so
26 |
27 | # Distribution / packaging
28 | .Python
29 | build/
30 | develop-eggs/
31 | dist/
32 | downloads/
33 | eggs/
34 | .eggs/
35 | lib/
36 | lib64/
37 | parts/
38 | sdist/
39 | var/
40 | wheels/
41 | *.egg-info/
42 | .installed.cfg
43 | *.egg
44 | MANIFEST
45 |
46 | # PyInstaller
47 | # Usually these files are written by a python script from a template
48 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
49 | *.manifest
50 | *.spec
51 |
52 | # Installer logs
53 | pip-log.txt
54 | pip-delete-this-directory.txt
55 |
56 | # Unit test / coverage reports
57 | htmlcov/
58 | .tox/
59 | .coverage
60 | .coverage.*
61 | .cache
62 | nosetests.xml
63 | coverage.xml
64 | *.cover
65 | .hypothesis/
66 | .pytest_cache/
67 |
68 | # Translations
69 | *.mo
70 | *.pot
71 |
72 | # Django stuff:
73 | *.log
74 | local_settings.py
75 | db.sqlite3
76 |
77 | # Flask stuff:
78 | instance/
79 | .webassets-cache
80 |
81 | # Scrapy stuff:
82 | .scrapy
83 |
84 | # Sphinx documentation
85 | docs/_build/
86 |
87 | # PyBuilder
88 | target/
89 |
90 | # Jupyter Notebook
91 | .ipynb_checkpoints
92 |
93 | # pyenv
94 | .python-version
95 |
96 | # celery beat schedule file
97 | celerybeat-schedule
98 |
99 | # SageMath parsed files
100 | *.sage.py
101 |
102 | # Environments
103 | .env
104 | .venv
105 | env/
106 | venv/
107 | ENV/
108 | env.bak/
109 | venv.bak/
110 |
111 | # Spyder project settings
112 | .spyderproject
113 | .spyproject
114 |
115 | # Rope project settings
116 | .ropeproject
117 |
118 | # mkdocs documentation
119 | /site
120 |
121 | # mypy
122 | .mypy_cache/
123 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Welcome to the HAMSTER contributing guide
2 |
3 | Thank you for investing your time in contributing to our project! Any contribution will be highly appreciated and we will mention all contributors on [https://github.com/h-cel/hamster](https://github.com/h-cel/hamster).
4 |
5 | Before you continue, please read the [Code of Conduct](./CODE_OF_CONDUCT.md), which will help us to keep our community approachable and respectable.
6 |
7 | This guide will provide an overview of the contribution workflow from opening an issue, creating a pull request, reviewing, and merging the pull request.
8 |
9 | ### Issues
10 |
11 | #### Create a new issue
12 |
13 | If you spot a problem with the code or the documentation, [search if an issue already exists](https://github.com/h-cel/hamster/issues).
14 | If a related issue doesn't exist, you can open a [new issue](https://github.com/h-cel/hamster/issues/new).
15 |
16 | #### Solve an issue
17 |
18 | Scan through our [existing issues]((https://github.com/h-cel/hamster/issues) to find one that interests you.
19 | You can narrow down the search using `labels` as filters.
20 | As a general rule, we don’t assign issues to anyone. If you find an issue to work on, you are welcome to open a pull request with a fix.
21 |
22 | ### Make Changes
23 |
24 | #### Small changes in docs
25 | If you want to make small changes (fixing a typo or a sentence, updating broken links) in any of the `.md` files, you can do this using the user interface:
26 | just click on the **edit** button, make your changes, commit them to a new branch and [create a pull request](#pull-request) for a review.
27 |
28 | #### Bigger changes affecting HAMSTER
29 | If you want to contribute bigger changes that influence of the analysis with HAMSTER, we kindly ask you to do and test these on your local machine. Therefore, fork this repository and run some tests on your local computer.
30 | Make the necessary changes, test the changes, and only commit if they run successfully (we will include standard tests in the future).
31 | Once done, you can again [create a pull request](#pull-request) for a review.
32 |
33 | ### Pull Request
34 |
35 | When you're finished with the changes, create a pull request.
36 | - Please add a detailed description of the changes that will help us to review your pull request.
37 | - Don't forget to link any issue if you are solving one.
38 | - Once you submit your pull request, a HAMSTER team member will review your proposal. We may ask questions or request for additional information.
39 | - We may ask for changes to be made before a pull request can be merged via pull request comments. You can apply suggested changes directly through the user interface. You can make any other changes in your fork, then commit them to your branch.
40 | - As you update your pull request and apply changes, mark each conversation as resolved.
41 | - If you run into any merge issues, checkout this [git tutorial](https://lab.github.com/githubtraining/managing-merge-conflicts) to help you resolve merge conflicts and other issues.
42 |
43 | ### Your pull request is merged!
44 |
45 | Congratulations :tada::tada: The HAMSTER team thanks you :sparkles:.
46 |
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | We as members, contributors, and leaders pledge to make participation in our
6 | community a harassment-free experience for everyone, regardless of age, body
7 | size, visible or invisible disability, ethnicity, sex characteristics, gender
8 | identity and expression, level of experience, education, socio-economic status,
9 | nationality, personal appearance, race, religion, or sexual identity
10 | and orientation.
11 |
12 | We pledge to act and interact in ways that contribute to an open, welcoming,
13 | diverse, inclusive, and healthy community.
14 |
15 | ## Our Standards
16 |
17 | Examples of behavior that contributes to a positive environment for our
18 | community include:
19 |
20 | * Demonstrating empathy and kindness toward other people
21 | * Being respectful of differing opinions, viewpoints, and experiences
22 | * Giving and gracefully accepting constructive feedback
23 | * Accepting responsibility and apologizing to those affected by our mistakes,
24 | and learning from the experience
25 | * Focusing on what is best not just for us as individuals, but for the
26 | overall community
27 |
28 | Examples of unacceptable behavior include:
29 |
30 | * The use of sexualized language or imagery, and sexual attention or
31 | advances of any kind
32 | * Trolling, insulting or derogatory comments, and personal or political attacks
33 | * Public or private harassment
34 | * Publishing others' private information, such as a physical or email
35 | address, without their explicit permission
36 | * Other conduct which could reasonably be considered inappropriate in a
37 | professional setting
38 |
39 | ## Enforcement Responsibilities
40 |
41 | Community leaders are responsible for clarifying and enforcing our standards of
42 | acceptable behavior and will take appropriate and fair corrective action in
43 | response to any behavior that they deem inappropriate, threatening, offensive,
44 | or harmful.
45 |
46 | Community leaders have the right and responsibility to remove, edit, or reject
47 | comments, commits, code, wiki edits, issues, and other contributions that are
48 | not aligned to this Code of Conduct, and will communicate reasons for moderation
49 | decisions when appropriate.
50 |
51 | ## Scope
52 |
53 | This Code of Conduct applies within all community spaces, and also applies when
54 | an individual is officially representing the community in public spaces.
55 | Examples of representing our community include using an official e-mail address,
56 | posting via an official social media account, or acting as an appointed
57 | representative at an online or offline event.
58 |
59 | ## Enforcement
60 |
61 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
62 | reported to the community leaders responsible for enforcement at
63 | jessica.keune@ugent.be.
64 | All complaints will be reviewed and investigated promptly and fairly.
65 |
66 | All community leaders are obligated to respect the privacy and security of the
67 | reporter of any incident.
68 |
69 | ## Enforcement Guidelines
70 |
71 | Community leaders will follow these Community Impact Guidelines in determining
72 | the consequences for any action they deem in violation of this Code of Conduct:
73 |
74 | ### 1. Correction
75 |
76 | **Community Impact**: Use of inappropriate language or other behavior deemed
77 | unprofessional or unwelcome in the community.
78 |
79 | **Consequence**: A private, written warning from community leaders, providing
80 | clarity around the nature of the violation and an explanation of why the
81 | behavior was inappropriate. A public apology may be requested.
82 |
83 | ### 2. Warning
84 |
85 | **Community Impact**: A violation through a single incident or series
86 | of actions.
87 |
88 | **Consequence**: A warning with consequences for continued behavior. No
89 | interaction with the people involved, including unsolicited interaction with
90 | those enforcing the Code of Conduct, for a specified period of time. This
91 | includes avoiding interactions in community spaces as well as external channels
92 | like social media. Violating these terms may lead to a temporary or
93 | permanent ban.
94 |
95 | ### 3. Temporary Ban
96 |
97 | **Community Impact**: A serious violation of community standards, including
98 | sustained inappropriate behavior.
99 |
100 | **Consequence**: A temporary ban from any sort of interaction or public
101 | communication with the community for a specified period of time. No public or
102 | private interaction with the people involved, including unsolicited interaction
103 | with those enforcing the Code of Conduct, is allowed during this period.
104 | Violating these terms may lead to a permanent ban.
105 |
106 | ### 4. Permanent Ban
107 |
108 | **Community Impact**: Demonstrating a pattern of violation of community
109 | standards, including sustained inappropriate behavior, harassment of an
110 | individual, or aggression toward or disparagement of classes of individuals.
111 |
112 | **Consequence**: A permanent ban from any sort of public interaction within
113 | the community.
114 |
115 | ## Attribution
116 |
117 | This Code of Conduct is adapted from the [Contributor Covenant][homepage],
118 | version 2.0, available at
119 | https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
120 |
121 | Community Impact Guidelines were inspired by [Mozilla's code of conduct
122 | enforcement ladder](https://github.com/mozilla/diversity).
123 |
124 | [homepage]: https://www.contributor-covenant.org
125 |
126 | For answers to common questions about this code of conduct, see the FAQ at
127 | https://www.contributor-covenant.org/faq. Translations are available at
128 | https://www.contributor-covenant.org/translations.
129 |
--------------------------------------------------------------------------------
/src/flex2traj.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #
4 | # Main script to extract trajectories from binary FLEXPART outputs
5 | #
6 | # This file is part of HAMSTER,
7 | # originally created by Dominik Schumacher, Jessica Keune, Diego G. Miralles
8 | # at the Hydro-Climate Extremes Lab, Department of Environment, Ghent University
9 | #
10 | # https://github.com/h-cel/hamster
11 | #
12 | # HAMSTER is free software: you can redistribute it and/or modify
13 | # it under the terms of the GNU General Public License as published by
14 | # the Free Software Foundation v3.
15 | #
16 | # HAMSTER is distributed in the hope that it will be useful,
17 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 | # GNU General Public License for more details.
20 | #
21 | # You should have received a copy of the GNU General Public License
22 | # along with HAMSTER. If not, see .
23 | #
24 |
25 | import argparse
26 | import calendar
27 | import csv
28 | import fnmatch
29 | import gzip
30 | import imp
31 | import math
32 | import os
33 | import random
34 | import re
35 | import struct
36 | import sys
37 | import time
38 | import timeit
39 | import warnings
40 | from datetime import date, datetime, timedelta
41 | import datetime as datetime
42 | from functools import reduce
43 | from math import acos, atan, atan2, cos, floor, sin, sqrt
44 |
45 | import h5py
46 | import netCDF4 as nc4
47 | import numpy as np
48 | import pandas as pd
49 | from dateutil.relativedelta import relativedelta
50 |
51 | from hamsterfunctions import *
52 |
53 |
54 | def main_flex2traj(
55 | ryyyy, ayyyy, am, ad, tml, maskfile, maskval, idir, odir, fout, verbose
56 | ):
57 |
58 | ###--- MISC ---################################################################
59 | logo = """
60 | Hello, user.
61 |
62 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
63 | % __ _ ____ _ _ %
64 | % / _| | _____ _|___ \| |_ _ __ __ _ (_) %
65 | % | |_| |/ _ \ \/ / __) | __| '__/ _` || | %
66 | % | _| | __/> < / __/| |_| | | (_| || | %
67 | % |_| |_|\___/_/\_\_____|\__|_| \__,_|/ | %
68 | % |__/ %
69 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
70 | """
71 | ###############################################################################
72 | ###--- SETUP ---###############################################################
73 |
74 | # ******************************************************************************
75 | ## UNCOMMENT line ---> variable not saved
76 | selvars = np.asarray(
77 | [
78 | 0, # pid | [ ALWAYS ] * 0
79 | 1, # x | [ ALWAYS ] * 1
80 | 2, # y | [ ALWAYS ] * 2
81 | 3, # z | [ ALWAYS ] * 3
82 | # 4, # itramem | [ NEVER ]
83 | 5, # oro | [ OPTIONAL ] # only needed for dry static energy
84 | # 6, # pv | [ OPTIONAL ]
85 | 7, # qq | [ ALWAYS ] * 4
86 | 8, # rho | [ ALWAYS ] * 5
87 | 9, # hmix | [ ALWAYS ] * 6
88 | # 10,# tropo | [ OPTIONAL ] * 7 # needed for droughtpropag
89 | 11, # temp | [ ALWAYS ] * 8
90 | # 12,# mass | [ NEVER! ]
91 | ]
92 | )
93 | thevars = np.asarray(
94 | [
95 | "pid",
96 | "x",
97 | "y",
98 | "z",
99 | "itramem",
100 | "oro",
101 | "pv",
102 | "qv",
103 | "rho",
104 | "hmix",
105 | "tropo",
106 | "temp",
107 | "mass",
108 | ]
109 | )
110 | # ******************************************************************************
111 |
112 | # last day of month
113 | ed = int(calendar.monthrange(ayyyy, am)[1])
114 |
115 | dt_h = 6 # hardcoded, as further edits would be necessary if this was changed!
116 | time_bgn = datetime.datetime(year=ayyyy, month=am, day=ad, hour=6)
117 | # add 6 hours to handle end of month in same way as any other period
118 | time_end = datetime.datetime(
119 | year=ayyyy, month=am, day=ed, hour=18
120 | ) + datetime.timedelta(hours=dt_h)
121 | # convert trajectory length from day to dt_h (!=6); +2 needed ;)
122 | ntraj = tml * (24 // dt_h) + 2
123 |
124 | ###############################################################################
125 | ###--- MAIN ---################################################################
126 |
127 | if verbose:
128 | print(logo)
129 |
130 | ##---0.) pepare directories
131 | outdir = odir + "/" + str(ryyyy)
132 | if not os.path.exists(outdir): # could use isdir too
133 | os.makedirs(outdir)
134 |
135 | ##---1.) load netCDF mask
136 | if maskfile is None or maskval == -999:
137 | mask = mlat = mlon = None
138 | else:
139 | mask, mlat, mlon = maskgrabber(maskfile)
140 |
141 | ##---2.) create datetime object (covering arrival period + trajectory length)
142 | fulltime_str = f2t_timelord(ntraj_d=tml, dt_h=dt_h, tbgn=time_bgn, tend=time_end)
143 |
144 | # ---3.) handle first step
145 | if verbose:
146 | print("\n---- Reading files to begin constructing trajectories ...\n")
147 | data, trajs = f2t_establisher(
148 | partdir=idir + "/" + str(ryyyy),
149 | selvars=selvars,
150 | time_str=fulltime_str[:ntraj],
151 | ryyyy=ryyyy,
152 | mask=mask,
153 | maskval=maskval,
154 | mlat=mlat,
155 | mlon=mlon,
156 | outdir=outdir,
157 | fout=fout,
158 | verbose=verbose,
159 | )
160 |
161 | ##---4.) continue with next steps
162 | if verbose:
163 | print("\n\n---- Adding more files ... ")
164 | for ii in range(1, len(fulltime_str) - ntraj + 1): # CAUTION: INDEXING from 1!
165 | data, trajs = f2t_ascender(
166 | data=data,
167 | partdir=idir + "/" + str(ryyyy),
168 | selvars=selvars,
169 | time_str=fulltime_str[ii : ntraj + ii],
170 | ryyyy=ryyyy,
171 | mask=mask,
172 | maskval=maskval,
173 | mlat=mlat,
174 | mlon=mlon,
175 | outdir=outdir,
176 | fout=fout,
177 | verbose=verbose,
178 | )
179 |
180 | ##---5.) done
181 | if verbose:
182 | print(
183 | "\n\n---- Done! \n Files with base '" + fout + "' written to:\n ",
184 | odir + "/" + str(ryyyy),
185 | )
186 | print(" Dimensions: nstep x nparcel x nvar\n Var order: ", end="")
187 | print(*thevars[selvars].tolist(), sep=", ")
188 | print("\n All done!")
189 |
--------------------------------------------------------------------------------
/src/main.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #
4 | # MAIN SCRIPT OF HAMSTER
5 | #
6 | # This file is part of HAMSTER,
7 | # originally created by Dominik Schumacher, Jessica Keune, Diego G. Miralles
8 | # at the Hydro-Climate Extremes Lab, Department of Environment, Ghent University
9 | #
10 | # https://github.com/h-cel/hamster
11 | #
12 | # HAMSTER is free software: you can redistribute it and/or modify
13 | # it under the terms of the GNU General Public License as published by
14 | # the Free Software Foundation v3.
15 | #
16 | # HAMSTER is distributed in the hope that it will be useful,
17 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 | # GNU General Public License for more details.
20 | #
21 | # You should have received a copy of the GNU General Public License
22 | # along with HAMSTER. If not, see .
23 | #
24 |
25 | ###########################################################################
26 | ##--- MODULES
27 | ###########################################################################
28 |
29 | import argparse
30 | import imp
31 | import os
32 | import time
33 |
34 | from attribution import main_attribution
35 | from biascorrection import main_biascorrection
36 | from diagnosis import main_diagnosis
37 | from flex2traj import main_flex2traj
38 | from hamsterfunctions import *
39 |
40 | ###########################################################################
41 | ##--- FUNCTIONS + COMMAND LINE ARGUMENTS
42 | ###########################################################################
43 |
44 | ## COMMAND LINE ARGUMENTS
45 | # read command line arguments (dates, thresholds and other flags)
46 | args = read_cmdargs()
47 | verbose = args.verbose
48 | print(printsettings(args))
49 |
50 | # just waiting a random number of seconds (max. 30s)
51 | # to avoid overlap of path.exist and makedirs between parallel jobs (any better solution?)
52 | if args.waiter:
53 | waiter = random.randint(0, 30)
54 | time.sleep(waiter)
55 |
56 | ###########################################################################
57 | ##--- PATHS
58 | ###########################################################################
59 |
60 | ## determine working directory
61 | wpath = os.getcwd()
62 | os.chdir(wpath)
63 |
64 | ## load input and output paths & input file name base(s)
65 | print("Using paths from: " + wpath + "/" + args.pathfile)
66 | content = imp.load_source("", wpath + "/" + args.pathfile) # load like a python module
67 | path_refp = check_paths(content, "path_ref_p")
68 | path_refe = check_paths(content, "path_ref_e")
69 | path_refh = check_paths(content, "path_ref_h")
70 | path_reft = check_paths(content, "path_ref_t")
71 | path_orig = check_paths(content, "path_orig")
72 | path_diag = check_paths(content, "path_diag")
73 | path_attr = check_paths(content, "path_attr")
74 | path_bias = check_paths(content, "path_bias")
75 | maskfile = check_paths(content, "maskfile")
76 | path_f2t_diag = check_paths(content, "path_f2t_diag")
77 | base_f2t_diag = check_paths(content, "base_f2t_diag")
78 | path_f2t_traj = check_paths(content, "path_f2t_traj")
79 | base_f2t_traj = check_paths(content, "base_f2t_traj")
80 |
81 | # create output directories if they do not exist (in dependency of step)
82 | if args.steps == 0 and args.ctraj_len == 0 and not os.path.exists(path_f2t_diag):
83 | os.makedirs(path_f2t_diag)
84 | os.makedirs(path_f2t_diag + "/" + str(args.ryyyy))
85 | if args.steps == 0 and args.ctraj_len > 0 and not os.path.exists(path_f2t_traj):
86 | os.makedirs(path_f2t_traj)
87 | os.makedirs(path_f2t_traj + "/" + str(args.ryyyy))
88 | if args.steps == 1 and not os.path.exists(path_diag):
89 | os.makedirs(path_diag)
90 | if args.steps == 2 and not os.path.exists(path_attr):
91 | os.makedirs(path_attr)
92 | if args.steps == 3 and not os.path.exists(path_bias):
93 | os.makedirs(path_bias)
94 |
95 | ###########################################################################
96 | ##--- MAIN
97 | ###########################################################################
98 | ## (3) RUN main scripts with arguments
99 | if args.steps == 0:
100 | if args.ctraj_len == 0:
101 | path_f2t = path_f2t_diag
102 | base_f2t = base_f2t_diag
103 | elif args.ctraj_len > 0:
104 | path_f2t = path_f2t_traj
105 | base_f2t = base_f2t_traj
106 | main_flex2traj(
107 | ryyyy=args.ryyyy,
108 | ayyyy=args.ayyyy,
109 | am=args.am,
110 | ad=args.ad,
111 | tml=args.ctraj_len,
112 | maskfile=maskfile,
113 | maskval=args.maskval,
114 | idir=path_orig,
115 | odir=path_f2t,
116 | fout=base_f2t,
117 | verbose=args.verbose,
118 | )
119 |
120 | if args.steps == 1:
121 | main_diagnosis(
122 | ryyyy=args.ryyyy,
123 | ayyyy=args.ayyyy,
124 | am=args.am,
125 | ad=args.ad,
126 | ipath=path_f2t_diag,
127 | ifile_base=base_f2t_diag,
128 | opath=path_diag,
129 | ofile_base=args.expid,
130 | mode=args.mode,
131 | gres=args.gres,
132 | verbose=args.verbose,
133 | veryverbose=args.veryverbose,
134 | fproc_npart=args.fproc_npart,
135 | # E criteria
136 | fevap=args.fevap,
137 | cevap_dqv=args.cevap_dqv,
138 | fevap_drh=args.fevap_drh,
139 | cevap_drh=args.cevap_drh,
140 | cevap_hgt=args.cevap_hgt,
141 | # P criteria
142 | fprec=args.fprec,
143 | cprec_dqv=args.cprec_dqv,
144 | cprec_rh=args.cprec_rh,
145 | # H criteria
146 | fheat=args.fheat,
147 | cheat_dtemp=args.cheat_dtemp,
148 | fheat_drh=args.fheat_drh,
149 | cheat_drh=args.cheat_drh,
150 | cheat_hgt=args.cheat_hgt,
151 | fheat_rdq=args.fheat_rdq,
152 | cheat_rdq=args.cheat_rdq,
153 | # pbl and height criteria
154 | cpbl_method=args.cpbl_method,
155 | cpbl_strict=args.cpbl_strict,
156 | cpbl_factor=args.cpbl_factor,
157 | refdate=args.refdate,
158 | fwrite_netcdf=args.write_netcdf,
159 | precision=args.precision,
160 | ftimethis=args.timethis,
161 | fvariable_mass=args.variable_mass,
162 | strargs=printsettings(args),
163 | )
164 |
165 | if args.steps == 2:
166 | main_attribution(
167 | ryyyy=args.ryyyy,
168 | ayyyy=args.ayyyy,
169 | am=args.am,
170 | ad=args.ad,
171 | ipath=path_f2t_traj,
172 | ifile_base=base_f2t_traj,
173 | ipath_f2t=path_orig,
174 | opath=path_attr,
175 | ofile_base=args.expid,
176 | mode=args.mode,
177 | gres=args.gres,
178 | maskfile=maskfile,
179 | maskval=args.maskval,
180 | verbose=args.verbose,
181 | veryverbose=args.veryverbose,
182 | ctraj_len=args.ctraj_len,
183 | # E criteria
184 | cevap_dqv=args.cevap_dqv,
185 | fevap_drh=args.fevap_drh,
186 | cevap_drh=args.cevap_drh,
187 | cevap_hgt=args.cevap_hgt,
188 | # P criteria
189 | cprec_dqv=args.cprec_dqv,
190 | cprec_rh=args.cprec_rh,
191 | # H criteria
192 | cheat_dtemp=args.cheat_dtemp,
193 | fheat_drh=args.fheat_drh,
194 | cheat_drh=args.cheat_drh,
195 | cheat_hgt=args.cheat_hgt,
196 | fheat_rdq=args.fheat_rdq,
197 | cheat_rdq=args.cheat_rdq,
198 | # pbl and height criteria
199 | cpbl_method=args.cpbl_method,
200 | cpbl_strict=args.cpbl_strict,
201 | cpbl_factor=args.cpbl_factor,
202 | refdate=args.refdate,
203 | fwrite_netcdf=args.write_netcdf,
204 | precision=args.precision,
205 | ftimethis=args.timethis,
206 | fdry=args.fallingdry,
207 | fmemento=args.memento,
208 | mattribution=args.mattribution,
209 | crandomnit=args.ratt_nit,
210 | randatt_forcall=args.ratt_forcall,
211 | randatt_wloc=args.ratt_wloc,
212 | explainp=args.explainp,
213 | fdupscale=args.dupscale,
214 | fmupscale=args.mupscale,
215 | fvariable_mass=args.variable_mass,
216 | fwritestats=args.writestats,
217 | strargs=printsettings(args),
218 | )
219 |
220 | if args.steps == 3:
221 | main_biascorrection(
222 | ryyyy=args.ryyyy,
223 | ayyyy=args.ayyyy,
224 | am=args.am,
225 | opath_attr=path_attr,
226 | opath_diag=path_diag,
227 | ipath_refp=path_refp,
228 | ipath_refe=path_refe,
229 | ipath_reft=path_reft,
230 | ipath_refh=path_refh,
231 | opath=path_bias,
232 | ofile_base=args.expid, # output
233 | mode=args.mode,
234 | maskfile=maskfile,
235 | maskval=args.maskval,
236 | verbose=args.verbose,
237 | veryverbose=args.veryverbose,
238 | fuseattp=args.bc_useattp,
239 | bcscale=args.bc_time,
240 | pref_data=args.pref_data,
241 | eref_data=args.eref_data,
242 | href_data=args.href_data,
243 | faggbwtime=args.bc_aggbwtime,
244 | fbc_e2p=args.bc_e2p,
245 | fbc_e2p_p=args.bc_e2p_p,
246 | fbc_e2p_e=args.bc_e2p_e,
247 | fbc_e2p_ep=args.bc_e2p_ep,
248 | fbc_t2p_ep=args.bc_t2p_ep,
249 | fbc_had=args.bc_had,
250 | fbc_had_h=args.bc_had_h,
251 | fdebug=args.debug,
252 | fwrite_netcdf=args.write_netcdf,
253 | fwrite_month=args.write_month,
254 | fwritestats=args.writestats,
255 | precision=args.precision,
256 | strargs=printsettings(args),
257 | )
258 |
--------------------------------------------------------------------------------
/src/diagnosis.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #
4 | # Main script to diagnose fluxes of two-step trajectories from a Lagrangian model,
5 | # such as FLEXPART. This script diagnoses evaporation (E) and precipitation (P) based
6 | # on the change in specific humidity (q), and sensible heat (H) based on the potential
7 | # temperature. Diagnosis is performed globally.
8 | #
9 | # This file is part of HAMSTER,
10 | # originally created by Dominik Schumacher, Jessica Keune, Diego G. Miralles
11 | # at the Hydro-Climate Extremes Lab, Department of Environment, Ghent University
12 | #
13 | # https://github.com/h-cel/hamster
14 | #
15 | # HAMSTER is free software: you can redistribute it and/or modify
16 | # it under the terms of the GNU General Public License as published by
17 | # the Free Software Foundation v3.
18 | #
19 | # HAMSTER is distributed in the hope that it will be useful,
20 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
21 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 | # GNU General Public License for more details.
23 | #
24 | # You should have received a copy of the GNU General Public License
25 | # along with HAMSTER. If not, see .
26 | #
27 |
28 | import argparse
29 | import calendar
30 | import csv
31 | import fnmatch
32 | import gzip
33 | import imp
34 | import math
35 | import os
36 | import random
37 | import re
38 | import struct
39 | import sys
40 | import time
41 | import timeit
42 | import warnings
43 | from datetime import date, datetime, timedelta
44 | import datetime as datetime
45 | from functools import reduce
46 | from math import acos, atan, atan2, cos, floor, sin, sqrt
47 |
48 | import h5py
49 | import netCDF4 as nc4
50 | import numpy as np
51 | import pandas as pd
52 | from dateutil.relativedelta import relativedelta
53 |
54 | from hamsterfunctions import *
55 |
56 |
57 | def main_diagnosis(
58 | ryyyy,
59 | ayyyy,
60 | am,
61 | ad,
62 | ipath,
63 | ifile_base,
64 | opath,
65 | ofile_base,
66 | mode,
67 | gres,
68 | verbose,
69 | veryverbose,
70 | fproc_npart,
71 | # E criteria
72 | fevap,
73 | cevap_dqv,
74 | fevap_drh,
75 | cevap_drh,
76 | cevap_hgt,
77 | # P criteria
78 | fprec,
79 | cprec_dqv,
80 | cprec_rh,
81 | # H criteria
82 | fheat,
83 | cheat_dtemp,
84 | fheat_drh,
85 | cheat_drh,
86 | cheat_hgt,
87 | fheat_rdq,
88 | cheat_rdq,
89 | # pbl and height criteria
90 | cpbl_method,
91 | cpbl_strict,
92 | cpbl_factor,
93 | refdate,
94 | fwrite_netcdf,
95 | precision,
96 | ftimethis,
97 | fvariable_mass,
98 | strargs,
99 | ):
100 |
101 | ## Perform consistency checks
102 | if mode == "oper" and precision == "f4":
103 | precision = "f8"
104 | print(
105 | "Single precision should only be used for testing. Reset to double-precision."
106 | )
107 | if fvariable_mass and not fproc_npart:
108 | fproc_npart = True
109 | print("Have to process all parcels for variable mass...")
110 |
111 | ## Construct precise input and storage paths
112 | mainpath = ipath + str(ryyyy) + "/"
113 | ofilename = (
114 | str(ofile_base)
115 | + "_diag_r"
116 | + str(ryyyy)[-2:]
117 | + "_"
118 | + str(ayyyy)
119 | + "-"
120 | + str(am).zfill(2)
121 | + ".nc"
122 | )
123 | ofile = opath + "/" + ofilename
124 |
125 | if verbose:
126 | disclaimer()
127 | print("\n PROCESSING: \t", ayyyy, "-", str(am).zfill(2))
128 | print(
129 | "\n============================================================================================================"
130 | )
131 | print(" ! using input path: \t", ipath)
132 | print(" ! using variable mass: \t" + str(fvariable_mass))
133 | if fvariable_mass:
134 | print(" \t ! reference date for number of particles: \t" + str(refdate))
135 | if fwrite_netcdf:
136 | print(" ! writing netcdf output: \t" + str(fwrite_netcdf))
137 | print(" \t ! with grid resolution: \t", str(gres))
138 | print(" \t ! output file: \t", opath + "/" + ofilename)
139 | print(" ! using internal timer: \t" + str(ftimethis))
140 | print(" ! using mode: \t" + str(mode))
141 | print(
142 | "\n============================================================================================================"
143 | )
144 | print(
145 | "\n============================================================================================================"
146 | )
147 |
148 | ## Start timer
149 | if ftimethis:
150 | megatic = timeit.default_timer()
151 |
152 | ## Prepare grid
153 | glon, glat, garea = makegrid(resolution=gres)
154 |
155 | ## Handle dates
156 | date_bgn = datetime.datetime.strptime(
157 | str(ayyyy) + "-" + str(am).zfill(2) + "-" + str(ad).zfill(2), "%Y-%m-%d"
158 | )
159 | # get end date (always 00 UTC of the 1st of the next month)
160 | nayyyy = (date_bgn + relativedelta(months=1)).strftime("%Y")
161 | nam = (date_bgn + relativedelta(months=1)).strftime("%m")
162 | date_end = datetime.datetime.strptime(
163 | str(nayyyy) + "-" + str(nam).zfill(2) + "-01-00", "%Y-%m-%d-%H"
164 | )
165 | timestep = datetime.timedelta(hours=6)
166 | date_seq = []
167 | fdate_seq = []
168 | mfdate_seq = []
169 | idate = date_bgn + timestep
170 | while idate <= date_end:
171 | date_seq.append(idate.strftime("%Y%m%d%H"))
172 | fdate_seq.append(idate)
173 | mfdate_seq.append(idate - timestep / 2) # -dt/2 for backward run
174 | idate += timestep
175 | ntime = len(date_seq)
176 |
177 | ##-- TESTMODE
178 | if mode == "test":
179 | ntime = 12
180 | date_seq = date_seq[0:ntime]
181 | fdate_seq = fdate_seq[0:ntime]
182 | mfdate_seq = mfdate_seq[0:ntime]
183 |
184 | ## Create empty netcdf file (to be filled)
185 | if fwrite_netcdf:
186 | writeemptync(
187 | ofile,
188 | mfdate_seq,
189 | glon,
190 | glat,
191 | strargs,
192 | precision,
193 | fproc_npart,
194 | fprec,
195 | fevap,
196 | fheat,
197 | )
198 |
199 | # Read in reference distribution of parcels
200 | if fvariable_mass:
201 | print(
202 | " \n !!! WARNING !!! With this version, variable mass can only be applied to 01_diagnosis -- it cannot be used consistently for all steps yet! \n"
203 | )
204 | ary_rnpart = get_refnpart(refdate=refdate, ryyyy=ryyyy, glon=glon, glat=glat)
205 |
206 | ##-- LOOP THROUGH FILES
207 | if verbose:
208 | print("\n=== \t Start main program: 01_diagnosis...\n")
209 |
210 | for ix in range(ntime):
211 |
212 | if verbose:
213 | print(
214 | "--------------------------------------------------------------------------------------"
215 | )
216 | print("Processing " + str(fdate_seq[ix]))
217 |
218 | ## Read date related trajectories -> ary is of dimension (ntrajlen x nparticles x nvars)
219 | ary = readtraj(
220 | idate=date_seq[ix],
221 | ipath=ipath + "/" + str(ryyyy),
222 | ifile_base=ifile_base,
223 | verbose=verbose,
224 | )
225 | ary = calc_allvars(ary)
226 | dq = trajparceldiff(ary[:, :, 5], "diff")
227 | mrh = np.apply_over_axes(np.mean, ary[:, :, 10], 0)
228 | dTH = trajparceldiff(ary[:, :, 11], "diff")
229 |
230 | nparticle = ary.shape[1]
231 | if verbose:
232 | print(
233 | " TOTAL: " + str(date_seq[ix]) + " has " + str(nparticle) + " parcels"
234 | )
235 |
236 | ## TESTMODE: less parcels
237 | if mode == "test":
238 | ntot = range(10000, 10100)
239 | else:
240 | ntot = range(nparticle)
241 |
242 | # smalltic = timeit.default_timer()
243 |
244 | ##-- LOOP OVER PARCELS TO DIAGNOSE P, E, H (and npart) and assign to grid
245 | if fproc_npart:
246 | # get midpoint indices on grid from ary
247 | imidi = get_all_midpindices(ary, glon, glat)
248 | ary_npart = gridall(
249 | imidi[:, 1], imidi[:, 0], np.repeat(1, nparticle), glon=glon, glat=glat
250 | )
251 | elif not fproc_npart:
252 | # currently just writing empty array ... to be changed
253 | ary_npart = np.zeros(shape=(glat.size, glon.size))
254 |
255 | ## Precipitation
256 | if fprec:
257 | fdqv = np.where(dq[0, :] < cprec_dqv)
258 | frh = np.where(mrh[0, :] > cprec_rh)
259 | isprec = np.intersect1d(fdqv, frh)
260 | p_ary = ary[:, isprec, :]
261 | pmidi = get_all_midpindices(p_ary, glon, glat)
262 | # grid
263 | ary_prec = gridall(
264 | pmidi[:, 1], pmidi[:, 0], dq[:, isprec][0], glon=glon, glat=glat
265 | )
266 | ary_pnpart = gridall(
267 | pmidi[:, 1],
268 | pmidi[:, 0],
269 | np.repeat(1, isprec.size),
270 | glon=glon,
271 | glat=glat,
272 | )
273 |
274 | ## Evaporation
275 | if fevap:
276 | isevap = filter_for_evap_parcels(
277 | ary,
278 | dq,
279 | cpbl_method,
280 | cpbl_strict,
281 | cpbl_factor,
282 | cevap_hgt,
283 | fevap_drh,
284 | cevap_drh,
285 | cevap_dqv,
286 | veryverbose,
287 | )
288 | e_ary = ary[:, isevap, :]
289 | emidi = get_all_midpindices(e_ary, glon, glat)
290 | # grid
291 | ary_evap = gridall(
292 | emidi[:, 1], emidi[:, 0], dq[:, isevap][0], glon=glon, glat=glat
293 | )
294 | ary_enpart = gridall(
295 | emidi[:, 1],
296 | emidi[:, 0],
297 | np.repeat(1, isevap.size),
298 | glon=glon,
299 | glat=glat,
300 | )
301 |
302 | ## Sensible heat
303 | if fheat:
304 | isheat = filter_for_heat_parcels(
305 | ary,
306 | dTH,
307 | cpbl_method,
308 | cpbl_strict,
309 | cpbl_factor,
310 | cheat_hgt,
311 | fheat_drh,
312 | cheat_drh,
313 | cheat_dtemp,
314 | fheat_rdq,
315 | cheat_rdq,
316 | veryverbose,
317 | )
318 | h_ary = ary[:, isheat, :]
319 | hmidi = get_all_midpindices(h_ary, glon, glat)
320 | # grid
321 | ary_heat = gridall(
322 | hmidi[:, 1], hmidi[:, 0], dTH[:, isheat][0], glon=glon, glat=glat
323 | )
324 | ary_hnpart = gridall(
325 | hmidi[:, 1],
326 | hmidi[:, 0],
327 | np.repeat(1, isheat.size),
328 | glon=glon,
329 | glat=glat,
330 | )
331 |
332 | # smalltoc = timeit.default_timer()
333 | # print("=== \t All parcels: ",str(round(smalltoc-smalltic, 2)),"seconds \n")
334 |
335 | ## Convert units
336 | if verbose:
337 | print(" * Converting units...")
338 | if fprec:
339 | ary_prec[:, :] = convertunits(ary_prec[:, :], garea, "P")
340 | if fevap:
341 | ary_evap[:, :] = convertunits(ary_evap[:, :], garea, "E")
342 | if fheat:
343 | ary_heat[:, :] = convertunits(ary_heat[:, :], garea, "H")
344 |
345 | ## Scale with parcel mass
346 | if fvariable_mass:
347 | print(
348 | " !!! WARNING !!! With this version, variable mass can only be applied to 01_diagnosis -- it cannot be used consistently for all steps yet!"
349 | )
350 | if verbose:
351 | print(" * Applying variable mass...")
352 | if fprec:
353 | ary_prec[:, :] = scale_mass(ary_prec[:, :], ary_npart[:, :], ary_rnpart)
354 | if fevap:
355 | ary_evap[:, :] = scale_mass(ary_evap[:, :], ary_npart[:, :], ary_rnpart)
356 | if fheat:
357 | ary_heat[:, :] = scale_mass(ary_heat[:, :], ary_npart[:, :], ary_rnpart)
358 |
359 | # write to netcdf file
360 | if fwrite_netcdf:
361 | # writenc(ofile,ix,ary_prec[:,:],ary_evap[:,:],ary_heat[:,:],ary_npart[:,:],ary_pnpart[:,:],ary_enpart[:,:],ary_hnpart[:,:])
362 | if fproc_npart:
363 | writenc(ofile, ix, ary_npart[:, :], "n_part")
364 | if fprec:
365 | writenc(ofile, ix, ary_prec[:, :], "P")
366 | writenc(ofile, ix, ary_pnpart[:, :], "P_n_part")
367 | if fevap:
368 | writenc(ofile, ix, ary_evap[:, :], "E")
369 | writenc(ofile, ix, ary_enpart[:, :], "E_n_part")
370 | if fheat:
371 | writenc(ofile, ix, ary_heat[:, :], "H")
372 | writenc(ofile, ix, ary_hnpart[:, :], "H_n_part")
373 |
374 | ## re-init. arrays
375 | if fproc_npart:
376 | ary_npart[:, :] = 0
377 | if fprec:
378 | ary_pnpart[:, :] = 0
379 | ary_prec[:, :] = 0
380 | if fevap:
381 | ary_enpart[:, :] = 0
382 | ary_evap[:, :] = 0
383 | if fheat:
384 | ary_hnpart[:, :] = 0
385 | ary_heat[:, :] = 0
386 |
387 | if ftimethis:
388 | megatoc = timeit.default_timer()
389 | if verbose:
390 | print(
391 | "\n=== \t End main program (total runtime so far: ",
392 | str(round(megatoc - megatic, 2)),
393 | "seconds) \n",
394 | )
395 |
396 | if verbose:
397 | if fwrite_netcdf:
398 | print("\n Successfully written: " + ofile + " !")
399 |
--------------------------------------------------------------------------------
/src/validation.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | """
4 | MAIN FUNCTION TO VALIDATE
5 | """
6 |
7 | ###########################################################################
8 | ##--- MODULES
9 | ###########################################################################
10 |
11 | import argparse
12 | import calendar
13 | import csv
14 | import datetime
15 | import fnmatch
16 | import gzip
17 | import imp
18 | import math
19 | import os
20 | import random
21 | import re
22 | import struct
23 | import sys
24 | import time
25 | import timeit
26 | import warnings
27 | from datetime import date, datetime, timedelta
28 | from functools import reduce
29 | from math import acos, atan, atan2, cos, floor, sin, sqrt
30 |
31 | import h5py
32 | import netCDF4 as nc4
33 | import numpy as np
34 | import pandas as pd
35 | from dateutil.relativedelta import relativedelta
36 |
37 | ###########################################################################
38 | ##--- FUNCTIONS + COMMAND LINE ARGUMENTS
39 | ###########################################################################
40 |
41 | ## (1) LOADING FUNCTIONS
42 | exec(open("hamsterfunctions.py").read())
43 |
44 | ## (2) COMMAND LINE ARGUMENTS
45 | # read command line arguments (dates, thresholds and other flags)
46 | args = read_cmdargs()
47 | verbose = args.verbose
48 | print(printsettings(args))
49 |
50 | # just waiting a random number of seconds (max. 30s)
51 | # to avoid overlap of path.exist and makedirs between parallel jobs (any better solution?)
52 | if args.waiter:
53 | waiter = random.randint(0, 30)
54 | time.sleep(waiter)
55 |
56 | ###########################################################################
57 | ##--- PATHS
58 | ###########################################################################
59 |
60 | ## determine working directory
61 | wpath = os.getcwd()
62 | os.chdir(wpath)
63 |
64 | ## load input and output paths & input file name base(s)
65 | print("Using paths from: " + wpath + "/" + args.pathfile)
66 | content = imp.load_source("", wpath + "/" + args.pathfile) # load like a python module
67 | path_refp = content.path_ref_p
68 | path_refe = content.path_ref_e
69 | path_refh = content.path_ref_h
70 | path_diag = content.path_diag
71 |
72 | ###########################################################################
73 | ##--- ADDITIONAL VALIDATION FUNCTIONS
74 | ###########################################################################
75 |
76 |
77 | def contingency_table(ref, mod, thresh=0):
78 | # creates a contingency table based on 1D np.arrays
79 | # ATTN: mod is already binary data, i.e. 1 = detected; 0 = not detected
80 | ieventobs = np.where(ref > thresh)[0]
81 | ineventobs = np.where(ref <= thresh)[0]
82 | a = len(np.where(mod[ieventobs] >= 1)[0]) # hits
83 | b = len(np.where(mod[ineventobs] >= 1)[0]) # false alarms
84 | c = len(np.where(mod[ieventobs] < 1)[0]) # misses
85 | d = len(np.where(mod[ineventobs] < 1)[0]) # correct negatives
86 | return {"a": a, "b": b, "c": c, "d": d}
87 |
88 |
89 | def try_div(x, y):
90 | try:
91 | return x / y
92 | except ZeroDivisionError:
93 | return 0
94 |
95 |
96 | def calc_ctab_measures(cdict):
97 | # calculates common contingency table scores
98 | # scores following definitions from https://www.cawcr.gov.au/projects/verification/
99 | a = cdict["a"] # hits
100 | b = cdict["b"] # false alarms
101 | c = cdict["c"] # misses
102 | d = cdict["d"] # correct negatives
103 | # calculate scores
104 | acc = try_div(a + d, a + b + c + d) # accuracy
105 | far = try_div(b, a + b) # false alarm ratio
106 | fbias = try_div(a + b, a + c) # frequency bias
107 | pod = try_div(a, a + c) # probability of detection (hit rate)
108 | pofd = try_div(b, b + d) # probability of false detection (false alarm rate)
109 | sr = try_div(a, a + b) # success ratio
110 | ts = try_div(a, a + c + b) # threat score (critical success index)
111 | a_random = try_div((a + c) * (a + b), a + b + c + d)
112 | ets = try_div(
113 | (a - a_random), (a + b + c + a_random)
114 | ) # equitable threat score (gilbert skill score)
115 | pss = pod - pofd # peirce's skill score (true skill statistic)
116 | odr = try_div(a * d, c * b) # odd's ratio
117 | return {
118 | "acc": acc,
119 | "far": far,
120 | "fbias": fbias,
121 | "pod": pod,
122 | "pofd": pofd,
123 | "sr": sr,
124 | "pss": pss,
125 | "odr": odr,
126 | }
127 |
128 |
129 | def init_netcdf(ofile, lat, lon):
130 | print(" Writing output file: " + str(ofile))
131 | ncf = nc4.Dataset(ofile, "w", format="NETCDF4")
132 | ncf.createDimension("lat", lat.size)
133 | ncf.createDimension("lon", lon.size)
134 | latitudes = ncf.createVariable("lat", "f8", "lat")
135 | longitudes = ncf.createVariable("lon", "f8", "lon")
136 | ncf.title = "Validation statistics"
137 | ncf.description = ""
138 | today = datetime.datetime.now()
139 | ncf.history = "Created " + today.strftime("%d/%m/%Y %H:%M:%S")
140 | ncf.institution = (
141 | "Hydro-Climate Extremes Laboratory (H-CEL), Ghent University, Ghent, Belgium"
142 | )
143 | ncf.source = "Validation statistics for HAMSTER"
144 | latitudes.units = "degrees_north"
145 | longitudes.units = "degrees_east"
146 | latitudes[:] = lat[:]
147 | longitudes[:] = lon[:]
148 | ncf.close()
149 |
150 |
151 | def calc_stats(mdata, mndata, rdata, thresh=0.001):
152 | bias = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
153 | acc = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
154 | pod = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
155 | pofd = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
156 | pss = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
157 | fbias = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
158 | odr = np.zeros(shape=(mdata.shape[1], mdata.shape[2]))
159 | print(" Processing...")
160 | for y in range(rdata.shape[1]):
161 | progress = 100 * y / (rdata.shape[1] - 1)
162 | if verbose and round(progress) in range(10, 100, 5):
163 | print(" ..." + str(round(progress)) + "%...")
164 | for x in range(rdata.shape[2]):
165 | myctab = calc_ctab_measures(
166 | contingency_table(rdata[:, y, x], mndata[:, y, x], thresh=thresh)
167 | )
168 | acc[y, x] = myctab["acc"]
169 | pod[y, x] = myctab["pod"]
170 | pofd[y, x] = myctab["pofd"]
171 | pss[y, x] = myctab["pss"]
172 | fbias[y, x] = myctab["fbias"]
173 | odr[y, x] = myctab["odr"]
174 | diff = mdata[:, y, x] - rdata[:, y, x]
175 | bias[y, x] = np.nanmean(diff)
176 | return {
177 | "acc": acc,
178 | "fbias": fbias,
179 | "pod": pod,
180 | "pofd": pofd,
181 | "pss": pss,
182 | "odr": odr,
183 | "diff": diff,
184 | "bias": bias,
185 | }
186 |
187 |
188 | def write_to_netcdf(ofile, vals, var="P"):
189 | print(
190 | " Writing " + str(var) + " validation statistics to output file: " + str(ofile)
191 | )
192 |
193 | # create netCDF4 instance
194 | ncf = nc4.Dataset(ofile, "r+", format="NETCDF4")
195 |
196 | # create variables
197 | ncacc = ncf.createVariable(str(var) + "_acc", "f8", ("lat", "lon"))
198 | ncpod = ncf.createVariable(str(var) + "_pod", "f8", ("lat", "lon"))
199 | ncpofd = ncf.createVariable(str(var) + "_pofd", "f8", ("lat", "lon"))
200 | ncpss = ncf.createVariable(str(var) + "_pss", "f8", ("lat", "lon"))
201 | ncodr = ncf.createVariable(str(var) + "_odr", "f8", ("lat", "lon"))
202 | ncfbias = ncf.createVariable(str(var) + "_fbias", "f8", ("lat", "lon"))
203 | ncbias = ncf.createVariable(str(var) + "_bias", "f8", ("lat", "lon"))
204 |
205 | # set attributes
206 | ncpod.long_name = str(var) + ": probability of detection (hit rate)"
207 | ncacc.long_name = str(var) + ": accuracy"
208 | ncbias.long_name = str(var) + ": bias"
209 | ncfbias.long_name = str(var) + ": frequency bias"
210 | ncpofd.long_name = str(var) + ": probability of false detection (false alarm rate)"
211 | ncpss.long_name = str(var) + ": peirce´s skill score (true skill statistic)"
212 | ncodr.long_name = str(var) + ": odd`s ratio"
213 |
214 | # write to netcdf
215 | ncodr[:] = vals["odr"][:]
216 | ncpod[:] = vals["pod"][:]
217 | ncpss[:] = vals["pss"][:]
218 | ncpofd[:] = vals["pofd"][:]
219 | ncacc[:] = vals["acc"][:]
220 | ncpofd[:] = vals["pofd"][:]
221 | ncfbias[:] = vals["fbias"][:]
222 | ncbias[:] = vals["bias"][:]
223 |
224 | # close file
225 | ncf.close()
226 |
227 |
228 | ###########################################################################
229 | ###########################################################################
230 | ##--- MAIN
231 | ###########################################################################
232 | ###########################################################################
233 |
234 |
235 | def main_validation(
236 | ryyyy,
237 | ayyyy,
238 | am,
239 | opath_diag, # diagnosis (output)
240 | ipath_refp,
241 | ipath_refe,
242 | ipath_refh,
243 | opath,
244 | ofile_base, # output
245 | fprec,
246 | fevap,
247 | fheat,
248 | verbose,
249 | veryverbose,
250 | fwrite_netcdf,
251 | ):
252 |
253 | ## construct precise input and storage paths
254 | ofilename = (
255 | str(ofile_base)
256 | + "_diag_r"
257 | + str(ryyyy)[-2:]
258 | + "_"
259 | + str(ayyyy)
260 | + "-"
261 | + str(am).zfill(2)
262 | + "_validation.nc"
263 | )
264 | ofile = opath + "/" + ofilename
265 |
266 | #### DISCLAIMER
267 | if verbose:
268 | disclaimer()
269 | print("\n PROCESSING: \t", ayyyy, "-", str(am).zfill(2) + "\n")
270 | ## Resets & consistency checks
271 | if verbose:
272 | print(" ! using input paths: \t")
273 | print("\t" + str(opath_diag))
274 | print(" ! using reference data from: \t")
275 | print("\t" + str(ipath_refp))
276 | print("\t" + str(ipath_refe))
277 | print("\t" + str(ipath_refh))
278 | print(" ! writing netcdf output: \t")
279 | print("\t" + str(ofile))
280 | print(
281 | "\n============================================================================================================"
282 | )
283 | print("\n")
284 |
285 | ##--1. load diagnosis data ####################################################
286 | if verbose:
287 | print(" * Reading diagnosis data...")
288 |
289 | # read concatenated data
290 | ifilename = (
291 | str(opath_diag)
292 | + "/"
293 | + str(ofile_base)
294 | + "_diag_r"
295 | + str(ryyyy)[-2:]
296 | + "_"
297 | + str(ayyyy)
298 | + "-"
299 | + str(am).zfill(2)
300 | + ".nc"
301 | )
302 | with nc4.Dataset(ifilename, mode="r") as f:
303 | idate_seq = nc4.num2date(f["time"][:], f["time"].units, f["time"].calendar)
304 | totlats, totlons = read_diagdata(
305 | opath_diag, ofile_base, ryyyy, idate_seq, var="grid"
306 | )
307 | glon, glat, garea = makegrid(resolution=abs(totlats[0] - totlats[1]))
308 | ftime = read_diagdata(opath_diag, ofile_base, ryyyy, idate_seq, var="time")
309 | fdays = np.unique(cal2date(ftime))
310 | fyears = np.unique(date2year(ftime))
311 | if fevap:
312 | E = read_diagdata(opath_diag, ofile_base, ryyyy, idate_seq, var="E")
313 | E_npart = read_diagdata(
314 | opath_diag, ofile_base, ryyyy, idate_seq, var="E_n_part"
315 | )
316 | if fprec:
317 | P = -read_diagdata(opath_diag, ofile_base, ryyyy, idate_seq, var="P")
318 | P_npart = read_diagdata(
319 | opath_diag, ofile_base, ryyyy, idate_seq, var="P_n_part"
320 | )
321 | if fheat:
322 | H = read_diagdata(opath_diag, ofile_base, ryyyy, idate_seq, var="H")
323 | H_npart = read_diagdata(
324 | opath_diag, ofile_base, ryyyy, idate_seq, var="H_n_part"
325 | )
326 |
327 | # make sure we use daily aggregates
328 | if fdays.size != ftime.size:
329 | if fevap:
330 | Etot = convert2daily(E, ftime, fagg="sum")
331 | Enparttot = convert2daily(E_npart, ftime, fagg="sum")
332 | if fprec:
333 | Ptot = convert2daily(P, ftime, fagg="sum")
334 | Pnparttot = convert2daily(P_npart, ftime, fagg="sum")
335 | if fheat:
336 | Htot = convert2daily(H, ftime, fagg="mean")
337 | Hnparttot = convert2daily(H_npart, ftime, fagg="sum")
338 | else:
339 | if fevap:
340 | Etot = E
341 | Enparttot = E_npart
342 | if fprec:
343 | Ptot = P
344 | Pnparttot = P_npart
345 | if fheat:
346 | Htot = H
347 | Hnparttot = H_npart
348 |
349 | ##--2. load reference data ####################################################
350 | """
351 | this part is STRICTLY CODED FOR (12-hourly) ERA-INTERIM only (so far),
352 | and HARDCODED too
353 | """
354 | if verbose:
355 | print(" * Reading reference data...")
356 |
357 | if fevap:
358 | Eref, reflats, reflons = eraloader_12hourly(
359 | var="e",
360 | datapath=ipath_refe + "/E_1deg_",
361 | maskpos=True,
362 | maskneg=False,
363 | uptake_years=fyears,
364 | uptake_dates=fdays,
365 | lats=totlats,
366 | lons=totlons,
367 | )
368 | gridcheck(totlats, reflats, totlons, reflons)
369 |
370 | if fheat:
371 | Href, reflats, reflons = eraloader_12hourly(
372 | var="sshf",
373 | datapath=ipath_refh + "/H_1deg_",
374 | maskpos=True,
375 | maskneg=False,
376 | uptake_years=fyears,
377 | uptake_dates=fdays,
378 | lats=totlats,
379 | lons=totlons,
380 | )
381 | gridcheck(totlats, reflats, totlons, reflons)
382 |
383 | if fprec:
384 | Pref, reflats, reflons = eraloader_12hourly(
385 | var="tp",
386 | datapath=ipath_refp + "/P_1deg_",
387 | maskpos=False, # do NOT set this to True!
388 | maskneg=True,
389 | uptake_years=fyears,
390 | uptake_dates=fdays,
391 | lats=totlats,
392 | lons=totlons,
393 | )
394 | gridcheck(totlats, reflats, totlons, reflons)
395 |
396 | ##--3. validation #########################################################
397 | if verbose:
398 | print(" * Starting validation...")
399 |
400 | init_netcdf(ofile, totlats, totlons)
401 |
402 | if fprec:
403 | if verbose:
404 | print(" P")
405 | pstats = calc_stats(Ptot, Pnparttot, Pref, thresh=0.001)
406 | write_to_netcdf(ofile, pstats, var="P")
407 | if fevap:
408 | if verbose:
409 | print(" E")
410 | estats = calc_stats(Etot, Enparttot, Eref, thresh=0.001)
411 | write_to_netcdf(ofile, estats, var="E")
412 | if fheat:
413 | if verbose:
414 | print(" H")
415 | hstats = calc_stats(Htot, Hnparttot, Href, thresh=1)
416 | write_to_netcdf(ofile, hstats, var="H")
417 |
418 |
419 | ###########################################################################
420 | ##--- run main script
421 | ###########################################################################
422 | main_validation(
423 | ryyyy=args.ryyyy,
424 | ayyyy=args.ayyyy,
425 | am=args.am,
426 | opath_diag=path_diag,
427 | ipath_refp=path_refp,
428 | ipath_refe=path_refe,
429 | ipath_refh=path_refh,
430 | opath=path_diag,
431 | ofile_base=args.expid,
432 | fprec=args.fprec,
433 | fevap=args.fevap,
434 | fheat=args.fheat,
435 | verbose=args.verbose,
436 | veryverbose=args.veryverbose,
437 | fwrite_netcdf=args.write_netcdf,
438 | )
439 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # HAMSTER – a Heat And MoiSture Tracking framEwoRk
2 |
3 | **HAMSTER** is an open source software framework to trace heat and moisture through the atmosphere and establish (bias-corrected) source–receptor relationships, using output from a Lagrangian model. It has been developed within the DRY-2-DRY project at the Hydro-Climatic Extremes Laboratory (H-CEL) at Ghent University.
4 |
5 | [](https://zenodo.org/badge/latestdoi/372759352)
6 |
7 | - - - -
8 | ## What is HAMSTER?
9 | **HAMSTER** is a heat- and moisture tracking framwork to evaluate air parcel trajectories from a Lagrangian model, such as FLEXPART (Stohl et al., 2005) and to establish source–receptor relationships, such as the source regions of precipitation or heat. The current version of **HAMSTER** has been built using simulations from FLEXPART driven with ERA-Interim reanalysis data, but other simulations may be supported as well.
10 |
11 | **HAMSTER** consists of 4 modules,
12 |
13 | 0. flex2traj
14 | 1. Diagnosis
15 | 2. Attribution
16 | 3. Bias-correction
17 |
18 | which build up on each other. It is suggested to run them sequentially to obtain the most efficient and informative workflow. In the following, a short description of each module (step) is given.
19 |
20 | ### 0. flex2traj
21 | This module of **HAMSTER** reads in the instantaneous binary FLEXPART files, filters for a specific region (using a netcdf mask), constructs trajectories and writes them to a file.
22 |
23 | ### 1. Diagnosis
24 | The diagnosis part of **HAMSTER** identifies atmospheric fluxes of humidity (precipitation and evaporation) or heat (sensible heat flux) using trajectories constructed from FLEXPART binary data. There are several thresholds and criteria that can be set to reduce the bias and to increase the probability of detection for each flux. The output from this diagnosis step is used to bias correct source–receptor relationships.
25 |
26 | ### 2. Attribution
27 | The attribution part of **HAMSTER** constructs mass- and energy-conserving trajectories of heat and moisture (e.g. using a linear discounting of changes en route, or applying a random attribution for moisture), and establishes a first (biased) source–receptor relationship. The output of this step are, e.g., 4D netcdf files that illustrate the spatio-temporal origins of precipitation or *heat* arriving in the receptor region. Multiple options to construct these relationships are available.
28 |
29 | ### 3. Bias-correction
30 | The last module of **HAMSTER** uses information from the former two steps to bias-correct source–receptor relationships. Multiple options for bias-correction are available.
31 |
32 | - - - -
33 | ## What do I need to get and run HAMSTER?
34 |
35 | ### Prerequisites and Installation
36 | This section describes the prerequisites required to run HAMSTER, as well as the steps to install it.
37 |
38 | #### Prerequisites
39 | To run HAMSTER, you need
40 | * python 3
41 | * [git](https://git-scm.com/)
42 |
43 | and
44 | * [anaconda](https://www.anaconda.com/) (or similar to manage python packages)
45 |
46 | or
47 | * python 3 and the required modules on a cluster
48 |
49 | The main packages required to run **HAMSTER** are:
50 | ```bash
51 | import argparse
52 | import calendar
53 | import csv
54 | import fnmatch
55 | import gzip
56 | import imp
57 | import math
58 | import os
59 | import random
60 | import re
61 | import struct
62 | import sys
63 | import time
64 | import timeit
65 | import warnings
66 | import datetime
67 | import functools
68 |
69 | import h5py
70 | import netCDF4
71 | import numpy
72 | import pandas
73 | import dateutil
74 | ```
75 |
76 | In addition, to execute the full chain (all 4 modules) of **HAMSTER**, the following data sets are needed:
77 | * **Output from a Lagrangian model** that traces air parcels and their properties (driven with a reanalysis or output from a GCM/RCM)
78 | * **Reference data**; e.g., the reanalysis used to run FLEXPART and track parcels, or any other reference data set used for bias-correction
79 |
80 | To run **HAMSTER**, you will also need to create one file:
81 | * `paths.txt`
82 |
83 | which lists the paths where the above data is found and where output will be stored.
84 |
85 | The file `paths.txt` is not part of **HAMSTER**. The order in this file is arbitrary, but it has to contain paths for diagnosis, attribution and biascorrection and reference data:
86 | ```
87 | # This file contains all required paths and file names to run hamster; the order doesn't matter and paths can also be empty (if, e.g., not used)
88 |
89 | # MASK
90 | maskfile = "./flexpart_data/masks/mask.nc"
91 |
92 | # location of original flexpart files (untarred)
93 | ## (untar the original FLEXPART partposit_* files to this directory)
94 | path_orig = "./flexpart_data/orig"
95 |
96 | # location of the reference data used for bias correction (e.g., ERA-Interim)
97 | ## for each variable (P, E, H)
98 | path_ref_p = "./ERA-INTERIM/1x1/tp_12hourly"
99 | path_ref_e = "./ERA-INTERIM/1x1/evap_12hourly"
100 | path_ref_h = "./ERA-INTERIM/1x1/sshf_12hourly"
101 |
102 | # path and base name for global parcel diag data (t2)
103 | base_f2t_diag = "global"
104 | path_f2t_diag = "./flexpart_data/global/f2t_diag"
105 |
106 | # path and base name for parcel trajectory data
107 | base_f2t_traj = "bahamas_10d"
108 | path_f2t_traj = "./flexpart_data/bahamas/f2t_traj"
109 |
110 | # paths for processed data
111 | path_diag = "./flexpart_data/global/diag"
112 | path_attr = "./flexpart_data/bahamas/attr"
113 | path_bias = "./flexpart_data/bahamas/bias"
114 | ```
115 |
116 | #### Installation
117 | To install **HAMSTER**, do the following:
118 |
119 | 1. Clone the repository
120 | ```
121 | git clone https://github.com/h-cel/hamster
122 | cd hamster
123 | ```
124 | 2. Make an anaconda environment with the necessary python packages
125 | ```
126 | conda create -n _newenvironment_ --file requirements.txt
127 | ```
128 | or install the packages listed in requirements.txt in your local environment. Note, however, that due to different versions, some errors might occur. It is thus recommended to load preinstalled environments, such as the one above.
129 |
130 |
131 | - - - -
132 | ## How do I run HAMSTER?
133 |
134 | To run **HAMSTER**, change into the `src` directory
135 | ```
136 | cd src
137 | ```
138 | and run
139 | ```python
140 | python main.py
141 | ```
142 |
143 | Note that — without any flags — main.py is run with default values. Use
144 | ```python
145 | python main.py -h
146 | ```
147 | for more details on setting dates, thresholds and other options. All user-specific paths are set in `paths.txt`.
148 |
149 | ### Quick start.
150 | To run all steps sequentially with the default settings, please proceed as follows. First, extract global 2-step trajectories (`steps--0 --maskval -999 --ctraj_len 0`) and perform the global diagnosis of fluxes (`--steps 1`), using
151 | ```
152 | python main.py --steps 0 --maskval -999 --ctraj_len 0
153 | python main.py --steps 1
154 | ```
155 | Then, extract 10-day trajectories for a specific region (using a default maskvalue of 1 for the given maskfile; `--steps 0`), which are required to diagnose source regions of heat and moisture (`--steps 2`), and finally bias-correct these source regions using the global diagnosis data from above (`--steps 3`):
156 | ```
157 | python main.py --steps 0
158 | python main.py --steps 2
159 | python main.py --steps 3
160 | ```
161 |
162 | **The most important settings are**:
163 |
164 | - `--steps` to select the part of hamster that is being executed (e.g., `--steps 0` runs flex2traj, `--steps 1` runs the diagnosis, `--steps 2` performs the attribution, ...)
165 | - `--ayyyy` and `--am` to select the analysis year and month (e.g., `--ayyyy 2002 --am 1`)
166 | - `--expid` to name a setting (e.g., `--expid "ALL-ABL"`)
167 | - `--ctraj_len` to determine the maximum length of a trajectory for evaluation (e.g., `--ctraj_len 15` to select 15 days; 10 is the default)
168 | - `--maskval` to filter for a value other than 1 using the maskfile from `paths.txt`(e.g., `--maskval 5001`)
169 |
170 | - - - -
171 | ## What flags can I set?
172 |
173 | Here, we provide a short description of all flags that be used when running **HAMSTER**.
174 |
175 | #### The detection of fluxes (P, E and H) is set via a set of flags.
176 |
177 | The detection of **precipitation** is set via `-–cprec_dqv` and `–-cprec_rh`:
178 | - `-–cprec_dqv` to set the minimum loss of specific humidity (unit: kg kg-1; default: 0 kg kg-1)
179 | - `–-cprec_rh` to the minimum average relative humidity (unit: %; default: 80% following the convection scheme from Emanuel, 1991)
180 |
181 | The detection of **evaporation** is set via `--cevap_dqv`, `--fevap_drh`, `--cevap_drh`, `--cevap_hgt`:
182 | - `--cevap_dqv` to set a minimum increase in specific humidity (unit: kg kg-1; default: 0.2 kg kg-1)
183 | - `--cevap_hgt` to filter for specific heights (unit: m; default: 0)
184 | - `--fevap_drh` to filter for relative humidity changes (False/True; default: False) employing a maximum change of `--cevap_drh` (unit: %, default: 15%)
185 | - `--fallingdry` to shorten the trajectory length if a parcel *falls dry* (q<0.00005 kg kg-1; default: False)
186 |
187 | The detection of **sensible heat fluxes** is set via `--cheat_dtemp`, `--cheat_hgt`, `--fheat_drh`, `--cheat_drh`, `--fheat_rdq` and `--cheat_rdq`:
188 | - `--cheat_dtemp` to set a minimum increase in potential temperature (unit: K; default: 1 K)
189 | - `--cheat_hgt` to filter for specific heights (unit: m; default: 0)
190 | - `--fheat_drh` to filter for relative humidity changes (False/True; default: False) employing a maximum change of `--cheat_drh` (unit: %, default: 15%)
191 | - `--fheat_rdq` to filter for relative specific humidity changes (False/True; default: False) employing a maximum change of `--cheat_rdq` (expressed as delta(qv)/qv; unit: %; default: 10%)
192 |
193 | For E and H, the detection of fluxes can be limited to the atmospheric boundary layer (ABL):
194 | - `--cpbl_method` describes the method used to determine the ABL height between two instances. Options are `actual`, `mean` and `max` (default: `max`).
195 | - `--cpbl_factor` sets a factor that is used to increase (>1) or decrease (<1) the ABL heights (default: 1).
196 | - `--cpbl_strict` determines the 'strictness' of the ABL criteria (`--cpbl_strict 2` requires both instances to be within the actual/maximum/mean ABL, `--cpbl_strict 1` requires only one instance to be within the actual/mean/maximum ABL; `--cpbl_strict 0` does not filter for the ABL at all).
197 |
198 | Note that the ABL criteria are set consistently for E and H.
199 |
200 | Using these flags, a lot of the settings used in FLEXPART publications can be mimicked.
201 | - **Sodemann et al., 2008** for the detection of E (minimum threshold for dqv/dt; parcel has be reside in the vicinity of the ABL; note, however, that minor differences exists, e.g. through the application of the ABL factor 1.5 everywhere as in Keune and Miralles (2019), etc.):
202 | ```
203 | --cevap_dqv 0.0002 --fallingdry True --fevap_drh False --cpbl_method "mean" --cpbl_factor 1.5
204 | ```
205 | - **Fremme and Sodemann, 2019** and **Sodemann, 2020** (minimum threshold for dqv/dt; parcel does not have to reside in the ABL):
206 | ```
207 | --cevap_dqv 0.0001 --fevap_drh False --cpbl_strict 0
208 | ```
209 | - **Schumacher et al., 2019** for the detection of H (minimum potential temperature increase; limitation by change in specific humidity content; parcel has to be within the maximum ABL at both time steps):
210 | ```
211 | --cheat_dtemp 1 --cheat_rdq 10 --fheat_rdq True --fheat_drh False --cpbl_strict 2 --cpbl_method "max"
212 | ```
213 |
214 |
215 | #### A few more notes on flags...
216 | - Short flags available! See `python main.py -h` for details (e.g., `-–ayyyy`can be replaced with `-ay` etc.)
217 | - Bias correction is, per default, performed using ERA-Interim data (i.e., the base for FLEXPART simulations). However, alternative data sets for P, E and/or H can be employed using `--pref_data others`, `--eref_data others` and `--href_data others`, respectively. The data has to be placed in the respective paths of `paths.txt` (`path_ref_p`, `path_ref_e`, `path_ref_h`) and **have to be in the correct format (netcdf), in the correct resolution on the correct (grid set via `--resolution`) with daily (or subdaily) time steps, and in the correct units (mm d-1 and W m-2)**. If `others` is employed, all files with the year (`--ayyyy`) from the respective directory are read in and used for bias correction.
218 | - Analysis is performed on a monthly basis: for an independent analysis of months, the flag `--memento` is incorporated (default: True). This flag requires additional data of the previous month, that is extracted from the trajectories or, if not available from the trajectories, read in from the binary FLEXPART files in a preloop. Hence, the smoothest workflow is obtained if flex2traj dumps trajectories that are one day longer than what is needed in 02_attribution (e.g., run `python main.py --steps 0 --ctraj_len 16` but `python main.py --steps 0 --ctraj_len 15` -- the preloop is not needed in this case).
219 | - The `expid` has to be used consistently for the settings between steps 1-2-3. Otherwise, source-sink relationships may be bias-corrected with other criteria (DANGER!). There is no proper check for this – the user has to make sure they are using everything correctly. Various regions or attribution methods can be run using separate directories.
220 | - There are quite a few flags for 02_attribution (e.g., refering to settings concerning the random attribution) and 03_biascorrection (e.g., refering to the applied time scale and the aggregation of the output) available. Please use the help option for details for now.
221 | - While the output of flex2traj could be adjusted through modifications in 00_flex2traj.py, currently, all other steps require the following 9 variables (and in that specific order): `parcel id`, `lon`, `lat`, `ztra1`, `topo`, `qvi`, `rhoi`, `hmixi`, `tti`.
222 | - If `--writestats True` is set for `--steps 2`, then the attribution statistics are written to a file `*_stats.csv` (absolute fraction of attributed precipitation, etc.). If `--writestats True` is set for `--steps 3`, then the validation statistics are written to a file `*_stats.csv` (bias in the sink region, the probability of detection etc.).
223 | - Use `--maskval -999` (or set maskfile=None in paths.txt) in combination with `--ctraj_len 0` to extract global 2-step trajectories for a global 'diagnosis' with flex2traj.
224 |
225 | - - - -
226 | ## An example.
227 |
228 | Here, we provide a very basic example.
229 |
230 | 1. Create a (global) netcdf file with a mask (value=1) for a specific region of interest, e.g., the Bahamas.
231 | 2. Adjust the maskfile in `paths.txt`.
232 | 3. Construct trajectories for parcels whose arrival+midpoints are over the Bahamas (don't forget to untar the binary FLEXPART simulations for this and the previous month and the first day of the following month):
233 | ```python
234 | python main.py --steps 0 --ayyyy 2000 --am 6 --ctraj_len 11 --maskval 1
235 | ```
236 | 4. Perform a global analysis of fluxes (and the previous month), and evaluate the bias and the reliability of detection for your region of interest and its (potential) source region, possibly selecting various diagnosis methods and fine tuning detection criteria (using the already available global data set on the VO), e.g.,
237 | ```python
238 | python main.py --steps 1 --ayyyy 2000 --am 6 --expid "DEFAULT"
239 | ...
240 | python main.py --steps 1 --ayyyy 2000 --am 6 --cpbl_strict 2 --cpbl_method "max" --cevap_dqv 0 --cheat_dtemp 0 --expid "ALL-ABL"
241 | ```
242 | 5. Once you have fine-tuned your detection criteria, perform a first backward analysis considering a trajectory length of 10 days, e.g.
243 | ```python
244 | python main.py --steps 2 --ayyyy 2000 --am 6 --ctraj_len 10 --cpbl_strict 2 --cpbl_method "max" --cevap_dqv 0 --cheat_dtemp 0 --expid "ALL-ABL"
245 | ```
246 | 6. Bias-correct the established source and aggregate the results over the backward time dimension
247 | ```python
248 | python main.py --steps 3 --ayyyy 2000 --am 6 --expid "ALL-ABL" --bc_aggbwtime True
249 | ```
250 | The final netcdf file, `ALL-ABL_biascor-attr_r02_2002-06.nc` then contains all the source regions of heat and precipitation, both the raw and bias-corrected version (i.e., Had and Had_Hs, and E2P, E2P_Es, E2P_Ps, and E2P_EPs).
251 |
252 | - - - -
253 | ## Miscellaneous notes
254 | - Everything is coded for a **backward** analysis (Where does the heat come from? What is the source region of precipitation?). Adjustments for a forward analysis can be easily made, but require code changes.
255 | - Note that, however, flex2traj writes out data in a forward format (startdate --> enddate; but still filtering for the last step, i.e. in a backward manner), but that the time axis is swapped when reading this data in (enddate <-- startdate, see function `readtraj`) for all the remaining analysis steps.
256 | - Everything is more or less hard-coded for (global) FLEXPART–ERA-Interim simulations with a 6-hourly time step and a maximum of ~2 million parcels. Any changes in resolution or input data require code adjustments!
257 | - Note that regardless of the sink region size, 'flex2traj' reads in and temporarily stores data from all parcels during the backward analysis time period; in case of 15-day trajectories and 9 variables of interest, this translates to a numpy array with a size of ~ 7.2 GB (62 x 2e6 x 9 x 64 bit). For a small sink region with ~13'000 parcels (trajectory array: 62 x 13'000 x 9 x 64 bit ~ 0.5 GB), a total of 10 GB RAM is recommended to safely run flex2traj with a trajectory length of 15 days.
258 | - flex2traj-related directories are currently assumed to have an annual structure (e.g., path_f2t_diag + "/2002") - these are created automatically.
259 | - The minimum time scale for steps 1-2-3 is daily, which we assumed to be a reasonable limit for the FLEXPART–ERA-Interim simulations with 6-hourly time steps.
260 | - An additional file `*_warning.txt` is written, if a monthly bias-correction was required and daily data cannot be trusted (this is the case if, e.g., the reference data set contains precipitation for a specific day, but precipitation was not detected using FLEXPART and the selected detection criteria; and hence no trajectories were evaluated and no attribution for that specific day was performed, but the contribution of other precipitation days was upscaled to match the monthly precipitation amount).
261 |
262 | - - - -
263 | ## Known issues.
264 | - **Remote I/O error** when reading/writing a netcdf or h5 file: this only seems to happen with specific h5py / netCDF4 module versions (used in anaconda) and only on some clusters (victini). If you're on the UGent HPC cluster, please try to use the HPC modules listed above - then the error should disappear...
265 | - **Resolutions other than 1°**: the current version only supports grids of 1 degree - for ALL data (mask, reference data, hamster output) - the code should abort if that is not the case, stating that the grids are not identical, but it may not necessarily do so... so check your outputs carefully, if its runs through anyhow (at least step 3 - bias correction - should be erroneous!)
266 |
267 | - - - -
268 | ## Epilogue
269 | Keep in mind that...
270 | - **This code is not bug-free.** Please report any bugs through 'Issues' on https://github.com/h-cel/hamster/issues.
271 | - **This code is not intended to cover specific research-related tasks.** This code is intended to serve as a common base for the analysis of (FLEXPART) trajectories. Every user may create their own branch and adjust the code accordingly. Features of broad interest may be merged in future releases.
272 |
273 | ### Contact and support
274 | Dominik Schumacher (dominik.schumacher@ugent.be) and Jessica Keune (jessica.keune@ugent.be)
275 |
276 | ### Referencing
277 | If you use HAMSTER, please cite:
278 | Keune, J., Schumacher, D. L., & Miralles, D. G. (2022). A unified framework to estimate the origins of atmospheric moisture and heat using Lagrangian models. Geoscientific Model Development, 15, 1875–1898. https://doi.org/10.5194/gmd-15-1875-2022
279 |
280 | ### License
281 | Copyright 2021 Dominik Schumacher, Jessica Keune, Diego G. Miralles.
282 |
283 | This software is published under the GPLv3 license. This means:
284 | 1. Anyone can copy, modify and distribute this software.
285 | 2. You have to include the license and copyright notice with each and every distribution.
286 | 3. You can use this software privately.
287 | 4. You can use this software for commercial purposes.
288 | 5. If you dare build your business solely from this code, you risk open-sourcing the whole code base.
289 | 6. If you modify it, you have to indicate changes made to the code.
290 | 7. Any modifications of this code base MUST be distributed with the same license, GPLv3.
291 | 8. This software is provided without warranty.
292 | 9. The software author or license can not be held liable for any damages inflicted by the software.
293 |
294 | ## References
295 | - Fremme, A. and Sodemann, H.: The role of land and ocean evaporation on the variability of precipitation in the Yangtze River valley, Hydrol. Earth Syst. Sci., 23, 2525–2540, https://doi.org/10.5194/hess-23-2525-2019, 2019.
296 | - Keune, J., and Miralles, D. G.: A precipitation recycling network to assess freshwater vulnerability: Challenging the watershed convention, Water Resour. Res., 55, 9947– 9961, https://doi.org/10.1029/2019WR025310, 2019.
297 | - Schumacher, D.L., Keune, J., van Heerwaarden, C.C. et al.: Amplification of mega-heatwaves through heat torrents fuelled by upwind drought, Nat. Geosci. 12, 712–717, https://doi.org/10.1038/s41561-019-0431-6, 2019.
298 | - Schumacher, D.L., Keune, J. and Miralles, D.G.: Atmospheric heat and moisture transport to energy- and water-limited ecosystems. Ann. N.Y. Acad. Sci., 1472, 123-138, https://doi.org/10.1111/nyas.14357, 2020.
299 | - Sodemann, H., Schwierz, C., and Wernli, H.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos., 113(D3), https://doi.org/10.1029/2007JD008503, 2008.
300 | - Sodemann, H.: Beyond Turnover Time: Constraining the Lifetime Distribution of Water Vapor from Simple and Complex Approaches, J. Atmos. Sci., 77(2), 413-433, https://doi.org/10.1175/JAS-D-18-0336.1, 2020.
301 |
302 |
--------------------------------------------------------------------------------
/src/biascorrection.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #
4 | # Main script to bias-correct source-receptor relationships established with HAMSTER;
5 | # e.g. using output from FLEXPART. Uses output from the (i) diagnosis and (ii) attribution
6 | # steps from HAMSTER.
7 | #
8 | # This file is part of HAMSTER,
9 | # originally created by Dominik Schumacher, Jessica Keune, Diego G. Miralles
10 | # at the Hydro-Climate Extremes Lab, Department of Environment, Ghent University
11 | #
12 | # https://github.com/h-cel/hamster
13 | #
14 | # HAMSTER is free software: you can redistribute it and/or modify
15 | # it under the terms of the GNU General Public License as published by
16 | # the Free Software Foundation v3.
17 | #
18 | # HAMSTER is distributed in the hope that it will be useful,
19 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
20 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 | # GNU General Public License for more details.
22 | #
23 | # You should have received a copy of the GNU General Public License
24 | # along with HAMSTER. If not, see .
25 | #
26 |
27 | import argparse
28 | import calendar
29 | import csv
30 | import fnmatch
31 | import gzip
32 | import imp
33 | import math
34 | import os
35 | import random
36 | import re
37 | import struct
38 | import sys
39 | import time
40 | import timeit
41 | import warnings
42 | from datetime import date, datetime, timedelta
43 | import datetime as datetime
44 | from functools import reduce
45 | from math import acos, atan, atan2, cos, floor, sin, sqrt
46 |
47 | import h5py
48 | import netCDF4 as nc4
49 | import numpy as np
50 | import pandas as pd
51 | from dateutil.relativedelta import relativedelta
52 |
53 | from hamsterfunctions import *
54 |
55 |
56 | def main_biascorrection(
57 | ryyyy,
58 | ayyyy,
59 | am,
60 | opath_attr, # attribution (output)
61 | opath_diag, # diagnosis (output)
62 | ipath_refp,
63 | ipath_refe,
64 | ipath_reft,
65 | ipath_refh,
66 | opath,
67 | ofile_base, # output
68 | mode,
69 | maskfile,
70 | maskval,
71 | verbose,
72 | veryverbose,
73 | fuseattp,
74 | bcscale,
75 | pref_data,
76 | eref_data,
77 | href_data,
78 | faggbwtime,
79 | fbc_e2p,
80 | fbc_e2p_p,
81 | fbc_e2p_e,
82 | fbc_e2p_ep,
83 | fbc_t2p_ep,
84 | fbc_had,
85 | fbc_had_h,
86 | fdebug,
87 | fwrite_netcdf,
88 | fwrite_month,
89 | fwritestats,
90 | precision,
91 | strargs,
92 | ):
93 |
94 | ## SOME PRELIMINARY SETTINGS TO REDUCE OUTPUT
95 | ## suppressing warnings, such as
96 | # invalid value encountered in true_divide
97 | # invalid value encountered in multiply
98 | if not fdebug:
99 | np.seterr(divide="ignore", invalid="ignore")
100 | # default values
101 | fwritewarning = False
102 |
103 | ## construct precise input and storage paths
104 | attrfile = (
105 | opath_attr
106 | + "/"
107 | + str(ofile_base)
108 | + "_attr_r"
109 | + str(ryyyy)[-2:]
110 | + "_"
111 | + str(ayyyy)
112 | + "-"
113 | + str(am).zfill(2)
114 | + ".nc"
115 | )
116 | ofilename = (
117 | str(ofile_base)
118 | + "_biascor-attr_r"
119 | + str(ryyyy)[-2:]
120 | + "_"
121 | + str(ayyyy)
122 | + "-"
123 | + str(am).zfill(2)
124 | + ".nc"
125 | )
126 | ofile = opath + "/" + ofilename
127 | ## additional statistic output files includes P validation data (*.csv)
128 | if fwritestats:
129 | sfilename = (
130 | str(ofile_base)
131 | + "_biascor-attr_r"
132 | + str(ryyyy)[-2:]
133 | + "_"
134 | + str(ayyyy)
135 | + "-"
136 | + str(am).zfill(2)
137 | + "_stats.csv"
138 | )
139 | sfile = opath + "/" + sfilename
140 |
141 | #### DISCLAIMER
142 | if verbose:
143 | disclaimer()
144 | print("\n PROCESSING: \t", ayyyy, "-", str(am).zfill(2) + "\n")
145 | ## Resets & consistency checks
146 | if mode == "oper" and precision == "f4":
147 | precision = "f8"
148 | print(
149 | " ! Single precision should only be used for testing. Reset to double-precision."
150 | )
151 | if verbose:
152 | print(" ! using input paths: \t")
153 | print("\t" + str(opath_diag))
154 | print("\t" + str(opath_attr))
155 | print(" ! using reference data from: \t")
156 | print("\t" + str(ipath_refp))
157 | print("\t" + str(ipath_refe))
158 | print("\t" + str(ipath_refh))
159 | if fbc_t2p_ep:
160 | print("\t" + str(ipath_reft))
161 | print(" ! using mode: \t" + str(mode))
162 | print(" ! using attribution data to bias-correct P: \t" + str(fuseattp))
163 | print(" ! writing netcdf output: \t")
164 | print("\t" + str(ofile))
165 | if fwritestats:
166 | print(" ! precipitation statistics in: \t")
167 | print("\t" + str(sfile))
168 | print(
169 | "\n============================================================================================================"
170 | )
171 | print("\n")
172 |
173 | ##--1. load attribution data; grab all uptake days ############################
174 | if verbose:
175 | print(" * Reading attribution data...")
176 | if veryverbose:
177 | print(" --- file: " + str(attrfile))
178 |
179 | with nc4.Dataset(attrfile, mode="r") as f:
180 | e2psrt = np.asarray(checknan(f["E2P"][:]))
181 | hadsrt = np.asarray(checknan(f["Had"][:]))
182 | arrival_time = nc4.num2date(f["time"][:], f["time"].units, f["time"].calendar)
183 | utime_srt = np.asarray(f["level"][:])
184 | uptake_time = udays2udate(arrival_time, utime_srt)
185 | uptake_dates = cal2date(uptake_time)
186 | uyears = np.unique(date2year(uptake_time))
187 | lats = np.asarray(f["lat"][:])
188 | lons = np.asarray(f["lon"][:])
189 | areas = (
190 | 1e6
191 | * np.nan_to_num(
192 | gridded_area_exact(lats, res=abs(lats[1] - lats[0]), nlon=lons.size)
193 | )[:, 0]
194 | )
195 | # expand uptake dimension to dates (instead of backward days)
196 | e2p = expand4Darray(e2psrt, arrival_time, utime_srt, veryverbose)
197 | had = expand4Darray(hadsrt, arrival_time, utime_srt, veryverbose)
198 | # convert water fluxes from mm-->m3
199 | e2p = convert_mm_m3(e2p, areas)
200 |
201 | # clean up
202 | del (e2psrt, hadsrt)
203 |
204 | ##--2. load diagnosis data ####################################################
205 | if verbose:
206 | print(" * Reading diagnosis data...")
207 |
208 | # read concatenated data
209 | totlats, totlons = read_diagdata(
210 | opath_diag, ofile_base, ryyyy, uptake_time, var="grid"
211 | )
212 | gridcheck(lats, totlats, lons, totlons)
213 | ftime = read_diagdata(opath_diag, ofile_base, ryyyy, uptake_time, var="time")
214 | fdays = np.unique(cal2date(ftime))
215 | E = read_diagdata(opath_diag, ofile_base, ryyyy, uptake_time, var="E")
216 | P = -read_diagdata(opath_diag, ofile_base, ryyyy, uptake_time, var="P")
217 | H = read_diagdata(opath_diag, ofile_base, ryyyy, uptake_time, var="H")
218 | # convert water fluxes from mm-->m3 to avoid area weighting in between
219 | E = convert_mm_m3(E, areas)
220 | P = convert_mm_m3(P, areas)
221 |
222 | # make sure we use daily aggregates
223 | if fdays.size != ftime.size:
224 | e_tot = convert2daily(E, ftime, fagg="sum")
225 | p_tot = convert2daily(P, ftime, fagg="sum")
226 | h_tot = convert2daily(H, ftime, fagg="mean")
227 | else:
228 | e_tot = E
229 | p_tot = P
230 | h_tot = H
231 |
232 | ## only keep what is really needed (P is stored analogous to E and H for consistency)
233 | datecheck(uptake_dates[0], fdays)
234 | ibgn = np.where(fdays == uptake_dates[0])[0][0]
235 | iend = np.where(fdays == uptake_dates[-1])[0][0]
236 | e_tot = e_tot[ibgn : iend + 1, :, :]
237 | p_tot = p_tot[ibgn : iend + 1, :, :]
238 | h_tot = h_tot[ibgn : iend + 1, :, :]
239 | fdates = fdays[ibgn : iend + 1]
240 | ## make sure we grabbed the right data
241 | if not np.array_equal(uptake_dates, fdates):
242 | raise SystemExit("---- hold your horses; datetime matching failed!")
243 |
244 | ## clean up
245 | del (E, P, H)
246 |
247 | ##--3. load reference data ####################################################
248 | if verbose:
249 | print(" * Reading reference data...")
250 |
251 | if eref_data == "eraint":
252 | e_ref, reflats, reflons = eraloader_12hourly(
253 | var="e",
254 | datapath=ipath_refe + "/E_1deg_",
255 | maskpos=True,
256 | maskneg=False,
257 | uptake_years=uyears,
258 | uptake_dates=uptake_dates,
259 | lats=lats,
260 | lons=lons,
261 | )
262 | elif eref_data == "others":
263 | # attention: data has to be on the correct grid and daily (or subdaily that can be summed up) and with the correct sign (all positive)
264 | e_ref, reflats, reflons = get_reference_data(
265 | ipath_refe, "evaporation", uptake_dates
266 | )
267 | gridcheck(totlats, reflats, totlons, reflons)
268 |
269 | # convert water fluxes from mm-->m3 to avoid area weighting in between
270 | e_ref = convert_mm_m3(e_ref, areas)
271 |
272 | if href_data == "eraint":
273 | h_ref, reflats, reflons = eraloader_12hourly(
274 | var="sshf",
275 | datapath=ipath_refh + "/H_1deg_",
276 | maskpos=True,
277 | maskneg=False,
278 | uptake_years=uyears,
279 | uptake_dates=uptake_dates,
280 | lats=lats,
281 | lons=lons,
282 | )
283 | elif href_data == "others":
284 | # attention: data has to be on the correct grid and daily (or subdaily that can be summed up) and with the correct sign (all positive)
285 | h_ref, reflats, reflons = get_reference_data(
286 | ipath_refh, "sensible heat flux", uptake_dates
287 | )
288 | gridcheck(totlats, reflats, totlons, reflons)
289 |
290 | if pref_data == "eraint":
291 | p_ref, reflats, reflons = eraloader_12hourly(
292 | var="tp",
293 | datapath=ipath_refp + "/P_1deg_",
294 | maskpos=False, # do NOT set this to True!
295 | maskneg=True,
296 | uptake_years=uyears,
297 | uptake_dates=uptake_dates,
298 | lats=lats,
299 | lons=lons,
300 | )
301 | elif pref_data == "others":
302 | # attention: data has to be on the correct grid and daily (or subdaily that can be summed up) and with the correct sign (all positive)
303 | p_ref, reflats, reflons = get_reference_data(
304 | ipath_refp, "precipitation", uptake_dates
305 | )
306 | gridcheck(totlats, reflats, totlons, reflons)
307 |
308 | # convert water fluxes from mm-->m3 to avoid area weighting in between
309 | p_ref = convert_mm_m3(p_ref, areas)
310 |
311 | if fbc_t2p_ep:
312 | print("Reading T")
313 | # attention: data has to be on the correct grid and daily (or subdaily that can be summed up) and with the correct sign (all positive)
314 | t_ref, reflats, reflons = get_reference_data(
315 | ipath_reft, "transpiration", uptake_dates
316 | )
317 | gridcheck(totlats, reflats, totlons, reflons)
318 | # convert water fluxes from mm-->m3 to avoid area weighting in between
319 | t_ref = convert_mm_m3(t_ref, areas)
320 |
321 | # calculate T/E
322 | t_over_e = t_ref / e_ref
323 | # requires adjustments...
324 | t_over_e[t_over_e > 1] = 1
325 | t_over_e[t_over_e == "inf"] = 1
326 | t_over_e[np.isnan(t_over_e)] = 0
327 |
328 | ##--4. biascorrection #########################################################
329 | if verbose:
330 | print(" * Starting bias correction...")
331 |
332 | ## P-scaling requires arrival region mask
333 | mask, mlat, mlon = maskgrabber(maskfile)
334 | # currently, only identical grids (mask = attribution = reference data) are supported...
335 | gridcheck(mlat, totlats, mlon, totlons)
336 |
337 | xla, xlo = np.where(mask == maskval) # P[:,xla,xlo] is merely a 2D array... ;)
338 | ibgn = np.where(uptake_time == arrival_time[0])[0][0] # only arrival days!
339 |
340 | ## preliminary checks
341 | if not fuseattp:
342 | # re-evaluate precip. data to check if it can be used (need daily data here because of upscaling in 02)
343 | fuseattp = check_attributedp(
344 | pdiag=p_tot[ibgn:, xla, xlo], pattr=e2p, veryverbose=veryverbose
345 | )
346 |
347 | # ******************************************************************************
348 | ## (i) BIAS CORRECTING THE SOURCE
349 | # ******************************************************************************
350 | if verbose:
351 | print(" --- Bias correction using source data...")
352 | # quick consistency check
353 | consistencycheck(had, h_tot, bcscale, fdebug)
354 | consistencycheck(e2p, e_tot, bcscale, fdebug)
355 | # calculate bias correction factor
356 | alpha_h = calc_sourcebcf(ref=h_ref, diag=h_tot, tscale=bcscale)
357 | alpha_e = calc_sourcebcf(ref=e_ref, diag=e_tot, tscale=bcscale)
358 | # apply bias correction factor
359 | had_hcorrtd = np.multiply(alpha_h, had)
360 | e2p_ecorrtd = np.multiply(alpha_e, e2p)
361 |
362 | # ******************************************************************************
363 | ## (ii) BIAS CORRECTING THE SINK (P only)
364 | # ******************************************************************************
365 | if verbose:
366 | print(" --- Bias correction using sink data...")
367 | # calculate (daily) bias correction factor
368 | if fuseattp:
369 | alpha_p = calc_sinkbcf(ref=p_ref[ibgn:, xla, xlo], att=e2p, tscale=bcscale)
370 | # perform monthly bias correction if necessary
371 | if np.all(np.nan_to_num(alpha_p) == 0):
372 | print(
373 | " * Monthly bias correction needed to match reference precipitation..."
374 | )
375 | alpha_p = calc_sinkbcf(
376 | ref=p_ref[ibgn:, xla, xlo], att=e2p, tscale="monthly"
377 | )
378 | fwritewarning = True
379 | else:
380 | alpha_p = calc_sinkbcf(
381 | ref=p_ref[ibgn:, xla, xlo], att=p_tot[ibgn:, xla, xlo], tscale=bcscale
382 | )
383 | # perform monthly bias correction if necessary
384 | if np.all(np.nan_to_num(alpha_p) == 0):
385 | print(
386 | " * Monthly bias correction needed to match reference precipitation..."
387 | )
388 | alpha_p = calc_sinkbcf(
389 | ref=p_ref[ibgn:, xla, xlo], att=p_tot[ibgn:, xla, xlo], tscale="monthly"
390 | )
391 | fwritewarning = True
392 | # apply bias correction factor
393 | e2p_pcorrtd = np.swapaxes(alpha_p * np.swapaxes(e2p, 0, 3), 0, 3)
394 |
395 | # additionally perform monthly bias correction of P if necessary
396 | if not checkpsum(p_ref[ibgn:, xla, xlo], e2p_pcorrtd, verbose=False):
397 | print(
398 | " * Additional monthly bias correction needed to match reference precipitation..."
399 | )
400 | alpha_p = calc_sinkbcf(
401 | ref=p_ref[ibgn:, xla, xlo], att=e2p_pcorrtd, tscale="monthly"
402 | )
403 | e2p_pcorrtd = np.swapaxes(alpha_p * np.swapaxes(e2p_pcorrtd, 0, 3), 0, 3)
404 | fwritewarning = True
405 | checkpsum(p_ref[ibgn:, xla, xlo], e2p_pcorrtd, verbose=verbose)
406 |
407 | # ******************************************************************************
408 | ## (iii) BIAS CORRECTING THE SOURCE AND THE SINK (P only)
409 | # ******************************************************************************
410 | if verbose:
411 | print(" --- Bias correction using source and sink data...")
412 | # step 1: check how much e2p changed due to source-correction already
413 | alpha_p_ecor = calc_sinkbcf(ref=e2p_ecorrtd, att=e2p, tscale=bcscale)
414 | # step 2: calculate how much more correction is needed to match sink
415 | alpha_p = calc_sinkbcf(ref=p_ref[ibgn:, xla, xlo], att=e2p_pcorrtd, tscale=bcscale)
416 | # perform monthly bias correction if necessary
417 | if np.all(np.nan_to_num(alpha_p) == 0):
418 | print(
419 | " * Monthly bias correction needed to match reference precipitation..."
420 | )
421 | alpha_p = calc_sinkbcf(
422 | ref=p_ref[ibgn:, xla, xlo], att=e2p_pcorrtd, tscale="monthly"
423 | )
424 | fwritewarning = True
425 | # step 3: calculate adjusted bias correction factor
426 | alpha_p_res = np.divide(alpha_p, alpha_p_ecor)
427 | e2p_epcorrtd = np.swapaxes(alpha_p_res * np.swapaxes(e2p_ecorrtd, 0, 3), 0, 3)
428 |
429 | # additionally perform monthly bias correction of P if necessary
430 | if not checkpsum(p_ref[ibgn:, xla, xlo], e2p_epcorrtd, verbose=False):
431 | print(
432 | " * Additional monthly bias correction needed to match reference precipitation..."
433 | )
434 | alpha_p_res = calc_sinkbcf(
435 | ref=p_ref[ibgn:, xla, xlo], att=e2p_epcorrtd, tscale="monthly"
436 | )
437 | e2p_epcorrtd = np.swapaxes(alpha_p_res * np.swapaxes(e2p_epcorrtd, 0, 3), 0, 3)
438 | fwritewarning = True
439 | checkpsum(p_ref[ibgn:, xla, xlo], e2p_epcorrtd, verbose=verbose)
440 |
441 | # save some data in case debugging is needed
442 | if fdebug:
443 | frac_e2p = calc_alpha(e2p, e_tot)
444 | frac_had = calc_alpha(had, h_tot)
445 |
446 | # T2P; transpiration fraction
447 | if fbc_t2p_ep:
448 | t2p_epcorrtd = t_over_e * e2p_epcorrtd
449 | else:
450 | t2p_epcorrtd = np.zeros(shape=e2p_epcorrtd.shape)
451 |
452 | ##--5. aggregate ##############################################################
453 | ## aggregate over uptake time (uptake time dimension is no longer needed!)
454 | ahad = np.nansum(had, axis=1)
455 | ahad_hcorrtd = np.nansum(had_hcorrtd, axis=1)
456 | ae2p = np.nansum(e2p, axis=1)
457 | ae2p_ecorrtd = np.nansum(e2p_ecorrtd, axis=1)
458 | ae2p_pcorrtd = np.nansum(e2p_pcorrtd, axis=1)
459 | ae2p_epcorrtd = np.nansum(e2p_epcorrtd, axis=1)
460 | at2p_epcorrtd = np.nansum(t2p_epcorrtd, axis=1)
461 | # free up memory if backward time not needed anymore...
462 | if faggbwtime:
463 | del (
464 | had,
465 | had_hcorrtd,
466 | e2p,
467 | e2p_ecorrtd,
468 | e2p_pcorrtd,
469 | e2p_epcorrtd,
470 | t2p_epcorrtd,
471 | )
472 |
473 | if fwritestats:
474 | # write some additional statistics about P-biascorrection before converting back to mm
475 | writestats_03(
476 | sfile,
477 | p_ref,
478 | ae2p,
479 | ae2p_ecorrtd,
480 | ae2p_pcorrtd,
481 | ae2p_epcorrtd,
482 | ahad,
483 | ahad_hcorrtd,
484 | xla,
485 | xlo,
486 | ibgn,
487 | )
488 |
489 | ##--6. unit conversion ##############################################################
490 | # and convert water fluxes back from m3 --> mm
491 | if not faggbwtime:
492 | e2p = convert_m3_mm(e2p, areas)
493 | e2p_ecorrtd = convert_m3_mm(e2p_ecorrtd, areas)
494 | e2p_pcorrtd = convert_m3_mm(e2p_pcorrtd, areas)
495 | e2p_epcorrtd = convert_m3_mm(e2p_epcorrtd, areas)
496 | t2p_epcorrtd = convert_m3_mm(t2p_epcorrtd, areas)
497 | if fdebug or faggbwtime:
498 | ae2p = convert_m3_mm(ae2p, areas)
499 | ae2p_ecorrtd = convert_m3_mm(ae2p_ecorrtd, areas)
500 | ae2p_pcorrtd = convert_m3_mm(ae2p_pcorrtd, areas)
501 | ae2p_epcorrtd = convert_m3_mm(ae2p_epcorrtd, areas)
502 | at2p_epcorrtd = convert_m3_mm(at2p_epcorrtd, areas)
503 |
504 | ##--7. debugging needed? ######################################################
505 | if fdebug:
506 | print(" * Creating debugging file")
507 | writedebugnc(
508 | opath + "/debug.nc",
509 | arrival_time,
510 | uptake_time,
511 | lons,
512 | lats,
513 | maskbymaskval(mask, maskval),
514 | mask3darray(p_ref[ibgn:, :, :], xla, xlo),
515 | mask3darray(p_tot[ibgn:, :, :], xla, xlo),
516 | convert_mm_m3(ae2p, areas),
517 | convert_mm_m3(ae2p_ecorrtd, areas),
518 | convert_mm_m3(ae2p_pcorrtd, areas),
519 | convert_mm_m3(ae2p_epcorrtd, areas),
520 | np.nan_to_num(frac_e2p),
521 | np.nan_to_num(frac_had),
522 | alpha_p,
523 | np.nan_to_num(alpha_p_ecor),
524 | np.nan_to_num(alpha_p_res),
525 | np.nan_to_num(alpha_e),
526 | np.nan_to_num(alpha_h),
527 | strargs,
528 | precision,
529 | )
530 |
531 | ##--8. write final output ############################################################
532 | if verbose:
533 | print(" * Writing final output... ")
534 |
535 | if fwrite_netcdf:
536 | # get attributes from attribution file and modify
537 | attrdesc = getattr(nc4.Dataset(attrfile), "description") + "; " + strargs
538 | biasdesc = attrdesc.replace("02_attribution", "03_biascorrection")
539 |
540 | # write to netcdf
541 | if faggbwtime:
542 | writefinalnc(
543 | ofile=ofile,
544 | fdate_seq=arrival_time,
545 | udate_seq=np.nan,
546 | glon=lons,
547 | glat=lats,
548 | Had=ahad,
549 | Had_Hs=ahad_hcorrtd,
550 | E2P=ae2p,
551 | E2P_Es=ae2p_ecorrtd,
552 | E2P_Ps=ae2p_pcorrtd,
553 | E2P_EPs=ae2p_epcorrtd,
554 | T2P_EPs=at2p_epcorrtd,
555 | strargs=biasdesc,
556 | precision=precision,
557 | fwrite_month=fwrite_month,
558 | fbc_had=fbc_had,
559 | fbc_had_h=fbc_had_h,
560 | fbc_e2p=fbc_e2p,
561 | fbc_e2p_p=fbc_e2p_p,
562 | fbc_e2p_e=fbc_e2p_e,
563 | fbc_e2p_ep=fbc_e2p_ep,
564 | fbc_t2p_ep=fbc_t2p_ep,
565 | )
566 | if not faggbwtime:
567 | writefinalnc(
568 | ofile=ofile,
569 | fdate_seq=arrival_time,
570 | udate_seq=utime_srt,
571 | glon=lons,
572 | glat=lats,
573 | Had=reduce4Darray(had, veryverbose),
574 | Had_Hs=reduce4Darray(had_hcorrtd, veryverbose),
575 | E2P=reduce4Darray(e2p, veryverbose),
576 | E2P_Es=reduce4Darray(e2p_ecorrtd, veryverbose),
577 | E2P_Ps=reduce4Darray(e2p_pcorrtd, veryverbose),
578 | E2P_EPs=reduce4Darray(e2p_epcorrtd, veryverbose),
579 | T2P_EPs=reduce4Darray(t2p_epcorrtd, veryverbose),
580 | strargs=biasdesc,
581 | precision=precision,
582 | fwrite_month=fwrite_month,
583 | fbc_had=fbc_had,
584 | fbc_had_h=fbc_had_h,
585 | fbc_e2p=fbc_e2p,
586 | fbc_e2p_p=fbc_e2p_p,
587 | fbc_e2p_e=fbc_e2p_e,
588 | fbc_e2p_ep=fbc_e2p_ep,
589 | fbc_t2p_ep=fbc_t2p_ep,
590 | )
591 | if fwritewarning:
592 | wfile = (
593 | opath
594 | + "/"
595 | + str(ofile_base)
596 | + "_biascor-attr_r"
597 | + str(ryyyy)[-2:]
598 | + "_"
599 | + str(ayyyy)
600 | + "-"
601 | + str(am).zfill(2)
602 | + "_WARNING.csv"
603 | )
604 | writewarning(wfile)
605 |
606 | if os.path.exists(ofile):
607 | print("Removing " + str(attrfile) + " ...")
608 | os.remove(attrfile)
609 |
--------------------------------------------------------------------------------
/src/attribution.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # -*- coding: utf-8 -*-
3 | #
4 | # Main script to establish source-receptor relationships based on backward trajectories,
5 | # from e.g. FLEXPART. Two source regions are established: moisture and heat.
6 | #
7 | # This file is part of HAMSTER,
8 | # originally created by Dominik Schumacher, Jessica Keune, Diego G. Miralles
9 | # at the Hydro-Climate Extremes Lab, Department of Environment, Ghent University
10 | #
11 | # https://github.com/h-cel/hamster
12 | #
13 | # HAMSTER is free software: you can redistribute it and/or modify
14 | # it under the terms of the GNU General Public License as published by
15 | # the Free Software Foundation v3.
16 | #
17 | # HAMSTER is distributed in the hope that it will be useful,
18 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
19 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 | # GNU General Public License for more details.
21 | #
22 | # You should have received a copy of the GNU General Public License
23 | # along with HAMSTER. If not, see .
24 | #
25 |
26 | import argparse
27 | import calendar
28 | import csv
29 | import fnmatch
30 | import gzip
31 | import imp
32 | import math
33 | import os
34 | import random
35 | import re
36 | import struct
37 | import sys
38 | import time
39 | import timeit
40 | import warnings
41 | from datetime import date, datetime, timedelta
42 | import datetime as datetime
43 | from functools import reduce
44 | from math import acos, atan, atan2, cos, floor, sin, sqrt
45 |
46 | import h5py
47 | import netCDF4 as nc4
48 | import numpy as np
49 | import pandas as pd
50 | from dateutil.relativedelta import relativedelta
51 |
52 | from hamsterfunctions import *
53 |
54 |
55 | def main_attribution(
56 | ryyyy,
57 | ayyyy,
58 | am,
59 | ad,
60 | ipath,
61 | ifile_base,
62 | ipath_f2t,
63 | opath,
64 | ofile_base,
65 | mode,
66 | gres,
67 | maskfile,
68 | maskval,
69 | verbose,
70 | veryverbose,
71 | ctraj_len,
72 | # E criteria
73 | cevap_dqv,
74 | fevap_drh,
75 | cevap_drh,
76 | cevap_hgt,
77 | # P criteria
78 | cprec_dqv,
79 | cprec_rh,
80 | # H criteria
81 | cheat_dtemp,
82 | fheat_drh,
83 | cheat_drh,
84 | cheat_hgt,
85 | fheat_rdq,
86 | cheat_rdq,
87 | # pbl and height criteria
88 | cpbl_method,
89 | cpbl_strict,
90 | cpbl_factor,
91 | refdate,
92 | fwrite_netcdf,
93 | precision,
94 | ftimethis,
95 | fdry,
96 | fmemento,
97 | mattribution,
98 | crandomnit,
99 | randatt_forcall,
100 | randatt_wloc,
101 | explainp,
102 | fdupscale,
103 | fmupscale,
104 | fvariable_mass,
105 | fwritestats,
106 | strargs,
107 | ):
108 |
109 | # TODO: add missing features
110 | if fvariable_mass:
111 | raise SystemExit("---- ABORTED: no can do, not implemented!")
112 |
113 | #### INPUT PATHS (incl. year)
114 | ipath_pp = os.path.join(ipath_f2t, str(ryyyy)) # raw partposit data
115 | ipath_tr = os.path.join(ipath, str(ryyyy)) # trajectory data (h5 files)
116 |
117 | #### OUTPUT FILES
118 | ## main netcdf output
119 | ofilename = (
120 | str(ofile_base)
121 | + "_attr_r"
122 | + str(ryyyy)[-2:]
123 | + "_"
124 | + str(ayyyy)
125 | + "-"
126 | + str(am).zfill(2)
127 | + ".nc"
128 | )
129 | ofile = opath + "/" + ofilename
130 | ## additional statistic output files (*.csv)
131 | # monthly statistics
132 | sfilename = (
133 | str(ofile_base)
134 | + "_attr_r"
135 | + str(ryyyy)[-2:]
136 | + "_"
137 | + str(ayyyy)
138 | + "-"
139 | + str(am).zfill(2)
140 | + "_stats.csv"
141 | )
142 | statfile = opath + "/" + sfilename
143 | # trajectory-based precipitation statistics
144 | if fwritestats and mattribution == "linear":
145 | pfilename = (
146 | str(ofile_base)
147 | + "_attr_r"
148 | + str(ryyyy)[-2:]
149 | + "_"
150 | + str(ayyyy)
151 | + "-"
152 | + str(am).zfill(2)
153 | + "_p-linear-attribution.csv"
154 | )
155 | pattfile = opath + "/" + pfilename
156 | with open(pattfile, "w") as pfile:
157 | writer = csv.writer(pfile, delimiter="\t", lineterminator="\n",)
158 | writer.writerow(["DATE", "F_ATT", "F_POT", "P_DQDT"])
159 |
160 | #### INPUT FILES
161 | ## read netcdf mask
162 | mask, mlat, mlon = maskgrabber(maskfile)
163 |
164 | #### DISCLAIMER
165 | if verbose:
166 | disclaimer()
167 | print("\n PROCESSING: \t", ayyyy, "-", str(am).zfill(2))
168 | print(
169 | "\n============================================================================================================\n"
170 | )
171 | ## Resets & consistency checks
172 | if fwritestats and mattribution == "random":
173 | print(
174 | " ! Option not yet available for attribution method random. Continuing anyhow..."
175 | )
176 | if mode == "oper" and precision == "f4":
177 | precision = "f8"
178 | print(
179 | " ! Single precision should only be used for testing. Reset to double-precision."
180 | )
181 | if verbose:
182 | print(" ! using raw partposit input path: \t", ipath_pp)
183 | print(" ! using trajectory data input path: \t", ipath_tr)
184 | print(" ! using internal timer: \t" + str(ftimethis))
185 | print(" ! using mode: \t" + str(mode))
186 | print(" ! using attribution method (P): \t" + str(mattribution))
187 | print(" ! using trajectory-based upscaling: \t" + str(explainp))
188 | if mattribution == "random":
189 | print(" ! using minimum iterations: \t" + str(crandomnit))
190 | print(" ! using daily upscaling: \t" + str(fdupscale))
191 | print(" ! using monthly upscaling: \t" + str(fmupscale))
192 | if fwrite_netcdf:
193 | print(" ! writing netcdf output: \t" + str(fwrite_netcdf))
194 | print(" \t ! with grid resolution: \t", str(gres))
195 | print(" \t ! output file: \t", opath + "/" + ofilename)
196 | print(" ! additional statistics in: \t" + str(statfile))
197 | if fwritestats and mattribution == "linear":
198 | print(" ! precipitation statistics in: \t" + str(pattfile))
199 | print(
200 | "\n============================================================================================================"
201 | )
202 | print(
203 | "\n============================================================================================================"
204 | )
205 |
206 | #### SETTINGS
207 | ## start timer
208 | if ftimethis:
209 | megatic = timeit.default_timer()
210 |
211 | ## grids
212 | glon, glat, garea = makegrid(resolution=gres)
213 | gridcheck(glat, mlat, glon, mlon)
214 |
215 | ## -- DATES
216 | dt = 6 # hardcoded for FLEXPART ERA-INTERIM with 6h
217 | timestep = datetime.timedelta(hours=dt)
218 |
219 | # get start date (to read trajectories) - NOTE: we begin at 06 UTC...
220 | sdate_bgn = (
221 | str(ayyyy)
222 | + "-"
223 | + str(am).zfill(2)
224 | + "-"
225 | + str(ad).zfill(2)
226 | + "-"
227 | + str(dt).zfill(2)
228 | )
229 | datetime_bgn = datetime.datetime.strptime(sdate_bgn, "%Y-%m-%d-%H")
230 | # get end date (to read trajectories) - NOTE: always 00 UTC of the 1st of the next month
231 | nayyyy, nam = nextmonth(datetime_bgn)
232 | sdate_end = str(nayyyy) + "-" + str(nam).zfill(2) + "-01-00"
233 | datetime_end = datetime.datetime.strptime(sdate_end, "%Y-%m-%d-%H")
234 |
235 | # file dates (arrival, 6h seq)
236 | datetime_seq, fdatetime_seq, ffdatetime_seq = timelord(
237 | datetime_bgn, datetime_end, timestep
238 | )
239 | # daily arrival dates (24h seq for netCDF writing)
240 | fdate_seq = timelord(
241 | datetime_bgn - timestep,
242 | datetime_end - timestep,
243 | datetime.timedelta(hours=24),
244 | ret="datetime",
245 | )
246 | fdateasdate = datetime2date(fdate_seq)
247 |
248 | # NOTE: better to keep these as lists to maintain consistency
249 |
250 | # calculate number of time steps, also aggregated to daily resolution
251 | ntime = len(fdatetime_seq)
252 | ndaytime = len(fdate_seq)
253 |
254 | ## TESTMODE
255 | if mode == "test":
256 |
257 | ctraj_len_orig = ctraj_len
258 | ctraj_len = (
259 | 2 # NOTE: changes here must be accompanied by changes in 01_diagnosis!
260 | )
261 |
262 | ntime = 4 # NOTE: use multiples of 4 only, else output is not saved
263 | datetime_seq = datetime_seq[(4 * ctraj_len) : (4 * ctraj_len + ntime)]
264 | fdatetime_seq = fdatetime_seq[(4 * ctraj_len) : (4 * ctraj_len + ntime)]
265 | ndaytime = int(ntime / 4)
266 | fdate_seq = fdate_seq[ctraj_len : ctraj_len + ndaytime]
267 | fdateasdate = fdateasdate[ctraj_len : ctraj_len + ndaytime]
268 |
269 | ## -- WRITE NETCDF OUTPUT (empty, to be filled)
270 | if fwrite_netcdf:
271 | writeemptync4D(
272 | ofile, fdate_seq, np.arange(-ctraj_len, 1), glat, glon, strargs, precision
273 | )
274 |
275 | # traj max len, expressed in input data (6-hourly) steps
276 | tml = int(4 * ctraj_len) # hardcoded for 6-hourly input
277 | # compact form of max traj len in days (used for array filling w/ shortened uptake dim)
278 | ctl = ctraj_len
279 |
280 | ### MEMENTO --- pre-loop to produce independent monthly output
281 | ## NOTE: this is irrelevant for E2P, but crucial for Had (& Ead)
282 | ## NOTE: we only need to know if some parcel makes it to the ABL, that's it!
283 | ## NOTE: must fill array with negative number whose abs exceeds max traj len
284 | if fmemento:
285 | pidlog = -999 * np.ones(shape=2100000).astype(int)
286 |
287 | if mode == "oper": # skip if multi-counting somehow desired and/or if testing
288 | ###--- PRELOOP v2
289 | # NOTE: code further below this function call here could also be moved to
290 | # first main loop iteration, so that no dim checking necessary
291 | ntrajstep = readtraj(
292 | idate=datetime_seq[0],
293 | ipath=ipath_tr,
294 | ifile_base=ifile_base,
295 | verbose=False,
296 | ).shape[0]
297 |
298 | # I believe this could be done for parcels of interest / pot. conflict only... but we'll leave it like this for now
299 | if ntrajstep < tml + 2 + 4:
300 | # only do this if data really isn't already 'there'
301 | preloop_dates = timelord(
302 | fdatetime_seq[0] - (tml + 5) * timestep,
303 | fdatetime_seq[0] - timestep,
304 | timestep,
305 | ret="fileformat",
306 | )
307 | preloop_files = [
308 | ipath_pp + "/partposit_" + idfile + ".gz"
309 | for idfile in preloop_dates
310 | ]
311 | extendarchive = grabmesomehpbl(filelist=preloop_files, verbose=verbose)
312 | else:
313 | if verbose:
314 | print(
315 | "\n=== \t INFO: no pre-loop needed, trajectories are long enough"
316 | )
317 |
318 | ###--- MAIN LOOP
319 |
320 | ## prepare STATS
321 | # number of parcels
322 | tneval = tnnevala = tnnevalm = tnevalp = tnnevalp = tnevalh = tnnevalh = 0
323 | # precip. statistics
324 | psum = patt = punatt = pmiss = 0
325 |
326 | ## loop over time to read in files
327 | if verbose:
328 | print("\n=== \t Start main program...\n")
329 | for ix in range(ntime):
330 | if verbose:
331 | print(
332 | "--------------------------------------------------------------------------------------"
333 | )
334 | print("Processing " + str(fdatetime_seq[ix]))
335 |
336 | # safety exit hardcoded for FLEXPART–ERA-Interim runs
337 | if ryyyy == ayyyy and am == 12 and ix == range(ntime)[-1]:
338 | continue
339 |
340 | ## 1) read in all files associated with data --> ary is of dimension (ntrajlen x nparcels x nvars)
341 | ary = readtraj(
342 | idate=datetime_seq[ix],
343 | ipath=ipath_tr,
344 | ifile_base=ifile_base,
345 | verbose=verbose,
346 | )
347 |
348 | nparcel = ary.shape[1]
349 | ntrajleng = ary.shape[0]
350 | if verbose:
351 | print(
352 | " TOTAL: " + str(datetime_seq[ix]) + " has " + str(nparcel) + " parcels"
353 | )
354 |
355 | if mode == "test":
356 | ntot = range(1000)
357 | else:
358 | ntot = range(nparcel)
359 |
360 | # figure out where to store data (on which arriving day)
361 | arv_idx = np.where(
362 | np.asarray(fdateasdate)
363 | == (fdatetime_seq[ix] - relativedelta(hours=3)).date()
364 | )[0][0]
365 |
366 | # pre-allocate arrays (repeat at every 4th step)
367 | if ix % 4 == 0:
368 | ary_heat = np.zeros(shape=(ctl + 1, glat.size, glon.size))
369 | ary_etop = np.zeros(shape=(ctl + 1, glat.size, glon.size))
370 | # upscaling measures (currently has to be per day as well)
371 | if fdupscale:
372 | ipatt = ipmiss = 0
373 |
374 | # STATS: number of parcels per file
375 | neval = nnevala = nnevalm = nevalp = nnevalp = nevalh = nnevalh = 0
376 |
377 | # grab extended trajectory data
378 | ### CHECK/CLEANUP: CAN ALL OF THIS GO?
379 | # (i) POM data not supported anymore
380 | # (ii) if trajectories too short: abort (let's not fix everything right away for the user)
381 | if fmemento:
382 | # NOTE: pom data can come with duplicate IDs; remove to avoid (some) trouble
383 | if not np.unique(ary[0, :, 0]).size == ary[0, :, 0].size:
384 | print(
385 | "\t INFO: duplicates detected, original pom array shape=", ary.shape
386 | )
387 | _, ikeep = np.unique(ary[0, :, 0], return_index=True)
388 | ary = ary[:, ikeep, :]
389 | print("\t INFO: duplicates eliminated, new pom array shape=", ary.shape)
390 | nparcel = ary.shape[1] # update
391 | ntot = range(nparcel)
392 | # NOTE: yet another ******* pom fix ... to be removed!
393 | # (flex2traj output is not affected by this)
394 | IDs = ary[0, :, 0]
395 | thresidx = int((9 / 10) * ary.shape[1]) # this should do the trick
396 | # simply shift to indices > 2e6
397 | IDs[thresidx:][IDs[thresidx:] < 3000] += 2e6
398 |
399 | # extract what is needed from extendarchive if trajs 'too short'
400 | if ary.shape[0] < tml + 2 + 4 and ix < ctraj_len * 4:
401 | extendtrajs = np.empty(shape=(4, nparcel, 2))
402 | for pp in range(4):
403 | allIDs = extendarchive[-(4 - pp + ix)][:, 0]
404 | extendtrajs[pp, :, 0] = extendarchive[-(4 - pp + ix)][:, 0][
405 | np.where(np.isin(allIDs, ary[0, :, 0]))
406 | ] # ID
407 | extendtrajs[pp, :, 1] = extendarchive[-(4 - pp + ix)][:, 1][
408 | np.where(np.isin(allIDs, ary[0, :, 0]))
409 | ] # hpbl
410 |
411 | ## 2) establish source–receptor relationships
412 | for i in ntot:
413 |
414 | ## - 2.0) only evaluate if the parcel is in target region (midpoint or arrival point)
415 | mlat_ind, mlon_ind = midpindex(ary[:2, i, :], glon=mlon, glat=mlat)
416 | alat_ind, alon_ind = arrpindex(ary[0, i, :], glon=mlon, glat=mlat)
417 | if (
418 | not mask[alat_ind, alon_ind] == maskval
419 | and not mask[mlat_ind, mlon_ind] == maskval
420 | ):
421 | nnevalm += 1
422 | nnevala += 1
423 | continue
424 |
425 | ## - 2.1) check how far back trajectory should be evaluated
426 | if mask[alat_ind, alon_ind] == maskval:
427 | ID = int(ary[0, i, 0])
428 | if fmemento and ary[0, i, 3] < np.max(ary[:4, i, 7]):
429 | if ix < ctraj_len * 4: # rely on (extended) traj data
430 |
431 | # check if parcel has been inside before
432 | is_inmask = whereinmask(
433 | mask=mask,
434 | maskval=maskval,
435 | masklat=mlat,
436 | masklon=mlon,
437 | trajlat=ary[: (tml + 2), i, 2],
438 | trajlon=ary[: (tml + 2), i, 1],
439 | )
440 |
441 | ### CHECK/CLEANUP: CAN ALL OF THIS GO? (if only trajs > length allowed)?
442 | # check if parcel was 'in PBL'
443 | hgt = ary[: (tml + 2), i, 3] # consistent with max traj len
444 | if ary.shape[0] < tml + 2 + 4:
445 | longhpbl = np.concatenate(
446 | (ary[: (tml + 2), i, 7], extendtrajs[:, i, 1])
447 | )
448 | else:
449 | longhpbl = ary[: (tml + 2 + 4), i, 7]
450 | is_inpbl = np.where(hgt < maxlastn(longhpbl, n=4)[:-4])[
451 | 0
452 | ] # omit last 4
453 |
454 | # check where parcel inside and 'in PBL'
455 | is_arrv = np.intersect1d(is_inmask, is_inpbl)
456 |
457 | # now determine ihf_H
458 | if is_arrv.size > 1:
459 | ihf_H = is_arrv[is_arrv > 0].min() + 1
460 | elif is_arrv == 0:
461 | ihf_H = tml + 2 # use max traj len
462 | else:
463 | raise RuntimeError(
464 | "--- FATAL ERROR: Schrödingers cat situation; is parcel inside and in PBL, or not?"
465 | )
466 |
467 | else: # fully rely on log from now
468 | istep = pidlog[ID]
469 | ihf_H = min((ix - istep + 1), tml + 2)
470 | else:
471 | ihf_H = tml + 2
472 |
473 | ## - 2.2) read only the most basic parcel information
474 | # NOTE: this could easily be done more efficiently
475 | hgt, hpbl, temp, qv, dens, pres = glanceparcel(ary[:4, i, :])
476 |
477 | # sorry, yet another date for writing the P date to the csv (preliminary).
478 | # because i wanted to have the hours in there as wel (not assign to day only)
479 | pdate = str(
480 | (fdatetime_seq[ix] - relativedelta(hours=3)).strftime("%Y%m%d%H")
481 | )
482 |
483 | ## - 2.3) diagnose fluxes
484 |
485 | ## (a) E2P, evaporation resulting in precipitation
486 | if not mask[mlat_ind, mlon_ind] == maskval:
487 | nnevalm += 1
488 | else:
489 | if (qv[0] - qv[1]) < cprec_dqv and (
490 | (q2rh(qv[0], pres[0], temp[0]) + q2rh(qv[1], pres[1], temp[1])) / 2
491 | ) > cprec_rh:
492 |
493 | # prec
494 | prec = abs(qv[0] - qv[1])
495 | # log some statistics
496 | nevalp += 1
497 | psum += prec
498 |
499 | # read full parcel information
500 | (
501 | lons,
502 | lats,
503 | temp,
504 | hgt,
505 | qv,
506 | hpbl,
507 | dens,
508 | pres,
509 | pottemp,
510 | epottemp,
511 | ) = readparcel(ary[: tml + 2, i, :])
512 | rh = q2rh(qv, pres, temp)
513 |
514 | # calculate all required changes along trajectory
515 | dq = trajparceldiff(qv[:], "diff")
516 | # evaluate only until trajectory falls dry
517 | ihf_E = tml + 2
518 | if fdry and np.any(qv[1:ihf_E] <= 0.00005):
519 | ihf_E = np.min(np.where(qv[1:ihf_E] <= 0.00005)[0] + 1)
520 |
521 | # identify uptake locations
522 | is_inpbl = pblcheck(
523 | np.dstack((hgt[:ihf_E], hpbl[:ihf_E]))[0, :, :],
524 | cpbl_strict,
525 | minh=cheat_hgt,
526 | fpbl=cpbl_factor,
527 | method=cpbl_method,
528 | )
529 | is_drh = drhcheck(rh[:ihf_E], checkit=fevap_drh, maxdrh=cevap_drh)
530 | is_uptk = dq[: ihf_E - 1] > cevap_dqv
531 | evap_idx = np.where(
532 | np.logical_and(is_inpbl, np.logical_and(is_drh, is_uptk))
533 | )[0]
534 |
535 | # log some stats if trajectory is without any uptakes (for upscaling)
536 | if evap_idx.size == 0:
537 | nnevalp += 1
538 | pmiss += prec
539 | if fdupscale:
540 | ipmiss += prec
541 |
542 | # ATTRIBUTION
543 | if evap_idx.size > 0:
544 | if mattribution == "linear":
545 | etop = linear_attribution_p(
546 | qv[:ihf_E], iupt=evap_idx, explainp=explainp
547 | )
548 | elif mattribution == "random":
549 | etop = random_attribution_p(
550 | qtot=qv[:ihf_E],
551 | iupt=evap_idx,
552 | explainp=explainp,
553 | nmin=crandomnit,
554 | forc_all=randatt_forcall,
555 | weight_locations=randatt_wloc,
556 | verbose=verbose,
557 | veryverbose=veryverbose,
558 | )
559 | # write to grid
560 | for itj in evap_idx:
561 | ary_etop[ctl - (itj + 3 - ix % 4) // 4, :, :] += gridder(
562 | plon=lons[itj : itj + 2],
563 | plat=lats[itj : itj + 2],
564 | pval=etop[itj],
565 | glon=glon,
566 | glat=glat,
567 | )
568 |
569 | # write additional stats to csv-file (currently: ALWAYS explain="none"; also: why only linear?)
570 | if fwritestats and mattribution == "linear":
571 | if evap_idx.size == 0:
572 | pattdata = [pdate, str(0), str(0), str(prec)]
573 | elif evap_idx.size > 0:
574 | etop = linear_attribution_p(
575 | qv[:ihf_E], iupt=evap_idx, explainp="none"
576 | )
577 | pattdata = [
578 | pdate,
579 | str(np.sum(etop[evap_idx] / prec)),
580 | str(1 - etop[-1] / prec),
581 | str(prec),
582 | ]
583 | append2csv(pattfile, pattdata)
584 |
585 | # log some statistics (for upscaling)
586 | patt += np.sum(etop[evap_idx])
587 | punatt += prec - np.sum(etop[evap_idx])
588 | if fdupscale:
589 | ipatt += np.sum(etop[evap_idx])
590 | ipmiss += prec - np.sum(etop[evap_idx])
591 |
592 | ## (b) H, surface sensible heat arriving in PBL (or nocturnal layer)
593 | if not mask[alat_ind, alon_ind] == maskval:
594 | nnevala += 1
595 | else:
596 | if ihf_H >= 2 and hgt[0] < np.max(hpbl[:4]):
597 |
598 | # log some statistics
599 | nevalh += 1
600 |
601 | # read full parcel information
602 | (
603 | lons,
604 | lats,
605 | temp,
606 | hgt,
607 | qv,
608 | hpbl,
609 | dens,
610 | pres,
611 | pottemp,
612 | epottemp,
613 | ) = readparcel(ary[:ihf_H, i, :])
614 | rh = q2rh(qv, pres, temp)
615 |
616 | # calculate all required changes along trajectory
617 | dTH = trajparceldiff(pottemp[:], "diff")
618 |
619 | # identify sensible heat uptakes
620 | is_inpbl = pblcheck(
621 | np.dstack((hgt[:ihf_H], hpbl[:ihf_H]))[0, :, :],
622 | cpbl_strict,
623 | minh=cheat_hgt,
624 | fpbl=cpbl_factor,
625 | method=cpbl_method,
626 | )
627 | is_drh = drhcheck(rh[:ihf_H], checkit=fheat_drh, maxdrh=cheat_drh)
628 | is_rdqv = rdqvcheck(
629 | qv[:ihf_H], checkit=fheat_rdq, maxrdqv=cheat_rdq
630 | )
631 | is_uptk = dTH[: ihf_H - 1] > cheat_dtemp
632 | heat_idx = np.where(
633 | np.logical_and(
634 | is_inpbl,
635 | np.logical_and(is_drh, np.logical_and(is_rdqv, is_uptk)),
636 | )
637 | )[0]
638 |
639 | # discount uptakes linearly
640 | if heat_idx.size == 0:
641 | # log some statistics
642 | nnevalh += 1
643 | if heat_idx.size > 0:
644 | dTH_disc = linear_discounter(v=pottemp[:ihf_H], min_gain=0)
645 |
646 | # loop through sensible heat uptakes
647 | for itj in heat_idx:
648 | # NOTE: hardcoded for writing daily data
649 | ary_heat[ctl - (itj + 3 - ix % 4) // 4, :, :] += (
650 | gridder(
651 | plon=lons[itj : itj + 2],
652 | plat=lats[itj : itj + 2],
653 | pval=dTH_disc[itj],
654 | glon=glon,
655 | glat=glat,
656 | )
657 | / 4
658 | )
659 |
660 | # update parcel log
661 | if fmemento:
662 | pidlog[ID] = ix # NOTE: double-check
663 |
664 | neval = len(ntot)
665 | if verbose:
666 | print(
667 | " STATS: Evaluated "
668 | + str(neval - nnevala)
669 | + " ({:.2f}".format(100 * (neval - nnevala) / (neval))
670 | + "%) arriving parcels inside mask (advection)."
671 | )
672 | if nnevalh != 0:
673 | print(
674 | " --- ATTENTION: "
675 | + str(nnevalh)
676 | + "/"
677 | + str(neval - nnevala)
678 | + " arriving parcels are not associated with any heat uptakes..."
679 | )
680 | print(
681 | " STATS: Evaluated "
682 | + str(neval - nnevalm)
683 | + " ({:.2f}".format(100 * (neval - nnevalm) / (neval))
684 | + "%) midpoint parcels inside mask (precipitation)."
685 | )
686 | if nnevalm == neval:
687 | print(" STATS: Evaluated " + str(nevalp) + " precipitating parcels.")
688 | else:
689 | print(
690 | " STATS: Evaluated "
691 | + str(nevalp)
692 | + " ({:.2f}".format(100 * (nevalp) / (neval - nnevalm))
693 | + "%) precipitating parcels."
694 | )
695 | if nnevalp != 0:
696 | print(
697 | " --- ATTENTION: "
698 | + str(nnevalp)
699 | + "/"
700 | + str(nevalp)
701 | + " precipitating parcels are not associated with any evap uptakes..."
702 | )
703 |
704 | ## SOME DAILY CALCULATIONS
705 | if (ix + 1) % 4 == 0:
706 | # DAILY UPSCALING of E2P, taking into account the missing trajectories (i.e. the ones without any uptakes)
707 | if fdupscale and (nnevalp != 0 or ipmiss != 0):
708 | if ipatt == 0:
709 | print(
710 | " \n--- WARNING: there were no trajectories with uptakes, so upscaling is impossible...\n "
711 | )
712 | else:
713 | upsfac = 1 + (ipmiss / ipatt)
714 | ary_etop[:, :, :] = upsfac * ary_etop[:, :, :]
715 | # corrections for final statistics
716 | patt += -np.sum(ipatt) + np.sum(ary_etop)
717 | pmiss += -np.sum(ipmiss)
718 | if verbose:
719 | print(" * Upscaling... (factor: {:.4f}".format(upsfac) + ")")
720 | # Convert units
721 | if verbose:
722 | print(" * Converting units...")
723 | ary_etop[:, :, :] = convertunits(ary_etop[:, :, :], garea, "E")
724 | ary_heat[:, :, :] = convertunits(ary_heat[:, :, :], garea, "H")
725 |
726 | if fwrite_netcdf:
727 | writenc4D(ofile, arv_idx, ary_etop, ary_heat, verbose)
728 |
729 | ## STATS summary
730 | tneval += neval
731 | tnnevala += nnevala
732 | tnnevalm += nnevalm
733 | tnevalp += nevalp
734 | tnnevalp += nnevalp
735 | tnevalh += nevalh
736 | tnnevalh += nnevalh
737 |
738 | # MONTHLY UPSCALING of E2P, taking into account the missing trajectories (i.e. the ones without any uptakes)
739 | if fmupscale and (pmiss != 0 or punatt != 0):
740 | if patt == 0:
741 | print(
742 | " \n--- WARNING: there were no trajectories with uptakes, so upscaling is impossible...\n"
743 | )
744 | else:
745 | upsfac = 1 + ((pmiss + punatt) / patt)
746 | # load full etop array and upscale
747 | fdata = nc4.Dataset(ofile, "r+")
748 | uns_etop = fdata.variables["E2P"][:]
749 | ups_etop = upsfac * uns_etop
750 | fdata.variables["E2P"][:] = ups_etop
751 | fdata.close()
752 | # corrections for final statistics
753 | patt += np.sum(pmiss) + np.sum(punatt)
754 | pmiss += -np.sum(pmiss)
755 | punatt += -np.sum(punatt)
756 | if verbose:
757 | print(
758 | " * Monthly upscaling for unattributed precipitation... (factor: {:.4f}".format(
759 | upsfac
760 | )
761 | + ")"
762 | )
763 |
764 | if ftimethis:
765 | megatoc = timeit.default_timer()
766 | if verbose:
767 | print(
768 | "\n=== \t End main program (total runtime so far: ",
769 | str(round(megatoc - megatic, 2)),
770 | "seconds) \n",
771 | )
772 |
773 | if verbose:
774 | if fwrite_netcdf:
775 | if psum != 0:
776 | # adding attributed fraction to netcdf file description
777 | append_attrfrac_netcdf(ofile, "{:.2f}".format(patt / psum))
778 | print("\n Successfully written: " + ofile + " !\n")
779 |
780 | writestats_02(
781 | statfile,
782 | tneval,
783 | tnnevala,
784 | tnevalh,
785 | tnnevalh,
786 | tnnevalm,
787 | tnevalp,
788 | tnnevalp,
789 | patt,
790 | psum,
791 | punatt,
792 | pmiss,
793 | )
794 | if verbose:
795 | with open(statfile, "r") as sfile:
796 | print(sfile.read())
797 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------