├── #100daysofmlcodeday - 3© harshit ahluwalia.png
├── 1_xc5CSmK9d8oeKYxKxenEGg.gif
├── AI vs ML.jpg
├── Beginner's Data Science Learning Plean for 2019 (1).png
├── Cheat Sheet.png
├── DAY 1-Working with Pandas.ipynb
├── Data Analysis Workflow.jpg
├── Data Science Resources.jpg
├── Data explorationin python using.png
├── Day 2 Simple Linear Regression.ipynb
├── Day 2 Simple Linear Regression.png
├── Day 2 images
├── image1.PNG
├── image2.PNG
├── image3.PNG
├── image4.PNG
├── image5.PNG
├── image6.PNG
└── image7.PNG
├── Day 2- image1.PNG
├── Day-5_K-Means_Clustering.png
├── How to Learn Machine Learning.jpg
├── How to learn machine learning in 30 days.jpg
├── LICENSE
├── Linear Regression Notes
├── Linear Regression Note - 1.jpg
├── Linear Regression Note - 2.jpg
└── Linear Regression Note - 3.jpg
├── Logistics Regression Notes
├── Logistics Regression Note - 1.jpg
├── Logistics Regression Note - 2.jpg
├── Logistics Regression Note - 3.jpg
├── Logistics Regression Note - 4.jpg
├── Logistics Regression Note - 5.jpg
├── Logistics Regression Note - 6.jpg
└── Logistics Regression Note - 7.jpg
├── Machine Learning Strategy.jpg
├── README.md
├── Top_Algorithms_for_Predications.png
├── Week 1 Quick Guide to learn Python for Data Science.jpg
├── Youtube first Video Infographic.jpg
├── collage.jpg
├── test.csv
└── train.csv
/#100daysofmlcodeday - 3© harshit ahluwalia.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/#100daysofmlcodeday - 3© harshit ahluwalia.png
--------------------------------------------------------------------------------
/1_xc5CSmK9d8oeKYxKxenEGg.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/1_xc5CSmK9d8oeKYxKxenEGg.gif
--------------------------------------------------------------------------------
/AI vs ML.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/AI vs ML.jpg
--------------------------------------------------------------------------------
/Beginner's Data Science Learning Plean for 2019 (1).png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Beginner's Data Science Learning Plean for 2019 (1).png
--------------------------------------------------------------------------------
/Cheat Sheet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Cheat Sheet.png
--------------------------------------------------------------------------------
/Data Analysis Workflow.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Data Analysis Workflow.jpg
--------------------------------------------------------------------------------
/Data Science Resources.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Data Science Resources.jpg
--------------------------------------------------------------------------------
/Data explorationin python using.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Data explorationin python using.png
--------------------------------------------------------------------------------
/Day 2 Simple Linear Regression.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Brief Understanding About SImple Linear Regression\n",
8 | ""
9 | ]
10 | },
11 | {
12 | "cell_type": "markdown",
13 | "metadata": {},
14 | "source": [
15 | "# Understanding the concept of simple linear regression\n",
16 | "In simple words linear regression is predicting the value of a variable Y(dependent variable) based on some variable X (independent variable) provided there is a linear relationship between X and Y.\n",
17 | " \n",
18 | "This linear relationship between the 2 variables can be represented by a straight line (called **regression line**)."
19 | ]
20 | },
21 | {
22 | "attachments": {},
23 | "cell_type": "markdown",
24 | "metadata": {},
25 | "source": [
26 | ""
27 | ]
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {},
32 | "source": [
33 | "Now to determine if there is a linear relationship between 2 variables we can simply plot a scatter plot of variable Y with variable X .If the plotted points are randomly scattered that it can be inferred that the variables are not related."
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | ""
41 | ]
42 | },
43 | {
44 | "cell_type": "markdown",
45 | "metadata": {},
46 | "source": [
47 | ""
48 | ]
49 | },
50 | {
51 | "cell_type": "markdown",
52 | "metadata": {},
53 | "source": [
54 | "When regression line is drawn some points will lie on the regression line other points will lie in the close vicinity of it. This is because our regression line is a **probabilistic model** and our prediction is approximate. So there will be some errors/deviations from actual/observed value of variable Y.\n",
55 | ""
56 | ]
57 | },
58 | {
59 | "cell_type": "markdown",
60 | "metadata": {},
61 | "source": [
62 | "But when the linear relationship exist between X and Y we can plot more than one line through these points. Now how do we know which one is the **best fit**?"
63 | ]
64 | },
65 | {
66 | "cell_type": "markdown",
67 | "metadata": {},
68 | "source": [
69 | ""
70 | ]
71 | },
72 | {
73 | "cell_type": "markdown",
74 | "metadata": {},
75 | "source": [
76 | "To help us choose the best line we use the concept of “least squares”.\n",
77 | " \n",
78 | "**Least Squares** \n",
79 | "Y=b0 + b1X + e \n",
80 | " \n",
81 | "This the mathematical representation for the regression line where\n",
82 | " \n",
83 | "Y-Dependant variable.\n",
84 | " \n",
85 | "X-Independent variable.\n",
86 | " \n",
87 | "b0 –intercept of the regression line.\n",
88 | " \n",
89 | "b1-slope of the regression line.\n",
90 | " \n",
91 | "e- error/deviation from actual/observed value of variable Y.\n",
92 | " \n",
93 | "Suppose we fit n points of the form (x1,y1) ,(x2,y2)…..(xn,yn)to the above regression line then\n",
94 | " \n",
95 | "\n",
96 | "\n",
97 | " \n",
98 | " \n",
99 | "Where ei is the difference between ith observed response value and the ith response value that is predicted by our regression line\n",
100 | " \n"
101 | ]
102 | },
103 | {
104 | "cell_type": "markdown",
105 | "metadata": {},
106 | "source": [
107 | "Our aim here is to minimize this error so that we can get the best possible regression line.\n",
108 | "\n",
109 | "Now this error ei can be positive or negative but we are only interested in the magnitude of the error and not in its sign. Hence we square the errors and minimize the sum of **squared errors(SSE)."
110 | ]
111 | },
112 | {
113 | "cell_type": "markdown",
114 | "metadata": {},
115 | "source": [
116 | "\n"
117 | ]
118 | },
119 | {
120 | "cell_type": "markdown",
121 | "metadata": {},
122 | "source": [
123 | "\n"
124 | ]
125 | },
126 | {
127 | "cell_type": "markdown",
128 | "metadata": {},
129 | "source": [
130 | "(In the above graph the green line is the best fit.)\n",
131 | "\n",
132 | "## How do we minimize the sum of squared errors(SSE)?\n",
133 | "Remember that b1 and b0 are still unknown to us.\n",
134 | "\n",
135 | "In the least square approach we minimize sum of squared errors(SSE) by choosing the value of b1 and b0 to be (not diving into math of it)"
136 | ]
137 | },
138 | {
139 | "cell_type": "markdown",
140 | "metadata": {},
141 | "source": [
142 | "\n"
143 | ]
144 | },
145 | {
146 | "cell_type": "markdown",
147 | "metadata": {},
148 | "source": [
149 | "# lets practice some code "
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": 1,
155 | "metadata": {},
156 | "outputs": [],
157 | "source": [
158 | "# Importing important libraries\n",
159 | "import numpy as np\n",
160 | "import pandas as pd\n",
161 | "import matplotlib.pyplot as plt"
162 | ]
163 | },
164 | {
165 | "cell_type": "code",
166 | "execution_count": 2,
167 | "metadata": {},
168 | "outputs": [],
169 | "source": [
170 | "#importing the training and test set\n",
171 | "training=pd.read_csv('train.csv')\n",
172 | "testing=pd.read_csv('test.csv')"
173 | ]
174 | },
175 | {
176 | "cell_type": "code",
177 | "execution_count": 4,
178 | "metadata": {},
179 | "outputs": [
180 | {
181 | "data": {
182 | "text/html": [
183 | "
\n",
184 | "\n",
197 | "
\n",
198 | " \n",
199 | " \n",
200 | " \n",
201 | " x \n",
202 | " y \n",
203 | " \n",
204 | " \n",
205 | " \n",
206 | " \n",
207 | " 0 \n",
208 | " 24.0 \n",
209 | " 21.549452 \n",
210 | " \n",
211 | " \n",
212 | " 1 \n",
213 | " 50.0 \n",
214 | " 47.464463 \n",
215 | " \n",
216 | " \n",
217 | " 2 \n",
218 | " 15.0 \n",
219 | " 17.218656 \n",
220 | " \n",
221 | " \n",
222 | " 3 \n",
223 | " 38.0 \n",
224 | " 36.586398 \n",
225 | " \n",
226 | " \n",
227 | " 4 \n",
228 | " 87.0 \n",
229 | " 87.288984 \n",
230 | " \n",
231 | " \n",
232 | "
\n",
233 | "
"
234 | ],
235 | "text/plain": [
236 | " x y\n",
237 | "0 24.0 21.549452\n",
238 | "1 50.0 47.464463\n",
239 | "2 15.0 17.218656\n",
240 | "3 38.0 36.586398\n",
241 | "4 87.0 87.288984"
242 | ]
243 | },
244 | "execution_count": 4,
245 | "metadata": {},
246 | "output_type": "execute_result"
247 | }
248 | ],
249 | "source": [
250 | "training.head()"
251 | ]
252 | },
253 | {
254 | "cell_type": "code",
255 | "execution_count": 5,
256 | "metadata": {},
257 | "outputs": [
258 | {
259 | "data": {
260 | "text/html": [
261 | "\n",
262 | "\n",
275 | "
\n",
276 | " \n",
277 | " \n",
278 | " \n",
279 | " x \n",
280 | " y \n",
281 | " \n",
282 | " \n",
283 | " \n",
284 | " \n",
285 | " 0 \n",
286 | " 77 \n",
287 | " 79.775152 \n",
288 | " \n",
289 | " \n",
290 | " 1 \n",
291 | " 21 \n",
292 | " 23.177279 \n",
293 | " \n",
294 | " \n",
295 | " 2 \n",
296 | " 22 \n",
297 | " 25.609262 \n",
298 | " \n",
299 | " \n",
300 | " 3 \n",
301 | " 20 \n",
302 | " 17.857388 \n",
303 | " \n",
304 | " \n",
305 | " 4 \n",
306 | " 36 \n",
307 | " 41.849864 \n",
308 | " \n",
309 | " \n",
310 | "
\n",
311 | "
"
312 | ],
313 | "text/plain": [
314 | " x y\n",
315 | "0 77 79.775152\n",
316 | "1 21 23.177279\n",
317 | "2 22 25.609262\n",
318 | "3 20 17.857388\n",
319 | "4 36 41.849864"
320 | ]
321 | },
322 | "execution_count": 5,
323 | "metadata": {},
324 | "output_type": "execute_result"
325 | }
326 | ],
327 | "source": [
328 | "testing.head()"
329 | ]
330 | },
331 | {
332 | "cell_type": "code",
333 | "execution_count": 6,
334 | "metadata": {},
335 | "outputs": [],
336 | "source": [
337 | "training.drop(training.index[[213]], inplace=True)"
338 | ]
339 | },
340 | {
341 | "cell_type": "code",
342 | "execution_count": 7,
343 | "metadata": {},
344 | "outputs": [],
345 | "source": [
346 | "# Importing thhe Imputer class used to impute the missing values\n",
347 | "from sklearn.preprocessing import Imputer\n",
348 | "imputer1=Imputer(missing_values='NaN', strategy='mean',axis=0)\n",
349 | "imputer1=imputer1.fit(training)\n",
350 | "training=imputer1.transform(training)"
351 | ]
352 | },
353 | {
354 | "cell_type": "code",
355 | "execution_count": 8,
356 | "metadata": {},
357 | "outputs": [],
358 | "source": [
359 | "# Train Test and Split\n",
360 | "x_train=training[:,:-1]\n",
361 | "x_test=testing.iloc[:,:-1].values\n",
362 | "y_train=training[:,1]\n",
363 | "y_test=testing.iloc[:,1].values"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "execution_count": 9,
369 | "metadata": {},
370 | "outputs": [
371 | {
372 | "data": {
373 | "text/plain": [
374 | "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)"
375 | ]
376 | },
377 | "execution_count": 9,
378 | "metadata": {},
379 | "output_type": "execute_result"
380 | }
381 | ],
382 | "source": [
383 | "#Training the model\n",
384 | "from sklearn.linear_model import LinearRegression\n",
385 | "regressor=LinearRegression()\n",
386 | "regressor.fit(x_train,y_train)"
387 | ]
388 | },
389 | {
390 | "cell_type": "code",
391 | "execution_count": 10,
392 | "metadata": {},
393 | "outputs": [
394 | {
395 | "data": {
396 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEXCAYAAABYsbiOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt8XHWd//HXJ7e2aYHStNxpwqVcRS6tChYRoQh0FVBRwBZKAauF1aKugtafrO5mAUWlilQqUEpbYSuygooodAFhEbBcLSD3phRqKYFC6b3J5/fHmZnMTM6ZOZPMZJKZ9/PxmEdyvnPOnO8wZT753j5fc3dERETC1JS7AiIi0n8pSIiISCQFCRERiaQgISIikRQkREQkkoKEiIhEUpCQimNml5rZhSV67Slm9sdin1sqZjbEzJ4zs6Zy1kMGLtM6CakkZjYKeALYG/g0cE3iqVpgELA+ea67D+vzCpaYmT0AXOvuN6SVfRvYzt0vKlvFZMBSS0IqzdnAHe6+wd0XuvuwRDA4EXg9eRwWIMysrq8r20cWAlPNrL7cFZGBR0FCKs2JwH1xTzazFWb2DTP7O4lWhpl9x8xeNrO1Zva0mZ2Udv55ZnZv4vc6M3Mz+6KZvWhmb5vZT8POTRyfaGbPm9k7ZvYzM/s/Mzs7ol6Hm9ljZvauma0ysx+mPTfezB4yszVm9oSZHZUovxw4AviFmb1nZlcCuHsbsA74YNz/LiJJChJSaQ4CnivwmtMJgst2iePngfGJ41bgV2a2Y47rJwJjgUOByWY2IfsEM9sBWAR8AxgJvELuL+2fAT90920Jus5uSbzO7sDtwCXACOBi4FYza0p0J/0V+FKitZQ+LvMscHCO+4mEUpCQSjMcWFvgNbPcfYW7bwBw90XuvtLdO939V8AyYFyO6y9193fcfRlwL3BIyDmfAJ5w99vcfQvwE+DNHK+5BRiT+PJf6+4PJ8rPAm539z8l6ncn8CRwQp73uJbgv41IQRQkpNK8DWxT4DWvph+Y2dlm9mSiO2cNsB/BX/9R/pn2+3ogbEB8l/T7eDBjZEWO15wKHAA8Z2aPmNnERHkzcEaybon6HZ54/Vy2AdbkOUekGwUJqTRPAfsUeE1qip+Z7QnMBqYDTe4+HPgHYL2s10pgt7T7GLBrZIXcn3P304EdgB8BvzGzwQSBZq67D097DHX35JhF1HTF/QlaHCIFUZCQSnMH8NFeXD+M4It2NcF3+XkELYne+j1wmJl9MjGLagYwKupkMzvTzEa6eyfwTqJOncB84FNmdpyZ1ZrZYDP7mJklWxKrgD2zXmt04n39rQjvQ6qMgoRUmhuBiWY2pCcXu/tTwE+BRwj++t8PeDjnRfFedxVwGvBjoB3YC3gc2BRxyUTgWTNbC1wBnObumxPjHp8C/h9BIFsOfJ2u/5evpKs76seJskkErY/NvX0fUn20mE4qjpn9F/CGu19Z7rpEMbNa4HXgVHe/v4T3GUKwuHC8u+caKBcJpSAh0kfM7ASCKaobgW8BXwD2dPeo1oRI2am7SaTvHAm8TDD19QTgFAUI6e/UkhARkUhqSYiISKQBn9Bs5MiR3tLSUu5qiIgMKI8++uib7h45DTtpwAeJlpYWlixZUu5qiIgMKGbWFuc8dTeJiEgkBQkREYmkICEiIpEUJEREJJKChIiIRFKQEBEZaBYuhJYWqKkJfi5cWLJbDfgpsCIiVWXhQpg2DdavD47b2oJjgEmTin47tSRERAaSmTO7AkTS+vVBeQkoSIiIDCTLlxdW3ksKEiIiA8no0YWV95KChIjIQNLaCo2NmWWNjUF5CShIiIgMJJMmwZw50NwMZsHPOXNKMmgNmt0kIjLwTJpUsqCQTS0JERGJpCAhIiKRFCRERCSSgoSIiERSkBAR6Y9y5WdS7iYRkSq0cGGQXqOtLZje6h6Up+dnApg6FbZs6Xpu6tTg9xLMeDJPVmKAGjdunGuPaxEZ8LIT94Vpbob33oP29u7PNTXBm2/Gvp2ZPeru4/Kdp+4mEZG+FtZdFJa4L1tbW3iAgOjyXippkDCz683sDTNbmlY2wszuMrMXEj+3T5Sbmf3UzF40s6fM7LBS1k1EpCySLYa2tqA7KdmV1NZW7pqFKnVL4gbghKyyi4HF7j4GWJw4BjgRGJN4TANml7huIiJ9LyrVd21teeqTR0mDhLv/BXgrq/hkYF7i93nAKWnlN3rgIWC4me1cyvqJiPS5qJTeHR3dE/dFmMGV7MHLtDOiiBULV44xiR3dfSVA4ucOifJdgVfTzluRKOvGzKaZ2RIzW7J69eqSVlZEpKiiUno3N8OUKTlbFLfzSQznp8xgGXtglH7iUX8auLaQstD/Au4+x93Hufu4UaNGlbhaIiJF1NoK9fWZZfX1MHEizJsXtCiyLKMZwzmZ2wHYiZWsZRgjeLvk1S1HkFiV7EZK/HwjUb4C2D3tvN2A1/u4biIipZGc0TR5ctcahyQzWLSo21jFZuoZyxL2YFmq7CkOYiW7MIx1pa8z5QkStwNTEr9PAW5LKz8rMcvpcOCdZLeUiMiAlj6jKczmzd2msH6P7zKIzTzGWACu4xwc4yCWhr1C0F1VAiVdcW1mNwFHAyPNbAVwCXAZsMjMzgWWA59NnH4HMBF4EVgPTC1l3URE+kycNRAJczmbc5ibOj6VX7OIz4X2x2eYOLHn9cuhpEHC3c+IeOrYkHMduKCU9RERKYsYayBeYk/25qWMsnZGdB93aG4Of7077uhNDSP1p4FrEZGB4/zzoa4uGE+orYVhw7on3JswIXg+h63UYnhGgLiFz+BY+MB0VMAp0WI8BQkRkUKdfz7Mnt01E6mzE9at61pBPXUqHHggLF6c82UmsYB6tqaOP8siHOMz3Fp4nUq0GE9ZYEVECjVnTu7nt2yBZ56JfPq3nMyn+G1G2WbqMwJGwUKmzhaDgoSISKF6+IW8kp3YhcxJm88zhjG82Ps6lWh2k7qbREQKVWDXjgP1bM4IEHP4Ao4VJ0A0NgaL9EpAQUJEJK7kYHUBLYmv8mNqcLYSrLI+kvtxjC9wbc/rUV8f7B9hFrQg5swpyYZDoO4mEZF4koPVMd3HURzNfRll62ikkQ29q0dzc9BqKFFQyKaWhIgIRO8bnSyPGSDWsB2GZwSIxzgUx3IHCDOYPj1/V9ayZX0WIEBBQkQkeiOg88+PvSGQAy28wvasSZVdysU4xqE8kb8O7nD11bB1a9CVFCaqvIQUJEREojYCmj07VjqNy7iIGpw2WgDYg5dxjIu5PH4d0lsQs2Z1zxQLQX6n9FZOH9CYhIhI1EZAeTzGoYzlsYyytxnOcN6Jvqi2Nnzge9q0rt+T3UkzZwatGLOgpQFdrZz080pILQkRqUxRYwxhRhS2w9t6hmB4RoC4j6NwLHeAgCBADBvWla6jtjYYi7j66szzJk0Kxh+am7sCRKoC64MA0gcUJESk8kSNMUQFio0bY7/0kdzPULq6oL7Gj3CMo7g/fv3eew+GDIEFC4KNhu64IzqYRbVyetj6KZSChIhUjvSNfcLGGCZPDv8iXpd/A59fch6G838cCcAgNtKJ8SP+rWd1Xb8eZszIH8yitjuNKi8yBQkRqQz5NvZJyteqyPI8YzCcafwyVbaSndjIkPA9HuoKGOptbw8PZuldSa2twYrqdCVcYZ1NQUJEKkMBG/ukWhUjRwaPEFuow3D25flU2W2chGPsxKrw1x06NJjC2lvpXUmTJgUrqpub+2SFdTYFCRGpDD3po29v77ZtKAS7wTXQtQ/1ZObjGCfxu9yvF6PbKqWxMXrdQ3ZXUnIQu7OzzxfTaQqsiFSG0aN7vfHOLXyGz3JLRtkW6qijyGm4k6k1IOj6Sm8B9WFXUhwKEiJSGVpbu3/hxvQau7Abr2WUvcSe7MkrxapdoLExvKto5sygJTR6dJ/mZYpD3U0iUhkmTYIpUwpK492JYXhGgLiBKThW/AARNZZQxq6kOBQkRKQyLFwYrDlIX82cXLAWss/0v/IzaulMHR/L3TjGFG4sbr3q6oL1EP0wAMShICEilSFsdpN78Bf8/Pmpndvu5lgM5+f8a+q0DQzmbo4rfp2am+GGGwZkcEhSkBCRgSG54Y9Z8PP88zOfz7UyedIk2h9dhuEcx92pp57iIBxjMJt6Xq+mpvB1DAO49ZBOQUJE+r/khj/JrqSOjuA4PVBE5F/y7Uew8/ANGcshfsTXcIyDWBq/DlHBYNassq5jKDXz7MRRA8y4ceN8yZIl5a6GiJRSri1Dk2sNQtY7fI/v8u98L3W8P8/wDAcWfv/krCTo1zORCmFmj7r7uHznaQqsiPQvCxd2fREPHRosUMv1x2xIcHiED/AhHskoe4dt2Za1hdcne7vQARoUeqps3U1m9lUze9rMlprZTWY22Mz2MLOHzewFM/tvM2soV/1EpI+kp/QeORLOOacr4d177+UOEFnW0YjhGQHiAcbjWGEBork5GFNwr4hxhd4oS5Aws12BrwDj3P19QC1wOnA58BN3HwO8DZxbjvqJSB9ZuBCmTu0KCu3tsHlzj15qHH9jGF1pMS7mUhxjPA/Gf5GGhooZcC6Wcg5c1wFDzKwOaARWAsdAak38POCUMtVNRPrCjBmwZUv+83L4OedjOI8SdK9vxxo6MS7l210nRc0+WrAgc8D5+usVHLKUZUzC3V8zsyuA5cAG4M/Ao8Aad0+mUFwB7Bp2vZlNA6YBjO6jnOoiUgIh4wlxPct+HMCzGWWr2IEdWJ154tChcNZZwcBzR0ewInvKlKodYyhUubqbtgdOBvYAdgGGAieGnBraGenuc9x9nLuPGzVqVOkqKiL9zmbqMTwjQPyBiTjWPUBAkLo7fSV2R0dwHHM/iWpXru6mCcAr7r7a3bcAtwIfBoYnup8AdgNeL1P9RKQvRKXKjnAStzGIrjGLc7gOx5jIH6Mv2rQp/8Y+EqlcQWI5cLiZNZqZAccCzwD3AKcmzpkC3Fam+olIIdJnKIVtDxrlkENinXYzp2E4v+OkVNlWarmO8wqva1If7RE90JUlSLj7wwQD1I8Bf0/UYw5wEfA1M3sRaAKuK0f9RKQA6duGRu3THHZNSwssXpzzpZezO4ZzBjenypbRjGMZyfl6ROOZsWjFtYj0TktL9GY/2QvRoCuo5Nj3oYOabhv9LOTzfJ6bCq/f0KFB8Mre2KeCUmf0RNwV18rdJCK9k6vbpq0tWByX3qrIsxf1NK7JCBAT+QOO9SxA1NfDNddUdG6lUlNLQkR6Z+TIeFNZk62KM88MXUV9J8dzIndmlG1kUMZAdUpjY/4d6MJaMZKiloSI9C9tbaEBYjUjMTwjQDzNATgWHiCGDu1qGUQx06rpIlGQEJHeKWRBXFqAcGAE7RlrG37Kl3Gs2yK5DBs2dG35GRUoNChdNAoSItLnvsN/UIPzNsEeEIfwOI7xZa7Kf3Fn2qym1tbwlButrUWsbXVTkBCR3Hq6BiLEXzkcw2nlO6mytQzjcQ6L/yK1tV2/T5qkQekS034SItJdck+HtrbgyzfZTZRcA5EUc9XyWoZ1S9X9EB/qtudDLOn3hyAgKCiUjIKEiGTKXseQPRNp/XqYPDkzeOTwfp7k77w/dfz/+D7f55LC61VbG9Tr6qsLv1Z6TEFCRDLlWceQkidAzOIrXMis1PEo3mAVO2KF1qehQSm8y0hBQkQy9TKn0VIO5CCWZpStZiQjKTAtuNmA30e6EihIiEim0aOj02zksIkGBrMpo+xPfJyPc1fhdWhuDqa4StlpdpOIZAqbVprHCfwxI0B8idk41rMAoSms/YpaEiLVLDmLaflyGBGsWeCtt4LfhwzJu1BuPpM5i/kZZR3UUBO+X1h+SqXR7yhIiFSr7FlM6QGhvT34i76pKTRQLKOZPViWUbZ81yPY/bWHCq+HAkO/pu4mkWqVbxbT+vXdAkQHNRieESD+m8/hCxaye93K3PdraOh+vGCBciz1cwoSIpUqfaX0yJHBI33VdIGD02czNyOF96e4Fcf43AFPd206lMs22wQtk+TKaE1rHRDU3SRSiXJ1JWWvms6loYE/bJ7AJ/hDRvEmGmhgSxB0Vq2Kt64i2YU1f76CwwCiloRIJYrTlZTHKnbANm/KCBD/YF8cCwIEBMn2CskCu3597FQe0j8oSIhUol4siHNgKO+xE6tSZbP5Eo6xL8+XtW7S9xQkRCpRD/dTuIjLqMFZz1AAPsRDOMaXuCb6omHDwtN1NzUVtW5SHgoSIpWowAVxDzAew/kBF6XK3mMoD3FE/ovdw9N1z5qlvR4qgIKEyECUb4+H9H0WcniHbTGcj/BAqmwJY3GMocQYjAZYty4YZ2htDcYoklNatddDRTCPkeq3Pxs3bpwvWbKk3NUQ6TvZM5egK2132MK0hQth6lTYsiXjZfblHzzPvqnj/+A7fIde/JXf2KggMICY2aPuPi7feWpJiAw0YTOX0jcFSu71UFcH558flFtXgu4r+DqGpwLE7iynE+tdgADNXKpQakmIDDRW8I4MADzJ+zmEJzPK3mJ7tmdNMWoVMMvcg1r6raK2JMxsHzNbbGZLE8fvN7Pv5LtORMpvA4MxPCNALOYYHCssQAwalP8czVyqOHG7m34JfAuCFTTu/hRwem9ubGbDzewWM/uHmT1rZkeY2Qgzu8vMXkj83L439xCpKMnB6gIcw2Ia2ZA6/gqzcIxjuKewe9fXB1Ndc9HMpYoUN0g0unv2juVbe3nvWcCd7r4fcDDwLHAxsNjdxwCLE8ci1SsZGMzgzDNj51uay9kYzj0cA0ANHXRQwywuDL8gO/leuuZmmDs3SCGe6xwNWlekuEHiTTPbi2AxJmZ2KpAn5WM0M9sWOAq4DsDdN7v7GuBkYF7itHnAKT29h8iAEpaMzywYhE4Ghhjjhy+xJ4ZzDnNTZa+xCx3Uhe/xUFsL06d3m/mUYtY1pTWqKym5i5wCREWKGyQuAK4B9jOz14ALgem9uO+ewGpgrpk9bmbXmtlQYEd3XwmQ+LlD2MVmNs3MlpjZktWrV/eiGiL9QHJKa1tbEAja2wvLhwRspRbD2ZuXUmW/4dM4xi5Rf89Nnw5bt8LVV0cHgPTysAV66mKqeLGChLu/7O4TgFHAfu5+pLsv68V964DDgNnufiiwjgK6ltx9jruPc/dxo0aN6kU1RPqBfMn48vg8C6lP6/09jZtxjE/zP7kvXLSo6/eJE8PPSS/X4riqFCtVuJkNAj4DtAB1lpiC5+7f7+F9VwAr3P3hxPEtBEFilZnt7O4rzWxn4I0evr5I/5fcOrTAfR2SfsvJfIrfZpRtpj4jYOSU3lq5447wc7LLkyuppWrE3U/iNuAd4FFI2+28h9z9n2b2qpnt6+7PAccCzyQeU4DLEj9v6+29RPqliFXQcaxkp25dSC+wd0ZXU8GiMrMqY2vVizsmsZu7n+buP3D3HyUfvbz3l4GFZvYUcAjwXwTB4TgzewE4LnEs0v9F5VKKKp8xo+AA4UAdWzICxLWci2M9CxDpWVrjjElIdXL3vA9gDnBQnHP7+jF27FgXKasFC9wbG92DYefg0djoPn1693KzzOOYjwv5cUbRR7mnsNeor+9+vGBB/veQfo5UFGCJx/iOjduSOBJ41MyeM7OnzOzviRaAiIQNPK9fHwzqRuVYiulePorhXMlXu16aIdzLx+K/SHKdQ/qA89y5mWMLGpSWCLFyN5lZaL5hd+/ZiFsRKXeTlF1NTcFf/vm8zXBG8HZG2eMc0i33UjeNjZmBSZlZJUJRcze5e1siIGwg6BpNPkSqS9iit6gAUVtb8Ms70MyyjABxOd/EsfwBAmDKlK771tYGxwoQ0gtxE/ydlBhMfgW4D1gG/LGE9RLpfwpd9Hb00UG67pgu5WJqcJYTNNz34kUc45v8MH4d582Djo7g946O4Dh7QyKRAsTtbnoSOAa4290PNbOPAWe4+7RSVzAfdTdJn2lpKWxNw9Chwa5teTzGoYzlsYyyNWzHdrzb/eSGBti8OX4doCtthkiaYm86tMXd24EaM6tx93sIpq2KVI9C1wzkCRDrGYLhGQHiL3wEx8IDBBQeIEBrHaRX4gaJNWY2DPgLwdqGWfQ+C6zIwFLENQPjeSBjD+mvcwWOZew1XTRa6yC9EDdInEwwaP1V4E7gJeCTpaqUSL8UluCuQHP4AobzIOMBGMJ6OjGu4BuFvVBNTffj6dOVgE+KLu7spnXu3uHuW919nrv/NNH9JDLwRK2Czid7LUFTU+aq5RyeZwyG80XmpMr+yY6sZyg92oz0xhsz1zTceGOQzVVrHaTIck69MLO1BLPykv+Ok6PcBri7b1vCuokUX3KGUnItQVtbcAyFf5kOGxb8lT53LixeHHrKFupoIDP9xu18kk/y+0Jrnikq0Z4S8EmRxZrd1J9pdpMUJGqGUq4ZQOnZWs0y10U0NsKGDaFrJT7DLdzKZ1LHZ3IjNzKld/XPV1eRmOLObsrXkhgMfAnYG3gKuN7dNWAtA1eubKfJYLB8eTDYm+zLT295ZAeDkH0gfs2pfI5fZ5RtoY46Onpbe40xSJ/Lt9JnHrAFuB+YCBwIzCh1pURKZvTo8JbEiBHh3VBDhsTeEGgFu7I7KzLKXmJP9uSV3tY60NwcBAh1J0kfyjdwfYC7T3b3a4BTgY/0QZ1ESqe1FerrM8uSx2FJ+mJsI9qJYXhGgJjHWTgWHiBiDnanNDbCggXaR1rKIl+QSI24qZtJKoZZ9+MC95ROuoCrqKUzdXwcf8YxzmJ+9EXt7fEDhWYoSZnl62462MySSz8NGJI41uwmGZhmzuy+annz5u4D0nnczbEcx90ZZRsYzOA4GzeawaxZ+XemGzpUA9RSdjmDhLvHSmNpZtu7+9v5zxQps6iB65gBop0RjCSz1fF33sf7eDp+Hdy7WgZRe1zX1MA118R/TZESibviOp/wSeIi/U0PU1Q4sBMrMwLET7gQxwoLEOkmTQpaCu7BmEP24jh1MUk/UKwg0aNFoyJ9JrnKOrnWoQDf47vU4KxiJwAOZCmOcSGzelaXsPGIZMDo7NQAtfQr8ZPd5zawV+RJZVu4MLP/P2bX0iN8gA/xSEbZu2zDNrzX87o0NATjESIDRLFaEiL9T7L1MHly7gHiLO8xFMMzAsSDHIFjvQsQzc1w/fVqJciAkjNImNkdZtYS43XU3ST9S/oucgUYy5KMQPBtWnGMI3go+qJ825RqnYMMYPlaEjcAfzazmWZWn+O8Y4tXJZEimDkz9kppgKu4AMN5jLEAbM9bdGK08p38F3fkSLehdQ4ywOUMEu6+CDgU2BZYYmb/ZmZfSz7SznurxPUUyZQv3XfM3dieZT8M58tclSp7g1G8RVP85nFUSyKZiE8BQgawOGMSW4B1wCBgm6yHSN9buBDOOSfoSnIPfk6eHMxaGjkyeOQZnN5MPYZzAM+myu7gRBxjFG+GXzR4cPimPtOmabMfqVj5xiROAJ4AGoHD3P0Sd/9e8tEnNRTJNmNG9F7P7e15U2x8ktsZRNf15/FLHONE7sx9340bwzf10WY/UsFy7idhZvcDX3L3Hq4WynNzs1pgCfCau3/CzPYAbgZGAI8BZ7p7zp3ftZ9EFSpwnUPSTZzO57kpo2wrtRm5l/Ia4PuviCTF3U8i35jER0oVIBJmQFp7Hy4HfuLuY4C3gXNLeG+pEsvZHcMzAkQbo3GssABRaPZWkQpQtnUSZrYb8C/AtYljA44BbkmcMg84pTy1k34t5pd1BzUYTjNdg9i/4gwcYzSvFnbP+notgpOqVM7FdFcC34TUn3JNwJq0lOQrgF3DLjSzaWa2xMyWrF69uvQ1lfIJm8U0a1b3PSGyfIE5GTvBfYLf4RhncHO8+zY1BY/kGMPcuRpjkKpUliBhZp8A3nD3R9OLQ04N7QB29znuPs7dx40aNaokdZR+IH1BXHIW07RpwXPnndc19TRtjOJOjsdwruULqbJNNPA7Top3z/r6YOHbm28GD+VSkipXrNxNhRoPnGRmE4HBBOswrgSGm1ldojWxG/B6meon/UHYgrj167umuyYHkd1ZzUh2ILNV+Qz7sz//iH8/bQ8q0k1ZWhLu/i13383dW4DTgf9190nAPQTbpAJMAW4rR/2kzCZMCIJArpQaiQDhBKuj0wPEVVyAY4UFCFCLQSREf0vwdxHwNTN7kWCM4roy10f62oQJsDje9iQz+U9qcNawPRDkXXKMC7i68Ps2Nxd+jUgVKFd3U4q73wvcm/j9ZeCD5ayP9KGFC4MupeXLg82AWltjBYi/cjgf5q8ZZWsZxjDWRV/U2Bidy0mro0Ui9beWhFSL5B4P2ak1cljLMAzPCBAP80Ecyx0gkiugkyuis2cuaXW0SKSytySkSs2YUdAeDwfxFEs5KHX871zCJXw//4XJVsKkSQoEIj2gloQUX64Mrcnn8uRXSrqSGRieChA78k86sXgBQq0EkV5TS0KKK7m2Idn/n762ATKfy2EpB3IQSzPK3qSJJmJkpW9o6L4DXNj4h4KHSF5qSUh++fZuSBe1tmHKlGDMIU+A2EQDhmcEiLuYgGPxAkTYFqFRi/JyvQ8RARQkJJ9cX7BhwSNqs59cu7clHM+dDGZT6ng6V+MYE4g3JZampvC1DlGBa+bMeK8rUsVypgofCJQqvMRaWsIXtTU1wYYNmV++jY0wZEjs8Yak+UzmLOZnlHVQQ014VpZoTU1BKo1sNTXhKb7NgrQbIlWoKKnCRSJbBu3t4X+dQ/dd2iK8QguGZwSIV9kNxwoPEMk6hXWHjR4dfn5UuYikKEhIboV+kba3B3+h10T/00qm8N6TV1Jli/gsjrEbrwUFPdxYKHS8obVV24uK9JCChOQW9QWba0+Hdesiu3GmcENGCu9P8xsc47OpbUTITN7XE9njDZMmaXtRkR7SFFjJLflFmj19FGJPZwX4Pf/CJ/l9Rtlm6qlna/eT4waIQYNg06bw57K7ybSYTqRH1JKoRoVMaYXgy3XZsqB10NoaBIwzzwwGqfPsEreKHTA8I0A8xz44Fh4g4ki2NDZujE7Mp/EGkaJQkKg2vVkzkJ1vqb0d3n03NFA4MIT17MSqVNk1TMMx9uGF6HsMG5a/Huk0WKjGAAAQjUlEQVQBQOMNIiWlIFFterJmINnymDy5e76lLVtg7dqMom9yOTU4GxkCwBE8iGNM45f56zdoUO7ZUdkBQOMNIiWldRLVJtesofR/C8k0Fm1tsQeS7+dIjuL+jLJ1NNLIhsLqN39+1xjIiBFB+VtvKZ2GSBHFXSehgetqU1sbvvo5uV80dM+/lCdAvMO2DOedjLIljGUsjxVev9GjNcgs0o+ou6naRKXHSC8P65KKsA/PZQSIVr6NYz0LEBpLEOl3FCSqTdRsoPTyqFXWaX7ANzCcF9gHgBZeoRPj21za83ppLEGk31GQqDYTJ4aXt7V1TYfNMX30CQ7GcC7iB6myt9ieV9iTHq2Rrq+HBQvCE/OJSNkpSFSy9PUQI0cGj9mzo89vawumuA4d2u2pDQzGcA7liVTZPRyNY2zPmnj1CWvFbNmibKwi/ZiCRKXKXg/R3h4vO+uWLfDMMxlFR3NPxgylC/kJjnE098Wvz7HHRndjxejeEpHy0OymSlXA4HOU6ziH87gudVzPZjYyOH+G1oYG2Ly56/jYY+Huu6PTjmt1tEi/pSBRqXrx1/k/2ZGd+WdG2evs3K0sVG1tdD6l1tbu+Z40o0mkX1N3U6VqaCj4kg5qmMBdGcHgfzgFx+IFCMi9A51WR4sMOAoSlSY5WB3113yEWXyFOjpYzAQArmQGjnEKtxV2/6gptknpyQI1o0mk31N3UyXJXikdwyN8gA/xSOr4OP7MHzmRWnq4rWfUFFsRGZDK0pIws93N7B4ze9bMnjazGYnyEWZ2l5m9kPi5fTnqNyCkT2/dZpvg5+TJsQPE2wxnMBsyAsRKduLPHN/zAAFwxx09v1ZE+p1ydTdtBb7u7vsDhwMXmNkBwMXAYncfAyxOHEu27Omt770Xe6MeB07jZkbwNpsYDMBijsGxjLTePabprCIVpSxBwt1Xuvtjid/XAs8CuwInA/MSp80DTilH/fq9Hk5vvYEp1OAs4jQALuHfcYxjuKfwOkTtYa3prCIVpexjEmbWAhwKPAzs6O4rIQgkZrZDxDXTgGkAo6vxS6nAv9aXciAHsTR1PJYlPMiHaWBLjqtyaGiAc8+FefM0nVWkwpV1dpOZDQN+A1zo7u/Gvc7d57j7OHcfN2rUqNJVsD8I22o0ucdCHu8xlF1ZkREgXqGFJXyg5wGiuRmuvx6uvlrTWUWqQNk2HTKzeuD3wJ/c/ceJsueAoxOtiJ2Be91931yvU9GbDoXNVoqxAZAD53M1v2B6quw2TuIkftf7Og3wTapEJBB306FyzW4y4Drg2WSASLgdmJL4fQoUOkl/AAtrMYSNPeT5kr6VT1GDpwLEV5iFY8UJECF7WYtIZSvXmMR44Ezg72aWTCv6beAyYJGZnQssBz5bpvr1rewWQ1tbwesdXmYP9uLl1HELr/A0Bxa2dWgu9fUwa1ZxXktEBoyyBAl3fwAitx84ti/r0i+EtRjWr4/eajTNJhoYxxKWclCq7Bn2Z3/+0bs6JVsN2ltapKopLUephHUfRYmardTREYxBRJjJfzKYTakAMZ/JONb7ANHcDG++GTyUPkOkqpV9CmxFiuo+gvAv29Gjw1NoQzAGkTVYfRcT+Dh3pY4nM58bOatnO8Nl0zRWEUmjlkQpRHUfzZwJ558PdXXBF39dXXCcL9+ROzQ18Xp9M4anAsS2vMPbDGd+nADR1JR/4FnTWEUkS9mmwBZLv5wCW1NT2FTRYcOC1BoRtlLLBO7mPo5OlS1hLGN5LN7rT58erGuA6I1/mpuDbiURqQr9egpsxSt0FXiOAHEFX6eerakAcdVV4Fj8AAGZSfdaW4MupXTqYhKRCAoSpRD2RVygv3I4hvMNrgBgIn+gY8QoLrhkZOEvlj4wro1/RKQAGrguheQX7syZ0QPSEdoZwY6soiPto1nFDuzAanirh/XJbtlMmqSgICKxqCXRG7mmuSZ3YIupE+PT/IaRtKcCxH0chWNBgOgpdSWJSC8oSPRU9p4OyWmuyUCRDCAx/JLzqKWT/+HTAPwnM3GMo7i/Z3VLrq1QV5KI9JK6m+JI5lFavrxr9XGuaa4QK63GUxzEwTyVOv4QD3E/H6GerT2va3OzVkeLSNFoCmw+YZlYGxt7tOlP0lqGsRcvsZqu7TKWszu7s6I3NQ1aEJ292HpURKqGpsD2VrK7KGzf6GRepQI5cB6/ZFvWpgLEH5iIY70PEKBd4USk6BQkwqSPN0Tp6ChomuuvOZUanOs4D4Cv8SMcYyJ/7G1tAxqgFpES0JhEmLh7SG/YEKyWXrcucoX1i+zFGF5MHY/heZ7kYIawsVi11TiEiJSMgkSYuHtIuwerpadPh0WLoL099dRGBnEIT/Ac+6XKnmMf9uGF4tZV6TREpITU3RSm0L79a66BjV0tg4u4jCFsTAWIX3EGjhU/QKiLSURKTEEibEFcoWk1Ojth3Tru5HgM5wdcBMBUrqcT4wxuLn69tQZCRPpAdQeJqAVxAFOmxJ7BtIJdMZwTuROAJt7kHbbles4tzh4P6RobYcECbQQkIn2iusckohbEzZgRDErn2Tp0C3Uczb08yPhU2eMcwiE8Wbw6ahtRESmj6m5JRA1Qt7fnnd10GRfRwJZUgPgFX8Sx4gWIZItB24iKSBlVd0si17ahER5gPB/hgdTxyfyWW/k0NfRg5XpNDQwZEgSkESOCMrUYRKQfqe4gMXEizJ7dvXzQINi0KaNoNSO7ZWNdzUhG0k6PaOqqiAwA1d3dlL5jW7q0ANGJcRK3ZQSIBxiPY/EDhGUNX2vqqogMENUZJJLTXvN0Nf2CL1JLJ7/jJCAYh3CM8TxY2P3clb5bRAak6utuWrgwmN6aY+bS4xzCYTyeOj6S+7mHj1FH7tlOObmri0lEBpzqCxJf/GJkgHiXbWhhGW8zIlW2gl3ZldeLc++46T5ERPqJftfdZGYnmNlzZvaimV1c9BusW9etyIGzmct2vJsKEHdyPI4VL0CAUnmLyIDTr4KEmdUCPwdOBA4AzjCzA0p5z5s4nRqceZwNwMVcimMcz5979oLNzcH6huy0HhqsFpEBqL91N30QeNHdXwYws5uBk4Fnin2j19k5o5VwIEtZwjgGsynHVXkkA0FyUDp7y1MNVovIANPfgsSuwKtpxyuAD2WfZGbTgGkAo3vYhXN6WtK9F9ibvXkp+mSzyP0iUrL3dJg0SUFBRAa8ftXdBKH58Lp9O7v7HHcf5+7jRo0a1aMb/YnjeYUWHMsdIIIbRj+nhHsiUsH6W5BYAeyedrwbFHPkuMsQNtJCYSk5utGaBxGpcP2tu+lvwBgz2wN4DTgd+Hx5qxRBax5EpAr0q5aEu28F/hX4E/AssMjdny7qTZKpt8Nkp8+IoplKIlIl+lWQAHD3O9x9H3ffy92L/038uc/lunn+QKEuJhGpIv2tu6n0opL6JbkHKbw7O7s/19SkLiYRqSr9riVRcnFSY3R2Qn19Zll9PcyaVZo6iYj0U9UXJOKsq2huhrlzg59mXcfqYhKRKlN9QaK1tXvKjHTpq6aXLdO2oSJS1aovSEyaFAw8J1sJTU3BI9li0KC0iEhK9Q1cg1JmiIjEVH0tCRERiU1BQkREIilIiIhIJAUJERGJpCAhIiKRzPNtptPPmdlq6HHO75HAm0WszkCg91wd9J6rQ2/ec7O7592QZ8AHid4wsyXuPq7c9ehLes/VQe+5OvTFe1Z3k4iIRFKQEBGRSNUeJOaUuwJloPdcHfSeq0PJ33NVj0mIiEhu1d6SEBGRHBQkREQkUtUGCTM7wcyeM7MXzezictenFMxsdzO7x8yeNbOnzWxGonyEmd1lZi8kfm5f7roWk5nVmtnjZvb7xPEeZvZw4v3+t5k1lLuOxWRmw83sFjP7R+KzPqIKPuOvJv5NLzWzm8xscKV9zmZ2vZm9YWZL08pCP1cL/DTxffaUmR1WrHpUZZAws1rg58CJwAHAGWZ2QHlrVRJbga+7+/7A4cAFifd5MbDY3ccAixPHlWQG8Gza8eXATxLv923g3LLUqnRmAXe6+37AwQTvvWI/YzPbFfgKMM7d3wfUAqdTeZ/zDcAJWWVRn+uJwJjEYxowu1iVqMogAXwQeNHdX3b3zcDNwMllrlPRuftKd38s8ftagi+PXQne67zEafOAU8pTw+Izs92AfwGuTRwbcAxwS+KUSnu/2wJHAdcBuPtmd19DBX/GCXXAEDOrAxqBlVTY5+zufwHeyiqO+lxPBm70wEPAcDPbuRj1qNYgsSvwatrxikRZxTKzFuBQ4GFgR3dfCUEgAXYoX82K7krgm0Bn4rgJWOPuWxPHlfZZ7wmsBuYmutiuNbOhVPBn7O6vAVcAywmCwzvAo1T255wU9bmW7DutWoOEhZRV7FxgMxsG/Aa40N3fLXd9SsXMPgG84e6PpheHnFpJn3UdcBgw290PBdZRQV1LYRL98CcDewC7AEMJuluyVdLnnE/J/p1Xa5BYAeyedrwb8HqZ6lJSZlZPECAWuvutieJVyaZo4ucb5apfkY0HTjKzZQRdiMcQtCyGJ7oloPI+6xXACnd/OHF8C0HQqNTPGGAC8Iq7r3b3LcCtwIep7M85KepzLdl3WrUGib8BYxKzIRoIBr1uL3Odii7RH38d8Ky7/zjtqduBKYnfpwC39XXdSsHdv+Xuu7l7C8Fn+r/uPgm4Bzg1cVrFvF8Ad/8n8KqZ7ZsoOhZ4hgr9jBOWA4ebWWPi33jyPVfs55wm6nO9HTgrMcvpcOCdZLdUb1Xtimszm0jwV2YtcL27t5a5SkVnZkcC9wN/p6uP/tsE4xKLgNEE/8N91t2zB8gGNDM7Gvg3d/+Eme1J0LIYATwOTHb3TeWsXzGZ2SEEA/UNwMvAVII/ACv2Mzaz7wGnEczgexw4j6APvmI+ZzO7CTiaIB34KuAS4LeEfK6JYHkVwWyo9cBUd19SlHpUa5AQEZH8qrW7SUREYlCQEBGRSAoSIiISSUFCREQiKUiIiEgkBQkREYmkICGSJpFe/RUzG5E43j5x3BxybouZbTCzJ8zsGTP7hZnVJMqXdn91kYFHQUIkjbu/SpBm+bJE0WXAHHdvi7jkJXc/BHg/Qdr5AZ15VCSbgoRIdz8hSPtwIXAk8KN8FySyjz4I7J1enmhV3G9mjyUeH06UH21m96ZtFrQwsWoWMxtrZveZ2aNm9qdipXwW6Ym6/KeIVBd332Jm3wDuBD6e2HMkJzNrJMgh9N2sp94AjnP3jWY2BrgJGJd47lDgQIJEbP8HjDezh4GfASe7+2ozOw1oBc4pwlsTKZiChEi4Ewn2KngfcFeO8/YysycI0jLf5u5/TOzdkVQPXJXIr9QB7JP23CPuvgIg8RotwJrkPRMNi9pEPUTKQkFCJEviC/04gi1fHzCzm3Nk1EyOSUT5KkFytoMJunc3pj2Xnnyug+D/RwOedvcjelp/kWLSmIRImsS4wGyCDZqWAz8k2AWtp7YDVrp7J3AmQcsgl+eAUWZ2RKI+9WZ2YC/uL9IrChIimb4ALHf3ZBfT1cB+ZvbRHr7e1cAUM3uIoKtpXa6TE+MfpwKXm9mTwBMEG+qIlIVShYuISCS1JEREJJIGrkXyMLODgPlZxZvc/UPlqI9IX1J3k4iIRFJ3k4iIRFKQEBGRSAoSIiISSUFCREQi/X876ABCH6/W+gAAAABJRU5ErkJggg==\n",
397 | "text/plain": [
398 | ""
399 | ]
400 | },
401 | "metadata": {},
402 | "output_type": "display_data"
403 | }
404 | ],
405 | "source": [
406 | "# PLotting the training set\n",
407 | "plt.scatter(x_train,y_train, color='red')\n",
408 | "plt.plot(x_train,regressor.predict(x_train),color='blue')\n",
409 | "plt.title('(Trainig set)')\n",
410 | "plt.xlabel('X_Plane')\n",
411 | "plt.ylabel('Y_Plane')\n",
412 | "plt.show()"
413 | ]
414 | },
415 | {
416 | "cell_type": "code",
417 | "execution_count": 11,
418 | "metadata": {},
419 | "outputs": [
420 | {
421 | "data": {
422 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEXCAYAAABYsbiOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYXGWZ///33UtCOgmSdIIgkA4giCBoIDJsDoygQlBhHBGdJEQQwyT6FVC+isZlRo3iKGLUIRBlCaS/IoMbF7+IMogbo2gCiMgiAdIhGKTJwpKFTrrv3x/n1HKqz6k61V3VVV31eV1XXd3nqbM8bWHdebb7MXdHREQkTkutKyAiIvVLQUJERBIpSIiISCIFCRERSaQgISIiiRQkREQkkYKENB0z+7KZXVTrelSCmXWY2aNmNqnWdZHGpCAhTcXMpgLnAFeb2Wwzeyl8bTezgbzjl4bxjEPMbFflah259+/NbE7m2N23Ad3AJdV4noiChDSb9wMr3X27u3e7+wR3nwCcBvwtcxyWjRbdwAfMrK3WFZHGoyAhzeY04FdpTzaz/czsJ2b2nJk9YWb/lvfe8WZ2n5m9YGbPmNmXw7d+DbTmtUpmxNw36VrM7E1mdo+ZbTGze83s+LD8cuCNwHfD+14O4O6PAzuBo4bwv4dIUQoS0mwOBx5Nc6KZtQIrgf8FXgWcCnzKzE4MT/k28CV33x04CPhxWP6PQH9eq+S+mNvHXmtm08PfFwGTgU8DPzazSe7+MeCPwPnhfT+Wd7+Hgden+btEyqEgIc1mD+DFlOeeAOzm7l9x9z53/ytwHfDe8P2dwMFm1unuL7r7PWXUI+naecAP3f1/3H3A3VcCDwFvLXG/F8O/TaSiFCSk2WwGJqY8twuYHnb7bDGzLcBHgb3C9+cBRwB/DbuH3lZGPZKu7QLmFDxzJkFLppiJwJYyni+Siga6pNk8ABxM0G1TylPAI+5+eNyb7v4wcHbYLfVe4IfhVNSSqZWLXPsU8F13/z9JlyaUvxb4U6nnipRLLQlpNiuBE0ueFfgtgJldZGa7mVmbmR1hZkeG5eeE3UX9wPMEX+ADwLMEA9fTkm5c5NrlwFlmdrKZtZrZuPD3TOvl78ABBfc6ABgDrE75d4mkpiAhzeYGYJaZjSt1orvvBGYBxwE9QC+wFMhMj3078KiZvQh8GXiPu+9y983AfwKrwy6jN8TcPunaJ4B/Af4DeC587oXk/r96BXCOmW02s/8My2YD17h7VdZmSHMzbTokzcbMvgQ86+7fqHVdhsvMOoD7gGPdfVOt6yONR0FCREQSqbtJREQSKUiIiEgiBQkREUk06tdJTJkyxadPn17raoiIjCqrV69+zt2nljpv1AeJ6dOns2rVqlpXQ0RkVDGznjTnqbtJREQSKUiIiEgiBQkREUmkICEiIokUJEREJJGChIjIaNPdDdOnQ0tL8LO7u2qPGvVTYEVEmkp3N5x7LuzcGRz39ATHALNnV/xxakmIiIwmF16YCxAZO3cG5VWgICEiMpps3Fhe+TApSIiISCIFCRGR0WTChPLKh0lBQkRkNBk7trzyYVKQEBEZTTYl7FKbVD5MChIiIqPJtGnllQ+TgoSISL1Is0hu8WLo6IiWdXQE5VVQ1SBhZtea2bNm9mBe2WQzu8PMHgt/TgrLzcy+aWZrzOwBMzuymnUTEakr3d0wf36wOM49+Dl//uBAMXs2LFsGXV1gFvxctqwqC+mg+i2J64FTC8ouBe5094OAO8NjgNOAg8LXfGBplesmIlI/Fi2CbduiZdu2BeWFLYy77x6xalU1SLj7r4HC0ZQzgOXh78uBM/PKb/DA74E9zGzvatZPRKSqysmxtG5dfHmmRZHfwli6lMd7Wou3OCqkFmMSr3T3DQDhzz3D8n2Ap/LOWx+WDWJm881slZmt6u3trWplRUSGJG33UUbSwHNra6SF8Qv+CcN5NY9zO28LCjMtjiqop4FriynzuBPdfZm7z3T3mVOnltzHW0Sk8kq1Eop1H8VJGpDu7wdgM3tgOCfzCwCm0Mvb+Fnu3KSWyDDVIkj8PdONFP58NixfD+yXd96+wN9GuG4iIqWlaSUkfWmvWxcNMFOmBK+5c7MBIevYY/HJnZzPd5jM5mzx7/kHetkz+i/rBpoCeyswL/x9HvCTvPJzwllOxwDPZ7qlRETqSppWQtKXtjvMmZMLMBs3Bi93ePnlyKk/vbOdlk3PcQ3nA/AZPo9j/AN/iN6zilNgq7qfhJl9DzgJmGJm64HPAZcBN5vZB4B1wFnh6SuBWcAaYBtwbjXrJiIyZMVaCRmLFweti8JgkkIvU9iT3HjrNHp4hEMYx47oiWZBMFq8uGpTYKsaJNz9fQlvnRxzrgMfqmZ9REQqYtq0oCUQV56R+dJetCj+3BgOjKGPXbRny+7jDbyBP8VfMDCQssJDV08D1yIio8PixdDePri8pyc3xtDSEmwE9NJLqW75ZS6lBc8GiPdzHY4lB4jOzqHWvizavlREZCgsbkIm0c1/UmwE9Biv5mAei5RtpYMOtidf1N4OS5akqeWwqSUhIlKuRYugr29YtxjAMDwSIO7iJBwrHiC6uuC666o2BlFIQUJEpFzDXJPwab5AK7nxhH+lG8c4iV8Vv9AM1q4dsQAB6m4SESlf0sB1CQ9yGIfzYKRsB2MZS8pWSZXWQhSjloSISFqZRXBlBohdtGJ4JED8jmNxLD5ATJgwounAi1GQEBFJo7sbzjuvdIDo7IzMPLqIK2hnV/b4Aq7Cu6ZzzIoPw4oVMGZM9PoxY+Cqq0Y0HXgx6m4SEUnjwgvTDVZv2gTjx7OKo3gjqyJv9dFOu/XD2oL1DYsWBeMchQvjahAUCqklISJSKC55X4rprAB93oa99GIkQNzLDBwLWhTTpkXvv2hREBgGBkZ8UDoNBQkRkXxJyftSOI9rImMMH+NrOMYM7g8KOjpg1qzyUojXmIKEiEi+pOR9RdzNcRjOdZyXLdtFK1/j/+ZOyowrrFxZXgrxGtOYhIhIvjLWQOxg7KCkew/xWl7LI9ETOzuDriQIUoIP87kjSS0JEWlM5Wwdmi9pLUJBGo6zuDkSIP6dz+HY4ACR9v41WAORhoKEiDSecrcOzTdrVny5Bxtl/g8nYzi3ZHc5CFJsfI7PJ99z06bc70k70NVgDUQaChIi0njK3To038qVscUvMR7DeQv/ky1bw4E4Frv3ckRhCvE6WQORhoKEiDSeNJsClXHt27idieRSfn+VS3CMA3mi9P3iWgmzZwdjFHU67TWfBq5FpPGk2RQoxbW3cTrv4LbsWxN5ged5RemWQ0ZXV1V3jRsJakmISOMZTr//4sU8P24vDI8EiHXsxwtxAcIsSK+R3320YkUwhlHnrYQ0FCREpPHMng3z5kFra3Dc2hocz55dctbTMd+azR7bN2SPr2QBjrEf6+OfNW3aqOo+Kpe6m0Sk8XR3w/Ll0N8fHPf3B8cQ/MwMauetpr65fTZnn527xT77wPp3LoSlVyU/p45nJVWKeTita7SaOXOmr1q1qvSJItI8ktJ5t7bmAkfoOTqZynORsg3f/gF7ffVjwSB2Rwds3x60ElpaYNy4IMgUJuMbZcxstbvPLHWeWhIi0niSZjEVBIjX8hCP8Nrs8fLlcE5ruMYi09rYujUIFHU8TbWaNCYhIo0naRZTS/CVdz3zMDwbIA5rfRh3OOcchrfGogEpSIhI40mY3fTM2C4M51yuzxY/RycP7vGm0rvO1WlupWpTkBCRxhOzqvlVY3rZe3tu8dt/824co5NNwV4RmTQeSeo0t1K1KUiIyOgwxIR9/+ULsZ61bNgStCyO424c4938IHdSa2vxdOBNMIspiQauRaR+dXcHYwE9PUGLIDMbM38joLjB5O5u1p3/ebp2rI0Ubznvo7zipqshPx50dBQPEA2wano4ataSMLOLzewvZvagmX3PzHYzs/3N7B4ze8zMvm9mY0rfSUQaUn4mV8gFiIyEwWR3GDf3X+ja8Wi27DZOxzFececP45PrdXXF16Grq+EWx5WrJkHCzPYBPgLMdPfXAa3Ae4GvAFe4+0HAZuADtaifiNSBuFlGhQoGk7/61aA3aofvBsCp/BTHOJ2VufPjVkePsvTdI6mWYxJtwDgzawM6gA3Am4FbwveXA2fWqG4iUiulZhnlmzYNurtZs8+JmMHHP5576yXG81NmDT4/zihL3z2SajIm4e5Pm9nXgHXAduDnwGpgi7vvCk9bD+xTi/qJSI10FyxkK6ajg4HTTqd1zmwg92V+J2/mzdwVjmFEzy/aMpg9W0EhRq26myYBZwD7A68CxgOnxZwamzPEzOab2SozW9Xb21u9iorI8JQ7IylNFxNASwuf2/lpWq/6r2zRe/g+jgUBAoLBicyWo2oZDFmtZjedAjzp7r0AZvZD4DhgDzNrC1sT+wJ/i7vY3ZcByyDI3TQyVRaRshS2CkrNSMqcU8JDvJbDBh6CgVzZdnZjN14efLJ7bvBZhqRWYxLrgGPMrMPMDDgZeAi4C3h3eM484Cc1qp+IlFKqlTCU9BaZ1N4x+mnBcA7joWzZ3RyHY/EBIqNJV0pXSk2ChLvfQzBAfS/w57Aey4BPAB81szVAJ3BNLeonIiXkT091z7US8gPFULYQLUjAl/ExvkYbuffO5zs4xnH8rnRdm3SldKUoVbiIlC9p9lF+106xGUpJC9QKrrmXGRzFvZFT+minnV2k0sTZW0tJmypcaTlEpHxpWglxaw8yenpg7txgYDm/q2rxYmhvZydtGB4JEKt3Ox7HigeIzs7gpWmsFaMgISLlS+rCyS8v3EK0UH6KjXPPzQaK+f1LGcPO7GkXtXwTX9HNkd9dmLwyesyYYF/p554LXg24jWitKHeTiJRv8eLgi31n7suc9vboOoTCLUSL2bmT38359qAxhl200jowAIu6cvc2g8mTg983bRr1O8TVO7UkRGRoMmsQko5TrnnYwVgMjwSIBzkMx2jNzHPNDIxnBso3bgy2FL3xxmiLYYiZYiWZgoSIlG/RIujri5b19UWnt6aYevo+/h/j2JE9/gyfx7HINFcgPpV34XTaNDOupGya3SQi5WtpGZyVFYLWxED4r/8is5vu4qTcyuhQPy20xCVZKJbKO83ztJgulmY3iUj1pBm4jpndtJUODI8EiMd4NY4NDhBpUnnnP28o6zKkJAUJESlfmtTa+ZlVgdO5jQlszb59GZ/AMV7N4/HPKDeVd5rAJWVTkBCR8hVOb21tDY4LZxjNns3KK9diOCs5HYBxbGMA4xP8Z/L9C1sOaVJ5a0+IqtAUWBFJL2k70f7+YLrr8ccHx4sW8ULPZl7B85HLe5jGNJ4q/oykL/ZSqbwz7y1aFHQxaWpsRWjgWkTSSbPXQ2cnbN/Om7bdzm95U7b4220X8aFdS5KvywScJt9PeiRp4FpEhi5uvUGKdQ8/2Hgitm1rNkDsxQYGsOIBoqsrWO/grlXSdUjdTSISSOpKyqw3KBIgNjGJTjZFyv7G3uzNM6Wfq+mpdU0tCRGJLkSDwWsgigSII/hTJEBcy7k4li5AdHYOpbYyghQkRJpZpltpzpx024bmuYG5GM6fOQKA1/AIjnEu16e7QXs7LCnSDSV1Qd1NIs2quxvOO29weo0S/s6e7MXfI2W9TGEKG9PfRAPUo4aChEizuvDCsgPENHp4itzitJs4m7O5ufxnaxxi1FB3k0iz2pj+X/5XcQGGZwPE0dyDY0MLEEX2sZb6o5aEiCRazz7sx/pI2Wb2YI+CRXJlmT9/mLWSkaSWhEizKjKzyIGJvBAJELfyDhwbHCCKtQzGjw/WWmTOW7AArrxyGJWWkaYgIdKslizJfYHnuZyP0oLzEhMBeAs/xzHewW3x9znppPicSStWwEsvBSk73GHXLgWIUUhBQqSZteV6nJ9gfwznEi7Plr3IBH7O2wbvOpdvzZrSyfdk1FKQEGkkSdt35pdPmRK85syBvj4cMJwDeSJ7m5/zFhwLUnt3dMRvMJSxbl0QENaujab3loagICHSKJK271y4cPD+0OHMps/zmchmP//CLTjGW/ifoCBu29BC2q+hoWl2k8hol59zqdC2bUHXT39/pPhhDuFQHo6eyrjIftNFtw3NP0f7NTQ0tSRERrPCnEtx8gJEPy0YHgkQv+EEHIsGiFLbhuafo66lhqYgIVLPksYYMlKk787MYPo4X6GNXMB4P9fhGCdw9+BrSm0bumKFxh6ahLqbROpV4SY/mTEGyH05F2tBhO5vOZIZA3+MlL3MGMawM/6C/HUP2u2t6dWsJWFme5jZLWb2iJk9bGbHmtlkM7vDzB4Lf06qVf1Eqm4orYRt24LyjCIL2XbRiuHM2JULEH9kJo4lBwgYvCJaM5eaWi27m5YAt7v7IcDrgYeBS4E73f0g4M7wWKTxxM1Emjs3WGeQCRjr1sVfm19eMCCdsYAraWdX9vj/8E0cYyark+ukFdESI9Ue12Z2MLAUeKW7v87MjgDe6e5fHNJDzXYH/gQc4HkVMLNHgZPcfYOZ7Q380t1fU+xe2uNaRqXp04t3FY0ZAxMnxifh6+rKZVGdMiVyzj0czTHcEzl9J22RsYjYZ117rVoITabSe1x/B/gkBG1Ud38AeO/Qq8cBQC9wnZndZ2bfNbPxBEFoQ/iMDcCecReb2XwzW2Vmq3p7e4dRDZEaSWolZPT1wY4d8YPG+VNOdwQzkl5mDIZHAsQDHI5jxQMEFF8oJ00vbZDocPc/FJTtij0znTbgSGCpu88AtlJG15K7L3P3me4+c+rUqcOohkiNpFmAtnVr6XQXW7cyhxvZjZezRZ9iMY5xOA+mq8vOndFxDpE8aYPEc2Z2IEFySMzs3cCGYTx3PbDe3TP/7LmFIGj8PexmIvz57DCeIVK/4qaWlmPhQn7V+mYMp5s52eJ+WljMp8u/X6mWjTSttEHiQ8DVwCFm9jRwEbBgqA9192eAp8wsM95wMvAQcCswLyybB/xkqM8QqQtJM5hmzy69WG38+Ng0G9v+6XRs6ZWcNPCL7KmPcjCORVJslEWpNSSJu6d+AeOBieVcU+RebwBWAQ8APwYmAZ0Es5oeC39OLnWfo446ykXq0ooV7h0d7sFXfPDq6AjKC89rb4+e197u3tkZLQN/Jz+OFC3mk4POcXA/+WT3MWPi3yt8xdVJGh6wylN8V6ed3TQW+BdgOnkL8Nz985ULV0Oj2U1St5JmMOXPTsrI5F9aty7ohtq+PViXELqdt3Eat2eP29hJH2NITODd1RV0aWXuOXlyUL5pU/R3LY5rWmlnN6UNErcDzwOrITdVwt0vT7xohChISN1qaYmfOWQWCQARCxfC0qXZwxeZwO68GDnlSaYznRIrrYs9Q4T0QSJtWo593f3UYdZJpLlMmxbfkijW/79sWfbXk7iLX3FS9ngJH+EjfCv9s0UqIO3A9f+a2eFVrYlIo4mbwWQWBI64NBwA/f38iDMxPBsgptDLAJY+QCh9t1RQ2iBxArDazB41swfM7M9m9kA1KyYy6hXOYDLLdT/19MB55wUrpsPd4jZPPhDDeRc/yt7iaV5FL3smjz0UUvpuqbC0YxKx8/TcvXQKyirTmISMCiXScMzgXu5nRvb4O5zP+VxT3jOUd0nKUNG0HO7eEwaE7QQL6jIvkcYXtz90sT2k47qSEhar/T/eh+HZAHEga3Cs/AABsHJl+deIlJBq4NrM3glcDryKYBV0F0HW1sOqVzWROlC4p0N+wr1Ml9Hdd8Py5cX3fZg8OXLts0zllQUJBZ5lKlN5buh11appqYK0YxJfAI4B/uru+xOskI7ZzkqkwZTa+a2vD66+On7fhzlzoK0tmNaaZ3+eiASIbv4Vx4YXIEAzmqQq0gaJne6+EWgxsxZ3v4tgxbRIY0vzr/Ni6xH6+4N1Dxs38h3Ox3DWsj8AR7Iax/hXvjf8empGk1RJ2nUSW8xsAvBroNvMnmV4WWBFRoektQ5leJpXsS9PR8o2MYlJbBnWfbMyq6s1o0mqIG1L4gyCQeuLgduBx4F3VKtSInVj1qwhX+rAZDZGAsSPOBPHKhsgtKWoVFHa2U1b3b3f3Xe5+3J3/2bY/STS2IY4Y2gJH6EFZzNBnqST+CW+opszu+4P1ksU2Zs6NXUxyQgoGiTM7EUzeyH8mfk9c/zCSFVSpGqGOHU1yZNMx3AuYkm27AUmcteCm4N/7a9dG4xhFBvHaEvRC6xFczJCigYJd5/o7ruHPzO/Z453H6lKigxJqQCQmd5asF9D5LxMxtRCFl0D7UAL/RzAk9my23kb3trGxAVzBy9yS5qJ1NUF119ffJ8JdTHJSCqWRxzYjWCDoW8D84G2NPnHR/Kl/SQkYsUK966uYJ8Es+L7JmTOK3x1deXOidnTwcF9woTsHhBf5FORt844I2U9S+01kXY/CpEhIOV+EqWCxPeBFcAFBBsDLUlz05F8KUhIVtyXarEAUBhEMi+z3DlF7vUIBw8q3nbt9wbXqasruGdX1+AgkPReOeeIDEHaIFE0d5OZ/dndDw9/bwP+4O5HVq9dUz7lbpKsEvmRgOg+C8XOz0wrPeecQeMHAxitRMt+xT/yj/wmuqFQ4WptCAabNZYgdaBSuZt2Zn5xd62LkPqWZpDZPTc+EZfKOyMzPlEQID7JlyIBYi434FgQIArrELdae9u2oFxklCjVkugHtmYOgXHAtvB39zoYvFZLQrLStCQyMv+ih+BLu8R1D3A4ryeaHX8HYxlLX/TE/JbEUHamExkhFWlJuHurR2c0tXnM7CYzm1SJSosMS9ImP3Ey/6LPTEtNOG8XrRgeCRD3cDSODQ4QhesWkmYwKceSjCJpV1yXcmeF7iMydPmb/JgFP2+8MTlQrFuXmyYb8y/+D/Mt2vOyzyzgShzjaP6YOylz77h1C3FBSwvgZJRJtelQyZuY3efuM0qfWXnqbpKSkrqhOjth+/ZB4wZ/ZGY0EAA7aaON/uj1aXImdXcHLZZ164IWhHIsSZ2o6KZDKWgDIqlfSf+ih0iA6KMdwyMB4n5ej2O5ANHVBStWBC2PNAva8ldZawGcjEKVChIi9SuuG2rZssgmQPO4PjLG8HG+gmPRwWqtdJYmVCp300ozm57iPqn3aRcZslJpNorJ/xf9rFkwbx4Av+EEDOcG5mVP7bc2vjLms9Hrx4zRWII0pVItieuBn5vZIjNrL3LeyZWrkkiMNHmW4q4pDCoLF8LSpWzvD7qWsusbgIc5BMdo8f7BA9kVGLsTGY1KDlyb2Xjgs8CpwI2QW0nk7l+vau1S0MB1k0gafM5fl5AvabXztm28ix/wI96VLf48n+EzfDF3XmtrsKNc2meJjEJpB67T7Ey3k2BB3VhgIlCxVUBm1gqsAp5297eb2f7ATcBk4F5grrv3FbuHNImk1dQ9PUFq7fnzo5lWY1Y737HtON7KHdljY4B+WqN9pWEgKasOIg2s1JjEqcD9QAdwpLt/zt3/I/OqwPMvBB7OO/4KcIW7HwRsBj5QgWdII0hK2Q25faQXLsyV5X2hv8R4DI8EiMc5gIHCAJEZ0E5K061FcNKESo1JLALOcvdL3T3hn1dDY2b7AqcD3w2PDXgzcEt4ynLgzEo+UxpcJs0GZL/QT+EOJvJStvhyPopjkX0fAJgwITdzSYvgRLJKpeV4k7v/pUrP/gbwcXLdV53AlrxEguuBfeIuNLP5ZrbKzFb19vZWqXpSVzZtKn1Of392gPrWd12P4dzJKQDswWYGMD7KFfHXzp2b+z1pyqymvkoTqsk6CTN7O/Csu6/OL445NXZU3d2XuftMd585derUqtRRRkA5U1qLdTfl2dKzBZszmzOuOClb9hT7spnJxedpF+5lrUVwIkDtFtMdD7zTzNYSDFS/maBlsUe4bwXAvsDfalM9qbqhTGkt4Y38gUlsyR5fzXwcY1+eLn2xBqVFYtUkSLj7J919X3efDrwX+IW7zwbuAt4dnjYP+Ekt6icjoNy9Fop0N93E2RjOKt4IQBdrcYz5fCd9faZNG95iPZEGVW9pOT4BfNTM1hCMUVxT4/pItRSb0hr3BR0zs6iXKRjO+7gpW/YMr2Qt+5dXl46OYBV2hVs2Io2g5kHC3X/p7m8Pf3/C3Y9291e7+1nu/nKt6ydVUmyMIe4LumDG0cE8yp7kJi3cyBwc45U8m+75hSm+V67ULnIiMWoeJERiFX5BhzOOru28BMN5jIMBeD334xhzSPEv/vzAcOON0UyuSS0bjVVIk0uz4lqk8tJMae3pgSlTAPjbxrHsw9NAbpbRRiYzmc3pnldq74dp0+LTfmgBnTQ5tSSkNlJ++frGjey58aEwQAR+MGEejqULEB0dwf4PpaaxagGdSCwFCamNxYuD9NtFfIsP04LTy54AvIlf4xjv2vn95IsmTMh1K7W2BinB06xx0AI6kVgKElIZQ5k+mpCBuIdpGM5H+Fa27Hl259ecGBy8nDCfobMzWPyWuW9/Pyxfnn6GkhbQiQyiICHDN5SFcYsWwc6dkSIHxrKD6eTGBlZyGo6xOy+WrsfGjZqhJFJhChIyfOUsjMu0OAoGiS/jE7Tg9DEWgNO5Dcc4jdsH36OlzP9sNUNJZMgUJGT40k4f7e6G886LBIjHeDWG80kuy5ZtveYmbuv6cPw929vhggviB5k7O+Ov0QwlkSFTkJChy7QKknY3LFwwd+GF0BfsITWAYTgH81j27bv4Jxyj4/OXBgPb7sHMpPzB5OuuCzYXihtkXrJEM5REKs3dR/XrqKOOcqmyFSvcu7rczYKfK1YEr44O9+CrPP7V2Rm9T1i+iC9ETnsf3cG98ws7OoJnVKKuIjIIsMpTfMeW3OO63mmP6ypL2it63LhgoLgYs2CmUOhBex2H82DklB2MZSwJO9RqT2mRqkm7x7W6m6S4pEHpUgECsmMB/f1BvMgPEL/jGBxLDhCgAWeROqAgIcUN54t61iwuugja8pK/zG/5Do5xDPeUvl4DziI1p9xNUlxSTqPOTti+fXArI7SaI5m59MpIWV8ftN/cAYu64u+ZTwPOInVBLQkpLimn0ZIluRlGefpox3BmktuZ9t57g9Ho9nZyq5oLrotQSgyRuqFrZ1X+AAAQ30lEQVQgIcUVy2mU+cIPF7d9gO9Gxhg+xuW4w4wZMfdNCj5pkvGJyIhRkJDSknIahesk7h44BsO5lg9kL9lFK1/jkmAdxcKFg/M6KaGeyKigKbDNrrs7mMG0bl1u8dumTdHfp03L7cWQOb+nhx3sxji2R273Fw7lUB4u/syODgUEkRrTFFgprTAx38aNwavw90zCvoULs+e/h+9HAsTn+HccKx0gQEn3REYRzW5qZnFrIJJs2wbLlnFn/4mcwp2Rt/ppoYUyW6RaAyEyKqgl0czK+KLeSgfWvysSINZwII6VHyAgaKGk2XdiKPtUiEjFKEg0s5SL1U7lp0xga/b4q1yCYxzIE9ET29thwYLBs5aSlNp3Yij7VIhIRSlINKP8PR0yW33GuI3TMZyfcSoA49t2MDBuPJdwefwFZnD88YNnLS1YkLwuotj4RDn7VIhIVWh2U7OJS9hnFkn3vY1xHMjjPMPe2bJ1S37Efh/558jspljFkvK1tMSnFS9IBDjk80UkNc1ukqhM62HOnMH/Os/7Il7EFxnPtmyAuJIFuBMECMitmUhqgRQb50jq3qpUuYhUnILEaJVmQDdzjhnMnVs0X9LvCBbEfYmgK+cCrsIxFnT9NP5ZhRsKZSSVQ/Iq66QcTeWeLyKVl2bTiXp+NeWmQ3Eb/hRu0pNmUyDwF5jgu7MlWzSGHb6ZV+TuuWBB/LPGj0+30VBc3cvZFEibCIlUBfW86ZCZ7QfcAOwFDADL3H2JmU0Gvg9MB9YC73H3zcXu1ZRjEplB50L54wFJ5+S5mK/zDS7OHv9y0R2cuOKDQZdRZpV1sfGHOBovEBkV0o5J1CpI7A3s7e73mtlEYDVwJvB+YJO7X2ZmlwKT3P0Txe7VlEEizYBu0jnALzmRf+KX2eOLj7iTr//p5PKelUS7yYmMCnU9cO3uG9z93vD3F4GHgX2AM4Dl4WnLCQKHFEozoBtzzhZeQTt92QCxB5t5gYl8/aFTk9ceJD2rs1PjBSJNoOYD12Y2HZgB3AO80t03QBBIgD0TrplvZqvMbFVvb+9IVbV+pBnQnTUr8vYFXMUktrCLdiAYqN7MZCbyEuzaFcx6ihsAT7OfhLK4ijSuNAMX1XoBEwi6mt4VHm8peH9zqXs05cC1e+kB3a4ud/DbeWtkXHkRXyg+mG0W/My/pwaPRRoO9TxwDWBm7cBtwM/c/eth2aPASe6+IRy3+KW7v6bYfZpyTKKYcLHbcz0vMZXnssX7sJ6/cjAdBam9i1JKb5GGVddjEmZmwDXAw5kAEboVmBf+Pg/4yUjXrS6kWQNxyilBN0/mdcop0N2Nf3A+c3q+GAkQqzmS9exXXoAApcAQkZrNbjoB+A3wZ4IpsACfIhiXuBmYBqwDznL3TcXu1XAtiWJpM7q6gjGC666DO+8cdOmtbe/ijF0/yB4v5lN8ii8Prz6a0irSkOp6CmwlNVyQKLW+oaNjUFqNZ3gle/NM9vhgHuUBjojsNz1kmtIq0pDqurtJiii1x0NegHDgn/lhJEA8wOE8yiFDCxCF+Zg0pVWk6SlI1JuUyetu5ixacH5MkHjvCi7CMQ63vwztua2tcOONmtIqIhHavrTeLF4M550HffEtgfXsw36szx6/gfv4A0fTzq6gwH1Q6u+IQw+Fhx4aXD5/fhAQFBREJI9aEvUo5gt+AOOt/CwSIB7hNdzHkbkAkX99a2v8vbduDTYByrzf2hocX3llpWovIg1EA9f1Jmbg+gbmMo8bssdL+Tf+jauHdn/NVhIR0g9cq7upXsTs+PYk0zmAJ7PHx3E3v+JE2ugf+nO0YY+IlEHdTcORZtFb2vucc042QOyilRP4TSRAPM4B3M0J5QUIJeATkWFSkBiqzKK3np5gDKCnJzgeSqC44IJsF9DVzKedXdzNCQBczzwciwSMVDKzkzRbSUSGQUFiqBYtGrxXdFIai1Itjq1b+SsHYXh2rOEt/Jx+WiJjEallWgyZ/agHBoKfChAiUiaNSQxV0qK3np4gGGR2doNomo1MiwNg9mx27oSjuZf7mZG7NftFZjGVJZO6QwFBRCpAs5uGKsX2oHR0wLhxsHHj4Pe6ulhy8VouuihXdBNnczY3D71OmrkkIikpLUe1xW3GU2jbttgA8SCHYT25AHHm/vczgJUOEIVpMwpp5pKIVJiCRBr5YwpTpgSvuXODVkJnZ+kv79DLjOE1PMLhPJgt27DvG/nRkzNIdYdirT7NXBKRKlCQKKVwFtPGjcEr8/v27UHOo6QVzqEvcym78TJ/JdhD6cenXoV3jGev9RXoKtPMJRGpEg1clxI3iylfZkZTf/z6hXuZwVHcmz2ePf5H3HjVNuzTlxW/b6GWlvjxBqXyFpEqUkuilFKD0xDMdOrqihRtZzf2Y10kQPTuO4MVL/0zNmd26ZTg+caMCdZSaHGciIwwBYlSSnQjAbnpruGX+Gf5DzrYznr2A+CnnIp3jGfKZZdEr0mjqwuuvTZIwKfFcSIywtTdVEpCN1JWe3t2XcLv13Ry7L+fmn3rg2Nv4OqX3491TYPFBV/oixcP3qa0kFm0K0mpvEVkhKklUWo1dGdn8evNeGlHG5MmkQ0Qra2w6er/Ztlen02e+DR7dq5lkERTWkWkxpo7SKTJv7RjR9FbXNK3mInnn82WLcHxL34Bu5Z3M+ni95fO65RJm7FihcYbRKQuNfeK66RV0/kzhhKaAr/mTZzIr7PHF14I3/hGGfctlEkVvm5dboxDXUsiUiVpV1w3d5BoaYlfoJaf3qIgSDzP7uzJs/QxFoDdeZ71+x3HxHV5e0unua+ISA0pLUcaSX3++eV5YxILuJI9eD4bIH7L8Tzf8SomfvlT5d9XRGQUaO4gEZd/qXAsYMkS7mh5G4ZzFQsAuJQv4xjHdz4apOaYOzc66J3mviIio0BzT4HN9PknjAVs3AhT5swGguO92MAaXs349p1w/gJYvjwxBXix+4qIjBbNPSaRwB3mzQtSMmX8kZnMZHWuoLU1fg2F0mSIyCigMYkhuu22YNw5EyC+wGdwLBogIHmRXTnpNkRE6lzdBQkzO9XMHjWzNWZ2adUfGC6m+7vthRm84x1B8YEHBgleP911Y/HrC2lwWkQaSF0FCTNrBf4LOA04FHifmR1atQd2d+MfnM9ZPV9lL57JFv/pS/8fa9bAbruRbnOhDA1Oi0iDqasgARwNrHH3J9y9D7gJOKNaD7vlot/Ssn0rt3AWAF/jYzjGEVd/KHdSmvQZoIR7ItKQ6m120z7AU3nH64F/qPhTurv56ILtXPHiUgAO5wFWMZMx7AzeLxxXyCTWG8pKahGRUazeWhJxOTAGTb8ys/lmtsrMVvX29pb3hDBf0zEv/hxjgIc5hAd4fS5AQDC9KS7Zn9Y/iEiTqbcgsR7CTRgC+wJ/KzzJ3Ze5+0x3nzl16tTynhDuNPce/psBWjmER+PPi0vKl9/1pD0dRKQJ1NU6CTNrA/4KnAw8DfwR+Fd3/0vSNWWvk0jM3Z1AXUki0oDSrpOoqzEJd99lZh8Gfga0AtcWCxBDkrQILkma7UtFRBpUXQUJAHdfCays2gPKCRCQbvtSEZEGVW9jEtVX7pd+uUFFRKSBNF+QKPdLv9T6CBGRBtZ8QaKcL31NbxWRJtd8QSJurUNmxlNnZ/DS9FYREaAOB66rTns9iIik1nxBAnJpNkREpKjm624SEZHUFCRERCSRgoSIiCRSkBARkUQKEiIikqiussAOhZn1AkPNwjcFeK6C1RkN9Dc3B/3NzWE4f3OXu5fca2HUB4nhMLNVaVLlNhL9zc1Bf3NzGIm/Wd1NIiKSSEFCREQSNXuQWFbrCtSA/ubmoL+5OVT9b27qMQkRESmu2VsSIiJShIKEiIgkatogYWanmtmjZrbGzC6tdX2qwcz2M7O7zOxhM/uLmV0Ylk82szvM7LHw56Ra17WSzKzVzO4zs9vC4/3N7J7w7/2+mY2pdR0rycz2MLNbzOyR8LM+tgk+44vD/6YfNLPvmdlujfY5m9m1ZvasmT2YVxb7uVrgm+H32QNmdmSl6tGUQcLMWoH/Ak4DDgXeZ2aH1rZWVbEL+Ji7vxY4BvhQ+HdeCtzp7gcBd4bHjeRC4OG8468AV4R/72bgAzWpVfUsAW5390OA1xP87Q37GZvZPsBHgJnu/jqgFXgvjfc5Xw+cWlCW9LmeBhwUvuYDSytViaYMEsDRwBp3f8Ld+4CbgDNqXKeKc/cN7n5v+PuLBF8e+xD8rcvD05YDZ9amhpVnZvsCpwPfDY8NeDNwS3hKo/29uwP/CFwD4O597r6FBv6MQ23AODNrAzqADTTY5+zuvwY2FRQnfa5nADd44PfAHma2dyXq0axBYh/gqbzj9WFZwzKz6cAM4B7gle6+AYJAAuxZu5pV3DeAjwMD4XEnsMXdd4XHjfZZHwD0AteFXWzfNbPxNPBn7O5PA18D1hEEh+eB1TT255yR9LlW7TutWYOExZQ17FxgM5sA/AC4yN1fqHV9qsXM3g486+6r84tjTm2kz7oNOBJY6u4zgK00UNdSnLAf/gxgf+BVwHiC7pZCjfQ5l1K1/86bNUisB/bLO94X+FuN6lJVZtZOECC63f2HYfHfM03R8OeztapfhR0PvNPM1hJ0Ib6ZoGWxR9gtAY33Wa8H1rv7PeHxLQRBo1E/Y4BTgCfdvdfddwI/BI6jsT/njKTPtWrfac0aJP4IHBTOhhhDMOh1a43rVHFhf/w1wMPu/vW8t24F5oW/zwN+MtJ1qwZ3/6S77+vu0wk+01+4+2zgLuDd4WkN8/cCuPszwFNm9pqw6GTgIRr0Mw6tA44xs47wv/HM39ywn3OepM/1VuCccJbTMcDzmW6p4WraFddmNovgX5mtwLXuvrjGVao4MzsB+A3wZ3J99J8iGJe4GZhG8H+4s9y9cIBsVDOzk4BL3P3tZnYAQctiMnAfMMfdX65l/SrJzN5AMFA/BngCOJfgH4AN+xmb2X8AZxPM4LsPOJ+gD75hPmcz+x5wEkE68L8DnwN+TMznGgbLbxPMhtoGnOvuqypSj2YNEiIiUlqzdjeJiEgKChIiIpJIQUJERBIpSIiISCIFCRERSaQgISIiiRQkRPKE6dWfNLPJ4fGk8Lgr5tzpZrbdzO43s4fM7CozawnLHxx8d5HRR0FCJI+7P0WQZvmysOgyYJm79yRc8ri7vwE4giDt/KjOPCpSSEFCZLArCNI+XAScAFxe6oIw++j/Aq/OLw9bFb8xs3vD13Fh+Ulm9su8zYK6w1WzmNlRZvYrM1ttZj+rVMpnkaFoK32KSHNx951m9n+B24G3hnuOFGVmHQQ5hD5b8NazwFvcfYeZHQR8D5gZvjcDOIwgEdvdwPFmdg/wLeAMd+81s7OBxcB5FfjTRMqmICES7zSCvQpeB9xR5LwDzex+grTMP3H3n4Z7d2S0A98O8yv1AwfnvfcHd18PEN5jOrAl88ywYdEa1kOkJhQkRAqEX+hvIdjy9bdmdlORjJqZMYkkFxMkZ3s9Qffujrz38pPP9RP8/9GAv7j7sUOtv0glaUxCJE84LrCUYIOmdcBXCXZBG6pXABvcfQCYS9AyKOZRYKqZHRvWp93MDhvG80WGRUFCJOqDwDp3z3QxXQkcYmYnDvF+VwLzzOz3BF1NW4udHI5/vBv4ipn9CbifYEMdkZpQqnAREUmkloSIiCTSwLVICWZ2OHBjQfHL7v4PtaiPyEhSd5OIiCRSd5OIiCRSkBARkUQKEiIikkhBQkREEv3/g5JBUDybriQAAAAASUVORK5CYII=\n",
423 | "text/plain": [
424 | ""
425 | ]
426 | },
427 | "metadata": {},
428 | "output_type": "display_data"
429 | }
430 | ],
431 | "source": [
432 | "# Plotting the test set\n",
433 | "\n",
434 | "plt.scatter(x_test,y_test, color='red')\n",
435 | "plt.plot(x_train,regressor.predict(x_train),color='blue')\n",
436 | "plt.title('(Test set)')\n",
437 | "plt.xlabel('X_Plane')\n",
438 | "plt.ylabel('Y_Plane')\n",
439 | "plt.show()"
440 | ]
441 | },
442 | {
443 | "cell_type": "code",
444 | "execution_count": null,
445 | "metadata": {},
446 | "outputs": [],
447 | "source": []
448 | }
449 | ],
450 | "metadata": {
451 | "kernelspec": {
452 | "display_name": "Python 3",
453 | "language": "python",
454 | "name": "python3"
455 | },
456 | "language_info": {
457 | "codemirror_mode": {
458 | "name": "ipython",
459 | "version": 3
460 | },
461 | "file_extension": ".py",
462 | "mimetype": "text/x-python",
463 | "name": "python",
464 | "nbconvert_exporter": "python",
465 | "pygments_lexer": "ipython3",
466 | "version": "3.6.5"
467 | }
468 | },
469 | "nbformat": 4,
470 | "nbformat_minor": 2
471 | }
472 |
--------------------------------------------------------------------------------
/Day 2 Simple Linear Regression.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 Simple Linear Regression.png
--------------------------------------------------------------------------------
/Day 2 images/image1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image1.PNG
--------------------------------------------------------------------------------
/Day 2 images/image2.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image2.PNG
--------------------------------------------------------------------------------
/Day 2 images/image3.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image3.PNG
--------------------------------------------------------------------------------
/Day 2 images/image4.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image4.PNG
--------------------------------------------------------------------------------
/Day 2 images/image5.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image5.PNG
--------------------------------------------------------------------------------
/Day 2 images/image6.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image6.PNG
--------------------------------------------------------------------------------
/Day 2 images/image7.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2 images/image7.PNG
--------------------------------------------------------------------------------
/Day 2- image1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day 2- image1.PNG
--------------------------------------------------------------------------------
/Day-5_K-Means_Clustering.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Day-5_K-Means_Clustering.png
--------------------------------------------------------------------------------
/How to Learn Machine Learning.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/How to Learn Machine Learning.jpg
--------------------------------------------------------------------------------
/How to learn machine learning in 30 days.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/How to learn machine learning in 30 days.jpg
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2018 Harshit Ahluwalia
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/Linear Regression Notes/Linear Regression Note - 1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Linear Regression Notes/Linear Regression Note - 1.jpg
--------------------------------------------------------------------------------
/Linear Regression Notes/Linear Regression Note - 2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Linear Regression Notes/Linear Regression Note - 2.jpg
--------------------------------------------------------------------------------
/Linear Regression Notes/Linear Regression Note - 3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Linear Regression Notes/Linear Regression Note - 3.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 1.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 2.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 3.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 4.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 5.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 6.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 6.jpg
--------------------------------------------------------------------------------
/Logistics Regression Notes/Logistics Regression Note - 7.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Logistics Regression Notes/Logistics Regression Note - 7.jpg
--------------------------------------------------------------------------------
/Machine Learning Strategy.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Machine Learning Strategy.jpg
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | # 100-Days-Of-ML-Code
3 | #### By Harshit Ahluwalia
4 | ## 100 Days of Machine Learning Coding as proposed by [Siraj Raval](https://github.com/llSourcell)
5 |
6 | ## My Journey towards Machine Learning upto 2018
7 | 
8 |
9 | #### At the end of this readme I've attached some of the Amazing infographics that are from Analytics Vidhya(taken the permission from the author) and I have started 26 weeks of ML Code where you can learn Machine Learning in just 26 weeks . I will post the Schedule sooon that on which week you have to study which topic
10 |
11 | # How to Learn Machine Learning
12 | While i don't want to overstate the complexity of the field, 30 days is awfully short.
13 |
14 | 
15 |
16 | * Spend most of my time on the basics of **statistics**
17 | * Then have a look at 1 or 2 very common techniques. (e.g., linear regression
and logistic regression
)
18 | * Take a dataset that interests you and do some descriptive statistics on it (counts, max, min, median, plots etc) and discover as many weird things in the data as possible. Weird meaning stuff that does not seem right.
19 | * Now try to answer a question for yourself on the above dataset. Do this by (A) solving the weird stuff, (B) getting the data into a format that works for (C) one of the common techniques you studied. It is okay if you hack the code together with lots of **googling**. (do sanity checks on your results though ;)
20 |
21 | **Basic Statistics**
22 | One of the most easy pitfalls is to just take off-the-shelf implementations of algorithms and throw them against your problem. But most algorithms are based on assumptions and all of them have some limitations. A good grasp of basic statistics will help you:
23 | * Determine whether the assumptions hold.
24 | * What they mean for your choice of algorithm
25 | * Reason about the limitations they imply
26 | * The impact if they are not present (which is not always dramatic)
27 | * Any time spent here will pay dividends every time you have a look at a new algorithm. So no worries if this takes up nearly all your time.
28 |
29 | **Common Techniques**
30 | * Early on, you actually better go deep than broad, because many concepts/elements return any way in other algorithms.
31 | * I mention two types of regressions because in many cases, you'll get a decent answer with these techniques. Also, it is in some sense amazing how something that is basically 'draw trendline' in Excel actually goes so deep. Not that all of it is taken that heavily into account in practice, but it still is good to have it in the back of your head. Especially for those times where you get weird results.
32 |
33 | **Weird Data Stuff**
34 | * This is the largest timesink, always. And it is very important, hence the mantra 'garbage in, garbage out'. Take any real-world dataset which has not been pre-cleaned and you'll find weird things:
35 | * A hugely overrepresented value (companies who like to code missing as 999...)
36 | Duplicate ID's
37 | * A variable which is actually an ID (amazing how many student dreams are shattered by pointing this one out if they have a nearly perfect model ;))
38 | * Missing values
39 | * Mislabeled cases, misspellings...
40 | * Everything is on state level, except for this one state for which they are reporting counties instead.
41 | * You need to experience it to acknowledge it. And almost any real-world dataset + a critical eye will make you do just that. ;)
42 |
43 | **Try It**
44 | * Well, you didn't learn all this not to use it, right? Also, making sense of your results is important. And being critical for them as well. It is so easy to make a logical mistake which is not programming mistake. I.e., the software will run, but the result will be very wrong.
45 |
46 | * If you want to go all the way, take your results to a friend/family and try to explain high-level what you did, what the results are and what they mean. Again speaking from teaching experience, there are people who are really good at the technical stuff, but cannot transfer the relevant implications of it to a non-technical person.
47 |
48 |
49 |
50 |
51 |
52 | ##### So You want to Learn Machine Learning in 30 Days . you need to Devote About ML & work hard ,in Machine Learning There are Various Concepts are there .
53 |
54 | Better to take any Online Course. then note down all course content and Prepare Schedule for 30 Days . i will Suggest you Best Online Machine Learning Course.
55 |
56 | [Machine Learning by Standford University, Mentor - Andrew Ng](https://www.coursera.org/learn/machine-learning?ranMID=40328&ranEAID=QhjctqYUCD0&ranSiteID=QhjctqYUCD0-DfXMi.hmANw62KhzaGwemA&siteID=QhjctqYUCD0-DfXMi.hmANw62KhzaGwemA&utm_content=10&utm_medium=partners&utm_source=linkshare&utm_campaign=QhjctqYUCD0)
57 |
58 | #### Topics include:
59 |
60 | (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks).
61 |
62 | (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning).
63 |
64 | (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI).
65 |
66 | The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
67 |
68 |
69 |
70 | [Machine Learning A-Z™: Hands-On Python & R In Data Science](https://www.udemy.com/machinelearning/?ranMID=39197&ranEAID=QhjctqYUCD0&ranSiteID=QhjctqYUCD0-mecwt8rl2iQ4lG6NQ9dD8w&siteID=QhjctqYUCD0-mecwt8rl2iQ4lG6NQ9dD8w&LSNPUBID=QhjctqYUCD0)
71 |
72 | This course is fun and exciting, but at the same time we dive deep into Machine Learning. It is structured the following way:
73 |
74 | * Part 1 - Data Preprocessing
75 | * Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
76 | * Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
77 | * Part 4 - Clustering: K-Means, Hierarchical Clustering
78 | * Part 5 - Association Rule Learning: Apriori, Eclat
79 | * Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
80 | * Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
81 | * Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
82 | * Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
83 | * Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost.
84 | Moreover, the course is packed with practical exercises which are based on live examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.
85 |
86 | # Beginner Data Science
87 |
88 | .png)
89 |
90 | ### Books for April - May
91 | You can Download all the required books from here
92 | [Mastering Feature Engineering](http://dl.farinsoft.ir/ebooks/Mastering-Feature-Engineering-Principles-Techniques.pdf)
93 | [R for Data Science](https://r4ds.had.co.nz/)
94 | [Python for Data Analysis](https://www.bu.edu/tech/files/2017/09/Python-for-Data-Analysis.pdf)
95 |
96 |
97 | ### Books for June - Aug
98 | You can Download all the required books from here
99 | [The Element of Stastistics Learning](https://web.stanford.edu/~hastie/Papers/ESLII.pdf)
100 | [An Introduction to Stastistics Learning](https://www-bcf.usc.edu/~gareth/ISL/ISLR%20Sixth%20Printing.pdf)
101 | [Machine Learning with R](https://www.packtpub.com/packt/free-ebook/r-machine-learning)
102 |
103 |
104 |
105 | # Workflow on Data Analysis
106 |
107 | 
108 |
109 | # Will Help all the freshers in machine learning for getting started
110 | # Day 1-Working with Pandas
111 |
112 | 
113 |
114 | ### for code of Day-1 click [here](https://github.com/harshitahluwalia7895/100DaysOfMLCode/blob/master/DAY%201-Working%20with%20Pandas.ipynb)
115 |
116 |
117 | # Day 2-Simple Linear Regression
118 |
119 | 
120 | 
121 |
122 | ### for code of Day-2 click [here](https://github.com/harshitahluwalia7895/100DaysOfMLCode/blob/master/Day%202%20Simple%20Linear%20Regression.ipynb)
123 |
124 | # Day 3-Logisitics Regression
125 |
126 | 
127 |
128 | ### for code of Day-3 click [here]()
129 |
130 | # Day 4 Cheet Sheet on Scikit Learn
131 |
132 | 
133 |
134 | # Day 5 K-Means Clustering
135 |
136 | 
137 |
138 |
139 |
140 | # Top Algorithms for Prediction
141 |
142 | 
143 |
144 | # Machine Learning vs Artificial Intelligence . What's the difference ? let's see.....
145 |
146 | 
147 |
148 |
149 | # Data Science Resources
150 |
151 | 
152 |
153 |
154 | # Infographics for Youtube Channel
155 | 
156 |
157 | ##### Infographics for Python
158 | 
159 |
160 | # 26 weeks of ML Code
161 | # Infographics and articles from Analytics Vidhya
162 |
163 | ### Week 1 : Git Basics & Introduction to Python
164 | 
165 |
166 | Download infographic (https://bit.ly/2HH9JcG)
167 |
168 | more to read (https://bit.ly/2HH9JcG)
169 |
170 |
171 |
--------------------------------------------------------------------------------
/Top_Algorithms_for_Predications.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Top_Algorithms_for_Predications.png
--------------------------------------------------------------------------------
/Week 1 Quick Guide to learn Python for Data Science.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Week 1 Quick Guide to learn Python for Data Science.jpg
--------------------------------------------------------------------------------
/Youtube first Video Infographic.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/Youtube first Video Infographic.jpg
--------------------------------------------------------------------------------
/collage.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/harshitahluwalia7895/100DaysOfMLCode/758affbb64ae77458a193b70f64d590946a2a23f/collage.jpg
--------------------------------------------------------------------------------
/test.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 77,79.77515201
3 | 21,23.17727887
4 | 22,25.60926156
5 | 20,17.85738813
6 | 36,41.84986439
7 | 15,9.805234876
8 | 62,58.87465933
9 | 95,97.61793701
10 | 20,18.39512747
11 | 5,8.746747654
12 | 4,2.811415826
13 | 19,17.09537241
14 | 96,95.14907176
15 | 62,61.38800663
16 | 36,40.24701716
17 | 15,14.82248589
18 | 65,66.95806869
19 | 14,16.63507984
20 | 87,90.65513736
21 | 69,77.22982636
22 | 89,92.11906278
23 | 51,46.91387709
24 | 89,89.82634442
25 | 27,21.71380347
26 | 97,97.41206981
27 | 58,57.01631363
28 | 79,78.31056542
29 | 21,19.1315097
30 | 93,93.03483388
31 | 27,26.59112396
32 | 99,97.55155344
33 | 31,31.43524822
34 | 33,35.12724777
35 | 80,78.61042432
36 | 28,33.07112825
37 | 47,51.69967172
38 | 53,53.62235225
39 | 69,69.46306072
40 | 28,27.42497237
41 | 33,36.34644189
42 | 91,95.06140858
43 | 71,68.16724757
44 | 50,50.96155532
45 | 76,78.04237454
46 | 4,5.607664865
47 | 37,36.11334779
48 | 70,67.2352155
49 | 68,65.01324035
50 | 40,38.14753871
51 | 35,34.31141446
52 | 94,95.28503937
53 | 88,87.84749912
54 | 52,54.08170635
55 | 31,31.93063515
56 | 59,59.61247085
57 | 0,-1.040114209
58 | 39,47.49374765
59 | 64,62.60089773
60 | 69,70.9146434
61 | 57,56.14834113
62 | 13,14.05572877
63 | 72,68.11367147
64 | 76,75.59701346
65 | 61,59.225745
66 | 82,85.45504157
67 | 18,17.76197116
68 | 41,38.68888682
69 | 50,50.96343637
70 | 55,51.83503872
71 | 13,17.0761107
72 | 46,46.56141773
73 | 13,10.34754461
74 | 79,77.91032969
75 | 53,50.17008622
76 | 15,13.25690647
77 | 28,31.32274932
78 | 81,73.9308764
79 | 69,74.45114379
80 | 52,52.01932286
81 | 84,83.68820499
82 | 68,70.3698748
83 | 27,23.44479161
84 | 56,49.83051801
85 | 48,49.88226593
86 | 40,41.04525583
87 | 39,33.37834391
88 | 82,81.29750133
89 | 100,105.5918375
90 | 59,56.82457013
91 | 43,48.67252645
92 | 67,67.02150613
93 | 38,38.43076389
94 | 63,58.61466887
95 | 91,89.12377509
96 | 60,60.9105427
97 | 14,13.83959878
98 | 21,16.89085185
99 | 87,84.06676818
100 | 73,70.34969772
101 | 32,33.38474138
102 | 2,-1.63296825
103 | 82,88.54475895
104 | 19,17.44047622
105 | 74,75.69298554
106 | 42,41.97607107
107 | 12,12.59244741
108 | 1,0.275307261
109 | 90,98.13258005
110 | 89,87.45721555
111 | 0,-2.344738542
112 | 41,39.3294153
113 | 16,16.68715211
114 | 94,96.58888601
115 | 97,97.70342201
116 | 66,67.01715955
117 | 24,25.63476257
118 | 17,13.41310757
119 | 90,95.15647284
120 | 13,9.744164258
121 | 0,-3.467883789
122 | 64,62.82816355
123 | 96,97.27405461
124 | 98,95.58017185
125 | 12,7.468501839
126 | 41,45.44599591
127 | 47,46.69013968
128 | 78,74.4993599
129 | 20,21.63500655
130 | 89,91.59548851
131 | 29,26.49487961
132 | 64,67.38654703
133 | 75,74.25362837
134 | 12,12.07991648
135 | 25,21.32273728
136 | 28,29.31770045
137 | 30,26.48713683
138 | 65,68.94699774
139 | 59,59.10598995
140 | 64,64.37521087
141 | 53,60.20758349
142 | 71,70.34329706
143 | 97,97.1082562
144 | 73,75.7584178
145 | 9,10.80462727
146 | 12,12.11219941
147 | 63,63.28312382
148 | 99,98.03017721
149 | 60,63.19354354
150 | 35,34.8534823
151 | 2,-2.819913974
152 | 60,59.8313966
153 | 32,29.38505024
154 | 94,97.00148372
155 | 84,85.18657275
156 | 63,61.74063192
157 | 22,18.84798163
158 | 81,78.79008525
159 | 93,95.12400481
160 | 33,30.48881287
161 | 7,10.41468095
162 | 42,38.98317436
163 | 46,46.11021062
164 | 54,52.45103628
165 | 16,21.16523945
166 | 49,52.28620611
167 | 43,44.18863945
168 | 95,97.13832018
169 | 66,67.22008001
170 | 21,18.98322306
171 | 35,24.3884599
172 | 80,79.44769523
173 | 37,40.03504862
174 | 54,53.32005764
175 | 56,54.55446979
176 | 1,-2.761182595
177 | 32,37.80182795
178 | 58,57.48741435
179 | 32,36.06292994
180 | 46,49.83538167
181 | 72,74.68953276
182 | 17,14.86159401
183 | 97,101.0697879
184 | 93,99.43577876
185 | 91,91.69240746
186 | 37,34.12473248
187 | 4,6.079390073
188 | 54,59.07247174
189 | 51,56.43046022
190 | 27,30.49412933
191 | 46,48.35172635
192 | 92,89.73153611
193 | 73,72.86282528
194 | 77,80.97144285
195 | 91,91.36566374
196 | 61,60.07137496
197 | 99,99.87382707
198 | 4,8.655714172
199 | 72,69.39858505
200 | 19,19.38780134
201 | 57,53.11628433
202 | 78,78.39683006
203 | 26,25.75612514
204 | 74,75.07484683
205 | 90,92.88772282
206 | 66,69.45498498
207 | 13,13.12109842
208 | 40,48.09843134
209 | 77,79.3142548
210 | 67,68.48820749
211 | 75,73.2300846
212 | 23,24.68362712
213 | 45,41.90368917
214 | 59,62.22635684
215 | 44,45.96396877
216 | 23,23.52647153
217 | 55,51.80035866
218 | 55,51.10774273
219 | 95,95.79747345
220 | 12,9.241138977
221 | 4,7.646529763
222 | 7,9.281699753
223 | 100,103.5266162
224 | 48,47.41006725
225 | 42,42.03835773
226 | 96,96.11982476
227 | 39,38.05766408
228 | 100,105.4503788
229 | 87,88.80306911
230 | 14,15.49301141
231 | 14,12.42624606
232 | 37,40.00709598
233 | 5,5.634030902
234 | 88,87.36938931
235 | 91,89.73951993
236 | 65,66.61499643
237 | 74,72.9138853
238 | 56,57.19103506
239 | 16,11.21710477
240 | 5,0.676076749
241 | 28,28.15668543
242 | 92,95.3958003
243 | 46,52.05490703
244 | 54,59.70864577
245 | 39,36.79224762
246 | 44,37.08457698
247 | 31,24.18437976
248 | 68,67.28725332
249 | 86,82.870594
250 | 90,89.899991
251 | 38,36.94173178
252 | 21,19.87562242
253 | 95,90.71481654
254 | 56,61.09367762
255 | 60,60.11134958
256 | 65,64.83296316
257 | 78,81.40381769
258 | 89,92.40217686
259 | 6,2.576625376
260 | 67,63.80768172
261 | 36,38.67780759
262 | 16,16.82839701
263 | 100,99.78687252
264 | 45,44.68913433
265 | 73,71.00377824
266 | 57,51.57326718
267 | 20,19.87846479
268 | 76,79.50341495
269 | 34,34.58876491
270 | 55,55.7383467
271 | 72,68.19721905
272 | 55,55.81628509
273 | 8,9.391416798
274 | 56,56.01448111
275 | 72,77.9969477
276 | 58,55.37049953
277 | 6,11.89457829
278 | 96,94.79081712
279 | 23,25.69041546
280 | 58,53.52042319
281 | 23,18.31396758
282 | 19,21.42637785
283 | 25,30.41303282
284 | 64,67.68142149
285 | 21,17.0854783
286 | 59,60.91792707
287 | 19,14.99514319
288 | 16,16.74923937
289 | 42,41.46923883
290 | 43,42.84526108
291 | 61,59.12912974
292 | 92,91.30863673
293 | 11,8.673336357
294 | 41,39.31485292
295 | 1,5.313686205
296 | 8,5.405220518
297 | 71,68.5458879
298 | 46,47.33487629
299 | 55,54.09063686
300 | 62,63.29717058
301 | 47,52.45946688
--------------------------------------------------------------------------------
/train.csv:
--------------------------------------------------------------------------------
1 | x,y
2 | 24,21.54945196
3 | 50,47.46446305
4 | 15,17.21865634
5 | 38,36.58639803
6 | 87,87.28898389
7 | 36,32.46387493
8 | 12,10.78089683
9 | 81,80.7633986
10 | 25,24.61215147
11 | 5,6.963319071
12 | 16,11.23757338
13 | 16,13.53290206
14 | 24,24.60323899
15 | 39,39.40049976
16 | 54,48.43753838
17 | 60,61.69900319
18 | 26,26.92832418
19 | 73,70.4052055
20 | 29,29.34092408
21 | 31,25.30895192
22 | 68,69.02934339
23 | 87,84.99484703
24 | 58,57.04310305
25 | 54,50.5921991
26 | 84,83.02772202
27 | 58,57.05752706
28 | 49,47.95883341
29 | 20,24.34226432
30 | 90,94.68488281
31 | 48,48.03970696
32 | 4,7.08132338
33 | 25,21.99239907
34 | 42,42.33151664
35 | 0,0.329089443
36 | 60,61.92303698
37 | 93,91.17716423
38 | 39,39.45358014
39 | 7,5.996069607
40 | 21,22.59015942
41 | 68,61.18044414
42 | 84,85.02778957
43 | 0,-1.28631089
44 | 58,61.94273962
45 | 19,21.96033347
46 | 36,33.66194193
47 | 19,17.60946242
48 | 59,58.5630564
49 | 51,52.82390762
50 | 19,22.1363481
51 | 33,35.07467353
52 | 85,86.18822311
53 | 44,42.63227697
54 | 5,4.09817744
55 | 59,61.2229864
56 | 14,17.70677576
57 | 9,11.85312574
58 | 75,80.23051695
59 | 69,62.64931741
60 | 10,9.616859804
61 | 17,20.02797699
62 | 58,61.7510743
63 | 74,71.61010303
64 | 21,23.77154623
65 | 51,51.90142035
66 | 19,22.66073682
67 | 50,50.02897927
68 | 24,26.68794368
69 | 0,0.376911899
70 | 12,6.806419002
71 | 75,77.33986001
72 | 21,28.90260209
73 | 64,66.7346608
74 | 5,0.707510638
75 | 58,57.07748383
76 | 32,28.41453196
77 | 41,44.46272123
78 | 7,7.459605998
79 | 4,2.316708112
80 | 5,4.928546187
81 | 49,52.50336074
82 | 90,91.19109623
83 | 3,8.489164326
84 | 11,6.963371967
85 | 32,31.97989959
86 | 83,81.4281205
87 | 25,22.62365422
88 | 83,78.52505087
89 | 26,25.80714057
90 | 76,73.51081775
91 | 95,91.775467
92 | 53,49.21863516
93 | 77,80.50445387
94 | 42,50.05636123
95 | 25,25.46292549
96 | 54,55.32164264
97 | 55,59.1244888
98 | 0,1.100686692
99 | 73,71.98020786
100 | 35,30.13666408
101 | 86,83.88427405
102 | 90,89.91004752
103 | 13,8.335654576
104 | 46,47.88388961
105 | 46,45.00397413
106 | 32,31.15664574
107 | 8,9.190375682
108 | 71,74.83135003
109 | 28,30.23177607
110 | 24,24.21914027
111 | 56,57.87219151
112 | 49,50.61728392
113 | 79,78.67470043
114 | 90,86.236707
115 | 89,89.10409255
116 | 41,43.26595082
117 | 27,26.68273277
118 | 58,59.46383041
119 | 26,28.90055826
120 | 31,31.300416
121 | 70,71.1433266
122 | 71,68.4739206
123 | 39,39.98238856
124 | 7,4.075776144
125 | 48,47.85817542
126 | 56,51.20390217
127 | 45,43.9367213
128 | 41,38.13626679
129 | 3,3.574661632
130 | 37,36.4139958
131 | 24,22.21908523
132 | 68,63.5312572
133 | 47,49.86702787
134 | 27,21.53140009
135 | 68,64.05710234
136 | 74,70.77549842
137 | 95,92.15749762
138 | 79,81.22259156
139 | 21,25.10114067
140 | 95,94.08853397
141 | 54,53.25166165
142 | 56,59.16236621
143 | 80,75.24148428
144 | 26,28.22325833
145 | 25,25.33323728
146 | 8,6.364615703
147 | 95,95.4609216
148 | 94,88.64183756
149 | 54,58.70318693
150 | 7,6.815491279
151 | 99,99.40394676
152 | 36,32.77049249
153 | 48,47.0586788
154 | 65,60.53321778
155 | 42,40.30929858
156 | 93,89.42222685
157 | 86,86.82132066
158 | 26,26.11697543
159 | 51,53.26657596
160 | 100,96.62327888
161 | 94,95.78441027
162 | 6,6.047286687
163 | 24,24.47387908
164 | 75,75.96844763
165 | 7,3.829381009
166 | 53,52.51703683
167 | 73,72.80457527
168 | 16,14.10999096
169 | 80,80.86087062
170 | 77,77.01988215
171 | 89,86.26972444
172 | 80,77.13735466
173 | 55,51.47649476
174 | 19,17.34557531
175 | 56,57.72853572
176 | 47,44.15029394
177 | 56,59.24362743
178 | 2,-1.053275611
179 | 82,86.79002254
180 | 57,60.14031858
181 | 44,44.04222058
182 | 26,24.5227488
183 | 52,52.95305521
184 | 41,43.16133498
185 | 44,45.67562576
186 | 3,-2.830749501
187 | 31,29.19693178
188 | 97,96.49812401
189 | 21,22.5453232
190 | 17,20.10741433
191 | 7,4.035430253
192 | 61,61.14568518
193 | 10,13.97163653
194 | 52,55.34529893
195 | 10,12.18441166
196 | 65,64.00077658
197 | 71,70.3188322
198 | 4,-0.936895047
199 | 24,18.91422276
200 | 26,23.87590331
201 | 51,47.5775361
202 | 42,43.2736092
203 | 62,66.48278755
204 | 74,75.72605529
205 | 77,80.59643338
206 | 3,-2.235879852
207 | 50,47.04654956
208 | 24,21.59635575
209 | 37,32.87558963
210 | 58,57.95782956
211 | 52,52.24760027
212 | 27,24.58286902
213 | 14,12.12573805
214 | 100,100.0158026
215 | 3530.15736917
216 | 72,74.04682658
217 | 5,1.611947467
218 | 71,70.36836307
219 | 54,52.26831735
220 | 84,83.1286166
221 | 42,43.64765048
222 | 54,49.44785426
223 | 74,72.6356699
224 | 54,52.78130641
225 | 53,57.11195136
226 | 78,79.1050629
227 | 97,101.6228548
228 | 49,53.5825402
229 | 71,68.92139297
230 | 48,46.9666961
231 | 51,51.02642868
232 | 89,85.52073551
233 | 99,99.51685756
234 | 93,94.63911256
235 | 49,46.78357742
236 | 18,21.21321959
237 | 65,58.37266004
238 | 83,87.22059677
239 | 100,102.4967859
240 | 41,43.88314335
241 | 52,53.06655757
242 | 29,26.33464785
243 | 97,98.52008934
244 | 7,9.400497579
245 | 51,52.94026699
246 | 58,53.83020877
247 | 50,45.94511142
248 | 67,65.0132736
249 | 89,86.5069584
250 | 76,75.63280796
251 | 35,36.78035027
252 | 99,100.5328916
253 | 31,29.04466136
254 | 52,51.70352433
255 | 11,9.199954718
256 | 66,71.70015848
257 | 50,49.82634062
258 | 39,37.49971096
259 | 60,53.65084683
260 | 35,33.92561965
261 | 53,49.92639685
262 | 14,8.148154262
263 | 49,49.72359037
264 | 16,16.16712757
265 | 76,75.30033002
266 | 13,9.577368568
267 | 51,48.38088357
268 | 70,72.95331671
269 | 98,92.59573853
270 | 86,88.85523586
271 | 100,99.00361771
272 | 46,45.09439571
273 | 51,46.94362684
274 | 50,48.33449605
275 | 91,94.92329574
276 | 48,47.78165248
277 | 81,81.28960746
278 | 38,37.83155021
279 | 40,39.69185252
280 | 79,76.92664854
281 | 96,88.02990531
282 | 60,56.99178872
283 | 70,72.58929383
284 | 44,44.98103442
285 | 11,11.99017641
286 | 6,1.919513328
287 | 5,1.628826073
288 | 72,66.27746655
289 | 55,57.53887255
290 | 95,94.70291077
291 | 41,41.21469904
292 | 25,25.04169243
293 | 1,3.778209914
294 | 55,50.50711779
295 | 4,9.682408486
296 | 48,48.88147608
297 | 55,54.40348599
298 | 75,71.70233156
299 | 68,69.35848388
300 | 100,99.98491591
301 | 25,26.03323718
302 | 75,75.48910307
303 | 34,36.59623056
304 | 38,40.95102191
305 | 92,86.78316267
306 | 21,15.50701184
307 | 88,85.86077871
308 | 75,79.20610113
309 | 76,80.80643766
310 | 44,48.59717283
311 | 10,13.93415049
312 | 21,27.3051179
313 | 16,14.00226297
314 | 32,33.67416
315 | 13,13.11612884
316 | 26,24.76649193
317 | 70,73.68477876
318 | 77,77.53149541
319 | 77,76.24503196
320 | 88,88.0578931
321 | 35,35.02445799
322 | 24,21.65857739
323 | 17,17.33681562
324 | 91,94.36778957
325 | 32,33.43396307
326 | 36,32.52179399
327 | 89,90.57741298
328 | 69,71.25634126
329 | 30,31.23212856
330 | 6,5.398840061
331 | 22,18.56241391
332 | 67,71.97121038
333 | 9,5.225759566
334 | 74,73.5964342
335 | 50,49.76948983
336 | 85,82.69087513
337 | 3,1.652309089
338 | 0,-3.836652144
339 | 59,62.03811556
340 | 62,61.26514581
341 | 17,13.24991628
342 | 90,88.61672694
343 | 23,21.13655528
344 | 19,23.85017475
345 | 93,92.01203405
346 | 14,10.26712261
347 | 58,54.14681616
348 | 87,87.00645713
349 | 37,37.69447352
350 | 20,19.62278654
351 | 35,34.78561007
352 | 63,62.03190983
353 | 56,52.67003801
354 | 62,58.09031476
355 | 98,97.19448821
356 | 90,90.50155298
357 | 51,50.5123462
358 | 93,94.45211871
359 | 22,21.10794636
360 | 38,37.36298431
361 | 13,10.28574844
362 | 98,96.04932416
363 | 99,100.0953697
364 | 31,30.6063167
365 | 94,96.19000542
366 | 73,71.30828034
367 | 37,34.59311043
368 | 23,19.02332876
369 | 11,10.76669688
370 | 88,90.5799868
371 | 47,48.71787679
372 | 79,78.74139764
373 | 91,85.23492274
374 | 71,71.65789964
375 | 10,8.938990554
376 | 39,39.89606046
377 | 92,91.85091116
378 | 99,99.11200375
379 | 28,26.22196486
380 | 32,33.21584226
381 | 32,35.72392691
382 | 75,76.88604495
383 | 99,99.30874567
384 | 27,25.77161074
385 | 64,67.85169407
386 | 98,98.50371084
387 | 38,31.11331895
388 | 46,45.51171028
389 | 13,12.65537808
390 | 96,95.56065366
391 | 9,9.526431641
392 | 34,36.10893209
393 | 49,46.43628318
394 | 1,-3.83998112
395 | 50,48.97302037
396 | 94,93.25305499
397 | 27,23.47650968
398 | 20,17.13551132
399 | 12,14.55896144
400 | 45,41.53992729
401 | 91,91.64730552
402 | 61,66.16652565
403 | 10,9.230857489
404 | 47,47.41377893
405 | 33,34.76441561
406 | 84,86.10796637
407 | 24,21.81267954
408 | 48,48.89963951
409 | 48,46.78108638
410 | 9,12.91328547
411 | 93,94.55203143
412 | 99,94.97068753
413 | 8,2.379172481
414 | 20,21.47982988
415 | 38,35.79795462
416 | 78,82.0763803
417 | 81,78.87097714
418 | 42,47.2492425
419 | 95,96.18852325
420 | 78,78.38491927
421 | 44,42.94274064
422 | 68,64.43231595
423 | 87,84.21191485
424 | 58,57.3069783
425 | 52,52.52101436
426 | 26,25.7440243
427 | 75,75.42283401
428 | 48,53.62523007
429 | 71,75.14466308
430 | 77,74.12151511
431 | 34,36.24807243
432 | 24,20.21665898
433 | 70,66.94758118
434 | 29,34.07278254
435 | 76,73.13850045
436 | 98,92.85929155
437 | 28,28.36793808
438 | 87,85.59308727
439 | 9,10.68453755
440 | 87,86.10708624
441 | 33,33.22031418
442 | 64,66.09563422
443 | 17,19.30486546
444 | 49,48.84542083
445 | 95,93.73176312
446 | 75,75.45758614
447 | 89,91.24239226
448 | 81,87.15690853
449 | 25,25.53752833
450 | 47,46.06629478
451 | 50,49.65277661
452 | 5,7.382244165
453 | 68,71.11189935
454 | 84,83.50570521
455 | 8,8.791139893
456 | 41,33.30638903
457 | 26,26.40362524
458 | 89,91.72960726
459 | 78,82.53030719
460 | 34,36.67762733
461 | 92,86.98450355
462 | 27,32.34784175
463 | 12,16.78353974
464 | 2,1.576584383
465 | 22,17.4618141
466 | 0,2.116113029
467 | 26,24.34804332
468 | 50,48.29491198
469 | 84,85.52145453
470 | 70,73.71434779
471 | 66,63.15189497
472 | 42,38.46213684
473 | 19,19.47100788
474 | 94,94.07428225
475 | 71,67.92051286
476 | 19,22.58096241
477 | 16,16.01629889
478 | 49,48.43307886
479 | 29,29.6673599
480 | 29,26.65566328
481 | 86,86.28206739
482 | 50,50.82304924
483 | 86,88.57251713
484 | 30,32.59980745
485 | 23,21.02469368
486 | 20,20.72894979
487 | 16,20.38051187
488 | 57,57.25180153
489 | 8,6.967537054
490 | 8,10.240085
491 | 62,64.94841088
492 | 55,55.35893915
493 | 30,31.24365589
494 | 86,90.72048818
495 | 62,58.750127
496 | 51,55.85003198
497 | 61,60.19925869
498 | 86,85.03295412
499 | 61,60.38823085
500 | 21,18.44679787
501 | 81,82.18839247
502 | 97,94.2963344
503 | 5,7.682024586
504 | 61,61.01858089
505 | 47,53.60562216
506 | 98,94.47728801
507 | 30,27.9645947
508 | 63,62.55662585
509 | 0,1.406254414
510 | 100,101.7003412
511 | 18,13.84973988
512 | 30,28.99769315
513 | 98,99.04315693
514 | 16,15.56135514
515 | 22,24.63528393
516 | 55,53.98393374
517 | 43,42.91449728
518 | 75,74.29662112
519 | 91,91.17012883
520 | 46,49.42440876
521 | 85,82.47683519
522 | 55,56.15303953
523 | 36,37.17063131
524 | 49,46.36928662
525 | 94,97.02383456
526 | 43,40.83182104
527 | 22,24.08498313
528 | 37,41.14386358
529 | 24,21.97388066
530 | 95,100.740897
531 | 61,61.19971596
532 | 75,74.39517002
533 | 68,69.04377173
534 | 58,56.68718792
535 | 5,5.860391715
536 | 53,55.72021356
537 | 80,79.22021816
538 | 83,86.30177517
539 | 25,25.26971886
540 | 34,36.33294447
541 | 26,27.65574228
542 | 90,94.79690531
543 | 60,58.67366671
544 | 49,56.15934471
545 | 19,18.40919388
546 | 92,86.26936988
547 | 29,26.59436195
548 | 8,8.452520159
549 | 57,56.18131518
550 | 29,27.65452669
551 | 19,20.87391785
552 | 81,77.83354439
553 | 50,50.01787825
554 | 15,9.290856256
555 | 70,75.0284725
556 | 39,38.3037698
557 | 43,44.70786405
558 | 21,22.51016575
559 | 98,102.4959452
560 | 86,86.76845244
561 | 16,13.89748578
562 | 25,24.81824269
563 | 31,33.94224862
564 | 93,92.26970059
565 | 67,68.73365081
566 | 49,47.38516883
567 | 25,32.37576914
568 | 88,87.67388681
569 | 54,54.57648371
570 | 21,18.06450222
571 | 8,7.896539841
572 | 32,35.00341078
573 | 35,36.72823317
574 | 67,65.84975426
575 | 90,89.59295492
576 | 59,61.69026202
577 | 15,11.60499315
578 | 67,71.0826803
579 | 42,43.71901164
580 | 44,41.57421008
581 | 77,74.25552425
582 | 68,66.28310437
583 | 36,36.62438077
584 | 11,10.32374866
585 | 10,7.156457657
586 | 65,67.88603132
587 | 98,101.1097591
588 | 98,98.6132033
589 | 49,50.19083844
590 | 31,27.83896261
591 | 56,55.9249564
592 | 70,76.47340872
593 | 91,92.05756378
594 | 25,27.35245439
595 | 54,55.32083476
596 | 39,41.39990349
597 | 91,93.59057024
598 | 3,5.297054029
599 | 22,21.01429422
600 | 2,2.267059451
601 | 2,-0.121860502
602 | 65,66.49546208
603 | 71,73.83637687
604 | 42,42.10140878
605 | 76,77.35135732
606 | 43,41.02251779
607 | 8,14.75305272
608 | 86,83.28199022
609 | 87,89.93374342
610 | 3,2.286571686
611 | 58,55.61421297
612 | 62,62.15313408
613 | 89,89.55803528
614 | 95,94.00291863
615 | 28,26.78023848
616 | 0,-0.764537626
617 | 1,0.282866003
618 | 49,44.26800515
619 | 21,19.85174138
620 | 46,47.15960005
621 | 11,8.359366572
622 | 89,92.08157084
623 | 37,41.88734051
624 | 29,30.5413129
625 | 44,46.87654473
626 | 96,96.35659485
627 | 16,17.9170699
628 | 74,71.67949917
629 | 35,32.64997554
630 | 42,39.34482965
631 | 16,17.03401999
632 | 56,52.87524074
633 | 18,15.85414849
634 | 100,108.8716183
635 | 54,49.30477253
636 | 92,89.4749477
637 | 63,63.67348242
638 | 81,83.78410946
639 | 73,73.51136922
640 | 48,46.80297244
641 | 1,5.809946802
642 | 85,85.23027975
643 | 14,10.58213964
644 | 25,21.37698317
645 | 45,46.0537745
646 | 98,95.2389253
647 | 97,94.15149206
648 | 58,54.54868046
649 | 93,87.36260449
650 | 88,88.47741598
651 | 89,84.48045678
652 | 47,48.79647071
653 | 6,10.76675683
654 | 34,30.48882921
655 | 30,29.76846185
656 | 16,13.51574749
657 | 86,86.12955884
658 | 40,43.30022747
659 | 52,51.92110232
660 | 15,16.49185287
661 | 4,7.998073432
662 | 95,97.66689567
663 | 99,89.80545367
664 | 35,38.07166567
665 | 58,60.27852322
666 | 10,6.709195759
667 | 16,18.35488924
668 | 53,56.37058203
669 | 58,62.80064204
670 | 42,41.25155632
671 | 24,19.42637541
672 | 84,82.88935804
673 | 64,63.61364981
674 | 12,11.29627199
675 | 61,60.02274882
676 | 75,72.60339326
677 | 15,11.87964573
678 | 100,100.7012737
679 | 43,45.12420809
680 | 13,14.81106804
681 | 48,48.09368034
682 | 45,42.29145672
683 | 52,52.73389794
684 | 34,36.72396986
685 | 30,28.64535198
686 | 65,62.16675273
687 | 100,95.58459518
688 | 67,66.04325304
689 | 99,99.9566225
690 | 45,46.14941984
691 | 87,89.13754963
692 | 73,69.71787806
693 | 9,12.31736648
694 | 81,78.20296268
695 | 72,71.30995371
696 | 81,81.45544709
697 | 58,58.59500642
698 | 93,94.62509374
699 | 82,88.60376995
700 | 66,63.64868529
701 | 97,94.9752655
--------------------------------------------------------------------------------