├── .gitignore
├── LICENSE
├── README.md
├── analyses
├── activation-bead-titration
│ ├── Activation bead titration results via flow and count.ipynb
│ ├── flow.csv
│ └── proliferation_assay.tsv
├── buffy-pbmc-tcell
│ ├── Buffy - PBMC - T cell counts.ipynb
│ └── counts.tsv
├── cas9-electroporation
│ ├── Cas9 and CD4 sgRNA RNP Electroporation.ipynb
│ └── flow-data.tsv
├── il2-titration
│ ├── IL2 titration results from multiple assays.ipynb
│ ├── il2-count-long.tsv
│ ├── il2-flow-long.tsv
│ ├── il2-flow.csv
│ ├── il2-resazurin.tsv
│ ├── il2-sigma-nih-counts.tsv
│ └── il2-sigma-nih-flow.tsv
├── isolation-bead-titration
│ ├── Isolation bead titration.ipynb
│ └── cd3-cd4-cd8-stats.tsv
├── mrna-electroporation
│ ├── .DS_Store
│ ├── Donor-specific mRNA electroporation efficiency in unactivated cells.ipynb
│ ├── GFP mRNA electroporation.ipynb
│ ├── data.csv
│ └── donor-difference
│ │ ├── act_vs_unac-flow.tsv
│ │ ├── gfp-titration.tsv
│ │ ├── unactivated-flow.tsv
│ │ └── unactivated-flow2.tsv
├── pbmc-direct-activation
│ ├── PBMC direct actication flow and count.ipynb
│ ├── pbmc-cd3.tsv
│ └── pbmc-counts.tsv
├── plasmid-electroporation
│ ├── OPT vs RPMI1640 and T vs R buffer.ipynb
│ └── opt_vs_rmpi1640-r_vs_t-day3.csv
├── pre-post-activation-cell-counts
│ ├── Cell counts pre- and post- activation.ipynb
│ └── counts.tsv
├── resazurin-assay
│ ├── Resazurin assay sanity check.ipynb
│ └── d7-cell-titration-data.tsv
└── tsubset-prevalence
│ ├── T cell subset variance across donors.ipynb
│ ├── cd3-cd4-cd8.tsv
│ └── naive-eff-central-memory.tsv
├── conda.env
└── cover.png
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 |
28 | # PyInstaller
29 | # Usually these files are written by a python script from a template
30 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
31 | *.manifest
32 | *.spec
33 |
34 | # Installer logs
35 | pip-log.txt
36 | pip-delete-this-directory.txt
37 |
38 | # Unit test / coverage reports
39 | htmlcov/
40 | .tox/
41 | .coverage
42 | .coverage.*
43 | .cache
44 | nosetests.xml
45 | coverage.xml
46 | *.cover
47 | .hypothesis/
48 |
49 | # Translations
50 | *.mo
51 | *.pot
52 |
53 | # Django stuff:
54 | *.log
55 | local_settings.py
56 |
57 | # Flask stuff:
58 | instance/
59 | .webassets-cache
60 |
61 | # Scrapy stuff:
62 | .scrapy
63 |
64 | # Sphinx documentation
65 | docs/_build/
66 |
67 | # PyBuilder
68 | target/
69 |
70 | # Jupyter Notebook
71 | .ipynb_checkpoints
72 |
73 | # pyenv
74 | .python-version
75 |
76 | # celery beat schedule file
77 | celerybeat-schedule
78 |
79 | # SageMath parsed files
80 | *.sage.py
81 |
82 | # dotenv
83 | .env
84 |
85 | # virtualenv
86 | .venv
87 | venv/
88 | ENV/
89 |
90 | # Spyder project settings
91 | .spyderproject
92 | .spyproject
93 |
94 | # Rope project settings
95 | .ropeproject
96 |
97 | # mkdocs documentation
98 | /site
99 |
100 | # mypy
101 | .mypy_cache/
102 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Human Primary T Cells: A Practical Guide
2 | [](https://zenodo.org/badge/latestdoi/120860634)
3 |
4 | 
5 |
6 | ## Guide
7 | - Live document: [Human Primary T Cells: A Practical Guide](https://docs.google.com/document/d/1LIuLDXPm1L3KvsZwtrhaZtiUjZ3i3y74uN_FcEM-gqk/edit#)
8 | - Preprint (v1): https://peerj.com/preprints/26993/
9 | - Protocols: https://www.protocols.io/view/human-primary-t-cells-a-practical-guide-quvdww6
10 |
11 | ## Notebooks
12 | - [Hundreds of millions of T cells can be isolated from a buffy coat sample
13 | ](analyses/buffy-pbmc-tcell/Buffy%20-%20PBMC%20-%20T%20cell%20counts.ipynb)
14 | - [The relative abundance of T subsets vary across donors](analyses/tsubset-prevalence/T%20cell%20subset%20variance%20across%20donors.ipynb)
15 | - [Activation is required to rapidly expand T cells in culture but cell counts barely increase throughout the activation process](analyses/pre-post-activation-cell-counts/Cell%20counts%20pre-%20and%20post-%20activation.ipynb)
16 | - Electroporation is a feasible method for genetically manipulating T cells
17 | - [Plasmid electroporation is inefficient and causes major cell death
18 | ](analyses/plasmid-electroporation/OPT%20vs%20RPMI1640%20and%20T%20vs%20R%20buffer.ipynb)
19 | - [mRNA electroporation is convenient for transiently expressing exogenous proteins](analyses/mrna-electroporation/GFP%20mRNA%20electroporation.ipynb)
20 | - [Cas9 RNP electroporation is a feasible technique to knockout a gene
21 | ](analyses/cas9-electroporation/Cas9%20%20and%20CD4%20sgRNA%20RNP%20Electroporation.ipynb)
22 | - Common T cell techniques can be optimized for cost
23 | - [Untouched T cell isolation kit contents can be titrated down without major efficiency loss](analyses/isolation-bead-titration/Isolation%20bead%20titration.ipynb)
24 | - [Using fewer anti-CD3 and -CD28 beads for activation doesn’t immediately compromise activated cell yield](analyses/activation-bead-titration/Activation%20bead%20titration%20results%20via%20flow%20and%20count.ipynb)
25 | - [IL2 supplement is not necessary for short-term T cell cultures during and after CD3/CD28-based activation](analyses/il2-titration/IL2%20titration%20results%20from%20multiple%20assays.ipynb)
26 | - [T cell isolation can be circumvented by culturing PBMCs with activation beads](analyses/pbmc-direct-activation/PBMC%20direct%20actication%20flow%20and%20count.ipynb)
27 | - [NIH’s reagent service provides access to highly standardized and cost-effective recombinant IL2](analyses/il2-titration/IL2%20titration%20results%20from%20multiple%20assays.ipynb)
28 |
--------------------------------------------------------------------------------
/analyses/activation-bead-titration/flow.csv:
--------------------------------------------------------------------------------
1 | Sample,Bead:Cell ratio,Live cells/CD4+ CD8+ | Freq. of Parent (%),Live cells/CD4+ CD8- | Freq. of Parent (%),Live cells/CD4- CD8+ | Freq. of Parent (%),Live cells/CD4- CD8- | Freq. of Parent (%),Live cells/CD4+ CD8- | Mean (Comp-PE-A),Live cells/CD4- CD8+ | Mean (Comp-PE-A)
2 | 10.fcs,0:1,2.51,41,38.3,18.2,85.6,106
3 | 11.fcs,1:1,1.37,52.7,37,8.97,958,753
4 | 12.fcs,1:2,1.25,50.9,39.3,8.58,903,706
5 | 14.fcs,1:4,0.86,51.4,38,9.72,781,612
6 | 18.fcs,1:8,0.87,51.1,36.7,11.4,613,454
7 | 20.fcs,0:1,1.62,40.6,38.5,18.9,77.1,121
8 | 21.fcs,1:1,1.26,50.1,39.6,9.1,923,732
9 | 22.fcs,1:2,1.22,51.1,39,8.65,864,700
10 | 24.fcs,1:4,1.18,51.8,37.6,9.48,783,601
11 | 28.fcs,1:8,1.1,50.7,36.7,11.5,580,437
12 | 30.fcs,0:1,1.92,40.7,39.1,18.2,74,98.8
13 | 31.fcs,1:1,1.32,50.6,39.3,8.73,900,716
14 | 32.fcs,1:2,1.22,51.7,38.1,8.94,814,651
15 | 34.fcs,1:4,1.07,51.8,37.7,9.44,717,582
16 | 38.fcs,1:8,0.98,51.2,36.4,11.4,572,429
--------------------------------------------------------------------------------
/analyses/activation-bead-titration/proliferation_assay.tsv:
--------------------------------------------------------------------------------
1 | Row Donor 1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256 1:512 1:1024 1:2048
2 | A D8 0.253 0.232 0.219 0.22 0.185 0.174 0.151 0.135 0.122 0.126 0.115 0.115
3 | B D8 0.232 0.242 0.227 0.205 0.196 0.186 0.149 0.15 0.126 0.126 0.119 0.11
4 | C D8 0.229 0.226 0.218 0.212 0.177 0.171 0.151 0.133 0.118 0.114 0.119 0.118
5 | D D8 0.237 0.215 0.223 0.213 0.193 0.18 0.158 0.144 0.124 0.119 0.115 0.11
6 | E D8 0.235 0.229 0.226 0.207 0.198 0.183 0.166 0.15 0.137 0.122 0.12 0.119
7 | F D8 0.238 0.22 0.205 0.207 0.194 0.184 0.164 0.15 0.13 0.12 0.121 0.114
8 | G D8 0.247 0.242 0.213 0.217 0.201 0.176 0.157 0.145 0.131 0.121 0.12 0.119
9 | H D8 0.258 0.267 0.249 0.252 0.252 0.221 0.185 0.173 0.173 0.157 0.148 0.134
10 | A D9 0.221 0.204 0.207 0.213 0.211 0.181 0.17 0.148 0.128 0.121 0.121 0.123
11 | B D9 0.244 0.213 0.226 0.215 0.203 0.182 0.165 0.152 0.12 0.12 0.113 0.114
12 | C D9 0.242 0.219 0.212 0.201 0.185 0.162 0.15 0.129 0.11 0.11 0.109 0.114
13 | D D9 0.242 0.225 0.229 0.207 0.189 0.169 0.155 0.139 0.128 0.118 0.109 0.108
14 | E D9 0.235 0.226 0.227 0.213 0.201 0.177 0.166 0.145 0.138 0.129 0.119 0.119
15 | F D9 0.236 0.243 0.23 0.221 0.207 0.18 0.163 0.149 0.145 0.13 0.125 0.119
16 | G D9 0.235 0.226 0.22 0.224 0.193 0.189 0.164 0.145 0.142 0.13 0.128 0.122
17 | H D9 0.249 0.256 0.252 0.246 0.219 0.206 0.191 0.175 0.171 0.153 0.147 0.143
18 |
--------------------------------------------------------------------------------
/analyses/buffy-pbmc-tcell/counts.tsv:
--------------------------------------------------------------------------------
1 | Donor PBMC count T cell count T cell / PBMC
2 | D3 1.35E+09 2.50E+08 18.52
3 | D4 3.50E+08 1.20E+08 34.29
4 | D7 7.50E+08 2.40E+08 32.00
5 | D8 6.40E+08 5.70E+08 89.06
6 | D9 6.00E+08 4.80E+08 80.00
7 | D14 1.00E+09 2.00E+08 20.00
8 | D15 7.60E+08 3.60E+08 47.37
9 | D16 5.40E+08 2.00E+08 37.04
10 | D17 6.70E+08 3.40E+08 50.75
11 | D20 8.80E+08 2.70E+08 30.68
12 | D21 1.00E+09 4.10E+08 41.00
13 |
--------------------------------------------------------------------------------
/analyses/cas9-electroporation/Cas9 and CD4 sgRNA RNP Electroporation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stderr",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "Attaching package: ‘dplyr’\n",
14 | "\n",
15 | "The following objects are masked from ‘package:stats’:\n",
16 | "\n",
17 | " filter, lag\n",
18 | "\n",
19 | "The following objects are masked from ‘package:base’:\n",
20 | "\n",
21 | " intersect, setdiff, setequal, union\n",
22 | "\n",
23 | "\n",
24 | "Attaching package: ‘tidyr’\n",
25 | "\n",
26 | "The following object is masked from ‘package:magrittr’:\n",
27 | "\n",
28 | " extract\n",
29 | "\n"
30 | ]
31 | }
32 | ],
33 | "source": [
34 | "library('readr')\n",
35 | "library('magrittr')\n",
36 | "library('dplyr')\n",
37 | "library('tidyr')\n",
38 | "library('ggplot2')"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 10,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "data": {
48 | "text/html": [
49 | "
\n",
50 | "Donor | sgRNA | avg_cd4 | sd_cd4 |
\n",
51 | "\n",
52 | "\tDonor 14 | None | 78.566667 | 6.726316 |
\n",
53 | "\tDonor 14 | CD4 | 9.806667 | 1.035197 |
\n",
54 | "\tDonor 15 | None | 83.200000 | 11.171840 |
\n",
55 | "\tDonor 15 | CD4 | 11.666667 | 1.607275 |
\n",
56 | "\n",
57 | "
\n"
58 | ],
59 | "text/latex": [
60 | "\\begin{tabular}{r|llll}\n",
61 | " Donor & sgRNA & avg\\_cd4 & sd\\_cd4\\\\\n",
62 | "\\hline\n",
63 | "\t Donor 14 & None & 78.566667 & 6.726316\\\\\n",
64 | "\t Donor 14 & CD4 & 9.806667 & 1.035197\\\\\n",
65 | "\t Donor 15 & None & 83.200000 & 11.171840\\\\\n",
66 | "\t Donor 15 & CD4 & 11.666667 & 1.607275\\\\\n",
67 | "\\end{tabular}\n"
68 | ],
69 | "text/markdown": [
70 | "\n",
71 | "Donor | sgRNA | avg_cd4 | sd_cd4 | \n",
72 | "|---|---|---|---|\n",
73 | "| Donor 14 | None | 78.566667 | 6.726316 | \n",
74 | "| Donor 14 | CD4 | 9.806667 | 1.035197 | \n",
75 | "| Donor 15 | None | 83.200000 | 11.171840 | \n",
76 | "| Donor 15 | CD4 | 11.666667 | 1.607275 | \n",
77 | "\n",
78 | "\n"
79 | ],
80 | "text/plain": [
81 | " Donor sgRNA avg_cd4 sd_cd4 \n",
82 | "1 Donor 14 None 78.566667 6.726316\n",
83 | "2 Donor 14 CD4 9.806667 1.035197\n",
84 | "3 Donor 15 None 83.200000 11.171840\n",
85 | "4 Donor 15 CD4 11.666667 1.607275"
86 | ]
87 | },
88 | "metadata": {},
89 | "output_type": "display_data"
90 | }
91 | ],
92 | "source": [
93 | "ko_summary <-\n",
94 | " read_tsv(\n",
95 | " 'flow-data.tsv',\n",
96 | " col_types=cols(\n",
97 | " `Donor`=col_factor(levels=c('D14', 'D15')),\n",
98 | " `Replicate`=col_factor(levels=c('R1', 'R2', 'R3')),\n",
99 | " `sgRNA`=col_factor(levels=c('N/A', 'CD4')),\n",
100 | " .default=col_double()\n",
101 | " )\n",
102 | " ) %>%\n",
103 | " mutate(\n",
104 | " `Donor`=factor(`Donor`, labels=c('Donor 14', 'Donor 15')),\n",
105 | " `sgRNA`=factor(`sgRNA`, labels=c('None', 'CD4'))\n",
106 | " ) %>%\n",
107 | " group_by(`Donor`, `sgRNA`) %>%\n",
108 | " summarize(\n",
109 | " `avg_cd4`=mean(`Live/CD4+ CD8- | Freq. of Parent`),\n",
110 | " `sd_cd4`=sd(`Live/CD4+ CD8- | Freq. of Parent`)\n",
111 | " )\n",
112 | "\n",
113 | "ko_summary"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": 12,
119 | "metadata": {},
120 | "outputs": [
121 | {
122 | "data": {
123 | "text/html": [
124 | "0.875180310245311"
125 | ],
126 | "text/latex": [
127 | "0.875180310245311"
128 | ],
129 | "text/markdown": [
130 | "0.875180310245311"
131 | ],
132 | "text/plain": [
133 | "[1] 0.8751803"
134 | ]
135 | },
136 | "metadata": {},
137 | "output_type": "display_data"
138 | }
139 | ],
140 | "source": [
141 | "1.0 - (9.806667 / 78.566667)"
142 | ]
143 | },
144 | {
145 | "cell_type": "code",
146 | "execution_count": 13,
147 | "metadata": {},
148 | "outputs": [
149 | {
150 | "data": {
151 | "text/html": [
152 | "0.859775637019231"
153 | ],
154 | "text/latex": [
155 | "0.859775637019231"
156 | ],
157 | "text/markdown": [
158 | "0.859775637019231"
159 | ],
160 | "text/plain": [
161 | "[1] 0.8597756"
162 | ]
163 | },
164 | "metadata": {},
165 | "output_type": "display_data"
166 | }
167 | ],
168 | "source": [
169 | "1.0 - (11.666667 / 83.200000)"
170 | ]
171 | },
172 | {
173 | "cell_type": "code",
174 | "execution_count": 11,
175 | "metadata": {},
176 | "outputs": [
177 | {
178 | "data": {},
179 | "metadata": {},
180 | "output_type": "display_data"
181 | },
182 | {
183 | "data": {
184 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEGWlDQ1BrQ0dDb2xvclNwYWNl\nR2VuZXJpY1JHQgAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi\n6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lp\nurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZP\nC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q4\n4WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23B\naIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys\n2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y\n5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrl\nSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98\nhTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7C\nlP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmK\nPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZf\nsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJ\nxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19\nzn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNC\nUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU\n97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KT\nYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyA\ngccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/\nqwBnjX8BoJ98VQNcC+8AAEAASURBVHgB7N0HfFNV+8Dxp7RllVU2pQiCiICvgDIUlSEKMhRk\nOEFA3OIAF6KvOBkynAxBAREQBRUVxIXgAgQB2UvZGxRkls7/+xyb/NM2bXJLmt6b/M7nE5vc\nec73xpAn59znRKT9rwgFAQQQQAABBBBAAAEEEEBACmCAAAIIIIAAAggggAACCCDwrwABEu8E\nBBBAAAEEEEAAAQQQQCBdgACJtwICCCCAAAIIIIAAAgggkC5AgMRbAQEEEEAAAQQQQAABBBBI\nFyBA4q2AAAIIIIAAAggggAACCKQLECDxVkAAAQQQQAABBBBAAAEE0gUIkHgrIIAAAggggAAC\nCCCAAALpAgRIvBUQQAABBBBAAAEEEEAAgXSBKCTyXmDDhg15fxLOgAACCOSTQO3atX2eeefO\nnXLy5Emf27EBAggg4ESBQoUKSfXq1Z1YdersRYAAyQtKoBclJiYG+pAcDwEEEHCUQFJSkvBZ\n6KhLRmURQMCCQIECDMqywGX7Tbmatr9EVBABBBBAAAEEEEAAAQSCJUCAFCxpzoMAAggggAAC\nCCCAAAK2FyBAsv0looIIIIAAAggggAACCCAQLAECpGBJcx4EEEAAAQQQQAABBBCwvQABku0v\nERVEAAEEEEAAAQQQQACBYAkQIAVLmvMggAACCCCAAAIIIICA7QUIkGx/iaggAggggAACCCCA\nAAIIBEuAeZCCJc15wlLgk08+kRMnTrjbHhMTI+XKlZPLLrtMoqOj3cvt+OTnn3+WYsWKSf36\n9bOtnrZP1zM5XrZErEAg7AX++usvmTt3rttB54spUaKE1KhRQ+rWretebscnKSkp8sEHH8j1\n119v6uyqo36uL1myxPXS/bd58+a2/2x3V5YnCCCQrQABUrY0rEDg7AU0gEhNTZW4uDhJS0uT\nI0eOyIEDB6R48eLy3//+17ZfDlavXi0vvvii3HHHHdkGSF9++aWMGTNGnnzySQKks3+rcAQE\nQlZAA6QpU6ZIrVq1pEiRIpKcnCyHDh0yj4suukheeuklKVy4sC3bP378ePn444+lVatWGQIk\n/Yx85ZVXpGzZshnqfemllxIgZRDhBQLOFCBAcuZ1o9YOEtB/WPv06eOu8T///CMDBw6UoUOH\niv7jq18Y7FL0i4v+Wjp9+nSJiIjItlp79uyRd999ly8C2QqxAgEEMgv079/f9Bq5lq9cuVIG\nDRpkPgcfeugh12Jb/D148KC89tpronX0Vv7880+pU6eO2cbbepYhgICzBQiQnH39qL0DBUqW\nLGl6Z2688UbRXpguXbqYVmjv0kcffST6D29sbKxcffXV0qhRI7Nu/fr15h/qhg0byhdffCH6\ni+zFF18snTt3lsjISLONDgXR4y1btsz0WtWrV09uuOEGiYqKksTERHnzzTelffv2MmPGDNOj\ndeedd4oOdfEsX3/9tcybN0+ef/5586XFc53ruZ5nyJAh0r17d3n//fdzDKRc+/AXAQQQyCzQ\noEED6d27t4wePVpuvfVWd2/MunXrZM6cOeZzrmrVqtKtWzcpX7682X327NlSuXJlOXz4sCxe\nvFgKFiwobdu2lUsuucR9+Jw+S9euXStr1qyRSpUqyXfffWc+Z1u0aOHe1/VkxIgR5rNVe7e0\nlzxz2bJli5x//vmZF/MaAQRCRCDjt6MQaRTNQMDuAqVLl5YKFSrItm3bTFWPHz8u9957r/z6\n66/StGlTMxzvmWeekc8//9ys1x4bHeahvU56D5P+cqk9ONrT4yr6D/o777wj8fHxZiiLBkJP\nPfWUOZYGNRr4DB482PT66Pj5zMGRHkfvjdKhMI0bN3YdNstfDYqKFi0qnTp1yrKOBQgggIAV\nAf0s0+L6LNSg55FHHpGTJ0/KlVdeKRrQ3HXXXbJ3716z3W+//Savvvqq6I85GmDpZ9uAAQNk\n+/btZr2vz9Ldu3ebz9KJEyeaeyzPnDlj9sv8n0cffdT8EKSft96K/pClgZgOldYfu5599ll3\nHb1tzzIEEHCWAD1Izrpe1DaEBGrWrCn6j7UWHdZ26tQpmTp1qglgNPjQse0a8LRp08Zsc+zY\nMdEgyJUQQX9BXb58ufTo0UM2btwo3377rbzwwgsmwNIdtPepb9++smjRItPbpMuaNWsm2nOU\nXdHALaeiv+xqD9bbb79Nz1FOUKxDAAG/BDRRg/5Ys2vXLvOZ9dZbb8lVV11lftzRA1x33XVy\n2223yaRJk+Tpp582x9T7lUaNGmX269ixo3Tt2lVWrFgh1apV8+uz9OjRoyb40c/g7Ir+gJVd\n0R+Y9F5S3UaDI/1RS+837devn/nhSpPbUBBAwNkC9CA5+/pRewcLaECkWe206HANHTLnmdlO\ne3N0G/3ioEWHkriCI32tQ05Onz6tT+WPP/4w++ovqq6iN0TrUD0Nnlyldu3arqeW/+q5tAdL\ng67MNyZbPhg7IIAAAv8T0M8VTWSjn4Xa+6OBR5MmTTLYaOKDzZs3u5fpZ5urB1z/lilTRhIS\nEsx6fz5L9XNWA7PcFq3rtGnTzOeh1k2H+Ol9pTr0eeHChbk9LPshgICNBOhBstHFoCrhI6AZ\n7TTwueKKK0yjdTjJOeeckwGgVKlS5rV+edCSOcuTJlHQ42jR/fUfbc+ED7pej+HaX7fT1Lq5\nLXpPgPZazZ8/3zz0OHreWbNmmfum7rnnntwemv0QQCBMBXbu3GlarvcVuaZEyPwDjP7Q4/k5\nlvmz0HUfph7In89S/ax0BVi5YdfP1sw9TOeee6754Wj//v25OST7IICAzQToQbLZBaE64SGg\nNwdrmlvNcKdF04BrcgXPoq/1H/Fq/xs24qvo/jpsRHuSXEV/zdRx/eedd55r0Vn91d4nHepy\nwQUXuB/6xURvdtYbqSkIIICAVQEdXqyfIfr5or3imlQm82eh3nfkb4/P2X6W+lP/HTt2mPui\nXEOkdR8NjPQHJD0/BQEEnC9AD5LzryEtsLmABkKaNUl7ezSI0aEin376qbRu3doEGlp9HWev\nNwV/+OGH5rkGOtpjo2PbdWidr6JJFfTLxeTJk02yh0KFCpmx8NqDpPOMBKJceOGFog/PouPu\nL7/8cpMJynM5zxFAAIHMAjr8TYcN63QCGkz89NNPsnTpUnnuuefc2Tg106b+gKSfNToJtT7X\nLJ6acMafcrafpf6cQ38Q0s9YvUdUE0ro8D69L1M/b1u2bOnPIdgGAQRsLkCAZPMLRPWcL6D/\nwOtDiw7t0F9LdQJWzyxwmpJbAyT9R1aDHO2Z0eDoscce8wtA/7HWdLQ6caGmzdVfYbXnafjw\n4WZ8vuteJb8OxkYIIIBAHghokhktruG/2rutn1kaCLmKJpHRzHKaHU4/B3VahAcffNDvwONs\nP0td9fD1V+uk0x3cdNNN5scvvT9Us+t5DnP2dQzWI4CAfQUi/ver9r83Mdi3jo6v2apVqxzf\nBhoQHAH931F7nDSbnAY5uSma7U6/gBQvXjw3u7MPApYF9Eupr6JpkV33mPjalvUI6NxtOql2\ndmm2fQkF4rPU1zl0vfaEadIHDeQo4S2g98ZpAhFKaAjk7htYaLSdViBgOwENbFwTIua2cmeT\niCG352Q/BBBAIJACOrQ4t8GR1iMQn6X+tCdzQgl/9mEbBBCwvwBJGux/jaghAggggAACCCCA\nAAIIBEmAAClI0JwGAQQQQAABBBBAAAEE7C9AgGT/a0QNEUAAAQQQQAABBBBAIEgCBEhBguY0\nCCCAAAIIIIAAAgggYH8BAiT7XyNqiAACCCCAAAIIIIAAAkESIEAKEjSnQQABBBBAAAEEEEAA\nAfsLECDZ/xpRQwQQQAABBBBAAAEEEAiSAPMgBQE6Li4uCGcJn1PExMSYGdZ1QlQKAv4KREZG\nir53zpw5Yx7+7sd2gREoU6aMMEdXYCz1KK7JoJOSkuT06dOBOzBHCnkBndBU55nSiZtTU1ND\nvr3BaqD+G0MJHQECpCBcy+Tk5CCcJXxOobOWR0VFCa7hc80D0dICBQpIoUKFJDExkfdOIEAt\nHiMlJQV3i2Y5be56P+sXXD4Lc5JiXWYB13tHf2TkvZNZh9cI/CvAEDveCQgggAACCCCAAAII\nIIBAugABEm8FBBBAAAEEEEAAAQQQQCBdgACJtwICCCCAAAIIIIAAAgggkC5AgMRbAQEEEEAA\nAQQQQAABBBBIFyBA4q2AAAIIIIAAAggggAACCKQLECDxVkAAAQQQQAABBBBAAAEE0gUIkHgr\nIIAAAggggAACCCCAAALpAgRIvBUQQAABBBBAAAEEEEAAgXQBAiTeCggggAACCCCAAAIIIIBA\nugABEm8FBBBAAAEEEEAAAQQQQCBdgACJtwICCCCAAAIIIIAAAgggkC5AgMRbAQEEEEAAAQQQ\nQAABBBBIFyBA4q2AAAIIIIAAAggggAACCKQLECDxVkAAAQQQQAABBBBAAAEE0gUIkHgrIIAA\nAggggAACCCCAAALpAgRIvBUQQAABBBBAAAEEEEAAgXQBAiTeCggggAACCCCAAAIIIIBAugAB\nEm8FBBBAAAEEEEAAAQQQQCBdgACJtwICCCCAAAIIIIAAAgggkC5AgMRbAQEEEEAAAQQQQAAB\nBBBIFyBA4q2AAAIIIIAAAggggAACCKQLECDxVkAAAQQQQAABBBBAAAEE0gUIkHgrIIAAAggg\ngAACCCCAAALpAgRIvBUQQAABBBBAAAEEEEAAgXQBAiTeCggggAACCCCAAAIIIIBAugABEm8F\nBBBAAAEEEEAAAQQQQCBdgACJtwICCCCAAAIIIIAAAgggkC4QVgFSSkqKvPfee3Ls2LEsb4Dj\nx4/LV199JTNnzpSdO3daXp9lBxYggAACCCCAAAIIIICA4wTCKkAaM2aMvPPOO3LixIkMF2rb\ntm3SsWNHmTVrlqxdu1buuOMOWbJkiXsbX+vdG/IEAQQQQAABBBBAAAEEHC0Q5eja+1n5AwcO\nyIgRI2TFihVe9xgyZIhcf/318vDDD0tERITpZXr11VdlxowZ5rWv9V4PykIEEEAAAQQQQAAB\nBBBwnEBY9CANHTpU0tLSZNiwYVku0F9//SUbNmwwPUgaHGnp0KGD7N27V9avXy++1mc5IAsQ\nQAABBBBAAAEEEEDAsQJh0YM0YMAAqVChguzYsSPLhdq/f79ZFhcX515XpkwZKViwoBw8eNC9\nLLv1devWdW+jT2699dYMr6+99lq5+eabMyzjxdkJREZGmgPodaIg4K+A6weQokWLSqFChfzd\nje0CJKDmxYsXD9DROIxLQF35LHRp8NcfAde/oaVKlTI/HvuzD9v4FkhKSvK9EVs4RiAsAiQN\njrIr+/btM1+WMn9h0n/Ijxw5IprYQddltz7zcZcvX55hUZ06dUywlWEhLwIioEEsBQGrAvrl\nwPUFweq+bJ97ATXn/9nc+2W3Z4ECBXDNDoflOQpER0fnuJ6V1gR0pBIldATCIkDK6XLpB0Ry\ncnKWTTQw0l+afa3PvKMOy/Ms+o+XBmGUwAmULVtWoqKixNX7F7gjc6RQFtAv5/pLu2aszJyo\nJZTbHYy2VapUyedpTp06JUePHvW5HRv4J6D/tuiPf6dPn8bVPzK2ShcoUaKExMTEyKFDh7x+\n/wEqdwL6vaRcuXK525m9bCcQ9gGSftnWYEj/8daAyFU0Fbj+o69v+JzWu7Z3/eWXaZcEfxFA\nAAEEEEAAAQQQcJ5AWCRpyOmyxMfHmyBo3bp17s00aUNqaqrofUe+1rt34gkCCCCAAAIIIIAA\nAgg4XiDsA6SSJUtK69atZdKkSWbYTUJCgpkrSZMraFepr/WOfwfQAAQQQAABBBBAAAEEEHAL\nhH2ApBL33nuvucn1uuuuk06dOpkepQcffNCN5Gu9e0OeIIAAAggggAACCCCAgKMFIv6XdYO0\nG+mXUO870nuI9OZFb8XXem/76DKSNGQnk7vlJGnInVu470WShrx7B/iTpEHnlEtMTMy7SoTZ\nkUnSEGYXPIDNJUlDADE9DkWSBg+MEHga9kkaPK+hfmjkVHytz2lf1iGAAAIIIIAAAggggID9\nBRhiZ/9rRA0RQAABBBBAAAEEEEAgSAIESEGC5jQIIIAAAggggAACCCBgfwECJPtfI2qIAAII\nIIAAAggggAACQRIgQAoSNKdBAAEEEEAAAQQQQAAB+wsQINn/GlFDBBBAAAEEEEAAAQQQCJIA\nAVKQoDkNAggggAACCCCAAAII2F+AAMn+14gaIoAAAggggAACCCCAQJAECJCCBM1pEEAAAQQQ\nQAABBBBAwP4CBEj2v0bUEAEEEEAAAQQQQAABBIIkQIAUJGhOgwACCCCAAAIIIIAAAvYXIECy\n/zWihggggAACCCCAAAIIIBAkAQKkIEFzGgQQQAABBBBAAAEEELC/AAGS/a8RNUQAAQQQQAAB\nBBBAAIEgCRAgBQma0yCAAAIIIIAAAggggID9BQiQ7H+NqCECCCCAAAIIIIAAAggESYAAKUjQ\nnAYBBBBAAAEEEEAAAQTsL0CAZP9rRA0RQAABBBBAAAEEEEAgSAIESEGC5jQIIIAAAggggAAC\nCCBgfwECJPtfI2qIAAIIIIAAAggggAACQRIgQAoSNKdBAAEEEEAAAQQQQAAB+wsQINn/GlFD\nBBBAAAEEEEAAAQQQCJIAAVKQoDkNAggggAACCCCAAAII2F+AAMn+14gaIoAAAggggAACCCCA\nQJAECJCCBM1pEEAAAQQQQAABBBBAwP4CBEj2v0bUEAEEEEAAAQQQQAABBIIkQIAUJGhOgwAC\nCCCAAAIIIIAAAvYXIECy/zWihggggAACCCCAAAIIIBAkAQKkIEFzGgQQQAABBBBAAAEEELC/\nAAGS/a8RNUQAAQQQQAABBBBAAIEgCUQF6TycBgEEEEAAAQS8CPzyyy/y/fffe1mT/aKIiAiJ\niYmRpKQkOXPmTPYbZrNm4MCBEhkZmc1aFiOAAALhLUCAFN7Xn9YjgAACCOSzwPLly2Xs2LFB\nrcUTTzxBgBRUcU6GAAJOEiBActLVoq4IIIAAAiEn0LVrV2nSpImldv3999/Sp08fadasmfTr\n18/SvrpxwYIFLe/DDggggEC4CBAghcuVpp0IIIAAArYUiIuLE31YKfv37zebly1b1nJwZeU8\nbIsAAgiEowBJGsLxqtNmBBBAAAEEEEAAAQQQ8CpAgOSVhYUIIIAAAggggAACCCAQjgIESOF4\n1WkzAggggAACCCCAAAIIeBUgQPLKwkIEEEAAAQQQQAABBBAIRwECpHC86rQZAQQQQAABBBBA\nAAEEvAoQIHllYSECCCCAAAIIIIAAAgiEowABUjheddqMAAIIIIAAAggggAACXgUIkLyysBAB\nBBBAAAEEEEAAAQTCUYAAKRyvOm1GAAEEEEAAAQQQQAABrwIESF5ZWIgAAggggAACCCCAAALh\nKECAFI5XnTYjgAACCCCAAAIIIICAVwECJK8sLEQAAQQQQAABBBBAAIFwFCBACserTpsRQAAB\nBBBAAAEEEEDAqwABklcWFiKAAAIIIIAAAggggEA4ChAgheNVp80IIIAAAggggAACCCDgVYAA\nySsLCxFAAAEEEEAAAQQQQCAcBQiQwvGq02YEEEAAAQQQQAABBBDwKkCA5JWFhQgggAACCCCA\nAAIIIBCOAgRI4XjVaTMCCCCAAAIIIIAAAgh4FSBA8srCQgQQQAABBBBAAAEEEAhHAQKkcLzq\ntBkBBBBAAAEEEEAAAQS8ChAgeWVhIQIIIIAAAggggAACCISjAAFSOF512owAAggggAACCCCA\nAAJeBQiQvLKwEAEEEEAAAQQQQAABBMJRgAApHK86bUYAAQQQQAABBBBAAAGvAgRIXllYiAAC\nCCCAAAIIIIAAAuEoQIAUjledNiOAAAIIIIAAAggggIBXAQIkrywsRAABBBBAAAEEEEAAgXAU\nIEAKx6tOmxFAAAEEEEAAAQQQQMCrAAGSVxYWIoAAAggggAACCCCAQDgKECCF41WnzQgggAAC\nCCCAAAIIIOBVgADJKwsLEUAAAQQQQAABBBBAIBwFCJDC8arTZgQQQAABBBBAAAEEEPAqQIDk\nlYWFCCCAAAIIIIAAAgggEI4CBEjheNVpMwIIIIAAAggggAACCHgVIEDyysJCBBBAAAEEEEAA\nAQQQCEcBAqRwvOq0GQEEEEAAAQQQQAABBLwKECB5ZWEhAggggAACCCCAAAIIhKMAAVI4XnXa\njAACCCCAAAIIIIAAAl4FCJC8srAQAQQQQAABBBBAAAEEwlGAACkcrzptRgABBBBAAAEEEEAA\nAa8CBEheWViIAAIIIIAAAggggAAC4ShAgBSOV502I4AAAggggAACCCCAgFeBKK9LWRhQgaJF\niwb0eOF+sAIF/o3rcQ33d4K19kdF/ftxFx0dLbx3rNkFYmv1d12DQBwv3I9RuHBhQxAREcH7\nOdzfDBbb7/r/UN9DqampFvdmcwTCQ4AAKQjXWf8BowReANfAm4bDEfV9w3snf6407oFz97T0\nfB64M3CkUBVwvV/0r+t5qLY1mO1KS0sL5uk4Vx4LECDlMbAe/uTJk0E4S/icokiRIqK9SLiG\nzzUPREsLFiwoMTExkpiYyHsnEKAexyhRooTHK+9Pk5OTjb33tSy1KnD69Gmzi34p47PQql54\nbx8ZGSn6eajvIf3/khIYAVfPXGCOxlHyW4B7kPL7CnB+BBBAAAEEEEAAAQQQsI0AAZJtLgUV\nQQABBBBAAAEEEEAAgfwWIEDK7yvA+RFAAAEEEEAAAQQQQMA2AgRItrkUVAQBBBBAAAEEEEAA\nAQTyW4AAKb+vAOdHAAEEEEAAAQQQQAAB2wgQINnmUlARBBBAAAEEEEAAAQQQyG8BAqT8vgKc\nHwEEEEAAAQQQQAABBGwjQIBkm0tBRRBAAAEEEEAAAQQQQCC/BQiQ8vsKcH4EEEAAAQQQQAAB\nBBCwjQABkm0uBRVBAAEEEEAAAQQQQACB/BYgQMrvK8D5EUAAAQQQQAABBBBAwDYCBEi2uRRU\nBAEEEEAAAQQQQAABBPJbICq/K8D5w1fgzz//lJtuuskyQIEC/8b1qamplvcdMmSIXHPNNZb3\nYwcEEEAAAQQQQACB8BAgQAqP62zbVqakpFiu28GDByU5OVkqVKhged+0tDTL+7ADAggggAAC\nCCCAQPgIECCFz7W2XUtr1KghK1eutFyvdu3aybp163K1r+WTsQMCCCCAAAIIIIBAWAlwD1JY\nXW4aiwACCCCAAAIIIIAAAjkJECDlpMM6BBBAAAEEEEAAAQQQCCsBAqSwutw0FgEEEEAAAQQQ\nQAABBHISIEDKSYd1CCCAAAIIIIAAAgggEFYCBEhhdblpLAIIIIAAAggggAACCOQkQICUkw7r\nEEAAAQQQQAABBBBAIKwECJDC6nLTWAQQQAABBBBAAAEEEMhJgAApJx3WIYAAAggggAACCCCA\nQFgJECCF1eWmsQgggAACCCCAAAIIIJCTAAFSTjqsQwABBBBAAAEEEEAAgbASIEAKq8tNYxFA\nAAEEEEAAAQQQQCAnAQKknHRYhwACCCCAAAIIIIAAAmElEBVWraWxCCCAAAIhJVB8wGMh1R5/\nG3Ps5Cmzadry3yRcDRTg+NAR/pKxHQIIIOC3AD1IflOxIQIIIIAAAggggAACCIS6AAFSqF9h\n2ocAAggggAACCCCAAAJ+CxAg+U3FhggggAACCCCAAAIIIBDqAgRIoX6FaR8CCCCAAAIIIIAA\nAgj4LUCA5DcVGyKAAAIIIIAAAggggECoCxAghfoVpn0IIIAAAggggAACCCDgtwABkt9UbIgA\nAggggAACCCCAAAKhLkCAFOpXmPYhgAACCCCAAAIIIICA3wIESH5TsSECCCCAAAIIIIAAAgiE\nugABUqhfYdqHAAIIIIAAAggggAACfgsQIPlNxYYIIIAAAggggAACCCAQ6gIESKF+hWkfAggg\ngAACCCCAAAII+C1AgOQ3FRsigAACCCCAAAIIIIBAqAsQIIX6FaZ9CCCAAAIIIIAAAggg4LcA\nAZLfVGyIAAIIIIAAAggggAACoS5AgBTqV5j2IYAAAggggAACCCCAgN8CBEh+U7EhAggggAAC\nCCCAAAIIhLoAAVKoX2HahwACCCCAAAIIIIAAAn4LECD5TcWGCCCAAAIIIIAAAgggEOoCBEih\nfoVpHwIIIIAAAggggAACCPgtQIDkNxUbIoAAAggggAACCCCAQKgLECCF+hWmfQgggAACCCCA\nAAIIIOC3AAGS31RsiAACCCCAAAIIIIAAAqEuQIAU6leY9iGAAAIIIIAAAggggIDfAgRIflOx\nIQIIIIAAAggggAACCIS6AAFSqF9h2ocAAggggAACCCCAAAJ+CxAg+U3FhggggAACCCCAAAII\nIBDqAgRIoX6FaR8CCCCAAAIIIIAAAgj4LUCA5DcVGyKAAAIIIIAAAggggECoCxAghfoVpn0I\nIIAAAggggAACCCDgtwABkt9UbIgAAggggAACCCCAAAKhLhAV6g0M1fYVH/BYqDbNZ7tSd+4Q\nSUmRcDY4PnSETyc2QAABBBBAAAEEELAuQA+SdTP2QAABBBBAAAEEEEAAgRAVIEAK0QtLsxBA\nAAEEEEAAAQQQQMC6AAGSdTP2QAABBBBAAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6\nAAGSdTP2QAABBBBAAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6AAGSdTP2QAABBBBA\nAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6AAGSdTP2QAABBBBAAAEEEEAAgRAVIEAK\n0QtLsxBAAAEEEEAAAQQQQMC6AAGSdTP2QAABBBBAAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAA\nAQQQQMC6AAGSdTP2QAABBBBAAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6AAGSdTP2\nQAABBBBAAAEEEEAAgRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6AAGSdTP2QAABBBBAAAEEEEAA\ngRAVIEAK0QtLsxBAAAEEEEAAAQQQQMC6QJT1XUJrj4MHD8rKlSu9Nuq8886TGjVqyPHjx2Xx\n4sVZtmnZsqVER0dnWc4CBBBAAAEEEEAAAQQQcKZA2AdIO3fulAkTJmS4esnJyfLXX39J3759\nTYC0atUqGTx4sJQtWzbDdpdddhkBUgYRXiCAAAIIIIAAAggg4GyBsA+QGjZsKLNmzcpwFUeN\nGiW//fabdOzY0SzfsmWL1K1bV0aPHp1hO14ggAACCCCAAAIIIIBAaAmEfYCU+XJqYPTFF1/I\n2LFjpXDhwma1Bki1atXKvCmvEUAAAQQQQAABBBBAIMQECJA8LuiZM2dk6NChcvPNN8sFF1zg\nXqMBUqFChWTAgAGyceNGqV27thl+V7lyZfc2rifa0+RZunfvbvbzXBaI5ycDcRCO4ViBihUr\nOrbu+V3xYsWKiT4owRUoWrSolC5dOuAn5bMw4KSOOiCfhbm/XJlvG8j9kdhTBfQ7JCV0BAiQ\nPK7lwoUL5fDhw9K1a1f3Uk3QsH//ftEP4VtuuUWuuOIKMyTvgQcekKlTp2b5opW5p6l8+fKi\n9zRREAikAO8p65oRERESFRUlqamp5mH9COyRnYA/yWrUnfdtdoIsz60A7ynrcgUKFJDIyEj+\nf7ROl+Me+hlHCR0BAiSPa6lD65o3by5lypRxL9VfmmfOnGl++SxYsKBZXqdOHenZs6fMnz/f\nfZ+Sa4dPPvnE9dT9d9++fe7ngXpSPFAH4jiOFNBAnmJNQP//1f+3T506JSdOnLC2M1vnKFCp\nUqUc1+vKhIQEOXbsmM/trG7AZ6FVsdDans9C69ezRIkSEhMTI0ePHiVIss6X7R76A5z2lFNC\nQ4B5kNKvo2az02x1nTt3znBl9Vdn7T1yBUe6snr16lKuXDnJi8Anw8l5gQACCCCAAAIIIIAA\nAkEVIEBK5/7111+lVKlSUq9evQwXYPv27aa3aNeuXe7lGhgdOnRIvN2D5N6IJwgggAACCCCA\nAAIIIOA4AQKk9Eu2Y8cOOffcc7NcwGrVqplsduPGjZMjR46YXqMxY8ZIbGystGrVKsv2LEAA\nAQQQQAABBBBAAAHnChAgpV877SnSoXPeSr9+/WTbtm1yww03mEQNe/bskbfeeouxpt6wWIYA\nAggggAACCCCAgIMFSNKQfvE04MmuaMrv6dOnmwx3mq2pZMmS2W3KcgQQQAABBBBAAAEEEHCw\nAAGShYvHnAEWsNgUAQQQQAABBBBAAAEHCjDEzoEXjSojgAACCCCAAAIIIIBA3ggQIOWNK0dF\nAAEEEEAAAQQQQAABBwoQIDnwolFlBBBAAAEEEEAAAQQQyBsBAqS8ceWoCCCAAAIIIIAAAggg\n4EABAiQHXjSqjAACCCCAAAIIIIAAAnkjQICUN64cFQEEEEAAAQQQQAABBBwoQIDkwItGlRFA\nAAEEEEAAAQQQQCBvBAiQ8saVoyKAAAIIIIAAAggggIADBQiQHHjRqDICCCCAAAIIIIAAAgjk\njQABUt64clQEEEAAAQQQQAABBBBwoAABkgMvGlVGAAEEEEAAAQQQQACBvBGIypvDclQEEEAA\nAQQQ8Edg6h9bZfymzf5s6t4mKSXVPF+wb780m/uVe7m/T+a3bS3RBfiN1F8vtkMAgfASIEAK\nr+ttq9YeOp0gYzZsslyn/adOS0pqqjy/YpXlfbudW1XqxJayvB87IIAAAnklcDAhQVb/fcTy\n4SMjIuR4UlKu9k1LS7N8PnZAAAEEwkWAAClcrrQN23n4TIKMWLsu1zXLzb7/KV2KACnX4uyI\nAAJ5IdD/wjqiDwoCCCCAgD0ECJDscR3CshZVixWTua1bBbXttUuVDOr5OBkCCCCAAAIIIICA\nswQIkJx1vUKqtkWjoqRZxQoh1SYagwACCCCAAAIIIOBsAe7QdPb1o/YIIIAAAggggAACCCAQ\nQAECpABicigEEEAAAQQQQAABBBBwtgABkrOvH7VHAAEEEEAAAQQQQACBAAoQIAUQk0MhgAAC\nCCCAAAIIIICAswUIkJx9/ag9AggggAACCCCAAAIIBFCAACmAmBwKAQQQQAABBBBAAAEEnC1A\ngOTs60ftEUAAAQQQQAABBBBAIIACBEgBxORQCCCAAAIIIIAAAggg4GwBAiRnXz9qjwACCCCA\nAAIIIIAAAgEUIEAKICaHQgABBBBAAAEEEEAAAWcLECA5+/pRewQQQAABBBBAAAEEEAigAAFS\nADE5FAIIIIAAAggggAACCDhbgADJ2deP2iOAAAIIIIAAAggggEAABQiQAojJoRBAAAEEEEAA\nAQQQQMDZAgRIzr5+1B4BBBBAAAEEEEAAAQQCKECAFEBMDoUAAggggAACCCCAAALOFiBAcvb1\no/YIIIAAAggggAACCCAQQAECpABicigEEEAAAQQQQAABBBBwtgABkrOvH7VHAAEEEEAAAQQQ\nQACBAAoQIAUQk0MhgAACCCCAAAIIIICAswUIkJx9/ag9AggggAACCCCAAAIIBFCAACmAmBwK\nAQQQQAABBBBAAAEEnC1AgOTs60ftEUAAAQQQQAABBBBAIIACBEgBxORQCCCAAAIIIIAAAggg\n4GwBAiRnXz9qjwACCCCAAAIIIIAAAgEUIEAKICaHQgABBBBAAAEEEEAAAWcLROW2+ikpKbJ1\n61ZZt26d7N+/X8qXLy9VqlSRBg0aSFRUrg+b2+qwHwIIIIAAAggggAACCCBw1gKWIpljx47J\nhAkTZNq0abJhwwZJSEjIUoHY2Fhp166dPProoyZYyrIBCxBAAAEEEEAAAQQQQAABmwr4FSBp\nb9HIkSPl5ZdflpMnT0qLFi3kkUceMT1G55xzjhQtWlQ2b94smzZtko0bN8rChQvlgw8+kN69\ne5t9KlSoYNPmUy0EEEAAAQQQQAABBBBA4P8FfAZI27Ztk27duon2Hr3yyivSpUsXKVu27P8f\nIf3ZVVdd5V6Wmpoqs2fPlmHDhknNmjXlhRdeMAGVewOeIIAAAggggAACCCCAAAI2FPCZpGHL\nli3Sp08fWb9+vdxzzz1eg6PM7SpQoIB07txZfv31V/nss89Mz1LmbXiNAAIIIIAAAggggAAC\nCNhNwGcPUuvWrc+qzi1bthR9UBBAAAEEEEAAAQQQQAABuwv4DJD8aUBaWprs27dP9G9cXJxE\nRET4sxvbIIAAAggggAACCCCAAAK2EvA5xM5XbWfMmCGVKlWSypUrS3x8vHmuCRooCCCAAAII\nIIAAAggggIDTBM6qB0lTfffo0UPuvvtuk9muRIkSsmjRIrn99tvlwgsvlP/85z9O86C+CCCA\nAAIIIIAAAgggEMYCPgMknQS2VKlSUrhw4SxMP//8s9SvX19Gjx7tXtemTRuZP3++SfVNgORm\n4QkCCCCAAAIIIIAAAgg4QMDnELsffvhBzjvvPBk3bpwkJSVlaJLOgbR69WrRbXSupH/++Ufm\nzp0ry5cvl3PPPTfDtrxAAAEEEEAAAQQQQAABBOwu4DNA6tq1q5nHaOjQoVKrVi157733TDCk\nDdMMdzrETv9GR0dLbGysdOjQQXSf9u3b273t1A8BBBBAAAEEEEAAAQQQyCDgM0CKjIyUO+64\nQzZv3iz9+/eXAQMGmPuLPvroI3Ogd955Rw4fPiyzZs2SSZMmyYoVK+T9998nk10GZl4ggAAC\nCCCAAAIIIICAEwR8BkiuRhQsWFD69u0rW7duNQHT/fffLw0aNJAvvvhCihcvbiaG7dmzp1nm\n2oe/CCCAAAIIIIAAAggggICTBPwOkFyNKlKkiDz++OMmULrhhhuke/fucumll8q3337r2oS/\nCCCAAAIIIIAAAggggIAjBfwKkDQBw+TJk+W+++6T3r17y4gRI0xjBw0aZAKl5s2bS6dOnUyq\nb81sR0EAAQQQQAABBBBAAAEEnCjgM0BKS0sziRc0MNL03X/88YcMGzZM6tWrJ3///beUKVPG\nvP7zzz/NvEetWrWStm3bis6RREEAAQQQQAABBBBAAAEEnCTgM0BatmyZLFiwQDZt2mQSNfz0\n00+yZ88eKVq0qEycONHd1ooVK8qbb74pW7Zskbi4OPn888/d63iCAAIIIIAAAggggAACCDhB\nwOdEsTq3kSZhqFy5srs9mrBB50A6evSoe5nriS5/99133anAXcv5iwACCCCAAAIIIIAAAgjY\nXcBngNSkSRPRxAx6n9E111wjycnJsnjxYtGepSFDhmTbPk0PTkEAAQQQQAABBBBAAAEEnCTg\nM0AqUaKE6LC6qVOnypw5c2T//v1Su3Zt+e6776R+/fpOait1RQABBBBAAAEEEEAAAQRyFPAZ\nIOneVatWlaeffto8cjwaKxFAAAEEEEAAAQQQQAABBwv4TNKwc+dOOX78+Fk1UYfjURBAAAEE\nEEAAAQQQQAABuwv4DJDWrVsnNWvWlNGjR8uZM2f8bo/OnfThhx/KxRdfLH379vV7PzZEAAEE\nEEAAAQQQQAABBPJLwGeApHMa6f1HI0eONOm7+/TpI1999ZUcPnw4Q511vqRdu3bJt99+ayaS\nrVWrlui2N9xwgyxcuDDDtrxAAAEEEEAAAQQQQAABBOwo4Nc9SFdffbWsXbtWxo0bJ6+//rp7\n/iPNbhcfH2/mRNIJZE+ePGnaGBERId27dzdZ7jzTg9sRgDohgAACCCCAAAIIIIAAAi4BvwIk\n3Vgnhu3fv7889NBD8vPPP8uaNWtEh9/pQzPbaUY7DZZatWolHTp0kEqVKrnOwV8EEEAAAQQQ\nQAABBBBAwBECfgdIrtZERUVJixYtzMO1jL8IIIAAAggggAACCCCAQCgI+LwHKRQaSRsQQAAB\nBBBAAAEEEEAAAX8ECJD8UWIbBBBAAAEEEEAAAQQQCAsBAqSwuMw0EgEEEEAAAQQQQAABBPwR\nIEDyR4ltEEAAAQQQQAABBBBAICwECJDC4jLTSAQQQAABBBBAAAEEEPBHgADJHyW2QQABBBBA\nAAEEEEAAgbAQsJzmW1U+/vhjGTlypOzYsUNOnz4taWlpWbCOHDmSZVm4LihVqlTAm54S8CNy\nQCcJ5MV7ykntz01dCxT49/egwoULi05XQAmuQMGCBc18eoE+K5+FgRZ11vH4LLR+vaKjo81O\nxYsX9/r9zfoR2UMFUlL4NAqld4LlbwmLFi2Sm266SYoUKSL16tWT8uXLS0RERCiZBLwtp06d\nCvgxCwX8iBzQSQJ58Z5yUvtzU1f9UlCoUCFJSkoyP+zk5hjs411A/z3wVZKTkyUxMdHXZpbX\n81lomSykduCz0PrljImJMT8SJSQk8KXeOl+2e/BdOFsaR66wHCDNnDlT9BfYFStWSM2aNR3Z\n6GBXmi8FwRYP/fPlxXsq9NX+baH+yodf8K92ampqnrgTIAX/WtrpjPy/bP1q6Hc4Lfpjkf5w\nQQmMACMTAuNol6NYvgdp37590rBhQ4Iju1xB6oEAAggggAACCCCAAAIBE7AcIGlwpL1HdGsH\n7BpwIAQQQAABBBBAAAEEELCJgOUAqVevXhIXFyfPPfdcngyXsIkL1UAAAQQQQAABBBBAAIEw\nFLB8D9KCBQukXLlyMnz4cHnjjTckPj5e9Ia/zGXVqlWZF/EaAQQQQAABBBBAAAEEELC1gOUA\nSdN3nzlzRho1amTrhlE5BBBAAAEEEEAAAQQQQMCqgOUA6e677xZ9UBBAAAEEEEAAAQQQQACB\nUBOwfA9SqAHQHgQQQAABBBBAAAEEEEDAJWC5B8m1o+bOX7hwoWzatMnk0q9fv77og1mtXUL8\nRQABBBBAAAEEEEAAAacJ5CpAWr58uWg2u7Vr12Zp7+DBg+Wpp57KspwFCCCAAAIIIIAAAggg\ngIDdBSwHSEePHpWOHTua2ZdHjRolTZo0kWLFisn27dtl4sSJMnDgQNFZmvv162f3tlM/BBBA\nAAEEEEAAAQQQQCCDgOUAacKECaJBkk4We/7557sPdtFFF8n1118v99xzj4wdO5YAyS3DEwQQ\nQAABBBBAAAEEEHCKgOUkDTq/UYsWLTIER56N1Qx3W7Zskb1793ou5jkCCCCAAAIIIIAAAggg\nYHsBywFSZGSkJCYmZtsw17qUlJRst2EFAggggAACCCCAAAIIIGBHAcsBUsOGDeWHH36QpUuX\nZmlPWlqavPLKK1K2bFmpUqVKlvUsQAABBBBAAAEEEEAAAQTsLGD5HqQ777xTNDmDDrO76667\npHHjxlKiRAmTpGHy5Mnm3iRN1kBBAAEEEEAAAQQQQAABBJwmYDlAKlKkiPzyyy/Sp08feeON\nNzK0NzY2VkaPHi29e/fOsJwXCCCAAAIIIIAAAggggIATBCwHSNqouLg4mTdvnuzevVs2bNgg\nf/31l9SoUUNq165tUn47oeHUEQEEEEAAAQQQQAABBBDILJCrAMl1kPj4eNEHBQEEEEAAAQQQ\nQAABBBAIBQGfAZKm627durU0bdpUxo8fb4bQ6TxHvsratWt9bcJ6BBBAAAEEEEAAAQQQQMBW\nAj4DpAIFCphhc4ULFzYVL1iwIMPobHUJqQwCCCCAAAIIIIAAAggESsBngFSxYkVZsmSJ+3ya\nuU4fFAQQQAABBBBAAAEEEEAg1AQsz4M0ZcoUeeKJJ7J1mD17tlStWlVOnz6d7TasQAABBBBA\nAAEEEEAAAQTsKOCzB0krfejQIUlMTDT1X7lypZkkds+ePVnao9t8+eWXsnPnTklISBBNCU5B\nAAEEEEAAAQQQQAABBJwi4FeANGnSJHnyyScztCmn7HX169cXnROJggACCCCAAAIIIIAAAgg4\nScCvAKlfv36SnJwsSUlJsmDBAtmxY4f06tUrSzujoqJMYNStW7cs61iAAAIIIIAAAggggAAC\nCNhdwK8AKTo6WgYOHGjacsEFF8j69etl0KBBdm8b9UMAAQQQQAABBBBAAAEELAn4FSB5HvGm\nm27yfJnleVpamvz8889y5ZVXZlnHAgQQQAABBBBAAAEEEEDAzgKWAyRtzMSJE82EsQcPHjTD\n7nSZBkY6DO/48eNmmb6mIIAAAggggAACCCCAAAJOErCc5vunn36SO++8U1avXm3SeR84cEA0\nYUO5cuXkxIkTohPLjh071kkG1BUBBBBAAAEEEEAAAQQQMAKWA6Q5c+aYIGjbtm1mKF2dOnXk\nxhtvlLVr18q6deukQoUKEhkZCS8CCCCAAAIIIIAAAggg4DgBywHSn3/+KZdddpnpNdLWNmjQ\nQJYsWWIaft5558mwYcPkmWeecRwEFUYAAQQQQAABBBBAAAEELAdIOr+R5wSwtWrVEp081lWa\nNm0qem/S7t27XYv4iwACCCCAAAIIIIAAAgg4QsBygKRpvhcvXix675EWHWK3fft22blzp3mt\nw+z0PiRNDU5BAAEEEEAAAQQQQAABBJwkYDlAuv32200PUs2aNeWHH36Qq666SmJiYqRLly4y\nePBg6du3rxmCp/ciURBAAAEEEEAAAQQQQAABJwlYDpA0W92nn35q7j1KSEgQHXKnWet+//13\nefrpp2XXrl3y8MMPO8mAuiKAAAIIIIAAAggggAACRiBX8yBdfvnlpvfINddRjx49pHXr1uZe\npLp160qVKlXgRQABBBBAAAEEEEAAAQQcJ5CrAMnVyoiICNdTk9772muvdb/mCQIIIIAAAggg\ngAACCCDgNAGfAdL+/fulU6dOltvlSv1teUd2QAABBBBAAAEEEEAAAQTyScBngJSamionT57M\np+pxWgQQQAABBBBAAAEEEEAgeAI+A6S4uDhZs2ZN8GrEmRBAAAEEEEAAAQQQQACBfBKwnMUu\nn+rJaRFAAAEEEEAAAQQQQACBPBfw2YOUuQajRo2S119/PfPiLK937NiRZRkLEEAAAQQQQAAB\nBBBAAAE7C1gOkMqWLSvnn39+hjalpKTIzp07RYMinRfptttuy7CeFwgggAACCCCAAAIIIICA\nEwQsB0i333676MNb2bp1q7Rp00YqVarkbTXLEEAAAQQQQAABBBBAwIYCOr+pdnh4KzExMVKq\nVCmJisoYOmgnye7du6VIkSJSvnx5b7vK8ePH5e+//5aKFStKoUKFvG6jnSyRkZESHx/vdX2w\nFwb0HqTq1avL008/LS+99JIoGAUBBBBAAAEEEEAAAQTsL3Ds2DGpVq2a10e5cuWkRIkScuut\nt2bIbn3gwAGzvcYAf/75p9dGTp482WyzbNkyr+sXLVpk1p9zzjmyZcsWr9sEe2HGMDAAZ69S\npYqJFLWBF1xwQQCOyCEQQAABBBBAAAEEEEAgGAJNmjSRxx9/3H0q7VlatWqVfPXVV/LBBx+Y\nQOjXX391r9cnOiXQHXfcIQsXLpSIiIgM63y9mDhxomiAtW/fPnn77bdlxIgRvnbJ8/UB7UE6\ndeqUjBkzxnSRaRRIQQABBBBAAAEEEEAAAecIVK5cWbp06eJ+dO3aVV588UXRHqBLL71Uli5d\nKuvWrcvQoMKFC8uPP/4ob775Zoblvl5oYPXhhx9Kx44dpUOHDqK9TQkJCb52y/P1lnuQJkyY\nIO+++26WiiUlJZkkDX/99Zf06tVLihYtmmUbFiCAAAIIIIAAAggggEBgBFJTU+XTTz81vTt6\nn48mUmvXrp1ceeWVGU5w6NAhmTt3rnz33XcmV4AmVNPtf/nlF/nvf/+bYducXnTr1k2WLFli\ngqW6deu6N9X8BN9//7089dRT5vznnXeee11OTz766CM5ceKEtG3b1oxAmzlzpuiy7PId5HSs\nQK6z3IOUmJhoutE04vN86D1HF154oQwePFhGjx4dyDpyLAQQQAABBBBAAAEEEMgk0K9fP9Gg\nRYe8FShQQKZMmSLNmzeXV1991b2lBkcNGzaUBx980AQjixcvlqZNm5pg5uWXX3Zv5+uJftf/\n5ptvzGaZAyDtGJk0aZLp/endu7do4OZP0eF1FSpUkJYtW0r79u1NNuxx48b5s2uebmO5B+mB\nBx4QfVAQQAABBBBAAAEEEEAgfwQ0O5x2Stx3333uzgkNTOrXry/Dhg2Thx56yNz2cvPNN5ve\nmeXLl7un6hk/frzcc889XrPK7dmzR2bNmuVulHaOaJa5L7/8Un7++WfTQ3TFFVe417ue6LKH\nH37YBGdvvPGGPPLII65VXv9u3rzZHO/RRx812fE0Q57WdezYseaep3r16nndLxgLLfcgBaNS\nnAMBBBBAAAEEEEAAAQRyFtBeI70fSBMcaNHXP/zwg2zfvt0ER4cPHzZD37T3yHMe07vvvtsE\nUt6Orr1R2ivleuhwvIEDB8rRo0dNpurZs2d7280s0x6pmjVrmu19ZaTTHictPXv2NH/1P9r7\npEWDpPwsuQ6QNKPFH3/8ITpW8J133pEVK1aIRpgUBBBAAAEEEEAAAQQQyFuB4sWLiw6x04BI\nEyvoMDq9n0jnJdWkCVr0+7kW7VXKXC6++OLMi8zrq6++WtasWWMempXuhhtuMD1Nt9xyi5nO\nJzo62ut+ulDnQ9LA58yZMybYyW6onQ7Xe++996RMmTIm6YPmN9DH6tWrTTrxadOmmV6vbE+U\nxyssD7HT+mhUqli///57huopijZOASkIIIAAAggggAACCCCQdwI6lK5FixaiAYXeH6RzkepD\nkxzod3K9/0hLwYIFs1RCv7d7KzrfkeYVcBVN+KBD33SuUw2OPFOAu7bx/Hv55Zeb4XWjRo2S\n1157zezjuV6fz5s3z93rdeedd2ZebV5PnTrVDB/0ujKPF1ruQdJxiZdccolotjptuGbD0AwY\nmhddL5B2w7311lt5XG0OjwACCCCAAAIIIIBAeAtoT0zr1q1FgwmdtFVTcDdr1swka9CeJVcy\nBe1Vyly8Lcu8jb7WYXuaxVrnOh0wYIDMnz/f22YZlmmQpkP6nnnmGdm0aVOGdfpCkzNERkaa\ne5u0t8nzsXv3bnNPUn4Os7McIH3++eemm01zoWu3XqtWrUwmDI0s9eate++9N0PmjCwiLEAA\nAQQQQAABBBBAAIGzEtCRXDExMe7v3TpBa6NGjaRv377muPv37xcdRletWjUzAatOyeMqGzdu\nlG+//db10uffkiVLmh4pHTJ31113ic59mlPxHGqXOdA5ePCgzJkzx8QQOm+q9m55PnS4oM6J\npMP8tBMmP4rlAEkngdL86pqSz1vRjBgakfoblXo7BssQQAABBBBAAAEEEEAgewG9r0g7KoYO\nHWqCpFWrVpkRXS+88IIUK1bMzC2kQ+KGDx8uGhBpljkNVoYMGWJ6mXSdBlX+lmuuucYM3du2\nbZs8++yzPnfTVOLamZL5PqT3339fNFjr0aNHtse44447zLrMwVW2OwR4heUASTNTeOsqc9VL\ns2homr6KFSu6FvEXAQQQQAABBBBAAAEEAiyg8x3pMLr+/fubRAx6q4t+D9fJXEuXLm3O1rVr\nVzNJrCZu0Ilcp0+fLi+++KJce+21pgfKSpX09pqyZcuae4s0bbivokPtatWqlWEzHV6nPV+a\nzyC7op0xlSpVMunGNRNfsIvlJA0a0WnWOr1B67nnnssAu2HDBpNz/f777xedMIqCAAIIIIAA\nAggggAACeSOg9/loMKRBhHZS6HA6zW7nKnqP0q5du0R7f9q0aeNabP5qoKTBjqvoMDrNUp1T\n0axzrsQPru1y2keDMu298iyaltxX0fuT9u7d62uzPFtvOUDS3Ojly5eXESNGmLGIderUMbPe\n6g1VmppPu9G0y85zcieNArU7j4IAAggggAACCCCAAAKBFdBAxzPYcR1dEyxoRjrNLPf111+7\nFpsJWn/66Sfp06ePexlP/l/AcoD0zz//mBup9CYwLTr3kWbN0KBIs9t5K7qOggACCCCAAAII\nIIAAAsET0HuMNIHayJEjTQKH5s2bi07gumDBArnoootE04RTsgpYDpB05l0jrglWAABAAElE\nQVR9UBBAAAEEEEAAAQQQQMDeAq+88orJCqc9SBoYxcfHy6BBg6Rnz57u+5Ts3YLg185ygOSq\nYnJysujsupqwQTNRaCYNfZQqVcq1CX8RQAABBBBAAAEEEEAgHwV0mF2LFi3MIx+r4ahT5ypA\n0qwVvXr1krVr12Zp7ODBg02GjCwrfCzQm8g0NbjeuKV52/U+J52QqkGDBiYbh4/dWY0AAggg\ngAACCCCAAAIInLWA5QDp6NGj0rFjR9EeJE3116RJE5Nrffv27WZW3IEDB4pmrNC8577KsWPH\nzMy806ZNE82Al5CQkGWX2NhYM+/So48+aoKlLBuwAAEEEEAAAQQQQAABBBAIkIDlAGnChAmi\nQdKKFStEUwu6it7odf3114tOFKuTOuUUIGlvkd4s9vLLL8vJkydNl98jjzxieox0Rl1NEb55\n82YzfE9TA+pQvg8++EB69+5t9sluklpXXfiLAAIIIIAAAggggECoC+SUYjvQbbcyqWygzx3s\n41kOkHSWXh3H6BkceVZaEziMHz/e5C6Pi4vzXGWe6+y73bp1E+090pvGunTp4jUt4VVXXeXe\nV1OHz54922Ta0IlqdYZgDagoCCCAAAIIIIAAAgiEq8DJXt2D1vSik94XvZ8pHIrlVurETZra\nO7viWqe9RN6KphbUnOvr1683vU3ecrZn3k8vRufOnUXnYPrss89Mz1LmbXiNAAIIIIAAAggg\ngAACCJytgOUepIYNG8pjjz0mS5culcaNG2c4v3bzaa+QBj2aYMFbad26tbfFfi9r2bKl6IOC\nAAIIIIAAAggggAACCARawHKAdOedd5rkDDrM7q677jJBUokSJUSTNEyePNncmzRx4sSzqqdm\nx9u1a5eZeFaz2VEQQAABBBBAAAEEEEAAgWAIWA6QihQpIr/88osZJvfGG29kqKNmnBs9erRJ\nppBhhZcXOsRuxowZJhC67rrrzBA6nVOpbdu2ovcpaYmKipJnn31Wnn766bAZ8+iFikUIIIAA\nAggggAACCCAQJAHLAZLWS5MvzJs3T3bv3m3Sc//1119So0YNqV27tkn57avuv//+uzRv3twk\natB7mrTnacyYMTJz5kw5dOiQaC+VDtHTnigNkDTw6tu3r6/Dsh4BBBBAAAEEEEAAAQQQOCsB\nvwMkvb9Ie31+++03M4lr06ZNJT4+3jys1kAz3VWrVk3efvttM7fRa6+9Jg888IDoOXR4Xd26\ndc0hn3nmGbn66qvlv//9r9x///30IlmFZnsEEEAAAQQQQAABBBCwJOBXFrvjx4+LDoO78MIL\npVevXmbiVk23/cUXX1g6mW584sQJc5+STvx66aWXSqFCheTxxx+XMmXKiAZdruBIt9XsdRo4\n6bxLrmF3upyCAAIIIIAAAggggAACCOSFgF8BkvbkzJ07V6688koZMWKEdO3a1QQtPXv2FB1e\nZ6UcOXJENAV4qVKl3LtpINSxY0ev8yGVLFnSbOdKH+7eiScIIIAAAggggAACCCCQbwLffPON\nvPTSS5KQkJClDtqRMnXq1CzLnbDAryF206dPl0aNGsn3339vEidow+bMmWN6lT788EMz/M3f\nxuqwvHLlysmbb74pmglPM+Bpeeedd0QnhPUsp0+fFk0EUaxYMTnvvPM8V/EcAQQQQAABBBBA\nAAEE8lFAA6SRI0fKP//8I8OHD89QE527VPMVdO8evMlsM1TgLF747EHS4XWHDx+W9u3bu4Mj\nPV+7du0kOjra8tC3iIgIGTZsmCxYsMAkYlA8V/GcnXfatGly7rnnmmF8mqhBz0VBAAEEEEAA\nAQQQQAAB+wjod/RRo0bJ4sWL7VOps6yJzwBJI0ItnkPi9LUGM9oTtGfPHn1pqfTu3VvWrFkj\nrVq1MsPtvO2sySBOnTplgimdmJaCAAIIIIAAAggggAAC9hK4+OKLpU2bNmaaHx39lV3RW2zG\njRsnN9xwg1x//fUmqEpKSjKb61+dX3Xr1q0yYMAAczzNYL1v374Mh9NM2Lpd69at5ZFHHpG9\ne/dmWB+oFz4DJG2MFk3HnbnosuTk5MyL/XqtKcE/+eQTg+RtB537SO9veuKJJ0R7nfKyaC+Z\ndhFmfrgump5bt/nqq69MKvKdO3fmZXU4NgIIIIAAAggggAACjhGYMGGC7N+/32Sezq7Sd9xx\nhwl+NNFbw4YNZejQoWb+U81irfGG3m6jI9QOHDhgAqj58+ebQMh1PL3V57LLLjMJ37p16ya/\n/vqrXHTRRXkSJPl1D5KrYnnxN7vgp2zZsnlxOq/HXLVqlQwePDhLkgi9CK5hhH369JHq1atL\n5cqVTXpyvSFNs/BREEAAAQQQQAABBBAIZwH9fvzqq6+auUw7d+5sMlN7eixbtkymTJkiemuN\n9h5padu2rTRu3Ngsu/baa82yG2+8UV544QXzvFatWnLNNdeYXqRKlSqJjijTfT744AOzXnuS\ntPdKv8O/9dZbZlmg/uN3gKTR3ObNmzOcV3uPtGcl83Ld6Pzzz8+wbXYvdN8nn3zSTAjboEED\nM/HswIED5fnnnzdRYXb7BXL5li1bTHrx0aNHez3skCFDzMV8+OGHTW/We++9Z94EM2bMyPPe\nLa8VYiECCCCAAAIIIIAAAjYS0FtoZs2aZYba6VA4z7Jy5UoztY/eXuMq2otUsWJF0eDJFSBp\nwOQq55xzjnl68uRJOXPmjGiHhgZKOgTPVXQ0m96WE+jic4id64TaY6KRnOdDxwXqsDPPZa7n\nrv18/f37779l9uzZpjtNt9Vhdfr64MGDvnYN2HoNkLTe3orWZ8OGDSYNuau3q0OHDqY7TyfO\npSCAAAIIIIAAAggggIDI+PHjzXd4vVXGs+icpprPICYmxr1Yv1eXL18+Qz4Cz/Wu5G06BO/Y\nsWMm27Vmttblrof2MHXp0sV9zEA98dmDVLx4cUtpvANVsWAeRwMknbBWI9KNGzeK3h+lN4Zp\nd6GOp9QSFxfnrpJOaluwYEHzBvCc2FY3yBw06bZRUT6Z3cfmCQL+CPCe8kcp4zau+yj1QxW/\njDbBeKX/EOIeDOnwOgfvKevX2/WlEzvrdjnt4XLNaZtwWKffnV977TXR+430O7Lr+7NO16Oj\n0bRnqX79+oZCO1pWr14tOnLMV9HEcDo1kB5Ph9S5iuYPyItM1z6/uZcuXVqyG3rmqpyT/+oQ\nQQ2CtIvvlltukSuuuMJ0Dz7wwANmciu9eBo86cOzaOCok95mLpqZw7P06NFDdKLdQJcTgT4g\nx3OUgH5QUHInoL9Oef5ClbujsJdVgSJFiog+Al34LAy0qLOOx2dh7q9XbGxs7ndmzywCOgSM\n8q9Az549TVKzuXPnugMkvXeoatWq5pYanTdJ/z3QwEh7kJo1a+YX3X333WcSObRs2dJMP/TL\nL7+YEV56b1Ogi88AKdAntNvxtKtu5syZooGg9gppqVOnjujF1ewZ2h3oLVOfZtsoWrRolubc\neuutGZbp+EodO0lBIJACvKesa2oPUuHChSUxMVE8M1RaPxJ7ZBbwJ+DUz1Het5nleH22Aryn\nrAvqdx39xV3TMaemplo/AHt4FVDLzD+me90wTBbqUDvPUVYaEH3xxRfSq1cvueCCC8x78MIL\nLzTftfW+ooSEBJ8ygwYNMhnsunbtakYkVKhQQR5//HHRjHaBLmEfIOmwD+098iyarU5/ldLe\nI+0S1GBI52TyDIh0LKRe0MxFL17moscJdCke6ANyPEcJ6PuPYk1AvxRogKS/8p04Qb+DNb2c\nt/YnQNLAVB+BLnwWBlrUWcfjs9D69dJhShog6eegtx+ArR+RPVRAhyzq6KJwKyNGjPDaZB0K\nl3mk1X/+8x9Zvny5aP4B/f7t2Yup/z7rvUaeRb+Dey7TIEuz1Wm2PB2uFx8f77l5QJ/7naQh\noGe10cG2b99ueot27drlrpUGNIcOHTL3ICm+vunXrVvnXq9JG/SXAte4SvcKniCAAAIIIIAA\nAggggEC2AjpqyzM4ynbDbFZogJ+XwZGeNuwDpGrVqplflXVmX410NTgaM2aMuXCairBkyZJm\nkqpJkyaZX1u0C1AnstJ0hIx9zuady2IEEEAAAQQQQAABBBwqkO8BknaxaSSof7Vkfh0M1379\n+sm2bdtEEyxoooY9e/aYLjzXkLp7773X3J903XXXSadOnUyP0oMPPhiMqnEOBBBAAAEEEEAA\nAQQQCKJAvt+D1KRJkwzj0i+//PIMr4NhoTeLTZ8+XQ4fPmyCNe018izaDagpC3Wss97o7c94\ne8/9eY4AAggggAACCCCAAALOEMh1D9KmTZtMj4vOjBsqpWzZsmZIXXbt0RsbCY6y02E5Aggg\ngAACCCCAAALOF8h1gKQZKGbPnm0mSz1bho8//liaNm1qkiK4btzSXhvPx9meg/0RQAABBBBA\nAAEEEEAAAV8C+T7EbtGiRXLTTTeZCaPq1atnJoxy3Y/kq/KsRwABBBBAAAEEEEAgbAXS7+EP\n2/bnUcMtBUiac9w1j8XBgwdNlTQdtitFtqbD9jY3UE5110laNff5ihUrpGbNmjltyjoEEEAA\nAQQQQAABBBBIFyg2eSoWeSBgKUDq0KGD/Pbbbxmq0aNHD/frqlWris4rZKVoWu2GDRsSHFlB\nY1sEEEAAAQQQQACBsBcI5mS/mqgsXEZ5WQqQnnrqKfc9R1u3bpXhw4eLpruuU6eOeYPmZgZh\nDY5eeOEFOXXqlLjSaof9ux0ABBBAAAEEEEAAAQR8CMR/9Z2PLQK3em+71gRI3jg7d+7sXrx4\n8WITILVv317atGnjXm71Sa9evczEq88995y89NJLZr4hq8dgewQQQAABBBBAAAEEEEAgEAKW\nepACccLMx1iwYIGUK1fOBFtvvPGGxMfHe02lvWrVqsy78hoBBBBAAAEEEEAAAQQQCKhArgMk\nHYMYHR191l1tR44ckTNnzkijRo0C2jAOhgACCCCAAAIIIIAAAghYFch1gHTppZe6M9pZPann\n9nfffbfog4IAAggggAACCCCAAAII5LdArieK9az4ypUr5bvv/LtJbOfOnXL8+HHP3S0/X7Zs\nmeV92AEBBBBAAAEEEEAAAQQQ8CUQkADpzTfflPvuu8/Xucz6devWmZTeo0ePNkPr/Nrpfxul\npKTIhx9+KBdffLH07dvX393YDgEEEEAAAQQQQAABBBDwW8DnELujR4/KkCFDcjygzo10+PBh\nefLJJ93bDRs2zP3c80nbtm1l6tSpZljds88+K506dZJu3bqZuZDKli3r3jQtLU12794tGzdu\nFE3QMG7cONm/f785x2OPPebejicIIIAAAggggAACCCCAQKAEfAZIp0+flpEjR5oeHF8nfeWV\nV9ybZBcg6QZXX321rF271gQ9r7/+ukycONHsV6RIEZPFTudD+uOPP+TkyZNmuSaE6N69uwnU\nKleubJbxHwQQQAABBBBAAAEEEMh/gWPHjsmPP/4oCxcuFO1cqV+/vvTu3TtDZmrNVq3J2Vyl\nZMmS5nv/9ddfn+M0P/Pnz5dDhw7JzTff7No1z//6DJAqVapkGqwBSkJCgkyYMEEuu+yyDBXT\nyWJ1XiTtSfK3aBDUv39/eeihh+Tnn3+WNWvWiA6/04f2FCmspvxu1aqVdOjQQbQeFAQQQAAB\nBBBAAAEEELCPwJYtW6RZs2YmeZvOjaq3xTzzzDPy2muvye+//y7FihUzldXXqampUqNGDdGR\nYgcOHJDt27dL6dKl5aOPPsoSX+hOmrugS5cu5vi2CpC0ck2bNjXD3DQQ6tixozz11FOiw+M0\nzbeWQoUKSWRkpGmgWWDhP1FRUdKiRQvzsLAbmyKAAAIIIIAAAggggEA+CujtMNqZceWVV8oH\nH3xg4gGtjvYi1a5dWwYMGCBvvfWWu4a33XabvPzyy+7XeotOu3btzEgxvaXGFUzpBhpM9ejR\n46ynFHKfzMITv5M0FC9eXCZPniwzZsyQMWPGmChP7w+iIIAAAggggAACCCCAQPgJaFCUmJho\nRphpZ4mrlCpVSt555x0T8Oj67IrmH/j8889l69atZnvP7YYPH26CoxtvvNFzcVCe+x0guWrT\ntWtXWb16tcTGxpqMcprBTrvJKAgggAACCCCAAAIIIBA+AnqLjd56o/cTZS7t27eXoUOH5nh/\nke5TsWJFqVatmrndxnWMFStWyIgRI+S9996TAgUshyuuw+T6r897kLwdWRMlfPPNN2Zs4eOP\nP24CpHPOOcfbpixDAAEEEEAAAQQQQACBEBTQQCYQPTw6jc/mzZuNkCaI09wHGiBVrVo1X9Ry\nHZJpZrl+/fqJTtp61VVXySWXXJIvDeCkCCCAAAIIIIAAAgggEHwB7TTR5GpnWzQLnqsXSjtf\n9P6lnj17nu1hc71/rgIkHVKnWSW0W03HGM6dO9fcm5TrWrAjAggggAACCCCAAAIIOEpAe340\nA7W3orkKNNjZs2ePt9XuZRpXbNq0yWS30/hi9OjRcvDgQdH03/qYN2+eLF261DzXpA7BKJYC\npJ9++slktCtRooTp8tLsdjq0Tucv0glflyxZEow6cw4EEEAAAQQQQAABBBDIZwFN662pvOfM\nmZOlJk8++aSMHTtWNNFbTmXq1Kmya9cuM6xOs9i9+OKLosdt3LixeZQvX950yOjrggUL5nSo\ngK3z6x4kTbOnqb11LKDeKNW8eXOpXr26mfxJ85frpK6fffaZeeiksjq/EQUBBBBAAAEEEEAA\nAQRCV0DnKtU5TTV9t8YJGtjs3btXpk2bZrLTaVygHSuuooGQdrhor5FO/qpzqOoEsjqcrlGj\nRmYznUPJs2gPlD4yL/fcJtDP/QqQPv74Y3nllVekTp06JjmDjjfMXLSxDzzwgDz66KPmfiQN\noigIIIAAAggggAACCCAQugIaGOlosnHjxsm9995r5i+qUKGCmRbovvvuy9Dw999/X/ShRe85\n0g4XnRdJ51q1U/ErQBoyZIjExcXJV199Jd6CI22QThD1xRdfmJuqdOwgAZKdLjN1QQABBBBA\nAAEEEEAg8AI6/9HgwYPNQyeIPXXqlIkbMp9J5zrKTdFhesEuPu9B0uF1OrPtzTffLFWqVMmx\nfpqK7/LLL5eVK1fmuB0rEUAAAQQQQAABBBBAILQENHmbdqo4vfgMkI4cOWK6yipVquRXWzVp\ng69sFX4diI0QQAABBBBAAAEEEEAAgSAL+AyQTpw4YapUuHBhv6oWGxsrOsETBQEEEEAAAQQQ\nQAABBBBwmoDPAMlpDaK+CCCAAAIIIIAAAggggEBuBfxK0qAHP3DggGzevNnneXRIHgUBBBBA\nAAEEEEAAAQQQcKKA3wHSSy+9JPqgIIAAAggggAACCCCAAAKhKuAzQNLZb++///5QbT/tQgAB\nBBBAAAEEEEDAkQJ/tLjCTLoajMpHREQE4zS2OIfPAKl06dKi8xpREEAAAQQQQAABBBBAwD4C\nxYoVs09lQqgmlpI0pKWlyf79+7M0f/fu3fLDDz9kWc4CBBBAAAEEEEAAAQQQQMBJAn4HSBoA\n1alTRx5++OEs7fvss8+kRYsWctFFF/mVyCHLAViAAAIIIIAAAggggAACCNhAwK8A6ccff5Rr\nr71WNm7cKDrkLnNp2rSp9OrVS9atWyf6/M8//8y8Ca8RQAABBBBAAAEEEEAAAdsL+BUg9evX\nT2JiYmTOnDkyduzYLI1q0KCBTJo0yaw/evSoDBw4MMs2LEAAAQQQQAABBBBAAAEE7C7gM0Da\ntGmTrFixQrp37y7t27fPsT1t27Y1PUkff/yxJCYm5rgtKxFAAAEEEEAAAQQQQAABuwn4DJBc\nw+U6dOjgV91btWolKSkpDLPzS4uNEEAAAQQQQAABBBBAwE4CPgOkihUrmvqePn3ar3q7tgun\nXOl+wbARAggggAACCCCAAAII2F7AZ4BUv359KVWqlMybN8+vxnz99deiwVGVKlX82p6NEEAA\nAQQQQAABBBBAAAG7CPgMkAoUKCBXXnmlzJ49W7Zu3ZpjvRctWmQCqauvvtokdchxY1YigAAC\nCCCAAAIIIIAAAjYT8BkgaX1feOEFSUpKEs1WN336dPPcsx2auU6z27Vs2VKio6PlpZde8lzN\ncwQQQAABBBBAAAEEEEDAEQJ+BUg6zG7hwoVStGhRue2228xfnTRWA6LKlStLbGys3H///XL+\n+efLsmXLpHHjxo5oPJVEAAEEEEAAAQQQQAABBDwFojxf5PS8bt26snjxYvnoo4/M3yVLlpiJ\nY2vUqCE33nijNGzYUO677z4pVqxYTodhHQIIIIAAAggggAACCCBgWwG/AyRtQbVq1eSJJ55w\nN0Yz1hUpUsT9micIIIAAAggggAACCCCAgJMF/Bpil10DCY6yk2E5AggggAACCCCAAAIIOFHg\nrAIkJzaYOiOAAAIIIIAAAggggAAC2QkQIGUnw3IEEEAAAQQQQAABBBAIOwECpLC75DQYAQQQ\nQAABBBBAAAEEshMgQMpOhuUIIIAAAggggAACCCAQdgIESGF3yWkwAggggAACCCCAAAIIZCdg\nOUCaMmVKhlTfmQ88e/ZsqVq1qmgKcAoCCCCAAAIIIIAAAggg4CQBv+ZBOnTokCQmJpp2rVy5\nUpYuXSp79uzJ0k7d5ssvv5SdO3dKQkICcyRlEWIBAggggAACCCCAAAII2FnArwBp0qRJ8uST\nT2ZoR3x8fIbXni/q168vsbGxnot4jgACCCCAAAIIIIAAAgjYXsCvAKlfv36SnJwsSUlJsmDB\nAtmxY4f06tUrS+OioqJMYNStW7cs61iAAAIIIIAAAggggAACCNhdwK8AKTo6WgYOHGjacsEF\nF8j69etl0KBBdm8b9UMAAQQQQAABBBBAAAEELAn4FSB5HvGmm27yfMlzBBBAAAEEEEAAAQQQ\nQCBkBCwHSNryjz/+WEaOHGmG2mm2urS0tCwgR44cybKMBQgggAACCCCAAAIIIICAnQUsB0iL\nFi0S7UUqUqSI1KtXT8qXLy8RERF2biN1QwABBBBAAAEEEEAAAQT8ErAcIM2cOVMKFy4sK1as\nkJo1a/p1EjZCAAEEEEAAAQQQQAABBJwgYHmi2H379knDhg0JjpxwdakjAggggAACCCCAAAII\nWBKwHCBpcKS9R6dOnbJ0IjZGAAEEEEAAAQQQQAABBOwuYDlA0vmP4uLi5LnnnpPExES7t4/6\nIYAAAggggAACCCCAAAJ+C1i+B0knii1XrpwMHz5c3njjDYmPj5eYmJgsJ1y1alWWZSxAAAEE\nEEAAAQQQQAABBOwsYDlA0vTdZ86ckUaNGtm5XdQNAQQQQAABBBBAAAEEELAsYDlAuvvuu0Uf\nFAQQQAABBBBAAAEEEEAg1AQsB0ieAKtXr5bNmzdL8eLFpU2bNmbi2KpVq3puwnMEEEAAAQQQ\nQAABBBBAwDEClpM0aMvWr18vzZo1MxPFduvWTSZNmmQarBPHPvvss2YInmMEqCgCCCCAAAII\nIIAAAgggkC5guQfp2LFj0q5dO0lKSpJHH31UFi1aZA6VkpIi1157rbz44ouyZ88eeffdd0FG\nAAEEEEAAAQQQQAABBBwlYLkHafz48fLPP//I4sWLZcSIESaLnbY4MjJSZsyYIf3795cpU6bI\nyZMnHQVBZRFAAAEEEEAAAQQQQAABywHSypUrpUWLFnLOOed41bv55pslOTlZtm/f7nU9CxFA\nAAEEEEAAAQQQQAABuwpYDpCKFi1q7kHKrkGnTp0yq8qUKZPdJixHAAEEEEAAAQQQQAABBGwp\nYDlAaty4sclc9+mnn2ZpkN6f9Pzzz0tcXJxUrFgxy3oWIIAAAggggAACCCCAAAJ2FrCcpKF3\n796i9yF17txZLrvsMtGgqEiRInLbbbeJBk2nT5+WDz/80M5tpm4IIIAAAggggAACCCCAgFcB\nywFSVFSUfPnllzJgwACZPHmypKammgP/9ttvUqlSJRM83XjjjV5PxkIEEEAAAQQQQAABBBBA\nwM4ClgMkbUy5cuVMGu+RI0fKli1b5PDhw1K9enXziI6OtnN7qRsCCCCAAAIIIIAAAgggkK2A\n5XuQ9EjaazRhwgRZunSpNGrUSNq2bStr166Va665RubNm5ftyViBAAIIIIAAAggggAACCNhZ\nwHIPkk4Qq0HRqlWrZPTo0dK6dWvTPp0HadmyZdK+fXuZOnWq3HrrrXZud1Drpj1ugS4JgT4g\nx3OUQF68pxwFkIvKRkREmL1iYmLMfZO5OAS7nIVA4cKFpWTJkmdxBO+78lno3SVclvJZaP1K\nFyjw72/jsbGx1ndmj2wF9PsxJXQELAdICxculDVr1sicOXNMMOSi6NSpk+zatUtuueUWM1ms\nzofk+p/QtU24/j106FDAm1484EfkgE4SyIv3lJPan5u6FixYUHT6AZ3E+sSJE7k5BPtkI6D3\nn/oqCQkJJqmPr+2sruez0KpYaG3PZ6H161miRAnRH4qOHDli5q20fgT28Cag9+hr0jJKaAhY\nHmL32WefSfPmzTMERy6K0qVLyyOPPCIHDhyQbdu2uRbzFwEEEEAAAQQQQAABBBBwhIDlAElb\nlVMiBg2StOivtRQEEEAAAQQQQAABBBBAwEkClgOkli1byoIFC+SXX37J0k5N3jB8+HApX768\nVKlSJct6FiCAAAIIIIAAAggggAACdhawfA9SmzZtpEmTJtKiRQvR+Y7q168vxYsXlz179sis\nWbNk48aNMm3aNDu3mbohgAACCCCAAAIIIIAAAl4FLAdIxYoVk2+//Vbuvvtu0fuRpk+f7j6w\n9hrpa03UQEEAAQQQQAABBBBAAAEEnCZgOUDSjDGJiYkyZcoUSUtLM8kYtPfo3HPPlcqVK8v/\ntXcn4HIVZcKAKzsJCUmAsIaAUVkEhgnIEoERURbZRUAYQDafIQyLA6JG2Xd4hkVUkH1TtiGa\nURFENp2RxQUZkEWICJiBRAgQErKS5ec78/f1bsm956b75lb3W89zc7tP16lT9Vbn3P5O1amu\nLKWbG4T6EiBAgAABAgQIECBAoPQ9SNdff30aNWpUeuGFF4pgaPTo0Wn77bdPI0eOFBx5PxEg\nQIAAAQIECBAgkLVA6QDp+eefLxpsEYas+13lCRAgQIAAAQIECBBoR6B0gHTssccWX7Z42mmn\npfjiP4kAAQIECBAgQIAAAQL1IlD6HqTJkyenjTfeOF166aXpW9/6VrGcd3w7fev0xBNPtN7k\nOQECBAgQIECAAAECBHq0QOkAKRZpmD59erG8d6Vl8f1HEgECBAgQIECAAAECBHIXKB0gjRs3\nLsWPRIAAAQIECBAgQIAAgXoTKB0gNQd4+umn04svvlh8UWx8geyrr76a1l133eZZPCZAgAAB\nAgQIECBAgEA2AqUXaYiWPffcc+mf/umf0mabbZb233//dOONNxYNjuenn356mjdvXjYAKkqA\nAAECBAgQIECAAIGKQOkRpBkzZqTddtstvf/+++krX/lKevTRR4uyFi5cmHbdddd0zjnnpPji\n2Pi+JIkAAQIECBAgQIAAAQI5CZQeQbrmmmvSu+++mx577LF08cUXF18QGw3u06dPuuOOO9JJ\nJ52UbrnlljRr1qycHNSVAAECBAgQIECAAAECqXSA9OSTT6YddtghjRo1ql2+Aw88MC1YsCC9\n8sor7b5uIwECBAgQIECAAAECBHqqQOkAadCgQcU9SEtq0OzZs4uX2vtupCXtYzsBAgQIECBA\ngAABAgR6gkDpAGmrrbYqVq6bOHFim/rH/UlnnXVWWmuttdIaa6zR5nUbCBAgQIAAAQIECBAg\n0JMFSi/ScMQRR6S4D2nfffdNY8eOTREUDRw4MB188MEpgqY5c+akO++8sye3Wd0IECBAgAAB\nAgQIECDQrkDpAKlv377pnnvuSePHj0833XRTWrRoUVHw73//+7TmmmsWwdMBBxzQ7sFsJECA\nAAECBAgQIECAQE8WKB0gRWNGjBhRLON9ySWXpEmTJqVp06al0aNHFz/9+vXrye1VNwIECBAg\nQIAAAQIECCxRoEsBUqW0YcOGpS233LLy1G8CBAgQIECAAAECBAhkLdDpAGnx4sXF6nUxlW61\n1VZLn/jEJ9LQoUOzbrzKEyBAgAABAgQIECBAoLlApwKkmTNnpoMOOij97Gc/a9q3Ms1uzz33\nbNrmAQECBAgQIECAAAECBHIW6NQy36eeemoRHG2//fbp4osvTvvtt1+aPn16Ouyww9Jbb72V\nc/vVnQABAgQIECBAgAABAk0CnRpBuu2224p7jR566KEUq9hFuvvuu1OMHsWS3v/6r//aVKAH\nBAgQIECAAAECBAgQyFWgwxGkmF4Xq9TtvvvuTcFRNHa33XZLsWLdyy+/nGvb1ZsAAQIECBAg\nQIAAAQItBDoMkN59991ih1ixrnnq3bt3sdz3a6+91nyzxwQIECBAgAABAgQIEMhWoMMAaeHC\nhUXj+vTp06aRsW3BggVttttAgAABAgQIECBAgACBHAU6DJBybJQ6EyBAgAABAgQIECBAoCsC\nnVqkIQr+29/+ll588cUWx4jRo7hHqfX2yLT++uu3yOsJAQIECBAgQIAAAQIEerpApwOkc889\nN8VP6zRlypS0wQYbtN6c4otlJQIECBAgQIAAAQIECOQk0GGANGTIEMt459Sj6kqAAAECBAgQ\nIECAQJcFOgyQVl555XTFFVd0+QB2JECAAAECBAgQIECAQC4CFmnIpafUkwABAgQIECBAgACB\nmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAA\nAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwAB\nAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO\n7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQi\nIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBA\ngACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAg\nQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafU\nkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsI\nkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIE\nCOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQI\nECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAE\nCBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDK\npafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACB\nmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAA\nAQIECOQiIEDKpafUkwABAgQIECBAgACBmgsIkGpO7AAECBAgQIAAAQIECOQiIEDKpafUkwAB\nAgQIECBAgACBmgv0rfkRMjnA7Nmz06OPPppef/31tMkmm6TNN9+8qeYzZ85Mjz32WNPzyoNP\nfepTqV+/fpWnfhMgQIAAAQIECBAgkLmAAOmDDvz5z3+e/v3f/z1tuummadCgQemGG25Ie+yx\nRzr55JOL7n3qqafS+eefn1ZdddUW3T127FgBUgsRTwgQIECAAAECBAjkLdDwAdKiRYvSzTff\nnMaNG5f233//ojf/67/+K51yyilpn332SR/5yEfSpEmT0sYbb5yuuOKKvHtb7QkQIECAAAEC\nBAgQWKpAw9+D9Pbbb6ctt9wy7bTTTk1QY8aMKR7HdLtIESBtsMEGxWP/ECBAgAABAgQIECBQ\nvwINP4IU0+ZOOumkFj384IMPpj59+jQFRREgDRgwII0fPz796U9/ShtttFE67rjj0tprr91i\nv3hy++23t9i2/vrrF6NQLTZ6QmAZBWIqqFROoG/f/zvdxX2D/MrZVSN3+Ff6oBrlKYNACPi/\nXP59UPl/uMIKK6SYRSNVR2Dx4sXVKUgpPUKg4QOk1r3w0ksvpauvvjodfPDBafXVV0+xQMPU\nqVPTGmuskQ466KC03XbbpQkTJqRjjz02/eAHP0iDBw9uUcSZZ57Z4vmhhx6aTj311BbbqvHk\nvWoUooxsBYYOHZpt3Zd3xeNDQfxI3SvQv3//NHDgwKof1Lmw6qRZFehc2PXuGjJkSNd3tmcb\ngXnz5rXZZkO+AgKkZn339NNPF6NEO+64YzrqqKOKVyIAuuuuu9LKK6+c4g98pI997GPpsMMO\nSzHStPfeexfbKv9cdNFFlYfF79GjR6fp06e32FaNJzquGor5llGL91S+Gp2reVw1jf/Pc+fO\nLX46t5dcnREYNmxYh9niw0MtPkA4F3ZIX9cZnAvLd29cqIhZMXEBeOHCheULsMcSBcJVqg8B\nf1v+fz/++te/TmeccUY64IAD0tFHH93Uu7169SpGj5o2fPAggp4RI0akKVOmNN9cPI6FHVqn\n9vK1zlP2ues+ZcXqK/+cOXPqq0Hd0Jq4wBEB0vvvv5/4VRe8MwFSfBCbP39+dQ/8QWnOhVUn\nzapA/5fLd1dMM44P8nGxaMGCBeULsEe7ApWpi+2+aGN2Ag2/SEP02MMPP5xOP/30dMIJJ7QI\njuK1V155pRgtmjx5cjwtUgQ8b775Zrv3IFXy+E2AAAECBAgQIECAQH4CDT+C9NZbb6ULL7ww\n7bDDDmm99dZL8Z1HlbTOOusU2+J+hauuuqr4XqS44nLllVem4cOHp09/+tOVrH4TIECAAAEC\nBAgQIFAHAg0fIN17771p9uzZ6f777y9+mvdprFq3++67pxNPPDGdffbZ6XOf+1zxckyx++53\nv2v1nOZYHhMgQIAAAQIECBCoA4GGD5AOOeSQFD9LSxtuuGG67bbb0rRp01LM3bVqztK0vEaA\nAAECBAgQIEAgX4GGD5DKdF18Z5JEgAABAgQIECBAgED9ClikoX77VssIECBAgAABAgQIECgp\nIEAqCSY7AQIECBAgQIAAAQL1KyBAqt++1TICBAgQIECAAAECBEoKCJBKgslOgAABAgQIECBA\ngED9CgiQ6rdvtYwAAQIECBAgQIAAgZICAqSSYLITIECAAAECBAgQIFC/AgKk+u1bLSNAgAAB\nAgQIECBAoKSAAKkkmOwECBAgQIAAAQIECNSvgACpfvtWywgQIECAAAECBAgQKCkgQCoJJjsB\nAgQIECBAgAABAvUrIECq377VMgIECBAgQIAAAQIESgoIkEqCyU6AAAECBAgQIECAQP0KCJDq\nt2+1jAABAgQIECBAgACBkgICpJJgshMgQIAAAQIECBAgUL8CAqT67VstI0CAAAECBAgQIECg\npIAAqSSY7AQIECBAgAABAgQI1K+AAKl++1bLCBAgQIAAAQIECBAoKSBAKgkmOwECBAgQIECA\nAAEC9SsgQKrfvtUyAgQIECBAgAABAgRKCgiQSoLJToAAAQIECBAgQIBA/QoIkOq3b7WMAAEC\nBAgQIECAAIGSAgKkkmCyEyBAgAABAgQIECBQvwICpPrtWy0jQIAAAQIECBAgQKCkgACpJJjs\nBAgQIECAAAECBAjUr4AAqX77VssIECBAgAABAgQIECgpIEAqCSY7AQIECBAgQIAAAQL1KyBA\nqt++1TICBAgQIECAAAECBEoKCJBKgslOgAABAgQIECBAgED9CgiQ6rdvtYwAAQIECBAgQIAA\ngZICAqSSYLITIECAAAECBAgQIFC/AgKk+u1bLSNAgAABAgQIECBAoKSAAKkkmOwECBAgQIAA\nAQIECNSvgACpfvtWywgQIECAAAECBAgQKCkgQCoJJjsBAgQIECBAgAABAvUrIECq377VMgIE\nCBAgQIAAAQIESgoIkEqCyU6AAAECBAgQIECAQP0KCJDqt2+1jAABAgQIECBAgACBkgICpJJg\nshMgQIAAAQIECBAgUL8CAqT67VstI0CAAAECBAgQIECgpIAAqSSY7AQIECBAgAABAgQI1K+A\nAKl++1bLCBAgQIAAAQIECBAoKSBAKgkmOwECBAgQIECAAAEC9SsgQKrfvtUyAgQIECBAgAAB\nAgRKCgiQSoLJToAAAQIECBAgQIBA/QoIkOq3b7WMAAECBAgQIECAAIGSAgKkkmCyEyBAgAAB\nAgQIECBQvwICpPrtWy0jQIAAAQIECBAgQKCkgACpJJjsBAgQIECAAAECBAjUr4AAqX77VssI\nECBAgAABAgQIECgpIEAqCSY7AQIECBAgQIAAAQL1KyBAqt++1TICBAgQIECAAAECBEoKCJBK\ngslOgAABAgQIECBAgED9CgiQ6rdvtYwAAQIECBAgQIAAgZICAqSSYLITIECAAAECBAgQIFC/\nAgKk+u1bLSNAgAABAgQIECBAoKSAAKkkmOwECBAgQIAAAQIECNSvgACpfvtWywgQIECAAAEC\nBAgQKCkgQCoJJjsBAgQIECBAgAABAvUrIECq377VMgIECBAgQIAAAQIESgoIkEqCyU6AAAEC\nBAgQIECAQP0KCJDqt2+1jAABAgQIECBAgACBkgICpJJgshMgQIAAAQIECBAgUL8CAqT67Vst\nI0CAAAECBAgQIECgpIAAqSSY7AQIECBAgAABAgQI1K+AAKl++1bLCBAgQIAAAQIECBAoKSBA\nKgkmOwECBAgQIECAAAEC9SsgQKrfvtUyAgQIECBAgAABAgRKCgiQSoLJToAAAQIECBAgQIBA\n/QoIkOq3b7WMAAECBAgQIECAAIGSAgKkkmCyEyBAgAABAgQIECBQvwICpPrtWy0jQIAAAQIE\nCBAgQKCkQN+S+WUnQIAAAQIECBDoAQIHHnhgmj17dqma9OnTJ8XP+++/nxYvXlxq37333jsd\nddRRpfaRmUCOAgKkHHtNnQkQIECAAIGGF3jiiSfSrFmzus1hzJgx3XYsByKwPAUESMtT37EJ\nECBAgAABAl0UmDRpUulRoDPPPDNde+216YEHHkgbbbRRqSP36tWrVH6ZCeQqIEDKtefUmwAB\nAgQIEGh4ga4GLbFfV/dteHQAdS9gkYa672INJECAAAECBAgQIECgswJGkDortQz5XKFZBjy7\ntivgPdUuy1I3Vszid+XxUnfwYtUFuFedtOEL9J5atrcAv2Xzs3f9CgiQuqFvV1lllaofZV7V\nS1RgTgK1eE/l1P6u1LXyQWDgwIFpwIABXSnCPssgsMIKK6SVVlppGUpof1fnwvZdGmWrc2H5\nno4V7CINHjw48Svvt6Q9YlVAqX4EBEjd0JfTpk2r+lGGVL1EBeYkUIv3VE7t70pd+/fvX3wY\niCVx33vvva4UYZ8lCKy55ppLeOXvm+fOnZtmzJjx9w1VeuRcWCXITItxLizfcQsXLix2ivMg\nv/J+S9qjb9++adCgQUt62fbMBNyDlFmHqS4BAgQIECBAgAABArUTECDVzlbJBAgQIECAAAEC\nBAhkJiBAyqzDVJcAAQIECBAgQIAAgdoJCJBqZ6tkAgQIECBAgAABAgQyE7BIQ2YdproECBAg\nQIDAsgmMeeKpZSsg471nvDalqP3+f3wu9Zs9P+OWdL3qT26xWdd3tmdDCBhBaohu1kgCBAgQ\nIECAAAECBDojIEDqjJI8BAgQIECAAAECBAg0hIAAqSG6WSMJECBAgAABAgQIEOiMgHuQOqMk\nDwECPUpg0qRJ6Y033ihVp/gSv6FDh6b4otg5c+aU2neFFVZIW2yxRal9ZCZAgAABAgTyFBAg\n5dlvak2goQUuv/zy9KMf/ajbDEaNGpUef/zxbjueAxEgQIAAAQLLT0CAtPzsHZkAgS4K7LLL\nLmnkyJGl9p48eXKaOHFiGjt2bNpyyy1L7Tts2LBS+WUmQIAAAQIE8hUQIOXbd2pOoGEF9txz\nzxQ/ZdIjjzxSBEif/OQn0wknnFBmV3kJECBAgACBBhKwSEMDdbamEiBAgAABAgQIECCwdAEB\n0tJ9vEqAAAECBAgQIECAQAMJmGLXQJ2tqQQIECBAgED9CLx5+KFp8ZzZpRq0eP78Iv8747+a\nUu9y18kH7b5nGvzFw0sdT2YCOQoIkHLsNXUmQIAAAQIEGl6g9/DhafHAgd3m0GvQoG47lgMR\nWJ4CAqTlqe/YBAgQIECAAIEuCqxy2be7uKfdCBBYmoAAaWk6XiNQZwJjnniqzlrU+ebMe+6F\nIvN3Xp2cbmxghye32KzzaHISIECAAIEGFCg3+bQBgTSZAAECBAgQIECAAIHGERAgNU5faykB\nAgQIECBAgAABAh0ICJA6APIyAQIECBAgQIAAAQKNIyBAapy+1lICBAgQIECAAAECBDoQsEhD\nB0BeJkCg5wksfONvadHMmaUqtmDK60X+hW+/nd5/6c+l9u3Vr1/qO2rdUvvITIAAAQIECOQp\nIEDKs9/UmkBDC7x3y81p7q8e7pLB3PvuTfFTJvVZfY206nU3ltlFXgIECBAgQCBTAQFSph2n\n2gQaWaD/mDGp14ordhtB75VW6rZjORABAgQIECCwfAUESMvX39EJEOiCwMBP75TiRyJAgAAB\nAgQIVFvAIg3VFlUeAQIECBAgQIAAAQLZCgiQsu06FSdAgAABAgQIECBAoNoCAqRqiyqPAAEC\nBAgQIECAAIFsBQRI2XadihMgQIAAAQIECBAgUG0BAVK1RZVHgAABAgQIECBAgEC2AgKkbLtO\nxQkQIECAAAECBAgQqLaAAKnaosojQIAAAQIECBAgQCBbAQFStl2n4gQIECBAgAABAgQIVFtA\ngFRtUeURIECAAAECBAgQIJCtgAAp265TcQIECBAgQIAAAQIEqi0gQKq2qPIIECBAgAABAgQI\nEMhWQICUbdepOAECBAgQIECAAAEC1RYQIFVbVHkECBAgQIAAAQIECGQrIEDKtutUnAABAgQI\nECBAgACBagsIkKotqjwCBAgQIECAAAECBLIVECBl23UqToAAAQIECBAgQIBAtQUESNUWVR4B\nAgQIECBAgAABAtkKCJCy7ToVJ0CAAAECBAgQIECg2gICpGqLKo8AAQIECBAgQIAAgWwFBEjZ\ndp2KEyBAgAABAgQIECBQbQEBUrVFlUeAAAECBAgQIECAQLYCAqRsu07FCRAgQIAAAQIECBCo\ntoAAqdqiyiNAgAABAgQIECBAIFsBAVK2XafiBAgQIECAAAECBAhUW0CAVG1R5REgQIAAAQIE\nCBAgkK2AACnbrlNxAgQIECBAgAABAgSqLSBAqrao8ggQIECAAAECBAgQyFZAgJRt16k4AQIE\nCBAgQIAAAQLVFhAgVVtUeQQIECBAgAABAgQIZCsgQMq261ScAAECBAgQIECAAIFqCwiQqi2q\nPAIECBAgQIAAAQIEshUQIGXbdSpOgAABAgQIECBAgEC1BQRI1RZVHgECBAgQIECAAAEC2QoI\nkLLtOhUnQIAAAQIECBAgQKDaAgKkaosqjwABAgQIECBAgACBbAUESNl2nYoTIECAAAECBAgQ\nIFBtAQFStUWVR4AAAQIECBAgQIBAtgICpGy7TsUJECBAgAABAgQIEKi2gACp2qLKI0CAAAEC\nBAgQIEAgWwEBUrZdp+IECBAgQIAAAQIECFRbQIBUbVHlESBAgAABAgQIECCQrYAAKduuU3EC\nBAgQIECAAAECBKotIECqtqjyCBAgQIAAAQIECBDIVkCAlG3XqTgBAgQIECBAgAABAtUWECBV\nW1R5BAgQIECAAAECBAhkKyBAyrbrVJwAAQIECBAgQIAAgWoLCJCqLao8AgQIECBAgAABAgSy\nFRAgZdt1Kk6AAAECBAgQIECAQLUFBEjVFlUeAQIECBAgQIAAAQLZCgiQsu06FSdAgAABAgQI\nECBAoNoCAqRqiyqPAAECBAgQIECAAIFsBQRI2XadihMgQIAAAQIECBAgUG2BvtUusF7Lmzlz\nZnrkkUdS/N56663TqFGj6rWp2kWAAAECBAgQIECgYQWMIHWi619++eW09957pwkTJqRnnnkm\nHXnkkenxxx/vxJ6yECBAgAABAgQIECCQk4ARpE701gUXXJD22muv9OUvfzn16tUr3Xzzzemy\nyy5Ld9xxR/G8E0XIQoAAAQIECBAgQIBABgJGkDropLfeeis9//zzxQhSBEeR9thjj/T666+n\n5557roO9vUyAAAECBAgQIECAQE4CRpA66K2pU6cWOdZaa62mnKusskrq379/euONN9LGG2/c\ntD0ejB8/vsXzbbfdNn36059usa0aTxZVoxBlZCswdOjQbOuu4stXYHm9d+KcOXDgwKo33rmw\n6qRZFbi83s9ZIalsG4FavG8WLlzY5jg25CsgQOqg76ZMmZIGDBhQ/DTPOmTIkPTOO+8031Q8\nnjhxYottgwcPTnvuuWeLbVV5cvOtVSlGIY0lMHWPXRurwVrbYwT69u1bkwApORf2mD7OqSLO\nhTn1Vh51nTdvXh4VVctOCQiQOmDq169fWrBgQZtccaVg0KBBbbbfe++9LbbFVYoYaZKqJzB8\n+PAUH7befPPN6hWqpLoXiBGMYcOGpVmzZhU/dd/gbmzgaqut1uHR5syZU6wC2mFGGTol0Lt3\n77TqqqumuXPnphkzZnRqH5kIhEBcuI3PL2+//Xa7n28odU2gT58+bS6md60ke/UEAQFSB70Q\nf4AiGJo9e3aLgCj+IK255ppt9h49enSbbTEKJVVfwHB29U3rucTK+2XRokXF/+l6bmtPbNvi\nxYu5V7FjwjMS1yqiNkhRlfdOnBMr58UGaXpNm1m5T72mB1F4twlYpKED6pEjRxajFc8++2xT\nzli0IT5kNb8vqelFDwgQIECAAAECBAgQyFZAgNRB18UUuZ133jndeOON6b333iumM1x33XVp\n1113TSNGjOhgby8TIECAAAECBAgQIJCTgACpE701bty4YtW6WGxhn332KUaUjj/++E7sKQsB\nAgQIECBAgAABAjkJuAepE70ViwJ861vfKm6EjZvwVlxxxU7sJQsBAgQIECBAgAABArkJCJBK\n9NhKK61UIresBAgQIECAAAECBAjkJmCKXW49pr4ECBAgQIAAAQIECNRMQIBUM1oFEyBAgAAB\nAgQIECCQm4AAKbceU18CBAgQIECAAAECBGomIECqGa2CCRAgQIAAAQIECBDITUCAlFuPqS8B\nAgQIECBAgAABAjUTECDVjFbBBAgQIECAAAECBAjkJiBAyq3H1JcAAQIECBAgQIAAgZoJCJBq\nRqtgAgQIECBAgAABAgRyExAg5dZj6kuAAAECBAgQIECAQM0EBEg1o1UwAQIECBAgQIAAAQK5\nCQiQcusx9SVAgAABAgQIECBAoGYCAqSa0SqYAAECBAgQIECAAIHcBARIufWY+hIgQIAAAQIE\nCBAgUDMBAVLNaBVMgAABAgQIECBAgEBuAgKk3HpMfQkQIECAAAECBAgQqJmAAKlmtAomQIAA\nAQIECBAgQCA3AQFSbj2mvgQIECBAgAABAgQI1ExAgFQzWgUTIECAAAECBAgQIJCbgAAptx5T\nXwIECBAgQIAAAQIEaiYgQKoZrYIJECBAgAABAgQIEMhNQICUW4+pLwECBAgQIECAAAECNRMQ\nINWMVsEECBAgQIAAAQIECOQmIEDKrcfUJlsOaQAAFRtJREFUlwABAgQIECBAgACBmgkIkGpG\nq2ACBAgQIECAAAECBHITECDl1mPqS4AAAQIECBAgQIBAzQQESDWjVTABAgQIECBAgAABArkJ\n9Fr8Qcqt0urb2ALjx49PkydPTrfeemtjQ2h9KYGnn346nXfeeWm//fZL+++/f6l9ZSbQ0wTe\nfvvtdMwxx6RtttkmnXjiiT2teurTgwVuuOGGdN9996ULL7wwfehDH+rBNVU1AstPwAjS8rN3\n5C4K/OlPf0pPPfVUF/e2W6MKzJgxI/3P//xPmjp1aqMSaHcdCcyfP794P7/yyit11CpN6Q6B\nuMAY58I5c+Z0x+Ecg0CWAgKkLLtNpQkQIECAAAECBAgQqIWAAKkWqsokQIAAAQIECBAgQCBL\ngb5Z1lqlG1pg/fXXTwMHDmxoA40vLzBkyJC06aabptVXX738zvYg0MME+vXrV7yfR40a1cNq\npjo9XWDttdcu3jv+jvb0nlK/5SlgkYblqe/YBAgQIECAAAECBAj0KAFT7HpUd6gMAQIECBAg\nQIAAAQLLU0CAtDz1HZsAAQIECBAgQIAAgR4l4B6kHtUdjVGZ3/72t+n5559PBx54YBowYECL\nRj/yyCPpvffeS7vsskuL7Z4QaE9g4cKFKZZ9jyVrX3755eL+os9+9rNp5MiRTdl///vfp/gO\npEqK99ywYcPSVlttlUaMGFHZ3Ob3tGnT0k9+8pN02GGHpT59+rR53QYCyyrwH//xH2n48OFp\np512alPUD37wg+I9GvdcSgQ6Epg1a1ZxHnzyySeLv6Ef/ehH02677dbift277rorzZw5s6mo\nwYMHF+fA7bbbLsU9bUtKcQ6dPn16+sxnPrOkLLYTqDsBAVLddWnPb1AESHfeeWdxEj/22GNb\nVPi///u/05tvvilAaqHiSXsCCxYsSKecckr6zW9+03Sz+gMPPJDig+Vll12WNt9882K3+OMe\nHww22WST4vns2bOL70K65JJL0hFHHJEOPfTQNsXH92dfcMEFKd6rhxxyiACpjZAN1RCI82AE\n4muttVbaeOONWxT5/e9/vwjkBUgtWDxpRyC+1+i4445L77//ftp6661TXDi69tprUwTgN954\nYxo0aFCxV5wHFy1alGKRhjjHvfPOO2nKlClppZVWSmeffXbTObL5If72t7+lU089NW222WYC\npOYwHte9gACp7ru4ZzYwrsjHh4NPfvKT7Z6Ue2at1aonCcQf9BiJnDBhQlp11VWbqnbuuecW\n3xB/8803N109XW211dLll1/elCceXHXVVemaa64pPphWgqlKhijzueeeqzz1m0DNBHr16pXO\nO++84oNs6xH1mh1UwXUj8MYbb6R/+7d/KwKYM844o+liTowUxcWdOM+ddNJJTe3deeed07/8\ny780PY+Roa9+9avpnHPOaRFMRYYIpmJ7vEclAo0m4B6kRuvxHtLeDTbYoJg+cv7556d58+Yt\nsVZxJew///M/0ze/+c309a9/Pd1xxx0pRg4ixe+LLroovf76601/BC699NLiimzzAidNmlTk\nO/HEE4sPyXHFVspbIK56Pvzww8V7onlwFK06/vjj05ZbblmMEi2tlePGjUv/8A//UFxpbZ4v\npupFcHXMMcc03+wxgZoI7Lvvvuntt99u8z5sfbDIc8UVV6Q4j8WH1hg5raRnn322eM/GdNMY\n+Tz55JOLc2WcP5unn//85+n0008v/t/EBarKubR5Ho/zEohR8xg5+trXvtYUHEUL4msN4m9m\njB7F60tKMd34wgsvLP6O3n333S2y3X777UVwtOOOO7bY7gmBRhAQIDVCL/fQNsbJu6MPBvHH\nPq6AxT0lG264Ybr11luLP/4xPSD++McJPT4MRDkxj/qJJ55ocbUsnscH4Tlz5qRPfepTxahA\n3FMiSOqhb4pOVis+EPbu3Tt9/OMfb7PH0KFDiyuiH/rQh9q81npDTLv7y1/+0rQ5PkicddZZ\nxRXWmIYiEai1QIxuRlAf06H++Mc/tnu4GA048sgj0+OPP16c5+LKfpw/J06cWOSPKVYxfSoC\np/ier5iud/XVV6dbbrmlqbwYQf3ud79bnEvj+8Buu+22dNpppzW97kGeAs8880wxCyPuJ2qd\nPvGJTxR//5Z2f1Hss8oqq6Q11lgjvfTSS01FvPDCCykCpJjGbASpicWDBhIwxa6BOrunNTVu\nkI8PBjEKFFPt4o928xTTp+67777iimgEP5G22Wab4sNr3KsUc60jxdWtL33pS8Xj+NLEuMIa\nAVCMLMQV18h35plnFq/vtddexQeN+ODQfNpB8aJ/shF48cUXU3ywXNYpSXF/R9yTVHm/xLz9\nKDfeJxFcSwS6Q2D33XcvRkTjglDcM9L6fR33I8X7NIKg+LD7+c9/vri5Pi4exY34kd59991i\nhPzDH/5w8Tze07/73e+K++z++te/ph/+8IdFQFRZEGKHHXZIBx10UIqb+seMGVPs45/8BOJc\nWI0RnjgXRqAdKWZ1RLAd9whH4CQRaEQBI0iN2Os9qM3xwSACmPhg0HqqXUyNiw8DW2yxRVON\nYxRp5ZVXLlYuq2zcaKONKg+LD7fxZO7cuWn+/Pnpz3/+czG9ID5IVH5i5CGujkn5CkTwGzcY\nx5X0ZUmx8lOkuPr6hz/8Id17771p/Pjxy1KkfQl0SSBGhOI9HffFtU7xIThGS5uPBGy77bZF\n0BTBT6T+/funSnAUzyPQj5HzSHG+i1H3mIJXOQ/G6PvAgQOdCwuhfP+JC40xg2JZUwTglVGo\nuLC47rrrplgRVCLQqAICpEbt+R7U7pg73d4Hg5hWEifs+CNeSTHUH8viNv9g3Pz1CH4ixYeB\n+PAbv+P12K/yE/enxIiVlK9AXO2MgHrq1KltGhF9fuWVV3ZqBOjVV18tppessMIKxZSkmK8f\nI5rxYTVGkyLFCk4xYikRqKVAZUQ9RomaL0sfx4yvPmi9JH2cByNVzoXxHm6e4lwY/xcixbk0\nFsaJAKtyHozfMRK13nrrFXn8k6dAnAvjvsn2UpzfItiJlWGXluJ9EoF2TCuOVeti6mb8TY7z\nYPzE1M6Y0RGPY1EHiUAjCJhi1wi93MPbGH/4TzjhhGIUKe4bqdx0H/cdxUk6RpLiOx0ixbSR\nmCfd3tLMrZsZHyDiA2+Ud/TRRze9HEs39+3rrd8EkuGD+FAQNxffdNNNxQIezZtw//33F3Pn\nYyGQpaV4b8VV9JhOFylGM2NbJcXiH3GvU2XUsrLdbwK1Eojpcr/85S+Lc2HzBRbiXNh8UYY4\nfjyPoCfOmUv6gFypZ+wf5cWoU2UqczyPRRtiWrKUr0B8n1sENPEdgtG/zdP3vve94kLR4Ycf\n3nxzm8cxlT1Ww4sV7uKCYmXKeiVjjFDFBcePfexjLUYxK6/7TaAeBXxKrMdezbBNMZQfq5I9\n9thjTQFS3G8UNxxfd911xXc8xLz8mH4SH4zjOxk6kz73uc+ln/70p8V34owdO7a4Cfob3/hG\nMSrQmf3l6ZkCEfjGMt9xv1n8Qd91112LqZfxHoobi2N1uuajhDHa9NRTTxWNiWlHr732WnE/\nRyzo8M///M/F9kqgVGlx3IN0zz33FEvlxvQliUB3CMSIelwAaj7leO+9904PPvhgsbDCPvvs\nk2LKXXyJcXwg7sx7M5axX2edddL111+fvvzlLxffuxT3Yf74xz8uvjesO9rlGLURiPfAfvvt\nV5wP456hmLIeFxJ/8YtfFEFTbFtxxRWbDh6BUJwLY9QoRoNi2mV8rUGcQyvT1WMho+YpRqDi\np/X25nk8JlBvAgKkeuvRjNtT+WBQaUIERDHdKZYCP/jgg4tRn9GjRxc3IseoUPMPEJV9Wv+O\nLwKNudUxTSqutsb9S3FjcqxoJ+UtEDeWx/d+xChQfOiLwCf6OK7CxxLdzUcJ4497fJFipJhm\nFKOW8UEiPohWpirlraH29SIQ57YYUY/zXiXFez3ujYvpUnHBKN7nsXBNZ++Xi/8LsZRzlPnF\nL34xxXS8uF8pzotxwUnKWyCCoPh7GQHvxRdfXAQ/cV6LhYjiImHzFKNF8RMpAqf4kuL4XqSY\nbikRIPB3gV4fXEX4v0nKf9/mEYEeJzBjxoxi7nx8t0NXUnzfR0wTiBuXpfoTiP6NK6PRv80D\no/prqRY1skD8uY73eSzL3NX3edzPFNPrYvRUqj+BuN8sLh5WpqrXXwu1iED3CAiQusfZUQgQ\nIECAAAECBAgQyEDAKnYZdJIqEiBAgAABAgQIECDQPQICpO5xdhQCBAgQIECAAAECBDIQECBl\n0EmqSIAAAQIECBAgQIBA9wgIkLrH2VEIECBAgAABAgQIEMhAQICUQSepIgECBAgQIECAAAEC\n3SMgQOoeZ0chQIAAAQIECBAgQCADAQFSBp2kigQIECBAgAABAgQIdI9A3+45jKMQIECAQL0I\nvPPOOym+vLl1ii8vjS8gHTx4cOuX0ltvvZXiS0rXXHPN1L9//zavx4bJkycXr62++urtvj59\n+vT07rvvFl+U2t4x2t3JRgIECBAgUFLACFJJMNkJECDQ6AJnn312Wm+99dr8jBw5Mg0ZMiSN\nHj063XPPPS2YvvGNbxT5TzjhhBbbmz/5x3/8x3TwwQc339Ti8Re+8IWijGOOOabFdk8IECBA\ngEA1BQRI1dRUFgECBBpI4JJLLkkTJkxo+rnuuuvSgQcemGKkZ6+99ko//elP22hcc8016YEH\nHmizvaMNf/3rX4v9Ntlkk3TXXXeladOmdbSL1wkQIECAQJcEBEhdYrMTAQIECOy0007p85//\nfNPPUUcdlW6//fbiZ+HChemWW25pgzRgwIAU+WbOnNnmtaVtuOmmm1KvXr3S9773vTRv3rx0\n4403Li271wgQIECAQJcFBEhdprMjAQIE8hGI+3vOOOOMtP/++6cvfelL6fLLLy/uCWrdgl//\n+tfplFNOKaa6XXnllWn+/PnFfrG9s2nnnXdOK620Uvrd737XZpdzzjknxWjQV77ylTavLWnD\n4sWLi4Bo6623Ttttt13adNNN09VXX51iu0SAAAECBKotIECqtqjyCBAg0MME/vznP6cxY8ak\nb3/722n27NnpxRdfTCeffHKKe35i8YRKuuiii9L222+f7r777mKU5qyzzkoR7MQ9R2UCpEcf\nfbRYxOEjH/lIpeim3xGcRZnXXntt+sUvftG0fWkPHnroofTKK6+kgw46qMh2yCGHpJdeeind\nf//9S9vNawQIECBAoEsCVrHrEpudCBAgkI9A3PcTU9oiqIiFFCLFfTwHHHBAMR3uuOOOS7/8\n5S/TN7/5zXT88ccXo0sxnS3u89lxxx2X2NAIcF544YXi9RjNiWArgq8Y3enXr1+KAKt1inLj\nXqW4lyiCpWeeeaYYbWqdr/nzG264oVjdrhIgHXrooUVdY7pdBFsSAQIECBCopoAAqZqayiJA\ngEAPFOjdu3cxVS5GgWKKXZ8+fYrfU6ZMSWussUZR4x/+8Idp4MCB6bzzzivu9YmNq666aoop\ncfvss0+7rYpRqNYpptZ95jOfSWeeeWYxatX69Xi+zjrrpEsvvbQIkGKqXYwmLSnFgg8/+tGP\n0p577lks7x35YqnwXXbZpVgE4n//93+bgr4llWE7AQIECBAoI2CKXRkteQkQIJChQCyKsPba\naxdT1FZbbbVipbnvf//7adCgQU2teeKJJ9KHP/zhYpnupo0fPNh8882bP23xOAKXP/7xj+kP\nf/hDMSo0fPjwtP7666eYqhdT+paWok4R5MRo0n333bfErLfddluaO3duMcp0/fXXp8rPyiuv\nnGIhiKUFV0ss1AsECBAgQGApAkaQloLjJQIECNSDwEc/+tEUAVAEI7H0dkyvu/POO1MESxHk\nbLvttunNN99Mw4YNa9PcGFVaUop7jGKqXKQIiDbbbLNiEYXPfvaz6be//W0aMWLEknYttree\natde5pheFylWrWtv5boo47TTTkvxJbUSAQIECBCohoARpGooKoMAAQI9XCBGd2J1uscff7wI\nhq666qriHqPx48cXNY9gJxZCaL0y3F/+8pdOt+zjH/94Ov/884ty4v6m1mW1Lijuh4qpdjFN\n7qSTTmr9cnr66aeLwG7cuHHFohGxvHfzn7h36vXXX08/+clP2uxrAwECBAgQ6KqAAKmrcvYj\nQIBAJgJf+MIXivt+Zs2aVdQ4pqcdffTRacMNN0xTp04ttu27775FwHTHHXe0aNV3vvOdFs87\nenLiiScWo0ix6EMs1tBROvLII9Ouu+6aYqQo7jdqnmI6XaQvfvGLxSIN/fv3b/E7FnmIFIs1\nSAQIECBAoFoCAqRqSSqHAAECPVQgFkJ44403UiyP/bOf/Sz95je/SV//+tfTc889VyzWENU+\n4ogj0hZbbJEOP/zw9LWvfa2YjhdBUyzeEClWn+tMinxxX1AEM3GM1157rcPdIv/QoUPTokWL\nmvLG9y/deuutKUa2xo4d27S9+YOY0hf3SD344INp0qRJzV/ymAABAgQIdFlAgNRlOjsSIEAg\nD4GtttoqnXvuuemBBx5Ie+yxR9pmm21STLGLZb1je6S4h+dXv/pVisUTJk6cWAQ3MUVuwoQJ\nxesrrrhi8bsz/8TIVEznmzFjRoppcB2lmGp32WWXtcj24x//uFg2PIK6paWob9SzM6NVSyvH\nawQIECBAoCLQ64M/LL6KvKLhNwECBOpYIEZlJk+eXLRw9OjRLUaFYqpdBEFDhgxpIfDwww8X\n34V0++23F6vftXjREwIECBAgUIcCRpDqsFM1iQABAu0JxLS3WMo7flpPmbvllluKpbQfffTR\nFrtecMEFRd5Y6U4iQIAAAQKNIGAEqRF6WRsJECDQgcCrr75a3IMU9wHtvPPOafXVV08PPfRQ\nevbZZ9M111xTfKlrB0V4mQABAgQI1IWAAKkuulEjCBAgsOwCsWT2PffcU3xxayy9vfXWW6fd\ndtutCJiWvXQlECBAgACBPAQESHn0k1oSIECAAAECBAgQINANAu5B6gZkhyBAgAABAgQIECBA\nIA8BAVIe/aSWBAgQIECAAAECBAh0g4AAqRuQHYIAAQIECBAgQIAAgTwEBEh59JNaEiBAgAAB\nAgQIECDQDQICpG5AdggCBAgQIECAAAECBPIQECDl0U9qSYAAAQIECBAgQIBANwgIkLoB2SEI\nECBAgAABAgQIEMhDQICURz+pJQECBAgQIECAAAEC3SDw/wDui40QTotqeQAAAABJRU5ErkJg\ngg==",
185 | "text/plain": [
186 | "plot without title"
187 | ]
188 | },
189 | "metadata": {},
190 | "output_type": "display_data"
191 | }
192 | ],
193 | "source": [
194 | "ko_summary %>%\n",
195 | "ggplot(aes(x=`sgRNA`, y=`avg_cd4`, fill=`sgRNA`)) +\n",
196 | " geom_col() +\n",
197 | " geom_errorbar(aes(\n",
198 | " ymin=`avg_cd4`-`sd_cd4`,\n",
199 | " ymax=`avg_cd4`+`sd_cd4`\n",
200 | " ), width=.2) +\n",
201 | " facet_wrap(~Donor, ncol=2) +\n",
202 | " ylab('Percent CD4+ Population (%)\\n(n=3)') +\n",
203 | " ylim(0, 100)"
204 | ]
205 | }
206 | ],
207 | "metadata": {
208 | "kernelspec": {
209 | "display_name": "R",
210 | "language": "R",
211 | "name": "ir"
212 | },
213 | "language_info": {
214 | "codemirror_mode": "r",
215 | "file_extension": ".r",
216 | "mimetype": "text/x-r-source",
217 | "name": "R",
218 | "pygments_lexer": "r",
219 | "version": "3.4.1"
220 | }
221 | },
222 | "nbformat": 4,
223 | "nbformat_minor": 2
224 | }
225 |
--------------------------------------------------------------------------------
/analyses/cas9-electroporation/flow-data.tsv:
--------------------------------------------------------------------------------
1 | Donor Replicate sgRNA Live/CD4+ CD8+ | Freq. of Parent Live/CD4+ CD8- | Freq. of Parent Live/CD4+ CD8-/CD25+ | Freq. of Parent Live/CD4+ CD8-/CD25- | Freq. of Parent Live/CD4- CD8+ | Freq. of Parent Live/CD4- CD8+/CD25+ | Freq. of Parent Live/CD4- CD8+/CD25- | Freq. of Parent Live/CD4- CD8- | Freq. of Parent Live/CD25+ | Freq. of Parent Live/CD25- | Freq. of Parent
2 | D14 R1 N/A 2.07 70.8 82.1 17.9 11.9 90.4 9.57 15.2 82.2 17.8
3 | D14 R2 N/A 2.38 82.5 66 17.2 12.7 90.4 9.62 2.45 83.7 16.3
4 | D14 R3 N/A 2.28 82.4 86.9 13.1 12.1 91.3 8.73 3.19 87 13
5 | D15 R1 N/A 1.61 76.7 77.2 22.8 18.6 84.3 15.7 3.11 78.4 21.6
6 | D15 R2 N/A 1.84 76.8 79.3 20.7 18 85.6 14.4 3.26 80.3 19.7
7 | D15 R3 N/A 2.35 96.1 77.4 22.6 22.4 84.5 15.5 4.07 104 20.5
8 | D14 R1 CD4 0.18 9.27 78.8 21.2 14.7 89.8 10.2 75.8 87.2 12.8
9 | D14 R2 CD4 0.28 9.15 77.8 22.2 14.7 88.7 11.3 75.9 86.3 13.7
10 | D14 R3 CD4 0.28 11 74.5 25.5 13.9 88.5 11.5 74.8 85 15
11 | D15 R1 CD4 0.46 10.5 67.4 32.6 18.8 84.9 15.1 70.2 82 18
12 | D15 R2 CD4 0.46 11 64.8 35.2 18.5 81.7 18.3 70.1 78 22
13 | D15 R3 CD4 0.36 13.5 61.2 38.8 17.9 77.2 22.8 68.3 74.1 25.9
14 |
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-count-long.tsv:
--------------------------------------------------------------------------------
1 | Donor Day Condition Replicate Count No Live count Live Fraction Dilution
2 | D14 5 +IL2 r1 1 1.05E+06 0.62 1
3 | D14 5 +IL2 r1 2 1.10E+06 0.63 1
4 | D14 5 +IL2 r2 1 1.25E+06 0.75 1
5 | D14 5 +IL2 r2 2 2.17E+05 0.11 1
6 | D14 5 +IL2 r3 1 1.13E+06 0.7 1
7 | D14 5 +IL2 r3 2 1.16E+06 0.64 1
8 | D14 5 -IL2 r1 1 1.08E+06 0.65 1
9 | D14 5 -IL2 r1 2 9.15E+05 0.63 1
10 | D14 5 -IL2 r2 1 1.51E+06 0.37 1
11 | D14 5 -IL2 r2 2 1.14E+06 0.68 1
12 | D14 5 -IL2 r3 1 1.21E+06 0.64 1
13 | D14 5 -IL2 r3 2 1.22E+06 0.71 1
14 | D15 5 +IL2 r1 1 4.63E+05 0.18 1
15 | D15 5 +IL2 r1 2 1.11E+06 0.72 1
16 | D15 5 +IL2 r2 1 1.62E+06 0.73 1
17 | D15 5 +IL2 r2 2 2.21E+06 0.73 1
18 | D15 5 +IL2 r3 1 1.22E+06 0.74 1
19 | D15 5 +IL2 r3 2 1.54E+06 0.75 1
20 | D15 5 -IL2 r1 1 1.04E+06 0.75 1
21 | D15 5 -IL2 r1 2 1.05E+06 0.73 1
22 | D15 5 -IL2 r2 1 1.33E+06 0.72 1
23 | D15 5 -IL2 r2 2 1.37E+06 0.73 1
24 | D15 5 -IL2 r3 1 1.30E+06 0.74 1
25 | D15 5 -IL2 r3 2 1.05E+06 0.69 1
26 | D14 8 +IL2 r1 1 4.16E+05 0.61 3
27 | D14 8 +IL2 r1 2 3.75E+05 0.5 3
28 | D14 8 +IL2 r2 1 6.16E+05 0.56 3
29 | D14 8 +IL2 r2 2 5.10E+05 0.61 3
30 | D14 8 +IL2 r3 1 4.34E+05 0.53 3
31 | D14 8 +IL2 r3 2 3.64E+05 0.49 3
32 | D14 8 -IL2 r1 1 2.99E+05 0.44 3
33 | D14 8 -IL2 r1 2 3.46E+05 0.54 3
34 | D14 8 -IL2 r2 1 4.11E+05 0.71 3
35 | D14 8 -IL2 r2 2 3.40E+05 0.51 3
36 | D14 8 -IL2 r3 1 4.16E+05 0.5 3
37 | D14 8 -IL2 r3 2 4.22E+05 0.55 3
38 | D15 8 +IL2 r1 1 4.93E+05 0.64 3
39 | D15 8 +IL2 r1 2 4.22E+05 0.62 3
40 | D15 8 +IL2 r2 1 5.40E+05 0.7 3
41 | D15 8 +IL2 r2 2 6.22E+05 0.68 3
42 | D15 8 +IL2 r3 1 5.34E+05 0.58 3
43 | D15 8 +IL2 r3 2 4.28E+05 0.56 3
44 | D15 8 -IL2 r1 1 3.64E+05 0.48 3
45 | D15 8 -IL2 r1 2 2.82E+05 0.42 3
46 | D15 8 -IL2 r2 1 4.46E+05 0.55 3
47 | D15 8 -IL2 r2 2 4.87E+05 0.49 3
48 | D15 8 -IL2 r3 1 4.05E+05 0.46 3
49 | D15 8 -IL2 r3 2 3.93E+05 0.5 3
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-flow-long.tsv:
--------------------------------------------------------------------------------
1 | Replicate Day Donor Condition Live/CD4+ CD8+ | Freq. of Parent Live/CD4+ CD8- | Freq. of Parent Live/CD4+ CD8-/CD25+ | Freq. of Parent Live/CD4+ CD8-/CD25- | Freq. of Parent Live/CD4- CD8+ | Freq. of Parent Live/CD4- CD8+/CD25+ | Freq. of Parent Live/CD4- CD8+/CD25- | Freq. of Parent Live/CD4- CD8- | Freq. of Parent Live/CD25+ | Freq. of Parent
2 | r1 5 D14 -IL2 2.6 77.9 87.1 12.9 11.4 86.2 13.8 8.08 86
3 | r2 5 D14 -IL2 2.47 77.7 86.8 13.2 11.4 85.7 14.3 8.5 85.6
4 | r3 5 D14 -IL2 2.41 76.8 87.1 12.9 11.6 85.5 14.5 9.11 85.7
5 | r1 5 D14 +IL2 2.23 77.5 86.8 13.2 11.3 86.1 13.9 8.91 85.4
6 | r2 5 D14 +IL2 2.47 80.1 86.2 13.8 11.3 86.5 13.5 6.17 85.3
7 | r3 5 D14 +IL2 2.35 78.3 87.1 12.9 11.5 86.7 13.3 7.82 85.9
8 | r1 5 D15 -IL2 1.86 73.4 86.3 13.7 16.6 84.9 15.1 8.12 85.2
9 | r2 5 D15 -IL2 1.87 72.5 86.8 13.2 16.5 83.2 16.8 9.19 85.4
10 | r3 5 D15 -IL2 1.96 73 86 14 16.3 83.2 16.8 8.77 84.7
11 | r1 5 D15 +IL2 1.56 72.2 85.7 14.3 16.8 83.3 16.7 9.42 84.3
12 | r2 5 D15 +IL2 1.66 74.3 85.8 14.2 16.3 85 15 7.71 85
13 | r3 5 D15 +IL2 1.76 73.4 86 14 15.9 83.1 16.9 8.95 84.7
14 | r1 8 D14 -IL2 12.4 78.7 52.9 47.1 6.42 55.8 44.2 2.8 54.3
15 | r2 8 D14 -IL2 11.8 80.5 52.4 47.6 5.77 58.1 41.9 2.26 54.5
16 | r3 8 D14 -IL2 12 79.8 53.4 46.6 6.16 59.2 40.8 2.41 55.1
17 | r1 8 D14 +IL2 11.3 80.2 52.6 47.4 5.54 55 45 3.28 54.1
18 | r2 8 D14 +IL2 11.7 80.5 53.2 46.8 5.55 57.5 42.5 2.51 54.5
19 | r3 8 D14 +IL2 11.8 81.2 51.5 48.5 5.38 56.6 43.4 1.85 53.5
20 | r1 8 D15 -IL2 9.61 84.6 43.9 56.1 4.73 29.4 70.6 1.33 43.4
21 | r2 8 D15 -IL2 9.79 84.4 45.1 54.9 4.92 29.4 70.6 1.16 44.3
22 | r3 8 D15 -IL2 10 84.8 43.1 56.9 4.29 33.4 66.6 1.09 43.1
23 | r1 8 D15 +IL2 9.3 85.1 44.8 55.2 4.57 30.6 69.4 1.35 44
24 | r2 8 D15 +IL2 8.98 85.8 42.5 57.5 4.44 29.5 70.5 1.04 42.1
25 | r3 8 D15 +IL2 9.92 84.4 42.1 57.9 4.51 26.3 73.7 1.44 41.5
26 |
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-flow.csv:
--------------------------------------------------------------------------------
1 | Sample,Replicate,IL2,Live cells/CD4+ CD8+ | Freq. of Parent (%),Live cells/CD4+ CD8- | Freq. of Parent (%),Live cells/CD4- CD8+ | Freq. of Parent (%),Live cells/CD4- CD8- | Freq. of Parent (%),Live cells/CD4+ CD8+ | Mean (Comp-PE-A),Live cells/CD4+ CD8- | Mean (Comp-PE-A),Live cells/CD4- CD8+ | Mean (Comp-PE-A),Live cells/CD4- CD8- | Mean (Comp-PE-A)
2 | 11.fcs,R1,512,1.61,46,39.8,12.6,1545,1067,812,528
3 | 12.fcs,R1,256,1.73,49.8,39,9.53,1117,1053,804,504
4 | 13.fcs,R1,128,1.66,49.3,39.6,9.42,1106,1066,833,509
5 | 14.fcs,R1,64,1.97,48.8,39.6,9.63,1484,998,764,490
6 | 15.fcs,R1,32,1.94,48.8,39.7,9.57,1326,1057,831,513
7 | 16.fcs,R1,0,1.85,48.4,39.8,9.88,1322,1003,774,501
8 | 21.fcs,R1,512,1.59,60.5,50.6,12.2,1104,1099,839,515
9 | 22.fcs,R1,256,1.41,49.3,39.4,9.87,1951,1075,828,500
10 | 23.fcs,R1,128,1.69,48.8,39.7,9.78,1179,1072,834,511
11 | 24.fcs,R1,64,1.8,48.8,39.7,9.65,1222,1041,821,504
12 | 25.fcs,R1,32,1.77,48.7,39.4,10.1,1302,1052,807,501
13 | 26.fcs,R1,0,1.32,49.5,39.6,9.6,1468,1085,832,520
14 | 31.fcs,R1,512,1.45,48.6,39.7,10.3,1059,1018,792,483
15 | 32.fcs,R1,256,1.79,48.9,39.5,9.81,1392,1052,816,495
16 | 33.fcs,R1,128,1.5,49.5,39.1,9.91,1157,1073,849,511
17 | 34.fcs,R1,64,1.79,49.4,38.6,10.1,1247,1057,795,489
18 | 35.fcs,R1,32,1.5,48.9,39.8,9.84,1143,1042,810,489
19 | 36.fcs,R1,0,1.58,50,38.4,9.99,1008,980,749,469
20 | 41.fcs,R1,512,1.59,48.9,39.3,10.2,1255,985,755,488
21 | 42.fcs,R1,256,1.45,50.2,38.2,10.2,1252,1040,778,512
22 | 43.fcs,R1,128,1.62,50.3,37.9,10.1,1477,1057,803,487
23 | 44.fcs,R1,64,1.39,49.7,38.5,10.4,1537,999,758,471
24 | 45.fcs,R1,32,1.6,49.7,38.5,10.2,1441,1022,778,476
25 | 46.fcs,R1,0,1.39,49.5,38.9,10.2,1707,1038,812,476
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-resazurin.tsv:
--------------------------------------------------------------------------------
1 | Row C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Replicate
2 | A 0.327 0.415 0.48 0.388 0.465 0.375 0.401 0.38 0.395 0.398 0.433 0.423 R1
3 | B 0.439 0.399 0.466 0.374 0.476 0.429 0.424 0.487 0.457 0.465 0.427 0.393 R1
4 | C 0.439 0.448 0.451 0.448 0.438 0.434 0.455 0.445 0.45 0.4 0.381 0.4 R1
5 | D 0.459 0.441 0.461 0.504 0.459 0.41 0.468 0.408 0.408 0.399 0.376 0.375 R1
6 | E 0.424 0.429 0.503 0.479 0.535 0.465 0.473 0.414 0.409 0.394 0.413 0.426 R1
7 | F 0.436 0.434 0.457 0.425 0.468 0.461 0.486 0.46 0.458 0.363 0.481 0.377 R1
8 | G 0.432 0.459 0.482 0.46 0.459 0.486 0.466 0.462 0.385 0.387 0.4 0.376 R1
9 | H 0.405 0.445 0.447 0.442 0.477 0.49 0.413 0.441 0.437 0.391 0.374 0.406 R1
10 | A 0.424 0.431 0.433 0.434 0.444 0.43 0.435 0.44 0.438 0.442 0.433 0.439 R2
11 | B 0.428 0.427 0.433 0.429 0.436 0.436 0.437 0.437 0.436 0.441 0.436 0.437 R2
12 | C 0.423 0.425 0.433 0.437 0.434 0.43 0.435 0.434 0.437 0.435 0.43 0.45 R2
13 | D 0.439 0.428 0.436 0.436 0.435 0.443 0.436 0.45 0.436 0.422 0.436 0.44 R2
14 | E 0.418 0.421 0.428 0.434 0.419 0.428 0.452 0.424 0.436 0.4 0.424 0.438 R2
15 | F 0.431 0.423 0.429 0.427 0.422 0.42 0.424 0.426 0.431 0.404 0.428 0.432 R2
16 | G 0.425 0.419 0.427 0.422 0.414 0.413 0.399 0.437 0.433 0.403 0.427 0.438 R2
17 | H 0.41 0.403 0.4 0.431 0.422 0.414 0.426 0.433 0.411 0.395 0.416 0.422 R2
18 | A 0.253 0.229 0.216 0.208 0.216 0.211 0.223 0.231 0.215 0.213 0.228 0.208 R3
19 | B 0.231 0.221 0.231 0.217 0.223 0.222 0.216 0.207 0.201 0.213 0.205 0.209 R3
20 | C 0.232 0.212 0.218 0.218 0.216 0.214 0.209 0.205 0.205 0.202 0.205 0.216 R3
21 | D 0.226 0.217 0.214 0.218 0.214 0.207 0.21 0.207 0.202 0.192 0.197 0.202 R3
22 | E 0.229 0.219 0.222 0.217 0.22 0.221 0.211 0.22 0.217 0.204 0.202 0.217 R3
23 | F 0.222 0.223 0.214 0.222 0.209 0.218 0.208 0.205 0.205 0.202 0.202 0.218 R3
24 | G 0.22 0.214 0.223 0.222 0.211 0.208 0.201 0.205 0.204 0.2 0.215 0.216 R3
25 | H 0.246 0.234 0.235 0.24 0.25 0.251 0.214 0.236 0.243 0.203 0.232 0.236 R3
26 | A 0.506 0.453 0.434 0.446 0.427 0.427 0.445 0.473 0.444 0.434 0.466 0.45 R4
27 | B 0.449 0.435 0.469 0.46 0.448 0.481 0.435 0.455 0.461 0.462 0.442 0.454 R4
28 | C 0.497 0.439 0.477 0.456 0.467 0.425 0.432 0.458 0.457 0.456 0.454 0.473 R4
29 | D 0.446 0.433 0.443 0.453 0.446 0.47 0.451 0.457 0.427 0.434 0.434 0.444 R4
30 | E 0.476 0.453 0.466 0.473 0.471 0.437 0.424 0.487 0.441 0.417 0.438 0.513 R4
31 | F 0.478 0.437 0.442 0.447 0.445 0.447 0.429 0.433 0.44 0.417 0.454 0.457 R4
32 | G 0.507 0.43 0.435 0.451 0.439 0.427 0.471 0.442 0.443 0.462 0.485 0.446 R4
33 | H 0.423 0.412 0.424 0.496 0.447 0.453 0.467 0.447 0.457 0.363 0.46 0.468 R4
34 |
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-sigma-nih-counts.tsv:
--------------------------------------------------------------------------------
1 | donor id IL-2 conct live count (cells/ml) live % size (um) IL2 Source Replicate
2 | 4 500 500000 87 14.23 Sigma R1
3 | 4 500 500000 74 13.59 Sigma R2
4 | 4 250 628000 89 13.78 Sigma R1
5 | 4 250 581000 86 14.13 Sigma R2
6 | 4 125 457000 81 13.22 Sigma R1
7 | 4 125 405000 85 13.54 Sigma R2
8 | 4 64 475000 82 13.64 Sigma R1
9 | 4 64 551000 87 14.87 Sigma R2
10 | 4 32 581000 88 14.67 Sigma R1
11 | 4 32 581000 81 14.03 Sigma R2
12 | 4 0 569000 86 13.97 Sigma R1
13 | 4 0 598000 81 13.7 Sigma R2
14 | 15 500 446000 75 13.12 Sigma R1
15 | 15 500 416000 73 12.77 Sigma R2
16 | 15 250 334000 73 12.37 Sigma R1
17 | 15 250 364000 76 13.5 Sigma R2
18 | 15 125 328000 73 12.82 Sigma R1
19 | 15 125 387000 71 14.3 Sigma R2
20 | 15 64 93800 16 9.54 Sigma R1
21 | 15 64 422000 74 13.08 Sigma R2
22 | 15 32 240000 61 12.83 Sigma R1
23 | 15 32 299000 61 12.55 Sigma R2
24 | 15 0 299000 71 12.01 Sigma R1
25 | 15 0 264000 71 12.91 Sigma R2
26 | 16 500 528000 91 14.37 Sigma R1
27 | 16 500 510000 91 14.69 Sigma R2
28 | 16 250 493000 89 14.83 Sigma R1
29 | 16 250 428000 87 15.53 Sigma R2
30 | 16 125 522000 93 14.53 Sigma R1
31 | 16 125 469000 95 16.06 Sigma R2
32 | 16 64 469000 94 14.54 Sigma R1
33 | 16 64 422000 94 14.36 Sigma R2
34 | 16 32 457000 91 14.19 Sigma R1
35 | 16 32 405000 93 14 Sigma R2
36 | 16 0 557000 91 13.97 Sigma R1
37 | 16 0 479000 94 14.58 Sigma R2
38 | 17 500 352000 88 13.8 Sigma R1
39 | 17 500 270000 87 13.93 Sigma R2
40 | 17 250 499000 88 13.59 Sigma R1
41 | 17 250 422000 87 14.57 Sigma R2
42 | 17 125 381000 82 13.89 Sigma R1
43 | 17 125 416000 93 15.14 Sigma R2
44 | 17 64 452000 94 14.31 Sigma R1
45 | 17 64 422000 90 14.04 Sigma R2
46 | 17 32 399000 91 13.96 Sigma R1
47 | 17 32 340000 89 14.5 Sigma R2
48 | 17 0 358000 85 13.97 Sigma R1
49 | 17 0 393000 91 14.91 Sigma R2
50 | 4 500 516000 83 14.48 NIH R1
51 | 4 500 399000 83 14.85 NIH R2
52 | 4 250 499000 85 14.35 NIH R1
53 | 4 250 457000 79 13.69 NIH R2
54 | 4 125 657000 90 14.02 NIH R1
55 | 4 125 575000 89 13.89 NIH R2
56 | 4 64 405000 81 13.54 NIH R1
57 | 4 64 663000 87 14.37 NIH R2
58 | 4 32 622000 88 14.44 NIH R1
59 | 4 32 528000 83 14.01 NIH R2
60 | 4 0 475000 86 14.57 NIH R1
61 | 4 0 551000 82 13.64 NIH R2
62 | 15 500 305000 73 11.75 NIH R1
63 | 15 500 352000 69 12.9 NIH R2
64 | 15 250 387000 72 13.68 NIH R1
65 | 15 250 369000 72 12.14 NIH R2
66 | 15 125 252000 70 14.86 NIH R1
67 | 15 125 334000 73 13.05 NIH R2
68 | 15 64 235000 71 13.2 NIH R1
69 | 15 64 317000 73 13.13 NIH R2
70 | 15 32 317000 77 13.31 NIH R1
71 | 15 32 305000 68 12.19 NIH R2
72 | 15 0 252000 78 14.3 NIH R1
73 | 15 0 416000 76 12.75 NIH R2
74 | 16 500 452000 88 14.3 NIH R1
75 | 16 500 557000 90 14.88 NIH R2
76 | 16 250 469000 93 15 NIH R1
77 | 16 250 499000 93 14.26 NIH R2
78 | 16 125 499000 93 15.34 NIH R1
79 | 16 125 504000 93 14.74 NIH R2
80 | 16 64 364000 94 15.76 NIH R1
81 | 16 64 446000 94 14.63 NIH R2
82 | 16 32 434000 93 14.3 NIH R1
83 | 16 32 499000 97 14.4 NIH R2
84 | 16 0 405000 90 14.62 NIH R1
85 | 16 0 551000 97 15.36 NIH R2
86 | 17 500 258000 85 14.93 NIH R1
87 | 17 500 499000 89 13.15 NIH R2
88 | 17 250 270000 87 15.35 NIH R1
89 | 17 250 416000 93 14.69 NIH R2
90 | 17 125 217000 80 13.35 NIH R1
91 | 17 125 311000 90 14.28 NIH R2
92 | 17 64 293000 85 15.22 NIH R1
93 | 17 64 346000 89 14.86 NIH R2
94 | 17 32 311000 90 13.7 NIH R1
95 | 17 32 393000 91 12.96 NIH R2
96 | 17 0 311000 88 13.51 NIH R1
97 | 17 0 323000 85 13.33 NIH R2
--------------------------------------------------------------------------------
/analyses/il2-titration/il2-sigma-nih-flow.tsv:
--------------------------------------------------------------------------------
1 | Sample: Donor IL2 Source IL2 concentration (IU/mL) Live/CD4+ CD8+ | Freq. of Parent Live/CD4+ CD8- | Freq. of Parent Live/CD4- CD8+ | Freq. of Parent Live/CD4- CD8- | Freq. of Parent Live/CD25+ | Freq. of Parent Live/CD25- | Freq. of Parent
2 | N4-0.fcs D4 NIH 0 0.96 61.2 34.2 3.57 63 37
3 | N4-32.fcs D4 NIH 32 0.93 63.1 32.4 3.51 61.5 38.5
4 | N4-64.fcs D4 NIH 64 1.29 61.4 33.7 3.54 62.3 37.7
5 | N4-125.fcs D4 NIH 125 0.9 63.7 32.1 3.38 62.1 37.9
6 | N4-250.fcs D4 NIH 250 0.95 63.2 32.5 3.41 62.8 37.2
7 | N4-500.fcs D4 NIH 500 0.74 66.5 29.4 3.41 60 40
8 | N15-0.fcs D15 NIH 0 1.75 83.2 12.1 2.93 57.7 42.3
9 | N15-32.fcs D15 NIH 32 1.67 84 11.2 3.18 59.6 40.4
10 | N15-64.fcs D15 NIH 64 1.76 83.5 11.6 3.19 59.5 40.5
11 | N15-125.fcs D15 NIH 125 1.56 83.2 11.9 3.35 60.4 39.6
12 | N15-250.fcs D15 NIH 250 1.55 83.3 11.7 3.49 60 40
13 | N15-500.fcs D15 NIH 500 1.36 83.2 12.1 3.39 58.2 41.8
14 | N16-0.fcs D16 NIH 0 1.07 61.9 36 1.08 62.9 37.1
15 | N16-32.fcs D16 NIH 32 1.09 61.7 36.1 1.17 61.7 38.3
16 | N16-64.fcs D16 NIH 64 1.13 61.4 36.2 1.26 60.9 39.1
17 | N16-125.fcs D16 NIH 125 1.33 61.8 35.7 1.13 63.2 36.8
18 | N16-250.fcs D16 NIH 250 1.08 61.1 36.7 1.16 60 40
19 | N16-500.fcs D16 NIH 500 1.18 61.6 36 1.17 62 38
20 | N17-0.fcs D17 NIH 0 2.15 55.9 39.5 2.41 70.4 29.6
21 | N17-32.fcs D17 NIH 32 2.52 56.1 38.8 2.6 70 30
22 | N17-64.fcs D17 NIH 64 2.36 56.3 38.8 2.59 69.2 30.8
23 | N17-125.fcs D17 NIH 125 2.59 55 40.2 2.18 68.7 31.3
24 | N17-250.fcs D17 NIH 250 2.76 55.1 39.5 2.61 70.2 29.8
25 | N17-500.fcs D17 NIH 500 2.1 55.5 40 2.41 69.3 30.7
26 | S4-0.fcs D4 Sigma 0 0.74 61.4 34.2 3.71 63.1 36.9
27 | S4-32.fcs D4 Sigma 32 0.61 61.9 33.3 4.17 58.3 41.7
28 | S4-64.fcs D4 Sigma 64 0.62 61.5 33.8 4.04 60.1 39.9
29 | S4-125.fcs D4 Sigma 125 0.68 63.2 32.5 3.67 61.4 38.6
30 | S4-250.fcs D4 Sigma 250 0.67 61.9 33.3 4.19 58.3 41.7
31 | S4-500.fcs D4 Sigma 500 0.44 47.4 22.7 29.4 27.5 72.5
32 | S15-0.fcs D15 Sigma 0 1.12 82.1 13.1 3.66 57.6 42.4
33 | S15-32.fcs D15 Sigma 32 1.22 82.2 12.9 3.65 58.7 41.3
34 | S15-64.fcs D15 Sigma 64 1.29 81.9 12.8 3.97 57.3 42.7
35 | S15-125.fcs D15 Sigma 125 1.21 81.6 13 4.2 57 43
36 | S15-250.fcs D15 Sigma 250 1.19 82.2 12.7 3.98 56.5 43.5
37 | S15-500.fcs D15 Sigma 500 1.17 82.4 12.3 4.12 57.5 42.5
38 | S16-0.fcs D16 Sigma 0 0.75 61.8 36.2 1.24 62.8 37.2
39 | S16-32.fcs D16 Sigma 32 0.85 60.9 36.9 1.31 59.7 40.3
40 | S16-64.fcs D16 Sigma 64 0.86 61.9 36 1.25 59.4 40.6
41 | S16-125.fcs D16 Sigma 125 0.88 61.5 36.4 1.19 60.1 39.9
42 | S16-250.fcs D16 Sigma 250 0.95 61.4 36.4 1.23 61.6 38.4
43 | S16-500.fcs D16 Sigma 500 0.93 61.7 36.1 1.32 62.1 37.9
44 | S17-0.fcs D17 Sigma 0 1.25 55.4 40.2 3.22 66.9 33.1
45 | S17-32.fcs D17 Sigma 32 1.15 55.1 40.6 3.13 66.4 33.6
46 | S17-64.fcs D17 Sigma 64 1.38 56.1 39.4 3.18 69.6 30.4
47 | S17-125.fcs D17 Sigma 125 1.3 55.4 40 3.3 67.5 32.5
48 | S17-250.fcs D17 Sigma 250 1.33 54.6 40.6 3.42 65.6 34.4
49 | S17-500.fcs D17 Sigma 500 1.11 55.2 39.6 4.11 64.1 35.9
50 |
--------------------------------------------------------------------------------
/analyses/isolation-bead-titration/Isolation bead titration.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [
8 | {
9 | "name": "stderr",
10 | "output_type": "stream",
11 | "text": [
12 | "\n",
13 | "Attaching package: ‘dplyr’\n",
14 | "\n",
15 | "The following objects are masked from ‘package:stats’:\n",
16 | "\n",
17 | " filter, lag\n",
18 | "\n",
19 | "The following objects are masked from ‘package:base’:\n",
20 | "\n",
21 | " intersect, setdiff, setequal, union\n",
22 | "\n",
23 | "\n",
24 | "Attaching package: ‘tidyr’\n",
25 | "\n",
26 | "The following object is masked from ‘package:magrittr’:\n",
27 | "\n",
28 | " extract\n",
29 | "\n"
30 | ]
31 | }
32 | ],
33 | "source": [
34 | "library('readr')\n",
35 | "library('magrittr')\n",
36 | "library('dplyr')\n",
37 | "library('tidyr')\n",
38 | "library('ggplot2')"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 2,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "data": {
48 | "text/html": [
49 | "\n",
50 | "Replicate | Bead:cell ratio | Live cells/CD3+ | Freq. of Parent (%) | Live cells/CD3- | Freq. of Parent (%) | Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%) | Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%) |
\n",
51 | "\n",
52 | "\tR1 | 0:1 | 29.1 | 70.9 | 37.8 | 17.1 |
\n",
53 | "\tR1 | 1:1 | 88.7 | 11.3 | 71.4 | 15.8 |
\n",
54 | "\tR1 | 1:2 | 81.6 | 18.4 | 77.2 | 17.8 |
\n",
55 | "\tR1 | 1:4 | 73.9 | 26.1 | 76.9 | 18.5 |
\n",
56 | "\tR2 | 0:1 | 47.5 | 52.5 | 77.5 | 18.3 |
\n",
57 | "\tR2 | 1:1 | 89.0 | 11.0 | 78.7 | 16.4 |
\n",
58 | "\tR2 | 1:2 | 74.1 | 25.9 | 78.5 | 16.1 |
\n",
59 | "\tR2 | 1:4 | 72.5 | 27.5 | 77.2 | 18.6 |
\n",
60 | "\tR3 | 0:1 | 48.5 | 51.5 | 77.3 | 18.6 |
\n",
61 | "\tR3 | 1:1 | 88.6 | 11.4 | 79.5 | 15.3 |
\n",
62 | "\tR3 | 1:2 | 79.9 | 20.1 | 77.5 | 18.4 |
\n",
63 | "\tR3 | 1:4 | 72.7 | 27.3 | 77.2 | 18.5 |
\n",
64 | "\n",
65 | "
\n"
66 | ],
67 | "text/latex": [
68 | "\\begin{tabular}{r|llllll}\n",
69 | " Replicate & Bead:cell ratio & Live cells/CD3+ \\textbar{} Freq. of Parent (\\%) & Live cells/CD3- \\textbar{} Freq. of Parent (\\%) & Live cells/CD3+/CD3+ CD8- CD4+ \\textbar{} Freq. of Parent (\\%) & Live cells/CD3+/CD3+ CD8+ CD4- \\textbar{} Freq. of Parent (\\%)\\\\\n",
70 | "\\hline\n",
71 | "\t R1 & 0:1 & 29.1 & 70.9 & 37.8 & 17.1\\\\\n",
72 | "\t R1 & 1:1 & 88.7 & 11.3 & 71.4 & 15.8\\\\\n",
73 | "\t R1 & 1:2 & 81.6 & 18.4 & 77.2 & 17.8\\\\\n",
74 | "\t R1 & 1:4 & 73.9 & 26.1 & 76.9 & 18.5\\\\\n",
75 | "\t R2 & 0:1 & 47.5 & 52.5 & 77.5 & 18.3\\\\\n",
76 | "\t R2 & 1:1 & 89.0 & 11.0 & 78.7 & 16.4\\\\\n",
77 | "\t R2 & 1:2 & 74.1 & 25.9 & 78.5 & 16.1\\\\\n",
78 | "\t R2 & 1:4 & 72.5 & 27.5 & 77.2 & 18.6\\\\\n",
79 | "\t R3 & 0:1 & 48.5 & 51.5 & 77.3 & 18.6\\\\\n",
80 | "\t R3 & 1:1 & 88.6 & 11.4 & 79.5 & 15.3\\\\\n",
81 | "\t R3 & 1:2 & 79.9 & 20.1 & 77.5 & 18.4\\\\\n",
82 | "\t R3 & 1:4 & 72.7 & 27.3 & 77.2 & 18.5\\\\\n",
83 | "\\end{tabular}\n"
84 | ],
85 | "text/markdown": [
86 | "\n",
87 | "Replicate | Bead:cell ratio | Live cells/CD3+ | Freq. of Parent (%) | Live cells/CD3- | Freq. of Parent (%) | Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%) | Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%) | \n",
88 | "|---|---|---|---|---|---|---|---|---|---|---|---|\n",
89 | "| R1 | 0:1 | 29.1 | 70.9 | 37.8 | 17.1 | \n",
90 | "| R1 | 1:1 | 88.7 | 11.3 | 71.4 | 15.8 | \n",
91 | "| R1 | 1:2 | 81.6 | 18.4 | 77.2 | 17.8 | \n",
92 | "| R1 | 1:4 | 73.9 | 26.1 | 76.9 | 18.5 | \n",
93 | "| R2 | 0:1 | 47.5 | 52.5 | 77.5 | 18.3 | \n",
94 | "| R2 | 1:1 | 89.0 | 11.0 | 78.7 | 16.4 | \n",
95 | "| R2 | 1:2 | 74.1 | 25.9 | 78.5 | 16.1 | \n",
96 | "| R2 | 1:4 | 72.5 | 27.5 | 77.2 | 18.6 | \n",
97 | "| R3 | 0:1 | 48.5 | 51.5 | 77.3 | 18.6 | \n",
98 | "| R3 | 1:1 | 88.6 | 11.4 | 79.5 | 15.3 | \n",
99 | "| R3 | 1:2 | 79.9 | 20.1 | 77.5 | 18.4 | \n",
100 | "| R3 | 1:4 | 72.7 | 27.3 | 77.2 | 18.5 | \n",
101 | "\n",
102 | "\n"
103 | ],
104 | "text/plain": [
105 | " Replicate Bead:cell ratio Live cells/CD3+ | Freq. of Parent (%)\n",
106 | "1 R1 0:1 29.1 \n",
107 | "2 R1 1:1 88.7 \n",
108 | "3 R1 1:2 81.6 \n",
109 | "4 R1 1:4 73.9 \n",
110 | "5 R2 0:1 47.5 \n",
111 | "6 R2 1:1 89.0 \n",
112 | "7 R2 1:2 74.1 \n",
113 | "8 R2 1:4 72.5 \n",
114 | "9 R3 0:1 48.5 \n",
115 | "10 R3 1:1 88.6 \n",
116 | "11 R3 1:2 79.9 \n",
117 | "12 R3 1:4 72.7 \n",
118 | " Live cells/CD3- | Freq. of Parent (%)\n",
119 | "1 70.9 \n",
120 | "2 11.3 \n",
121 | "3 18.4 \n",
122 | "4 26.1 \n",
123 | "5 52.5 \n",
124 | "6 11.0 \n",
125 | "7 25.9 \n",
126 | "8 27.5 \n",
127 | "9 51.5 \n",
128 | "10 11.4 \n",
129 | "11 20.1 \n",
130 | "12 27.3 \n",
131 | " Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%)\n",
132 | "1 37.8 \n",
133 | "2 71.4 \n",
134 | "3 77.2 \n",
135 | "4 76.9 \n",
136 | "5 77.5 \n",
137 | "6 78.7 \n",
138 | "7 78.5 \n",
139 | "8 77.2 \n",
140 | "9 77.3 \n",
141 | "10 79.5 \n",
142 | "11 77.5 \n",
143 | "12 77.2 \n",
144 | " Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%)\n",
145 | "1 17.1 \n",
146 | "2 15.8 \n",
147 | "3 17.8 \n",
148 | "4 18.5 \n",
149 | "5 18.3 \n",
150 | "6 16.4 \n",
151 | "7 16.1 \n",
152 | "8 18.6 \n",
153 | "9 18.6 \n",
154 | "10 15.3 \n",
155 | "11 18.4 \n",
156 | "12 18.5 "
157 | ]
158 | },
159 | "metadata": {},
160 | "output_type": "display_data"
161 | }
162 | ],
163 | "source": [
164 | "cd348_stats <- \n",
165 | " read_tsv(\n",
166 | " './cd3-cd4-cd8-stats.tsv',\n",
167 | " col_types=cols(\n",
168 | " `Replicate`=col_factor(levels=c('R1', 'R2', 'R3')),\n",
169 | " `Bead:cell ratio`=col_factor(levels=c('0:1', '1:1', '1:2', '1:4')),\n",
170 | " .default=col_double()\n",
171 | " )\n",
172 | " )\n",
173 | "cd348_stats"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 3,
179 | "metadata": {},
180 | "outputs": [
181 | {
182 | "data": {},
183 | "metadata": {},
184 | "output_type": "display_data"
185 | },
186 | {
187 | "data": {
188 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEGWlDQ1BrQ0dDb2xvclNwYWNl\nR2VuZXJpY1JHQgAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi\n6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lp\nurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZP\nC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q4\n4WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23B\naIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys\n2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y\n5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrl\nSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98\nhTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7C\nlP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmK\nPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZf\nsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJ\nxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19\nzn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNC\nUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU\n97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KT\nYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyA\ngccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/\nqwBnjX8BoJ98VQNcC+8AAEAASURBVHgB7N0HnBRF2sfxZ8k552BAUTEh5iwoYg6oHPoaEbMo\nJhSzcipBRE9FPUExISoGTox3KpgVTz2VjIigSJacYXn5F/Q4uzu707M73Tu98ys+y/Z0qK7+\nds9sP1PVVTmbNicjIYAAAggggAACCCCAAAIIWDkMEEAAAQQQQAABBBBAAAEEtggQIHElIIAA\nAggggAACCCCAAAJbBQiQuBQQQAABBBBAAAEEEEAAga0CBEhcCggggAACCCCAAAIIIIDAVgEC\nJC4FBBBAAAEEEEAAAQQQQGCrAAESlwICCCCAAAIIIIAAAgggsFWAAIlLAQEEEEAAAQQQQAAB\nBBDYKkCAxKWAAAIIIIAAAggggAACCGwVqIBE8AKTJk0KfifsAYEMEqhVq5Y1b948aYl4byQl\nYoUyJlCxYkXbcccdkx4V742kRKxQBgXatGlTBo+KQ4qiAAFSCGdt3bp1IeyFXSCQOQIbNmzw\nVRjeG76YWKkMCWzatMnX0fDe8MXESggggEAgAjSxC4SVTBFAAAEEEEAAAQQQQCCKAgRIUTxr\nlBkBBBBAAAEEEEAAAQQCESBACoSVTBFAAAEEEEAAAQQQQCCKAgRIUTxrlBkBBBBAAAEEEEAA\nAQQCESBACoSVTBFAAAEEEEAAAQQQQCCKAgRIUTxrlBkBBBBAAAEEEEAAAQQCESBACoSVTBFA\nAAEEEEAAAQQQQCCKAoyDFMWzliVlXrlypf3444/2ww8/2IoVK9zgisccc4xVrVo1JvD666+7\nZd6M6tWrW8OGDe2ggw4yDciYP/3yyy/2zTffWNOmTW2//fbLk1f+dXmNQDoENm7caFOnTnXX\n8cyZM61Ro0bWqVOnPAPpfvvttzZhwoTY7ipXrmwabFfXaIMGDWLzvYmlS5fap59+6l7uu+++\n1qRJE29RsX8HUU6vMIsWLbK3337bzj77bCtfvrw3m98I2Jw5c9x7Y/z48e7zWNfzAQccEJPx\nrh1vRrly5dx7Y4cddrDddtvNmx37HcR7Q5mnu5xr1qyxzz//3DRm3GGHHWbVqlWLHQMTCCBQ\n+gLl79qcSr8YZbsE8+bNK9sHGMDR/f7773b55Ze7m8C6deva+vXr7Z133rF///vfdtxxx8WC\nn3vvvdemTZtmq1atsrlz57qA6v3333c3YxqRWzejXrrnnnvs+eefd39c33vvPfvwww/dH6Yq\nVap4q/A7TQIyrVOnTtLcyvp7Qzc/+oh9+umn3Y2QruUvvvjChg8fbnvssUcssFHw8Oqrr1pu\nbq7JZPr06fbJJ5/YK6+8Yroh1LpeGjt2rF1//fXupdYbNmyY7bzzzi7o99ZJ9XcQ5fTKoIFR\n+/TpY++++6793//9X9YHSAoQ9SVOslTW3xs6fl0TvXr1st9++82aNWtm+gJL1/ySJUtiQZL+\nFtx3332mgOLPP/80vR43bpzpyzF9eXb44YdbhQpbvusN4r0RRDn13r7mmmtMwdzs2bPt0Ucf\nNX02tG7dOtllUeaXp+PLnjKPxAGGIkANUijM7CQVgQULFrg/mropvPXWW2M3VKpF6tatmw0Z\nMsSuvvrqWJZHHXWUde/ePfZaf3RuueUW69evnz355JPuW0l9O68/Ss8995y7KdUo9WeeeaYL\nuLp06RLbVhP/+te/rEaNGqZ8SQiURKBv3742efJkFxDF1wTp2hw4cKC7lr0aUd00a1580rWu\n4GrXXXe1vfbay31RMHToULvgggvMu27vv/9+FyTtvffe8Zu6/epLgCuvvDLP/EQv0l3O+H28\n8cYbNmnSpPhZeabl47eceTbkRaQFxowZY4MGDXKf8R06dIgdy5dffmm33367+/JK17yXrrvu\nOlOtkZe+//57u/POO91nvP4e6Es0v+8N5dG/f38755xz8tTkennH/053OZW33tM6Zh2Tksr9\nxBNP2LHHHms5OTlunvef33J66/MbAQTSI8AzSOlxJJc0Cnz00Ufuj53+eMQ3x1HQom/OdUOp\nP4aFpdq1a9vf//531yRCtU5K9evXN9U2ed9O6RvHmjVr2uLFiwtk89NPP7kmUQUWMAOBFARU\no/nxxx+7azY+OFIWqh3dZ599XG1RUVlefPHFtvvuu7sbKq2nZnDa9oQTTohtpm+e9c16/jR/\n/nz3pUD++flfB1FObx+//vqrvfDCC6bjKCz5LWdh2zM/mgIjR450X0LFB0c6EjWPPu+88xJe\n0/FH2q5dO/eF2ZtvvmkLFy5M6b2hfP7zn/+4mqr4PBNNp7uc2oe+oIuvRWzevLmrYVZNbv7k\nt5z5t+M1AgiUTIAapJL5sXUAAhMnTnTfmCsgyp8OPPBA00+yVK9ePWvcuLHNmDHDrarAyAuO\n1CxJzfCWLVtmHTt2TJYVyxEoloBqTdQ8ToFQ/qQg/tprr80/O+Fr1R699dZbbpmaLh5yyCFu\nWkGRnqfTDeL555+fcFs/M4Mop/arLzHUNOrCCy9M+i29n3KyTtkRUICgz+HTTz894UEpQPKT\n9N5Q0ue8ntdL93sjiHLqy5IzzjjDXnrpJdesTu/pF1980U455ZRY03E/x846CCAQrAABUrC+\n5F4MAT1T1L59+2JsmXcTtedWe/X4pG8adWOqZ5b0LFOLFi3cYt2AKmhSUptw1TApUFP629/+\n5pp7uBf8h4BPAV3H+pa4UqVKPrdIvJquY12velhdNaFeUvChB9vV4Yh3Y6hrV833lJYvX+6e\ncbjqqqvca+UT3zTVzdz8X1Dl1LNROv4TTzzR1BwqPhWnnPHbMx1tAT1rpNpQ1ZyUJKnJnb6E\n0DNMCpC8lOi9oWVqWaAaSy+piZ/XOYKameb/Ui6ocqr5tp6XeuSRR1yTOn15Fx8splpO73j4\njQAC6RMgQEqfJTmlSUDfsCVqMpRq9rqpVK928Ul56xt3fXupG8m7777bNb1r1apV7JkjdeCg\n7dSzkFJJ/4jH75/p7BFQMKOHzdXxgm7iipvUm6NS/mtZzyvpeTs9z6Bn8PQtdPyzcz///LNr\nQuo9S5e/mZ9XniDK+b///c8936dnqBKl4pQzUT7Mi6aAdy0mauKcyhGtXr3avb/8vDdUa6vm\ne3qWVUk1pwqqvJYFib7ICKKcakanJqdqInjXXXe5ZuR6Nvaiiy6yZ555xopTzlTMWBcBBPwJ\nECD5c2KtEAX0TXd8l8fxu541a5br+Ujftnl/vOKXe9PqOUvfKh566KHerDy/9c2j8njwwQdN\nN6BqquE119C38rppPPXUU/NswwsEUhHQdbx27VrXu6J66IpPuj4VPOgGTTdKRSVdx2oymqi3\nRd1MqQmbaj/Vs9fRRx8du27VKYma4CW7joMo51NPPeWeFXzggQfcoak5q5K+kDj++ONdjZdX\nLr/ldBnwX5kQ0Ge3ernUM2oKWvInPXejaya+ViX/OnqtvwdKib7ESvTeiG9SrZ7j9CVYoq7C\nXaab/wuinBq6QoGh3rd6Xyt572G9X1XGVMvpMuE/BBBIq0Dxv9ZMazHIDIG/BDQOhmp41JtR\n/qSbytGjR7ubr/zL4l9/8MEHpt7wvG/P1YXyjTfeGL+KC4xK+u1+ngx5gUCcgAIP3aSpk4L8\nSb22ed0Z518W/1o3UuoK2buONY6Susr+448/Yqup+2M1V9K1XJwURDnVG5fGLNtll13cT8uW\nLV3Rdtppp9hNYXHKyjZlR0BfDuizXLWg8Umv1fRMX1QlSyNGjHBNTDWkQxDvDe0/3eXUlyZK\n8bVeXg2zV1vsVuA/BBAoVQFqkEqVn50nEtA3ip07dza1Cb/00ktNAZOev9BNpYImzYv/46JA\nSD3P6Vt5NWnSoJzqWliDceoGTUnfFCq4Uq92unHT80WjRo1y871ulr2y6JmjRM0tvOX8RsCP\ngK6rO+64w3VZr2nV7qjHOdWYKDhS73ReM07lpxsnXcdKajqkIEhjvWjAWF2TSttuu60b20vd\nAvfs2dNto+ta68QPrql19c14/i8FND9/CqKc8b3saX96Bkm1XGeddVaB95bfcuYvN6+jLdCj\nRw/Tj7r01nWhz2rVruizWyl/xyPeeHdqoqZnSTVQsmpNvWZqqbw3lL+e89lmm200WWRKdzk1\nfIU+Bx577DHT84HqCML7EiVRB0R+y1nkQbAQAQRSFsjZfFO5KeWt2CAlAQ1mR0pNQN+Iqz22\nmhyoNkmXqZpkqHejk08+OZaZxrFQN8VeUuCkh9a9pkbx3YTr2SONi6Rv2vVHSd/K6w9U/gdz\nvbz4XXwBnSvdsCRL2fDeUECkwFzfiKu2R9ekgnQ9h6Cu5pUU5Lz88ssxrooVK7rmPfr2WjVG\n8c1J9WyRuqyfM2eOu5Z1k6fBNjVYbElSussZXxYFSCqjHLL9ywedW685b7xR/ulseG+osw49\nf6NjVdCjJJsrrrgi9uWWvvDSay9pnCB9vuy4447WtWtXNz6Ytyyo90a6yzllyhTT+GVqPqvj\nUZNuDWuRqMdL79iy5Xfbtm2z5VA5zgwXIEAK4QRlwx+6IBn1UK1uLONvEou7P337qBHq1fY7\nf81RcfNku4ICBEgFTRT0qwct9eymXhJLmlRzqnz0bXQ6U7rLmc6ylYW8CJASn0W9N/QFV3zr\ngMRrJp8b1HtDe05nOdWEVu+3dPxtS64SjTUIkKJxnrKhlCX/K50NShxjqQqohiddtTy6oUz0\nQG+pHiA7zwoB1RypdjNdKX6gyXTlqXzSXc50lo28yq5Ao0aN0nZwQb03VMB0ljPdX26kDZCM\nEEDA6KSBiwABBBBAAAEEEEAAAQQQ2CpAgMSlgAACCCCAAAIIIIAAAghsFSBA4lJAAAEEEEAA\nAQQQQAABBLYKECBxKSCAAAIIIIAAAggggAACWwUIkLgUEEAAAQQQQAABBBBAAIGtAgRIXAoI\nIIAAAggggAACCCCAwFYBAiQuBQQQQAABBBBAAAEEEEBgqwDjIIVwKTRr1izwvZQrV86NFbRu\n3To3qGrgO0zTDmrWrGmbNm0yDQYblaQBZjXY4/Lly13Zo1BulVflXr16ta1fvz7wIleuXNnX\nPsJ4b6ggXGe+TkeJV6pUqZJVqVIltOusxAXenEHYn53an58U1nujWrVqbsDhZcuW+SlWRqzj\nXWerVq0yDf4dhRT2dZYukyh+dqbr2MknuwUIkEI4/2F8gGsAVN2UalTuMPaXLjbduCtAilKZ\nNZCmrJcuXeq802URZD5yVpkVIIVhrevRTwqjLCqHbqii9t7w3tNLliyx3NxcP5ylvo6cdZ1F\n6cbVcw7r+tDnh58U1nsj/vj1WRyFpGtMPytXrgzl8ywdJt5nsM5rWOc2HeWO4mdnOo6bPBDw\n91UWTggggAACCCCAAAIIIIBAFggQIGXBSeYQEUAAAQQQQAABBBBAwJ8AAZI/J9ZCAAEEEEAA\nAQQQQACBLBAgQMqCk8whIoAAAggggAACCCCAgD8BAiR/TqyFAAIIIIAAAggggAACWSBAgJQF\nJ5lDRAABBBBAAAEEEEAAAX8CBEj+nFgLAQQQQAABBBBAAAEEskCAACkLTjKHiAACCCCAAAII\nIIAAAv4ECJD8ObEWAggggAACCCCAAAIIZIEAAVIWnGQOEQEEEEAAAQQQQAABBPwJECD5c2It\nBBBAAAEEEEAAAQQQyAIBAqQsOMkcIgIIIIAAAggggAACCPgTIEDy58RaCCCAAAIIIIAAAggg\nkAUCBEhZcJI5RAQQQAABBBBAAAEEEPAnQIDkz4m1EEAAAQQQQAABBBBAIAsECJCy4CRziAgg\ngAACCCCAAAIIIOBPgADJnxNrIYAAAggggAACCCCAQBYIECBlwUnmEBFAAAEEEEAAAQQQQMCf\nAAGSPyfWQgABBBBAAAEEEEAAgSwQIEDKgpPMISKAAAIIIIAAAggggIA/AQIkf06shQACCCCA\nAAIIIIAAAlkgQICUBSeZQ0QAAQQQQAABBBBAAAF/AgRI/pxYCwEEEEAAAQQQQAABBLJAgAAp\nC04yh4gAAggggAACCCCAAAL+BAiQ/DmxFgIIIIAAAggggAACCGSBAAFSFpxkDhEBBBBAAAEE\nEEAAAQT8CRAg+XNiLQQQQAABBBBAAAEEEMgCgawKkDZu3GjPPvusLVu2rMCpXb58ub333ns2\ncuRImzVrVsrLC2zADAQQQAABBBBAAAEEEIicQFYFSI899pgNHTrUVqxYkedEzZgxw0455RR7\n9dVXbfz48XbhhRfaV199FVsn2fLYikwggAACCCCAAAIIIIBApAUqRLr0Pgs/b948GzhwoH33\n3XcJt+jbt6+dfPLJ1rNnT8vJyXG1TA8++KC99NJL7nWy5QkzZSYCCCCAAAIIIIAAAghETiAr\napD69etnmzZtsv79+xc4QYsWLbJJkya5GiQFR0onnnii/fHHHzZx4kRLtrxAhsxAAAEEEEAA\nAQQQQACByApkRQ1S7969rXHjxjZz5swCJ2ru3LluXrNmzWLL6tevb5UqVbL58+fH5hW2fLfd\ndouto4k+ffrkeb3//vvbYYcdlmdeEC+84K5ixYpWq1atIHYRSJ7lypVzwWuUyixjpRo1ariy\nBwKT5kwrVNjyVq9atap55U/zLvJkl5ubm+d1YS/COu96f5QvXz5S7w3vnOk6i0ryyqzrTJ+h\nUUhhf3Zm2ntD7wulmjVrRuF0uTJ6n2HVqlWzypUrR6Lc+lunpPdFWJ976YCJ4mdnOo6bPBDI\nigBJwVFhac6cOe4DNv+HrP5YLF682NSxg5YVtjx/vsOHD88zSx+Kxx57bJ55Qb7QHw7vj0eQ\n+0ln3voArl69ejqzDCUv/XGOWkp0LQdxDKtWrfKVbZjnParXWZhGvk6aj5WqVKniY63MWiWs\nz85169b5OnB9vnjBm68NSrgS11kJAX1uHtZ15rM4vlaL6menr4NjJQQKEciKAKmQY3ez9WG1\nYcOGAqsoMNIfqGTL82/42muv5Zml2qiFCxfmmRfEC30LWLduXVuzZk2BTiiC2F+68qxXr56r\nhVEwGpWkb/R1A/jnn3+a32+DS/vYFBgp6FdvjWvXrg28OKpJ8BNAhvHe0MHqOtO5WrJkSeDH\nnq4d6HzpvKmZr5oIRyHpfaH3h3oK9RsIlPZxhf3ZqZtN/V1IlvTeCCNAUm2GajWidJ2phlIB\nXZSuM30m1qlTx1avXm0rV65MdvozZnnYn50NGjTImGOnINktkPUBkt6MCob0jXf8DZ0+eJs2\nbWr6UCtqef7LZ/fdd88/y1RLFXTybqB0E7h+/fqgd5e2/FVu/UStzAJQYK1rIwrJa/qk8oZh\n7TXbSWYTRlm8MkT5OotKIK4vlJTCus68c1uS32F/dvp9byT64q4kx1nYtt7x673oTRe2bqbM\n95pvyijMz5B0HH/U/kbrmKP22ZmO80QeCGRFJw1FneYWLVq4IGjChAmx1dRpgz7E9NxRsuWx\njZhAAAEEEEAAAQQQQACByAtkfYBUu3Zt69Spkw0bNsw1TVMTNY2VpOeGGjZsaMmWR/4K4AAQ\nQAABBBBAAAEEEEAgJpD1AZIkLrvsMtcG+6STTrJTTz3V1ShdddVVMaRky2MrMoEAAggggAAC\nCCCAAAKRFsiqZ5C23XZb+/TTTwucMHVu8NBDD7kHPtU+PH9vPsmWF8iQGQgggAACCCCAAAII\nIBBJgawKkJKdoWRjEyRbnix/liOAAAIIIIAAAggggEBmC9DELrPPD6VDAAEEEEAAAQQQQACB\nEAUIkELEZlcIIIAAAggggAACCCCQ2QIESJl9figdAggggAACCCCAAAIIhChAgBQiNrtCAAEE\nEEAAAQQQQACBzBYgQMrs80PpEEAAAQQQQAABBBBAIEQBAqQQsdkVAggggAACCCCAAAIIZLYA\nAVJmnx9KhwACCCCAAAIIIIAAAiEKECCFiM2uEEAAAQQQQAABBBBAILMFCJAy+/xQOgQQQAAB\nBBBAAAEEEAhRgAApRGx2hQACCCCAAAIIIIAAApktQICU2eeH0iGAAAIIIIAAAggggECIAgRI\nIWKzKwQQQAABBBBAAAEEEMhsAQKkzD4/lA4BBBBAAAEEEEAAAQRCFCBAChGbXSGAAAIIIIAA\nAggggEBmCxAgZfb5oXQIIIAAAggggAACCCAQogABUojY7AoBBBBAAAEEEEAAAQQyW4AAKbPP\nD6VDAAEEEEAAAQQQQACBEAUIkELEZlcIIIAAAggggAACCCCQ2QIESJl9figdAggggAACCCCA\nAAIIhChAgBQiNrtCAAEEEEAAAQQQQACBzBYgQMrs80PpEEAAAQQQQAABBBBAIEQBAqQQsdkV\nAggggAACCCCAAAIIZLYAAVJmnx9KhwACCCCAAAIIIIAAAiEKECCFiM2uEEAAAQQQQAABBBBA\nILMFCJAy+/xQOgQQQAABBBBAAAEEEAhRgAApRGx2hQACCCCAAAIIIIAAApktQICU2eeH0iGA\nAAIIIIAAAggggECIAgRIIWKzKwQQQAABBBBAAAEEEMhsAQKkzD4/lA4BBBBAAAEEEEAAAQRC\nFCBAChGbXSGAAAIIIIAAAggggEBmCxAgZfb5oXQIIIAAAggggAACCCAQogABUojY7AoBBBBA\nAAEEEEAAAQQyW4AAKbPPD6VDAAEEEEAAAQQQQACBEAUIkELEZlcIIIAAAggggAACCCCQ2QIE\nSJl9figdAggggAACCCCAAAIIhChAgBQiNrtCAAEEEEAAAQQQQACBzBYgQMrs80PpEEAAAQQQ\nQAABBBBAIEQBAqQQsdkVAggggAACCCCAAAIIZLYAAVJmnx9KhwACCCCAAAIIIIAAAiEKECCF\niM2uEEAAAQQQQAABBBBAILMFCJAy+/xQOgQQQAABBBBAAAEEEAhRgAApRGx2hQACCCCAAAII\nIIAAApktQICU2eeH0iGAAAIIIIAAAggggECIAgRIIWKzKwQQQAABBBBAAAEEEMhsAQKkzD4/\nlA4BBBBAAAEEEEAAAQRCFCBAChGbXSGAAAIIIIAAAggggEBmCxAgZfb5oXQIIIAAAggggAAC\nCCAQogABUojY7AoBBBBAAAEEEEAAAQQyW4AAKbPPD6VDAAEEEEAAAQQQQACBEAUIkELEZlcI\nIIAAAggggAACCCCQ2QIESJl9figdAggggAACCCCAAAIIhChAgBQiNrtCAAEEEEAAAQQQQACB\nzBYgQMrs80PpEEAAAQQQQAABBBBAIEQBAqQQsdkVAggggAACCCCAAAIIZLYAAVJmnx9KhwAC\nCCCAAAIIIIAAAiEKECCFiM2uEEAAAQQQQAABBBBAILMFCJAy+/xQOgQQQAABBBBAAAEEEAhR\ngAApRGx2hQACCCCAAAIIIIAAApktQICU2eeH0iGAAAIIIIAAAggggECIAgRIIWKzKwQQQAAB\nBBBAAAEEEMhsAQKkzD4/lA4BBBBAAAEEEEAAAQRCFCBAChGbXSGAAAIIIIAAAggggEBmCxAg\nZfb5oXQIIIAAAggggAACCCAQogABUojY7AoBBBBAAAEEEEAAAQQyW4AAKbPPD6VDAAEEEEAA\nAQQQQACBEAUIkELEZlcIIIAAAggggAACCCCQ2QIVMrt4lK6sCUybNs1mzZoVO6zatWu76aVL\nl8bmbb/99taqVavYayYQQAABBBBAAAEEEAhLgAApLGn24wRGjBhhTzzxRJEa1157rfXq1avI\ndViIAAIIIIAAAggggEAQAgRIQaiSZ6ECHTp0sFq1asWWDx482CpWrGiXXHJJbN6BBx4Ym2YC\nAQQQQAABBBBAAIEwBQiQwtQuI/u694Ntin0ksydvsgW/bYptv3ZDrm3Y/Orz3wbG5k2vnGMf\nrsiJvU514taOfzXhS3Vb1kcAAQQQQAABBBDIbgECpOw+/6Ef/a/f59r/3v0rQFIBNqzdHCCN\nyI2VZd9Tc6xJ6/Kx10wggAACCCCAAAIIIBCWAAFSWNLsxwnscmg5a7xD3gApP0295sWvPcqf\nF68RQAABBBBAAAEEEEhFgAApFS3WLbFA/ZY5ph8SAggggAACCCCAAAKZKMA4SJl4VigTAggg\ngAACCCCAAAIIlIoAAVKpsLNTBBBAAAEEEEAAAQQQyEQBAqRMPCuUCQEEEEAAAQQQQAABBEpF\ngACpVNjZKQIIIIAAAggggAACCGSiQM6mzSkTC1aWyrRu3bpQDqdSpUq2ceNG9xPkDq97uXqQ\n2Zc470FdV5Y4j6IyKF++vOknrPNaVFn8LitXrpxVqFDBNmzYYLm5f3Wp7nf7VNeTTY0aNZJu\nFpahBiNWWr9+fdIyZcoKOl86b2EZpeO4w77O0lHmnJwcN1h1GJ+dKq/2U7Vq1aRFD+u8R/k6\n0/s5KrcwYV9nSS8wnyvos1PG+tsRRtJ9DAmBTBCgF7sQzsLixYsD34tu2Bs0aOBuppYtWxb4\n/jJ5B0F716pVy93gLF26NJRgIx3WVapUsdq1a9vKlSttzZo16ciyyDz8/pEL+lx5hWzYsKE7\nV2Htz9tvSX7rfOm8Rek6042/3h9hXWcl8fW29T47165da8uXL/dmB/ZbQaSfACmsa7VOnTpW\nuXJlW7JkSWSCjWrVqlnNmjXddabzFoWkQLR+/foW1nWWLpOwPzsbN26crqKTDwIlEiBAKhGf\nv43D+MZef3SV9E1PGPvzd+Sls1ZYxx8la+9b1kwrc1Dn6tdff7V58+bFLsB69eq594VuAr3U\nsmVLa9asmfcyY3/LKCindB+0d51FqczeZ6cswnBWTYKfFEZZ4suh/XnnL35+Jk575YzSdeaV\nWb/DPrclPYdRLHNJj5ntESBA4hpAAIEyJ/DPf/7Tnn322SKP6+abb7arrrqqyHVYiAACCCCA\nAALZJ0CAlH3nnCNGoMwLHH744aZmOF4aOnSoa5LTtWtXb5bts88+sWkmEEAAAQQQQAABT4AA\nyZPgNwIIlBmB4447zvTjpeeff97Utv3222/3ZvEbAQQQQAABBBBIKEA33wlZmIkAAggggAAC\nCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1n\nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQ\nQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkA\nAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZ\nKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEE\nEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIE\nSAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAAC\nCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1n\nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQ\nQACBhAIESAlZmIkAAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIESAlZmIkA\nAggggAACCCCAAALZKECAlI1nnWNGAAEEEEAAAQQQQACBhAIVEs5lJgIIxAS+/vpr69WrV+x1\nuXLlTD8bNmyIzdtjjz1s8ODBsddMIIAAAggggAACCERTgAApmueNUocosG7dOps/f35sj6tX\nr7b169dbjRo1XKCkBYsXL44tZwIBBBBAAAEEEEAgugIESNE9d5Q8JIHDDjvMJk+eHNvbNddc\nY6+88op99NFH1qJFi9h8JhBAAAEEEEAAAQSiL8AzSNE/hxwBAggggAACCCCAAAIIpEmAAClN\nkGSDAAIIIIAAAggggAAC0RcgQIr+OeQIEEAAAQQQQAABBBBAIE0CBEhpgiQbBBBAAAEEEEAA\nAQQQiL4AAVL0zyFHgAACCCCAAAIIIIAAAmkSIEBKEyTZIIAAAggggAACCCCAQPQFCJCifw45\nAgQQQAABBBBAAAEEEEiTAOMgpQmSbBBAAIGSCHz22Wd29913x7IoX768G4hYgxJ7aZ999rF+\n/fp5L/mNAAIIIIAAAgEIECAFgEqWCCCAQKoCK1assJ9//jm2mQKj3Nxcq1SpkuXk5Lj5TZo0\niS1nAgEEEEAAAQSCESBACsaVXBFAAIGUBI499libMWNGbJtLL73URo8ebd9++63Vr18/Np8J\nBBBAAAEEEAhWgGeQgvUldwQQQAABBBBAAAEEEIiQAAFShE4WRUUAAQQQQAABBBBAAIFgBQiQ\ngvUldwQQQAABBBBAAAEEEIiQAAFShE4WRUUAAQQQQAABBBBAAIFgBQiQgvUldwQQQAABBBBA\nAAEEEIiQAAFShE4WRUUAAQQQQAABBBBAAIFgBQiQgvUldwQQQAABBBBAAAEEEIiQAAFShE4W\nRUUAAQQQQAABBBBAAIFgBQiQgvUldwQQQAABBBBAAAEEEIiQAAFShE4WRUUAAQQQQAABBBBA\nAIFgBQiQgvUldwQQQAABBBBAAAEEEIiQAAFShE4WRUUAAQQQQAABBBBAAIFgBQiQgvUldwQQ\nQAABBBBAAAEEEIiQAAFShE4WRUUAAQQQQAABBBBAAIFgBSoEmz25I4AAAgiUVYHc3FybOnVq\n7PCqVKliNWvWtKVLl9q6devc/JycHNt5551j6zCBAAIIIIBApgsQIGX6GaJ8aRFo9+0PaclH\nmSydN9/ldfwPE6z8vEVpy/f7fdqmLS8yQiAMgeXLl9uRRx5Z5K7KlStnv//+e5HrsBABBBBA\nAIFMEiBAyqSzQVkQQACBCAlUqlTJzj777FiJp02bZuPGjbPDDjvMttlmGzdfNUgkBBBAAAEE\noiRAgBSls0VZEUAAgQwSqFq1qt1///2xEj3//PMuQDr33HPtxBNPjM1nAgEEEEAAgSgJ0ElD\nlM4WZUUAAQQQQAABBBBAAIFABQiQAuUlcwQQQAABBBBAAAEEEIiSAE3sonS2KCsCCCCQZoF0\ndmCyavoMV7obpk6329PYMQodmKT5pJMdAggggECRAtQgFcnDQgQQQAABBBBAAAEEEMgmAWqQ\nsulsc6wIIIAAAvbee+/Z4sWLnUT58uXd2E1r16611atXx3Q6duxoDRs2jL1mAgEEEEAgewQI\nkLLnXHOkCCCAAAKbBQYNGmTjx48v0uL1118nQCpSiIUIIIBA2RUgQCq755YjQwABBAIVyF21\n0hb1uCK2j02rV7np5U8+biueHeamczYPFNtg6Jbp2IqlPNGzZ09btGjLIM8LFy60gQMH2kEH\nHWSnnHJKrGStWrWKTTOBAAIIIJBdAgRI2XW+OVoEEEAgvQIb1sfyy6lY0XLq1t3yeuv8TeXK\nx5ana+Kn3k1LlFW/tx6z6X9+nyePL7/80vTjpQpjDrI9Grf1Xqb8e49+c1Lehg0QQAABBDJD\ngAApM84DpUAAAQQiJ1CuWnVr+NyLkSv3jvX2tqoVahRZ7moVaxe5nIUIIIAAAmVXgACp7J5b\njgwBBBBAIIHAdQcPTTCXWQgggAACCGwRoJtvrgQEEEAAAQQQQAABBBBAYKsANUhcCggggECa\nBO79YJs05WQ2fvZGl9egsXtZtdo5acv31o6z0pYXGSGAAAIIIFAWBahBKotnlWNCAAEEEEAA\nAQQQQACBYgkQIBWLjY0QQAABBBBAAAEEEECgLAoQIJXFs8oxIYAAAggggAACCCCAQLEECJCK\nxcZGCCCAAAIIIIAAAgggUBYFsr6Thvnz59v33+cdMNA70TvuuKPtsMMOtnz58jwDCHrLO3To\nYBU3D4xIQgABBBBAAAEEEEAAgbIhkPUB0qxZs2zIkCF5zuaGDRts0aJF1qNHDxcg/fDDD3bf\nffdZgwYN8qx30EEHESDlEeEFAggggAACCCCAAALRFsj6AGnfffe1V199Nc9ZHDRokP33v/+1\nU045xc2fNm2a7bbbbjZ48OA86/ECAQQQQAABBBBAAAEEypZA1gdI+U+nAqPRo0fb448/blWq\nVHGLFSDtvPPO+VflNQIIIIAAAggggAACCJQxAQKkuBO6du1a69evn5155pm2yy67xJYoQKpc\nubL17t3bJk+ebG3atHHN75o3bx5bx5vo2LGjN+l+d+7c2S699NI884J8oaCuUqVKQe4i4/Nu\n2LBhxpcxUQGDLHdOzpaBRmvWrGk1atRItPu0ztN7yU8K8pgT7T/s/SUqQ2nPi6JBWSqzmnD7\nSWEdc7lyW/pqyt+E3E8ZS2sd7/Osdu3atmnTptIqRrH2W7VqVXc/UayNS2EjWVeoUMHCuh5L\n4RDZJQIJBQiQ4ljGjh1rCxcutDPOOCM2Vx00zJ0715o0aWJnnXWWHXrooa5J3pVXXmkvvPBC\ngZvNFStWxLbVhG4UvQ/zPAsCfBH2/gI8lGJlHdXjD7LcXt7e72LBBrBR2OUJe38BkJU4yyga\nlKUy+z0Wv+uV9ILw9uP9Lml+YWwfX9b46TD2nY59UOZ0KJIHAsEKECDF+app3RFHHGH169eP\nzdW37SNHjrR69erFamZ23XVXO//88+3DDz+MPafkbfDVV195k7Hfc+bMiU0HNeF9w7NmzRpb\nunRpULuJRL7qmTCdadPmIHfj4j9jWeauXu2mNy6Yb5s2/1PKqVjJysddN25miv+lu9zxu9e3\nlnXq1LFly5bZ6q3lj1+e7mnVZFavXj1ptkEec6Kdh72/RGUo7XlRNChY5qalzZh0/wXLvGWT\n8uXLW6NGjYq9fdINU1xBf9vUQmLBggWRqY3RZ0utWrXc3zq/tdUpsqR9dfV4q1o6ff7qczgq\nqXHjxrZx40b35XEYZW7aNPPf22E4sI/SFyBA2noO1Judeqt79NFH85wVfdOj2qP41KpVK1fd\nHEbgE79fpktHYN34n2zJXbcX2PniW26KzavYZlerN+CB2GsmEEAAAQQQQAABBKIpQIC09bx9\n/fXX7hv2tm3b5jmTv/76q9155512zz33WMuWLd0yBUb6ti3RM0h5NuZFmRAot/kb1ipHdCjy\nWMoneB6tyA1YiAACCCCAAAIIIJCRAgRIW0/LzJkzbfvtty9wkrbbbjvXm90TTzxhN9xwg6kJ\n22OPPWZ169a1o446qsD6zCh7AhW3b2W1b7ix7B0YR4QAAggggAACCCBQQGBL9zUFZmffDNUU\nqelconTttdfajBkzTD3SqaOG2bNnu6Z41apVS7Q68xBAAAEEEEAAAQQQQCCiAtQgbT1x+Z89\nij+f6vL7xRdfdA8p6kFLdS1KQgABBBBAAAEEEEAAgbInQICUwjmN0jgRKRwWq5ZBAfU6pHG7\nvKSes9RTlXp80jIvadwvLSMhgAACCCCAAAIIbBEgQOJKQKAMCigIGj58eNIju/feewmQkiqx\nAgIIIIAAAghkkwABUjadbY41awTUFFTjdHnp3//+t/Xv399uuukm69SpkzfbtB4JAQQQQAAB\nBBBA4C8BAqS/LJhCoMwIaPyuNm3axI5nwoQJblpd08fPj63ABAIIIIAAAggggIAToBc7LgQE\nEEAAAQQQQAABBBBAYKsAARKXAgIIIIAAAggggAACCCCwVYAmdlwKCGSowE+9m6atZDOmbRmz\na8aIavbTf9OX7x795qStjGSEAAIIIIAAAghkggA1SJlwFigDAggggAACCCCAAAIIZIQAAVJG\nnAYKgQACCCCAAAIIIIAAApkgQICUCWeBMiCAAAIIIIAAAggggEBGCPAMUkacBgqBQHoFNm3a\nZD/MHRPLdNbSSW5av/8356PY/LZNOpi6BCchgAACCCCAAAIIbBEgQOJKQKAMCmzIXW83/eeo\nAkf22sQHTD9eeuvstVaxfCXvJb8RQAABBBBAAIGsFyBAyvpLAICyKFAup7ydtcetSQ9N65Ey\nQ2DWT7n2yXO5scKsXLJl8rU+Gy1na2Popq1z7KhLOGcxJCYQQAABBBAIQIAAKQBUskSgtAXK\nlytvF7S7p7SLwf5TEMjdYLZmxV8blN/86ayftav+mrduzV/TTCGAAAIIIIBAMAIESMG4kisC\nCCCQksB27crZRY/Tb05KaKyMAAIIIIBAAAL8NQ4AlSwRQAABBBBAAAEEEEAgmgIESNE8b5Qa\nAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEE\nAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAAB\nBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIE\nSNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAAB\nBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoA\nlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEE\nEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5Qa\nAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEE\nAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAAB\nBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIE\nSNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAAB\nBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoA\nlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEE\nEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5Qa\nAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEE\nAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAAB\nBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIE\nSNE8b5QaAQQQQAABBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAAB\nBBBAAAEEAhAgQAoAlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhAgQAoA\nlSwRQAABBBBAAAEEEEAgmgIESNE8b5QaAQQQQAABBBBAAAEEAhCoEECeZIkAAgiUWKBm7xtK\nnEcsgzVrbNMfsy2deS7vNzCWPRMIIIAAAgggUHYEqEEqO+eSI0EAAQQQQAABBBBAAIESChAg\nlRCQzRFAAAEEEEAAAQQQQKDsCBAglZ1zyZEggAACCCCAAAIIIIBACQWK/QzSxo0b7ZdffrEJ\nEybY3LlzrVGjRtayZUtr166dVahQ7GxLeDhsjgACCCCAAAIIIIAAAggUXyClSGbZsmU2ZMgQ\nGz58uE2aNMnWbH7wOX+qW7euHX/88Xb99de7YCn/cl4jgAACCCCAAAIIIIAAApkq4CtAUm3R\nAw88YPfee6+tXLnS2rdvb9dcc42rMdpmm22sWrVqNnXqVJsyZYpNnjzZxo4dayNGjLBu3bq5\nbRo3bpypx0+5EEAAAQQQQAABBBBAAIGYQNIAacaMGdalSxdT7dGAAQPs9NNPtwYNGsQy8CaO\nPPJIb9Jyc3Nt1KhR1r9/f2vdurX16dPHBVSxFZhAAAEEEEAAAQQQQAABBDJQIGknDdOmTbPu\n3bvbxIkT7dJLL00YHOU/rnLlytlpp51mX3/9tf3rX/9yNUv51+E1AggggAACCCCAAAIIIJBp\nAklrkDp16lSiMnfo0MH0Q0IAAQQQQAABBBBAAAEEMl0gaYDk5wA2bdpkc+bMMf1u1qyZ5eTk\n+Nksa9YJ2yPs/WXaiYzq8Uex3CUtc0m3L81rL6plj2K5s7HMYR9z2PsryXvXK6t+e9MlyS/s\nbSlz2OLsD4HUBUocIL300kvu+aJ58+a5vatDhgcffNDOOuus1EtTRreoX79+aEdWpUoVq1ix\nYmj7y8QdhemdzuOPYrkLK/O6det80RS2vTZe6yuH0lupqLKXXqmS7zmK5S5LZd6wYUPyk7R5\njbCOuXz58q489erV81WuTFhJzfiVatasaTVq1MiEIiUtgxcU6W90pUqVkq6fKSuo3Bq6Jazr\nMVOOm3IgUKIASV19n3vuuXbJJZe4nu1q1aplX3zxhZ133nm2++672x577IHwZoGFCxcG7qAP\nsIYNG7qu15cuXRr4/jJ5B2F4B3H8BcvdNIjdpDXPgmXekr1uAqpXr550X4Vtrw1rJt26dFco\nquylW7Ki9x7Fchcsc3TfGwpIqlatWvRJ2ry04DEn3aRYKygwqly5si1atMi1AilWJiFvpM8W\n3W+o86i1azP9q5QtOPriUh1caXgUlTsqSV96qyfjsK7Hpk0z/70dlXNHOUsmkDRA0iCwderU\nMd3w5E+fffaZ7bXXXjZ48ODYomOOOcY+/PBD19U3AVKMhQkEEEAAAQQQQAABBBCIgEDSXuw+\n/vhj23HHHe2JJ56w9evX5zkkjYH0448/mtbRNwyquXj77bft22+/te233z7PurxAAAEEEEAA\nAQQQQAABBDJdIGmAdMYZZ7hxjPr162c777yzPfvssy4Y0oGphzs1sdNvVR/XrVvXTjzxRNM2\nJ5xwQqYfO+VDAAEEEEAAAQQQQAABBPIIJA2Q1F76wgsvtKlTp9p1111nvXv3ds8XvfLKKy6j\noUOHurapr776qg0bNsy+++47e/755yPZs0weGV4ggAACCCCAAAIIIIBA1gkkDZA8EfW60qNH\nD/vll19cwHTFFVdYu3btbPTo0a4nGQ0Me/7557t53jb8RgABBBBAAAEEEEAAAQSiJOA7QPIO\nSr3v9OrVywVKnTt3tnPOOccOPPBA+89//uOtwm8EEEAAAQQQQAABBBBAIJICvgIkdcDwzDPP\n2OWXX27dunWzgQMHuoO98847XaB0xBFH2Kmnnuq6+lbPdiQEEEAAAQQQQAABBBBAIIoCSQOk\nTZs2uY4XFBip++6ff/7Z+vfvb23btrU///zTDR6m19OnT3fjHh111FF23HHHmcZIIiGAAAII\nIIAAAggggAACURJIGiB98803NmbMGJsyZYrrqOHTTz+12bNnW7Vq1ezpp5+OHWuTJk3skUce\nsWnTplmzZs3szTffjC1jAgEEEEAAAQQQQAABBBCIgkDSgWI1tlHNmjWtefPmseNRhw0aA2nJ\nkiWxed6E5j/11FOxrsC9+fxGAAEEEEAAAQQQQAABBDJdIGmAdMABB5g6ZtBzRkcffbRt2LDB\nvvzyS1PNUt++fQs9PnUPTkIAAQQQQAABBBBAAAEEoiSQNECqVauWqVndCy+8YG+99ZbNnTvX\n2rRpYx988IHttddeUTpWyooAAggggAACCCCAAAIIFCmQNEDS1ttuu63deuut7qfI3FiIAAII\nIIAAAggggAACCERYIGknDRE+NoqOAAIIIIAAAggggAACCKQkkDRAmjVrli1fvjylTPOvrOeV\nSAgggAACCCCAAAIIIIBApgskDZAmTJhgrVu3tsGDB9vatWt9H48Gl3355Zdt7733th49evje\njhURQAABBBBAAAEEEEAAgdISSBogadBXddDwwAMPuPGNunfvbu+9954tXLgwT5k1oOxvv/1m\n//nPf2zgwIG28847m9bt3LmzjR07Ns+6vEAAAQQQQAABBBBAoLQFdD87c+bMPD/573FLq4zz\n5s1zY4+Gtf9Vq1Y5hzVr1rhd5n8dVjm0H3UK98cff4S5yzz7Shogae2OHTva+PHjXScN6r1O\nQVPDhg3dYLE77bST681OYyVpDKROnTrZjTfeaAcffLAbXPb222933YTn2SsvEEAAAQQQQAAB\nBBAoZQG1ctpuu+3y/OgeVz+639WX/6WVzjnnHDv00END2/27777rHLyKjfyvgyrI+vXrbcCA\nAbZgwYLYLk499VQXU8RmhDzhqxc7lalatWp23XXX2dVXX22fffaZ/fTTT6bmd/pRlKcuv1u0\naGFHHXWUnXjiida0adOQD4XdIYAAAggggAACCCCQuoDG9qxRo4apRZQeKZk2bZo9/fTTpvFA\nv//+e2vcuHHqmbKFL4H777/fVcKcffbZsfX3339/82qyYjNDnPAdIHllqlChgrVv3979ePP4\njQACCCCAAAIIIIBAVAUuuugia9CgQZ7i77fffnbxxRfbv/71L7vkkkvyLONF+gQ2bNhQILOH\nH364wLwwZ6QcIIVZOPaFAAIIIIAAAggggEBpCOhxEaVff/3V/Y7/Ty2pXnnlFZs0aZJ7xESt\np4488sj4Vdz0O++8Y59++qmrkapTp47ttttuLuhSbVV8mj9/vo0ePdo++ugj23777e2CCy6I\nX+ym9bjLyJEj3X6OOOKI2PIVK1bY+++/b2PGjHHzTjnlFFeRUbFixdg6mvBb5jwbJXkxefJk\nGzFihOuQ7YknnnBWf/vb3+yYY45xW6rZ3HPPPWdab/HixbbDDju4lmaHHXaYW64O3XTMSurD\noF27dnbeeefZkCFDbN26dXbllVe6Zfpv9erVNnToUPvvf/9r6gyubdu2zlKu6U6+nkFK907J\nDwEEEEAAAQQQQACBTBZ46aWXXPH0LFJ8+uc//2n77ruve25GN/Eff/yxe8SkV69e8auZmoyd\ncMIJ9vrrr7ume2+//bZ7XEU9PGs7L6lTCDUpu/baa23lypX24YcfuqZ9P//8s7eK+60AqU+f\nPvbJJ5/E5qsZmsp31llnuSBs4sSJduyxx5pqvxREeMlvmb31/f6eMmWKK5MCmTvuuMOeeeYZ\ne+ONN9zmn3/+uQsI77rrLtf5gzqdUKdvCu7UfFFJ5VUnGUrjxo1zfR5o+qmnnrLHH39cky6p\nw4Zdd93VbrjhBpszZ44tXbrU7r77btt9993t22+/9VZL229qkNJGSUYIIIAAAggggAACURRQ\ncFKlShUXyGj8TwUnP/74o6vJ8Go7dFyar+fxDznkEFeD5DXLu+222+zee+91wYmex1dtzosv\nvug6Luvfv78j0fNNCiR0468an5NOOsnN/7//+z9bsmSJqxlR52dK6rTgpptucp0muBmb/1OH\nDapBUi2Ul9T076uvvnI9RqtMSgrEVKOlIEPL/ZbZy7M4v3W86pdAfRB4wd8tt9ziniPS/r1n\nuH7//XdXQ6bhgy688EIX5JQvX97uvPNO59m8efOEu1fP2AqwVBunYFJp6tSpdvjhh7vaNj0n\npseA0pWoQUqXJPkggAACCCCAAAIIRFLgzTffdMHHq6++6mpAvvvuO3ccqt2IHwf0sccecwFA\n79698zyzdP3115uatOnGX0nN5BQg3Xrrre61/svJybHTTjvNvfZ6bFu2bJmph2g96+QFR1pB\n+al36PikztDOOOMMa9OmjZutgEvPR6lJmxccaYFqrVSO7Tb3zqfkt8xu5WK+YMp0AABAAElE\nQVT+p/Krhqdu3bouGFLZFCCp2aAXHClrHYM6vvCO38/uFFRpiCHtwwuOtJ28FESqZk21eOlM\n6Qu10lkq8kIAAQQQQAABBBBAICSB6dOnxwIe3dyrh+Ynn3zSNR9TzYiaySmpSZkCHS3T8zDx\nST0+q1ZDScGJfr755hvXBEzPKulHtT1KXi2Laqm0vz333NPN9/5TrYqesdFzQ4WlGTNmmAIs\n9SSdP11xxRWxWX7LHNugGBPxwZ02l5GeQ9JzR6+99pprSqdyqKZHzerig6Zku5ObUnxw5G2j\nYEtJzzip5i5diQApXZLkgwACCCCAAAIIIBB5Ad3cq6mYmn2p6Zg6WlAgUqtWLdPzQpUrV07Y\nnEvP/nidL2h9NXNTk7CqVau6IEaBjJrJKV8vLVq0yE1623nz9btevXrxLwtMz549283TWKRF\nJb9lLiqPZMvq169fYJXnn3/eLr/8cvdclYJFdcBw/vnnu6Z0qhXymzwj+edPnpvGUkpnKlaA\npEhQD1mp2lE9SijyzZ8UMZIQQAABBBBAAAEEEIiqgG7s1Xxr1qxZrkOAVq1auc4E1FlC/loT\ndVftPQejpnUKjtQbm4ICr0c5NeFT8u6dvdof5Z8/qWOCopKa8Sl5gVL8uqNGjXKdNJx++unm\nt8zx25d0Ws8L6RkjHZ/ihvjmgurVzjt+P/tRz3dKiXoT9OZ5jn7y87NOys8gffHFF9a1a1dX\n5acTozGR1K1h/h8/O2cdBBBAAAEEEEAAAQQyUUCBx7vvvutqjvR8jZL3rI9u8uOTmsqpNqNn\nz55utprWqcldfHCkBepAQckb+2fbbbd1zc3y56fgSAFWUUkdGrRs2dIUdOXm5sZW/fPPP10P\neo888oib57fMsQzSMKGmdDrGzp075wmONACvmiF6x69dqTmhktfs0L2I+0/PXOnZJvWQlz+w\n8nrDS3eAlHINknrPUC8fenitdevWccVnEgEEEEAAAQQQQACB6Amo2Zuawimpe2x1IqCmdWoR\npeeNypXbUqdw6aWXuk4PHnroIWvYsKF17NjRfvjhB7vnnntcgKTe7JR0w/7111/bzTffbNpG\nzcTU5ExjBimpm2ovqZbp1FNPdV11qxtrNc9TJw3x3XRrXQVrWt6jRw/XdE1NAdVDnnrBU0cN\n6mZcwZHKphZe6sBAyW+Z3cpp+k897anWTD3pqWmdAswvv/zSlUmW6ilQwY6OQcGPUt++fe34\n4493FvHFUOApX/UAqE4ubrzxRqtUqZI7L+qk4r777rN0j4WUcoCkvsfV9zvBUfypYxoBBBBA\nAAEEEEAgqgLq6c1LurHXM0i631UwcvLJJ3uL3E2/mtzpZl3BilcTovtiBT8KmpR0064AR0GR\nHktRLYnGK1JnAhqAVs82ecGUuvtWkKRgR/vUut26dXPdeX/22WexfSuoUgcHeqbISxr/SIGG\nuilXUzYldYDwwgsvuP3ptY7HT5m1brqSaraGDx9u//jHP9yzWKrhatSokQt05KJnk3Rs6kK9\nS5cu7vhl8O9//7tAgKQyqdMJBbAK+rwBfNXEcdCgQe7Y01VuL5+czagFHyDylib4rVFu1e5S\nvXuo6pCUXEBBZdBJbV71ply1alWebyWC2O+9H+TtdjKIfZQkz1s7ziqwebtvfygwL9NmfL9P\n2zxF+ql30zyvM/HFHv0SX9uqZfa+ESqq3EW9N2r2vqGoTVNa1vTFV6xF9Wr2zSknprRdUSsv\n7zewwOJMf2+owPnfH7w3CpzGtMwo7L2hGx/dJCRLRb03km2bynI9BK4HzvU3PcXbgVR2k9Z1\nq1ev7po86Zvy+O6X07qTNGemG1SNl6NBQFU7EJWkG23dzMbfkAdZdgUlUUpqEqYxfmrXrm3N\nmjVztSH5y6/AQE3K1JTOq6HKv078az1To2vF63wgflmy6d9++801U9MjMF6NV/5t/JQ5/zYl\nfa3nkdSJgrr4Liqptk73D8mcdJz6LJV5UGlLfWEKuV9wwQWuQBoVt7C2gilkx6oIIIAAAggg\ngAACCEROQM281HRMzwKpqViipEBll112SXrT722rTiGKExxpe9XaqEODwoIjreOnzFovnUmB\ndrLgSPvTF6vJgiOtp+MMMjjSPlJuYqcqQdVU3H///fbwww+7A9a3OfmT2mOSEEAAAQQQQAAB\nBBBAAIEoCaQcIKn6S1Xa++23X5SOk7IigAACCCCAAAIIIIAAAkkFUg6QLrnkEtMPCQEEEEAA\nAQQQQAABBBAoawIpB0gegHrtGDt2rE2ZMsU9eKXuDPWT7m72vP3xGwEEEEAAAQQQQAABBBAI\nWqBYAdK3335r6qxh/PjxBcqnbg3V5zsJAQQQQAABBBBAAAEEEIiaQMoB0pIlS+yUU05x/b6r\n7/EDDjjA9bahbgk1mu0tt9ziuuhTf+wkBBBAAAEEEEAAAQQyVUADqnpjGQVdRnVhrS7fSZkv\nkHKApEGcFCR99913pgGavLTnnnu6gbQ0Wu/jjz8eyKBN3r74jQACCCCAAAIIIIBASQU0TlFO\nj8tKmo2v7TcNGeZrPVYqfYGUx0FS993t27fPExzFH4Y6cJg2bZr98ccf8bOZRgABBBBAAAEE\nEEAAAQQyXiDlAEkj1xY1QKy3TCMvkxBAAAEEEEAAAQQQQACBKAmkHCDtu+++9vHHH9u4ceMK\nHOemTZtswIAB1qBBAzfKbYEVmIEAAggggAACCCCAAAIIZLBAys8gXXTRRabOGdTM7uKLL7b9\n99/fatWqZeqk4ZlnnnHPJqmzBhICCCCAAAIIIIAAAgggEDWBlAOkqlWr2ueff27du3e3hx9+\nOM/x1q1b1wYPHmzdunXLM58XCCCAAAIIIIAAAggggEAUBFIOkHRQzZo1s3fffdd+//13mzRp\nki1atMh22GEHa9OmjevyOwoHThkRQAABBBBAAAEEEEAAgfwCxQqQvExatGhh+iEhgAACCCCA\nAAIIIIBA8QSmTJlib731ljVp0sROPPFEq127tq+M3njjDVMLLj36QkqfQNJOGtRd9+67727q\nvltJTej0OtlP+opITggggAACCCCAAAIIlE2Bvn372m677eY6QHvooYfskEMOsfnz5yc92E8+\n+cS6du2asOO0pBuzQpECSQOkcuXKuWZzGv1XqVKlSu51jRo1ivxd5F5ZiAACCCCAAAIIIIBA\nlgtMnTrV7r77bvvoo4/s5Zdfti+++ML0vL86RCssrV+/3vr06WOdOnWynJycwlZjfgkEkjax\nU1XfV199FduFeq7TDwkBBBBAAAEEEEAAAQSKL/D+++9bq1at7PDDD3eZVKxY0c477zwbOHCg\n9evXzzSEjlpxnXHGGXbMMce4ddRrtHqMHjVqlPXq1av4O2fLQgWS1iDl3/K5556zG2+8Mf/s\n2GudrG233dZWr14dm8cEAggggAACCCCAAAII5BWYMWOG6+gsfq4CptmzZ1tubq6bPWbMGJs1\na1ZslZNOOsmmTZtmxx57bGweE+kVSFqDpN0tWLDA1q1b5/b8/fffu7aOOnH5k9Z555133Elc\ns2aNqyLMvw6vEUAAAQQQQAABBBBAwGzmzJlWv379PBTqdGHjxo22cOFCa9Sokf388895lqt1\nFylYAV8B0rBhw+ymm27KU5Kieq/ba6+9XI8aeTbgBQIIIIAAAggggAACCMQE9Gy/nimKT16l\nRM2aNeNnMx2igK8A6dprr7UNGza4E6hqPkW7F1xwQYFiVqhQwQVGXbp0KbCMGQgggAACCCCA\nAAIIIPCXgMYWnThx4l8zNk/9+eef1rhxY1pi5VEJ94WvAEkPjN1yyy2uZLvssos7kXfeeWe4\nJWVvCCCAAAIIIIAAAgiUIQENm6Pn+1URoYoGJXWOtsMOO5Sho4zeoaTcSYP6W1d3hIUl9bbx\n6aefFraY+QgggAACCCCAAAIIILBZ4Mwzz3QO/fv3d50yjB8/3vRoi1cxoftqLfv666/xClEg\n5QBJZVPXgvvss4+1bNnSjfirh8VUFaiHzCpXrhzrqjDE42BXCCCAAAIIIIAAAghESkBjHo0c\nOdIGDx5sderUsaOPPtquvPJKO+GEE9xxKEDq3bu3aVBYUngCvprYxRdHtUMXXXSRlS9f3g44\n4AD7/PPPXbCkXuvU5aAGln388cfjN2EaAQQQQAABBBBAAAEEEgi0b9/e/vjjD/vtt9+sefPm\n7l7aW0331QqSCks//fRTYYuYXwKBlGuQ3nrrLXfi1G/7Z599Zrvuuqv97W9/M1UJTpgwwdUk\nKXgiIYAAAggggAACCCCAgD8BtcxSQEQqfYGUz8L06dPtoIMOMq+b73bt2rmHyXQoO+64o2sn\nedttt5X+kVECBBBAAAEEEEAAAQQQQCBFgZQDJA1epfaSXtp5551Ng8d66eCDD7b58+fb77//\n7s3iNwIIIIAAAggggAACCCAQCYGUAyR18/3ll1/avHnz3AGqid2vv/5qs2bNcq/VzE7Vg+oa\nnIQAAggggAACCCCAAAIIREkg5QDpvPPOczVIrVu3to8//tiOPPJIq169up1++ul23333WY8e\nPVwTPPVqR0IAAQQQQAABBBBAAAEEoiSQcoDUsGFDe+ONN0zPHqnnOjW5U691//vf/+zWW291\nPXD07NkzSgaUFQEEEEAAAQQQQAABBBBwAil3862tDjnkEFd75HU7eO6551qnTp3cs0i77bab\nGx8pVd+NGzfaL7/84nrCmzt3rjVq1Mjlo0DMG1k41TxZHwEEEEAAAQQQQAABBBBIRaBYAZK3\ng5ycHG/Sde997LHHxl77mVi2bJkNGTLEhg8fbpMmTXI1Uvm3Uw3V8ccfb9dff72rtcq/PJtf\nr1q1yhRYKimI1CC9mrd8+fIYS7Vq1dyYVbEZTCCAAAIIIIAAAgg4Ad0n2TMvoIFAHoGkAZJq\nc0499dQ8G/l58dVXXxW6mm7qH3jgAbv33ntt5cqV1r59e7vmmmtcjdE222xjulinTp1qU6ZM\nscmTJ9vYsWNtxIgR1q1bN7cNzzdtoe3cubMlGyDstddec8+EFXoyWIAAAggggAACCGSpQPyX\n/VlKwGEnEEgaIOXm5rogJsG2xZqlAWa7dOliqj0aMGCA69yhQYMGBfJS5w9eUhlGjRrlxlhS\n5xB9+vRxAZW3PFt/77vvvla/fn13+Ko5GjdunDVr1sx22mmnGEmdOnVi00wggAACCCCAAAII\n/CWgL+pvej2ce6VBXVdapUqV/to5UxkrkDRA0g13slqKVI5u2rRp1r17d7v44ot9P1ukbsNP\nO+009zNmzBh75ZVXUtllmV1XNXBe0gC+hx12mB199NHWt29fbza/EUAAAQQQQAABBBBAIAWB\npAFSCnn5WlWdOZQkdejQwfRDQgABBBBAAAEEEEAAAQTSLZByN9/pLkCi/MaPH2/vvvuuzZ8/\nP9Fi5iGAAAIIIIAAAggggAACgQikXIM0aNAg+8c//pG0MDNnzixynYkTJ9pLL73kxk066aST\nXPM5dcpw3HHHmZ5TUlLPbHfccYcbX0nN7EgIIIAAAggggAACCCCAQJACKQdI6lAhvhMAFU69\n0s2aNcsUFKlb7rPPPrvIMmtQ2SOOOMJ11FC+fHl75pln7LHHHrORI0faggUL7KKLLnI92j39\n9NMuQFKePXr0KDJPFiKAAAIIIIAAAggggAACJRVIOUA677zzTD+JkgZ6PeaYY6xp06aJFsfm\nXXLJJbbddtvZP//5Tze20UMPPWRXXnmlaeBZNa/TYLNKt912m3Xs2NFuv/12u+KKK4xapBgh\nEwgggAACCCCAAAIIIBCAQFrbrbVq1co1h7vnnntiA5jmL/OKFSvsu+++cwO/HnjggW5w0169\nernuqg8++OBYcKTtFBApcFqyZEms2V3+/HiNAAIIIIAAAggggAACCKRLIK0BkgrVsmVLW758\nuak770Rp8eLFLniKH59HgdApp5xiicZDql27tstm3bp1ibJjHgIIIIAAAggggAACkRfQIyuq\nZPjzzz99H8sbb7xhY8eO9b0+K/oTSGuApMFK9SyRnivaZpttEpagRYsW1rBhQ3vkkUfcM0je\nSkOHDjWd5Pi0evVqe/jhh61GjRq24447xi9iGgEEEEAAAQQQQACBMiOgFlV6rGTp0qW+jumT\nTz6xrl272rhx43ytz0r+BVJ+BmnIkCH21FNPFdjD+vXrXScNixYtsgsuuMCqVatWYB3NyMnJ\nsf79+7uBYlXb9Nxzz7naIy2Lf8Zo+PDhrhnevHnzbMCAAVaxYkWtQkIAAQQQQAABBBBAoMwI\n/Pbbb3bZZZfZRx995OuYdM/dt29fu++++9x9ta+NWCklgZRrkNTUbeXKlQV+VC24++67u5M1\nePDgIgvRrVs3++mnn+yoo44q9Fml//73v6YaKQVTN9xwQ5H5sRABBBBAAAEEEEAAgSgKdO/e\n3XJzc2306NEFiq8OzC6++GJ7//33Y8vU+7N6eh41alSBnqVjKzFRIoGUa5DUaYJ+SpratGlj\nr7/+uuu5LlFet956a2g1R3pm6ssvvyxQjA4dOsRqrrTO559/7p6vOuCAAwptQlggE2YggAAC\nCCCAAAIIIFCIgB4z0aMpkydPTrjGmDFjbP/9948t0/ihaq2l1lVqlkdKv0DKAZJXBEW006dP\nt++//961ldx7771dDVKlSpW8VXz9VpO7RClRhw2J1kvHvB9++MHVfOXf50EHHeQuPg1cq+he\nvfQ1b97cdU+uh+jUCx8JAQQQQAABBBBAAIHiChT23L7y033yzz//nCfrJk2a5HnNi/QLFCtA\n+vXXX61z586mAV/jU9WqVd3zSWeddVb87CKnp06dajfddJMbELZdu3Y2adIku+WWW+zuu++2\nPffcs8ht07VQPe5p7KXCmgaqnefJJ59sPXv2dBfqs88+aw8++KC99NJLtP1M10kgHwQQQAAB\nBBBAAAEEMkAg5WeQZs+ebfvss4+pM4ZBgwbZBx984JqejRgxwtq3b29nn322Pfroo74PTV0Z\nqg2lOmNQUr56PX/+fN95lHRFBUg777xzwmxUHgVt6obcq+068cQT7Y8//rCJEycm3IaZCCCA\nAAIIIIAAAgggEE2BlGuQ3nzzTTe46zfffGONGzeOHbUGeT3zzDPtiiuucLUrPXr0iC3L9AkF\nSJUrV7bevXu79p96PkrlV3O6uXPnuuI3a9Ysdhj169c3NSVUEKeap/g0c+bM+JdWs2ZN1+15\nnpkBvIjvAVDdrGdziurxR7HchZXZ+zIh2XVY2PbJtsuE5VEtexTLXZbKHP9ZXdR1HPYxa39q\nOh+F5Bnqd9hOxfXxyqzPxqiU2TvWKJbZKzu/ESiuQMoBkvpcP/744/MER/E7v/TSS+3xxx+3\nX375xT2zE78sE6fV+YKCILXnVNPAQw891F599VXXEcULL7xgc+bMccGTAqj4pMBHg97mT506\ndcoz69xzz7Xbbrstz7wgXixcuNBlW6FCBWvUqFEQu4hMnlE9/iiWu7AyqwdKP6mw7bXtCj8Z\nlOI6RZW9FIuVdNdRLHdZKrPfQc81XqDfLxqSnnQfK2h/UUvxA85HpewaAqWwYVAy9RgU3EXx\nPZipnqmWS19caLgbtdJSJ2GkcARSDpBat25t6k2jsKSAQjfpUXmATIPQjhw50urVq+dqhXRc\nu+66q51//vn24Ycfmj6AN2zYUOBw1a15og85NcWLT3vssYfrrjx+XhDTa9ascdmqm0i/N6dB\nlCMT8ozq8Rcsd+KxxDLB2CtDwTJvWaL3h59U2PZ+ti3tdaJa9iiWu2CZo/ve0Ge0n86MNFB6\nGElf/qlGo6BxGHsv3j50jyHDtWvXFjpUSPFyDm4rBRlVqlQxjV+jn6gkPVuuG3TvHiPocie6\nrwp6n5mev/zVwklBEgFSeGcr5QDpwgsvNHVHqG4F77rrLqtevXqstHpW5+qrr3bN7KJykesb\nuvzBnHqr07dpCvZ23HFH9wGsPx7xx7Rs2TJr2rRp7Ni9CV3A+ZPyCTp5f9z0x9fvCMxBl6m0\n8o/q8Rcsd+bfBBYs85azrhsBP6mw7bVtTT8ZlOI6RZW9FIuVdNdRLHfBMkf3vaFgRF/MJUsF\njznZFsVbri8HVSb9TYtKEzvddyhA0piMCpKikNQdsz4XVYMo66gklVlfeIV1PcbfZ0XFKJ3l\n3GWXXQq8DxVcF/Xe1LiipPQLpNxJw9dff+2qWgcOHGgtW7Z0TdLUH7t6oNNAsXqeRx03tG3b\nNvZz8803p7/kacpRPfKptkijGHtJAc2CBQvcM0gtWrRwNWITJkzwFrtOGxSIxD+XFFvIBAII\nIIAAAggggAACCERWIOUaJH2LoG9u9ttvP3fQ+jZEPdDp2xH1bpcoaVmmpu222859q/PEE0/Y\nDTfc4KqRH3vsMatbt64dddRRrtZIzxUNGzbM1HmDqvZVg3bssce6WqZMPS7KhQACCCCAAAII\nIIAAAqkLpBwgXXLJJaafdCU1cVMA5T2Mmv91uvZTVD7XXnut9enTx43tpPXUxE5dlXtVvZdd\ndpkbl0k1ZWqvrdqxq666qqgsWYYAAggggAACCCCAAAIRFEg5QPKOUR0XjB071qZMmeIeONxr\nr71MP6n2KqMHzuJ79TnkkEPyvPb2F+Rvtfl88cUXTT3BKVirXbt2nt2pNumhhx5y7YbVVjv+\nuas8K/ICAQQQQAABBBBAAAEEIi1QrADp22+/tQsuuMDGjx9f4ODvu+8+y+RnjgoUOG5GgwYN\n4l4VnKxVq1bBmcxBAAEEEEAAAQQQQACBMiOQcoC0ZMkSU1fWqkEaNGiQ63JQPfKos4Onn37a\nbrnlFvdMj5qt+U2vvfaaPfDAA6ZBVtW1aaLeOhKNOeQ3f9ZDAAEEEEAAAQQQQAABBPwIpBwg\nDRkyxBQkfffdd7bTTjvF9rHnnnvaySefbN5AsX4DpC+++MK6du1q6mtfz/ZoMDLveaRY5kwg\ngAACCCCAAAIIIIAAAiEIpBwg/fDDD2403/jgKL6c6sDhySeftD/++MNXN9gapFX97Cvg0iC0\nJAQQQAABBBBAAAEEghZQiyV1yPXIOeuC3lUsf+2TioAYR8ZOpBwgqZOC+E4V8h+Zt0wDi/lJ\nGnNo3333JTjyg8U6CCCAAAIIIIAAAmkRUKCicS0TPdqRlh3ky0T708CvpMwXSDlAUjCj8YLG\njRtn+++/f54j1AU2YMAAU2cHGkTWT1J+6mJ71apVsW61/WzHOggggAACCCCAAAIIlERAz77v\nMObTkmThe9tZnY50Y4n63oAVS00g5TD2oosuck3n2rdvbz179rThw4fb6NGj7ZFHHnE1QaNG\njXJBkt8jUm94zZo1s7vuuqvImim/+bEeAggggAACCCCAAAIIIFBcgZRrkNSZwueff27du3e3\nhx9+OM9+NV7Q4MGDrVu3bnnmF/VizJgx1rBhQ7v//vtdfi1atEg4zpCefSIhgAACCCCAAAII\nIIAAAkEKpBwgqTCq8Xn33Xft999/t0mTJtmiRYtshx12sDZt2pi6/E4lqfvutWvX2n777ZfK\nZqyLAAIIIIAAAggggAACCKRdoFgBkkqh543WrFnjuvxesWKFqfOGSpUqpVxA9XqnHxICCCCA\nAAIIIIAAAgggUNoCxQqQNChs586d7X//+1+e8qv53VNPPWVnnXVWnvnxL2bNmmVqilezZs34\n2SlNf/PNN9Q4pSTGyggggAACCCCAAAIIIOBHIOVOGmbPnm377LOPa1Y3aNAg++CDD9wzSSNG\njHDjI5199tn26KOPFrrvCRMmuC699aySmtb5Teo2/OWXX7a9997bevTo4Xcz1kMAAQQQQAAB\nBBBAAAEEfAukXIP05ptvWuXKlU21OI0bN47t6OCDD7YzzzzTrrjiCnvwwQcLDWKOO+44e+GF\nF1yzujvuuMNOPfVU69Kli+sBT92De0lN+PSM0+TJk00dNDzxxBM2d+5cu+mmm1w34956/EYA\nAQQQQAABBBBAAAEE0iWQcoD0ySef2PHHH58nOIovzKWXXmqPP/64/fLLL9aqVav4RbHpjh07\n2vjx413Q849//MOefvppt0xN9NSLnUY1/vnnn23lypVuvgbWOuecc6xv377WvHnzWD5MIIAA\nAggggAACCCBQFgTUWkr3uqpsqFevXpGHtHz5cnv77bfd/fZBBx1kHTp0KHJ9FqYmkHITu9at\nW9uUKVMK3cucOXOsQoUK1qRJk0LX0QIFQdddd51Nnz7d1NW3ugw/77zzXOClwGivvfayrl27\n2pNPPmlq1vfcc88RHBUpykIEEEAAAQQQQACBqAr06tXLbr/9dlu6dGmRh/D888+7++WhQ4e6\nFl3HHHOMXX755UVuw8LUBFKuQbrwwgtNJ0QnUYO7Vq9ePbZHdfl99dVXu8hXAZCfpGBKg87q\nh4QAAggggAACCCCAQDYJ/Pbbb3bZZZfZRx99lPSwc3Nz7e9//7uraerZs6db/4033rDTTjvN\n5dG2bdukebBCcoGUa5C+/vpra9SokQ0cONBatmxphx56qJ100knWrl0723333W3atGmu4wad\nIO/n5ptvTl4S1kAAAQQQQAABBBBAIMsEunfvbgp8Ro8eXeDI9Uz+xRdfbO+//75bpufxO3Xq\nZOoUzUuqZNDjKDNmzPBm8buEAinXIKnaT+MdeQO7rlu3zubNm2cVK1Z0vdslKo+WkRBAAAEE\nEEAAAQQQQCCvgFpmbbPNNq5jsrxLtrzSoyj777+/e9GsWbMCvUWrl2eNR6pepknpEUg5QGJg\n1/TAkwsCCCCAAAIIIIAAAgqOCkuqGVLHZYWln376ydRSS708q2UXKT0CKTexS89uyQUBBBBA\nAAEEEEAAAQSKK/DZZ5+5Z/jVqVmfPn2Kmw3bJRAgQEqAwiwEEEAAAQQQQAABBDJVQOOSHn30\n0abhdTRWaLly3NKn81yl3MQunTsnLwQQQAABBBBAAAEEEPAvMHLkSDv33HNNY4kqQCKlX4AA\nKf2m5IgAAggggAACCCCAQIkF1IvdgAEDXFO6Aw44wNSL3UUXXWRnnHGG7brrrvbpp5/G9rHT\nTju58ZFiM5gotgD1ccWmY0MEEEAAAQQQQAABBIITUIDUu3dv++STT9xOnnnmGVu2bJkNHz7c\nDj/88Dw/b7/9dnAFybKcUw6QnnvuObvxxhsLZRo1apRtu+22tnr16kLXYQECCCCAAAIIIIAA\nAgj8JbDLLruYAqLtt98+NlPPFmler1693DwFS3qd6OfCCy+MbcdEyQR8NbFbsGCBabwjpe+/\n/97GjRtns2fPLrBnrfPOO+/YrFmzbM2aNVa1atUC6zADAQQQQAABBBBAAAEEEMhUAV8B0rBh\nw1z/6vEH0aJFi/iXeab32msvq1u3bp55vEAAAQQQQAABBBBAAAEEMl3AV4B07bXX2oYNG2z9\n+vWm0XxnzpxpF1xwQYFjq1ChgguMunTpUmAZMxBAAAEEEEAAAQQQQACBTBfwFSBVrFjRbrnl\nFncsah85ceJEu/POOzP92CgfAggggAACCCCAAAIIIJCSgK8AKT5HjdZLQgABBBBAAAEEEEAA\nAQTKokDKvdiVRQSOCQEEEEAAAQQQQAABBBCQQMo1SNrotddeswceeMA9i6TuvNXVYP60ePHi\n/LN4jQACCCCAAAIIIIBAxgiUL1/eWteoHkp5cnJyQtkPOym5QMoB0hdffGFqZqcuvNu2bWuN\nGjUyTnjJTwQ5IIAAAggggAACCIQrUKVKFfu0/WGh7VSVCtw3h8Zd7B2lHCCNHDnSdDF99913\n1rp162LvmA0RQAABBBBAAAEEEChNAfXQnJubG0oR1NuzaqxImS+QcoA0Z84c23fffQmOMv/c\nUkIEEEAAAQQQQACBIgTWrVtnn18RThO79kPWESAVcS4yaVHKnTQoOFLt0apVqzLpOCgLAggg\ngAACCCCAAAIIIFBigZQDJA0Q26xZM7vrrrtMUTcJAQQQQAABBBBAAAEEECgrAik3sRszZow1\nbNjQ7r//fnv44YetRYsWVr16warJH374oawYcRwIIIAAAggggAACCCCQJQIpB0jqvnvt2rW2\n3377ZQkRh4kAAggggAACCCCAAALZIpBygHTJJZeYfkgIIIAAAggggAACCCCAQFkTSDlAigf4\n8ccfberUqVazZk075phj3MCx2267bfwqTCOAAAIIIIAAAggggAACkRFIuZMGHdnEiRPt8MMP\ndwPFdunSxYYNG+YOWAPH3nHHHa4JXmQEKCgCCCCAAAIIIIAAAgggsFUg5QBp2bJldvzxx9v0\n6dPt+uuvt4MOOshl9f/t3QmcI1WZAPA3zMkcMNz3KQoCKrgcouIOCHIviMCCiKjIwoougrii\nHHIqKri4CgKLIiCXgogHKCCyCrIoiCA3Kpfc18wAM8yZzVeYkO5Jd6eGru5U8q/fbyaVqlev\nvvd/STpfqurVvHnz0rbbbpuOP/749IlPfAIwAQIECBAgQIAAAQItCsR36RNOOCE9//zzLW6R\nUtyf9Nhjj02xrWnwBHInSGeddVaaNm1auummm9LJJ5+cjWIX4cSdgS+++OJ06KGHpvPOOy+9\n/PLLgxelmggQIECAAAECBAh0sMBnP/vZdNRRR2Xfs1tpZqVSSR/96EezW+/MnTu3lU2UaVEg\nd4J02223pSlTpqRVV1216S723HPPFJ300EMPNV1vIQECBAgQIECAAAECrwo8+uijaYcddkjf\n/va3c5F885vfTDfffHOubRRuTSB3gjR+/PjsGqS+qp8xY0a2aqmlluqriOUECBAgQIAAAQIE\nCFQF9ttvvzR//vz005/+dAGPOEq0//77p1/+8pc91t11113ZZS1f+cpXeiz3ZHAEcidIm2yy\nSTZy3eWXX75ABHF9UpwHueKKK6bll19+gfUWECBAgAABAgQIECDwmsDZZ5+drrrqqvplK6+t\neXXu17/+dXrkkUfqi2fPnp323nvvdOKJJ6a11lqrvtzM4AnkHuY7znWM65B23XXXbICGSIoW\nXXTRrKMiaZo5c2a65JJLBi9CNREgQIAAAQIECBDoUIG+LluJ5o4YMSL95S9/6dHyI488Mkum\n4r6k1113XY91ngyOQO4EadSoUenKK69Mhx9+ePre976XHRKMUG655Za0wgorZMnTHnvsMTjR\nqYUAAQIECBAgQIAAgUwgjiade+65Ke5FaipOIHeCFKEss8wy6Tvf+U465ZRT0gMPPJCeffbZ\ntOaaa2b/Ro8eXVy0aiZAgAABAgQIECDQpQJf+MIX0sSJE7PrkoIgvoPH9IEPfCBbtvPOO2fP\n/ff6BBYqQYoLySJBWm211dL73ve+LILLLrssHXDAAelzn/tc2m677V5fVF2y9aTDDxu0lo6d\nOi2rq3Ljb9Ng1vviSScPWowqIkCAAAECBAgQWHiBj33sY+mpp56qV/C3v/0tu/XORhtt5Pr/\nusrrn8mdIM2ZMydtvPHG6fbbb0+nnXZaPUGK+yD94Q9/yIYp/P73v58++MEPvv7o1ECAAAEC\nBAgQIECgSwViFLuvfvWr2S12Nt100/qRoxpHXIN0zjnnpM9//vNp7NixtcUeX6dA7gTp+uuv\nT3/+85/Tz372sywZqu1/l112STGO+1577ZXdLDbuh7TIIrkHyatV55EAAQILLfCZm29JZ9//\nQH37+dU/MPdOm54WP/+i+rJjNnxbOmT9devPzRAgQIAAgXYTiAQprvuPJCkSJNPQCOROkK64\n4or0z//8zz2So1qoSy65ZPr0pz+dtt9++/Tggw+mN7zhDbVVHgkQIDBkAitPGJ82WHKJfve3\n7Lhx/a63kgABAgQIDKXAOuuskyIhapziYEPvZY3rt9xyy37XN5Y137pA7gQpqu5vIIZIkmIa\nM2ZM9ug/AgQIDLVAHBlydGio1e2PAAECBAh0hkDuc+C22GKLFEMM3njjjQsIxOANX/va19Ky\nyy6bVllllQXWW0CAAAECBAgQIECAAIF2Fsh9BGmbbbbJzoGcMmVKivsdbbDBBmnSpEnpscce\nS5deemm699570wUXXNDObRYbAQIECBAgQIAAAQIEmgrkTpBi7PVrrrkmxd1743qkCy+8sF5x\nHDWK5zFQg4kAAQIECBAgQIAAAQJlE8idID3zzDNp9uzZ6bzzzssuCovBGOLo0RprrJFWWmml\nNGLEiLIZiJcAAQIECBAgQIAAAQKZQO5rkOIGsauuumq67777smRozTXXTJtvvnlaeeWVJUde\nVAQIECBAgAABAgQIlFog9xGke+65J2uwQRhK3e+CJ0CAAAECBAh0vcCoUaPSu05/eUgcFlnE\njVyHBHoQdpI7QTrooIPSVVddlY466qh04oknpnHuJTII3aAKAgQIECBAgACBoRYYO3Zsin8m\nAo0CuROkRx99NK233nrp61//ejr11FOz4byXWmqpxjqz+VtvvXWBZRYQIECAAAECBAgQIECg\nnQVyJ0gxSMPUqVOz4b1rDYv7H5kIECBAgAABAgQIECBQdoHcCdKBBx6Y4p+JAAECBAgQIECA\nAAECnSaQO0FqBLjjjjvS/fffn90oNm4g+/DDD6fVVlutsYh5AgQIECBAgAABAgQIlEYg9zDf\n0bK77747vec970lve9vb0u67757OOeecrMHx/Oijj06zZs0qDYBACRAgQIAAAQIECBAgUBPI\nfQRp+vTpafvtt09z5sxJn/nMZ9Lvfve7rK558+albbfdNh1//PHZjWPjfkkmAgQIECBAgAAB\nAgQIlEkg9xGks846K02bNi3ddNNN6eSTT85uEBsNHjlyZLr44ovToYcems4777z08stDM6Z8\nmbDFSoAAAQIECBAgQIBAewvkTpBuu+22NGXKlLTqqqs2bdmee+6Z5s6dmx566KGm6y0kQIAA\nAQIECBAgQIBAuwrkTpDGjx+fXYPUV4NmzJiRrWp2b6S+trGcAAECBAgQIECAAAEC7SCQO0Ha\nZJNNspHrLr/88gXij+uTjj322LTiiium5ZdffoH1FhAgQIAAAQIECBAgQKCdBXIP0vDRj340\nxXVIu+66a9pss81SJEWLLrpo2nvvvVMkTTNnzkyXXHJJO7dZbAQIECBAgAABAgQIEGgqkDtB\nGjVqVLryyivT4Ycfnr73ve+l+fPnZxXfcsstaYUVVsiSpz322KPpziwkQIAAAQIECBAgQIBA\nOwvkTpCiMcsss0yKYbxPOeWU9MADD6Rnn302rbnmmtm/0aNHt3N7xUaAAAECBAgQIECAAIE+\nBVpOkCqVSjY4QxwpWnbZZdM73/nONHny5LTxxhv3WbkVBAgQIECAAAECBAgQKJNASwnSiy++\nmPbaa6/085//vN622lGknXbaqb7MDAECBAgQIECAAAECBMos0NIodkceeWSWHG2++ebZzWF3\n2223NHXq1LTvvvum5557rsztFzsBAgQIECBAgAABAgTqAi0dQbrwwguzU+muu+66FIM0xPSz\nn/0sxdGjGLHuE5/4RL1CMwsKjBs3bsGFJVlSxtjLGHO8HMoYd18xL7JIS7+9lLLNtbduX22v\nrW/XxzLG3Y0xD1Wba+/VsWPHtutLdoG4at9DxowZk0aMGLHA+nZcMHLkyCyseByqvh0Mh/CN\n10iZYh6MdquDwIAJUpxeF4MwfPKTn6wnR8G2/fbbpxiQ4cEHH6Q4gECZB64oY+xljDleQmWM\nu6+Ya6NbDvDWKGWba23qq+219e36WMa4OynmuJ63lWmo2lxLMIZqf620faAyjcnGQGXbZX0t\nEY3HMlnX/MoYcy12jwQWRmDABGnatGlZvTEgQ+MUb/K4Dumxxx5rXGy+iUAkmc2mSc0Wttmy\nvmJvszB7hFPGmKMBC8Y9sUe72vHJgjG/GmWrvzb2tX3U0u7vj/5ib8e+qsVUxrgXjLm87434\ncj9p0sCv7gXbXOvBwX2ML75xROall15KrSZvgxtB/tomTJiQ4ohX3Hdx1qxZ+SsYhi3Cefz4\n8WnOnDlNPuuHIaAWdxkxxw9eQ/V6nDix/d/bLdIpVnKBAc+DmTdvXtbE2i82je2NZXPnzm1c\nZJ4AAQIECBAgQIAAAQKlFRgwQSptywROgAABAgQIECBAgACBnAIDnmJXq++pp55K999/f+1p\n9hhHj+Kwa+/lsfJNb3pTj7KeECBAgAABAgQIECBAoN0FWk6QTjjhhBT/ek9PPPFEWnvttXsv\nLs25zAsEbgEBAgQIECBAgAABAl0rMGCCFBeTGsa7a18fGk6AAAECBAgQIECgqwQGTJCWXHLJ\ndNppp3UVisYSIECAAAECBAgQINCdAgZp6M5+12oCBAgQIECAAAECBJoISJCaoFhEgAABAgQI\nECBAgEB3CkiQurPftZoAAQIECBAgQIAAgSYCEqQmKBYRIECAAAECBAgQINCdAhKk7ux3rSZA\ngAABAgQIECBAoImABKkJikUECBAgQIAAAQIECHSngASpO/tdqwkQIECAAAECBAgQaCIgQWqC\nYhEBAgQIECBAgAABAt0pIEHqzn7XagIECBAgQIAAAQIEmghIkJqgWESAAAECBAgQIECAQHcK\nSJC6s9+1mgABAgQIECBAgACBJgISpCYoFhEgQIAAAQIECBAg0J0CEqTu7HetJkCAAAECBAgQ\nIECgiYAEqQmKRQQIECBAgAABAgQIdKeABKk7+12rCRAgQIAAAQIECBBoIiBBaoJiEQECBAgQ\nIECAAAEC3SkgQerOftdqAgQIECBAgAABAgSaCEiQmqBYRIAAAQIECBAgQIBAdwpIkLqz37Wa\nAAECBAgQIECAAIEmAhKkJigWESBAgAABAgQIECDQnQISpO7sd60mQIAAAQIECBAgQKCJgASp\nCYpFBAgQIECAAAECBAh0p4AEqTv7XasJECBAgAABAgQIEGgiIEFqgmIRAQIECBAgQIAAAQLd\nKSBB6s5+12oCBAgQIECAAAECBJoISJCaoFhEgAABAgQIECBAgEB3CkiQurPftZoAAQIECBAg\nQIAAgSYCEqQmKBYRIECAAAECBAgQINCdAhKk7ux3rSZAgAABAgQIECBAoImABKkJikUECBAg\nQIAAAQIECHSngASpO/tdqwkQIECAAAECBAgQaCIgQWqCYhEBAgQIECBAgAABAt0pIEHqzn7X\nagIECBAgQIAAAQIEmghIkJqgWESAAAECBAgQIECAQHcKSJC6s9+1mgABAgQIECBAgACBJgIS\npCYoFhEgQIAAAQIECBAg0J0CEqTu7HetJkCAAAECBAgQIECgicCoJsssKonA7tddn+5+YVoW\n7Zz587PHyx56JF3/xFP1FnzvPe9KGy+zdP25GQIECBAgQIAAAQIE+haQIPVt0/ZrZs+bn16Z\nN68e57LjxmXzjcvmVyr19WYIECBAgAABAgQIEOhfQILUv09br71i6y3bOj7BESBAgAABAgQI\nECibgGuQytZj4iVAgAABAgQIECBAoDABCVJhtComQIAAAQIECBAgQKBsAhKksvWYeAkQIECA\nAAECBAgQKExAglQYrYoJECBAgAABAgQIECibgASpbD0mXgIECBAgQIAAAQIEChOQIBVGq2IC\nBAgQIECAAAECBMomIEEqW4+JlwABAgQIECBAgACBwgQkSIXRqpgAAQIECBAgQIAAgbIJSJDK\n1mPiJUCAAAECBAgQIECgMAEJUmG0KiZAgAABAgQIECBAoGwCEqSy9Zh4CRAgQIAAAQIECBAo\nTECCVBitigkQIECAAAECBAgQKJuABKlsPSZeAgQIECBAgAABAgQKE5AgFUarYgIECBAgQIAA\nAQIEyiYgQSpbj4mXAAECBAgQIECAAIHCBCRIhdGqmAABAgQIECBAgACBsglIkMrWY+IlQIAA\nAQIECBAgQKAwAQlSYbQqJkCAAAECBAgQIECgbAISpLL1mHgJECBAgAABAgQIEChMQIJUGK2K\nCRAgQIAAAQIECBAom4AEqWw9Jl4CBAgQIECAAAECBAoTkCAVRqtiAgQIECBAgAABAgTKJiBB\nKluPiZcAAQIECBAgQIAAgcIEJEiF0aqYAAECBAgQIECAAIGyCUiQytZj4iVAgAABAgQIECBA\noDABCVJhtComQIAAAQIECBAgQKBsAhKksvWYeAkQIECAAAECBAgQKExAglQYrYoJECBAgAAB\nAgQIECibgASpbD0mXgIECBAgQIAAAQIEChOQIBVGq2ICBAgQIECAAAECBMomIEEqW4+JlwAB\nAgQIECBAgACBwgQkSIXRqpgAAQIECBAgQIAAgbIJjCpbwEXFO2PGjPS73/0uPf7442n99ddP\nb3/72+u7evHFF9NNN91Uf16b2WKLLdLo0aNrTz0SIECAAAECBAgQIFByAQlStQN/8YtfpK99\n7WvpLW95Sxo/fnz67ne/m3bcccd02GGHZd17++23py996Utp6aWX7tHdm222mQSph4gnBAgQ\nIECAAAECBMot0PUJ0vz589O5556bDjzwwLT77rtnvfmb3/wmHXHEEWmXXXZJa621VnrggQfS\neuutl0477bRy97boCRAgQIAAAQIECBDoV6Drr0F6/vnn08Ybb5y23nrrOtSGG26YzcfpdjFF\ngrT22mtn8/4jQIAAAQIECBAgQKBzBbr+CFKcNnfooYf26OFf/epXaeTIkfWkKBKksWPHpsMP\nPzzde++96c1vfnP65Cc/mVZaaaUe28WT888/v8eyKPvGN76xx7IyPYlTDss2lTHmMC5j3H3F\nPGLEiJZeNn1t39LGw1yorLGXMe5ujHmo2rzIIq/+TrrooosO8zuq9d2PGTMmKxx/l+NvdRmm\nWpyjRo0q1Wd9fJbHa2SoXo9l6EsxdodA1ydIvbv5r3/9azrzzDPT3nvvnZZbbrkUAzQ8+eST\nafnll0977bVXeve7350uvfTSdNBBB6Xvf//7aeLEiT2qOOGEE3o832effdJGG23UY1ntyUu1\nmTZ+XHzxxds4uuahlTHmaEkZ4+4r5hj0pJWpr+1j23Z/f/QXeyttH64yZYy7k2KePXt2S12/\n2GKLpVZ/aGipwgEKldF4woQJA7Sq/VZHUhf/yjRFclfG10eZjMXafgISpIY+ueOOO7KjRFtu\nuWXab7/9sjWRAP3whz9MSy65ZKr9arXuuuumfffdN8WRpp133rmhhpROOeWUHs/XWGON9MIL\nL/RYVntShvHv+oq91oZ2fCxjzOG4YNxLtCNvj5gWjPnV1bVfpXsUbvKkr+2jaLu/P/qLvUlT\n22ZRGeNeMObyvjfihVD7W9Lfi2Lq1Kn9rR60dfE3LkZjXdB40HYx6BVFghFHNF566aU0Z86c\nQa+/iAojyYik95VXXkkzZ84sYheF1Dl58uQU12pPnz69kPp7V7rEEu3/3u4ds+edKSBB+ke/\n3nDDDemLX/xi2mOPPdIBBxxQ7+34BS+OHjVOa665ZlpmmWXSE0880bg4m4/R73pPzcpFmXb/\nAhgxxod52aYyxtxp1uPGjWvpZdNfX7X7+6O/2Ftq/DAVKmPcnRRz7VSrgbp/qNpcO3Vq1qxZ\nqVKpDBRWW6yvGcbRuIi7DFPtliDz5s0r1d/VeE1EgjRUr8cy9KUYu0Og6wdpiG7+9a9/nY4+\n+uj0H//xHz2So1j30EMPZUeLHn300XiaTZHwPPPMM02vQaqV8UiAAAECBAgQIECAQPkEuv4I\n0nPPPZdOOumkNGXKlLT66qunuOdRbVpllVWyZfFr+BlnnJHdFyl+RTn99NNTHAZ+73vfWyvq\nkQABAgQIECBAgACBDhDo+gTpqquuSnFB+TXXXJP9a+zTGLVuhx12SIccckg67rjj0vvf//5s\ndZxi961vfcuoLo1Y5gkQIECAAAECBAh0gEDXJ0gf+tCHUvzrb1pnnXXShRdemJ599tnsYlaj\nufSnZR0BAgQIECBAgACB8gp0fYKUp+vinkkmAgQIECBAgAABAgQ6V8AgDZ3bt1pGgAABAgQI\nECBAgEBOAQlSTjDFCRAgQIAAAQIECBDoXAEJUuf2rZYRIECAAAECBAgQIJBTQIKUE0xxAgQI\nECBAgAABAgQ6V0CC1Ll9q2UECBAgQIAAAQIECOQUkCDlBFOcAAECBAgQIECAAIHOFZAgdW7f\nahkBAgQIECBAgAABAjkFJEg5wRQnQIAAAQIECBAgQKBzBSRIndu3WkaAAAECBAgQIECAQE4B\nCVJOMMUJECBAgAABAgQIEOhcAQlS5/atlhEgQIAAAQIECBAgkFNAgpQTTHECBAgQIECAAAEC\nBDpXQILUuX2rZQQIECBAgAABAgQI5BSQIOUEU5wAAQIECBAgQIAAgc4VkCB1bt9qGQECBAgQ\nIECAAAECOQUkSDnBFCdAgAABAgQIECBAoHMFJEid27daRoAAAQIECBAgQIBATgEJUk4wxQkQ\nIECAAAECBAgQ6FwBCVLn9q2WESBAgAABAgQIECCQU0CClBNMcQIECBAgQIAAAQIEOldAgtS5\nfatlBAgQIECAAAECBAjkFJAg5QRTnAABAgQIECBAgACBzhWQIHVu32oZAQIECBAgQIAAAQI5\nBSRIOcEUJ0CAAAECBAgQIECgcwUkSJ3bt1pGgAABAgQIECBAgEBOAQlSTjDFCRAgQIAAAQIE\nCBDoXAEJUuf2rZYRIECAAAECBAgQIJBTQIKUE0xxAgQIECBAgAABAgQ6V0CC1Ll9q2UECBAg\nQIAAAQIECOQUkCDlBFOcAAECBAgQIECAAIHOFZAgdW7fahkBAgQIECBAgAABAjkFJEg5wRQn\nQIAAAQIECBAgQKBzBSRIndu3WkaAAAECBAgQIECAQE6BUTnLK06AAAECBAiUVGDevHlp1qxZ\n9ejHjh2b5s6dm2bMmJEqlUq2fOTIkSmWmwgQINCtAhKkbu157SZAgACBrhP48Y9/nD71qU/1\n2+5tttkmnXPOOf2WsZIAAQKdLCBB6uTe1TYCBAgQINAgsOyyy6bNN9+8vuSuu+5Kzz//fNps\ns83SqFGvfiVYd9116+vNLLzALrvskh588MGsghEjRqT4N3/+/B4VXnDBBWn99dfvsWw4n1x0\n0UXp+uuvr4cwbty47Mhi41HHXXfdNUUSbSLQyQISpE7uXW0jQIAAAQINApEcNSZIH/7wh9O1\n116bzjvvvDRhwoSGkmZfr8CYMWPqpyrOnj07PfXUU2nixIlp8uTJ9aoXWaS9LgU/99xz0x13\n3FGPr9nMnDlzJEjNYCzrKAEJUkd1p8YQIECAAAEC7SDwgx/8oB7GnXfemd73vvelffbZJx11\n1FH15UXM/PnwFRa62rXmvDc9PPaJfrdf5Zmt0uvZx1tO6r/+fnduJYEhEpAgDRG03RAgQIAA\nAQIE2lnggI2/nuKfiUC3C7TXsd1u7w3tJ0CAAAECBAgQIEBgWAUcQRpWfjsnQIAAAQL5BCYd\nfli+DfopPf+uO7O1E47+Qpo0enQ/JfOtevGkk/NtoDQBAgTaSMARpDbqDKEQIECAAAECBAgQ\nIDC8AhKk4fW3dwIECBAgQIAAAQIE2khAgtRGnSEUAgQIECBAgAABAgSGV8A1SMPrb+8ECBAg\nQGDIBJ6fNSs99OJL9f1Nnz0nm7/9uefT+H/cKHby2DFpzUmT6mW6dWbDW28ftKbPuf++rK7v\n/f2x9KNBrPe2f3rboMWoIgIEXhOQIL1mYY4AAQIECHS0wNWPPZ72v+GmBdq43dW/qi/bYZWV\n0sVb/HP9uRkCBAh0m4AEqdt6XHsJECBAoGsF3rTYYumAdd7Ub/vXX2Jyv+utJECAQKcLSJA6\nvYe1jwABAgQI/EPg7UsvleKfiQABAgT6FjBIQ9821hAgQIAAAQIECBAg0GUCEqQu63DNJUCA\nAAECBAgQIECgbwGn2PVtYw0BAgQIECAwzALTp09PJ554Yj2K0aNHpzFjxqRXXnklzZs3L1s+\nbty4dOyxx9bLmCFAgMDrEZAgvR492xIgaWFL8gAAJ4ZJREFUQIAAAQKFCsyYMSOdf/75/e5j\nwoQJbZcgvXT+uWneCy9kcc+fNjV7nP2nP6Vp/31qvS0T/3WvNHK55erPzRAg0B4CEqT26AdR\nECBAgAABAk0Ell566XTNNdfU11x22WXpjDPOyI4qbbLJJtnykSNH1te3y8wrN/42zXvssR7h\nzHv0kRT/atP4bbeTINUwPBJoIwEJUht1hlAIECBAgACBngKjqjewXW+99eoLb7zxxmx+1VVX\n7bG8XqBNZiYffVxKc169EW9fIY1cYYW+VllOgMAwCkiQhhHfrgkQIECAAIHOFBi14oqd2TCt\nItAFAhKkLuhkTSRAgAABAsMpcOK1qw7a7v949/ysrgtv2Tf9X2XwBuM9YqvXTn0btGBVRIBA\nKQUG75OllM0XNAECBAgQIECAAAECBF4TcATpNQtzBAgQIECAQJsJVCqVNGvGa0HNnV3Jnsx5\npZJeefnV+RHVJWMnxP8mAgQIvH4BCdLrN1QDAQIECBAgUJDAjOoI2d87+NX7HTXu4tozIzl6\ndfnocSn921m+0jT6mCdAYOEFfJosvJ0tCRAgQIAAgYIFRo5OabW39X90aNSYgoNQPQECXSUg\nQeqq7tZYAgQIECBQLoFxE0ekHT/Tfvc5KpeiaAkQyCNgkIY8WsoSIECAAAECBAgQINDRAhKk\nju5ejSNAgAABAgQIECBAII+ABCmPlrIECBAgQIAAAQIECHS0gASpo7tX4wgQIECAAAECBAgQ\nyCMgQcqjpSwBAgQIECBAgAABAh0tIEHq6O7VOAIECBAgQIAAAQIE8ghIkPJoKUuAAAECBAgQ\nIECAQEcLSJA6uns1jgABAgQIECBAgACBPAISpDxayhIgQIAAAQIECBAg0NECEqSO7l6NI0CA\nAAECBAgQIEAgj4AEKY+WsgQIECBAgAABAgQIdLSABKmju1fjCBAgQIAAAQIECBDIIyBByqOl\nLAECBAgQIECAAAECHS0gQero7tU4AgQIECBAgAABAgTyCEiQ8mgpS4AAAQIECBAgQIBARwtI\nkDq6ezWOAAECBAgQIECAAIE8AqPyFFZ24QQWX3zxphvOb7q0vRb2FXt7RdkzmjLGHC0oY9x9\nxTxv3ryendLHs762j+Lt/v7oL/Y+mtsWi8sYdyfFPH9+a6/s/trcWg3D+3LrL/7hjazvvYu5\nb5vBXFNG58Fsv7rKISBBGoJ+mjlzZtO9jG26tL0W9hV7e0XZM5oyxhwtWDDu8T0b1obPFoz5\n1SBHjhzZUrR9bR8bt/v7o7/YW2r8MBUqY9wLxlze98aIESNa6vkF2/zaZu3+3ohI+4v/tZa0\n11znxNze74/+nMePb+/Y2+sVK5oiBSRIRer+o+7Zs2c33UsZ/sj1FXvTBrXJwjLGHHRljLuv\nmMeNG9fSq6Gv7WPjdn9/9Bd7S40fpkJljLuTYm71x4P+2tzu7414afcX/zC99AfcrZgHJBqU\nAmV0HpSGq6RUAq5BKlV3CZYAAQIECBAgQIAAgSIFJEhF6qqbAAECBAgQIECAAIFSCUiQStVd\ngiVAgAABAgQIECBAoEgBCVKRuuomQIAAAQIECBAgQKBUAhKkUnWXYAkQIECAAAECBAgQKFJA\nglSkrroJECBAgAABAgQIECiVgASpVN0lWAIECBAgQIAAAQIEihSQIBWpq24CBAgQIECAAAEC\nBEolIEEqVXcJlgABAgQIECBAgACBIgUkSEXqqpsAAQIECBAgQIAAgVIJSJBK1V2CJUCAAAEC\nBAgQIECgSAEJUpG66iZAgAABAgQIECBAoFQCEqRSdZdgCRAgQIAAAQIECBAoUkCCVKSuugkQ\nIECAAAECBAgQKJWABKlU3SVYAgQIECBAgAABAgSKFJAgFamrbgIECBAgQIAAAQIESiUgQSpV\ndwmWAAECBAgQIECAAIEiBSRIReqqmwABAgQIECBAgACBUglIkErVXYIlQIAAAQIECBAgQKBI\nAQlSkbrqJkCAAAECBAgQIECgVAISpFJ1l2AJECBAgAABAgQIEChSQIJUpK66CRAgQIAAAQIE\nCBAolYAEqVTdJVgCBAgQIECAAAECBIoUkCAVqatuAgQIECBAgAABAgRKJSBBKlV3CZYAAQIE\nCBAgQIAAgSIFJEhF6qqbAAECBAgQIECAAIFSCUiQStVdgiVAgAABAgQIECBAoEgBCVKRuuom\nQIAAAQIECBAgQKBUAhKkUnWXYAkQIECAAAECBAgQKFJAglSkrroJECBAgAABAgQIECiVgASp\nVN0lWAIECBAgQIAAAQIEihSQIBWpq24CBAgQIECAAAECBEolIEEqVXcJlgABAgQIECBAgACB\nIgUkSEXqqpsAAQIECBAgQIAAgVIJSJBK1V2CJUCAAAECBAgQIECgSAEJUpG66iZAgAABAgQI\nECBAoFQCEqRSdZdgCRAgQIAAAQIECBAoUkCCVKSuugkQIECAAAECBAgQKJWABKlU3SVYAgQI\nECBAgAABAgSKFJAgFamrbgIECBAgQIAAAQIESiUgQSpVdwmWAAECBAgQIECAAIEiBSRIReqq\nmwABAgQIECBAgACBUglIkErVXYIlQIAAAQIECBAgQKBIAQlSkbrqJkCAAAECBAgQIECgVAIS\npFJ1l2AJECBAgAABAgQIEChSQIJUpK66CRAgQIAAAQIECBAolYAEqVTdJVgCBAgQIECAAAEC\nBIoUkCAVqatuAgQIECBAgAABAgRKJSBBKlV3CZYAAQIECBAgQIAAgSIFJEhF6qqbAAECBAgQ\nIECAAIFSCUiQStVdgiVAgAABAgQIECBAoEgBCVKRuuomQIAAAQIECBAgQKBUAhKkUnWXYAkQ\nIECAAAECBAgQKFJAglSkrroJECBAgAABAgQIECiVgASpVN0lWAIECBAgQIAAAQIEihSQIBWp\nq24CBAgQIECAAAECBEolIEEqVXcJlgABAgQIECBAgACBIgUkSEXqqpsAAQIECBAgQIAAgVIJ\nSJBK1V2CJUCAAAECBAgQIECgSAEJUpG66iZAgAABAgQIECBAoFQCEqRSdZdgCRAgQIAAAQIE\nCBAoUkCCVKSuugkQIECAAAECBAgQKJWABKlU3SVYAgQIECBAgAABAgSKFJAgFamrbgIECBAg\nQIAAAQIESiUgQSpVdwmWAAECBAgQIECAAIEiBSRIReqqmwABAgQIECBAgACBUglIkErVXYIl\nQIAAAQIECBAgQKBIAQlSkbrqJkCAAAECBAgQIECgVAISpFJ1l2AJECBAgAABAgQIEChSQIJU\npK66CRAgQIAAAQIECBAolYAEqVTdJVgCBAgQIECAAAECBIoUkCAVqatuAgQIECBAgAABAgRK\nJSBBKlV3CZYAAQIECBAgQIAAgSIFJEhF6qqbAAECBAgQIECAAIFSCUiQStVdgiVAgAABAgQI\nECBAoEgBCVKRuuomQIAAAQIECBAgQKBUAhKkUnWXYAkQIECAAAECBAgQKFJAglSkrroJECBA\ngAABAgQIECiVwKhSRTuMwb744ovpxhtvTPG46aabplVXXXUYo7FrAgQIECBAgAABAgSKEHAE\nqQXVBx98MO28887p0ksvTXfeeWf62Mc+lv7v//6vhS0VIUCAAAECBAgQIECgTAKOILXQW1/+\n8pfTv/zLv6SDDz44jRgxIp177rnpv/7rv9LFF1+cPW+hCkUIECBAgAABAgQIECiBgCNIA3TS\nc889l+65557sCFIkRzHtuOOO6fHHH0933333AFtbTYAAAQIECBAgQIBAmQQcQRqgt5588sms\nxIorrlgvudRSS6UxY8akp59+Oq233nr15TGz//7793i+1VZbZclVj4X/eDK32cI2W7bEEku0\nWUQDh1PGmKNVZYy7r5jnzm3t1d3X9uHRWg1Rcnim/mIfnoha22sZ4+6kmOfNm9dSR/XX5nZ/\nb0QD+4u/JYBhKCTmoUEvo/PQyNhLOwmMqFSndgqo3WK59tpr00knnZTisXHaZZdd0oc//OG0\n6667Ni5Oa6+9do/n++yzTzryyCN7LPOEQKcLzJgxI40fP77Tm6l9BHILzJ49O/uBbaAN409z\n7ayFgcpaT4AAAQKDK+AI0gCeo0ePTs1+DY9fAZt9Afz973/fo8axY8em2lGoHisG+cnIkSPT\nMsssk+KL6fTp0we59uKqi5jji8Czzz5b3E4GuebFF188LbrooumZZ55Jrf4aPMgh5K4u4o24\np02blmbOnJl7+7wbxOu+2fujdz1D8d6IfS677LJp/vz5pXqdTZ48OY0bNy47Uh2xl2GKPl9s\nscXS1KlT0yuvvFKGkNOoUaPS0ksvPWSfnbXP6oFwnnrqqYGKDMr6+DU/3q+xv7L8XjphwoQ0\nadKk9MILL6RZs2YNikPRldReZy+//HI2Gm7R+xus+uOzM/7OxeUGQzEtv/zyQ7Eb+yAwoIAE\naQCi+MMZHw69fxGPJGSFFVZYYOv4Etp7Guo/OkO9v97tXZjnZY25LHHX4ozH2vzC9NNgbzOU\nsbRb21u1LFPctf4sY8zRH7X4W+2bhSnX6j5aLbcwMTTbpox9VqaYG82Hum8b972w82WMeWHb\najsCIWCQhgFeByuvvHL2C+Ndd91VLxmDNsQvuo3XJdVXmiFAgAABAgQIECBAoLQCEqQBui6O\nCL3vfe9L55xzTnrppZey00bOPvvstO2222antA2wudUECBAgQIAAAQIECJRIQILUQmcdeOCB\n2UW1O+20U4rBGeJc4k996lMtbKkIAQIECBAgQIAAAQJlEnANUgu9FRexnnrqqdngB3GBbVwg\naiJAgAABAgQIECBAoPMEJEg5+jRGZzIRIECAAAECBAgQINC5Ak6x69y+1TICBAgQIECAAAEC\nBHIKSJBygilOgAABAgQIECBAgEDnCkiQOrdvtYwAAQIECBAgQIAAgZwCEqScYIoTIECAAAEC\nBAgQINC5AhKkzu1bLSNAgAABAgQIECBAIKeABCknmOIECBAgQIAAAQIECHSugASpc/tWywgQ\nIECAAAECBAgQyCkgQcoJpjgBAgQIECBAgAABAp0rIEHq3L7VMgIECBAgQIAAAQIEcgpIkHKC\nKU6AAAECBAgQIECAQOcKSJA6t2+1jAABAgQIECBAgACBnAISpJxgihMgQIAAAQIECBAg0LkC\nEqTO7VstI0CAAAECBAgQIEAgp4AEKSeY4gQIECBAgAABAgQIdK6ABKlz+1bLCBAgQIAAAQIE\nCBDIKSBBygmmOAECBAgQIECAAAECnSsgQercvtUyAgQIECBAgAABAgRyCkiQcoIpToAAAQIE\nCBAgQIBA5wpIkDq3b7WMAAECBAgQIECAAIGcAhKknGCKEyBAgAABAgQIECDQuQISpM7tWy0j\nQIAAAQIECBAgQCCngAQpJ5jiBAgQIECAAAECBAh0roAEqXP7VssIECBAgAABAgQIEMgpIEHK\nCaY4AQIECBAgQIAAAQKdKyBB6ty+1TICBAgQIECAAAECBHIKSJBygilOgAABAgQIECBAgEDn\nCoyoVKfObV73tOzJJ59MJ5xwQnrnO9+ZPvjBD5am4V/4whfSmDFj0jHHHFOamM8999z0hz/8\nIR177LFpqaWWKkXcv/vd79KFF16YvTbiNdJt02GHHZaWWGKJdMQRR5Sm6f/zP/+Tbr/99vTl\nL385TZo0qRRx/+///m/64Q9/mD7ykY+kjTbaqBQxP/HEE+nEE08s3WfnYOGedtpp6Z577kmn\nnHJKGjt27GBVW2g911xzTbriiivSv/3bv6W3vvWthe5rsCp/5JFH0le/+tU0ZcqUtNtuuw1W\ntYXXE5+dSy65ZIq/1SYC3STgCFKH9PZLL72U4o/GXXfdVaoWXX/99em3v/1tqWK+4447MusZ\nM2aUJu7HHnssizkeu3G67rrr0o033liqpv/pT3/K+mzWrFmliTu+BMbnUPxgU5ap9tl59913\nlyXkQY3z1ltvzfpszpw5g1pvkZU9+OCDWcxPP/10kbsZ1LqnTp2axXzvvfcOar1FV1bGz86i\nTdTfHQISpO7oZ60kQIAAAQIECBAgQKAFAQlSC0iKECBAgAABAgQIECDQHQKjuqOZnd/KUaNG\npeWWWy4tvvjipWrssssum8aNG1eqmCdPnpxZh3lZpvHjx2cxx2M3TvHeWGaZZUrV9LhmKuJe\nZJHy/I5Ve52V6T1d1s/OwXoxx/UlZXudTZw4MYu5TK+zuNY2nBdbbLHB6rohqaeMn51DAmMn\nHS9gkIaO72INJECAAAECBAgQIECgVYHy/DTZaouUI0CAAAECBAgQIECAwEIKSJAWEs5mBAgQ\nIECAAAECBAh0noAEqfP6VIsIECBAgAABAgQIEFhIAQnSQsINx2bz5s1Lcc+K888/P7tRaasx\nxHZxc9Pp06e3usmgl1uYGH7zm9+k2267bdBjyVNhqzHEPZGuvfbadN5556U//vGPeXYx6GVb\njblxx3Fzz7/85S+Ni0o3H/fgufjii9PVV1+d4t42rUwL87pspd68ZfL2Wd7yeeNppXyrMcyf\nPz+74W18Bv3iF79Iw3lfp7gPWLzW80y33HJL9t7Os027lV2Y90a0odU+LrK9eWNYmD4e7Pjz\nxPD444+nSy65JF166aUp5odrWpjPwk54bwyXt/22v4AEqf37KIswPrwOPPDA9MUvfjHFh+9x\nxx2Xvv71r7cU/emnn57OPvvslr80tlRpzkJ5Y4ibZB599NFpOG/e2GoM8aVvp512Sj/72c9S\n3ATw0EMPTSeffHJOocEp3mrMjXv76U9/mv77v/+71AlS/Giwzz77ZK+XH/zgB+nf//3f0wsv\nvNDYzKbzeV+XTSt5nQvz9lne8q8zvKabtxrDs88+m3bdddf0pS99KfvcOu2009JHPvKRYfmx\nJpLmww8/PP3yl79s2qZmC5966ql05JFHZjf4bLa+DMsW9r3Rah8XaZA3hoXp48GOP08MRx11\nVPZ+uP/++9OVV16ZfYbddNNNgx1SS/Xl/SzshPdGSzAKda1AecYp7touerXh8aUvPnjjl6YJ\nEyakhx9+OPsw3WGHHdLaa6/dVCc+wOKL+nAe0cgbw9y5c7MjZPFHfcSIEU3bVfTCPDHEr+Px\ny3gkr7vvvnsWWvziecQRR6RddtklrbXWWkWHm9WfJ+bGgP7+97+ns846K40ePbpxcanm49fx\nc845J33jG99IG2ywQQqL6I94r8Rjsynv67JZHa93Wd4+y1v+9cbXbPu8McSv4iuuuGKKL18x\nzZw5M0uYom/233//ZrsoZNnNN9+cvvrVr6apU6emNdZYo6V9xHv7+OOPH7bPoZaCHKDQwrw3\n8vbxACEs1OqFiWFh+nihgutnozwx3HfffdkRujiiGbe7iOnYY4/NfqzabLPN+tnL4K5amM/C\nTnhvDK6i2jpRwBGkkvTqDTfckLbeeussOYqQV1tttbT++uvXf9msVCrpK1/5SooP6Np00kkn\npdry2rKhfuwvhlpsjTHHr2g///nPs1+cV1lllaEON9vfQDH8+Mc/zk6li8LPP/982njjjbO+\nqQW74YYbZrNDebrEQDHHka14fUybNq0WZpZIxBfAfffdNy266KKl/SL4+9//PvsSHslRTHFf\nm2233bbt3xsD9Vnj6yzaNVD5KFP0NFAMvV9ncV+kD3/4w/Ww4nW2zjrrDOmpRC+++GL6whe+\nkLbbbru011571WOpzTT7HIp1F110Ufae2HLLLWtFS/c40HsjGtQJr7OB+ngoOm6gGHq/N+II\n93777VdPjiLG+Nvx5JNPZn+3hyLm2Efev9GxTSe8N6IdJgL9CUiQ+tNpo3VPPPFE9iWwMaT4\nZfbpp5+uL4ojRfFrUG2K00niCNJw3iBzoBh6x/yud70ru47kHe94R60ZQ/44UAx/+9vfslPp\nIrCll146O6Uubh5bm371q1+lkSNH9nlkr1ZuMB8HijkSubCePXt2fbdx5Cu+wH7gAx+oLyvj\nTLw3VlpppR6hx3sjTu+KXzpj6v06G+h12aOygp4M1GeNr7MIYaDyBYXZo9qBYuj9OovkqPG9\nHOvjusJ11123R71FPomkLI7Af/zjH8+S52b76v36iF/340tgHAkeriPZzeLMu6yV90YnvM5a\n6eO8dnnLDxRD7/dGvC8afzyI/cXfjje/+c1D+pob6LOwU98beftX+e4TcIpdCfo8TjeIL3u9\n78Adz+Pc5Zjij3icttI4xR2wh3vqL4ZmMS+11FLDHXIaKIa4xqiv6a9//Ws688wz0957753d\nNb2vcoO9fKCY3/nOd6b4V5vuvPPO7Jfj7373u0P6x7i2/8F8jF9ce783Jk2alCVHccRsiSWW\naMv3xkB91vt1NlD5wTTtq66BYuj9OmusJ5LzY445Jjv6HaefDtUURxT7i7v351AMIhFHVg86\n6KC0/PLLD1WYheynlfdGJ7zOBurjQnB7VTpQDP29N6Kq+Pt9++23Z38/elVd6NM8f6M76b1R\nKKrKO0LAEaQSdGMcjVhkkUWyU6Iaw43EKa5HMrWHwB133JE+9alPpTglJ06daNcpRtyLL4AH\nH3zwsB5dHCyfuH4q3guNU+15HCEzDb9AjKB5yCGHZANnnHLKKW19zVsMJBGnMMcpeWWfvDfK\n0YPxQ1VcC3riiScO6ZkHeXU66b2Rt+3Kd5+AI0gl6PP4hXPJJZdMcY5z4xRfOsr+C2dje8o8\nH9eIxQiDe+yxRzrggAPauik/+clPsiOS11xzTf06nZdffjn7BTOG+o5fzss0xWmODz30UI+Q\n470RR47Gjh3bY7knQy8QR78//elPZz/mfOtb30qLL7740AfR4h7jFOXLL788veUtb0mf+9zn\nsq3iqHAc/Yrnn//851Pj6bQtVjtsxbw3ho2+pR3HKcDxg0HcIiJOh69dv9rSxkNcqNPeG0PM\nZ3clFJAglaTT1lxzzXTXXXelGLWuNsUQ2LvttlvtqcdhEvj1r39dPyKz8847D1MUre82rv/o\nfe573M8irttZffXVW6+oTUrGqGQx1HocNYrTXGKK90rv65LaJNyuCiO+VMVR1Te84Q3Z6XXt\nnrDGdSRxrVLjFNeOxA8I8b4p22iP3huNPdl+83EkP06r+/a3v53ib3w7T5323mhna7G1h4AE\nqT36YcAoIhGK+wLtuOOO2UWcP/rRj7JfNbfffvts2xiJ6cILL8yGOV5vvfUGrK8dCpQx5nCL\nYbzjC1OcgvPcc89lowBNmTIlSy7ij11tilH44shfO0wxLHwc5YoE7q1vfWv2rzGuuIh98803\nT9tss03j4lLMb7XVVtkXjAsuuCAb+j6OJsVoazFyWUyd8DorRUdUg2x8nU2cODH7dTzu4RZD\n4McoXrUprhlrdbjt2jZFPfZ+fcSojo3TM888k+Jf7+WNZdp1fqD3RsTd+HnWru3oHVfv11nv\n9e34vHfMV111VXbk6LOf/Wx2dkjj344YoTZOrR/uqZPfG8Nta//tLyBBav8+yiKMEW/23HPP\n7PSn+BUzfh2PGxjGl5CY4oPsjDPOyG6QWaYEqWwxh/XVV1+djRYYCVL8kYtrehpPV4syMcXo\nQI1H/F5dOjz/x6lzYR3XR9VeM8MTyeDvNY5KxC+xcQ+RSJLil864OWltUIoyvjdCqfF1Nvhq\nxdTY+DqL0xxrN72M690ap0033XTYbqbcGEfMl/X10bsdzZ4P9N6Ibcr+OivL51njeyNijnuE\nxfS1r30te2z8L25m3A7XT3bye6PR2zyBZgIjqm+ASrMVlrWnQJwLH1884txyEwECPQXilK4Y\n1j4GNTERIPCagPfGaxbmCBAgMJCABGkgIesJECBAgAABAgQIEOgaAT+zdk1XaygBAgQIECBA\ngAABAgMJSJAGErKeAAECBAgQIECAAIGuEZAgdU1XaygBAgQIECBAgAABAgMJSJAGErKeAAEC\nBAgQIECAAIGuEZAgdU1XaygBAgQIECBAgAABAgMJSJAGErKeAAECBAgQIECAAIGuEXCj2K7p\nag0lQKAVgblz56bHHnusR9ERI0akFVZYIcVNmodzinvZRHxxo+ihmh5//PHsvlLLL798tsve\nz4cqjldeeSW7QXPc56odbqI5VO22HwIECBAYegFHkIbe3B4JEGhjgbjj/eqrr97j32qrrZYm\nTJiQ1l133fSNb3xj2KL/0Ic+lN797ncP6f632WabtMsuu9T32ft5fcUgz/z5z39OZ599dr3W\n66+/PuuTK6+8sr7MDAECBAgQKELAEaQiVNVJgEDpBTbffPO0xx57ZO2YN29emjp1avrRj36U\nPv3pT6dp06alo48+uvRtbOcG/NM//VPad99908c//vEszKWXXjptvfXWabnllmvnsMVGgAAB\nAh0gIEHqgE7UBAIEBl/grW99a/rkJz/Zo+LDDz88rbfeeunMM89MRx11VIpT70zFCMSphI3T\nRhttlK6++urGReYJECBAgEAhAhKkQlhVSoBAJwqMHTs2vf3tb0+XX355mjFjRnbaXa2dcUrY\nD37wg3TPPfekVVddNe24445pyy23rK2uPz7zzDPpvPPOS/fee2964YUX0hve8IasbByxapye\nfvrp9NOf/jRdd911aY011kgf+chHGlfX57/5zW+m5557Lh1zzDH1ZTET8fzyl79Mf/zjH9Nm\nm22Wdt555yyuxkKtxty4TSvz3/72t9Oyyy6bVllllXTaaaelN7/5zWm//fZLcf3QQO2P66xO\nP/30VKlU0q233pq++MUvZkeRZs2alc4///z0r//6r9mpjrU4/vCHP6RLLrkkPfjgg9kpeNtt\nt13aaqutaqs9EiBAgACB/ALVP0ImAgQIEPiHQDXBqVQ/SSsHHXTQAibVwRsq1VO8Ku9973t7\nrDvjjDMqY8aMyf7ttNNOlWoSldVx2GGH9Sh3ww03VKpJQmXixImV6uliler1RJWRI0dWqkei\nKt/5znfqZatJRKV63VNl0qRJlWpiU3nHO95RWXLJJSurr7569q9esDqz9tprVxZZZJHGRZUf\n//jHWb1rrrlmZffdd69UB1jI4vnhD39YL9dqzOuvv35l0003rW/X+3l9RcPMBhtsUJkyZUrW\n1ogt/v3973+vtNL+v/3tb9m20QfVgTGy+TvvvLNy1VVXLdCG448/PrOrtbN6dC8rc8ABBzRE\nY5YAAQIECOQTiF/pTAQIECDwD4FaglQdkKFSvf4l+1c9elPZfvvtK4svvnhlk002qVSPctS9\nHnjggSwx2mKLLSqR2NSmI444Ivuyfu2119YWVd7znvdkSc+TTz5ZX/boo49WRo0alSVVtYWR\nPMW+7rvvvtqiyle+8pWsvkiSGqfqUaLKpZdeWl8UycSiiy6aJVbVoy7Z8urpalmSUz0SVamO\nBlfJE3PvhKj38/qOG2YiQYoE59BDD61Uj7RVqkfLsrWttj8KR9IY/rWpd4J04403ZonXnnvu\nWZk9e3ZWbP78+dk+Y98XX3xxbVOPBAgQIEAgl4AEKReXwgQIdLpALUGKI0KRpMS/OJITX7rj\nX/XapEr1tK46wyGHHJItj0SlcXr++ecr1WHBK+9///uzxfHl/Re/+EWlOhpbY7Fs/l3velel\nejpaNl8dACJLDnoffYokp3rq3gJHkHpXdsopp2Tx3H///T1W3XbbbZXq6W6V6ql7lVZjjgp6\nJ0S9n/fYyT+eRIIUR41mzpxZX91q+2sbDJQgVU/Zy3wbk9XYNvZZPb0vOzpXq8sjAQIECBDI\nI+AapOo3HhMBAgR6C+y///7pW9/6Vn1xXHN0xx13ZNfDVE95S3Hty4YbbpiqR3mywRrOOuus\nHsNSx4Zxv55qopLVEQM6xBDZcd3RZZddlu6+++5s22riks3XRmeLfVQ/xFMMEtE4VU/FS297\n29uya4sal/ee/9Of/pRdG/XGN76xx6pq0pLiX0ytxtyjgpxP4vqjcePG1bdqtf31DQaYiWu9\nYvj1uNapcYp9hlO4mggQIECAwMIIuA/SwqjZhgCBrhOIZCcSo0iaYtjvGJAhpmeffTbF4A3V\n0+SyG6pWj5zUH7fddttsmxpWDDIQicNuu+2Wvvvd72YDPcRQ1jGkdW2KARdiql6nVFtUf6xe\nh1Sf72smbnLbbNvG8nlibtwuz/xSSy21QPFW2r/ARn0sCKfFFlus6dpo/5w5c5qus5AAAQIE\nCAwk4AjSQELWEyBAoEGgeg1Q9qx6HU/2WB0gIP3+979Pxx13XHrTm97UUDKlGKo6EqeYYnS2\nj33sY9lRnDiCFCPd1aYY1S6OGsVUO8rzyCOP1FbXHx9//PH6fF8zMeJd3FQ1EoTqKX71YtXr\nntIVV1yRqgNMpFZjrm88CDOttr/VXcXofzfffHPT4g899FDdsWkBCwkQIECAQD8CjiD1g2MV\nAQIEegucffbZ2aI4mhRT9fqh7DGSnMYpTpWLIxkHH3xwtjhO+YqEqXpNUo/kKBKtOA0v1sUU\np43F6Xa964vk6Le//W1Wpr//Ykjv6vU+qTpiXY9i3/jGN9KBBx6YqqPJtRxzjwpe55NW21/b\nTZxSWB18ofZ0gcdwj6NIkfQ1TrGfOM0wTn80ESBAgACBhRLIc8GSsgQIEOh0gdogDTHQwGc+\n85n6v0984hPZcNvVD9psaO3p06dnFDGCWvU+P5UJEyZUTj311EqMInfBBRdky6qnmWWDIkTB\n6hGhbFCBGJL6yiuvrFSPclQuuuiibOCF6il62boYyCCmn/zkJ/UR2m655ZZK9V5IleoX/qxM\n71Hsdthhh2wghWzD6n/VI0eVGO56iSWWqJxzzjmV22+/vfLlL3+5Uj0dLRu4IAZ7aDXmqLP3\noAy9n9f22/gYdjHUeeOUp/2xXQyHHgNXxMASsW3vUexidLxqMlmZPHlypZq0VqrXdFWqpz1W\nVlpppUoYx+iAJgIECBAgsDACRrFbGDXbECDQsQK1BCkSocZ/kXBE4vGf//mflSeeeKJH+2Nk\nuLjfUAzXXdumOkhC5eqrr+5RLr7Ax4h1McJblIvR1qqDO1SqN1bNnv/mN7+pl4/7IlVP2cuW\nx72SYsjrD33oQwuMYtfsPkgxjHjcP6m2n9jXrrvu2mN48lZj7p0Q9X5eD7hhplmCFKvztL96\nxKtSve4ra38ker0TpKgv7q0UCWKtnZGkVq/7qjz88MOx2kSAAAECBBZKYERsVf3jaSJAgACB\n1ykQp4T95S9/SdWhwdOKK66YjW7XrMq4HieuEVp55ZWbre6xLK6nWXrppQcceKHHRv94Uh3y\nOlVvvJrtJ2JqNrUac7NtF3ZZq+2PwTCqw6Vn7Y9R8Pqaop3htNZaa/W47qqv8pYTIECAAIH+\nBCRI/elYR4AAAQIECBAgQIBAVwkYpKGrultjCRAgQIAAAQIECBDoT0CC1J+OdQQIECBAgAAB\nAgQIdJWABKmrultjCRAgQIAAAQIECBDoT0CC1J+OdQQIECBAgAABAgQIdJWABKmrultjCRAg\nQIAAAQIECBDoT0CC1J+OdQQIECBAgAABAgQIdJWABKmrultjCRAgQIAAAQIECBDoT+D/AQOJ\nUQ1N1chXAAAAAElFTkSuQmCC",
189 | "text/plain": [
190 | "plot without title"
191 | ]
192 | },
193 | "metadata": {},
194 | "output_type": "display_data"
195 | }
196 | ],
197 | "source": [
198 | "cd348_grp <- cd348_stats %>% group_by(`Bead:cell ratio`)\n",
199 | "\n",
200 | "rbind(\n",
201 | " cd348_grp %>%\n",
202 | " summarize(\n",
203 | " `Freq_mean`=mean(`Live cells/CD3+ | Freq. of Parent (%)`),\n",
204 | " `Freq_sd`=sd(`Live cells/CD3+ | Freq. of Parent (%)`)\n",
205 | " ) %>%\n",
206 | " mutate(`Population`=\"CD3+\"),\n",
207 | " cd348_grp %>%\n",
208 | " summarize(\n",
209 | " `Freq_mean`=mean(`Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%)`),\n",
210 | " `Freq_sd`=sd(`Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%)`), \n",
211 | " ) %>%\n",
212 | " mutate(`Population`=\"CD3+ CD4+\"),\n",
213 | " cd348_grp %>%\n",
214 | " summarize(\n",
215 | " `Freq_mean`=mean(`Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%)`),\n",
216 | " `Freq_sd`=sd(`Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%)`)\n",
217 | " ) %>%\n",
218 | " mutate(`Population`=\"CD3+ CD8+\")\n",
219 | ") %>%\n",
220 | "mutate(`Population`=factor(`Population`)) %>%\n",
221 | "ggplot(aes(x=`Bead:cell ratio`, y=`Freq_mean`, fill=`Bead:cell ratio`)) +\n",
222 | " geom_col() +\n",
223 | " geom_errorbar(\n",
224 | " aes(ymin=`Freq_mean`-`Freq_sd`, ymax=`Freq_mean`+`Freq_sd`),\n",
225 | " width=0.2\n",
226 | " ) +\n",
227 | " facet_wrap(~Population) +\n",
228 | " ylim(0, 100) +\n",
229 | " ylab('Percent population (%)\\n(n=3)')\n"
230 | ]
231 | },
232 | {
233 | "cell_type": "markdown",
234 | "metadata": {},
235 | "source": [
236 | "| Cell count (106 live cells/ml) | 1:1 | 1:2 | 1:4 | 1:8 |\n",
237 | "| ------------------------------ | --- | --- | --- | --- |\n",
238 | "| #1| 3.21 (96%) | 4.16 (93%) | 4.91 (78%) | 5.01 (69%) |\n",
239 | "| #2 | 4.72 (96%) | 3.95 (91%) | 4.81 (75%) | 4.95 (70%) |"
240 | ]
241 | }
242 | ],
243 | "metadata": {
244 | "kernelspec": {
245 | "display_name": "R",
246 | "language": "R",
247 | "name": "ir"
248 | },
249 | "language_info": {
250 | "codemirror_mode": "r",
251 | "file_extension": ".r",
252 | "mimetype": "text/x-r-source",
253 | "name": "R",
254 | "pygments_lexer": "r",
255 | "version": "3.4.1"
256 | }
257 | },
258 | "nbformat": 4,
259 | "nbformat_minor": 2
260 | }
261 |
--------------------------------------------------------------------------------
/analyses/isolation-bead-titration/cd3-cd4-cd8-stats.tsv:
--------------------------------------------------------------------------------
1 | Replicate Bead:cell ratio Live cells/CD3+ | Freq. of Parent (%) Live cells/CD3- | Freq. of Parent (%) Live cells/CD3+/CD3+ CD8- CD4+ | Freq. of Parent (%) Live cells/CD3+/CD3+ CD8+ CD4- | Freq. of Parent (%)
2 | R1 0:1 29.1 70.9 37.8 17.1
3 | R1 1:1 88.7 11.3 71.4 15.8
4 | R1 1:2 81.6 18.4 77.2 17.8
5 | R1 1:4 73.9 26.1 76.9 18.5
6 | R2 0:1 47.5 52.5 77.5 18.3
7 | R2 1:1 89 11 78.7 16.4
8 | R2 1:2 74.1 25.9 78.5 16.1
9 | R2 1:4 72.5 27.5 77.2 18.6
10 | R3 0:1 48.5 51.5 77.3 18.6
11 | R3 1:1 88.6 11.4 79.5 15.3
12 | R3 1:2 79.9 20.1 77.5 18.4
13 | R3 1:4 72.7 27.3 77.2 18.5
14 |
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hammerlab/t-cell-guide/3b95f3abebed6e6042b353fb58639729fe8823d3/analyses/mrna-electroporation/.DS_Store
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/data.csv:
--------------------------------------------------------------------------------
1 | Donor,Day,Condition,Statistic,Value
2 | Donor 10,1,No RNA,GFP+,1.02
3 | Donor 10,2,No RNA,GFP+,0.47000000000000003
4 | Donor 10,3,No RNA,GFP+,0.3
5 | Donor 10,4,No RNA,GFP+,0.24000000000000002
6 | Donor 10,5,No RNA,GFP+,0.2
7 | Donor 10,6,No RNA,GFP+,0.15000000000000002
8 | Donor 10,1,1600 ng,GFP+,73
9 | Donor 10,2,1600 ng,GFP+,58.7
10 | Donor 10,3,1600 ng,GFP+,48.6
11 | Donor 10,4,1600 ng,GFP+,31.6
12 | Donor 10,5,1600 ng,GFP+,18.4
13 | Donor 10,6,1600 ng,GFP+,11.7
14 | Donor 10,1,800 ng,GFP+,66.3
15 | Donor 10,2,800 ng,GFP+,52.4
16 | Donor 10,3,800 ng,GFP+,42.4
17 | Donor 10,4,800 ng,GFP+,14.7
18 | Donor 10,5,800 ng,GFP+,3.9699999999999998
19 | Donor 10,6,800 ng,GFP+,1.1
20 | Donor 10,1,400 ng,GFP+,47.1
21 | Donor 10,2,400 ng,GFP+,44.4
22 | Donor 10,3,400 ng,GFP+,13.2
23 | Donor 10,4,400 ng,GFP+,2.03
24 | Donor 10,5,400 ng,GFP+,0.6
25 | Donor 10,6,400 ng,GFP+,0.21000000000000002
26 | Donor 12,2,No RNA,GFP+,0.41000000000000003
27 | Donor 12,5,No RNA,GFP+,0.12000000000000001
28 | Donor 12,3,No RNA,GFP+,0.18
29 | Donor 12,2,1600 ng,GFP+,76
30 | Donor 12,3,1600 ng,GFP+,58.1
31 | Donor 12,5,1600 ng,GFP+,33.3
32 | Donor 12,2,800 ng,GFP+,81
33 | Donor 12,3,800 ng,GFP+,64.1
34 | Donor 12,5,800 ng,GFP+,22
35 | Donor 12,2,400 ng,GFP+,70.6
36 | Donor 12,3,400 ng,GFP+,39.3
37 | Donor 12,5,400 ng,GFP+,4.14
38 | Donor 12,4,No RNA,GFP+,0.14
39 | Donor 12,4,1600 ng,GFP+,47.1
40 | Donor 12,4,800 ng,GFP+,43
41 | Donor 12,4,400 ng,GFP+,12.1
42 | Donor 12,1,No RNA,GFP+,2.19
43 | Donor 12,1,1600 ng,GFP+,87.7
44 | Donor 12,1,800 ng,GFP+,88
45 | Donor 12,1,400 ng,GFP+,85.3
46 | Donor 12,6,No RNA,GFP+,0.065
47 | Donor 12,6,1600 ng,GFP+,25
48 | Donor 12,6,800 ng,GFP+,9.39
49 | Donor 12,6,400 ng,GFP+,1.21
50 | Donor 14,1,No RNA,GFP+,0.43
51 | Donor 14,1,1600 ng,GFP+,85.3
52 | Donor 14,1,800 ng,GFP+,24
53 | Donor 14,1,400 ng,GFP+,0.29
54 | Donor 15,1,No RNA,GFP+,1.61
55 | Donor 15,1,1600 ng,GFP+,87.3
56 | Donor 15,1,800 ng,GFP+,51.2
57 | Donor 15,1,400 ng,GFP+,18.2
58 | Donor 14,2,No RNA,GFP+,0.4
59 | Donor 14,2,1600 ng,GFP+,53.4
60 | Donor 14,2,800 ng,GFP+,1.23
61 | Donor 14,2,400 ng,GFP+,0.3
62 | Donor 15,2,No RNA,GFP+,0.41
63 | Donor 15,2,1600 ng,GFP+,72.1
64 | Donor 15,2,800 ng,GFP+,6.6
65 | Donor 15,2,400 ng,GFP+,1.2
66 | Donor 14,3,No RNA,GFP+,0.3
67 | Donor 14,3,1600 ng,GFP+,20.7
68 | Donor 14,3,800 ng,GFP+,0.32
69 | Donor 14,3,400 ng,GFP+,0.23
70 | Donor 15,3,No RNA,GFP+,0.42
71 | Donor 15,3,1600 ng,GFP+,40.2
72 | Donor 15,3,800 ng,GFP+,0.6
73 | Donor 15,3,400 ng,GFP+,0.31
74 | Donor 14,4,No RNA,GFP+,0.1
75 | Donor 14,4,1600 ng,GFP+,2.57
76 | Donor 14,4,800 ng,GFP+,0.087
77 | Donor 14,4,400 ng,GFP+,0.075
78 | Donor 15,4,No RNA,GFP+,0.068
79 | Donor 15,4,1600 ng,GFP+,14.7
80 | Donor 15,4,800 ng,GFP+,0.12
81 | Donor 15,4,400 ng,GFP+,0.077
82 | Donor 14,5,No RNA,GFP+,0.62
83 | Donor 14,5,1600 ng,GFP+,2.25
84 | Donor 14,5,800 ng,GFP+,0.48
85 | Donor 14,5,400 ng,GFP+,0.39
86 | Donor 15,5,No RNA,GFP+,0.54
87 | Donor 15,5,1600 ng,GFP+,10.9
88 | Donor 15,5,800 ng,GFP+,0.65
89 | Donor 15,5,400 ng,GFP+,0.57
90 | Donor 14,6,No RNA,GFP+,0.62
91 | Donor 14,6,1600 ng,GFP+,1.08
92 | Donor 14,6,800 ng,GFP+,0.42
93 | Donor 14,6,400 ng,GFP+,0.49
94 | Donor 15,6,No RNA,GFP+,0.44
95 | Donor 15,6,1600 ng,GFP+,4.17
96 | Donor 15,6,800 ng,GFP+,0.44
97 | Donor 15,6,400 ng,GFP+,0.5
98 |
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/donor-difference/act_vs_unac-flow.tsv:
--------------------------------------------------------------------------------
1 | Sample: Live | Freq. of Parent Live/GFP+ | Freq. of Parent Live/GFP- | Freq. of Parent Donor Activated Replicate Electroporation
2 | 16A0-1.fcs 85.9 0.15 99.8 D16 Yes 1 None
3 | 16A0-2.fcs 86.2 0.28 99.7 D16 Yes 2 None
4 | 16A0-3.fcs 85.6 0.25 99.8 D16 Yes 3 None
5 | 16A1-1.fcs 67.7 0.77 99.2 D16 Yes 1 1600V 10ms 3p
6 | 16A1-2.fcs 66.7 1.23 98.8 D16 Yes 2 1600V 10ms 3p
7 | 16A1-3.fcs 66.6 1 99 D16 Yes 3 1600V 10ms 3p
8 | 16A2-1.fcs D17 19.4 80.6 D16 Yes 1 2200V 20ms 1p
9 | 16A2-2.fcs 19.7 10.5 89.5 D16 Yes 2 2200V 20ms 1p
10 | 16A2-3.fcs 19.7 11.3 88.7 D16 Yes 3 2200V 20ms 1p
11 | 17A0-1.fcs 78 0.34 99.7 D17 Yes 1 None
12 | 17A0-2.fcs 78.9 0.43 99.6 D17 Yes 2 None
13 | 17A0-3.fcs 79.8 0.4 99.6 D17 Yes 3 None
14 | 17A1-1.fcs 51.4 8.73 91.3 D17 Yes 1 1600V 10ms 3p
15 | 17A1-2.fcs 48.2 6.69 93.3 D17 Yes 2 1600V 10ms 3p
16 | 17A1-3.fcs 48.8 5.47 94.5 D17 Yes 3 1600V 10ms 3p
17 | 17A2-1.fcs 18.7 9.38 90.6 D17 Yes 1 2200V 20ms 1p
18 | 17A2-2.fcs 18.7 9.8 90.2 D17 Yes 2 2200V 20ms 1p
19 | 17A2-3.fcs 20.9 7.37 92.6 D17 Yes 3 2200V 20ms 1p
20 | 16U0-1.fcs 0.18 50 50 D16 No 1 None
21 | 16U0-2.fcs 75.1 0.65 99.4 D16 No 2 None
22 | 16U0-3.fcs 77.1 0.89 99.1 D16 No 3 None
23 | 16U1-1.fcs 72.9 0.57 99.4 D16 No 1 1600V 10ms 3p
24 | 16U1-2.fcs 71.8 0.7 99.3 D16 No 2 1600V 10ms 3p
25 | 16U1-3.fcs 76.5 1.21 98.8 D16 No 3 1600V 10ms 3p
26 | 16U2-1.fcs 72.4 0.28 99.7 D16 No 1 2200V 20ms 1p
27 | 16U2-2.fcs 70.4 0.31 99.7 D16 No 2 2200V 20ms 1p
28 | 16U2-3.fcs 58.2 0.28 125 D16 No 3 2200V 20ms 1p
29 | 17U0-1.fcs 78.4 0.5 99.5 D17 No 1 None
30 | 17U0-2.fcs 76.3 0.51 99.5 D17 No 2 None
31 | 17U0-3.fcs 76.7 0.74 99.3 D17 No 3 None
32 | 17U1-1.fcs 73.1 15.2 84.8 D17 No 1 1600V 10ms 3p
33 | 17U1-2.fcs 73.8 15.4 84.6 D17 No 2 1600V 10ms 3p
34 | 17U1-3.fcs 73.2 13.1 86.9 D17 No 3 1600V 10ms 3p
35 | 17U2-1.fcs 61.4 3.42 96.6 D17 No 1 2200V 20ms 1p
36 | 17U2-2.fcs 57.8 0.67 99.3 D17 No 2 2200V 20ms 1p
37 | 17U2-3.fcs 56.1 0.48 99.5 D17 No 3 2200V 20ms 1p
38 |
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/donor-difference/gfp-titration.tsv:
--------------------------------------------------------------------------------
1 | Sample: Donor Concentration Replicate Activated Live | Freq. of Parent Activated Live/GFP+ | Freq. of Parent Activated Live/GFP- | Freq. of Parent Unactivated live | Freq. of Parent Unactivated live/GFP+ | Freq. of Parent Unactivated live/GFP- | Freq. of Parent
2 | 1801.fcs D18 0 1 0.57 0.7 99.3 85.9 0.9 99.1
3 | 1802.fcs D18 0 2 0.51 2.18 97.8 88.5 0.88 99.1
4 | 1803.fcs D18 0 3 0.39 1.04 99 89 0.77 99.2
5 | 1811.fcs D18 1000 1 0.6 2.34 97.7 91.7 1.4 98.6
6 | 1812.fcs D18 1000 2 0.41 0.48 99.5 92.8 0.98 99
7 | 1813.fcs D18 1000 3 0.62 1.28 98.7 90.5 1.12 98.9
8 | 1821.fcs D18 2000 1 0.6 16.2 83.8 90.5 11.7 88.3
9 | 1822.fcs D18 2000 2 0.67 18.4 81.6 88.9 11.8 88.2
10 | 1823.fcs D18 2000 3 0.54 18.8 81.2 91.6 10.9 89.1
11 | 1841.fcs D18 4000 1 0.54 22.6 77.4 91.6 12.3 87.7
12 | 1842.fcs D18 4000 2 0.66 22.5 77.5 90.9 13.2 86.8
13 | 1843.fcs D18 4000 3 0.74 24.5 75.5 89.3 13.4 86.6
14 | 1901.fcs D19 0 1 0.54 0.93 99.1 89.7 0.49 99.5
15 | 1902.fcs D19 0 2 0.41 0 100 89.4 0.53 99.5
16 | 1903.fcs D19 0 3 0.35 0.57 99.4 89 0.56 99.4
17 | 1911.fcs D19 1000 1 0.44 1.82 98.2 92.4 0.79 99.2
18 | 1912.fcs D19 1000 2 0.36 0.28 99.7 93.5 0.4 99.6
19 | 1913.fcs D19 1000 3 0.38 0.27 99.7 92.3 0.58 99.4
20 | 1921.fcs D19 2000 1 0.4 0 100 93.9 0.45 99.6
21 | 1922.fcs D19 2000 2 0.55 0.55 99.5 90.7 0.5 99.5
22 | 1923.fcs D19 2000 3 0.49 0.82 99.2 91.8 0.49 99.5
23 | 1941.fcs D19 4000 1 0.4 1.73 98.3 91.2 0.96 99
24 | 1942.fcs D19 4000 2 0.39 1.79 98.2 93.1 0.43 99.6
25 | 1943.fcs D19 4000 3 0.29 1.05 98.9 92.3 0.45 99.5
26 |
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/donor-difference/unactivated-flow.tsv:
--------------------------------------------------------------------------------
1 | Sample: Electroporation Donor Live/GFP+ | Freq. of Parent Live/GFP- | Freq. of Parent
2 | 40.fcs No D4 0.41 99.6
3 | 41.fcs Yes D4 27.4 72.6
4 | 120.fcs No D12 0.22 99.8
5 | 121.fcs Yes D12 13.4 86.6
6 | 150.fcs No D15 0.76 99.2
7 | 151.fcs Yes D15 1.85 98.1
8 | 160.fcs No D16 0.82 99.2
9 | 161.fcs Yes D16 0.95 99
10 | 170.fcs No D17 0.46 99.5
11 | 171.fcs Yes D17 0.26 99.7
12 |
--------------------------------------------------------------------------------
/analyses/mrna-electroporation/donor-difference/unactivated-flow2.tsv:
--------------------------------------------------------------------------------
1 | Sample: Donor Electroporation Live/GFP+ | Freq. of Parent
2 | 40.fcs D4 No 0.99
3 | 41.fcs D4 Yes 8.75
4 | 70.fcs D7 No 0.8
5 | 71.fcs D7 Yes 5.83
6 | 160.fcs D16 No 0.95
7 | 161.fcs D16 Yes 0.74
8 | 170.fcs D17 No 0.74
9 | 171.fcs D17 Yes 0.62
10 |
--------------------------------------------------------------------------------
/analyses/pbmc-direct-activation/pbmc-cd3.tsv:
--------------------------------------------------------------------------------
1 | Sample: IL2 Activation beads Live/CD3+ | Freq. of Parent Live/CD3+/CD4+ CD8+ | Freq. of Parent Live/CD3+/CD4+ CD8- | Freq. of Parent Live/CD3+/CD4- CD8+ | Freq. of Parent Live/CD3+/CD4- CD8- | Freq. of Parent Live/CD3- | Freq. of Parent
2 | P001.fcs - - 81.4 13.1 64.4 21.2 1.28 18.6
3 | P002.fcs - - 80.4 9.85 66 22.9 1.32 19.6
4 | P003.fcs - - 82.5 9.21 66.8 22.7 1.4 17.5
5 | P101.fcs 200 U/mL - 74.2 6.87 63.5 27.9 1.96 25.8
6 | P102.fcs 200 U/mL - 72.3 7.72 62.2 28.3 2.06 27.7
7 | P103.fcs 200 U/mL - 72.2 7.47 62.9 28.1 1.97 27.8
8 | P111.fcs 200 U/mL 1:1 91.7 17.5 69.3 12.8 0.99 8.3
9 | P112.fcs 200 U/mL 1:1 92.1 19.6 67.8 12 1.1 7.86
10 | P113.fcs 200 U/mL 1:1 91.5 18.3 69 12.1 1.04 8.54
11 |
--------------------------------------------------------------------------------
/analyses/pbmc-direct-activation/pbmc-counts.tsv:
--------------------------------------------------------------------------------
1 | Replicate Count IL2 Activation bead Live cells per ml Live cell fraction
2 | R1 1 - - 8.21E+04 0.45
3 | R1 2 - - 2.93E+04 0.5
4 | R2 1 - - 1.47E+05 0.76
5 | R2 2 - - 1.11E+05 0.95
6 | R3 1 - - 1.35E+05 0.77
7 | R3 2 - - 4.69E+04 0.8
8 | R1 1 200 U/mL - 1.35E+05 0.43
9 | R1 2 200 U/mL - 1.29E+05 0.42
10 | R2 1 200 U/mL - 1.52E+05 0.34
11 | R2 2 200 U/mL - 1.58E+05 0.42
12 | R3 1 200 U/mL - 1.52E+05 0.58
13 | R3 2 200 U/mL - 1.47E+05 0.47
14 | R1 1 200 U/mL 1:1 9.03E+05 0.65
15 | R1 2 200 U/mL 1:1 7.27E+05 0.64
16 | R2 1 200 U/mL 1:1 7.57E+05 0.58
17 | R2 2 200 U/mL 1:1 9.15E+05 0.68
18 | R3 1 200 U/mL 1:1 9.68E+05 0.67
19 | R3 2 200 U/mL 1:1 8.68E+05 0.71
20 |
--------------------------------------------------------------------------------
/analyses/plasmid-electroporation/opt_vs_rmpi1640-r_vs_t-day3.csv:
--------------------------------------------------------------------------------
1 | Media,Buffer,Electroporation,Replicate,GFP+ Percent,Live cells per ml
2 | OPTimizer,R,No,1,0.22,1.77E+06
3 | OPTimizer,R,No,2,0.25,1.87E+06
4 | OPTimizer,R,No,3,0.23,1.85E+06
5 | OPTimizer,R,Yes,1,93.3,1.29E+05
6 | OPTimizer,R,Yes,2,92.5,1.11E+05
7 | OPTimizer,R,Yes,3,93.7,8.53E+04
8 | OPTimizer,T,No,1,0.61,2.26E+06
9 | OPTimizer,T,No,2,0.37,1.75E+06
10 | OPTimizer,T,No,3,0.23,1.97E+06
11 | OPTimizer,T,Yes,1,40.7,4.69E+04
12 | OPTimizer,T,Yes,2,26.5,5.57E+04
13 | OPTimizer,T,Yes,3,27,4.70E+04
14 | RPMI1640,R,No,1,0.42,7.16E+05
15 | RPMI1640,R,No,2,0.5,6.04E+05
16 | RPMI1640,R,No,3,0.47,5.04E+05
17 | RPMI1640,R,Yes,1,69,2.67E+05
18 | RPMI1640,R,Yes,2,69.7,2.23E+05
19 | RPMI1640,R,Yes,3,67.8,2.17E+05
20 | RPMI1640,T,No,1,1.1,7.86E+05
21 | RPMI1640,T,No,2,0.71,7.33E+05
22 | RPMI1640,T,No,3,0.59,8.30E+05
23 | RPMI1640,T,Yes,1,64.2,2.82E+05
24 | RPMI1640,T,Yes,2,65.7,2.11E+05
25 | RPMI1640,T,Yes,3,64.2,2.38E+05
26 |
--------------------------------------------------------------------------------
/analyses/pre-post-activation-cell-counts/counts.tsv:
--------------------------------------------------------------------------------
1 | Donor Condition Day Count Total volume (ml) Live count per ml Live fraction Total cells
2 | D8 Thawed D1 1 4.5 2.09E+06 0.98 9.41E+06
3 | D8 Thawed D1 2 4.5 2.11E+06 0.98 9.50E+06
4 | D9 Thawed D1 1 4.5 1.71E+06 0.95 7.70E+06
5 | D9 Thawed D1 2 4.5 1.72E+06 0.96 7.74E+06
6 | D10 Thawed D1 1 4.5 7.80E+05 0.94 3.51E+06
7 | D10 Thawed D1 2 4.5 8.56E+05 0.94 3.85E+06
8 | D11 Thawed D1 1 4.5 2.79E+06 0.98 1.26E+07
9 | D11 Thawed D1 2 4.5 2.37E+06 0.96 1.07E+07
10 | D14 Thawed D1 1 4.5 3.16E+06 0.98 1.42E+07
11 | D14 Thawed D1 2 4.5 3.34E+06 0.96 1.50E+07
12 | D15 Thawed D1 1 4.5 2.96E+06 0.95 1.33E+07
13 | D15 Thawed D1 2 4.5 2.97E+06 0.96 1.34E+07
14 | D8 Pre-activation D2 1 4.5 2.35E+06 0.94 1.06E+07
15 | D8 Pre-activation D2 2 4.5 2.33E+06 0.94 1.05E+07
16 | D9 Pre-activation D2 1 4.5 1.83E+06 0.94 8.24E+06
17 | D9 Pre-activation D2 2 4.5 1.81E+06 0.94 8.15E+06
18 | D10 Pre-activation D2 1 4.5 6.10E+05 0.9 2.75E+06
19 | D10 Pre-activation D2 2 4.5 5.92E+05 0.9 2.66E+06
20 | D11 Pre-activation D2 1 4.5 2.55E+06 0.92 1.15E+07
21 | D11 Pre-activation D2 2 4.5 2.09E+06 0.85 9.41E+06
22 | D14 Pre-activation D2 1 4.5 3.00E+06 0.95 1.35E+07
23 | D14 Pre-activation D2 2 4.5 2.95E+06 0.95 1.33E+07
24 | D15 Pre-activation D2 1 4.5 3.16E+06 0.94 1.42E+07
25 | D15 Pre-activation D2 2 4.5 2.50E+06 0.95 1.13E+07
26 | D8 Debeaded D4 1 4.5 2.13E+06 0.96 9.59E+06
27 | D8 Debeaded D4 2 4.5 2.02E+06 0.97 9.09E+06
28 | D9 Debeaded D4 1 4.5 1.26E+06 0.9 5.67E+06
29 | D9 Debeaded D4 2 4.5 1.28E+06 0.91 5.76E+06
30 | D10 Debeaded D4 1 4.5 5.04E+05 0.83 2.27E+06
31 | D10 Debeaded D4 2 4.5 4.52E+05 0.88 2.03E+06
32 | D11 Debeaded D4 1 4.5 2.80E+06 0.9 1.26E+07
33 | D11 Debeaded D4 2 4.5 2.36E+06 0.9 1.06E+07
34 | D14 Debeaded D4 1 4.5 2.57E+06 0.93 1.16E+07
35 | D14 Debeaded D4 2 4.5 2.70E+06 0.96 1.22E+07
36 | D15 Debeaded D4 1 4.5 2.30E+06 0.91 1.04E+07
37 | D15 Debeaded D4 2 4.5 2.37E+06 0.89 1.07E+07
38 |
--------------------------------------------------------------------------------
/analyses/resazurin-assay/d7-cell-titration-data.tsv:
--------------------------------------------------------------------------------
1 | Row C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
2 | A 0.135 0.089 0.061 0.045 0.039 0.029 0.026 0.021 0.024 0.017 0.02 0.02
3 | B 0.144 0.102 0.069 0.055 0.041 0.036 0.031 0.027 0.023 0.02 0.023 0.02
4 | C 0.145 0.101 0.069 0.05 0.04 0.034 0.028 0.024 0.022 0.019 0.02 0.02
5 | D 0.147 0.098 0.067 0.054 0.042 0.034 0.029 0.026 0.023 0.021 0.024 0.021
6 | E 0.141 0.095 0.068 0.053 0.041 0.037 0.029 0.031 0.029 0.023 0.023 0.026
7 | F 0.142 0.099 0.062 0.051 0.038 0.032 0.029 0.026 0.021 0.02 0.022 0.02
8 | G 0.134 0.092 0.064 0.051 0.038 0.035 0.03 0.026 0.022 0.021 0.025 0.024
9 | H 0.167 0.112 0.08 0.073 0.068 0.056 0.054 0.053 0.056 0.054 0.048 0.041
10 |
--------------------------------------------------------------------------------
/analyses/tsubset-prevalence/cd3-cd4-cd8.tsv:
--------------------------------------------------------------------------------
1 | Sample: Donor Live/CD3+ | Freq. of Parent Live/CD3+/CD4+ CD8+ | Freq. of Parent Live/CD3+/CD4+ CD8- | Freq. of Parent Live/CD3+/CD4- CD8+ | Freq. of Parent Live/CD3+/CD4- CD8- | Freq. of Parent Live/CD3- | Freq. of Parent
2 | D8_CD4.fcs D8 50.8 0.36 71.2 24.5 3.91 49.2
3 | D9_CD4.fcs D9 85.4 1.21 41.1 55.4 2.37 14.6
4 | D10_CD4.fcs D10 60.9 1.25 49.4 41.9 7.43 39.1
5 | D11_CD4.fcs D11 84 1.16 57.4 37.4 4 16
6 | D12_CD4.fcs D12 96.6 0.91 75.3 21.2 2.63 3.37
7 | D15_CD4.fcs D15 85.9 1.23 75.3 18.8 4.67 14.1
8 |
--------------------------------------------------------------------------------
/analyses/tsubset-prevalence/naive-eff-central-memory.tsv:
--------------------------------------------------------------------------------
1 | Sample: Donor Live/CCR7+ CD45RO+ | Freq. of Parent Live/CCR7+ CD45RO- | Freq. of Parent Live/CCR7- CD45RO+ | Freq. of Parent Live/CCR7- CD45RO- | Freq. of Parent
2 | D8_CCR7.fcs D8 18.4 57.1 12.2 12.3
3 | D9_CCR7.fcs D9 12.9 22.8 15.9 48.4
4 | D10_CCR7.fcs D10 16.1 48 13.5 22.4
5 | D11_CCR7.fcs D11 24.3 54.4 7.29 14
6 | D12_CCR7.fcs D12 23.1 63.5 8.53 4.87
7 | D15_CCR7.fcs D15 35.6 39.4 12.6 12.4
8 |
--------------------------------------------------------------------------------
/conda.env:
--------------------------------------------------------------------------------
1 | channels:
2 | - bioconda
3 | - conda-forge
4 | - defaults
5 | - r
6 | dependencies:
7 | - bioconductor-biobase=2.38.0=r3.4.1_0
8 | - bioconductor-biocgenerics=0.24.0=r3.4.1_0
9 | - bioconductor-edger=3.20.1=r3.4.1_0
10 | - bioconductor-geoquery=2.46.3=r3.4.1_0
11 | - bioconductor-limma=3.34.1=r3.4.1_0
12 | - r-psych=1.7.8=r3.4.1_0
13 | - r-purrr=0.2.2=1
14 | - libedit=3.1.20170329=0
15 | - ncurses=5.9=10
16 | - pcre=8.39=0
17 | - pyzmq=16.0.2=py36_0
18 | - r-assertthat=0.1=r3.4.1_0
19 | - r-base=3.4.1=3
20 | - r-bh=1.65.0_1=r3.4.1_0
21 | - r-bindr=0.1=r3.4.1_0
22 | - r-bindrcpp=0.2=r3.4.1_0
23 | - r-bitops=1.0_6=r3.4.1_0
24 | - r-broom=0.4.2=r3.4.1_0
25 | - r-cellranger=1.1.0=r3.4.1_0
26 | - r-colorspace=1.3_2=r3.4.1_0
27 | - r-crayon=1.3.2=r3.4.1_0
28 | - r-curl=2.4=r3.4.1_0
29 | - r-dbi=0.6_1=r3.4.1_0
30 | - r-dichromat=2.0_0=r3.4.1_0
31 | - r-digest=0.6.12=r3.4.1_0
32 | - r-dplyr=0.7.4=r3.4.1_0
33 | - r-evaluate=0.10.1=r3.4.1_0
34 | - r-forcats=0.2.0=r3.4.1_0
35 | - r-foreign=0.8_67=r3.4.1_0
36 | - r-ggplot2=2.2.1=r3.4.1_0
37 | - r-glue=1.1.1=r3.4.1_0
38 | - r-gtable=0.2.0=r3.4.1_0
39 | - r-hms=0.3=r3.4.1_0
40 | - r-httr=1.2.1=r3.4.1_0
41 | - r-irdisplay=0.4.4=r3.4.1_0
42 | - r-irkernel=0.8.11=r3.4.1_0
43 | - r-jsonlite=1.4=r3.4.1_0
44 | - r-labeling=0.3=r3.4.1_0
45 | - r-lattice=0.20_34=r3.4.1_0
46 | - r-lazyeval=0.2.0=r3.4.1_0
47 | - r-locfit=1.5_9.1=r3.4.1_0
48 | - r-lubridate=1.6.0=r3.4.1_0
49 | - r-magrittr=1.5=r3.4.1_0
50 | - r-mass=7.3_45=r3.4.1_0
51 | - r-mime=0.5=r3.4.1_0
52 | - r-mnormt=1.5_5=r3.4.1_0
53 | - r-munsell=0.4.3=r3.4.1_0
54 | - r-nlme=3.1_131=r3.4.1_0
55 | - r-openssl=0.9.7=r3.4.1_0
56 | - r-pbdzmq=0.2_4=r3.4.1_0
57 | - r-pkgconfig=2.0.1=r3.4.1_0
58 | - r-plogr=0.1_1=r3.4.1_0
59 | - r-plyr=1.8.4=r3.4.1_0
60 | - r-r6=2.2.0=r3.4.1_0
61 | - r-rcolorbrewer=1.1_2=r3.4.1_0
62 | - r-rcpp=0.12.13=r3.4.1_0
63 | - r-rcurl=1.95_4.8=r3.4.1_0
64 | - r-readr=1.1.0=r3.4.1_0
65 | - r-readxl=1.0.0=r3.4.1_0
66 | - r-rematch=1.0.1=r3.4.1_0
67 | - r-repr=0.10=r3.4.1_0
68 | - r-reshape2=1.4.2=r3.4.1_0
69 | - r-rlang=0.1.2=r3.4.1_0
70 | - r-scales=0.4.1=r3.4.1_0
71 | - r-selectr=0.3_1=r3.4.1_0
72 | - r-stringi=1.1.5=r3.4.1_0
73 | - r-stringr=1.2.0=r3.4.1_0
74 | - r-tibble=1.3.3=r3.4.1_0
75 | - r-tidyr=0.6.1=r3.4.1_0
76 | - r-uuid=0.1_2=r3.4.1_0
77 | - r-xml=3.98_1.6=r3.4.1_0
78 | - r-xml2=1.1.1=r3.4.1_0
79 | - readline=7.0=0
80 | - zeromq=4.1.5=0
81 | - appnope=0.1.0=py36hf537a9a_0
82 | - bleach=2.1.1=py36h27c13d8_0
83 | - ca-certificates=2017.08.26=ha1e5d58_0
84 | - cairo=1.14.10=h913ea44_6
85 | - certifi=2017.11.5=py36ha569be9_0
86 | - curl=7.55.1=h2e228d0_4
87 | - dbus=1.10.22=h50d9ad6_0
88 | - decorator=4.1.2=py36h69a1b52_0
89 | - entrypoints=0.2.3=py36hd81d71f_2
90 | - expat=2.2.5=hb8e80ba_0
91 | - fontconfig=2.12.4=hffb9db1_2
92 | - freetype=2.8=h12048fb_1
93 | - gettext=0.19.8.1=h15daf44_3
94 | - glib=2.53.6=h33f6a65_2
95 | - graphite2=1.3.10=h233cf8b_0
96 | - gsl=2.2.1=h002c638_3
97 | - harfbuzz=1.5.0=h6db888e_0
98 | - html5lib=1.0.1=py36h2f9c1c0_0
99 | - icu=58.2=h4b95b61_1
100 | - ipykernel=4.7.0=py36h2f9c1c0_0
101 | - ipython=6.2.1=py36h3dda519_1
102 | - ipython_genutils=0.2.0=py36h241746c_0
103 | - ipywidgets=7.0.5=py36h5142716_0
104 | - jedi=0.11.0=py36_2
105 | - jinja2=2.10=py36hd36f9c5_0
106 | - jpeg=9b=he5867d9_2
107 | - jsonschema=2.6.0=py36hb385e00_0
108 | - jupyter=1.0.0=py36h598a6cc_0
109 | - jupyter_client=5.1.0=py36hf6c435f_0
110 | - jupyter_console=5.2.0=py36hccf5b1c_1
111 | - jupyter_core=4.4.0=py36h79cf704_0
112 | - krb5=1.14.2=h9a779f2_6
113 | - libcxx=4.0.1=h579ed51_0
114 | - libcxxabi=4.0.1=hebd6815_0
115 | - libffi=3.2.1=h475c297_4
116 | - libgcc=4.8.5=hdbeacc1_10
117 | - libgfortran=3.0.1=h93005f0_2
118 | - libiconv=1.15=hdd342a3_7
119 | - libpng=1.6.32=hd1e8b91_4
120 | - libsodium=1.0.15=hd9e47c5_0
121 | - libssh2=1.8.0=h9feafcd_3
122 | - libtiff=4.0.9=h0dac147_0
123 | - libxml2=2.9.4=hf05c021_6
124 | - llvm-openmp=4.0.1=hda82c8b_0
125 | - markupsafe=1.0=py36h3a1e703_1
126 | - mistune=0.8.1=py36h638d0ca_0
127 | - nbconvert=5.3.1=py36h810822e_0
128 | - nbformat=4.4.0=py36h827af21_0
129 | - notebook=5.2.2=py36h124cd7f_0
130 | - openssl=1.0.2n=hdbc3d79_0
131 | - pandoc=1.19.2.1=ha5e8f32_1
132 | - pandocfilters=1.4.2=py36h3b0b094_1
133 | - pango=1.40.11=h22f5747_0
134 | - parso=0.1.1=py36hc90e01c_0
135 | - pexpect=4.3.0=py36h427ab81_0
136 | - pickleshare=0.7.4=py36hf512f8e_0
137 | - pip=9.0.1=py36h1555ced_4
138 | - pixman=0.34.0=hca0a616_3
139 | - prompt_toolkit=1.0.15=py36haeda067_0
140 | - ptyprocess=0.5.2=py36he6521c3_0
141 | - pygments=2.2.0=py36h240cd3f_0
142 | - pyqt=5.6.0=py36he5c6137_6
143 | - python=3.6.4=hc167b69_0
144 | - python-dateutil=2.6.1=py36h86d2abb_1
145 | - qt=5.6.2=h9975529_14
146 | - qtconsole=4.3.1=py36hd96c0ff_0
147 | - r-haven=1.0.0=r3.4.1_0
148 | - r-modelr=0.1.0=r3.4.1_0
149 | - r-rvest=0.3.2=r3.4.1_0
150 | - r-tidyverse=1.1.1=r3.4.1_0
151 | - setuptools=36.5.0=py36h2134326_0
152 | - simplegeneric=0.8.1=py36he5b5b09_0
153 | - sip=4.18.1=py36h2824476_2
154 | - six=1.11.0=py36h0e22d5e_1
155 | - sqlite=3.20.1=h7e4c145_2
156 | - terminado=0.6=py36h656782e_0
157 | - testpath=0.3.1=py36h625a49b_0
158 | - tk=8.6.7=h35a86e2_3
159 | - tornado=4.5.2=py36h468dda9_0
160 | - traitlets=4.3.2=py36h65bd3ce_0
161 | - wcwidth=0.1.7=py36h8c6ec74_0
162 | - webencodings=0.5.1=py36h3b9701d_1
163 | - wheel=0.30.0=py36h5eb2c71_1
164 | - widgetsnbextension=3.0.8=py36h34759f8_0
165 | - xz=5.2.3=h0278029_2
166 | - zlib=1.2.11=hf3cbc9b_2
167 | - pip:
168 | - ipython-genutils==0.2.0
169 | - jupyter-client==5.1.0
170 | - jupyter-console==5.2.0
171 | - jupyter-core==4.4.0
172 | - prompt-toolkit==1.0.15
173 |
--------------------------------------------------------------------------------
/cover.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hammerlab/t-cell-guide/3b95f3abebed6e6042b353fb58639729fe8823d3/cover.png
--------------------------------------------------------------------------------