├── .webp ├── Breast_Cancer_Detection.ipynb ├── LICENSE ├── Mri scan.jpg ├── Prevention.html ├── README.md ├── Treatment option.html ├── about.html ├── analytics.html ├── background.jpeg ├── contact.html ├── index.html ├── logo.png ├── mri scan1.jpeg ├── scan.png ├── script.js ├── signup.html ├── style.css └── styles.css /.webp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/.webp -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2024 ‎ ‎ ‎ ‎ 𝐇𝐚𝐫𝐬𝐡 𝐊𝐮𝐦𝐚𝐫 𝐒𝐢𝐧𝐠𝐡 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /Mri scan.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/Mri scan.jpg -------------------------------------------------------------------------------- /Prevention.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | Breast Cancer Prevention and Lifestyle 7 | 61 | 62 | 63 |
64 |

Breast Cancer Prevention and Lifestyle Recommendations

65 |
66 | 69 |
70 |

Prevention and Lifestyle Recommendations

71 |

Prevention plays a crucial role in reducing the risk of breast cancer. Here are some lifestyle recommendations:

72 | 82 |

By adopting a healthy lifestyle and making informed choices, individuals can reduce their risk of developing breast cancer.

83 |
84 | 85 | 86 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 |

Breast Cancer Detection Using Deep Learning

7 | 8 | ## Table of Contents 9 | 1. [Introduction](#introduction) 10 | 2. [Dataset](#dataset) 11 | 3. [Features](#features) 12 | 4. [Technologies Used](#technologies-used) 13 | 5. [Installation](#installation) 14 | 6. [Usage](#usage) 15 | 7. [Example Output](#example-output) 16 | 8. [Contributing](#contributing) 17 | 9. [License](#license) 18 | 10. [Author](#author) 19 | 20 | ## Introduction 21 | Breast cancer is one of the most common types of cancer affecting women worldwide. Early detection and diagnosis are crucial for effective treatment and improving survival rates. This project aims to assist in the early detection of breast cancer using machine learning algorithms. By analyzing various features extracted from cell images, the model can classify tumors as benign or malignant with high accuracy. The goal is to provide a reliable tool that can aid medical professionals in making more informed decisions. 22 | 23 | This project demonstrates the end-to-end process of building a machine learning model, from data preprocessing and feature selection to model training, evaluation, and deployment. Various machine learning algorithms are implemented and compared to identify the best-performing model for this classification task. 24 | 25 | ## Dataset 26 | The dataset used in this project is the Breast Cancer Wisconsin (Diagnostic) dataset. It consists of 569 samples, each with 30 features, including mean, standard error, and worst (mean of the three largest values) of ten real-valued features computed for each cell nucleus. 27 | 28 | ## Features 29 | - Data preprocessing and normalization 30 | - Implementation of various machine learning models 31 | - Evaluation of model performance 32 | - Visualization of results 33 | 34 | ## Technologies Used 35 | - Python 3.x 36 | - Jupyter Notebook 37 | - Scikit-learn 38 | - Pandas 39 | - Numpy 40 | - Matplotlib 41 | - Seaborn 42 | 43 | ## Installation 44 | 1. **Clone the repository:** 45 | ```bash 46 | git clone https://github.com/your-username/Breast-Cancer-Detection.git 47 | cd Breast-Cancer-Detection 48 | ``` 49 | 50 | 2. **Create a virtual environment:** 51 | ```bash 52 | python -m venv venv 53 | ``` 54 | 55 | 3. **Activate the virtual environment:** 56 | - On Windows: 57 | ```bash 58 | venv\Scripts\activate 59 | ``` 60 | - On macOS/Linux: 61 | ```bash 62 | source venv/bin/activate 63 | ``` 64 | 65 | 4. **Install the required packages:** 66 | ```bash 67 | pip install -r requirements.txt 68 | ``` 69 | 70 | ## Usage 71 | 1. **Open the Jupyter Notebook:** 72 | ```bash 73 | jupyter notebook Breast_Cancer_Detection.ipynb 74 | ``` 75 | 76 | 2. **Run the cells in the notebook to preprocess the data, train the models, and evaluate the results.** 77 | 78 | ## Example Output 79 | Here are some example outputs from the project: 80 | Accuracy of SVM model: 98.2% 81 | Confusion Matrix: 82 | [ [102 3] 83 | [2 63] ] 84 | 85 | 86 | ## Contributing 87 | Contributions are welcome! Please open an issue or submit a pull request for any improvements or bug fixes. 88 | 89 | ## License 90 | This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. 91 | 92 | ## Author 93 | For any questions or suggestions, please contact: 94 | - Harsh Singh: [harshjuly12@gmail.com](harshjuly12@gmail.com) 95 | - GitHub: [harshjuly12](https://github.com/harshjuly12) 96 | -------------------------------------------------------------------------------- /Treatment option.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | Breast Cancer Treatment Options 7 | 61 | 62 | 63 |
64 |

Breast Cancer Treatment Options

65 |
66 | 74 |
75 |

Surgery

76 |

Surgery involves removing the tumor and nearby tissue from the breast. Types of surgery include:

77 | 82 |

Surgery may be followed by other treatments like chemotherapy, radiation therapy, or hormonal therapy.

83 |
84 |
85 |

Chemotherapy

86 |

Chemotherapy uses drugs to kill cancer cells or stop them from growing. It can be administered:

87 | 91 |

Chemotherapy may also be used to treat breast cancer that has spread to other parts of the body (metastatic breast cancer).

92 |
93 |
94 |

Radiation Therapy

95 |

Radiation therapy uses high-energy rays to kill cancer cells or shrink tumors. It is often used:

96 | 100 |

Radiation therapy is typically administered daily over several weeks.

101 |
102 |
103 |

Hormonal Therapy

104 |

Hormonal therapy, also known as endocrine therapy, is used to treat hormone receptor-positive breast cancers. It:

105 | 109 |

Common hormonal therapy medications include tamoxifen, aromatase inhibitors, and ovarian suppression therapy.

110 |
111 |
112 |

Targeted Therapy

113 |

Targeted therapy attacks specific molecules or pathways that contribute to the growth and spread of cancer cells. It is often used to treat HER2-positive breast cancers by:

114 | 118 |
119 |
120 |

Immunotherapy

121 |

Immunotherapy boosts the body's immune system to recognize and destroy cancer cells. It:

122 | 126 |

Common immunotherapy drugs include pembrolizumab (Keytruda) and atezolizumab (Tecentriq).

127 |
128 | 129 | 130 |
131 | Next Page 132 |
133 | 134 | 135 | -------------------------------------------------------------------------------- /about.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | About Breast Cancer 6 | 78 | 79 | 80 | 81 |

What is Breast Cancer?

82 |

Breast cancer is a prevalent form of cancer that develops in breast tissue. It affects both men and women, although it's more common in women. Early detection through screenings like mammograms and self-exams can significantly improve treatment outcomes. Awareness, education, and research are crucial in combating this disease.

83 |

How to spot Breast cancer

84 |

Early detection of breast cancer is vital. Signs include breast lumps, changes in size or shape, skin texture alterations, nipple changes, persistent pain, redness, and breast appearance changes. Regular self-exams help, but any concerns warrant professional evaluation. Swift action increases treatment success, emphasizing the importance of vigilance and healthcare consultation.

85 | 93 |

How to stop the spread of Breast cancer

94 |

To halt breast cancer spread, timely diagnosis and treatment are paramount. Treatment modalities include surgery, chemotherapy, radiation, and targeted therapies. Lifestyle changes like maintaining a healthy weight and regular exercise aid in prevention. Supportive care, emotional well-being, and ongoing monitoring enhance overall management, fostering optimal outcomes.

95 | 101 | 102 | 103 | 104 | -------------------------------------------------------------------------------- /analytics.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | Breast Cancer Analytics 7 | 8 | 9 | 80 | 81 | 82 |
83 |

Breast Cancer Analytics

84 |
85 | 86 | 87 |
88 | 89 |
90 | 91 | 92 |
93 | Measures 94 |
95 | 96 | 97 | 129 | 130 | 131 | -------------------------------------------------------------------------------- /background.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/background.jpeg -------------------------------------------------------------------------------- /contact.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | Contact Us 6 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | -------------------------------------------------------------------------------- /index.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 61 |
62 |

Breast
Cancer
Detection

63 |
64 |

Login Here

65 |
66 | 67 | 72 | 73 |
74 | 77 |

Log in with

78 |
79 | 80 | 81 | 82 | 83 | 84 |
85 |
86 |
87 |
88 | 89 | 90 | 91 | 92 | 93 | -------------------------------------------------------------------------------- /logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/logo.png -------------------------------------------------------------------------------- /mri scan1.jpeg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/mri scan1.jpeg -------------------------------------------------------------------------------- /scan.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/harshjuly12/Deep-Learning-Approaches-for-Enhanced-Breast-Cancer-Detection/04e9109aaf05a444b0288bd6bdca4f92de57d537/scan.png -------------------------------------------------------------------------------- /script.js: -------------------------------------------------------------------------------- 1 | document.getElementById('login-form').addEventListener('submit', function (e) { 2 | e.preventDefault(); 3 | const email = document.getElementById('email').value; 4 | const password = document.getElementById('password').value; 5 | 6 | // List of valid email addresses 7 | const validEmails = ['kavita.patel8109@gmail.com', 'diptichandra900@gmail.com', 'abizer@gmail.com', 'harsh@gmail.com']; 8 | 9 | // Here, you would typically send a request to the server for authentication 10 | // and handle the response accordingly. 11 | 12 | // For demonstration purposes, we'll check against the list of valid email addresses. 13 | if (validEmails.includes(email) && password === 'password') { 14 | alert('Login successful! Redirecting to the home page...'); 15 | // Redirect to the home page 16 | window.location.href = 'treatment option.html'; 17 | } else { 18 | alert('Invalid email or password. Please try again.'); 19 | } 20 | 21 | 22 | 23 | 24 | }); -------------------------------------------------------------------------------- /signup.html: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | Breast cancer detection 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 |
14 |

Breast
Cancer
Detection

15 | 16 |
17 |
18 |

Sign Up Here

19 | 20 | 21 | 22 |
23 | 24 | 30 | 31 | 32 | 33 |
34 |
35 |
36 | 37 | 85 | 86 | 87 | 88 | -------------------------------------------------------------------------------- /style.css: -------------------------------------------------------------------------------- 1 | *{ 2 | margin: 0; 3 | padding: 0; 4 | } 5 | 6 | .main{ 7 | width: 100%; 8 | background: linear-gradient(to top, rgba(0,0,0,0.5)50%,rgba(0,0,0,0.5)50%), url(mri\ scan1.jpeg); 9 | background-position: center; 10 | background-size: cover; 11 | height: 100vh; 12 | } 13 | 14 | .navbar{ 15 | width: 1200px; 16 | height: 75px; 17 | margin: auto; 18 | } 19 | 20 | .icon{ 21 | width: 200px; 22 | float: left; 23 | height: 70px; 24 | } 25 | 26 | .logo{ 27 | color: #ff7200; 28 | font-size: 35px; 29 | font-family: Arial; 30 | padding-left: 20px; 31 | float: left; 32 | padding-top: 10px; 33 | margin-top: 5px 34 | } 35 | 36 | .menu{ 37 | width: 400px; 38 | float: left; 39 | height: 70px; 40 | } 41 | 42 | ul{ 43 | float: left; 44 | display: flex; 45 | justify-content: center; 46 | align-items: center; 47 | } 48 | 49 | ul li{ 50 | list-style: none; 51 | margin-left: 62px; 52 | margin-top: 27px; 53 | font-size: 14px; 54 | } 55 | 56 | ul li a{ 57 | text-decoration: none; 58 | color: #fff; 59 | font-family: Arial; 60 | font-weight: bold; 61 | transition: 0.4s ease-in-out; 62 | } 63 | 64 | ul li a:hover{ 65 | color: #454c4f; 66 | } 67 | 68 | .search{ 69 | width: 330px; 70 | float: left; 71 | margin-left: 270px; 72 | 73 | } 74 | 75 | .help-bar { 76 | width: 2px; /* Adjust the width based on content */ 77 | padding: 5px; /* Add padding for spacing */ 78 | border: 1px solid #ccc; /* Add a border for visual separation */ 79 | height: 1px; 80 | 81 | } 82 | 83 | .srch{ 84 | font-family: 'Times New Roman'; 85 | width: 100px; 86 | height: 40px; 87 | background: transparent; 88 | border: 1px solid #454c4f; 89 | margin-top: 13px; 90 | color: rgb(228, 241, 209); 91 | margin-left: 125px; 92 | 93 | 94 | 95 | 96 | /* border-right: 10px; 97 | font-size: 16px; 98 | float: left; 99 | padding: 10px; 100 | border-bottom-left-radius: 5px; 101 | border-top-left-radius: 5px; */ 102 | } 103 | 104 | .btn{ 105 | width: 100px; 106 | height: 40px; 107 | background: #454c4f; 108 | border: 2px solid #454c4f; 109 | margin-top: 13px; 110 | color: #fff; 111 | font-size: 15px; 112 | border-bottom-right-radius: 5px; 113 | border-bottom-right-radius: 5px; 114 | transition: 0.2s ease; 115 | cursor: pointer; 116 | } 117 | .btn:hover{ 118 | color: #000; 119 | } 120 | 121 | .btn:focus{ 122 | outline: none; 123 | } 124 | 125 | .srch:focus{ 126 | outline: none; 127 | } 128 | 129 | .content{ 130 | width: 1200px; 131 | height: auto; 132 | margin: auto; 133 | color: #fff; 134 | position: relative; 135 | } 136 | 137 | .content .par{ 138 | padding-left: 20px; 139 | padding-bottom: 25px; 140 | font-family: Arial; 141 | letter-spacing: 1.2px; 142 | line-height: 30px; 143 | } 144 | 145 | .content h1{ 146 | font-family: 'Times New Roman'; 147 | font-size: 50px; 148 | padding-left: 20px; 149 | margin-top: 9%; 150 | letter-spacing: 2px; 151 | } 152 | 153 | .content .cn{ 154 | width: 160px; 155 | height: 40px; 156 | background: #454c4f; 157 | border: none; 158 | margin-bottom: 10px; 159 | margin-left: 20px; 160 | font-size: 18px; 161 | border-radius: 10px; 162 | cursor: pointer; 163 | transition: .4s ease; 164 | 165 | } 166 | 167 | .content .cn a{ 168 | text-decoration: none; 169 | color: #000; 170 | transition: .3s ease; 171 | } 172 | 173 | .cn:hover{ 174 | background-color: #fff; 175 | } 176 | 177 | .content span{ 178 | color: #454c4f; 179 | font-size: 65px 180 | } 181 | 182 | .form{ 183 | width: 250px; 184 | height: 380px; 185 | background: linear-gradient(to top, rgba(0,0,0,0.8)50%,rgba(0,0,0,0.8)50%); 186 | position: absolute; 187 | top: -20px; 188 | left: 870px; 189 | transform: translate(0%,-5%); 190 | border-radius: 10px; 191 | padding: 25px; 192 | } 193 | 194 | .form h2{ 195 | width: 220px; 196 | font-family: sans-serif; 197 | text-align: center; 198 | color: #454c4f; 199 | font-size: 22px; 200 | background-color: #fff; 201 | border-radius: 10px; 202 | margin: 2px; 203 | padding: 8px; 204 | } 205 | 206 | .form input{ 207 | width: 240px; 208 | height: 35px; 209 | background: transparent; 210 | border-bottom: 1px solid #454c4f; 211 | border-top: none; 212 | border-right: none; 213 | border-left: none; 214 | color: #fff; 215 | font-size: 15px; 216 | letter-spacing: 1px; 217 | margin-top: 30px; 218 | font-family: sans-serif; 219 | } 220 | 221 | .form input:focus{ 222 | outline: none; 223 | } 224 | 225 | ::placeholder{ 226 | color: #fff; 227 | font-family: Arial; 228 | } 229 | 230 | .btnn{ 231 | width: 240px; 232 | height: 40px; 233 | background: #454c4f; 234 | border: none; 235 | margin-top: 30px; 236 | font-size: 18px; 237 | border-radius: 10px; 238 | cursor: pointer; 239 | color: #fff; 240 | transition: 0.4s ease; 241 | } 242 | .btnn:hover{ 243 | background: #fff; 244 | color: #454c4f; 245 | } 246 | .btnn a{ 247 | text-decoration: none; 248 | color: #000; 249 | font-weight: bold; 250 | } 251 | .form .link{ 252 | font-family: Arial, Helvetica, sans-serif; 253 | font-size: 17px; 254 | padding-top: 20px; 255 | text-align: center; 256 | } 257 | .form .link a{ 258 | text-decoration: none; 259 | color: #454c4f; 260 | } 261 | .liw{ 262 | padding-top: 15px; 263 | padding-bottom: 10px; 264 | text-align: center; 265 | } 266 | .icons a{ 267 | text-decoration: none; 268 | color: #fff; 269 | } 270 | .icons ion-icon{ 271 | color: #fff; 272 | font-size: 30px; 273 | padding-left: 14px; 274 | padding-top: 5px; 275 | transition: 0.3s ease; 276 | } 277 | .icons ion-icon:hover{ 278 | color: #454c4f; 279 | } 280 | -------------------------------------------------------------------------------- /styles.css: -------------------------------------------------------------------------------- 1 | body { 2 | font-family: Arial, sans-serif; 3 | margin: 0; 4 | padding: 0; 5 | background-color: #f7f7f7; 6 | color: #333; 7 | } 8 | 9 | header { 10 | background-color: #0059b3; 11 | color: #fff; 12 | text-align: center; 13 | padding: 20px 0; 14 | } 15 | 16 | h1 { 17 | margin: 0; 18 | font-size: 36px; 19 | } 20 | 21 | main { 22 | max-width: 800px; 23 | margin: 0 auto; 24 | padding: 20px; 25 | } 26 | 27 | #text-input { 28 | background-color: #fff; 29 | padding: 20px; 30 | border-radius: 8px; 31 | box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); 32 | } 33 | 34 | textarea { 35 | width: 100%; 36 | height: 150px; 37 | border: 1px solid #ccc; 38 | border-radius: 4px; 39 | padding: 10px; 40 | margin-bottom: 10px; 41 | } 42 | 43 | button { 44 | background-color: #0059b3; 45 | color: #fff; 46 | border: none; 47 | border-radius: 4px; 48 | padding: 10px 20px; 49 | cursor: pointer; 50 | transition: background-color 0.3s; 51 | } 52 | 53 | button:hover { 54 | background-color: #004080; 55 | } 56 | 57 | #instructions { 58 | margin-top: 20px; 59 | } 60 | 61 | h2 { 62 | margin-top: 0; 63 | font-size: 24px; 64 | color: #0059b3; 65 | } 66 | 67 | #result { 68 | margin-top: 20px; 69 | } 70 | 71 | p { 72 | margin: 10px 0; 73 | } 74 | 75 | footer { 76 | text-align: center; 77 | margin-top: 20px; 78 | background-color: #0059b3; 79 | color: #fff; 80 | padding: 10px 0; 81 | } 82 | --------------------------------------------------------------------------------