├── .gitignore ├── LICENSE ├── README.md ├── TESTING.md ├── psxtract.sln └── src ├── cdrom.cpp ├── cdrom.h ├── crypto.cpp ├── crypto.h ├── libkirk ├── AES.c ├── AES.h ├── DES.c ├── DES.h ├── SHA1.c ├── SHA1.h ├── amctrl.c ├── amctrl.h ├── bn.c ├── ec.c ├── kirk_engine.c └── kirk_engine.h ├── lz.cpp ├── lz.h ├── psxtract.cpp ├── psxtract.h ├── psxtract.vcxproj ├── psxtract.vcxproj.filters ├── psxtract.vcxproj.user ├── utils.cpp └── utils.h /.gitignore: -------------------------------------------------------------------------------- 1 | .vs/ 2 | bin/ 3 | src/Debug/ 4 | src/Release/ 5 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | psxtract-2 2 | ========== 3 | 4 | Tool to decrypt and convert PSOne Classics from PSP/PS3. 5 | Originally written by **Hykem**. 6 | 7 | This tool allows you to decrypt a PSOne Classics EBOOT.PBP on your PC. 8 | It features a modified version of libkirk's source code to support DES 9 | encryption/decryption and the AMCTRL functions. 10 | Also features isofix code for ensuring finalized ISO matches real discs. 11 | And uses at3tool for ATRAC3 decoding of CDDA audio tracks. 12 | 13 | 14 | Notes 15 | ------- 16 | 17 | Output of running psxtract.exe EBOOT.PBP is two files - CDROM.BIN and 18 | CDROM.CUE in the current directory. You should know what to do with those. 19 | 20 | Using the "-c" option on the command line, psxtract will clean up any 21 | temporary files it generates while it runs (of which there are many). 22 | This flag is kept for backwards compatibility with old psxtract that used 23 | it to force CDROM creation. Current version always creates a BIN/CUE pair 24 | but we keep the flag for nostalgia. 25 | 26 | at3tool.exe and its accompanying dll are required to be in the same 27 | directory for ATRAC3 audio decoding of CDDA tracks. 28 | 29 | You may supply a KEYS.BIN file to the tool, but this is not necessary. 30 | Using the internal files' hashes, psxtract can calculate the key by itself. 31 | 32 | Game file manual decryption is also supported (DOCUMENT.DAT). 33 | 34 | Linux code has diverged significantly and has been removed. If you want to use 35 | this tool on Linux/OSX try it with Wine, just make sure to set WINEPREFIX approprirately. 36 | Otherwise spawning external processes needed to decode AT3 files will fail. Hint: 37 | 38 | 39 | ```$ WINEPREFIX=~/.wine/drive_c wine /path/to/psxtract.exe -c /path/to/EBOOT.PBP``` 40 | 41 | For more details about the algorithms involved in the extraction process 42 | please check the following sources: 43 | - PBP unpacking: 44 | https://github.com/pspdev/pspsdk/blob/master/tools/unpack-pbp.c 45 | 46 | - PGD decryption: 47 | http://www.emunewz.net/forum/showthread.php?tid=3834 (initial research) 48 | https://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/crypto/PGD.java (JPCSP) 49 | https://github.com/tpunix/kirk_engine/blob/master/npdrm/dnas.c (tpunix) 50 | 51 | - AMCTRL functions: 52 | https://code.google.com/p/jpcsp/source/browse/trunk/src/jpcsp/crypto/AMCTRL.java (JPCSP) 53 | https://github.com/tpunix/kirk_engine/blob/master/kirk/amctrl.c (tpunix) 54 | 55 | - CD-ROM ECC/EDC: 56 | https://github.com/DeadlySystem/isofix (Daniel Huguenin) 57 | 58 | 59 | Working games and compatibility 60 | ------------------------------- 61 | 62 | Nearly all PSN eboots should be supported. Some known problems are mentioned in the bug tracker: 63 | 64 | https://github.com/has207/psxtract-2/issues 65 | 66 | If you encounter issues with a particular game report it there, but in general the game should 67 | be fully playable even in those cases where we have md5 sum mismatches vs redump.org. 68 | 69 | Generally speaking BIN/CUE pair created by this tool SHOULD match information on redump.org, 70 | in other words all .BIN files should be the correct size and match md5 hashes 71 | of a real disc dump. 72 | 73 | However, if the game has CDDA audio audio tracks, i.e. 2 or more tracks per BIN, those audio 74 | track md5 sums will NOT match redump.org info. This is working as intended, we generate the 75 | audio tracks with the correct size and as close to original as possible. However, as we're dealing 76 | with a lossy compression to ATRAC3, the conversion back to raw audio necessarily results in md5 hash 77 | mismatches for the audio tracks. 78 | 79 | The easiest way to verify hashes is by importing the game into Duckstation and checking hashes from 80 | the game Properties menu. 81 | 82 | There is one additional known issue that is actually working as intended -- with Resident Evil 2 Dualshock Edition. The EBOOT for that game retains 83 | CUE entries and pointers to audio tracks, however these were not included in the EBOOT. 84 | The audio tracks present on the physical discs are empty so this is not a real loss, just an issue 85 | with the EBOOT itself, so there will be warnings when this EBOOT is extracted but the resulting 86 | BIN/CUE is fully playable. 87 | 88 | 89 | Credits 90 | ------- 91 | 92 | Daniel Huguenin (implementation of ECC/EDC CD-ROM patching) 93 | 94 | Draan, Proxima and everyone involved in kirk-engine (libkirk source code) 95 | 96 | tpunix (C port and research of the PGD and AMCTRL algorithms) 97 | 98 | PSPSDK (PBP unpacking sample code) 99 | 100 | zecoxao (Unscrambling and decoding of audio tracks) 101 | 102 | Heel (ATRACT3 decoding for CDDA tracks) 103 | -------------------------------------------------------------------------------- /TESTING.md: -------------------------------------------------------------------------------- 1 | Testing 2 | ======= 3 | 4 | There are no tests included in the code so when making changes it is important to back test that 5 | we don't break existing functionality. Here are some code paths that should be tested with example eboots: 6 | 7 | - Single disc game, no audio (vast majority of titles) 8 | - Single disc game, CDDA audio (Gaia Seed is good candidate, small file size and CDDA track plays as the game starts, other titles: Advanced V.G.2, Capcom Generation Vol 5, Castlevania SOTN, Community POM, Cotton 100%, Mad Stalker, Panzer Bandit, Pocket Fighter, Silhouette Mirage, Tron Bonne, Vib-Ribbon)) 9 | - Multi disc game, no audio (Armored Core: Master of Arena, Fear Effect 1 & 2, G-Police, MGS, Parasite Eve, Policenauts, Rival Schools, Strider 2) 10 | - Multi disc game, CDDA audio (AitD:New Nightmare, Langrisser IV&V, Legend of Dragoon(JP), Maboroshi Tsukiyo, Soukuu no Tsubasa Gotha World) 11 | - Multi disc game, CDDA audio missing in EBOOT (RE2 Dualshock Edition) 12 | - CDDA tracks with short pregaps (Tsuukai Slot Shooting, GTA) 13 | - CDDA tracks with long pregaps ('99 Koushien, A. IV Evolution Global, Bowling (US), Centipede (US/EU), Dai-4-Ji Super Robot Taisen S, Hanabi: Fantast, Jet Copter X, KoF '96, KoF Kyo, Koushien V, Motteke Tamago with Ganbare, Perfect Weapon, Touge Max Saisoku Drift Master, Vib-Ribbon, Yamasa Digi Guide Hyper Rush) 14 | - CDDA tracks with large pregap on first audio track only (Chou Aniki Kyuukyoku, Nyan to Wonderful, Slam Dragon, Yamasa Digi Guide New Pulsar R, Yamasa Digi Guide M771) 15 | 16 | 17 | In order to test: 18 | 19 | - run psxtract on the relevant eboot, don't specify -c to keep TEMP files 20 | - compare CUE file to data for the game on redump.org, redump assumes all tracks are separate BIN files whereas we generate a single BIN, so use CDMage to load real disc dump then Save it in a new directory to create single BIN and compare the CUE files directly 21 | - ensure all tracks are the correct length, look at D0X_TRACK_XX.BIN files in TEMP 22 | - ensure pregap values in the CUE match redump 23 | - ensure data track passes md5 check by adding the game in Duckstation (then properties/check hashes) 24 | - ensure audio looks correct by importing track from real disc and TEMP directory created during psxtract process into Audacity (File/Import/Raw Data - Signed 16-bit PCM, Little-endian, 2 Channel (stereo), 44100Hz) 25 | -------------------------------------------------------------------------------- /psxtract.sln: -------------------------------------------------------------------------------- 1 |  2 | Microsoft Visual Studio Solution File, Format Version 12.00 3 | # Visual Studio 2012 4 | Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "psxtract", "src\psxtract.vcxproj", "{B86E1508-26B6-465B-ABEC-A35E07E2A187}" 5 | EndProject 6 | Global 7 | GlobalSection(SolutionConfigurationPlatforms) = preSolution 8 | Debug|Win32 = Debug|Win32 9 | Release|Win32 = Release|Win32 10 | EndGlobalSection 11 | GlobalSection(ProjectConfigurationPlatforms) = postSolution 12 | {B86E1508-26B6-465B-ABEC-A35E07E2A187}.Debug|Win32.ActiveCfg = Debug|Win32 13 | {B86E1508-26B6-465B-ABEC-A35E07E2A187}.Debug|Win32.Build.0 = Debug|Win32 14 | {B86E1508-26B6-465B-ABEC-A35E07E2A187}.Release|Win32.ActiveCfg = Release|Win32 15 | {B86E1508-26B6-465B-ABEC-A35E07E2A187}.Release|Win32.Build.0 = Release|Win32 16 | EndGlobalSection 17 | GlobalSection(SolutionProperties) = preSolution 18 | HideSolutionNode = FALSE 19 | EndGlobalSection 20 | EndGlobal 21 | -------------------------------------------------------------------------------- /src/cdrom.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | // Created in 2014 by Daniel Huguenin. Please ask for permission before 6 | // re-using this program or parts of it and mention my name in your project. 7 | // You may redistribute this program in unaltered form as you deem fit. 8 | 9 | #include "cdrom.h" 10 | 11 | struct fixImageStatus fixImage(char* inputfilepath, char* outputfilepath, int num_sectors, enum EDCMode form2EDCMode, bool verbose) 12 | { 13 | //Initialize return value struct 14 | struct fixImageStatus status; 15 | status.errorcode = 0; 16 | status.mode0sectors = 0; 17 | status.mode1sectors = 0; 18 | status.mode2form1sectors = 0; 19 | status.mode2form2sectors = 0; 20 | status.form2bootsectorswithedc = 0; 21 | status.form2bootsectorswithoutedc = 0; 22 | status.warnings = NULL; 23 | status.warningscount = 0; 24 | 25 | //Sync pattern 26 | unsigned char sync[SYNC_SIZE] = {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00}; 27 | 28 | //Open the input file 29 | FILE* inputfile; 30 | inputfile = fopen(inputfilepath, "rb"); 31 | if(inputfile == NULL) 32 | { 33 | status.errorcode = ERROR_INPUT_IO_ERROR; 34 | return status; 35 | } 36 | 37 | //Open the output file 38 | FILE* outputfile; 39 | outputfile = fopen(outputfilepath, "wb"); 40 | if(outputfile == NULL) 41 | { 42 | //Close the input file 43 | fclose(inputfile); 44 | 45 | status.errorcode = ERROR_OUTPUT_IO_ERROR; 46 | return status; 47 | } 48 | 49 | //Determine file size 50 | fseek(inputfile, 0, SEEK_END); 51 | int filesize = ftell(inputfile); 52 | if (filesize < num_sectors * SECTOR_SIZE) 53 | { 54 | fclose(inputfile); 55 | status.errorcode = ERROR_IMAGE_INCOMPLETE; 56 | return status; 57 | } 58 | fseek(inputfile, 0, SEEK_SET); 59 | 60 | if(form2EDCMode == INFER) 61 | { 62 | //If the EDC mode is to be inferred, do so by looking at the bootloader 63 | 64 | //Allocate memory to hold bootloader 65 | unsigned char* bootloader = (unsigned char*) malloc(BOOTLOADER_SIZE); 66 | 67 | //Read bootloader 68 | int bytesread = fread(bootloader, 1, BOOTLOADER_SIZE, inputfile); 69 | if(bytesread != BOOTLOADER_SIZE) 70 | { 71 | //Free memory 72 | free(bootloader); 73 | 74 | status.errorcode = ERROR_IMAGE_INCOMPLETE; 75 | fclose(inputfile); 76 | fclose(outputfile); 77 | return status; 78 | } 79 | 80 | //Inspect the EDC of the four form 2 sectors in the bootloader 81 | unsigned int form2sectorsinbootloader[] = {12, 13, 14, 15}; 82 | for(int i = 0; i < sizeof(form2sectorsinbootloader) / sizeof(form2sectorsinbootloader[0]); ++i) 83 | { 84 | //Navigate to the current sector 85 | unsigned char* sector = bootloader + form2sectorsinbootloader[i] * SECTOR_SIZE; 86 | 87 | //Extract EDC 88 | unsigned int EDC = (sector[CDROMXA_FORM2_EDC_OFFSET + 0] << 0) 89 | | (sector[CDROMXA_FORM2_EDC_OFFSET + 1] << 8) 90 | | (sector[CDROMXA_FORM2_EDC_OFFSET + 2] << 16) 91 | | (sector[CDROMXA_FORM2_EDC_OFFSET + 3] << 24); 92 | 93 | //Check if EDC is set and increment corresponding counters 94 | if(EDC == 0x00000000) 95 | { 96 | ++status.form2bootsectorswithoutedc; 97 | } 98 | else 99 | { 100 | ++status.form2bootsectorswithedc; 101 | } 102 | } 103 | 104 | //Change the EDC mode appropriately 105 | if(status.form2bootsectorswithoutedc >= status.form2bootsectorswithedc) 106 | { 107 | form2EDCMode = ZERO; 108 | } 109 | else 110 | { 111 | form2EDCMode = COMPUTE; 112 | } 113 | 114 | //Free memory 115 | free(bootloader); 116 | 117 | //Reset input file position (the bootloader must be fixed as well) 118 | fseek(inputfile, 0, SEEK_SET); 119 | } 120 | 121 | //Iterate over all sectors in the input file, fix them, and write 122 | unsigned char minutes = 0x00; 123 | unsigned char seconds = 0x02; 124 | unsigned char blocks = 0x00; 125 | unsigned char* sector = (unsigned char*) malloc(SECTOR_SIZE); 126 | if(sector == NULL) 127 | { 128 | status.errorcode = ERROR_OUT_OF_MEMORY; 129 | fclose(inputfile); 130 | fclose(outputfile); 131 | return status; 132 | } 133 | printf("Processing %d sectors\n", num_sectors); 134 | status.totalsectors = 0; 135 | for(int i = 0; i < num_sectors * SECTOR_SIZE; i += SECTOR_SIZE) 136 | { 137 | //Read next sector 138 | int bytesread = fread(sector, 1, SECTOR_SIZE, inputfile); 139 | if(bytesread != SECTOR_SIZE) 140 | { 141 | //Free memory 142 | free(sector); 143 | 144 | //Close the input and output files 145 | fclose(inputfile); 146 | fclose(outputfile); 147 | 148 | status.errorcode = ERROR_IMAGE_INCOMPLETE; 149 | return status; 150 | } 151 | 152 | //Find mode 153 | unsigned char mode = sector[HEADER_OFFSET + 3]; 154 | 155 | //Process sector based on mode 156 | if(mode == MODE_0) 157 | { 158 | //Check that the sector is really all-zero 159 | for(int j = HEADER_OFFSET + HEADER_SIZE; j < SECTOR_SIZE; ++j) 160 | { 161 | if(sector[j] != 0x00) 162 | { 163 | //Free memory 164 | free(sector); 165 | 166 | //Close the input and output files 167 | fclose(inputfile); 168 | fclose(outputfile); 169 | 170 | status.errorcode = ERROR_MODE0_IS_NOT_0; 171 | return status; 172 | } 173 | } 174 | 175 | //We have probably reached the beginning of the zero-padding - verify if that's the case 176 | 177 | //Make a backup of the current read position in the input file 178 | int inputfile_position_backup = ftell(inputfile); 179 | 180 | //Read the remainder of the input file and check that it is all-zero 181 | bool remainder_is_zero = true; 182 | unsigned char* temp = (unsigned char*) malloc(SECTOR_SIZE); 183 | if(temp == NULL) 184 | { 185 | //Free memory 186 | free(sector); 187 | 188 | //Close the input and output files 189 | fclose(inputfile); 190 | fclose(outputfile); 191 | 192 | status.errorcode = ERROR_OUT_OF_MEMORY; 193 | return status; 194 | } 195 | 196 | for(int j = i + SECTOR_SIZE; j < filesize && remainder_is_zero; j += SECTOR_SIZE) 197 | { 198 | //Read next sector 199 | int bytesread = fread(temp, 1, SECTOR_SIZE, inputfile); 200 | if(bytesread != SECTOR_SIZE) 201 | { 202 | //Free memory 203 | free(sector); 204 | free(temp); 205 | 206 | //Close the input and output files 207 | fclose(inputfile); 208 | fclose(outputfile); 209 | 210 | status.errorcode = ERROR_IMAGE_INCOMPLETE; 211 | return status; 212 | } 213 | 214 | //Check that the sector is all-zero 215 | for(int k = 0; k < SECTOR_SIZE; ++k) 216 | { 217 | if(temp[k] != 0x00) 218 | { 219 | remainder_is_zero = false; 220 | break; 221 | } 222 | } 223 | } 224 | free(temp); 225 | 226 | if(remainder_is_zero) 227 | { 228 | //We had indeed reached the beginning of the zero-padding. We are done here! 229 | fclose(inputfile); 230 | fclose(outputfile); 231 | return status; 232 | } 233 | else 234 | { 235 | //The mode 0 sector did NOT belong to the zero-padding - it should be added to the output file 236 | 237 | //Notify the user of this unexpected condition 238 | printf("Encountered a mode 0 sector at 0x%08X that is followed by more data. This is not expected to happen, but fixing will proceed.\n", i); 239 | 240 | //Restore input file position 241 | fseek(inputfile, inputfile_position_backup, SEEK_SET); 242 | 243 | //Write sync field 244 | memcpy(sector, sync, sizeof(sync)); 245 | 246 | //Write header 247 | sector[HEADER_OFFSET + 0] = minutes; 248 | sector[HEADER_OFFSET + 1] = seconds; 249 | sector[HEADER_OFFSET + 2] = blocks; 250 | sector[HEADER_OFFSET + 3] = MODE_2; 251 | 252 | //Update sector mode count 253 | ++status.mode0sectors; 254 | } 255 | } 256 | else if(mode == MODE_1) 257 | { 258 | //Free memory 259 | free(sector); 260 | 261 | //Close the input and output files 262 | fclose(inputfile); 263 | fclose(outputfile); 264 | 265 | status.errorcode = ERROR_UNSUPPORTED_MODE; 266 | return status; 267 | } 268 | else if(mode == MODE_2) 269 | { 270 | //Write sync field 271 | memcpy(sector, sync, sizeof(sync)); 272 | 273 | //Read subheader 274 | unsigned char filenumber = sector[CDROMXA_SUBHEADER_OFFSET + 0]; 275 | unsigned char channelnumber = sector[CDROMXA_SUBHEADER_OFFSET + 1]; 276 | unsigned char submode = sector[CDROMXA_SUBHEADER_OFFSET + 2]; 277 | unsigned char datatype = sector[CDROMXA_SUBHEADER_OFFSET + 3]; 278 | unsigned char filenumbercopy = sector[CDROMXA_SUBHEADER_OFFSET + 4]; 279 | unsigned char channelnumbercopy = sector[CDROMXA_SUBHEADER_OFFSET + 5]; 280 | unsigned char submodecopy = sector[CDROMXA_SUBHEADER_OFFSET + 6]; 281 | unsigned char datatypecopy = sector[CDROMXA_SUBHEADER_OFFSET + 7]; 282 | 283 | //Check that the two copies of the subheader data are equivalent 284 | if(filenumber != filenumbercopy) 285 | { 286 | addWarning(status, "Corrupt CD-ROM XA subheader will be copied to the output file. File number mismatch at %02X:%02X:%02X: 0x%02X vs 0x%02X", 255, minutes, seconds, blocks, filenumber, filenumbercopy); 287 | } 288 | if(channelnumber != channelnumbercopy) 289 | { 290 | addWarning(status, "Corrupt CD-ROM XA subheader will be copied to the output file. Channel number mismatch at %02X:%02X:%02X: 0x%02X vs 0x%02X", 255, minutes, seconds, blocks, channelnumber, channelnumbercopy); 291 | } 292 | if(submode != submodecopy) 293 | { 294 | addWarning(status, "Corrupt CD-ROM XA subheader will be copied to the output file. Submode mismatch at %02X:%02X:%02X: 0x%02X vs 0x%02X", 255, minutes, seconds, blocks, submode, submodecopy); 295 | } 296 | if(datatype != datatypecopy) 297 | { 298 | addWarning(status, "Corrupt CD-ROM XA subheader will be copied to the output file. CD-ROM XA subheader corrupt. Data type mismatch at %02X:%02X:%02X: 0x%02X vs 0x%02X", 255, minutes, seconds, blocks, datatype, datatypecopy); 299 | } 300 | 301 | //Determine CD ROM XA Mode 2 form 302 | bool isForm2 = (submode & 0x20) == 0x20; 303 | 304 | //Compute and write EDC 305 | if(isForm2) 306 | { 307 | //Write header 308 | sector[HEADER_OFFSET + 0] = minutes; 309 | sector[HEADER_OFFSET + 1] = seconds; 310 | sector[HEADER_OFFSET + 2] = blocks; 311 | sector[HEADER_OFFSET + 3] = mode; 312 | 313 | //Handle form 2 EDC 314 | unsigned int EDC; //For some strange reason, a declaration in case COMPUTE would require a ; in front. 315 | switch(form2EDCMode) 316 | { 317 | case KEEP: 318 | //Leave the original in tact. Nothing to do here. 319 | break; 320 | 321 | case COMPUTE: 322 | //Compute form 2 EDC 323 | EDC = 0x00000000; 324 | for(int i = CDROMXA_SUBHEADER_OFFSET; i < CDROMXA_FORM2_EDC_OFFSET; ++i) 325 | { 326 | EDC = EDC ^ sector[i]; 327 | EDC = (EDC >> 8) ^ EDCTable[EDC & 0x000000FF]; 328 | } 329 | 330 | //Write EDC 331 | sector[CDROMXA_FORM2_EDC_OFFSET + 0] = (EDC & 0x000000FF) >> 0; 332 | sector[CDROMXA_FORM2_EDC_OFFSET + 1] = (EDC & 0x0000FF00) >> 8; 333 | sector[CDROMXA_FORM2_EDC_OFFSET + 2] = (EDC & 0x00FF0000) >> 16; 334 | sector[CDROMXA_FORM2_EDC_OFFSET + 3] = (EDC & 0xFF000000) >> 24; 335 | break; 336 | 337 | case ZERO: 338 | //Write zeroed EDC 339 | sector[CDROMXA_FORM2_EDC_OFFSET + 0] = 0; 340 | sector[CDROMXA_FORM2_EDC_OFFSET + 1] = 0; 341 | sector[CDROMXA_FORM2_EDC_OFFSET + 2] = 0; 342 | sector[CDROMXA_FORM2_EDC_OFFSET + 3] = 0; 343 | break; 344 | } 345 | 346 | //Update sector mode count 347 | ++status.mode2form2sectors; 348 | } 349 | else 350 | { 351 | //Compute form 1 EDC 352 | unsigned int EDC = 0x00000000; 353 | for(int i = CDROMXA_SUBHEADER_OFFSET; i < CDROMXA_FORM1_EDC_OFFSET; ++i) 354 | { 355 | EDC = EDC ^ sector[i]; 356 | EDC = (EDC >> 8) ^ EDCTable[EDC & 0x000000FF]; 357 | } 358 | 359 | //Write EDC 360 | sector[CDROMXA_FORM1_EDC_OFFSET + 0] = (EDC & 0x000000FF) >> 0; 361 | sector[CDROMXA_FORM1_EDC_OFFSET + 1] = (EDC & 0x0000FF00) >> 8; 362 | sector[CDROMXA_FORM1_EDC_OFFSET + 2] = (EDC & 0x00FF0000) >> 16; 363 | sector[CDROMXA_FORM1_EDC_OFFSET + 3] = (EDC & 0xFF000000) >> 24; 364 | 365 | //Write error-correction data 366 | 367 | //Temporarily clear header 368 | sector[HEADER_OFFSET + 0] = 0x00; 369 | sector[HEADER_OFFSET + 1] = 0x00; 370 | sector[HEADER_OFFSET + 2] = 0x00; 371 | sector[HEADER_OFFSET + 3] = 0x00; 372 | 373 | //Calculate P parity 374 | { 375 | unsigned char* src = sector + HEADER_OFFSET; 376 | unsigned char* dst = sector + CDROMXA_FORM1_PARITY_P_OFFSET; 377 | for(int i = 0; i < 43; ++i) 378 | { 379 | unsigned short x = 0x0000; 380 | unsigned short y = 0x0000; 381 | for(int j = 19; j < 43; ++j) 382 | { 383 | x ^= RSPCTable[j][src[0]]; //LSB 384 | y ^= RSPCTable[j][src[1]]; //MSB 385 | src += 2 * 43; 386 | } 387 | dst[ 0] = x >> 8; 388 | dst[2 * 43 + 0] = x & 0xFF; 389 | dst[ 1] = y >> 8; 390 | dst[2 * 43 + 1] = y & 0xFF; 391 | dst += 2; 392 | src -= (43 - 19) * 2 * 43; //Restore src to the state before the inner loop 393 | src += 2; 394 | } 395 | } 396 | 397 | //Calculate Q parity 398 | { 399 | unsigned char* src = sector + HEADER_OFFSET; 400 | unsigned char* dst = sector + CDROMXA_FORM1_PARITY_Q_OFFSET; 401 | unsigned char* src_end = sector + CDROMXA_FORM1_PARITY_Q_OFFSET; 402 | for(int i = 0; i < 26; ++i) 403 | { 404 | unsigned char* src_backup = src; 405 | unsigned short x = 0x0000; 406 | unsigned short y = 0x0000; 407 | for(int j = 0; j < 43; ++j) 408 | { 409 | x ^= RSPCTable[j][src[0]]; //LSB 410 | y ^= RSPCTable[j][src[1]]; //MSB 411 | src += 2 * 44; 412 | if(src >= src_end) 413 | { 414 | src = src - (HEADER_SIZE + CDROMXA_SUBHEADER_SIZE + CDROMXA_FORM1_USER_DATA_SIZE + EDC_SIZE + CDROMXA_FORM1_PARITY_P_SIZE); 415 | } 416 | } 417 | 418 | dst[ 0] = x >> 8; 419 | dst[2 * 26 + 0] = x & 0xFF; 420 | dst[ 1] = y >> 8; 421 | dst[2 * 26 + 1] = y & 0xFF; 422 | dst += 2; 423 | src = src_backup; 424 | src += 2 * 43; 425 | } 426 | } 427 | 428 | //Restore header 429 | sector[HEADER_OFFSET + 0] = minutes; 430 | sector[HEADER_OFFSET + 1] = seconds; 431 | sector[HEADER_OFFSET + 2] = blocks; 432 | sector[HEADER_OFFSET + 3] = mode; 433 | 434 | //Update sector mode count 435 | ++status.mode2form1sectors; 436 | } 437 | ++status.totalsectors; 438 | } 439 | else 440 | { 441 | //Free memory 442 | free(sector); 443 | 444 | //Close the input and output files 445 | fclose(inputfile); 446 | fclose(outputfile); 447 | 448 | status.errorcode = ERROR_UNEXPECTED_MODE; 449 | return status; 450 | } 451 | 452 | //Write fixed sector to output file 453 | int byteswritten = fwrite(sector, 1, SECTOR_SIZE, outputfile); 454 | if(byteswritten != SECTOR_SIZE) 455 | { 456 | //Free memory 457 | free(sector); 458 | 459 | //Close the input and output files 460 | fclose(inputfile); 461 | fclose(outputfile); 462 | 463 | status.errorcode = ERROR_OUTPUT_IO_ERROR; 464 | return status; 465 | } 466 | 467 | //Update position 468 | ++blocks; 469 | if((blocks & 0x0F) == 0x0A) 470 | { 471 | //Increment from BCD x9 to (x+1)0 472 | blocks += 0x06; 473 | } 474 | else 475 | { 476 | if(blocks == 0x75) //Can be in the else branch because blocks & 0x0F == 0x0A => blocks != 0x75 477 | { 478 | blocks = 0x00; 479 | ++seconds; 480 | if((seconds & 0x0F) == 0x0A) 481 | { 482 | //Increment from BCD x9 to (x+1)0 483 | seconds += 0x06; 484 | if(seconds == 0x60) //Can be in the else branch because seconds & 0x0F == 0x0A => seconds != 0x60 485 | { 486 | seconds = 0x00; 487 | ++minutes; 488 | if((minutes & 0x0F) == 0x0A) 489 | { 490 | //Increment from BCD x9 to (x+1)0 491 | minutes += 0x06; 492 | } 493 | } 494 | } 495 | } 496 | } 497 | } 498 | 499 | //Free memory 500 | free(sector); 501 | 502 | //Close the input and output files 503 | fclose(inputfile); 504 | fclose(outputfile); 505 | 506 | //Signal successful operation and return status 507 | return status; 508 | } 509 | 510 | int make_cdrom(char* inputfile, char* outputfile, int num_sectors, bool verbose) 511 | { 512 | // Use the INFER method for EDC calculation (proved to be the more accurate approach). 513 | struct fixImageStatus status = fixImage(inputfile, outputfile, num_sectors, INFER, verbose); 514 | if (verbose) 515 | { 516 | printf("Number of mode 0 sectors: %i\n", status.mode0sectors); 517 | printf("Number of mode 1 sectors: Mode 1 sectors are not supported.\n"); 518 | printf("Number of mode 2 form 1 sectors: %i\n", status.mode2form1sectors); 519 | printf("Number of mode 2 form 2 sectors: %i\n", status.mode2form2sectors); 520 | printf("Mode 2 form 2 boot sectors with EDC: %i\n", status.form2bootsectorswithedc); 521 | printf("Mode 2 form 2 boot sectors without EDC: %i\n", status.form2bootsectorswithoutedc); 522 | printf("Total sectors processed: %i\n", status.totalsectors); 523 | } 524 | switch(status.errorcode) 525 | { 526 | //Print success message 527 | case 0: 528 | printf("The image has been fixed!\n"); 529 | break; 530 | 531 | //Print an error message 532 | case ERROR_OUT_OF_MEMORY: 533 | printf("Out of memory!\n"); 534 | break; 535 | 536 | case ERROR_INPUT_IO_ERROR: 537 | printf("Could not open input file - terminating\n"); 538 | break; 539 | 540 | case ERROR_OUTPUT_IO_ERROR: 541 | printf("Could not write to output file - terminating\n"); 542 | break; 543 | 544 | case ERROR_IMAGE_INCOMPLETE: 545 | printf("Image ended prematurely! The image file you provided contains an incomplete sector.\n"); 546 | break; 547 | 548 | case ERROR_UNEXPECTED_MODE: 549 | printf("The image has been fixed!\nProcess stopped early, this is likely due to non-standard pregap before audio tracks present.\n"); 550 | break; 551 | 552 | case ERROR_UNSUPPORTED_MODE: 553 | printf("Mode 1 sector encountered. This program does not support such images.\n"); 554 | break; 555 | 556 | case ERROR_MODE0_IS_NOT_0: 557 | printf("Encountered a mode 0 sector that contained non-null data. This image is corrupt!\n"); 558 | break; 559 | 560 | default: 561 | printf("Encountered unknown error: %i\n", status.errorcode); 562 | break; 563 | } 564 | 565 | if(status.warningscount > 0) 566 | { 567 | printf("%d warnings occured during the process:\n", status.warningscount); 568 | for(int i = 0; i < status.warningscount; ++i) 569 | { 570 | printf(status.warnings[i]); 571 | if (i > MAX_WARNINGS) 572 | { 573 | printf("\n(%d warnings suppressed)\n", status.warningscount - i); 574 | break; 575 | } 576 | printf("\n"); 577 | } 578 | } 579 | 580 | return status.totalsectors; 581 | } 582 | -------------------------------------------------------------------------------- /src/crypto.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | /* 6 | Copyright (c) 2005 adresd 7 | Copyright (c) 2005 Marcus R. Brown 8 | Copyright (c) 2005 James Forshaw 9 | Copyright (c) 2005 John Kelley 10 | Copyright (c) 2005 Jesper Svennevid 11 | All rights reserved. 12 | 13 | Redistribution and use in source and binary forms, with or without 14 | modification, are permitted provided that the following conditions 15 | are met: 16 | 1. Redistributions of source code must retain the above copyright 17 | notice, this list of conditions and the following disclaimer. 18 | 2. Redistributions in binary form must reproduce the above copyright 19 | notice, this list of conditions and the following disclaimer in the 20 | documentation and/or other materials provided with the distribution. 21 | 3. The names of the authors may not be used to endorse or promote products 22 | derived from this software without specific prior written permission. 23 | 24 | THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 25 | IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 | IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 | NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 | THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 | */ 35 | 36 | // Unpack PBP comes from "PSPSDK - PSPDEV Open Source Project" (check above disclaimer). 37 | // Decrypt PGD is based on "pgdecrypt" by tpunix. 38 | 39 | #define _CRT_SECURE_NO_WARNINGS 40 | 41 | #include "crypto.h" 42 | 43 | int decrypt_pgd(unsigned char* pgd_data, int pgd_size, int flag, unsigned char* key) 44 | { 45 | int result; 46 | PGD_HEADER PGD[sizeof(PGD_HEADER)]; 47 | MAC_KEY mkey; 48 | CIPHER_KEY ckey; 49 | unsigned char*fkey; 50 | 51 | // Read in the PGD header parameters. 52 | memset(PGD, 0, sizeof(PGD_HEADER)); 53 | 54 | PGD->buf = pgd_data; 55 | PGD->key_index = *(u32*)(pgd_data + 4); 56 | PGD->drm_type = *(u32*)(pgd_data + 8); 57 | 58 | // Set the hashing, crypto and open modes. 59 | if (PGD->drm_type == 1) 60 | { 61 | PGD->mac_type = 1; 62 | flag |= 4; 63 | 64 | if(PGD->key_index > 1) 65 | { 66 | PGD->mac_type = 3; 67 | flag |= 8; 68 | } 69 | PGD->cipher_type = 1; 70 | } 71 | else 72 | { 73 | PGD->mac_type = 2; 74 | PGD->cipher_type = 2; 75 | } 76 | PGD->open_flag = flag; 77 | 78 | // Get the fixed DNAS key. 79 | fkey = NULL; 80 | if((flag & 0x2) == 0x2) 81 | fkey = dnas_key1A90; 82 | if((flag & 0x1) == 0x1) 83 | fkey = dnas_key1AA0; 84 | 85 | if (fkey == NULL) 86 | { 87 | printf("PGD: Invalid DNAS flag! %08x\n", flag); 88 | return -1; 89 | } 90 | 91 | // Test MAC hash at 0x80 (DNAS hash). 92 | sceDrmBBMacInit(&mkey, PGD->mac_type); 93 | sceDrmBBMacUpdate(&mkey, pgd_data, 0x80); 94 | result = sceDrmBBMacFinal2(&mkey, pgd_data + 0x80, fkey); 95 | 96 | if (result) 97 | { 98 | printf("PGD: Invalid 0x80 MAC hash!\n"); 99 | return -1; 100 | } 101 | 102 | // Test MAC hash at 0x70 (key hash). 103 | sceDrmBBMacInit(&mkey, PGD->mac_type); 104 | sceDrmBBMacUpdate(&mkey, pgd_data, 0x70); 105 | 106 | // If a key was provided, check it against MAC 0x70. 107 | if (!isEmpty(key, 0x10)) 108 | { 109 | result = sceDrmBBMacFinal2(&mkey, pgd_data + 0x70, key); 110 | if (result) 111 | { 112 | printf("PGD: Invalid 0x70 MAC hash!\n"); 113 | return -1; 114 | } 115 | else 116 | { 117 | memcpy(PGD->vkey, key, 16); 118 | } 119 | } 120 | else 121 | { 122 | // Generate the key from MAC 0x70. 123 | bbmac_getkey(&mkey, pgd_data + 0x70, PGD->vkey); 124 | } 125 | 126 | // Decrypt the PGD header block (0x30 bytes). 127 | sceDrmBBCipherInit(&ckey, PGD->cipher_type, 2, pgd_data + 0x10, PGD->vkey, 0); 128 | sceDrmBBCipherUpdate(&ckey, pgd_data + 0x30, 0x30); 129 | sceDrmBBCipherFinal(&ckey); 130 | 131 | // Get the decryption parameters from the decrypted header. 132 | PGD->data_size = *(u32*)(pgd_data + 0x44); 133 | PGD->block_size = *(u32*)(pgd_data + 0x48); 134 | PGD->data_offset = *(u32*)(pgd_data + 0x4c); 135 | 136 | // Additional size variables. 137 | PGD->align_size = (PGD->data_size + 15) &~ 15; 138 | PGD->table_offset = PGD->data_offset + PGD->align_size; 139 | PGD->block_nr = (PGD->align_size + PGD->block_size - 1) &~ (PGD->block_size - 1); 140 | PGD->block_nr = PGD->block_nr / PGD->block_size; 141 | 142 | if ((PGD->align_size + PGD->block_nr * 16) > pgd_size) 143 | { 144 | printf("PGD: Invalid data size!\n"); 145 | return -1; 146 | } 147 | 148 | // Test MAC hash at 0x60 (table hash). 149 | sceDrmBBMacInit(&mkey, PGD->mac_type); 150 | sceDrmBBMacUpdate(&mkey, pgd_data + PGD->table_offset, PGD->block_nr * 16); 151 | result = sceDrmBBMacFinal2(&mkey, pgd_data + 0x60, PGD->vkey); 152 | 153 | if(result) 154 | { 155 | printf("PGD: Invalid 0x60 MAC hash!\n"); 156 | return -1; 157 | } 158 | 159 | // Decrypt the data. 160 | sceDrmBBCipherInit(&ckey, PGD->cipher_type, 2, pgd_data + 0x30, PGD->vkey, 0); 161 | sceDrmBBCipherUpdate(&ckey, pgd_data + 0x90, PGD->align_size); 162 | sceDrmBBCipherFinal(&ckey); 163 | 164 | return PGD->data_size; 165 | } 166 | 167 | int decrypt_doc(unsigned char* data, int size) 168 | { 169 | data += 0x10; // Skip dummy PGD header. 170 | size -= 0x10; // Adjust size. 171 | 172 | unsigned char *out = new unsigned char[size]; 173 | 174 | // Perform DES CBC decryption. 175 | des_context ctx; 176 | des_setkey_dec(&ctx, des_key); 177 | des_crypt_cbc(&ctx, DES_DECRYPT, size, des_iv, data, out); 178 | 179 | // Check for "DOC" header in the decrypted data. 180 | if ((out[0] == 0x44) && 181 | (out[1] == 0x4F) && 182 | (out[2] == 0x43) && 183 | (out[3] == 0x20)) 184 | { 185 | // Copy back the decrypted data. 186 | memcpy(data - 0x10, out, size); 187 | delete[] out; 188 | return 0; 189 | } 190 | else 191 | { 192 | delete[] out; 193 | return -1; 194 | } 195 | } 196 | 197 | int unpack_pbp(FILE *infile) 198 | { 199 | long long maxbuffer = 32 * 1024 * 1024; 200 | PBP_HEADER header; 201 | int loop0; 202 | long long total_size; 203 | 204 | // Get the size of the PBP 205 | _fseeki64(infile, 0, SEEK_END); 206 | total_size = _ftelli64(infile); 207 | _fseeki64(infile, 0, SEEK_SET); 208 | 209 | if (total_size < 0) { 210 | printf("UNPACK_PBP ERROR: Could not get the input file size.\n"); 211 | return -1; 212 | } 213 | 214 | // Read in the header 215 | if (fread(&header, sizeof(PBP_HEADER), 1, infile) < 0) { 216 | printf("UNPACK_PBP ERROR: Could not read the input file header.\n"); 217 | return -1; 218 | } 219 | 220 | // Check the signature 221 | for (loop0 = 0; loop0 < sizeof(pbp_sig); loop0++) { 222 | if (header.signature[loop0] != pbp_sig[loop0]) { 223 | printf("UNPACK_PBP ERROR: Input file is not a PBP file.\n"); 224 | return -1; 225 | } 226 | } 227 | 228 | // For each file in the PBP 229 | for (loop0 = 0; loop0 < 8; loop0++) { 230 | void *buffer; 231 | long long size; 232 | 233 | // Get the size of this file 234 | if (loop0 == 7) { 235 | size = total_size - header.offset[loop0]; 236 | } else { 237 | size = header.offset[loop0 + 1] - header.offset[loop0]; 238 | } 239 | 240 | // Print out the file details 241 | printf("[%d] %10lld bytes | %s\n", loop0, size, pbp_filenames[loop0]); 242 | 243 | // Skip the file if empty 244 | if (!size) continue; 245 | 246 | // Seek to the proper position in the file 247 | if (_fseeki64(infile, header.offset[loop0], SEEK_SET) != 0) { 248 | printf("UNPACK_PBP ERROR: Could not seek in the input file.\n"); 249 | return -1; 250 | } 251 | 252 | // Open the output file 253 | FILE *outfile = fopen(pbp_filenames[loop0], "wb"); 254 | if (outfile == NULL) { 255 | printf("UNPACK_PBP ERROR: Could not open the output file. (%s)\n", pbp_filenames[loop0]); 256 | return -1; 257 | } 258 | 259 | do { 260 | long long readsize; 261 | 262 | // Make sure we don't exceed the maximum buffer size 263 | if (size > maxbuffer) { 264 | readsize = maxbuffer; 265 | } else { 266 | readsize = size; 267 | } 268 | size -= readsize; 269 | 270 | // Create the read buffer 271 | buffer = malloc(readsize); 272 | if (buffer == NULL) { 273 | printf("UNPACK_PBP ERROR: Could not allocate the section data buffer. (%d)\n", readsize); 274 | return -1; 275 | } 276 | 277 | // Read in the data from the PBP 278 | if (fread(buffer, readsize, 1, infile) < 0) { 279 | printf("UNPACK_PBP ERROR: Could not read in the section data.\n"); 280 | return -1; 281 | } 282 | 283 | // Write the contents of the buffer to the output file 284 | if (fwrite(buffer, readsize, 1, outfile) < 0) { 285 | printf("UNPACK_PBP ERROR: Could not write out the section data.\n"); 286 | return -1; 287 | } 288 | 289 | // Clean up the buffer 290 | free(buffer); 291 | 292 | // Repeat if we haven't finished writing the file 293 | } while (size); 294 | 295 | // Close the output file 296 | if (fclose(outfile) < 0) { 297 | printf("UNPACK_PBP ERROR: Could not close the output file.\n"); 298 | return -1; 299 | } 300 | 301 | } 302 | 303 | // Close the PBP 304 | if (fclose(infile) < 0) { 305 | printf("UNPACK_PBP ERROR: Could not close the input file.\n"); 306 | return -1; 307 | } 308 | 309 | // Exit successful 310 | return 0; 311 | } -------------------------------------------------------------------------------- /src/crypto.h: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | /* 6 | Copyright (c) 2005 adresd 7 | Copyright (c) 2005 Marcus R. Brown 8 | Copyright (c) 2005 James Forshaw 9 | Copyright (c) 2005 John Kelley 10 | Copyright (c) 2005 Jesper Svennevid 11 | All rights reserved. 12 | 13 | Redistribution and use in source and binary forms, with or without 14 | modification, are permitted provided that the following conditions 15 | are met: 16 | 1. Redistributions of source code must retain the above copyright 17 | notice, this list of conditions and the following disclaimer. 18 | 2. Redistributions in binary form must reproduce the above copyright 19 | notice, this list of conditions and the following disclaimer in the 20 | documentation and/or other materials provided with the distribution. 21 | 3. The names of the authors may not be used to endorse or promote products 22 | derived from this software without specific prior written permission. 23 | 24 | THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 25 | IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 | OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 | IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 28 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 | NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 | THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 | */ 35 | 36 | // Unpack PBP comes from "PSPSDK - PSPDEV Open Source Project" (check above disclaimer). 37 | // Decrypt PGD is based on "pgdecrypt" by tpunix. 38 | 39 | #define _CRT_SECURE_NO_WARNINGS 40 | 41 | #include 42 | #include 43 | #include 44 | 45 | extern "C" { 46 | #include "libkirk/kirk_engine.h" 47 | #include "libkirk/amctrl.h" 48 | #include "libkirk/DES.h" 49 | } 50 | 51 | #include "utils.h" 52 | 53 | static unsigned char des_key[0x8] = {0x39, 0xF7, 0xEF, 0xA1, 0x6C, 0xCE, 0x5F, 0x4C}; 54 | static unsigned char des_iv[0x8] = {0xA8, 0x19, 0xC4, 0xF5, 0xE1, 0x54, 0xE3, 0x0B}; 55 | 56 | static unsigned char dnas_key1A90[] = {0xED, 0xE2, 0x5D, 0x2D, 0xBB, 0xF8, 0x12, 0xE5, 0x3C, 0x5C, 0x59, 0x32, 0xFA, 0xE3, 0xE2, 0x43}; 57 | static unsigned char dnas_key1AA0[] = {0x27, 0x74, 0xFB, 0xEB, 0xA4, 0xA0, 0x01, 0xD7, 0x02, 0x56, 0x9E, 0x33, 0x8C, 0x19, 0x57, 0x83}; 58 | 59 | static unsigned char pops_key[] = {0x2E, 0x41, 0x17, 0xA5, 0x32, 0xE6, 0xC4, 0x73, 0x71, 0x7B, 0x0F, 0x7A, 0x6E, 0xC0, 0xAA, 0xA5}; 60 | 61 | // Structure to describe the header of a PGD file. 62 | typedef struct { 63 | unsigned char vkey[16]; 64 | 65 | int open_flag; 66 | int key_index; 67 | int drm_type; 68 | int mac_type; 69 | int cipher_type; 70 | 71 | int data_size; 72 | int align_size; 73 | int block_size; 74 | int block_nr; 75 | int data_offset; 76 | int table_offset; 77 | 78 | unsigned char *buf; 79 | } PGD_HEADER; 80 | 81 | // Structure to describe the header of a PBP file. 82 | typedef struct { 83 | char signature[4]; 84 | int version; 85 | int offset[8]; 86 | } PBP_HEADER; 87 | 88 | // Correct PBP signature. 89 | static char pbp_sig[4] = { 90 | 0x00, 91 | 0x50, // P 92 | 0x42, // B 93 | 0x50 // P 94 | }; 95 | 96 | // Names of files included in a PBP. 97 | static char *pbp_filenames[8] = { 98 | "PARAM.SFO", 99 | "ICON0.PNG", 100 | "ICON1.PMF", 101 | "PIC0.PNG", 102 | "PIC1.PNG", 103 | "SND0.AT3", 104 | "DATA.PSP", 105 | "DATA.PSAR" 106 | }; 107 | 108 | int decrypt_pgd(unsigned char* pgd_data, int pgd_size, int flag, unsigned char* key); 109 | int decrypt_doc(unsigned char* data, int size); 110 | int unpack_pbp(FILE *infile); -------------------------------------------------------------------------------- /src/libkirk/AES.h: -------------------------------------------------------------------------------- 1 | #ifndef __RIJNDAEL_H 2 | #define __RIJNDAEL_H 3 | 4 | #include "kirk_engine.h" 5 | 6 | #define AES_KEY_LEN_128 (128) 7 | #define AES_KEY_LEN_192 (192) 8 | #define AES_KEY_LEN_256 (256) 9 | 10 | #define AES_BUFFER_SIZE (16) 11 | 12 | #define AES_MAXKEYBITS (256) 13 | #define AES_MAXKEYBYTES (AES_MAXKEYBITS/8) 14 | /* for 256-bit keys, fewer for less */ 15 | #define AES_MAXROUNDS 14 16 | #define pwuAESContextBuffer rijndael_ctx 17 | 18 | /* The structure for key information */ 19 | typedef struct 20 | { 21 | int enc_only; /* context contains only encrypt schedule */ 22 | int Nr; /* key-length-dependent number of rounds */ 23 | u32 ek[4*(AES_MAXROUNDS + 1)]; /* encrypt key schedule */ 24 | u32 dk[4*(AES_MAXROUNDS + 1)]; /* decrypt key schedule */ 25 | } rijndael_ctx; 26 | 27 | typedef struct 28 | { 29 | int enc_only; /* context contains only encrypt schedule */ 30 | int Nr; /* key-length-dependent number of rounds */ 31 | u32 ek[4*(AES_MAXROUNDS + 1)]; /* encrypt key schedule */ 32 | u32 dk[4*(AES_MAXROUNDS + 1)]; /* decrypt key schedule */ 33 | } AES_ctx; 34 | 35 | int rijndael_set_key(rijndael_ctx *, const u8 *, int); 36 | int rijndael_set_key_enc_only(rijndael_ctx *, const u8 *, int); 37 | void rijndael_decrypt(rijndael_ctx *, const u8 *, u8 *); 38 | void rijndael_encrypt(rijndael_ctx *, const u8 *, u8 *); 39 | 40 | int AES_set_key(AES_ctx *ctx, const u8 *key, int bits); 41 | void AES_encrypt(AES_ctx *ctx, const u8 *src, u8 *dst); 42 | void AES_decrypt(AES_ctx *ctx, const u8 *src, u8 *dst); 43 | void AES_cbc_encrypt(AES_ctx *ctx, u8 *src, u8 *dst, int size); 44 | void AES_cbc_decrypt(AES_ctx *ctx, u8 *src, u8 *dst, int size); 45 | void AES_CMAC(AES_ctx *ctx, unsigned char *input, int length, unsigned char *mac); 46 | 47 | int rijndaelKeySetupEnc(unsigned int [], const unsigned char [], int); 48 | int rijndaelKeySetupDec(unsigned int [], const unsigned char [], int); 49 | void rijndaelEncrypt(const unsigned int [], int, const unsigned char [], 50 | unsigned char []); 51 | 52 | #endif /* __RIJNDAEL_H */ 53 | -------------------------------------------------------------------------------- /src/libkirk/DES.c: -------------------------------------------------------------------------------- 1 | /* 2 | * FIPS-46-3 compliant Triple-DES implementation 3 | * 4 | * Copyright (C) 2006-2013, Brainspark B.V. 5 | * 6 | * This file is part of PolarSSL (http://www.polarssl.org) 7 | * Lead Maintainer: Paul Bakker 8 | * 9 | * All rights reserved. 10 | * 11 | * This program is free software; you can redistribute it and/or modify 12 | * it under the terms of the GNU General Public License as published by 13 | * the Free Software Foundation; either version 2 of the License, or 14 | * (at your option) any later version. 15 | * 16 | * This program is distributed in the hope that it will be useful, 17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 | * GNU General Public License for more details. 20 | * 21 | * You should have received a copy of the GNU General Public License along 22 | * with this program; if not, write to the Free Software Foundation, Inc., 23 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 24 | */ 25 | /* 26 | * DES, on which TDES is based, was originally designed by Horst Feistel 27 | * at IBM in 1974, and was adopted as a standard by NIST (formerly NBS). 28 | * 29 | * http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf 30 | */ 31 | 32 | #include "DES.h" 33 | 34 | #if !defined(POLARSSL_DES_ALT) 35 | 36 | /* 37 | * 32-bit integer manipulation macros (big endian) 38 | */ 39 | #ifndef GET_UINT32_BE 40 | #define GET_UINT32_BE(n,b,i) \ 41 | { \ 42 | (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ 43 | | ( (uint32_t) (b)[(i) + 1] << 16 ) \ 44 | | ( (uint32_t) (b)[(i) + 2] << 8 ) \ 45 | | ( (uint32_t) (b)[(i) + 3] ); \ 46 | } 47 | #endif 48 | 49 | #ifndef PUT_UINT32_BE 50 | #define PUT_UINT32_BE(n,b,i) \ 51 | { \ 52 | (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \ 53 | (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \ 54 | (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \ 55 | (b)[(i) + 3] = (unsigned char) ( (n) ); \ 56 | } 57 | #endif 58 | 59 | /* 60 | * Expanded DES S-boxes 61 | */ 62 | static const uint32_t SB1[64] = 63 | { 64 | 0x01010400, 0x00000000, 0x00010000, 0x01010404, 65 | 0x01010004, 0x00010404, 0x00000004, 0x00010000, 66 | 0x00000400, 0x01010400, 0x01010404, 0x00000400, 67 | 0x01000404, 0x01010004, 0x01000000, 0x00000004, 68 | 0x00000404, 0x01000400, 0x01000400, 0x00010400, 69 | 0x00010400, 0x01010000, 0x01010000, 0x01000404, 70 | 0x00010004, 0x01000004, 0x01000004, 0x00010004, 71 | 0x00000000, 0x00000404, 0x00010404, 0x01000000, 72 | 0x00010000, 0x01010404, 0x00000004, 0x01010000, 73 | 0x01010400, 0x01000000, 0x01000000, 0x00000400, 74 | 0x01010004, 0x00010000, 0x00010400, 0x01000004, 75 | 0x00000400, 0x00000004, 0x01000404, 0x00010404, 76 | 0x01010404, 0x00010004, 0x01010000, 0x01000404, 77 | 0x01000004, 0x00000404, 0x00010404, 0x01010400, 78 | 0x00000404, 0x01000400, 0x01000400, 0x00000000, 79 | 0x00010004, 0x00010400, 0x00000000, 0x01010004 80 | }; 81 | 82 | static const uint32_t SB2[64] = 83 | { 84 | 0x80108020, 0x80008000, 0x00008000, 0x00108020, 85 | 0x00100000, 0x00000020, 0x80100020, 0x80008020, 86 | 0x80000020, 0x80108020, 0x80108000, 0x80000000, 87 | 0x80008000, 0x00100000, 0x00000020, 0x80100020, 88 | 0x00108000, 0x00100020, 0x80008020, 0x00000000, 89 | 0x80000000, 0x00008000, 0x00108020, 0x80100000, 90 | 0x00100020, 0x80000020, 0x00000000, 0x00108000, 91 | 0x00008020, 0x80108000, 0x80100000, 0x00008020, 92 | 0x00000000, 0x00108020, 0x80100020, 0x00100000, 93 | 0x80008020, 0x80100000, 0x80108000, 0x00008000, 94 | 0x80100000, 0x80008000, 0x00000020, 0x80108020, 95 | 0x00108020, 0x00000020, 0x00008000, 0x80000000, 96 | 0x00008020, 0x80108000, 0x00100000, 0x80000020, 97 | 0x00100020, 0x80008020, 0x80000020, 0x00100020, 98 | 0x00108000, 0x00000000, 0x80008000, 0x00008020, 99 | 0x80000000, 0x80100020, 0x80108020, 0x00108000 100 | }; 101 | 102 | static const uint32_t SB3[64] = 103 | { 104 | 0x00000208, 0x08020200, 0x00000000, 0x08020008, 105 | 0x08000200, 0x00000000, 0x00020208, 0x08000200, 106 | 0x00020008, 0x08000008, 0x08000008, 0x00020000, 107 | 0x08020208, 0x00020008, 0x08020000, 0x00000208, 108 | 0x08000000, 0x00000008, 0x08020200, 0x00000200, 109 | 0x00020200, 0x08020000, 0x08020008, 0x00020208, 110 | 0x08000208, 0x00020200, 0x00020000, 0x08000208, 111 | 0x00000008, 0x08020208, 0x00000200, 0x08000000, 112 | 0x08020200, 0x08000000, 0x00020008, 0x00000208, 113 | 0x00020000, 0x08020200, 0x08000200, 0x00000000, 114 | 0x00000200, 0x00020008, 0x08020208, 0x08000200, 115 | 0x08000008, 0x00000200, 0x00000000, 0x08020008, 116 | 0x08000208, 0x00020000, 0x08000000, 0x08020208, 117 | 0x00000008, 0x00020208, 0x00020200, 0x08000008, 118 | 0x08020000, 0x08000208, 0x00000208, 0x08020000, 119 | 0x00020208, 0x00000008, 0x08020008, 0x00020200 120 | }; 121 | 122 | static const uint32_t SB4[64] = 123 | { 124 | 0x00802001, 0x00002081, 0x00002081, 0x00000080, 125 | 0x00802080, 0x00800081, 0x00800001, 0x00002001, 126 | 0x00000000, 0x00802000, 0x00802000, 0x00802081, 127 | 0x00000081, 0x00000000, 0x00800080, 0x00800001, 128 | 0x00000001, 0x00002000, 0x00800000, 0x00802001, 129 | 0x00000080, 0x00800000, 0x00002001, 0x00002080, 130 | 0x00800081, 0x00000001, 0x00002080, 0x00800080, 131 | 0x00002000, 0x00802080, 0x00802081, 0x00000081, 132 | 0x00800080, 0x00800001, 0x00802000, 0x00802081, 133 | 0x00000081, 0x00000000, 0x00000000, 0x00802000, 134 | 0x00002080, 0x00800080, 0x00800081, 0x00000001, 135 | 0x00802001, 0x00002081, 0x00002081, 0x00000080, 136 | 0x00802081, 0x00000081, 0x00000001, 0x00002000, 137 | 0x00800001, 0x00002001, 0x00802080, 0x00800081, 138 | 0x00002001, 0x00002080, 0x00800000, 0x00802001, 139 | 0x00000080, 0x00800000, 0x00002000, 0x00802080 140 | }; 141 | 142 | static const uint32_t SB5[64] = 143 | { 144 | 0x00000100, 0x02080100, 0x02080000, 0x42000100, 145 | 0x00080000, 0x00000100, 0x40000000, 0x02080000, 146 | 0x40080100, 0x00080000, 0x02000100, 0x40080100, 147 | 0x42000100, 0x42080000, 0x00080100, 0x40000000, 148 | 0x02000000, 0x40080000, 0x40080000, 0x00000000, 149 | 0x40000100, 0x42080100, 0x42080100, 0x02000100, 150 | 0x42080000, 0x40000100, 0x00000000, 0x42000000, 151 | 0x02080100, 0x02000000, 0x42000000, 0x00080100, 152 | 0x00080000, 0x42000100, 0x00000100, 0x02000000, 153 | 0x40000000, 0x02080000, 0x42000100, 0x40080100, 154 | 0x02000100, 0x40000000, 0x42080000, 0x02080100, 155 | 0x40080100, 0x00000100, 0x02000000, 0x42080000, 156 | 0x42080100, 0x00080100, 0x42000000, 0x42080100, 157 | 0x02080000, 0x00000000, 0x40080000, 0x42000000, 158 | 0x00080100, 0x02000100, 0x40000100, 0x00080000, 159 | 0x00000000, 0x40080000, 0x02080100, 0x40000100 160 | }; 161 | 162 | static const uint32_t SB6[64] = 163 | { 164 | 0x20000010, 0x20400000, 0x00004000, 0x20404010, 165 | 0x20400000, 0x00000010, 0x20404010, 0x00400000, 166 | 0x20004000, 0x00404010, 0x00400000, 0x20000010, 167 | 0x00400010, 0x20004000, 0x20000000, 0x00004010, 168 | 0x00000000, 0x00400010, 0x20004010, 0x00004000, 169 | 0x00404000, 0x20004010, 0x00000010, 0x20400010, 170 | 0x20400010, 0x00000000, 0x00404010, 0x20404000, 171 | 0x00004010, 0x00404000, 0x20404000, 0x20000000, 172 | 0x20004000, 0x00000010, 0x20400010, 0x00404000, 173 | 0x20404010, 0x00400000, 0x00004010, 0x20000010, 174 | 0x00400000, 0x20004000, 0x20000000, 0x00004010, 175 | 0x20000010, 0x20404010, 0x00404000, 0x20400000, 176 | 0x00404010, 0x20404000, 0x00000000, 0x20400010, 177 | 0x00000010, 0x00004000, 0x20400000, 0x00404010, 178 | 0x00004000, 0x00400010, 0x20004010, 0x00000000, 179 | 0x20404000, 0x20000000, 0x00400010, 0x20004010 180 | }; 181 | 182 | static const uint32_t SB7[64] = 183 | { 184 | 0x00200000, 0x04200002, 0x04000802, 0x00000000, 185 | 0x00000800, 0x04000802, 0x00200802, 0x04200800, 186 | 0x04200802, 0x00200000, 0x00000000, 0x04000002, 187 | 0x00000002, 0x04000000, 0x04200002, 0x00000802, 188 | 0x04000800, 0x00200802, 0x00200002, 0x04000800, 189 | 0x04000002, 0x04200000, 0x04200800, 0x00200002, 190 | 0x04200000, 0x00000800, 0x00000802, 0x04200802, 191 | 0x00200800, 0x00000002, 0x04000000, 0x00200800, 192 | 0x04000000, 0x00200800, 0x00200000, 0x04000802, 193 | 0x04000802, 0x04200002, 0x04200002, 0x00000002, 194 | 0x00200002, 0x04000000, 0x04000800, 0x00200000, 195 | 0x04200800, 0x00000802, 0x00200802, 0x04200800, 196 | 0x00000802, 0x04000002, 0x04200802, 0x04200000, 197 | 0x00200800, 0x00000000, 0x00000002, 0x04200802, 198 | 0x00000000, 0x00200802, 0x04200000, 0x00000800, 199 | 0x04000002, 0x04000800, 0x00000800, 0x00200002 200 | }; 201 | 202 | static const uint32_t SB8[64] = 203 | { 204 | 0x10001040, 0x00001000, 0x00040000, 0x10041040, 205 | 0x10000000, 0x10001040, 0x00000040, 0x10000000, 206 | 0x00040040, 0x10040000, 0x10041040, 0x00041000, 207 | 0x10041000, 0x00041040, 0x00001000, 0x00000040, 208 | 0x10040000, 0x10000040, 0x10001000, 0x00001040, 209 | 0x00041000, 0x00040040, 0x10040040, 0x10041000, 210 | 0x00001040, 0x00000000, 0x00000000, 0x10040040, 211 | 0x10000040, 0x10001000, 0x00041040, 0x00040000, 212 | 0x00041040, 0x00040000, 0x10041000, 0x00001000, 213 | 0x00000040, 0x10040040, 0x00001000, 0x00041040, 214 | 0x10001000, 0x00000040, 0x10000040, 0x10040000, 215 | 0x10040040, 0x10000000, 0x00040000, 0x10001040, 216 | 0x00000000, 0x10041040, 0x00040040, 0x10000040, 217 | 0x10040000, 0x10001000, 0x10001040, 0x00000000, 218 | 0x10041040, 0x00041000, 0x00041000, 0x00001040, 219 | 0x00001040, 0x00040040, 0x10000000, 0x10041000 220 | }; 221 | 222 | /* 223 | * PC1: left and right halves bit-swap 224 | */ 225 | static const uint32_t LHs[16] = 226 | { 227 | 0x00000000, 0x00000001, 0x00000100, 0x00000101, 228 | 0x00010000, 0x00010001, 0x00010100, 0x00010101, 229 | 0x01000000, 0x01000001, 0x01000100, 0x01000101, 230 | 0x01010000, 0x01010001, 0x01010100, 0x01010101 231 | }; 232 | 233 | static const uint32_t RHs[16] = 234 | { 235 | 0x00000000, 0x01000000, 0x00010000, 0x01010000, 236 | 0x00000100, 0x01000100, 0x00010100, 0x01010100, 237 | 0x00000001, 0x01000001, 0x00010001, 0x01010001, 238 | 0x00000101, 0x01000101, 0x00010101, 0x01010101, 239 | }; 240 | 241 | /* 242 | * Initial Permutation macro 243 | */ 244 | #define DES_IP(X,Y) \ 245 | { \ 246 | T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ 247 | T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ 248 | T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ 249 | T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ 250 | Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \ 251 | T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \ 252 | X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \ 253 | } 254 | 255 | /* 256 | * Final Permutation macro 257 | */ 258 | #define DES_FP(X,Y) \ 259 | { \ 260 | X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \ 261 | T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \ 262 | Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \ 263 | T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ 264 | T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ 265 | T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ 266 | T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ 267 | } 268 | 269 | /* 270 | * DES round macro 271 | */ 272 | #define DES_ROUND(X,Y) \ 273 | { \ 274 | T = *SK++ ^ X; \ 275 | Y ^= SB8[ (T ) & 0x3F ] ^ \ 276 | SB6[ (T >> 8) & 0x3F ] ^ \ 277 | SB4[ (T >> 16) & 0x3F ] ^ \ 278 | SB2[ (T >> 24) & 0x3F ]; \ 279 | \ 280 | T = *SK++ ^ ((X << 28) | (X >> 4)); \ 281 | Y ^= SB7[ (T ) & 0x3F ] ^ \ 282 | SB5[ (T >> 8) & 0x3F ] ^ \ 283 | SB3[ (T >> 16) & 0x3F ] ^ \ 284 | SB1[ (T >> 24) & 0x3F ]; \ 285 | } 286 | 287 | #define SWAP(a,b) { uint32_t t = a; a = b; b = t; t = 0; } 288 | 289 | static const unsigned char odd_parity_table[128] = { 1, 2, 4, 7, 8, 290 | 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 291 | 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 292 | 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 293 | 115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140, 294 | 143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168, 295 | 171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196, 296 | 199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224, 297 | 227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253, 298 | 254 }; 299 | 300 | void des_key_set_parity( unsigned char key[DES_KEY_SIZE] ) 301 | { 302 | int i; 303 | 304 | for( i = 0; i < DES_KEY_SIZE; i++ ) 305 | key[i] = odd_parity_table[key[i] / 2]; 306 | } 307 | 308 | /* 309 | * Check the given key's parity, returns 1 on failure, 0 on SUCCESS 310 | */ 311 | int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] ) 312 | { 313 | int i; 314 | 315 | for( i = 0; i < DES_KEY_SIZE; i++ ) 316 | if ( key[i] != odd_parity_table[key[i] / 2] ) 317 | return( 1 ); 318 | 319 | return( 0 ); 320 | } 321 | 322 | /* 323 | * Table of weak and semi-weak keys 324 | * 325 | * Source: http://en.wikipedia.org/wiki/Weak_key 326 | * 327 | * Weak: 328 | * Alternating ones + zeros (0x0101010101010101) 329 | * Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE) 330 | * '0xE0E0E0E0F1F1F1F1' 331 | * '0x1F1F1F1F0E0E0E0E' 332 | * 333 | * Semi-weak: 334 | * 0x011F011F010E010E and 0x1F011F010E010E01 335 | * 0x01E001E001F101F1 and 0xE001E001F101F101 336 | * 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01 337 | * 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E 338 | * 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E 339 | * 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1 340 | * 341 | */ 342 | 343 | #define WEAK_KEY_COUNT 16 344 | 345 | static const unsigned char weak_key_table[WEAK_KEY_COUNT][DES_KEY_SIZE] = 346 | { 347 | { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 }, 348 | { 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE }, 349 | { 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E }, 350 | { 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 }, 351 | 352 | { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E }, 353 | { 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 }, 354 | { 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 }, 355 | { 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 }, 356 | { 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE }, 357 | { 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 }, 358 | { 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 }, 359 | { 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E }, 360 | { 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE }, 361 | { 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E }, 362 | { 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE }, 363 | { 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 } 364 | }; 365 | 366 | int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] ) 367 | { 368 | int i; 369 | 370 | for( i = 0; i < WEAK_KEY_COUNT; i++ ) 371 | if( memcmp( weak_key_table[i], key, DES_KEY_SIZE) == 0) 372 | return( 1 ); 373 | 374 | return( 0 ); 375 | } 376 | 377 | static void des_setkey( uint32_t SK[32], const unsigned char key[DES_KEY_SIZE] ) 378 | { 379 | int i; 380 | uint32_t X, Y, T; 381 | 382 | GET_UINT32_BE( X, key, 0 ); 383 | GET_UINT32_BE( Y, key, 4 ); 384 | 385 | /* 386 | * Permuted Choice 1 387 | */ 388 | T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4); 389 | T = ((Y ) ^ X) & 0x10101010; X ^= T; Y ^= (T ); 390 | 391 | X = (LHs[ (X ) & 0xF] << 3) | (LHs[ (X >> 8) & 0xF ] << 2) 392 | | (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ] ) 393 | | (LHs[ (X >> 5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6) 394 | | (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4); 395 | 396 | Y = (RHs[ (Y >> 1) & 0xF] << 3) | (RHs[ (Y >> 9) & 0xF ] << 2) 397 | | (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ] ) 398 | | (RHs[ (Y >> 4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6) 399 | | (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4); 400 | 401 | X &= 0x0FFFFFFF; 402 | Y &= 0x0FFFFFFF; 403 | 404 | /* 405 | * calculate subkeys 406 | */ 407 | for( i = 0; i < 16; i++ ) 408 | { 409 | if( i < 2 || i == 8 || i == 15 ) 410 | { 411 | X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF; 412 | Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF; 413 | } 414 | else 415 | { 416 | X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF; 417 | Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF; 418 | } 419 | 420 | *SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000) 421 | | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000) 422 | | ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000) 423 | | ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000) 424 | | ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000) 425 | | ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000) 426 | | ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400) 427 | | ((Y >> 14) & 0x00000200) | ((Y ) & 0x00000100) 428 | | ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010) 429 | | ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004) 430 | | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001); 431 | 432 | *SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000) 433 | | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000) 434 | | ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000) 435 | | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000) 436 | | ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000) 437 | | ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000) 438 | | ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000) 439 | | ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400) 440 | | ((Y ) & 0x00000200) | ((Y << 7) & 0x00000100) 441 | | ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011) 442 | | ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002); 443 | } 444 | } 445 | 446 | /* 447 | * DES key schedule (56-bit, encryption) 448 | */ 449 | int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ) 450 | { 451 | des_setkey( ctx->sk, key ); 452 | 453 | return( 0 ); 454 | } 455 | 456 | /* 457 | * DES key schedule (56-bit, decryption) 458 | */ 459 | int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ) 460 | { 461 | int i; 462 | 463 | des_setkey( ctx->sk, key ); 464 | 465 | for( i = 0; i < 16; i += 2 ) 466 | { 467 | SWAP( ctx->sk[i ], ctx->sk[30 - i] ); 468 | SWAP( ctx->sk[i + 1], ctx->sk[31 - i] ); 469 | } 470 | 471 | return( 0 ); 472 | } 473 | 474 | static void des3_set2key( uint32_t esk[96], 475 | uint32_t dsk[96], 476 | const unsigned char key[DES_KEY_SIZE*2] ) 477 | { 478 | int i; 479 | 480 | des_setkey( esk, key ); 481 | des_setkey( dsk + 32, key + 8 ); 482 | 483 | for( i = 0; i < 32; i += 2 ) 484 | { 485 | dsk[i ] = esk[30 - i]; 486 | dsk[i + 1] = esk[31 - i]; 487 | 488 | esk[i + 32] = dsk[62 - i]; 489 | esk[i + 33] = dsk[63 - i]; 490 | 491 | esk[i + 64] = esk[i ]; 492 | esk[i + 65] = esk[i + 1]; 493 | 494 | dsk[i + 64] = dsk[i ]; 495 | dsk[i + 65] = dsk[i + 1]; 496 | } 497 | } 498 | 499 | /* 500 | * Triple-DES key schedule (112-bit, encryption) 501 | */ 502 | int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ) 503 | { 504 | uint32_t sk[96]; 505 | 506 | des3_set2key( ctx->sk, sk, key ); 507 | memset( sk, 0, sizeof( sk ) ); 508 | 509 | return( 0 ); 510 | } 511 | 512 | /* 513 | * Triple-DES key schedule (112-bit, decryption) 514 | */ 515 | int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ) 516 | { 517 | uint32_t sk[96]; 518 | 519 | des3_set2key( sk, ctx->sk, key ); 520 | memset( sk, 0, sizeof( sk ) ); 521 | 522 | return( 0 ); 523 | } 524 | 525 | static void des3_set3key( uint32_t esk[96], 526 | uint32_t dsk[96], 527 | const unsigned char key[24] ) 528 | { 529 | int i; 530 | 531 | des_setkey( esk, key ); 532 | des_setkey( dsk + 32, key + 8 ); 533 | des_setkey( esk + 64, key + 16 ); 534 | 535 | for( i = 0; i < 32; i += 2 ) 536 | { 537 | dsk[i ] = esk[94 - i]; 538 | dsk[i + 1] = esk[95 - i]; 539 | 540 | esk[i + 32] = dsk[62 - i]; 541 | esk[i + 33] = dsk[63 - i]; 542 | 543 | dsk[i + 64] = esk[30 - i]; 544 | dsk[i + 65] = esk[31 - i]; 545 | } 546 | } 547 | 548 | /* 549 | * Triple-DES key schedule (168-bit, encryption) 550 | */ 551 | int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ) 552 | { 553 | uint32_t sk[96]; 554 | 555 | des3_set3key( ctx->sk, sk, key ); 556 | memset( sk, 0, sizeof( sk ) ); 557 | 558 | return( 0 ); 559 | } 560 | 561 | /* 562 | * Triple-DES key schedule (168-bit, decryption) 563 | */ 564 | int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ) 565 | { 566 | uint32_t sk[96]; 567 | 568 | des3_set3key( sk, ctx->sk, key ); 569 | memset( sk, 0, sizeof( sk ) ); 570 | 571 | return( 0 ); 572 | } 573 | 574 | /* 575 | * DES-ECB block encryption/decryption 576 | */ 577 | int des_crypt_ecb( des_context *ctx, 578 | const unsigned char input[8], 579 | unsigned char output[8] ) 580 | { 581 | int i; 582 | uint32_t X, Y, T, *SK; 583 | 584 | SK = ctx->sk; 585 | 586 | GET_UINT32_BE( X, input, 0 ); 587 | GET_UINT32_BE( Y, input, 4 ); 588 | 589 | DES_IP( X, Y ); 590 | 591 | for( i = 0; i < 8; i++ ) 592 | { 593 | DES_ROUND( Y, X ); 594 | DES_ROUND( X, Y ); 595 | } 596 | 597 | DES_FP( Y, X ); 598 | 599 | PUT_UINT32_BE( Y, output, 0 ); 600 | PUT_UINT32_BE( X, output, 4 ); 601 | 602 | return( 0 ); 603 | } 604 | 605 | /* 606 | * DES-CBC buffer encryption/decryption 607 | */ 608 | int des_crypt_cbc( des_context *ctx, 609 | int mode, 610 | size_t length, 611 | unsigned char iv[8], 612 | const unsigned char *input, 613 | unsigned char *output ) 614 | { 615 | int i; 616 | unsigned char temp[8]; 617 | 618 | if( length % 8 ) 619 | return( POLARSSL_ERR_DES_INVALID_INPUT_LENGTH ); 620 | 621 | if( mode == DES_ENCRYPT ) 622 | { 623 | while( length > 0 ) 624 | { 625 | for( i = 0; i < 8; i++ ) 626 | output[i] = (unsigned char)( input[i] ^ iv[i] ); 627 | 628 | des_crypt_ecb( ctx, output, output ); 629 | memcpy( iv, output, 8 ); 630 | 631 | input += 8; 632 | output += 8; 633 | length -= 8; 634 | } 635 | } 636 | else /* DES_DECRYPT */ 637 | { 638 | while( length > 0 ) 639 | { 640 | memcpy( temp, input, 8 ); 641 | des_crypt_ecb( ctx, input, output ); 642 | 643 | for( i = 0; i < 8; i++ ) 644 | output[i] = (unsigned char)( output[i] ^ iv[i] ); 645 | 646 | memcpy( iv, temp, 8 ); 647 | 648 | input += 8; 649 | output += 8; 650 | length -= 8; 651 | } 652 | } 653 | 654 | return( 0 ); 655 | } 656 | #endif /* POLARSSL_CIPHER_MODE_CBC */ 657 | 658 | /* 659 | * 3DES-ECB block encryption/decryption 660 | */ 661 | int des3_crypt_ecb( des3_context *ctx, 662 | const unsigned char input[8], 663 | unsigned char output[8] ) 664 | { 665 | int i; 666 | uint32_t X, Y, T, *SK; 667 | 668 | SK = ctx->sk; 669 | 670 | GET_UINT32_BE( X, input, 0 ); 671 | GET_UINT32_BE( Y, input, 4 ); 672 | 673 | DES_IP( X, Y ); 674 | 675 | for( i = 0; i < 8; i++ ) 676 | { 677 | DES_ROUND( Y, X ); 678 | DES_ROUND( X, Y ); 679 | } 680 | 681 | for( i = 0; i < 8; i++ ) 682 | { 683 | DES_ROUND( X, Y ); 684 | DES_ROUND( Y, X ); 685 | } 686 | 687 | for( i = 0; i < 8; i++ ) 688 | { 689 | DES_ROUND( Y, X ); 690 | DES_ROUND( X, Y ); 691 | } 692 | 693 | DES_FP( Y, X ); 694 | 695 | PUT_UINT32_BE( Y, output, 0 ); 696 | PUT_UINT32_BE( X, output, 4 ); 697 | 698 | return( 0 ); 699 | } 700 | 701 | /* 702 | * 3DES-CBC buffer encryption/decryption 703 | */ 704 | int des3_crypt_cbc( des3_context *ctx, 705 | int mode, 706 | size_t length, 707 | unsigned char iv[8], 708 | const unsigned char *input, 709 | unsigned char *output ) 710 | { 711 | int i; 712 | unsigned char temp[8]; 713 | 714 | if( length % 8 ) 715 | return( POLARSSL_ERR_DES_INVALID_INPUT_LENGTH ); 716 | 717 | if( mode == DES_ENCRYPT ) 718 | { 719 | while( length > 0 ) 720 | { 721 | for( i = 0; i < 8; i++ ) 722 | output[i] = (unsigned char)( input[i] ^ iv[i] ); 723 | 724 | des3_crypt_ecb( ctx, output, output ); 725 | memcpy( iv, output, 8 ); 726 | 727 | input += 8; 728 | output += 8; 729 | length -= 8; 730 | } 731 | } 732 | else /* DES_DECRYPT */ 733 | { 734 | while( length > 0 ) 735 | { 736 | memcpy( temp, input, 8 ); 737 | des3_crypt_ecb( ctx, input, output ); 738 | 739 | for( i = 0; i < 8; i++ ) 740 | output[i] = (unsigned char)( output[i] ^ iv[i] ); 741 | 742 | memcpy( iv, temp, 8 ); 743 | 744 | input += 8; 745 | output += 8; 746 | length -= 8; 747 | } 748 | } 749 | 750 | return( 0 ); 751 | } 752 | 753 | #if defined(POLARSSL_SELF_TEST) 754 | 755 | #include 756 | 757 | /* 758 | * DES and 3DES test vectors from: 759 | * 760 | * http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledes-vectors.zip 761 | */ 762 | static const unsigned char des3_test_keys[24] = 763 | { 764 | 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 765 | 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 766 | 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 0x23 767 | }; 768 | 769 | static const unsigned char des3_test_iv[8] = 770 | { 771 | 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF, 772 | }; 773 | 774 | static const unsigned char des3_test_buf[8] = 775 | { 776 | 0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74 777 | }; 778 | 779 | static const unsigned char des3_test_ecb_dec[3][8] = 780 | { 781 | { 0xCD, 0xD6, 0x4F, 0x2F, 0x94, 0x27, 0xC1, 0x5D }, 782 | { 0x69, 0x96, 0xC8, 0xFA, 0x47, 0xA2, 0xAB, 0xEB }, 783 | { 0x83, 0x25, 0x39, 0x76, 0x44, 0x09, 0x1A, 0x0A } 784 | }; 785 | 786 | static const unsigned char des3_test_ecb_enc[3][8] = 787 | { 788 | { 0x6A, 0x2A, 0x19, 0xF4, 0x1E, 0xCA, 0x85, 0x4B }, 789 | { 0x03, 0xE6, 0x9F, 0x5B, 0xFA, 0x58, 0xEB, 0x42 }, 790 | { 0xDD, 0x17, 0xE8, 0xB8, 0xB4, 0x37, 0xD2, 0x32 } 791 | }; 792 | 793 | static const unsigned char des3_test_cbc_dec[3][8] = 794 | { 795 | { 0x12, 0x9F, 0x40, 0xB9, 0xD2, 0x00, 0x56, 0xB3 }, 796 | { 0x47, 0x0E, 0xFC, 0x9A, 0x6B, 0x8E, 0xE3, 0x93 }, 797 | { 0xC5, 0xCE, 0xCF, 0x63, 0xEC, 0xEC, 0x51, 0x4C } 798 | }; 799 | 800 | static const unsigned char des3_test_cbc_enc[3][8] = 801 | { 802 | { 0x54, 0xF1, 0x5A, 0xF6, 0xEB, 0xE3, 0xA4, 0xB4 }, 803 | { 0x35, 0x76, 0x11, 0x56, 0x5F, 0xA1, 0x8E, 0x4D }, 804 | { 0xCB, 0x19, 0x1F, 0x85, 0xD1, 0xED, 0x84, 0x39 } 805 | }; 806 | 807 | /* 808 | * Checkup routine 809 | */ 810 | int des_self_test( int verbose ) 811 | { 812 | int i, j, u, v; 813 | des_context ctx; 814 | des3_context ctx3; 815 | unsigned char key[24]; 816 | unsigned char buf[8]; 817 | #if defined(POLARSSL_CIPHER_MODE_CBC) 818 | unsigned char prv[8]; 819 | unsigned char iv[8]; 820 | #endif 821 | 822 | memset( key, 0, 24 ); 823 | 824 | /* 825 | * ECB mode 826 | */ 827 | for( i = 0; i < 6; i++ ) 828 | { 829 | u = i >> 1; 830 | v = i & 1; 831 | 832 | if( verbose != 0 ) 833 | printf( " DES%c-ECB-%3d (%s): ", 834 | ( u == 0 ) ? ' ' : '3', 56 + u * 56, 835 | ( v == DES_DECRYPT ) ? "dec" : "enc" ); 836 | 837 | memcpy( buf, des3_test_buf, 8 ); 838 | 839 | switch( i ) 840 | { 841 | case 0: 842 | des_setkey_dec( &ctx, des3_test_keys ); 843 | break; 844 | 845 | case 1: 846 | des_setkey_enc( &ctx, des3_test_keys ); 847 | break; 848 | 849 | case 2: 850 | des3_set2key_dec( &ctx3, des3_test_keys ); 851 | break; 852 | 853 | case 3: 854 | des3_set2key_enc( &ctx3, des3_test_keys ); 855 | break; 856 | 857 | case 4: 858 | des3_set3key_dec( &ctx3, des3_test_keys ); 859 | break; 860 | 861 | case 5: 862 | des3_set3key_enc( &ctx3, des3_test_keys ); 863 | break; 864 | 865 | default: 866 | return( 1 ); 867 | } 868 | 869 | for( j = 0; j < 10000; j++ ) 870 | { 871 | if( u == 0 ) 872 | des_crypt_ecb( &ctx, buf, buf ); 873 | else 874 | des3_crypt_ecb( &ctx3, buf, buf ); 875 | } 876 | 877 | if( ( v == DES_DECRYPT && 878 | memcmp( buf, des3_test_ecb_dec[u], 8 ) != 0 ) || 879 | ( v != DES_DECRYPT && 880 | memcmp( buf, des3_test_ecb_enc[u], 8 ) != 0 ) ) 881 | { 882 | if( verbose != 0 ) 883 | printf( "failed\n" ); 884 | 885 | return( 1 ); 886 | } 887 | 888 | if( verbose != 0 ) 889 | printf( "passed\n" ); 890 | } 891 | 892 | if( verbose != 0 ) 893 | printf( "\n" ); 894 | 895 | #if defined(POLARSSL_CIPHER_MODE_CBC) 896 | /* 897 | * CBC mode 898 | */ 899 | for( i = 0; i < 6; i++ ) 900 | { 901 | u = i >> 1; 902 | v = i & 1; 903 | 904 | if( verbose != 0 ) 905 | printf( " DES%c-CBC-%3d (%s): ", 906 | ( u == 0 ) ? ' ' : '3', 56 + u * 56, 907 | ( v == DES_DECRYPT ) ? "dec" : "enc" ); 908 | 909 | memcpy( iv, des3_test_iv, 8 ); 910 | memcpy( prv, des3_test_iv, 8 ); 911 | memcpy( buf, des3_test_buf, 8 ); 912 | 913 | switch( i ) 914 | { 915 | case 0: 916 | des_setkey_dec( &ctx, des3_test_keys ); 917 | break; 918 | 919 | case 1: 920 | des_setkey_enc( &ctx, des3_test_keys ); 921 | break; 922 | 923 | case 2: 924 | des3_set2key_dec( &ctx3, des3_test_keys ); 925 | break; 926 | 927 | case 3: 928 | des3_set2key_enc( &ctx3, des3_test_keys ); 929 | break; 930 | 931 | case 4: 932 | des3_set3key_dec( &ctx3, des3_test_keys ); 933 | break; 934 | 935 | case 5: 936 | des3_set3key_enc( &ctx3, des3_test_keys ); 937 | break; 938 | 939 | default: 940 | return( 1 ); 941 | } 942 | 943 | if( v == DES_DECRYPT ) 944 | { 945 | for( j = 0; j < 10000; j++ ) 946 | { 947 | if( u == 0 ) 948 | des_crypt_cbc( &ctx, v, 8, iv, buf, buf ); 949 | else 950 | des3_crypt_cbc( &ctx3, v, 8, iv, buf, buf ); 951 | } 952 | } 953 | else 954 | { 955 | for( j = 0; j < 10000; j++ ) 956 | { 957 | unsigned char tmp[8]; 958 | 959 | if( u == 0 ) 960 | des_crypt_cbc( &ctx, v, 8, iv, buf, buf ); 961 | else 962 | des3_crypt_cbc( &ctx3, v, 8, iv, buf, buf ); 963 | 964 | memcpy( tmp, prv, 8 ); 965 | memcpy( prv, buf, 8 ); 966 | memcpy( buf, tmp, 8 ); 967 | } 968 | 969 | memcpy( buf, prv, 8 ); 970 | } 971 | 972 | if( ( v == DES_DECRYPT && 973 | memcmp( buf, des3_test_cbc_dec[u], 8 ) != 0 ) || 974 | ( v != DES_DECRYPT && 975 | memcmp( buf, des3_test_cbc_enc[u], 8 ) != 0 ) ) 976 | { 977 | if( verbose != 0 ) 978 | printf( "failed\n" ); 979 | 980 | return( 1 ); 981 | } 982 | 983 | if( verbose != 0 ) 984 | printf( "passed\n" ); 985 | } 986 | #endif /* POLARSSL_CIPHER_MODE_CBC */ 987 | 988 | if( verbose != 0 ) 989 | printf( "\n" ); 990 | 991 | return( 0 ); 992 | } 993 | 994 | #endif -------------------------------------------------------------------------------- /src/libkirk/DES.h: -------------------------------------------------------------------------------- 1 | /** 2 | * \file des.h 3 | * 4 | * \brief DES block cipher 5 | * 6 | * Copyright (C) 2006-2013, Brainspark B.V. 7 | * 8 | * This file is part of PolarSSL (http://www.polarssl.org) 9 | * Lead Maintainer: Paul Bakker 10 | * 11 | * All rights reserved. 12 | * 13 | * This program is free software; you can redistribute it and/or modify 14 | * it under the terms of the GNU General Public License as published by 15 | * the Free Software Foundation; either version 2 of the License, or 16 | * (at your option) any later version. 17 | * 18 | * This program is distributed in the hope that it will be useful, 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 | * GNU General Public License for more details. 22 | * 23 | * You should have received a copy of the GNU General Public License along 24 | * with this program; if not, write to the Free Software Foundation, Inc., 25 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 26 | */ 27 | #ifndef POLARSSL_DES_H 28 | #define POLARSSL_DES_H 29 | 30 | #include 31 | 32 | #if defined(_MSC_VER) && !defined(EFIX64) && !defined(EFI32) 33 | #include 34 | typedef UINT32 uint32_t; 35 | #else 36 | #include 37 | #endif 38 | 39 | #define DES_ENCRYPT 1 40 | #define DES_DECRYPT 0 41 | 42 | #define POLARSSL_ERR_DES_INVALID_INPUT_LENGTH -0x0032 /**< The data input has an invalid length. */ 43 | 44 | #define DES_KEY_SIZE 8 45 | 46 | #if !defined(POLARSSL_DES_ALT) 47 | // Regular implementation 48 | // 49 | 50 | #ifdef __cplusplus 51 | extern "C" { 52 | #endif 53 | 54 | /** 55 | * \brief DES context structure 56 | */ 57 | typedef struct 58 | { 59 | int mode; /*!< encrypt/decrypt */ 60 | uint32_t sk[32]; /*!< DES subkeys */ 61 | } 62 | des_context; 63 | 64 | /** 65 | * \brief Triple-DES context structure 66 | */ 67 | typedef struct 68 | { 69 | int mode; /*!< encrypt/decrypt */ 70 | uint32_t sk[96]; /*!< 3DES subkeys */ 71 | } 72 | des3_context; 73 | 74 | /** 75 | * \brief Set key parity on the given key to odd. 76 | * 77 | * DES keys are 56 bits long, but each byte is padded with 78 | * a parity bit to allow verification. 79 | * 80 | * \param key 8-byte secret key 81 | */ 82 | void des_key_set_parity( unsigned char key[DES_KEY_SIZE] ); 83 | 84 | /** 85 | * \brief Check that key parity on the given key is odd. 86 | * 87 | * DES keys are 56 bits long, but each byte is padded with 88 | * a parity bit to allow verification. 89 | * 90 | * \param key 8-byte secret key 91 | * 92 | * \return 0 is parity was ok, 1 if parity was not correct. 93 | */ 94 | int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] ); 95 | 96 | /** 97 | * \brief Check that key is not a weak or semi-weak DES key 98 | * 99 | * \param key 8-byte secret key 100 | * 101 | * \return 0 if no weak key was found, 1 if a weak key was identified. 102 | */ 103 | int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] ); 104 | 105 | /** 106 | * \brief DES key schedule (56-bit, encryption) 107 | * 108 | * \param ctx DES context to be initialized 109 | * \param key 8-byte secret key 110 | * 111 | * \return 0 112 | */ 113 | int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ); 114 | 115 | /** 116 | * \brief DES key schedule (56-bit, decryption) 117 | * 118 | * \param ctx DES context to be initialized 119 | * \param key 8-byte secret key 120 | * 121 | * \return 0 122 | */ 123 | int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] ); 124 | 125 | /** 126 | * \brief Triple-DES key schedule (112-bit, encryption) 127 | * 128 | * \param ctx 3DES context to be initialized 129 | * \param key 16-byte secret key 130 | * 131 | * \return 0 132 | */ 133 | int des3_set2key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ); 134 | 135 | /** 136 | * \brief Triple-DES key schedule (112-bit, decryption) 137 | * 138 | * \param ctx 3DES context to be initialized 139 | * \param key 16-byte secret key 140 | * 141 | * \return 0 142 | */ 143 | int des3_set2key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 2] ); 144 | 145 | /** 146 | * \brief Triple-DES key schedule (168-bit, encryption) 147 | * 148 | * \param ctx 3DES context to be initialized 149 | * \param key 24-byte secret key 150 | * 151 | * \return 0 152 | */ 153 | int des3_set3key_enc( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ); 154 | 155 | /** 156 | * \brief Triple-DES key schedule (168-bit, decryption) 157 | * 158 | * \param ctx 3DES context to be initialized 159 | * \param key 24-byte secret key 160 | * 161 | * \return 0 162 | */ 163 | int des3_set3key_dec( des3_context *ctx, const unsigned char key[DES_KEY_SIZE * 3] ); 164 | 165 | /** 166 | * \brief DES-ECB block encryption/decryption 167 | * 168 | * \param ctx DES context 169 | * \param input 64-bit input block 170 | * \param output 64-bit output block 171 | * 172 | * \return 0 if successful 173 | */ 174 | int des_crypt_ecb( des_context *ctx, 175 | const unsigned char input[8], 176 | unsigned char output[8] ); 177 | 178 | /** 179 | * \brief DES-CBC buffer encryption/decryption 180 | * 181 | * \param ctx DES context 182 | * \param mode DES_ENCRYPT or DES_DECRYPT 183 | * \param length length of the input data 184 | * \param iv initialization vector (updated after use) 185 | * \param input buffer holding the input data 186 | * \param output buffer holding the output data 187 | */ 188 | int des_crypt_cbc( des_context *ctx, 189 | int mode, 190 | size_t length, 191 | unsigned char iv[8], 192 | const unsigned char *input, 193 | unsigned char *output ); 194 | 195 | /** 196 | * \brief 3DES-ECB block encryption/decryption 197 | * 198 | * \param ctx 3DES context 199 | * \param input 64-bit input block 200 | * \param output 64-bit output block 201 | * 202 | * \return 0 if successful 203 | */ 204 | int des3_crypt_ecb( des3_context *ctx, 205 | const unsigned char input[8], 206 | unsigned char output[8] ); 207 | 208 | /** 209 | * \brief 3DES-CBC buffer encryption/decryption 210 | * 211 | * \param ctx 3DES context 212 | * \param mode DES_ENCRYPT or DES_DECRYPT 213 | * \param length length of the input data 214 | * \param iv initialization vector (updated after use) 215 | * \param input buffer holding the input data 216 | * \param output buffer holding the output data 217 | * 218 | * \return 0 if successful, or POLARSSL_ERR_DES_INVALID_INPUT_LENGTH 219 | */ 220 | int des3_crypt_cbc( des3_context *ctx, 221 | int mode, 222 | size_t length, 223 | unsigned char iv[8], 224 | const unsigned char *input, 225 | unsigned char *output ); 226 | 227 | #ifdef __cplusplus 228 | } 229 | #endif 230 | 231 | #else /* POLARSSL_DES_ALT */ 232 | #include "des_alt.h" 233 | #endif /* POLARSSL_DES_ALT */ 234 | 235 | #ifdef __cplusplus 236 | extern "C" { 237 | #endif 238 | 239 | /** 240 | * \brief Checkup routine 241 | * 242 | * \return 0 if successful, or 1 if the test failed 243 | */ 244 | int des_self_test( int verbose ); 245 | 246 | #ifdef __cplusplus 247 | } 248 | #endif 249 | 250 | #endif /* des.h */ -------------------------------------------------------------------------------- /src/libkirk/SHA1.c: -------------------------------------------------------------------------------- 1 | /* sha1.c : Implementation of the Secure Hash Algorithm */ 2 | 3 | /* SHA: NIST's Secure Hash Algorithm */ 4 | 5 | /* This version written November 2000 by David Ireland of 6 | DI Management Services Pty Limited 7 | 8 | Adapted from code in the Python Cryptography Toolkit, 9 | version 1.0.0 by A.M. Kuchling 1995. 10 | */ 11 | 12 | /* AM Kuchling's posting:- 13 | Based on SHA code originally posted to sci.crypt by Peter Gutmann 14 | in message <30ajo5$oe8@ccu2.auckland.ac.nz>. 15 | Modified to test for endianness on creation of SHA objects by AMK. 16 | Also, the original specification of SHA was found to have a weakness 17 | by NSA/NIST. This code implements the fixed version of SHA. 18 | */ 19 | 20 | /* Here's the first paragraph of Peter Gutmann's posting: 21 | 22 | The following is my SHA (FIPS 180) code updated to allow use of the "fixed" 23 | SHA, thanks to Jim Gillogly and an anonymous contributor for the information on 24 | what's changed in the new version. The fix is a simple change which involves 25 | adding a single rotate in the initial expansion function. It is unknown 26 | whether this is an optimal solution to the problem which was discovered in the 27 | SHA or whether it's simply a bandaid which fixes the problem with a minimum of 28 | effort (for example the reengineering of a great many Capstone chips). 29 | */ 30 | 31 | /* h files included here to make this just one file ... */ 32 | 33 | /* global.h */ 34 | 35 | 36 | 37 | /* sha.c */ 38 | #include "SHA1.h" 39 | 40 | #include 41 | #include 42 | 43 | static void SHAtoByte(BYTE *output, UINT4 *input, unsigned int len); 44 | 45 | /* The SHS block size and message digest sizes, in bytes */ 46 | 47 | #define SHS_DATASIZE 64 48 | #define SHS_DIGESTSIZE 20 49 | 50 | 51 | /* The SHS f()-functions. The f1 and f3 functions can be optimized to 52 | save one boolean operation each - thanks to Rich Schroeppel, 53 | rcs@cs.arizona.edu for discovering this */ 54 | 55 | /*#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) // Rounds 0-19 */ 56 | #define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */ 57 | #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ 58 | /*#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) // Rounds 40-59 */ 59 | #define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */ 60 | #define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ 61 | 62 | /* The SHS Mysterious Constants */ 63 | 64 | #define K1 0x5A827999L /* Rounds 0-19 */ 65 | #define K2 0x6ED9EBA1L /* Rounds 20-39 */ 66 | #define K3 0x8F1BBCDCL /* Rounds 40-59 */ 67 | #define K4 0xCA62C1D6L /* Rounds 60-79 */ 68 | 69 | /* SHS initial values */ 70 | 71 | #define h0init 0x67452301L 72 | #define h1init 0xEFCDAB89L 73 | #define h2init 0x98BADCFEL 74 | #define h3init 0x10325476L 75 | #define h4init 0xC3D2E1F0L 76 | 77 | /* Note that it may be necessary to add parentheses to these macros if they 78 | are to be called with expressions as arguments */ 79 | /* 32-bit rotate left - kludged with shifts */ 80 | 81 | #define ROTL(n,X) ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) ) 82 | 83 | /* The initial expanding function. The hash function is defined over an 84 | 80-UINT2 expanded input array W, where the first 16 are copies of the input 85 | data, and the remaining 64 are defined by 86 | 87 | W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ] 88 | 89 | This implementation generates these values on the fly in a circular 90 | buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this 91 | optimization. 92 | 93 | The updated SHS changes the expanding function by adding a rotate of 1 94 | bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor 95 | for this information */ 96 | 97 | #define expand(W,i) ( W[ i & 15 ] = ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \ 98 | W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) ) 99 | 100 | 101 | /* The prototype SHS sub-round. The fundamental sub-round is: 102 | 103 | a' = e + ROTL( 5, a ) + f( b, c, d ) + k + data; 104 | b' = a; 105 | c' = ROTL( 30, b ); 106 | d' = c; 107 | e' = d; 108 | 109 | but this is implemented by unrolling the loop 5 times and renaming the 110 | variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. 111 | This code is then replicated 20 times for each of the 4 functions, using 112 | the next 20 values from the W[] array each time */ 113 | 114 | #define subRound(a, b, c, d, e, f, k, data) \ 115 | ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) ) 116 | 117 | /* Initialize the SHS values */ 118 | 119 | void SHAInit(SHA_CTX *shsInfo) 120 | { 121 | endianTest(&shsInfo->Endianness); 122 | /* Set the h-vars to their initial values */ 123 | shsInfo->digest[ 0 ] = h0init; 124 | shsInfo->digest[ 1 ] = h1init; 125 | shsInfo->digest[ 2 ] = h2init; 126 | shsInfo->digest[ 3 ] = h3init; 127 | shsInfo->digest[ 4 ] = h4init; 128 | 129 | /* Initialise bit count */ 130 | shsInfo->countLo = shsInfo->countHi = 0; 131 | } 132 | 133 | 134 | /* Perform the SHS transformation. Note that this code, like MD5, seems to 135 | break some optimizing compilers due to the complexity of the expressions 136 | and the size of the basic block. It may be necessary to split it into 137 | sections, e.g. based on the four subrounds 138 | 139 | Note that this corrupts the shsInfo->data area */ 140 | 141 | static void SHSTransform( digest, data ) 142 | UINT4 *digest, *data ; 143 | { 144 | UINT4 A, B, C, D, E; /* Local vars */ 145 | UINT4 eData[ 16 ]; /* Expanded data */ 146 | 147 | /* Set up first buffer and local data buffer */ 148 | A = digest[ 0 ]; 149 | B = digest[ 1 ]; 150 | C = digest[ 2 ]; 151 | D = digest[ 3 ]; 152 | E = digest[ 4 ]; 153 | memcpy( (POINTER)eData, (POINTER)data, SHS_DATASIZE ); 154 | 155 | /* Heavy mangling, in 4 sub-rounds of 20 interations each. */ 156 | subRound( A, B, C, D, E, f1, K1, eData[ 0 ] ); 157 | subRound( E, A, B, C, D, f1, K1, eData[ 1 ] ); 158 | subRound( D, E, A, B, C, f1, K1, eData[ 2 ] ); 159 | subRound( C, D, E, A, B, f1, K1, eData[ 3 ] ); 160 | subRound( B, C, D, E, A, f1, K1, eData[ 4 ] ); 161 | subRound( A, B, C, D, E, f1, K1, eData[ 5 ] ); 162 | subRound( E, A, B, C, D, f1, K1, eData[ 6 ] ); 163 | subRound( D, E, A, B, C, f1, K1, eData[ 7 ] ); 164 | subRound( C, D, E, A, B, f1, K1, eData[ 8 ] ); 165 | subRound( B, C, D, E, A, f1, K1, eData[ 9 ] ); 166 | subRound( A, B, C, D, E, f1, K1, eData[ 10 ] ); 167 | subRound( E, A, B, C, D, f1, K1, eData[ 11 ] ); 168 | subRound( D, E, A, B, C, f1, K1, eData[ 12 ] ); 169 | subRound( C, D, E, A, B, f1, K1, eData[ 13 ] ); 170 | subRound( B, C, D, E, A, f1, K1, eData[ 14 ] ); 171 | subRound( A, B, C, D, E, f1, K1, eData[ 15 ] ); 172 | subRound( E, A, B, C, D, f1, K1, expand( eData, 16 ) ); 173 | subRound( D, E, A, B, C, f1, K1, expand( eData, 17 ) ); 174 | subRound( C, D, E, A, B, f1, K1, expand( eData, 18 ) ); 175 | subRound( B, C, D, E, A, f1, K1, expand( eData, 19 ) ); 176 | 177 | subRound( A, B, C, D, E, f2, K2, expand( eData, 20 ) ); 178 | subRound( E, A, B, C, D, f2, K2, expand( eData, 21 ) ); 179 | subRound( D, E, A, B, C, f2, K2, expand( eData, 22 ) ); 180 | subRound( C, D, E, A, B, f2, K2, expand( eData, 23 ) ); 181 | subRound( B, C, D, E, A, f2, K2, expand( eData, 24 ) ); 182 | subRound( A, B, C, D, E, f2, K2, expand( eData, 25 ) ); 183 | subRound( E, A, B, C, D, f2, K2, expand( eData, 26 ) ); 184 | subRound( D, E, A, B, C, f2, K2, expand( eData, 27 ) ); 185 | subRound( C, D, E, A, B, f2, K2, expand( eData, 28 ) ); 186 | subRound( B, C, D, E, A, f2, K2, expand( eData, 29 ) ); 187 | subRound( A, B, C, D, E, f2, K2, expand( eData, 30 ) ); 188 | subRound( E, A, B, C, D, f2, K2, expand( eData, 31 ) ); 189 | subRound( D, E, A, B, C, f2, K2, expand( eData, 32 ) ); 190 | subRound( C, D, E, A, B, f2, K2, expand( eData, 33 ) ); 191 | subRound( B, C, D, E, A, f2, K2, expand( eData, 34 ) ); 192 | subRound( A, B, C, D, E, f2, K2, expand( eData, 35 ) ); 193 | subRound( E, A, B, C, D, f2, K2, expand( eData, 36 ) ); 194 | subRound( D, E, A, B, C, f2, K2, expand( eData, 37 ) ); 195 | subRound( C, D, E, A, B, f2, K2, expand( eData, 38 ) ); 196 | subRound( B, C, D, E, A, f2, K2, expand( eData, 39 ) ); 197 | 198 | subRound( A, B, C, D, E, f3, K3, expand( eData, 40 ) ); 199 | subRound( E, A, B, C, D, f3, K3, expand( eData, 41 ) ); 200 | subRound( D, E, A, B, C, f3, K3, expand( eData, 42 ) ); 201 | subRound( C, D, E, A, B, f3, K3, expand( eData, 43 ) ); 202 | subRound( B, C, D, E, A, f3, K3, expand( eData, 44 ) ); 203 | subRound( A, B, C, D, E, f3, K3, expand( eData, 45 ) ); 204 | subRound( E, A, B, C, D, f3, K3, expand( eData, 46 ) ); 205 | subRound( D, E, A, B, C, f3, K3, expand( eData, 47 ) ); 206 | subRound( C, D, E, A, B, f3, K3, expand( eData, 48 ) ); 207 | subRound( B, C, D, E, A, f3, K3, expand( eData, 49 ) ); 208 | subRound( A, B, C, D, E, f3, K3, expand( eData, 50 ) ); 209 | subRound( E, A, B, C, D, f3, K3, expand( eData, 51 ) ); 210 | subRound( D, E, A, B, C, f3, K3, expand( eData, 52 ) ); 211 | subRound( C, D, E, A, B, f3, K3, expand( eData, 53 ) ); 212 | subRound( B, C, D, E, A, f3, K3, expand( eData, 54 ) ); 213 | subRound( A, B, C, D, E, f3, K3, expand( eData, 55 ) ); 214 | subRound( E, A, B, C, D, f3, K3, expand( eData, 56 ) ); 215 | subRound( D, E, A, B, C, f3, K3, expand( eData, 57 ) ); 216 | subRound( C, D, E, A, B, f3, K3, expand( eData, 58 ) ); 217 | subRound( B, C, D, E, A, f3, K3, expand( eData, 59 ) ); 218 | 219 | subRound( A, B, C, D, E, f4, K4, expand( eData, 60 ) ); 220 | subRound( E, A, B, C, D, f4, K4, expand( eData, 61 ) ); 221 | subRound( D, E, A, B, C, f4, K4, expand( eData, 62 ) ); 222 | subRound( C, D, E, A, B, f4, K4, expand( eData, 63 ) ); 223 | subRound( B, C, D, E, A, f4, K4, expand( eData, 64 ) ); 224 | subRound( A, B, C, D, E, f4, K4, expand( eData, 65 ) ); 225 | subRound( E, A, B, C, D, f4, K4, expand( eData, 66 ) ); 226 | subRound( D, E, A, B, C, f4, K4, expand( eData, 67 ) ); 227 | subRound( C, D, E, A, B, f4, K4, expand( eData, 68 ) ); 228 | subRound( B, C, D, E, A, f4, K4, expand( eData, 69 ) ); 229 | subRound( A, B, C, D, E, f4, K4, expand( eData, 70 ) ); 230 | subRound( E, A, B, C, D, f4, K4, expand( eData, 71 ) ); 231 | subRound( D, E, A, B, C, f4, K4, expand( eData, 72 ) ); 232 | subRound( C, D, E, A, B, f4, K4, expand( eData, 73 ) ); 233 | subRound( B, C, D, E, A, f4, K4, expand( eData, 74 ) ); 234 | subRound( A, B, C, D, E, f4, K4, expand( eData, 75 ) ); 235 | subRound( E, A, B, C, D, f4, K4, expand( eData, 76 ) ); 236 | subRound( D, E, A, B, C, f4, K4, expand( eData, 77 ) ); 237 | subRound( C, D, E, A, B, f4, K4, expand( eData, 78 ) ); 238 | subRound( B, C, D, E, A, f4, K4, expand( eData, 79 ) ); 239 | 240 | /* Build message digest */ 241 | digest[ 0 ] += A; 242 | digest[ 1 ] += B; 243 | digest[ 2 ] += C; 244 | digest[ 3 ] += D; 245 | digest[ 4 ] += E; 246 | } 247 | 248 | /* When run on a little-endian CPU we need to perform byte reversal on an 249 | array of long words. */ 250 | 251 | static void longReverse(UINT4 *buffer, int byteCount, int Endianness ) 252 | { 253 | UINT4 value; 254 | 255 | if (Endianness==TRUE) return; 256 | byteCount /= sizeof( UINT4 ); 257 | while( byteCount-- ) 258 | { 259 | value = *buffer; 260 | value = ( ( value & 0xFF00FF00L ) >> 8 ) | \ 261 | ( ( value & 0x00FF00FFL ) << 8 ); 262 | *buffer++ = ( value << 16 ) | ( value >> 16 ); 263 | } 264 | } 265 | 266 | /* Update SHS for a block of data */ 267 | 268 | void SHAUpdate(SHA_CTX *shsInfo, BYTE *buffer, int count) 269 | { 270 | UINT4 tmp; 271 | int dataCount; 272 | 273 | /* Update bitcount */ 274 | tmp = shsInfo->countLo; 275 | if ( ( shsInfo->countLo = tmp + ( ( UINT4 ) count << 3 ) ) < tmp ) 276 | shsInfo->countHi++; /* Carry from low to high */ 277 | shsInfo->countHi += count >> 29; 278 | 279 | /* Get count of bytes already in data */ 280 | dataCount = ( int ) ( tmp >> 3 ) & 0x3F; 281 | 282 | /* Handle any leading odd-sized chunks */ 283 | if( dataCount ) 284 | { 285 | BYTE *p = ( BYTE * ) shsInfo->data + dataCount; 286 | 287 | dataCount = SHS_DATASIZE - dataCount; 288 | if( count < dataCount ) 289 | { 290 | memcpy( p, buffer, count ); 291 | return; 292 | } 293 | memcpy( p, buffer, dataCount ); 294 | longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness); 295 | SHSTransform( shsInfo->digest, shsInfo->data ); 296 | buffer += dataCount; 297 | count -= dataCount; 298 | } 299 | 300 | /* Process data in SHS_DATASIZE chunks */ 301 | while( count >= SHS_DATASIZE ) 302 | { 303 | memcpy( (POINTER)shsInfo->data, (POINTER)buffer, SHS_DATASIZE ); 304 | longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness ); 305 | SHSTransform( shsInfo->digest, shsInfo->data ); 306 | buffer += SHS_DATASIZE; 307 | count -= SHS_DATASIZE; 308 | } 309 | 310 | /* Handle any remaining bytes of data. */ 311 | memcpy( (POINTER)shsInfo->data, (POINTER)buffer, count ); 312 | } 313 | 314 | /* Final wrapup - pad to SHS_DATASIZE-byte boundary with the bit pattern 315 | 1 0* (64-bit count of bits processed, MSB-first) */ 316 | 317 | void SHAFinal(BYTE *output, SHA_CTX *shsInfo) 318 | { 319 | int count; 320 | BYTE *dataPtr; 321 | 322 | /* Compute number of bytes mod 64 */ 323 | count = ( int ) shsInfo->countLo; 324 | count = ( count >> 3 ) & 0x3F; 325 | 326 | /* Set the first char of padding to 0x80. This is safe since there is 327 | always at least one byte free */ 328 | dataPtr = ( BYTE * ) shsInfo->data + count; 329 | *dataPtr++ = 0x80; 330 | 331 | /* Bytes of padding needed to make 64 bytes */ 332 | count = SHS_DATASIZE - 1 - count; 333 | 334 | /* Pad out to 56 mod 64 */ 335 | if( count < 8 ) 336 | { 337 | /* Two lots of padding: Pad the first block to 64 bytes */ 338 | memset( dataPtr, 0, count ); 339 | longReverse( shsInfo->data, SHS_DATASIZE, shsInfo->Endianness ); 340 | SHSTransform( shsInfo->digest, shsInfo->data ); 341 | 342 | /* Now fill the next block with 56 bytes */ 343 | memset( (POINTER)shsInfo->data, 0, SHS_DATASIZE - 8 ); 344 | } 345 | else 346 | /* Pad block to 56 bytes */ 347 | memset( dataPtr, 0, count - 8 ); 348 | 349 | /* Append length in bits and transform */ 350 | shsInfo->data[ 14 ] = shsInfo->countHi; 351 | shsInfo->data[ 15 ] = shsInfo->countLo; 352 | 353 | longReverse( shsInfo->data, SHS_DATASIZE - 8, shsInfo->Endianness ); 354 | SHSTransform( shsInfo->digest, shsInfo->data ); 355 | 356 | /* Output to an array of bytes */ 357 | SHAtoByte(output, shsInfo->digest, SHS_DIGESTSIZE); 358 | 359 | /* Zeroise sensitive stuff */ 360 | memset((POINTER)shsInfo, 0, sizeof(shsInfo)); 361 | } 362 | 363 | static void SHAtoByte(BYTE *output, UINT4 *input, unsigned int len) 364 | { /* Output SHA digest in byte array */ 365 | unsigned int i, j; 366 | 367 | for(i = 0, j = 0; j < len; i++, j += 4) 368 | { 369 | output[j+3] = (BYTE)( input[i] & 0xff); 370 | output[j+2] = (BYTE)((input[i] >> 8 ) & 0xff); 371 | output[j+1] = (BYTE)((input[i] >> 16) & 0xff); 372 | output[j ] = (BYTE)((input[i] >> 24) & 0xff); 373 | } 374 | } 375 | 376 | 377 | 378 | 379 | /* endian.c */ 380 | 381 | void endianTest(int *endian_ness) 382 | { 383 | if((*(unsigned short *) ("#S") >> 8) == '#') 384 | { 385 | /* printf("Big endian = no change\n"); */ 386 | *endian_ness = !(0); 387 | } 388 | else 389 | { 390 | /* printf("Little endian = swap\n"); */ 391 | *endian_ness = 0; 392 | } 393 | } 394 | -------------------------------------------------------------------------------- /src/libkirk/SHA1.h: -------------------------------------------------------------------------------- 1 | #ifndef _GLOBAL_H_ 2 | #define _GLOBAL_H_ 1 3 | 4 | /* POINTER defines a generic pointer type */ 5 | typedef unsigned char *POINTER; 6 | 7 | /* UINT4 defines a four byte word */ 8 | typedef unsigned int UINT4; 9 | 10 | /* BYTE defines a unsigned character */ 11 | typedef unsigned char BYTE; 12 | 13 | #ifndef TRUE 14 | #define FALSE 0 15 | #define TRUE ( !FALSE ) 16 | #endif /* TRUE */ 17 | 18 | #endif /* end _GLOBAL_H_ */ 19 | 20 | /* sha.h */ 21 | 22 | #ifndef _SHA_H_ 23 | #define _SHA_H_ 1 24 | 25 | /* #include "global.h" */ 26 | 27 | /* The structure for storing SHS info */ 28 | 29 | typedef struct 30 | { 31 | UINT4 digest[ 5 ]; /* Message digest */ 32 | UINT4 countLo, countHi; /* 64-bit bit count */ 33 | UINT4 data[ 16 ]; /* SHS data buffer */ 34 | int Endianness; 35 | } SHA_CTX; 36 | 37 | /* Message digest functions */ 38 | 39 | void SHAInit(SHA_CTX *); 40 | void SHAUpdate(SHA_CTX *, BYTE *buffer, int count); 41 | void SHAFinal(BYTE *output, SHA_CTX *); 42 | 43 | #endif /* end _SHA_H_ */ 44 | 45 | /* endian.h */ 46 | 47 | #ifndef _ENDIAN_H_ 48 | #define _ENDIAN_H_ 1 49 | 50 | void endianTest(int *endianness); 51 | 52 | #endif /* end _ENDIAN_H_ */ 53 | -------------------------------------------------------------------------------- /src/libkirk/amctrl.c: -------------------------------------------------------------------------------- 1 | /* 2 | * amctrl.c -- Reverse engineering of amctrl.prx 3 | * written by tpu. 4 | */ 5 | 6 | #include 7 | #include 8 | #include 9 | 10 | #include "kirk_engine.h" 11 | #include "amctrl.h" 12 | 13 | static u8 loc_1CD4[16] = {0xE3, 0x50, 0xED, 0x1D, 0x91, 0x0A, 0x1F, 0xD0, 0x29, 0xBB, 0x1C, 0x3E, 0xF3, 0x40, 0x77, 0xFB}; 14 | static u8 loc_1CE4[16] = {0x13, 0x5F, 0xA4, 0x7C, 0xAB, 0x39, 0x5B, 0xA4, 0x76, 0xB8, 0xCC, 0xA9, 0x8F, 0x3A, 0x04, 0x45}; 15 | static u8 loc_1CF4[16] = {0x67, 0x8D, 0x7F, 0xA3, 0x2A, 0x9C, 0xA0, 0xD1, 0x50, 0x8A, 0xD8, 0x38, 0x5E, 0x4B, 0x01, 0x7E}; 16 | 17 | static u8 kirk_buf[0x0814]; 18 | 19 | static int kirk4(u8 *buf, int size, int type) 20 | { 21 | int retv; 22 | u32 *header = (u32*)buf; 23 | 24 | header[0] = 4; 25 | header[1] = 0; 26 | header[2] = 0; 27 | header[3] = type; 28 | header[4] = size; 29 | 30 | retv = sceUtilsBufferCopyWithRange(buf, size+0x14, buf, size, 4); 31 | 32 | if(retv) 33 | return 0x80510311; 34 | 35 | return 0; 36 | } 37 | 38 | static int kirk7(u8 *buf, int size, int type) 39 | { 40 | int retv; 41 | u32 *header = (u32*)buf; 42 | 43 | header[0] = 5; 44 | header[1] = 0; 45 | header[2] = 0; 46 | header[3] = type; 47 | header[4] = size; 48 | 49 | retv = sceUtilsBufferCopyWithRange(buf, size+0x14, buf, size, 7); 50 | if(retv) 51 | return 0x80510311; 52 | 53 | return 0; 54 | } 55 | 56 | static int kirk5(u8 *buf, int size) 57 | { 58 | int retv; 59 | u32 *header = (u32*)buf; 60 | 61 | header[0] = 4; 62 | header[1] = 0; 63 | header[2] = 0; 64 | header[3] = 0x0100; 65 | header[4] = size; 66 | 67 | retv = sceUtilsBufferCopyWithRange(buf, size+0x14, buf, size, 5); 68 | if(retv) 69 | return 0x80510312; 70 | 71 | return 0; 72 | } 73 | 74 | static int kirk8(u8 *buf, int size) 75 | { 76 | int retv; 77 | u32 *header = (u32*)buf; 78 | 79 | header[0] = 5; 80 | header[1] = 0; 81 | header[2] = 0; 82 | header[3] = 0x0100; 83 | header[4] = size; 84 | 85 | retv = sceUtilsBufferCopyWithRange(buf, size+0x14, buf, size, 8); 86 | if(retv) 87 | return 0x80510312; 88 | 89 | return 0; 90 | } 91 | 92 | static int kirk14(u8 *buf) 93 | { 94 | int retv; 95 | 96 | retv = sceUtilsBufferCopyWithRange(buf, 0x14, 0, 0, 14); 97 | if(retv) 98 | return 0x80510315; 99 | 100 | return 0; 101 | } 102 | 103 | static int sub_158(u8 *buf, int size, u8 *key, int key_type) 104 | { 105 | int i, retv; 106 | 107 | for(i=0; i<16; i++){ 108 | buf[0x14+i] ^= key[i]; 109 | } 110 | 111 | retv = kirk4(buf, size, key_type); 112 | if(retv) 113 | return retv; 114 | 115 | memcpy(key, buf+size+4, 16); 116 | 117 | return 0; 118 | } 119 | 120 | static int sub_1F8(u8 *buf, int size, u8 *key, int key_type) 121 | { 122 | int i, retv; 123 | u8 tmp[16]; 124 | 125 | memcpy(tmp, buf+size+0x14-16, 16); 126 | 127 | retv = kirk7(buf, size, key_type); 128 | if(retv) 129 | return retv; 130 | 131 | for(i=0; i<16; i++){ 132 | buf[i] ^= key[i]; 133 | } 134 | 135 | memcpy(key, tmp, 16); 136 | 137 | return 0; 138 | } 139 | 140 | static int sub_428(u8 *kbuf, u8 *dbuf, int size, CIPHER_KEY *ckey) 141 | { 142 | int i, retv; 143 | u8 tmp1[16], tmp2[16]; 144 | 145 | memcpy(kbuf+0x14, ckey->key, 16); 146 | 147 | for(i=0; i<16; i++){ 148 | kbuf[0x14+i] ^= loc_1CF4[i]; 149 | } 150 | 151 | if(ckey->type==2) 152 | retv = kirk8(kbuf, 16); 153 | else 154 | retv = kirk7(kbuf, 16, 0x39); 155 | if(retv) 156 | return retv; 157 | 158 | for(i=0; i<16; i++){ 159 | kbuf[i] ^= loc_1CE4[i]; 160 | } 161 | 162 | memcpy(tmp2, kbuf, 0x10); 163 | 164 | if(ckey->seed==1){ 165 | memset(tmp1, 0, 0x10); 166 | }else{ 167 | memcpy(tmp1, tmp2, 0x10); 168 | *(u32*)(tmp1+0x0c) = ckey->seed-1; 169 | } 170 | 171 | for(i=0; iseed; 174 | ckey->seed += 1; 175 | } 176 | 177 | retv = sub_1F8(kbuf, size, tmp1, 0x63); 178 | if(retv) 179 | return retv; 180 | 181 | for(i=0; itype = type; 191 | mkey->pad_size = 0; 192 | 193 | memset(mkey->key, 0, 16); 194 | memset(mkey->pad, 0, 16); 195 | 196 | return 0; 197 | } 198 | 199 | int sceDrmBBMacUpdate(MAC_KEY *mkey, u8 *buf, int size) 200 | { 201 | int retv = 0, ksize, p, type; 202 | u8 *kbuf; 203 | 204 | if(mkey->pad_size>16){ 205 | retv = 0x80510302; 206 | goto _exit; 207 | } 208 | 209 | if(mkey->pad_size+size<=16){ 210 | memcpy(mkey->pad+mkey->pad_size, buf, size); 211 | mkey->pad_size += size; 212 | retv = 0; 213 | }else{ 214 | kbuf = kirk_buf+0x14; 215 | memcpy(kbuf, mkey->pad, mkey->pad_size); 216 | 217 | p = mkey->pad_size; 218 | 219 | mkey->pad_size += size; 220 | mkey->pad_size &= 0x0f; 221 | if(mkey->pad_size==0) 222 | mkey->pad_size = 16; 223 | 224 | size -= mkey->pad_size; 225 | memcpy(mkey->pad, buf+size, mkey->pad_size); 226 | 227 | type = (mkey->type==2)? 0x3A : 0x38; 228 | 229 | while(size){ 230 | ksize = (size+p>=0x0800)? 0x0800 : size+p; 231 | memcpy(kbuf+p, buf, ksize-p); 232 | retv = sub_158(kirk_buf, ksize, mkey->key, type); 233 | if(retv) 234 | goto _exit; 235 | size -= (ksize-p); 236 | buf += ksize-p; 237 | p = 0; 238 | } 239 | } 240 | 241 | _exit: 242 | return retv; 243 | 244 | } 245 | 246 | int sceDrmBBMacFinal(MAC_KEY *mkey, u8 *buf, u8 *vkey) 247 | { 248 | int i, retv, code; 249 | u8 *kbuf, tmp[16], tmp1[16]; 250 | u32 t0, v0, v1; 251 | 252 | if(mkey->pad_size>16) 253 | return 0x80510302; 254 | 255 | code = (mkey->type==2)? 0x3A : 0x38; 256 | kbuf = kirk_buf+0x14; 257 | 258 | memset(kbuf, 0, 16); 259 | retv = kirk4(kirk_buf, 16, code); 260 | if(retv) 261 | goto _exit; 262 | memcpy(tmp, kbuf, 16); 263 | 264 | t0 = (tmp[0]&0x80)? 0x87 : 0; 265 | for(i=0; i<15; i++){ 266 | v1 = tmp[i+0]; 267 | v0 = tmp[i+1]; 268 | v1 <<= 1; 269 | v0 >>= 7; 270 | v0 |= v1; 271 | tmp[i+0] = v0; 272 | } 273 | v0 = tmp[15]; 274 | v0 <<= 1; 275 | v0 ^= t0; 276 | tmp[15] = v0; 277 | 278 | if(mkey->pad_size<16){ 279 | t0 = (tmp[0]&0x80)? 0x87 : 0; 280 | for(i=0; i<15; i++){ 281 | v1 = tmp[i+0]; 282 | v0 = tmp[i+1]; 283 | v1 <<= 1; 284 | v0 >>= 7; 285 | v0 |= v1; 286 | tmp[i+0] = v0; 287 | } 288 | v0 = tmp[15]; 289 | v0 <<= 1; 290 | v0 ^= t0; 291 | tmp[15] = v0; 292 | 293 | mkey->pad[mkey->pad_size] = 0x80; 294 | if(mkey->pad_size+1<16) 295 | memset(mkey->pad+mkey->pad_size+1, 0, 16-mkey->pad_size-1); 296 | } 297 | 298 | for(i=0; i<16; i++){ 299 | mkey->pad[i] ^= tmp[i]; 300 | } 301 | 302 | memcpy(kbuf, mkey->pad, 16); 303 | memcpy(tmp1, mkey->key, 16); 304 | 305 | retv = sub_158(kirk_buf, 0x10, tmp1, code); 306 | if(retv) 307 | return retv; 308 | 309 | for(i=0; i<0x10; i++){ 310 | tmp1[i] ^= loc_1CD4[i]; 311 | } 312 | 313 | if(mkey->type==2){ 314 | memcpy(kbuf, tmp1, 16); 315 | 316 | retv = kirk5(kirk_buf, 0x10); 317 | if(retv) 318 | goto _exit; 319 | 320 | retv = kirk4(kirk_buf, 0x10, code); 321 | if(retv) 322 | goto _exit; 323 | 324 | memcpy(tmp1, kbuf, 16); 325 | } 326 | 327 | if(vkey){ 328 | for(i=0; i<0x10; i++){ 329 | tmp1[i] ^= vkey[i]; 330 | } 331 | memcpy(kbuf, tmp1, 16); 332 | 333 | retv = kirk4(kirk_buf, 0x10, code); 334 | if(retv) 335 | goto _exit; 336 | 337 | memcpy(tmp1, kbuf, 16); 338 | } 339 | 340 | memcpy(buf, tmp1, 16); 341 | 342 | memset(mkey->key, 0, 16); 343 | memset(mkey->pad, 0, 16); 344 | 345 | mkey->pad_size = 0; 346 | mkey->type = 0; 347 | retv = 0; 348 | 349 | _exit: 350 | return retv; 351 | } 352 | 353 | int sceDrmBBMacFinal2(MAC_KEY *mkey, u8 *out, u8 *vkey) 354 | { 355 | int i, retv, type; 356 | u8 *kbuf, tmp[16]; 357 | 358 | type = mkey->type; 359 | retv = sceDrmBBMacFinal(mkey, tmp, vkey); 360 | if(retv) 361 | return retv; 362 | 363 | kbuf = kirk_buf+0x14; 364 | 365 | if(type==3){ 366 | memcpy(kbuf, out, 0x10); 367 | kirk7(kirk_buf, 0x10, 0x63); 368 | }else{ 369 | memcpy(kirk_buf, out, 0x10); 370 | } 371 | 372 | retv = 0; 373 | for(i=0; i<0x10; i++){ 374 | if(kirk_buf[i]!=tmp[i]){ 375 | retv = 0x80510300; 376 | break; 377 | } 378 | } 379 | 380 | return retv; 381 | } 382 | 383 | int sceDrmBBCipherInit(CIPHER_KEY *ckey, int type, int mode, u8 *header_key, u8 *version_key, u32 seed) 384 | { 385 | int i, retv; 386 | u8 *kbuf; 387 | 388 | kbuf = kirk_buf+0x14; 389 | ckey->type = type; 390 | if(mode==2){ 391 | ckey->seed = seed+1; 392 | for(i=0; i<16; i++){ 393 | ckey->key[i] = header_key[i]; 394 | } 395 | if(version_key){ 396 | for(i=0; i<16; i++){ 397 | ckey->key[i] ^= version_key[i]; 398 | } 399 | } 400 | retv = 0; 401 | }else if(mode==1){ 402 | ckey->seed = 1; 403 | retv = kirk14(kirk_buf); 404 | if(retv) 405 | return retv; 406 | 407 | memcpy(kbuf, kirk_buf, 0x10); 408 | memset(kbuf+0x0c, 0, 4); 409 | 410 | if(ckey->type==2){ 411 | for(i=0; i<16; i++){ 412 | kbuf[i] ^= loc_1CE4[i]; 413 | } 414 | retv = kirk5(kirk_buf, 0x10); 415 | for(i=0; i<16; i++){ 416 | kbuf[i] ^= loc_1CF4[i]; 417 | } 418 | }else{ 419 | for(i=0; i<16; i++){ 420 | kbuf[i] ^= loc_1CE4[i]; 421 | } 422 | retv = kirk4(kirk_buf, 0x10, 0x39); 423 | for(i=0; i<16; i++){ 424 | kbuf[i] ^= loc_1CF4[i]; 425 | } 426 | } 427 | if(retv) 428 | return retv; 429 | 430 | memcpy(ckey->key, kbuf, 0x10); 431 | memcpy(header_key, kbuf, 0x10); 432 | 433 | if(version_key){ 434 | for(i=0; i<16; i++){ 435 | ckey->key[i] ^= version_key[i]; 436 | } 437 | } 438 | }else{ 439 | retv = 0; 440 | } 441 | 442 | return retv; 443 | } 444 | 445 | int sceDrmBBCipherUpdate(CIPHER_KEY *ckey, u8 *data, int size) 446 | { 447 | int p, retv, dsize; 448 | 449 | retv = 0; 450 | p = 0; 451 | 452 | while(size>0){ 453 | dsize = (size>=0x0800)? 0x0800 : size; 454 | retv = sub_428(kirk_buf, data+p, dsize, ckey); 455 | if(retv) 456 | break; 457 | size -= dsize; 458 | p += dsize; 459 | } 460 | 461 | return retv; 462 | } 463 | 464 | int sceDrmBBCipherFinal(CIPHER_KEY *ckey) 465 | { 466 | memset(ckey->key, 0, 16); 467 | ckey->type = 0; 468 | ckey->seed = 0; 469 | 470 | return 0; 471 | } 472 | 473 | int bbmac_build_final2(int type, u8 *mac) 474 | { 475 | u8 *kbuf = kirk_buf+0x14; 476 | 477 | if(type==3){ 478 | memcpy(kbuf, mac, 16); 479 | kirk4(kirk_buf, 0x10, 0x63); 480 | memcpy(mac, kbuf, 16); 481 | } 482 | 483 | return 0; 484 | } 485 | 486 | int bbmac_getkey(MAC_KEY *mkey, u8 *bbmac, u8 *vkey) 487 | { 488 | int i, retv, type, code; 489 | u8 *kbuf, tmp[16], tmp1[16]; 490 | 491 | type = mkey->type; 492 | retv = sceDrmBBMacFinal(mkey, tmp, NULL); 493 | if(retv) 494 | return retv; 495 | 496 | kbuf = kirk_buf+0x14; 497 | 498 | if(type==3){ 499 | memcpy(kbuf, bbmac, 0x10); 500 | kirk7(kirk_buf, 0x10, 0x63); 501 | }else{ 502 | memcpy(kirk_buf, bbmac, 0x10); 503 | } 504 | 505 | memcpy(tmp1, kirk_buf, 16); 506 | memcpy(kbuf, tmp1, 16); 507 | 508 | code = (type==2)? 0x3A : 0x38; 509 | kirk7(kirk_buf, 0x10, code); 510 | 511 | for(i=0; i<0x10; i++){ 512 | vkey[i] = tmp[i] ^ kirk_buf[i]; 513 | } 514 | 515 | return 0; 516 | } 517 | 518 | int bbmac_forge(MAC_KEY *mkey, u8 *bbmac, u8 *vkey, u8 *buf) 519 | { 520 | int i, retv, type; 521 | u8 *kbuf, tmp[16], tmp1[16]; 522 | u32 t0, v0, v1; 523 | 524 | if(mkey->pad_size>16) 525 | return 0x80510302; 526 | 527 | type = (mkey->type==2)? 0x3A : 0x38; 528 | kbuf = kirk_buf+0x14; 529 | 530 | memset(kbuf, 0, 16); 531 | retv = kirk4(kirk_buf, 16, type); 532 | if(retv) 533 | return retv; 534 | memcpy(tmp, kbuf, 16); 535 | 536 | t0 = (tmp[0]&0x80)? 0x87 : 0; 537 | for(i=0; i<15; i++){ 538 | v1 = tmp[i+0]; 539 | v0 = tmp[i+1]; 540 | v1 <<= 1; 541 | v0 >>= 7; 542 | v0 |= v1; 543 | tmp[i+0] = v0; 544 | } 545 | v0 = tmp[15]; 546 | v0 <<= 1; 547 | v0 ^= t0; 548 | tmp[15] = v0; 549 | 550 | if(mkey->pad_size<16){ 551 | t0 = (tmp[0]&0x80)? 0x87 : 0; 552 | for(i=0; i<15; i++){ 553 | v1 = tmp[i+0]; 554 | v0 = tmp[i+1]; 555 | v1 <<= 1; 556 | v0 >>= 7; 557 | v0 |= v1; 558 | tmp[i+0] = v0; 559 | } 560 | v0 = tmp[15]; 561 | v0 <<= 1; 562 | v0 ^= t0; 563 | tmp[15] = t0; 564 | 565 | mkey->pad[mkey->pad_size] = 0x80; 566 | if(mkey->pad_size+1<16) 567 | memset(mkey->pad+mkey->pad_size+1, 0, 16-mkey->pad_size-1); 568 | } 569 | 570 | for(i=0; i<16; i++){ 571 | mkey->pad[i] ^= tmp[i]; 572 | } 573 | for(i=0; i<0x10; i++){ 574 | mkey->pad[i] ^= mkey->key[i]; 575 | } 576 | 577 | memcpy(kbuf, bbmac, 0x10); 578 | kirk7(kirk_buf, 0x10, 0x63); 579 | 580 | memcpy(kbuf, kirk_buf, 0x10); 581 | kirk7(kirk_buf, 0x10, type); 582 | 583 | memcpy(tmp1, kirk_buf, 0x10); 584 | for(i=0; i<0x10; i++){ 585 | tmp1[i] ^= vkey[i]; 586 | } 587 | for(i=0; i<0x10; i++){ 588 | tmp1[i] ^= loc_1CD4[i]; 589 | } 590 | 591 | memcpy(kbuf, tmp1, 0x10); 592 | kirk7(kirk_buf, 0x10, type); 593 | 594 | memcpy(tmp1, kirk_buf, 0x10); 595 | for(i=0; i<16; i++){ 596 | mkey->pad[i] ^= tmp1[i]; 597 | } 598 | 599 | for(i=0; i<16; i++){ 600 | buf[i] ^= mkey->pad[i]; 601 | } 602 | 603 | return 0; 604 | } -------------------------------------------------------------------------------- /src/libkirk/amctrl.h: -------------------------------------------------------------------------------- 1 | #ifndef AMCTRL_H 2 | #define AMCTRL_H 3 | 4 | typedef struct { 5 | int type; 6 | u8 key[16]; 7 | u8 pad[16]; 8 | int pad_size; 9 | } MAC_KEY; 10 | 11 | typedef struct 12 | { 13 | u32 type; 14 | u32 seed; 15 | u8 key[16]; 16 | } CIPHER_KEY; 17 | 18 | int sceDrmBBMacInit(MAC_KEY *mkey, int type); 19 | int sceDrmBBMacUpdate(MAC_KEY *mkey, u8 *buf, int size); 20 | int sceDrmBBMacFinal(MAC_KEY *mkey, u8 *buf, u8 *vkey); 21 | int sceDrmBBMacFinal2(MAC_KEY *mkey, u8 *out, u8 *vkey); 22 | 23 | int bbmac_build_final2(int type, u8 *mac); 24 | int bbmac_getkey(MAC_KEY *mkey, u8 *bbmac, u8 *vkey); 25 | int bbmac_forge(MAC_KEY *mkey, u8 *bbmac, u8 *vkey, u8 *buf); 26 | 27 | int sceDrmBBCipherInit(CIPHER_KEY *ckey, int type, int mode, u8 *header_key, u8 *version_key, u32 seed); 28 | int sceDrmBBCipherUpdate(CIPHER_KEY *ckey, u8 *data, int size); 29 | int sceDrmBBCipherFinal(CIPHER_KEY *ckey); 30 | 31 | #endif 32 | -------------------------------------------------------------------------------- /src/libkirk/bn.c: -------------------------------------------------------------------------------- 1 | // Copyright 2007,2008,2010 Segher Boessenkool 2 | // Licensed under the terms of the GNU GPL, version 2 3 | // http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt 4 | // Updated and simplified for use by Kirk Engine - July 2011 5 | 6 | #include 7 | #include 8 | 9 | // Include definitions from kirk header 10 | #include "kirk_engine.h" 11 | 12 | void bn_print(char *name, u8 *a, u32 n) 13 | { 14 | u32 i; 15 | 16 | printf("%s = ", name); 17 | 18 | for (i = 0; i < n; i++) 19 | printf("%02x", a[i]); 20 | 21 | printf("\n"); 22 | } 23 | 24 | static void bn_zero(u8 *d, u32 n) 25 | { 26 | memset(d, 0, n); 27 | } 28 | 29 | void bn_copy(u8 *d, u8 *a, u32 n) 30 | { 31 | memcpy(d, a, n); 32 | } 33 | 34 | int bn_compare(u8 *a, u8 *b, u32 n) 35 | { 36 | u32 i; 37 | 38 | for (i = 0; i < n; i++) { 39 | if (a[i] < b[i]) 40 | return -1; 41 | if (a[i] > b[i]) 42 | return 1; 43 | } 44 | 45 | return 0; 46 | } 47 | 48 | static u8 bn_add_1(u8 *d, u8 *a, u8 *b, u32 n) 49 | { 50 | u32 i; 51 | u32 dig; 52 | u8 c; 53 | 54 | c = 0; 55 | for (i = n - 1; i < n; i--) { 56 | dig = a[i] + b[i] + c; 57 | c = dig >> 8; 58 | d[i] = dig; 59 | } 60 | 61 | return c; 62 | } 63 | 64 | static u8 bn_sub_1(u8 *d, u8 *a, u8 *b, u32 n) 65 | { 66 | u32 i; 67 | u32 dig; 68 | u8 c; 69 | 70 | c = 1; 71 | for (i = n - 1; i < n; i--) { 72 | dig = a[i] + 255 - b[i] + c; 73 | c = dig >> 8; 74 | d[i] = dig; 75 | } 76 | 77 | return 1 - c; 78 | } 79 | 80 | void bn_reduce(u8 *d, u8 *N, u32 n) 81 | { 82 | if (bn_compare(d, N, n) >= 0) 83 | bn_sub_1(d, d, N, n); 84 | } 85 | 86 | void bn_add(u8 *d, u8 *a, u8 *b, u8 *N, u32 n) 87 | { 88 | if (bn_add_1(d, a, b, n)) 89 | bn_sub_1(d, d, N, n); 90 | 91 | bn_reduce(d, N, n); 92 | } 93 | 94 | void bn_sub(u8 *d, u8 *a, u8 *b, u8 *N, u32 n) 95 | { 96 | if (bn_sub_1(d, a, b, n)) 97 | bn_add_1(d, d, N, n); 98 | } 99 | 100 | static const u8 inv256[0x80] = { 101 | 0x01, 0xab, 0xcd, 0xb7, 0x39, 0xa3, 0xc5, 0xef, 102 | 0xf1, 0x1b, 0x3d, 0xa7, 0x29, 0x13, 0x35, 0xdf, 103 | 0xe1, 0x8b, 0xad, 0x97, 0x19, 0x83, 0xa5, 0xcf, 104 | 0xd1, 0xfb, 0x1d, 0x87, 0x09, 0xf3, 0x15, 0xbf, 105 | 0xc1, 0x6b, 0x8d, 0x77, 0xf9, 0x63, 0x85, 0xaf, 106 | 0xb1, 0xdb, 0xfd, 0x67, 0xe9, 0xd3, 0xf5, 0x9f, 107 | 0xa1, 0x4b, 0x6d, 0x57, 0xd9, 0x43, 0x65, 0x8f, 108 | 0x91, 0xbb, 0xdd, 0x47, 0xc9, 0xb3, 0xd5, 0x7f, 109 | 0x81, 0x2b, 0x4d, 0x37, 0xb9, 0x23, 0x45, 0x6f, 110 | 0x71, 0x9b, 0xbd, 0x27, 0xa9, 0x93, 0xb5, 0x5f, 111 | 0x61, 0x0b, 0x2d, 0x17, 0x99, 0x03, 0x25, 0x4f, 112 | 0x51, 0x7b, 0x9d, 0x07, 0x89, 0x73, 0x95, 0x3f, 113 | 0x41, 0xeb, 0x0d, 0xf7, 0x79, 0xe3, 0x05, 0x2f, 114 | 0x31, 0x5b, 0x7d, 0xe7, 0x69, 0x53, 0x75, 0x1f, 115 | 0x21, 0xcb, 0xed, 0xd7, 0x59, 0xc3, 0xe5, 0x0f, 116 | 0x11, 0x3b, 0x5d, 0xc7, 0x49, 0x33, 0x55, 0xff, 117 | }; 118 | 119 | static void bn_mon_muladd_dig(u8 *d, u8 *a, u8 b, u8 *N, u32 n) 120 | { 121 | u32 dig; 122 | u32 i; 123 | 124 | u8 z = -(d[n-1] + a[n-1]*b) * inv256[N[n-1]/2]; 125 | 126 | dig = d[n-1] + a[n-1]*b + N[n-1]*z; 127 | dig >>= 8; 128 | 129 | for (i = n - 2; i < n; i--) { 130 | dig += d[i] + a[i]*b + N[i]*z; 131 | d[i+1] = dig; 132 | dig >>= 8; 133 | } 134 | 135 | d[0] = dig; 136 | dig >>= 8; 137 | 138 | if (dig) 139 | bn_sub_1(d, d, N, n); 140 | 141 | bn_reduce(d, N, n); 142 | } 143 | 144 | void bn_mon_mul(u8 *d, u8 *a, u8 *b, u8 *N, u32 n) 145 | { 146 | u8 t[512]; 147 | u32 i; 148 | 149 | bn_zero(t, n); 150 | 151 | for (i = n - 1; i < n; i--) 152 | bn_mon_muladd_dig(t, a, b[i], N, n); 153 | 154 | bn_copy(d, t, n); 155 | } 156 | 157 | void bn_to_mon(u8 *d, u8 *N, u32 n) 158 | { 159 | u32 i; 160 | 161 | for (i = 0; i < 8*n; i++) 162 | bn_add(d, d, d, N, n); 163 | } 164 | 165 | void bn_from_mon(u8 *d, u8 *N, u32 n) 166 | { 167 | u8 t[512]; 168 | 169 | bn_zero(t, n); 170 | t[n-1] = 1; 171 | bn_mon_mul(d, d, t, N, n); 172 | } 173 | 174 | static void bn_mon_exp(u8 *d, u8 *a, u8 *N, u32 n, u8 *e, u32 en) 175 | { 176 | u8 t[512]; 177 | u32 i; 178 | u8 mask; 179 | 180 | bn_zero(d, n); 181 | d[n-1] = 1; 182 | bn_to_mon(d, N, n); 183 | 184 | for (i = 0; i < en; i++) 185 | for (mask = 0x80; mask != 0; mask >>= 1) { 186 | bn_mon_mul(t, d, d, N, n); 187 | if ((e[i] & mask) != 0) 188 | bn_mon_mul(d, t, a, N, n); 189 | else 190 | bn_copy(d, t, n); 191 | } 192 | } 193 | 194 | void bn_mon_inv(u8 *d, u8 *a, u8 *N, u32 n) 195 | { 196 | u8 t[512], s[512]; 197 | 198 | bn_zero(s, n); 199 | s[n-1] = 2; 200 | bn_sub_1(t, N, s, n); 201 | bn_mon_exp(d, a, N, n, t, n); 202 | } 203 | -------------------------------------------------------------------------------- /src/libkirk/ec.c: -------------------------------------------------------------------------------- 1 | // Copyright 2007,2008,2010 Segher Boessenkool 2 | // Licensed under the terms of the GNU GPL, version 2 3 | // http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt 4 | 5 | 6 | // Modified for Kirk engine by setting single curve and internal function 7 | // to support Kirk elliptic curve options.- July 2011 8 | 9 | #include 10 | #include 11 | 12 | // Include definitions from kirk header 13 | #include "kirk_engine.h" 14 | 15 | struct point { 16 | u8 x[20]; 17 | u8 y[20]; 18 | }; 19 | // Simplified for use by Kirk Engine since it has only 1 curve 20 | 21 | u8 ec_p[20]; 22 | u8 ec_a[20]; 23 | u8 ec_b[20]; 24 | u8 ec_N[21]; 25 | struct point ec_G; // mon 26 | struct point ec_Q; // mon 27 | u8 ec_k[21]; 28 | 29 | 30 | 31 | void hex_dump(char *str, u8 *buf, int size) 32 | { 33 | int i; 34 | 35 | if(str) 36 | printf("%s:", str); 37 | 38 | for(i=0; ix, ec_p, 20); 98 | bn_to_mon(p->y, ec_p, 20); 99 | } 100 | 101 | static void point_from_mon(struct point *p) 102 | { 103 | bn_from_mon(p->x, ec_p, 20); 104 | bn_from_mon(p->y, ec_p, 20); 105 | } 106 | 107 | #if 0 108 | static int point_is_on_curve(u8 *p) 109 | { 110 | u8 s[20], t[20]; 111 | u8 *x, *y; 112 | 113 | x = p; 114 | y = p + 20; 115 | 116 | elt_square(t, x); 117 | elt_mul(s, t, x); 118 | 119 | elt_mul(t, x, ec_a); 120 | elt_add(s, s, t); 121 | 122 | elt_add(s, s, ec_b); 123 | 124 | elt_square(t, y); 125 | elt_sub(s, s, t); 126 | 127 | return elt_is_zero(s); 128 | } 129 | #endif 130 | 131 | static void point_zero(struct point *p) 132 | { 133 | elt_zero(p->x); 134 | elt_zero(p->y); 135 | } 136 | 137 | static int point_is_zero(struct point *p) 138 | { 139 | return elt_is_zero(p->x) && elt_is_zero(p->y); 140 | } 141 | 142 | static void point_double(struct point *r, struct point *p) 143 | { 144 | u8 s[20], t[20]; 145 | struct point pp; 146 | u8 *px, *py, *rx, *ry; 147 | 148 | pp = *p; 149 | 150 | px = pp.x; 151 | py = pp.y; 152 | rx = r->x; 153 | ry = r->y; 154 | 155 | if (elt_is_zero(py)) { 156 | point_zero(r); 157 | return; 158 | } 159 | 160 | elt_square(t, px); // t = px*px 161 | elt_add(s, t, t); // s = 2*px*px 162 | elt_add(s, s, t); // s = 3*px*px 163 | elt_add(s, s, ec_a); // s = 3*px*px + a 164 | elt_add(t, py, py); // t = 2*py 165 | elt_inv(t, t); // t = 1/(2*py) 166 | elt_mul(s, s, t); // s = (3*px*px+a)/(2*py) 167 | 168 | elt_square(rx, s); // rx = s*s 169 | elt_add(t, px, px); // t = 2*px 170 | elt_sub(rx, rx, t); // rx = s*s - 2*px 171 | 172 | elt_sub(t, px, rx); // t = -(rx-px) 173 | elt_mul(ry, s, t); // ry = -s*(rx-px) 174 | elt_sub(ry, ry, py); // ry = -s*(rx-px) - py 175 | } 176 | 177 | static void point_add(struct point *r, struct point *p, struct point *q) 178 | { 179 | u8 s[20], t[20], u[20]; 180 | u8 *px, *py, *qx, *qy, *rx, *ry; 181 | struct point pp, qq; 182 | 183 | pp = *p; 184 | qq = *q; 185 | 186 | px = pp.x; 187 | py = pp.y; 188 | qx = qq.x; 189 | qy = qq.y; 190 | rx = r->x; 191 | ry = r->y; 192 | 193 | if (point_is_zero(&pp)) { 194 | elt_copy(rx, qx); 195 | elt_copy(ry, qy); 196 | return; 197 | } 198 | 199 | if (point_is_zero(&qq)) { 200 | elt_copy(rx, px); 201 | elt_copy(ry, py); 202 | return; 203 | } 204 | 205 | elt_sub(u, qx, px); 206 | 207 | if (elt_is_zero(u)) { 208 | elt_sub(u, qy, py); 209 | if (elt_is_zero(u)) 210 | point_double(r, &pp); 211 | else 212 | point_zero(r); 213 | 214 | return; 215 | } 216 | 217 | elt_inv(t, u); // t = 1/(qx-px) 218 | elt_sub(u, qy, py); // u = qy-py 219 | elt_mul(s, t, u); // s = (qy-py)/(qx-px) 220 | 221 | elt_square(rx, s); // rx = s*s 222 | elt_add(t, px, qx); // t = px+qx 223 | elt_sub(rx, rx, t); // rx = s*s - (px+qx) 224 | 225 | elt_sub(t, px, rx); // t = -(rx-px) 226 | elt_mul(ry, s, t); // ry = -s*(rx-px) 227 | elt_sub(ry, ry, py); // ry = -s*(rx-px) - py 228 | } 229 | 230 | static void point_mul(struct point *d, u8 *a, struct point *b) // a is bignum 231 | { 232 | u32 i; 233 | u8 mask; 234 | 235 | point_zero(d); 236 | 237 | for (i = 0; i < 21; i++) 238 | for (mask = 0x80; mask != 0; mask >>= 1) { 239 | point_double(d, d); 240 | if ((a[i] & mask) != 0) 241 | point_add(d, d, b); 242 | } 243 | } 244 | // Modified from original to support kirk engine use - July 2011 245 | // Added call to Kirk Random number generator rather than /dev/random 246 | 247 | static void generate_ecdsa(u8 *outR, u8 *outS, u8 *k, u8 *hash) 248 | { 249 | u8 e[21]; 250 | u8 kk[21]; 251 | u8 m[21]; 252 | u8 R[21]; 253 | u8 S[21]; 254 | u8 minv[21]; 255 | struct point mG; 256 | 257 | e[0] = 0;R[0] = 0;S[0] = 0; 258 | memcpy(e + 1, hash, 20); 259 | bn_reduce(e, ec_N, 21); 260 | 261 | // Original removed for portability 262 | //try_again: 263 | //fp = fopen("/dev/random", "rb"); 264 | //if (fread(m, sizeof m, 1, fp) != 1) 265 | //fail("reading random"); 266 | //fclose(fp); 267 | //m[0] = 0; 268 | //if (bn_compare(m, ec_N, 21) >= 0) 269 | //goto try_again; 270 | 271 | // R = (mG).x 272 | 273 | // Added call back to kirk PRNG - July 2011 274 | kirk_CMD14(m+1, 20); 275 | m[0] = 0; 276 | 277 | point_mul(&mG, m, &ec_G); 278 | point_from_mon(&mG); 279 | R[0] = 0; 280 | elt_copy(R+1, mG.x); 281 | 282 | // S = m**-1*(e + Rk) (mod N) 283 | 284 | bn_copy(kk, k, 21); 285 | bn_reduce(kk, ec_N, 21); 286 | bn_to_mon(m, ec_N, 21); 287 | bn_to_mon(e, ec_N, 21); 288 | bn_to_mon(R, ec_N, 21); 289 | bn_to_mon(kk, ec_N, 21); 290 | 291 | bn_mon_mul(S, R, kk, ec_N, 21); 292 | bn_add(kk, S, e, ec_N, 21); 293 | bn_mon_inv(minv, m, ec_N, 21); 294 | bn_mon_mul(S, minv, kk, ec_N, 21); 295 | 296 | bn_from_mon(R, ec_N, 21); 297 | bn_from_mon(S, ec_N, 21); 298 | memcpy(outR,R+1,0x20); 299 | memcpy(outS,S+1,0x20); 300 | } 301 | 302 | // Signing = 303 | // r = k *G; 304 | // s = x*r+m / k 305 | 306 | // Verify = 307 | // r/s * P = m/s * G 308 | 309 | // Slightly modified to support kirk compatible signature input - July 2011 310 | static int check_ecdsa(struct point *Q, u8 *inR, u8 *inS, u8 *hash) 311 | { 312 | u8 Sinv[21]; 313 | u8 e[21], R[21], S[21]; 314 | u8 w1[21], w2[21]; 315 | struct point r1, r2; 316 | u8 rr[21]; 317 | 318 | e[0] = 0; 319 | memcpy(e + 1, hash, 20); 320 | bn_reduce(e, ec_N, 21); 321 | R[0] = 0; 322 | memcpy(R + 1, inR, 20); 323 | bn_reduce(R, ec_N, 21); 324 | S[0] = 0; 325 | memcpy(S + 1, inS, 20); 326 | bn_reduce(S, ec_N, 21); 327 | 328 | bn_to_mon(R, ec_N, 21); 329 | bn_to_mon(S, ec_N, 21); 330 | bn_to_mon(e, ec_N, 21); 331 | // make Sinv = 1/S 332 | bn_mon_inv(Sinv, S, ec_N, 21); 333 | // w1 = m * Sinv 334 | bn_mon_mul(w1, e, Sinv, ec_N, 21); 335 | // w2 = r * Sinv 336 | bn_mon_mul(w2, R, Sinv, ec_N, 21); 337 | 338 | // mod N both 339 | bn_from_mon(w1, ec_N, 21); 340 | bn_from_mon(w2, ec_N, 21); 341 | 342 | // r1 = m/s * G 343 | point_mul(&r1, w1, &ec_G); 344 | // r2 = r/s * P 345 | point_mul(&r2, w2, Q); 346 | 347 | //r1 = r1 + r2 348 | point_add(&r1, &r1, &r2); 349 | 350 | point_from_mon(&r1); 351 | 352 | rr[0] = 0; 353 | memcpy(rr + 1, r1.x, 20); 354 | bn_reduce(rr, ec_N, 21); 355 | 356 | bn_from_mon(R, ec_N, 21); 357 | bn_from_mon(S, ec_N, 21); 358 | 359 | return (bn_compare(rr, R, 21) == 0); 360 | } 361 | 362 | 363 | // Modified from original to support kirk engine use - July 2011 364 | void ec_priv_to_pub(u8 *k, u8 *Q) 365 | { 366 | struct point ec_temp; 367 | bn_to_mon(k, ec_N, 21); 368 | point_mul(&ec_temp, k, &ec_G); 369 | point_from_mon(&ec_temp); 370 | //bn_from_mon(k, ec_N, 21); 371 | memcpy(Q,ec_temp.x,20); 372 | memcpy(Q+20,ec_temp.y,20); 373 | } 374 | 375 | // Modified from original to support kirk engine use - July 2011 376 | void ec_pub_mult(u8 *k, u8 *Q) 377 | { 378 | struct point ec_temp; 379 | //bn_to_mon(k, ec_N, 21); 380 | point_mul(&ec_temp, k, &ec_Q); 381 | point_from_mon(&ec_temp); 382 | //bn_from_mon(k, ec_N, 21); 383 | memcpy(Q,ec_temp.x,20); 384 | memcpy(Q+20,ec_temp.y,20); 385 | } 386 | 387 | 388 | // Simplified for use by Kirk Engine - NO LONGER COMPATIABLE WITH ORIGINAL VERSION - July 2011 389 | int ecdsa_set_curve(u8* p,u8* a,u8* b,u8* N,u8* Gx,u8* Gy) 390 | { 391 | memcpy(ec_p,p,20); 392 | memcpy(ec_a,a,20); 393 | memcpy(ec_b,b,20); 394 | memcpy(ec_N,N,21); 395 | 396 | bn_to_mon(ec_a, ec_p, 20); 397 | bn_to_mon(ec_b, ec_p, 20); 398 | 399 | memcpy(ec_G.x, Gx, 20); 400 | memcpy(ec_G.y, Gy, 20); 401 | point_to_mon(&ec_G); 402 | 403 | return 0; 404 | } 405 | 406 | void ecdsa_set_pub(u8 *Q) 407 | { 408 | memcpy(ec_Q.x, Q, 20); 409 | memcpy(ec_Q.y, Q+20, 20); 410 | point_to_mon(&ec_Q); 411 | } 412 | 413 | void ecdsa_set_priv(u8 *ink) 414 | { 415 | u8 k[21]; 416 | k[0]=0; 417 | memcpy(k+1,ink,20); 418 | bn_reduce(k, ec_N, 21); 419 | 420 | memcpy(ec_k, k, sizeof ec_k); 421 | } 422 | 423 | int ecdsa_verify(u8 *hash, u8 *R, u8 *S) 424 | { 425 | return check_ecdsa(&ec_Q, R, S, hash); 426 | } 427 | 428 | void ecdsa_sign(u8 *hash, u8 *R, u8 *S) 429 | { 430 | generate_ecdsa(R, S, ec_k, hash); 431 | } 432 | 433 | int point_is_on_curve(u8 *p) 434 | { 435 | u8 s[20], t[20]; 436 | u8 *x, *y; 437 | 438 | x = p; 439 | y = p + 20; 440 | 441 | elt_square(t, x); 442 | elt_mul(s, t, x);// s = x^3 443 | 444 | elt_mul(t, x, ec_a); 445 | elt_add(s, s, t); //s = x^3 + a *x 446 | 447 | elt_add(s, s, ec_b);//s = x^3 + a *x + b 448 | 449 | elt_square(t, y); //t = y^2 450 | elt_sub(s, s, t); // is s - t = 0? 451 | hex_dump("S", s, 20); 452 | hex_dump("T", t,20); 453 | return elt_is_zero(s); 454 | } 455 | 456 | void dump_ecc(void) { 457 | hex_dump("P", ec_p, 20); 458 | hex_dump("a", ec_a, 20); 459 | hex_dump("b", ec_b, 20); 460 | hex_dump("N", ec_N, 21); 461 | hex_dump("Gx", ec_G.x, 20); 462 | hex_dump("Gy", ec_G.y, 20); 463 | } 464 | -------------------------------------------------------------------------------- /src/libkirk/kirk_engine.c: -------------------------------------------------------------------------------- 1 | /* 2 | Draan proudly presents: 3 | 4 | With huge help from community: 5 | coyotebean, Davee, hitchhikr, kgsws, liquidzigong, Mathieulh, Proxima, SilverSpring 6 | 7 | ******************** KIRK-ENGINE ******************** 8 | An Open-Source implementation of KIRK (PSP crypto engine) algorithms and keys. 9 | Includes also additional routines for hash forging. 10 | 11 | ******************** 12 | 13 | This program is free software: you can redistribute it and/or modify 14 | it under the terms of the GNU General Public License as published by 15 | the Free Software Foundation, either version 3 of the License, or 16 | (at your option) any later version. 17 | 18 | This program is distributed in the hope that it will be useful, 19 | but WITHOUT ANY WARRANTY; without even the implied warranty of 20 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 | GNU General Public License for more details. 22 | 23 | You should have received a copy of the GNU General Public License 24 | along with this program. If not, see . 25 | */ 26 | 27 | #include 28 | #include 29 | #include 30 | #include 31 | #include "kirk_engine.h" 32 | #include "AES.h" 33 | #include "SHA1.h" 34 | 35 | /* ------------------------- KEY VAULT ------------------------- */ 36 | 37 | u8 kirk1_key[] = {0x98, 0xC9, 0x40, 0x97, 0x5C, 0x1D, 0x10, 0xE8, 0x7F, 0xE6, 0x0E, 0xA3, 0xFD, 0x03, 0xA8, 0xBA}; 38 | u8 kirk7_key02[] = {0xB8, 0x13, 0xC3, 0x5E, 0xC6, 0x44, 0x41, 0xE3, 0xDC, 0x3C, 0x16, 0xF5, 0xB4, 0x5E, 0x64, 0x84}; // New from PS3 39 | u8 kirk7_key03[] = {0x98, 0x02, 0xC4, 0xE6, 0xEC, 0x9E, 0x9E, 0x2F, 0xFC, 0x63, 0x4C, 0xE4, 0x2F, 0xBB, 0x46, 0x68}; 40 | u8 kirk7_key04[] = {0x99, 0x24, 0x4C, 0xD2, 0x58, 0xF5, 0x1B, 0xCB, 0xB0, 0x61, 0x9C, 0xA7, 0x38, 0x30, 0x07, 0x5F}; 41 | u8 kirk7_key05[] = {0x02, 0x25, 0xD7, 0xBA, 0x63, 0xEC, 0xB9, 0x4A, 0x9D, 0x23, 0x76, 0x01, 0xB3, 0xF6, 0xAC, 0x17}; 42 | u8 kirk7_key07[] = {0x76, 0x36, 0x8B, 0x43, 0x8F, 0x77, 0xD8, 0x7E, 0xFE, 0x5F, 0xB6, 0x11, 0x59, 0x39, 0x88, 0x5C}; // New from PS3 43 | u8 kirk7_key0C[] = {0x84, 0x85, 0xC8, 0x48, 0x75, 0x08, 0x43, 0xBC, 0x9B, 0x9A, 0xEC, 0xA7, 0x9C, 0x7F, 0x60, 0x18}; 44 | u8 kirk7_key0D[] = {0xB5, 0xB1, 0x6E, 0xDE, 0x23, 0xA9, 0x7B, 0x0E, 0xA1, 0x7C, 0xDB, 0xA2, 0xDC, 0xDE, 0xC4, 0x6E}; 45 | u8 kirk7_key0E[] = {0xC8, 0x71, 0xFD, 0xB3, 0xBC, 0xC5, 0xD2, 0xF2, 0xE2, 0xD7, 0x72, 0x9D, 0xDF, 0x82, 0x68, 0x82}; 46 | u8 kirk7_key0F[] = {0x0A, 0xBB, 0x33, 0x6C, 0x96, 0xD4, 0xCD, 0xD8, 0xCB, 0x5F, 0x4B, 0xE0, 0xBA, 0xDB, 0x9E, 0x03}; 47 | u8 kirk7_key10[] = {0x32, 0x29, 0x5B, 0xD5, 0xEA, 0xF7, 0xA3, 0x42, 0x16, 0xC8, 0x8E, 0x48, 0xFF, 0x50, 0xD3, 0x71}; 48 | u8 kirk7_key11[] = {0x46, 0xF2, 0x5E, 0x8E, 0x4D, 0x2A, 0xA5, 0x40, 0x73, 0x0B, 0xC4, 0x6E, 0x47, 0xEE, 0x6F, 0x0A}; 49 | u8 kirk7_key12[] = {0x5D, 0xC7, 0x11, 0x39, 0xD0, 0x19, 0x38, 0xBC, 0x02, 0x7F, 0xDD, 0xDC, 0xB0, 0x83, 0x7D, 0x9D}; 50 | u8 kirk7_key38[] = {0x12, 0x46, 0x8D, 0x7E, 0x1C, 0x42, 0x20, 0x9B, 0xBA, 0x54, 0x26, 0x83, 0x5E, 0xB0, 0x33, 0x03}; 51 | u8 kirk7_key39[] = {0xC4, 0x3B, 0xB6, 0xD6, 0x53, 0xEE, 0x67, 0x49, 0x3E, 0xA9, 0x5F, 0xBC, 0x0C, 0xED, 0x6F, 0x8A}; 52 | u8 kirk7_key3A[] = {0x2C, 0xC3, 0xCF, 0x8C, 0x28, 0x78, 0xA5, 0xA6, 0x63, 0xE2, 0xAF, 0x2D, 0x71, 0x5E, 0x86, 0xBA}; 53 | u8 kirk7_key44[] = {0x7D, 0xF4, 0x92, 0x65, 0xE3, 0xFA, 0xD6, 0x78, 0xD6, 0xFE, 0x78, 0xAD, 0xBB, 0x3D, 0xFB, 0x63}; // New from PS3 54 | u8 kirk7_key4B[] = {0x0C, 0xFD, 0x67, 0x9A, 0xF9, 0xB4, 0x72, 0x4F, 0xD7, 0x8D, 0xD6, 0xE9, 0x96, 0x42, 0x28, 0x8B}; //1.xx game eboot.bin 55 | u8 kirk7_key53[] = {0xAF, 0xFE, 0x8E, 0xB1, 0x3D, 0xD1, 0x7E, 0xD8, 0x0A, 0x61, 0x24, 0x1C, 0x95, 0x92, 0x56, 0xB6}; 56 | u8 kirk7_key57[] = {0x1C, 0x9B, 0xC4, 0x90, 0xE3, 0x06, 0x64, 0x81, 0xFA, 0x59, 0xFD, 0xB6, 0x00, 0xBB, 0x28, 0x70}; 57 | u8 kirk7_key5D[] = {0x11, 0x5A, 0x5D, 0x20, 0xD5, 0x3A, 0x8D, 0xD3, 0x9C, 0xC5, 0xAF, 0x41, 0x0F, 0x0F, 0x18, 0x6F}; 58 | u8 kirk7_key63[] = {0x9C, 0x9B, 0x13, 0x72, 0xF8, 0xC6, 0x40, 0xCF, 0x1C, 0x62, 0xF5, 0xD5, 0x92, 0xDD, 0xB5, 0x82}; 59 | u8 kirk7_key64[] = {0x03, 0xB3, 0x02, 0xE8, 0x5F, 0xF3, 0x81, 0xB1, 0x3B, 0x8D, 0xAA, 0x2A, 0x90, 0xFF, 0x5E, 0x61}; 60 | 61 | u8 kirk16_key[] = {0x47, 0x5E, 0x09, 0xF4, 0xA2, 0x37, 0xDA, 0x9B, 0xEF, 0xFF, 0x3B, 0xC0, 0x77, 0x14, 0x3D, 0x8A}; 62 | 63 | /* ECC Curves for Kirk 1 and Kirk 0x11 */ 64 | // Common Curve paramters p and a 65 | static u8 ec_p[20] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; 66 | static u8 ec_a[20] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC}; // mon 67 | 68 | // Kirk 0xC,0xD,0x10,0x11,(likely 0x12)- Unique curve parameters for b, N, and base point G for Kirk 0xC,0xD,0x10,0x11,(likely 0x12) service 69 | // Since public key is variable, it is not specified here 70 | static u8 ec_b2[20] = {0xA6, 0x8B, 0xED, 0xC3, 0x34, 0x18, 0x02, 0x9C, 0x1D, 0x3C, 0xE3, 0x3B, 0x9A, 0x32, 0x1F, 0xCC, 0xBB, 0x9E, 0x0F, 0x0B};// mon 71 | static u8 ec_N2[21] = {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xB5, 0xAE, 0x3C, 0x52, 0x3E, 0x63, 0x94, 0x4F, 0x21, 0x27}; 72 | static u8 Gx2[20] = {0x12, 0x8E, 0xC4, 0x25, 0x64, 0x87, 0xFD, 0x8F, 0xDF, 0x64, 0xE2, 0x43, 0x7B, 0xC0, 0xA1, 0xF6, 0xD5, 0xAF, 0xDE, 0x2C }; 73 | static u8 Gy2[20] = {0x59, 0x58, 0x55, 0x7E, 0xB1, 0xDB, 0x00, 0x12, 0x60, 0x42, 0x55, 0x24, 0xDB, 0xC3, 0x79, 0xD5, 0xAC, 0x5F, 0x4A, 0xDF }; 74 | 75 | // KIRK 1 - Unique curve parameters for b, N, and base point G 76 | // Since public key is hard coded, it is also included 77 | 78 | static u8 ec_b1[20] = {0x65, 0xD1, 0x48, 0x8C, 0x03, 0x59, 0xE2, 0x34, 0xAD, 0xC9, 0x5B, 0xD3, 0x90, 0x80, 0x14, 0xBD, 0x91, 0xA5, 0x25, 0xF9}; 79 | static u8 ec_N1[21] = {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0xB5, 0xC6, 0x17, 0xF2, 0x90, 0xEA, 0xE1, 0xDB, 0xAD, 0x8F}; 80 | static u8 Gx1[20] = {0x22, 0x59, 0xAC, 0xEE, 0x15, 0x48, 0x9C, 0xB0, 0x96, 0xA8, 0x82, 0xF0, 0xAE, 0x1C, 0xF9, 0xFD, 0x8E, 0xE5, 0xF8, 0xFA }; 81 | static u8 Gy1[20] = {0x60, 0x43, 0x58, 0x45, 0x6D, 0x0A, 0x1C, 0xB2, 0x90, 0x8D, 0xE9, 0x0F, 0x27, 0xD7, 0x5C, 0x82, 0xBE, 0xC1, 0x08, 0xC0 }; 82 | 83 | static u8 Px1[20] = {0xED, 0x9C, 0xE5, 0x82, 0x34, 0xE6, 0x1A, 0x53, 0xC6, 0x85, 0xD6, 0x4D, 0x51, 0xD0, 0x23, 0x6B, 0xC3, 0xB5, 0xD4, 0xB9 }; 84 | static u8 Py1[20] = {0x04, 0x9D, 0xF1, 0xA0, 0x75, 0xC0, 0xE0, 0x4F, 0xB3, 0x44, 0x85, 0x8B, 0x61, 0xB7, 0x9B, 0x69, 0xA6, 0x3D, 0x2C, 0x39 }; 85 | 86 | /* ------------------------- KEY VAULT END ------------------------- */ 87 | 88 | /* ------------------------- INTERNAL STUFF ------------------------- */ 89 | typedef struct blah 90 | { 91 | u8 fuseid[8]; //0 92 | u8 mesh[0x40]; //0x8 93 | } kirk16_data; //0x48 94 | 95 | typedef struct header_keys 96 | { 97 | u8 AES[16]; 98 | u8 CMAC[16]; 99 | }header_keys; //small struct for temporary keeping AES & CMAC key from CMD1 header 100 | 101 | 102 | u32 g_fuse90; // This is to match FuseID HW at BC100090 and BC100094 103 | u32 g_fuse94; 104 | 105 | AES_ctx aes_kirk1; //global 106 | u8 PRNG_DATA[0x14]; 107 | 108 | char is_kirk_initialized; //"init" emulation 109 | 110 | /* ------------------------- INTERNAL STUFF END ------------------------- */ 111 | 112 | 113 | /* ------------------------- IMPLEMENTATION ------------------------- */ 114 | 115 | int kirk_CMD0(u8* outbuff, u8* inbuff, int size, int generate_trash) 116 | { 117 | KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)outbuff; 118 | header_keys *keys = (header_keys *)outbuff; //0-15 AES key, 16-31 CMAC key 119 | int chk_size; 120 | AES_ctx k1; 121 | AES_ctx cmac_key; 122 | u8 cmac_header_hash[16]; 123 | u8 cmac_data_hash[16]; 124 | 125 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 126 | 127 | memcpy(outbuff, inbuff, size); 128 | 129 | if(header->mode != KIRK_MODE_CMD1) return KIRK_INVALID_MODE; 130 | 131 | //FILL PREDATA WITH RANDOM DATA 132 | if(generate_trash) kirk_CMD14(outbuff+sizeof(KIRK_CMD1_HEADER), header->data_offset); 133 | 134 | //Make sure data is 16 aligned 135 | chk_size = header->data_size; 136 | if(chk_size % 16) chk_size += 16 - (chk_size % 16); 137 | 138 | //ENCRYPT DATA 139 | AES_set_key(&k1, keys->AES, 128); 140 | AES_cbc_encrypt(&k1, inbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, (u8*)outbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, chk_size); 141 | 142 | //CMAC HASHES 143 | AES_set_key(&cmac_key, keys->CMAC, 128); 144 | AES_CMAC(&cmac_key, outbuff+0x60, 0x30, cmac_header_hash); 145 | AES_CMAC(&cmac_key, outbuff+0x60, 0x30 + chk_size + header->data_offset, cmac_data_hash); 146 | 147 | memcpy(header->CMAC_header_hash, cmac_header_hash, 16); 148 | memcpy(header->CMAC_data_hash, cmac_data_hash, 16); 149 | 150 | //ENCRYPT KEYS 151 | AES_cbc_encrypt(&aes_kirk1, inbuff, outbuff, 16*2); 152 | return KIRK_OPERATION_SUCCESS; 153 | } 154 | 155 | int kirk_CMD1(u8* outbuff, u8* inbuff, int size) 156 | { 157 | KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)inbuff; 158 | header_keys keys; //0-15 AES key, 16-31 CMAC key 159 | AES_ctx k1; 160 | 161 | if(size < 0x90) return KIRK_INVALID_SIZE; 162 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 163 | if(header->mode != KIRK_MODE_CMD1) return KIRK_INVALID_MODE; 164 | 165 | AES_cbc_decrypt(&aes_kirk1, inbuff, (u8*)&keys, 16*2); //decrypt AES & CMAC key to temp buffer 166 | 167 | if(header->ecdsa_hash == 1) 168 | { 169 | SHA_CTX sha; 170 | KIRK_CMD1_ECDSA_HEADER* eheader = (KIRK_CMD1_ECDSA_HEADER*) inbuff; 171 | u8 kirk1_pub[40]; 172 | u8 header_hash[20];u8 data_hash[20]; 173 | ecdsa_set_curve(ec_p,ec_a,ec_b1,ec_N1,Gx1,Gy1); 174 | memcpy(kirk1_pub,Px1,20); 175 | memcpy(kirk1_pub+20,Py1,20); 176 | ecdsa_set_pub(kirk1_pub); 177 | //Hash the Header 178 | SHAInit(&sha); 179 | SHAUpdate(&sha, (u8*)eheader+0x60, 0x30); 180 | SHAFinal(header_hash, &sha); 181 | 182 | if(!ecdsa_verify(header_hash,eheader->header_sig_r,eheader->header_sig_s)) { 183 | return KIRK_HEADER_HASH_INVALID; 184 | } 185 | SHAInit(&sha); 186 | SHAUpdate(&sha, (u8*)eheader+0x60, size-0x60); 187 | SHAFinal(data_hash, &sha); 188 | 189 | if(!ecdsa_verify(data_hash,eheader->data_sig_r,eheader->data_sig_s)) { 190 | return KIRK_DATA_HASH_INVALID; 191 | } 192 | 193 | } else { 194 | int ret = kirk_CMD10(inbuff, size); 195 | if(ret != KIRK_OPERATION_SUCCESS) return ret; 196 | } 197 | 198 | AES_set_key(&k1, keys.AES, 128); 199 | AES_cbc_decrypt(&k1, inbuff+sizeof(KIRK_CMD1_HEADER)+header->data_offset, outbuff, header->data_size); 200 | 201 | return KIRK_OPERATION_SUCCESS; 202 | } 203 | 204 | int kirk_CMD4(u8* outbuff, u8* inbuff, int size) 205 | { 206 | KIRK_AES128CBC_HEADER *header = (KIRK_AES128CBC_HEADER*)inbuff; 207 | u8* key; 208 | AES_ctx aesKey; 209 | 210 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 211 | if(header->mode != KIRK_MODE_ENCRYPT_CBC) return KIRK_INVALID_MODE; 212 | if(header->data_size == 0) return KIRK_DATA_SIZE_ZERO; 213 | 214 | key = kirk_4_7_get_key(header->keyseed); 215 | if(key == (u8*)KIRK_INVALID_SIZE) return KIRK_INVALID_SIZE; 216 | 217 | //Set the key 218 | AES_set_key(&aesKey, key, 128); 219 | AES_cbc_encrypt(&aesKey, inbuff+sizeof(KIRK_AES128CBC_HEADER), outbuff+sizeof(KIRK_AES128CBC_HEADER), size); 220 | 221 | return KIRK_OPERATION_SUCCESS; 222 | } 223 | 224 | int kirk_CMD7(u8* outbuff, u8* inbuff, int size) 225 | { 226 | KIRK_AES128CBC_HEADER *header = (KIRK_AES128CBC_HEADER*)inbuff; 227 | u8* key; 228 | AES_ctx aesKey; 229 | 230 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 231 | if(header->mode != KIRK_MODE_DECRYPT_CBC) return KIRK_INVALID_MODE; 232 | if(header->data_size == 0) return KIRK_DATA_SIZE_ZERO; 233 | 234 | key = kirk_4_7_get_key(header->keyseed); 235 | if(key == (u8*)KIRK_INVALID_SIZE) return KIRK_INVALID_SIZE; 236 | 237 | //Set the key 238 | AES_set_key(&aesKey, key, 128); 239 | AES_cbc_decrypt(&aesKey, inbuff+sizeof(KIRK_AES128CBC_HEADER), outbuff, size); 240 | 241 | return KIRK_OPERATION_SUCCESS; 242 | } 243 | 244 | int kirk_CMD10(u8* inbuff, int insize) 245 | { 246 | KIRK_CMD1_HEADER* header = (KIRK_CMD1_HEADER*)inbuff; 247 | header_keys keys; //0-15 AES key, 16-31 CMAC key 248 | u8 cmac_header_hash[16]; 249 | u8 cmac_data_hash[16]; 250 | AES_ctx cmac_key; 251 | int chk_size; 252 | 253 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 254 | if(!(header->mode == KIRK_MODE_CMD1 || header->mode == KIRK_MODE_CMD2 || header->mode == KIRK_MODE_CMD3)) return KIRK_INVALID_MODE; 255 | if(header->data_size == 0) return KIRK_DATA_SIZE_ZERO; 256 | 257 | if(header->mode == KIRK_MODE_CMD1) 258 | { 259 | AES_cbc_decrypt(&aes_kirk1, inbuff, (u8*)&keys, 32); //decrypt AES & CMAC key to temp buffer 260 | AES_set_key(&cmac_key, keys.CMAC, 128); 261 | AES_CMAC(&cmac_key, inbuff+0x60, 0x30, cmac_header_hash); 262 | 263 | //Make sure data is 16 aligned 264 | chk_size = header->data_size; 265 | if(chk_size % 16) chk_size += 16 - (chk_size % 16); 266 | AES_CMAC(&cmac_key, inbuff+0x60, 0x30 + chk_size + header->data_offset, cmac_data_hash); 267 | 268 | if(memcmp(cmac_header_hash, header->CMAC_header_hash, 16) != 0) return KIRK_HEADER_HASH_INVALID; 269 | if(memcmp(cmac_data_hash, header->CMAC_data_hash, 16) != 0) return KIRK_DATA_HASH_INVALID; 270 | 271 | return KIRK_OPERATION_SUCCESS; 272 | } 273 | return KIRK_SIG_CHECK_INVALID; //Checks for cmd 2 & 3 not included right now 274 | } 275 | 276 | int kirk_CMD11(u8* outbuff, u8* inbuff, int size) 277 | { 278 | KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *)inbuff; 279 | SHA_CTX sha; 280 | if(is_kirk_initialized == 0) return KIRK_NOT_INITIALIZED; 281 | if(header->data_size == 0 || size == 0) return KIRK_DATA_SIZE_ZERO; 282 | 283 | SHAInit(&sha); 284 | SHAUpdate(&sha, inbuff+sizeof(KIRK_SHA1_HEADER), header->data_size); 285 | SHAFinal(outbuff, &sha); 286 | return KIRK_OPERATION_SUCCESS; 287 | } 288 | 289 | // Generate an ECDSA Key pair 290 | // offset 0 = private key (0x14 len) 291 | // offset 0x14 = public key point (0x28 len) 292 | int kirk_CMD12(u8 * outbuff, int outsize) { 293 | u8 k[0x15]; 294 | KIRK_CMD12_BUFFER * keypair = (KIRK_CMD12_BUFFER *) outbuff; 295 | 296 | if(outsize != 0x3C) return KIRK_INVALID_SIZE; 297 | ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2); 298 | k[0] = 0; 299 | kirk_CMD14(k+1,0x14); 300 | ec_priv_to_pub(k, (u8*)keypair->public_key.x); 301 | memcpy(keypair->private_key,k+1,0x14); 302 | 303 | return KIRK_OPERATION_SUCCESS; 304 | } 305 | // Point multiplication 306 | // offset 0 = mulitplication value (0x14 len) 307 | // offset 0x14 = point to multiply (0x28 len) 308 | int kirk_CMD13(u8 * outbuff, int outsize,u8 * inbuff, int insize) { 309 | u8 k[0x15]; 310 | KIRK_CMD13_BUFFER * pointmult = (KIRK_CMD13_BUFFER *) inbuff; 311 | k[0]=0; 312 | if(outsize != 0x28) return KIRK_INVALID_SIZE; 313 | if(insize != 0x3C) return KIRK_INVALID_SIZE; 314 | ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2); 315 | ecdsa_set_pub((u8*)pointmult->public_key.x); 316 | memcpy(k+1,pointmult->multiplier,0x14); 317 | ec_pub_mult(k, outbuff); 318 | return KIRK_OPERATION_SUCCESS; 319 | } 320 | 321 | int kirk_CMD14(u8 * outbuff, int outsize) { 322 | u8 temp[0x104]; 323 | KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *) temp; 324 | 325 | // Some randomly selected data for a "key" to add to each randomization 326 | u8 key[0x10] = { 0xA7, 0x2E, 0x4C, 0xB6, 0xC3, 0x34, 0xDF, 0x85, 0x70, 0x01, 0x49, 0xFC, 0xC0, 0x87, 0xC4, 0x77 }; 327 | u32 curtime; 328 | //if(outsize != 0x14) return KIRK_INVALID_SIZE; // Need real error code 329 | if(outsize <=0) return KIRK_OPERATION_SUCCESS; 330 | 331 | memcpy(temp+4, PRNG_DATA,0x14); 332 | // This uses the standard C time function for portability. 333 | curtime=(u32)time(0); 334 | temp[0x18] = curtime &0xFF; 335 | temp[0x19] = (curtime>>8) &0xFF; 336 | temp[0x1A] = (curtime>>16) &0xFF; 337 | temp[0x1B] = (curtime>>24) &0xFF; 338 | memcpy(&temp[0x1C], key, 0x10); 339 | //This leaves the remainder of the 0x100 bytes in temp to whatever remains on the stack 340 | // in an uninitialized state. This should add unpredicableness to the results as well 341 | header->data_size=0x100; 342 | kirk_CMD11(PRNG_DATA, temp, 0x104); 343 | while(outsize) 344 | { 345 | int blockrem= outsize %0x14; 346 | int block = outsize /0x14; 347 | 348 | if(block) 349 | { 350 | memcpy(outbuff, PRNG_DATA, 0x14); 351 | outbuff+=0x14; 352 | outsize -= 0x14; 353 | kirk_CMD14(outbuff, outsize); 354 | } else { 355 | if(blockrem) 356 | { 357 | memcpy(outbuff, PRNG_DATA, blockrem); 358 | outsize -= blockrem; 359 | } 360 | } 361 | 362 | } 363 | return KIRK_OPERATION_SUCCESS; 364 | } 365 | 366 | void decrypt_kirk16_private(u8 *dA_out, u8 *dA_enc) 367 | { 368 | int i, k; 369 | kirk16_data keydata; 370 | u8 subkey_1[0x10], subkey_2[0x10]; 371 | rijndael_ctx aes_ctx; 372 | 373 | keydata.fuseid[7] = g_fuse90 &0xFF; 374 | keydata.fuseid[6] = (g_fuse90>>8) &0xFF; 375 | keydata.fuseid[5] = (g_fuse90>>16) &0xFF; 376 | keydata.fuseid[4] = (g_fuse90>>24) &0xFF; 377 | keydata.fuseid[3] = g_fuse94 &0xFF; 378 | keydata.fuseid[2] = (g_fuse94>>8) &0xFF; 379 | keydata.fuseid[1] = (g_fuse94>>16) &0xFF; 380 | keydata.fuseid[0] = (g_fuse94>>24) &0xFF; 381 | 382 | /* set encryption key */ 383 | rijndael_set_key(&aes_ctx, kirk16_key, 128); 384 | 385 | /* set the subkeys */ 386 | for (i = 0; i < 0x10; i++) 387 | { 388 | /* set to the fuseid */ 389 | subkey_2[i] = subkey_1[i] = keydata.fuseid[i % 8]; 390 | } 391 | 392 | /* do aes crypto */ 393 | for (i = 0; i < 3; i++) 394 | { 395 | /* encrypt + decrypt */ 396 | rijndael_encrypt(&aes_ctx, subkey_1, subkey_1); 397 | rijndael_decrypt(&aes_ctx, subkey_2, subkey_2); 398 | } 399 | 400 | /* set new key */ 401 | rijndael_set_key(&aes_ctx, subkey_1, 128); 402 | 403 | /* now lets make the key mesh */ 404 | for (i = 0; i < 3; i++) 405 | { 406 | /* do encryption in group of 3 */ 407 | for (k = 0; k < 3; k++) 408 | { 409 | /* crypto */ 410 | rijndael_encrypt(&aes_ctx, subkey_2, subkey_2); 411 | } 412 | 413 | /* copy to out block */ 414 | memcpy(&keydata.mesh[i * 0x10], subkey_2, 0x10); 415 | } 416 | 417 | /* set the key to the mesh */ 418 | rijndael_set_key(&aes_ctx, &keydata.mesh[0x20], 128); 419 | 420 | /* do the encryption routines for the aes key */ 421 | for (i = 0; i < 2; i++) 422 | { 423 | /* encrypt the data */ 424 | rijndael_encrypt(&aes_ctx, &keydata.mesh[0x10], &keydata.mesh[0x10]); 425 | } 426 | 427 | /* set the key to that mesh shit */ 428 | rijndael_set_key(&aes_ctx, &keydata.mesh[0x10], 128); 429 | 430 | /* cbc decrypt the dA */ 431 | AES_cbc_decrypt((AES_ctx *)&aes_ctx, dA_enc, dA_out, 0x20); 432 | } 433 | 434 | void encrypt_kirk16_private(u8 *dA_out, u8 *dA_dec) 435 | { 436 | int i, k; 437 | kirk16_data keydata; 438 | u8 subkey_1[0x10], subkey_2[0x10]; 439 | rijndael_ctx aes_ctx; 440 | 441 | 442 | keydata.fuseid[7] = g_fuse90 &0xFF; 443 | keydata.fuseid[6] = (g_fuse90>>8) &0xFF; 444 | keydata.fuseid[5] = (g_fuse90>>16) &0xFF; 445 | keydata.fuseid[4] = (g_fuse90>>24) &0xFF; 446 | keydata.fuseid[3] = g_fuse94 &0xFF; 447 | keydata.fuseid[2] = (g_fuse94>>8) &0xFF; 448 | keydata.fuseid[1] = (g_fuse94>>16) &0xFF; 449 | keydata.fuseid[0] = (g_fuse94>>24) &0xFF; 450 | /* set encryption key */ 451 | rijndael_set_key(&aes_ctx, kirk16_key, 128); 452 | 453 | /* set the subkeys */ 454 | for (i = 0; i < 0x10; i++) 455 | { 456 | /* set to the fuseid */ 457 | subkey_2[i] = subkey_1[i] = keydata.fuseid[i % 8]; 458 | } 459 | 460 | /* do aes crypto */ 461 | for (i = 0; i < 3; i++) 462 | { 463 | /* encrypt + decrypt */ 464 | rijndael_encrypt(&aes_ctx, subkey_1, subkey_1); 465 | rijndael_decrypt(&aes_ctx, subkey_2, subkey_2); 466 | } 467 | 468 | /* set new key */ 469 | rijndael_set_key(&aes_ctx, subkey_1, 128); 470 | 471 | /* now lets make the key mesh */ 472 | for (i = 0; i < 3; i++) 473 | { 474 | /* do encryption in group of 3 */ 475 | for (k = 0; k < 3; k++) 476 | { 477 | /* crypto */ 478 | rijndael_encrypt(&aes_ctx, subkey_2, subkey_2); 479 | } 480 | 481 | /* copy to out block */ 482 | memcpy(&keydata.mesh[i * 0x10], subkey_2, 0x10); 483 | } 484 | 485 | /* set the key to the mesh */ 486 | rijndael_set_key(&aes_ctx, &keydata.mesh[0x20], 128); 487 | 488 | /* do the encryption routines for the aes key */ 489 | for (i = 0; i < 2; i++) 490 | { 491 | /* encrypt the data */ 492 | rijndael_encrypt(&aes_ctx, &keydata.mesh[0x10], &keydata.mesh[0x10]); 493 | } 494 | 495 | /* set the key to that mesh shit */ 496 | rijndael_set_key(&aes_ctx, &keydata.mesh[0x10], 128); 497 | 498 | /* cbc encrypt the dA */ 499 | AES_cbc_encrypt((AES_ctx *)&aes_ctx, dA_dec, dA_out, 0x20); 500 | } 501 | 502 | int kirk_CMD16(u8 * outbuff, int outsize, u8 * inbuff, int insize) { 503 | u8 dec_private[0x20]; 504 | KIRK_CMD16_BUFFER * signbuf = (KIRK_CMD16_BUFFER *) inbuff; 505 | ECDSA_SIG * sig = (ECDSA_SIG *) outbuff; 506 | if(insize != 0x34) return KIRK_INVALID_SIZE; 507 | if(outsize != 0x28) return KIRK_INVALID_SIZE; 508 | decrypt_kirk16_private(dec_private,signbuf->enc_private); 509 | // Clear out the padding for safety 510 | memset(&dec_private[0x14], 0, 0xC); 511 | ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2); 512 | ecdsa_set_priv(dec_private); 513 | ecdsa_sign(signbuf->message_hash,sig->r, sig->s); 514 | return KIRK_OPERATION_SUCCESS; 515 | } 516 | 517 | // ECDSA Verify 518 | // inbuff structure: 519 | // 00 = public key (0x28 length) 520 | // 28 = message hash (0x14 length) 521 | // 3C = signature R (0x14 length) 522 | // 50 = signature S (0x14 length) 523 | int kirk_CMD17(u8 * inbuff, int insize) { 524 | KIRK_CMD17_BUFFER * sig = (KIRK_CMD17_BUFFER *) inbuff; 525 | if(insize != 0x64) return KIRK_INVALID_SIZE; 526 | ecdsa_set_curve(ec_p,ec_a,ec_b2,ec_N2,Gx2,Gy2); 527 | ecdsa_set_pub(sig->public_key.x); 528 | // ecdsa_verify(u8 *hash, u8 *R, u8 *S) 529 | if(ecdsa_verify(sig->message_hash,sig->signature.r,sig->signature.s)) { 530 | return KIRK_OPERATION_SUCCESS; 531 | } else { 532 | return KIRK_SIG_CHECK_INVALID; 533 | } 534 | } 535 | 536 | 537 | 538 | int kirk_init() 539 | { 540 | return kirk_init2((u8*)"Lazy Dev should have initialized!",33,0xBABEF00D, 0xDEADBEEF ); 541 | } 542 | 543 | int kirk_init2(u8 * rnd_seed, u32 seed_size, u32 fuseid_90, u32 fuseid_94) { 544 | u8 temp[0x104]; 545 | 546 | KIRK_SHA1_HEADER *header = (KIRK_SHA1_HEADER *) temp; 547 | // Another randomly selected data for a "key" to add to each randomization 548 | u8 key[0x10] = {0x07, 0xAB, 0xEF, 0xF8, 0x96, 0x8C, 0xF3, 0xD6, 0x14, 0xE0, 0xEB, 0xB2, 0x9D, 0x8B, 0x4E, 0x74}; 549 | u32 curtime; 550 | 551 | //Set PRNG_DATA initially, otherwise use what ever uninitialized data is in the buffer 552 | if(seed_size > 0) { 553 | u8 * seedbuf; 554 | KIRK_SHA1_HEADER *seedheader;; 555 | seedbuf=(u8*)malloc(seed_size+4); 556 | seedheader= (KIRK_SHA1_HEADER *) seedbuf; 557 | seedheader->data_size = seed_size; 558 | kirk_CMD11(PRNG_DATA, seedbuf, seed_size+4); 559 | free(seedbuf); 560 | } 561 | memcpy(temp+4, PRNG_DATA,0x14); 562 | // This uses the standard C time function for portability. 563 | curtime=(u32)time(0); 564 | temp[0x18] = curtime &0xFF; 565 | temp[0x19] = (curtime>>8) &0xFF; 566 | temp[0x1A] = (curtime>>16) &0xFF; 567 | temp[0x1B] = (curtime>>24) &0xFF; 568 | memcpy(&temp[0x1C], key, 0x10); 569 | //This leaves the remainder of the 0x100 bytes in temp to whatever remains on the stack 570 | // in an uninitialized state. This should add unpredicableness to the results as well 571 | header->data_size=0x100; 572 | kirk_CMD11(PRNG_DATA, temp, 0x104); 573 | 574 | //Set Fuse ID 575 | g_fuse90=fuseid_90; 576 | g_fuse94=fuseid_94; 577 | 578 | //Set KIRK1 main key 579 | AES_set_key(&aes_kirk1, kirk1_key, 128); 580 | 581 | 582 | is_kirk_initialized = 1; 583 | return 0; 584 | } 585 | u8* kirk_4_7_get_key(int key_type) 586 | { 587 | switch(key_type) 588 | { 589 | case(0x02): return kirk7_key02; break; 590 | case(0x03): return kirk7_key03; break; 591 | case(0x04): return kirk7_key04; break; 592 | case(0x05): return kirk7_key05; break; 593 | case(0x07): return kirk7_key07; break; 594 | case(0x0C): return kirk7_key0C; break; 595 | case(0x0D): return kirk7_key0D; break; 596 | case(0x0E): return kirk7_key0E; break; 597 | case(0x0F): return kirk7_key0F; break; 598 | case(0x10): return kirk7_key10; break; 599 | case(0x11): return kirk7_key11; break; 600 | case(0x12): return kirk7_key12; break; 601 | case(0x38): return kirk7_key38; break; 602 | case(0x39): return kirk7_key39; break; 603 | case(0x3A): return kirk7_key3A; break; 604 | case(0x44): return kirk7_key44; break; 605 | case(0x4B): return kirk7_key4B; break; 606 | case(0x53): return kirk7_key53; break; 607 | case(0x57): return kirk7_key57; break; 608 | case(0x5D): return kirk7_key5D; break; 609 | case(0x63): return kirk7_key63; break; 610 | case(0x64): return kirk7_key64; break; 611 | default: return (u8*)KIRK_INVALID_SIZE; break; //need to get the real error code for that, placeholder now :) 612 | } 613 | } 614 | 615 | int kirk_CMD1_ex(u8* outbuff, u8* inbuff, int size, KIRK_CMD1_HEADER* header) 616 | { 617 | u8* buffer = (u8*)malloc(size); 618 | int ret; 619 | 620 | memcpy(buffer, header, sizeof(KIRK_CMD1_HEADER)); 621 | memcpy(buffer+sizeof(KIRK_CMD1_HEADER), inbuff, header->data_size); 622 | 623 | ret = kirk_CMD1(outbuff, buffer, size); 624 | free(buffer); 625 | return ret; 626 | } 627 | 628 | 629 | int sceUtilsBufferCopyWithRange(u8* outbuff, int outsize, u8* inbuff, int insize, int cmd) 630 | { 631 | switch(cmd) 632 | { 633 | case KIRK_CMD_DECRYPT_PRIVATE: return kirk_CMD1(outbuff, inbuff, insize); break; 634 | case KIRK_CMD_ENCRYPT_IV_0: return kirk_CMD4(outbuff, inbuff, insize); break; 635 | case KIRK_CMD_DECRYPT_IV_0: return kirk_CMD7(outbuff, inbuff, insize); break; 636 | case KIRK_CMD_PRIV_SIGN_CHECK: return kirk_CMD10(inbuff, insize); break; 637 | case KIRK_CMD_SHA1_HASH: return kirk_CMD11(outbuff, inbuff, insize); break; 638 | case KIRK_CMD_ECDSA_GEN_KEYS: return kirk_CMD12(outbuff,outsize); break; 639 | case KIRK_CMD_ECDSA_MULTIPLY_POINT: return kirk_CMD13(outbuff,outsize, inbuff, insize); break; 640 | case KIRK_CMD_PRNG: return kirk_CMD14(outbuff,outsize); break; 641 | case KIRK_CMD_ECDSA_SIGN: return kirk_CMD16(outbuff, outsize, inbuff, insize); break; 642 | case KIRK_CMD_ECDSA_VERIFY: return kirk_CMD17(inbuff, insize); break; 643 | } 644 | return -1; 645 | } 646 | -------------------------------------------------------------------------------- /src/libkirk/kirk_engine.h: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/has207/psxtract-2/558e7da132f79d126dc6e94ccd63548f605a6ffc/src/libkirk/kirk_engine.h -------------------------------------------------------------------------------- /src/lz.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | #include "lz.h" 6 | 7 | int decode_range(unsigned int *range, unsigned int *code, unsigned char **src) 8 | { 9 | if (!((*range) >> 24)) 10 | { 11 | (*range) <<= 8; 12 | *code = ((*code) << 8) + (*src)++[5]; 13 | return 1; 14 | } 15 | else 16 | return 0; 17 | } 18 | 19 | int decode_bit(unsigned int *range, unsigned int *code, int *index, unsigned char **src, unsigned char *c) 20 | { 21 | unsigned int val = *range; 22 | 23 | if (decode_range(range, code, src)) 24 | val *= (*c); 25 | else 26 | val = (val >> 8) * (*c); 27 | 28 | *c -= ((*c) >> 3); 29 | if (index) (*index) <<= 1; 30 | 31 | if (*code < val) 32 | { 33 | *range = val; 34 | *c += 31; 35 | if (index) (*index)++; 36 | return 1; 37 | } 38 | else 39 | { 40 | *code -= val; 41 | *range -= val; 42 | return 0; 43 | } 44 | } 45 | 46 | int decode_number(unsigned char *ptr, int index, int *bit_flag, unsigned int *range, unsigned int *code, unsigned char **src) 47 | { 48 | int i = 1; 49 | 50 | if (index >= 3) 51 | { 52 | decode_bit(range, code, &i, src, ptr + 0x18); // Offset 0x978 53 | if (index >= 4) 54 | { 55 | decode_bit(range, code, &i, src, ptr + 0x18); // Offset 0x978 56 | if (index >= 5) 57 | { 58 | decode_range(range, code, src); 59 | for (; index >= 5; index--) 60 | { 61 | i <<= 1; 62 | (*range) >>= 1; 63 | if (*code < *range) 64 | i++; 65 | else 66 | (*code) -= *range; 67 | } 68 | } 69 | } 70 | } 71 | 72 | *bit_flag = decode_bit(range, code, &i, src, ptr); // Offset 0x960 73 | 74 | if (index >= 1) 75 | { 76 | decode_bit(range, code, &i, src, ptr + 0x8); // Offset 0x968 77 | if (index >= 2) 78 | { 79 | decode_bit(range, code, &i, src, ptr + 0x10); // Offset 0x970 80 | } 81 | } 82 | 83 | return i; 84 | } 85 | 86 | int decode_word(unsigned char *ptr, int index, int *bit_flag, unsigned int *range, unsigned int *code, unsigned char **src) 87 | { 88 | int i = 1; 89 | index /= 8; 90 | 91 | if (index >= 3) 92 | { 93 | decode_bit(range, code, &i, src, ptr); // Offset 0x8A8 94 | if (index >= 4) 95 | { 96 | decode_bit(range, code, &i, src, ptr); // Offset 0x8A8 97 | if (index >= 5) 98 | { 99 | decode_range(range, code, src); 100 | for (; index >= 5; index--) 101 | { 102 | i <<= 1; 103 | (*range) >>= 1; 104 | if (*code < *range) 105 | i++; 106 | else 107 | (*code) -= *range; 108 | } 109 | } 110 | } 111 | } 112 | 113 | *bit_flag = decode_bit(range, code, &i, src, ptr + 3); // Offset 0x8A8 + 3 114 | 115 | if (index >= 1) 116 | { 117 | decode_bit(range, code, &i, src, ptr + 2); // Offset 0x8A8 + 2 118 | if (index >= 2) 119 | { 120 | decode_bit(range, code, &i, src, ptr + 1); // Offset 0x8A8 + 1 121 | } 122 | } 123 | 124 | return i; 125 | } 126 | 127 | int decompress(unsigned char *out, unsigned char *in, unsigned int size) 128 | { 129 | int result; 130 | 131 | unsigned char *tmp = new unsigned char[0xA70]; 132 | 133 | int offset = 0; 134 | int bit_flag = 0; 135 | int data_length = 0; 136 | int data_offset = 0; 137 | 138 | unsigned char *tmp_sect1, *tmp_sect2, *tmp_sect3; 139 | unsigned char *buf_start, *buf_end; 140 | unsigned char prev = 0; 141 | 142 | unsigned char *start = out; 143 | unsigned char *end = (out + size); 144 | unsigned char head = in[0]; 145 | 146 | unsigned int range = 0xFFFFFFFF; 147 | unsigned int code = (in[1] << 24) | (in[2] << 16) | (in[3] << 8) | in[4]; 148 | 149 | if (head < 0) // Check if we have a valid starting byte. 150 | { 151 | // The dictionary header is invalid, the data is not compressed. 152 | result = -1; 153 | if (code <= size) 154 | { 155 | memcpy(out, (const void *)(in + 5), code); 156 | result = (start - out); 157 | } 158 | } 159 | else 160 | { 161 | // Set up a temporary buffer (sliding window). 162 | memset(tmp, 0x80, 0xA60); 163 | while (1) 164 | { 165 | // Start reading at 0x920. 166 | tmp_sect1 = tmp + offset + 0x920; 167 | if (!decode_bit(&range, &code, 0, &in, tmp_sect1)) // Raw char. 168 | { 169 | // Adjust offset and check for stream end. 170 | if (offset > 0) offset--; 171 | if (start == end) return (start - out); 172 | 173 | // Locate first section. 174 | int sect = (((((((int)(start - out)) & 7) << 8) + prev) >> head) & 7) * 0xFF - 1; 175 | tmp_sect1 = tmp + sect; 176 | int index = 1; 177 | 178 | // Read, decode and write back. 179 | do 180 | { 181 | decode_bit(&range, &code, &index, &in, tmp_sect1 + index); 182 | } while ((index >> 8) == 0); 183 | 184 | // Save index. 185 | *start++ = index; 186 | } 187 | else // Compressed char stream. 188 | { 189 | int index = -1; 190 | 191 | // Identify the data length bit field. 192 | do { 193 | tmp_sect1 += 8; 194 | bit_flag = decode_bit(&range, &code, 0, &in, tmp_sect1); 195 | index += bit_flag; 196 | } while ((bit_flag != 0) && (index < 6)); 197 | 198 | // Default block size is 0x40. 199 | int b_size = 0x40; 200 | tmp_sect2 = tmp + index + 0x7F1; 201 | 202 | // If the data length was found, parse it as a number. 203 | if ((index >= 0) || (bit_flag != 0)) 204 | { 205 | // Locate next section. 206 | int sect = (index << 5) | (((((int)(start - out)) << index) & 3) << 3) | (offset & 7); 207 | tmp_sect1 = tmp + 0x960 + sect; 208 | 209 | // Decode the data length (8 bit fields). 210 | data_length = decode_number(tmp_sect1, index, &bit_flag, &range, &code, &in); 211 | 212 | // If we got valid parameters, seek to find data offset. 213 | if ((data_length != 3) && ((index > 0) || (bit_flag != 0))) { 214 | tmp_sect2 += 0x38; 215 | b_size = 0x80; // Block size is now 0x80. 216 | } 217 | } else { 218 | // Assume one byte of advance. 219 | data_length = 1; 220 | } 221 | 222 | int diff = 0; 223 | int shift = 1; 224 | 225 | // Identify the data offset bit field. 226 | do { 227 | diff = (shift << 4) - b_size; 228 | bit_flag = decode_bit(&range, &code, &shift, &in, tmp_sect2 + (shift << 3)); 229 | } while (diff < 0); 230 | 231 | // If the data offset was found, parse it as a number. 232 | if ((diff > 0) || (bit_flag != 0)) 233 | { 234 | // Adjust diff if needed. 235 | if (bit_flag == 0) diff -= 8; 236 | 237 | // Locate section. 238 | tmp_sect3 = tmp + 0x8A8 + diff; 239 | 240 | // Decode the data offset (1 bit fields). 241 | data_offset = decode_word(tmp_sect3, diff, &bit_flag, &range, &code, &in); 242 | } else { 243 | // Assume one byte of advance. 244 | data_offset = 1; 245 | } 246 | 247 | // Set buffer start/end. 248 | buf_start = start - data_offset; 249 | buf_end = start + data_length + 1; 250 | 251 | // Underflow. 252 | if (buf_start < out) 253 | return -1; 254 | 255 | // Overflow. 256 | if (buf_end > end) 257 | return -1; 258 | 259 | // Update offset. 260 | offset = ((((int)(buf_end - out)) + 1) & 1) + 6; 261 | 262 | // Copy data. 263 | do { 264 | *start++ = *buf_start++; 265 | } while (start < buf_end); 266 | 267 | } 268 | prev = *(start - 1); 269 | } 270 | result = (start - out); 271 | } 272 | delete[] tmp; 273 | return result; 274 | } -------------------------------------------------------------------------------- /src/lz.h: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | // Reverse-engineered custom Lempel–Ziv–Markov based compression (unknown variant of LZRC). 6 | 7 | #include 8 | 9 | int decode_range(unsigned int *range, unsigned int *code, unsigned char **src); 10 | int decode_bit(unsigned int *range, unsigned int *code, int *index, unsigned char **src, unsigned char *c); 11 | int decode_number(unsigned char *ptr, int index, int *bit_flag, unsigned int *range, unsigned int *code, unsigned char **src); 12 | int decode_word(unsigned char *ptr, int index, int *bit_flag, unsigned int *range, unsigned int *code, unsigned char **src); 13 | int decompress(unsigned char *out, unsigned char *in, unsigned int size); -------------------------------------------------------------------------------- /src/psxtract.h: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | #define _CRT_SECURE_NO_WARNINGS 6 | 7 | #include 8 | #include 9 | #include 10 | #include 11 | 12 | #include "cdrom.h" 13 | #include "lz.h" 14 | #include "crypto.h" 15 | 16 | #define GAP_FRAMES 2 * 75 // 2 seconds 17 | #define GAP_SIZE GAP_FRAMES * SECTOR_SIZE // 2 seconds * 75 frames * 2352 sector size 18 | #define ISO_BLOCK_SIZE 16 * SECTOR_SIZE 19 | #define ISO_HEADER_OFFSET 0x400 20 | #define ISO_HEADER_SIZE 0xB6600 21 | #define ISO_BASE_OFFSET 0x100000 22 | #define CUE_LEADOUT_OFFSET 0x414 23 | #define MAX_DISCS 5 24 | #define NBYTES 0x180 25 | 26 | // Multidisc ISO image signature. 27 | char multi_iso_magic[0x10] = { 28 | 0x50, // P 29 | 0x53, // S 30 | 0x54, // T 31 | 0x49, // I 32 | 0x54, // T 33 | 0x4C, // L 34 | 0x45, // E 35 | 0x49, // I 36 | 0x4D, // M 37 | 0x47, // G 38 | 0x30, // 0 39 | 0x30, // 0 40 | 0x30, // 0 41 | 0x30, // 0 42 | 0x30, // 0 43 | 0x30 // 0 44 | }; 45 | 46 | // ISO image signature. 47 | char iso_magic[0xC] = { 48 | 0x50, // P 49 | 0x53, // S 50 | 0x49, // I 51 | 0x53, // S 52 | 0x4F, // O 53 | 0x49, // I 54 | 0x4D, // M 55 | 0x47, // G 56 | 0x30, // 0 57 | 0x30, // 0 58 | 0x30, // 0 59 | 0x30 // 0 60 | }; 61 | 62 | // CUE structure 63 | typedef struct { 64 | unsigned short type; // Track Type = 41h for DATA, 01h for CDDA, A2h for lead out 65 | unsigned char number; // Track Number (01h to 99h) 66 | unsigned char I0m; // INDEX 00 MM 67 | unsigned char I0s; // INDEX 00 SS 68 | unsigned char I0f; // INDEX 00 FF 69 | unsigned char padding; // NULL 70 | unsigned char I1m; // INDEX 01 MM 71 | unsigned char I1s; // INDEX 01 SS 72 | unsigned char I1f; // INDEX 01 FF 73 | } CUE_ENTRY; 74 | 75 | // CDDA table entry structure. 76 | typedef struct { 77 | unsigned int offset; 78 | unsigned int size; 79 | unsigned char padding[0x4]; 80 | unsigned int checksum; 81 | } CDDA_ENTRY; 82 | 83 | // ISO table entry structure. 84 | typedef struct { 85 | unsigned int offset; 86 | unsigned short size; 87 | unsigned short marker; // 0x01 or 0x00 88 | unsigned char checksum[0x10]; // first 0x10 bytes of sha1 sum of 0x10 disc sectors 89 | unsigned char padding[0x8]; 90 | } ISO_ENTRY; 91 | 92 | // STARTDAT header structure. 93 | typedef struct { 94 | unsigned char magic[8]; // STARTDAT 95 | unsigned int unk1; // 0x01 96 | unsigned int unk2; // 0x01 97 | unsigned int header_size; 98 | unsigned int data_size; 99 | } STARTDAT_HEADER; 100 | 101 | // ATRAC3 RIFF WAVE header structure. 102 | typedef struct { 103 | unsigned char riff_id[4]; // "RIFF" 104 | uint32_t riff_size; // size of rest of the file: audio + header - 8 105 | unsigned char riff_format[4]; // "WAVE" 106 | unsigned char fmt_id[4]; // "fmt\x20" 107 | uint32_t fmt_size; // size of format, always 32 108 | uint16_t codec_id; // always 624 (ATRAC3+?) 109 | uint16_t channels; // number of channels, always 2 110 | uint32_t sample_rate; // sample rate - always 44100 111 | uint32_t unknown1; // always 16538, seems connected to next value 112 | uint32_t bytes_per_frame; // always 384 113 | uint16_t param_size; // likely the length of remaining params, always 14 114 | uint16_t param1; // unknown, always 1 115 | uint16_t param2; // unknown, always 4096 116 | uint16_t param3; // unknown, always 0 117 | uint16_t param4; // unknown, always 0 118 | uint16_t param5; // unknown, always 0 119 | uint16_t param6; // unknown, always 1 120 | uint16_t param7; // unknown, always 0 121 | unsigned char fact_id[4]; // "fact" 122 | uint32_t fact_size; // always 8 123 | uint32_t fact_param1; // size of (in|out)put file sans 44byte WAVE header, divided by 4 124 | // we can get this by taking the track time in mm:ss:ff 125 | // convert to frames (mm*60*75 + ss*75 + ff) 126 | // and multiply by sector size 2352 127 | uint32_t fact_param2; // unknown, always 1024 128 | unsigned char data_id[4]; // "data" 129 | uint32_t data_size; // size of data segment 130 | } AT3_HEADER; 131 | 132 | // Pregap mapping 133 | typedef struct { 134 | int mm, ss, ff; 135 | } TIMESTAMP; 136 | 137 | typedef struct { 138 | const char* game_id; 139 | size_t num_tracks; 140 | TIMESTAMP timestamps[99]; 141 | } PREGAP_OVERRIDE; 142 | 143 | 144 | // Game ID, number of audio tracks, timestamps for pregap on each, taken from redump.org 145 | // We calculate track 2 pregap automatically based on on diff with data track 1, but it's included here anyway though is not used 146 | static const PREGAP_OVERRIDE pregap_overrides [] = { 147 | // '99 Koushien 148 | { "SLPS_02110", 10, {{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00} }}, 149 | // A.IV Evolution Global 150 | { "SCES_00290", 6, {{00 , 15, 26},{00 , 02, 18},{00 , 02, 26},{00 , 02, 43},{00 , 02, 06},{00 , 02, 42}} }, 151 | // Bowling 152 | { "SLUS_01288", 14, {{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 02, 00}} }, 153 | // Centipede (US) 154 | { "SLUS_00807", 14, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00}} }, 155 | // Centipede (Eng, Spa, Swe) 156 | { "SLES_01664", 14, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00}} }, 157 | // Centipede (Dut, Fra, Ger, Ita) 158 | { "SLES_01900", 14, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{03, 00, 00}} }, 159 | // Dai-4-Ji Super Robot Taisen S 160 | { "SLPS_00196", 2, {{00 , 02, 00}, {03, 00, 00}} }, 161 | // GTA - not sure which ID is used so account for both 162 | { "SLPM_87007", 10, {{00 , 02, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00}} }, 163 | { "SLPS_01554", 10, {{00 , 02, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00}} }, 164 | // Hanabi Fantast 165 | { "SLPS_01439", 22, {{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 04, 46},{00 , 04, 18},{00 , 04, 35},{00 , 04, 8},{00 , 04, 23},{00 , 04, 61},{00 , 04, 10},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00},{00 , 05, 00}} }, 166 | // Jet Copter X 167 | { "SLPM_86894", 9, {{00 , 02, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 02, 00},{00 , 02, 00}} }, 168 | // KOF '96 169 | { "SLPS_00834", 40, {{00 , 06, 47},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 57},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00}} }, 170 | // KOF Kyo 171 | { "SLPM_86095", 3, {{00 , 03, 00}, {00 , 02, 00}, {00 , 03, 00}} }, 172 | // Koushien V 173 | { "SLPS_00729", 16, {{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00}} }, 174 | // Motteke Tamago With Ganbare 175 | { "SLPS_01242", 22, {{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00},{00 , 03, 00}} }, 176 | // Perfect Weapon (US) 177 | { "SLUS_00341", 15, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 28, 00}} }, 178 | // Perfect Weapon (EU) 179 | { "SLES_00681", 15, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 28, 00}} }, 180 | // Perfect Weapon (Fra) 181 | { "SLES_00685", 15, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 28, 00}} }, 182 | // Perfect Weapon (Ger) 183 | { "SLES_00686", 15, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 28, 00}} }, 184 | // Perfect Weapon (Ita) 185 | { "SLES_00687", 15, {{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 04, 00},{00 , 02, 00},{00 , 02, 00},{00 , 28, 00}} }, 186 | // Touge Max Saisoku Drift Master - not sure which ID is used so account for all 3 187 | { "SCPS_45006", 11, {{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00}} }, 188 | { "SLPS_00592", 11, {{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00}} }, 189 | { "SLPS_91041", 11, {{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00},{00 , 04, 00}} }, 190 | // Tsuukai!! Slot Shooting 191 | { "SLPS_00334", 11, {{00 , 02, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00},{00 , 01, 00}} }, 192 | // Vib-Ribbon JP 193 | { "SCPS_18012", 7, {{00 , 04, 04},{00 , 02, 03},{00 , 02, 31},{00 , 02, 00},{00 , 02, 18},{00 , 02, 66},{00 , 02, 61}} }, 194 | // Vib-Ribbon EU 195 | { "SCES_02873", 7, {{00 , 11, 8},{00 , 02, 03},{00 , 02, 31},{00 , 02, 00},{00 , 02, 18},{00 , 02, 66},{00 , 02, 61}} }, 196 | //Yamasa Digi Guide Hyper Rush 197 | { "SLPS_02989", 10, {{00 , 03, 00},{00 , 03, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00},{00 , 02, 00}} }, 198 | }; -------------------------------------------------------------------------------- /src/psxtract.vcxproj: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | Debug 6 | Win32 7 | 8 | 9 | Release 10 | Win32 11 | 12 | 13 | 14 | {B86E1508-26B6-465B-ABEC-A35E07E2A187} 15 | psxtract 16 | psxtract 17 | 18 | 19 | 20 | Application 21 | true 22 | v143 23 | MultiByte 24 | 25 | 26 | Application 27 | false 28 | v143 29 | true 30 | MultiByte 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | ..\bin 44 | psxtract.debug 45 | 46 | 47 | ..\bin 48 | psxtract 49 | 50 | 51 | 52 | Level3 53 | Disabled 54 | true 55 | 56 | 57 | true 58 | 59 | 60 | 61 | 62 | Level3 63 | MaxSpeed 64 | true 65 | true 66 | true 67 | 68 | 69 | true 70 | true 71 | true 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | -------------------------------------------------------------------------------- /src/psxtract.vcxproj.filters: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | 5 | {4FC737F1-C7A5-4376-A066-2A32D752A2FF} 6 | cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx 7 | 8 | 9 | {93995380-89BD-4b04-88EB-625FBE52EBFB} 10 | h;hpp;hxx;hm;inl;inc;xsd 11 | 12 | 13 | {67DA6AB6-F800-4c08-8B7A-83BB121AAD01} 14 | rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms 15 | 16 | 17 | {587a9468-22a3-4044-b7f3-87bb43cf8eb8} 18 | 19 | 20 | 21 | 22 | Source Files 23 | 24 | 25 | Source Files\libkirk 26 | 27 | 28 | Source Files\libkirk 29 | 30 | 31 | Source Files\libkirk 32 | 33 | 34 | Source Files\libkirk 35 | 36 | 37 | Source Files\libkirk 38 | 39 | 40 | Source Files\libkirk 41 | 42 | 43 | Source Files\libkirk 44 | 45 | 46 | Source Files 47 | 48 | 49 | Source Files 50 | 51 | 52 | Source Files 53 | 54 | 55 | Source Files 56 | 57 | 58 | 59 | 60 | Source Files 61 | 62 | 63 | Source Files\libkirk 64 | 65 | 66 | Source Files\libkirk 67 | 68 | 69 | Source Files\libkirk 70 | 71 | 72 | Source Files\libkirk 73 | 74 | 75 | Source Files\libkirk 76 | 77 | 78 | Source Files 79 | 80 | 81 | Source Files 82 | 83 | 84 | Source Files 85 | 86 | 87 | Header Files 88 | 89 | 90 | -------------------------------------------------------------------------------- /src/psxtract.vcxproj.user: -------------------------------------------------------------------------------- 1 |  2 | 3 | 4 | -------------------------------------------------------------------------------- /src/utils.cpp: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | #include "utils.h" 6 | 7 | bool isEmpty(unsigned char* buf, int buf_size) 8 | { 9 | if (buf != NULL) 10 | { 11 | int i; 12 | for(i = 0; i < buf_size; i++) 13 | { 14 | if (buf[i] != 0) return false; 15 | } 16 | } 17 | return true; 18 | } 19 | 20 | int se32(int i) 21 | { 22 | return ((i & 0xFF000000) >> 24) | ((i & 0xFF0000) >> 8) | ((i & 0xFF00) << 8) | ((i & 0xFF) << 24); 23 | } 24 | 25 | u64 se64(u64 i) 26 | { 27 | return ((i & 0x00000000000000ff) << 56) | ((i & 0x000000000000ff00) << 40) | 28 | ((i & 0x0000000000ff0000) << 24) | ((i & 0x00000000ff000000) << 8) | 29 | ((i & 0x000000ff00000000) >> 8) | ((i & 0x0000ff0000000000) >> 24) | 30 | ((i & 0x00ff000000000000) >> 40) | ((i & 0xff00000000000000) >> 56); 31 | } -------------------------------------------------------------------------------- /src/utils.h: -------------------------------------------------------------------------------- 1 | // Copyright (C) 2014 Hykem 2 | // Licensed under the terms of the GNU GPL, version 3 3 | // http://www.gnu.org/licenses/gpl-3.0.txt 4 | 5 | #include 6 | 7 | typedef unsigned long long u64; 8 | 9 | unsigned char* strip_utf8(unsigned char *src, int size); 10 | bool isEmpty(unsigned char* buf, int buf_size); 11 | int se32(int i); 12 | u64 se64(u64 i); --------------------------------------------------------------------------------