├── .gitignore
├── LICENSE
├── README.md
├── attentions.py
├── commons.py
├── configs
├── libritts.json
└── vctk_base.json
├── data_utils.py
├── filelists
├── libritts_train.txt
└── libritts_val.txt
├── img
└── Overview.jpg
├── inference.py
├── libritts.py
├── losses.py
├── mel_processing.py
├── models.py
├── modules.py
├── monotonic_align
├── __init__.py
├── core.pyx
└── setup.py
├── prepare_wav.py
├── preprocess.py
├── requirements.txt
├── text
├── __init__.py
├── cleaners.py
├── cmudict.py
├── numbers.py
└── symbols.py
├── train.py
├── train_ms.py
├── transforms.py
└── utils.py
/.gitignore:
--------------------------------------------------------------------------------
1 | DUMMY1
2 | DUMMY2
3 | DUMMY3
4 | logs
5 | __pycache__
6 | .ipynb_checkpoints
7 | .*.swp
8 | wav*
9 |
10 | build
11 | *.c
12 | monotonic_align/monotonic_align
13 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2021 Jaehyeon Kim
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # TransferTTS (Zero-shot VITS) - PyTorch Implementation (-Ongoing-)
2 |
3 | ## Note!!(09.23.)
4 | In current, this is just a implementation of zero-shot system; Not the implementation of the first contribution of the paper: Transfer learning framework using wav2vec2.0.
5 | As the future work, the model equipped with complete implementations of the two contributions (zero-shot and transfer-learning) will be implemented in the follwoing [repository](https://github.com/hcy71o/SC-VITS).
6 | Congratulations on being awarded the best paper in INTERSPEECH 2022.
7 |
8 | # Overview
9 | Unofficial PyTorch Implementation of [Transfer Learning Framework for Low-Resource Text-to-Speech using a Large-Scale Unlabeled Speech Corpus](https://arxiv.org/abs/2203.15447). Most of codes are based on [VITS](https://github.com/jaywalnut310/vits)
10 |
11 | 0. MelStyleEncoder from [StyleSpeech](https://arxiv.org/abs/2106.03153) is used instead of the reference encoder.
12 | 1. Implementation of untranscribed data training is omitted.
13 | 2. [LibriTTS]((https://research.google/tools/datasets/libri-tts/)) dataset (train-clean-100 and train-clean-360) is used. Sampling rate is set to 22050Hz.
14 |
15 |
16 |
17 |
18 |
19 | ## Pre-requisites (from VITS)
20 | 0. Python >= 3.6
21 | 0. Clone this repository
22 | 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
23 | 1. You may need to install espeak first: `apt-get install espeak`
24 | 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
25 | ```sh
26 | # Cython-version Monotonoic Alignment Search
27 | cd monotonic_align
28 | python setup.py build_ext --inplace
29 | ```
30 | ## Preprocessing
31 |
32 | Run
33 | ```
34 | python prepare_wav.py --data_path [LibriTTS DATAPATH]
35 | ```
36 | for some preparations.
37 |
38 | ## Training
39 |
40 | Train your model with
41 | ```
42 | python train_ms.py -c configs/libritts.json -m libritts_base
43 | ```
44 |
45 | ## Inference
46 | ```
47 | python inference.py --ref_audio [REF AUDIO PATH] --text [INPUT TEXT]
48 | ```
49 |
50 | # References
51 | - [TransferTTS](https://arxiv.org/abs/2203.15447)
52 | - [VITS](https://arxiv.org/abs/2106.06103)
53 | - [Meta-StyleSpeech](https://arxiv.org/abs/2106.03153)
54 |
--------------------------------------------------------------------------------
/attentions.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import torch
5 | from torch import nn
6 | from torch.nn import functional as F
7 |
8 | import commons
9 | import modules
10 | from modules import LayerNorm
11 |
12 |
13 | class Encoder(nn.Module):
14 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15 | super().__init__()
16 | self.hidden_channels = hidden_channels
17 | self.filter_channels = filter_channels
18 | self.n_heads = n_heads
19 | self.n_layers = n_layers
20 | self.kernel_size = kernel_size
21 | self.p_dropout = p_dropout
22 | self.window_size = window_size
23 |
24 | self.drop = nn.Dropout(p_dropout)
25 | self.attn_layers = nn.ModuleList()
26 | self.norm_layers_1 = nn.ModuleList()
27 | self.ffn_layers = nn.ModuleList()
28 | self.norm_layers_2 = nn.ModuleList()
29 | for i in range(self.n_layers):
30 | self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31 | self.norm_layers_1.append(LayerNorm(hidden_channels))
32 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33 | self.norm_layers_2.append(LayerNorm(hidden_channels))
34 |
35 | def forward(self, x, x_mask):
36 | attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37 | x = x * x_mask
38 | for i in range(self.n_layers):
39 | y = self.attn_layers[i](x, x, attn_mask)
40 | y = self.drop(y)
41 | x = self.norm_layers_1[i](x + y)
42 |
43 | y = self.ffn_layers[i](x, x_mask)
44 | y = self.drop(y)
45 | x = self.norm_layers_2[i](x + y)
46 | x = x * x_mask
47 | return x
48 |
49 |
50 | class Decoder(nn.Module):
51 | def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52 | super().__init__()
53 | self.hidden_channels = hidden_channels
54 | self.filter_channels = filter_channels
55 | self.n_heads = n_heads
56 | self.n_layers = n_layers
57 | self.kernel_size = kernel_size
58 | self.p_dropout = p_dropout
59 | self.proximal_bias = proximal_bias
60 | self.proximal_init = proximal_init
61 |
62 | self.drop = nn.Dropout(p_dropout)
63 | self.self_attn_layers = nn.ModuleList()
64 | self.norm_layers_0 = nn.ModuleList()
65 | self.encdec_attn_layers = nn.ModuleList()
66 | self.norm_layers_1 = nn.ModuleList()
67 | self.ffn_layers = nn.ModuleList()
68 | self.norm_layers_2 = nn.ModuleList()
69 | for i in range(self.n_layers):
70 | self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71 | self.norm_layers_0.append(LayerNorm(hidden_channels))
72 | self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73 | self.norm_layers_1.append(LayerNorm(hidden_channels))
74 | self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75 | self.norm_layers_2.append(LayerNorm(hidden_channels))
76 |
77 | def forward(self, x, x_mask, h, h_mask):
78 | """
79 | x: decoder input
80 | h: encoder output
81 | """
82 | self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83 | encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84 | x = x * x_mask
85 | for i in range(self.n_layers):
86 | y = self.self_attn_layers[i](x, x, self_attn_mask)
87 | y = self.drop(y)
88 | x = self.norm_layers_0[i](x + y)
89 |
90 | y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91 | y = self.drop(y)
92 | x = self.norm_layers_1[i](x + y)
93 |
94 | y = self.ffn_layers[i](x, x_mask)
95 | y = self.drop(y)
96 | x = self.norm_layers_2[i](x + y)
97 | x = x * x_mask
98 | return x
99 |
100 |
101 | class MultiHeadAttention(nn.Module):
102 | def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103 | super().__init__()
104 | assert channels % n_heads == 0
105 |
106 | self.channels = channels
107 | self.out_channels = out_channels
108 | self.n_heads = n_heads
109 | self.p_dropout = p_dropout
110 | self.window_size = window_size
111 | self.heads_share = heads_share
112 | self.block_length = block_length
113 | self.proximal_bias = proximal_bias
114 | self.proximal_init = proximal_init
115 | self.attn = None
116 |
117 | self.k_channels = channels // n_heads
118 | self.conv_q = nn.Conv1d(channels, channels, 1)
119 | self.conv_k = nn.Conv1d(channels, channels, 1)
120 | self.conv_v = nn.Conv1d(channels, channels, 1)
121 | self.conv_o = nn.Conv1d(channels, out_channels, 1)
122 | self.drop = nn.Dropout(p_dropout)
123 |
124 | if window_size is not None:
125 | n_heads_rel = 1 if heads_share else n_heads
126 | rel_stddev = self.k_channels**-0.5
127 | self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128 | self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129 |
130 | nn.init.xavier_uniform_(self.conv_q.weight)
131 | nn.init.xavier_uniform_(self.conv_k.weight)
132 | nn.init.xavier_uniform_(self.conv_v.weight)
133 | if proximal_init:
134 | with torch.no_grad():
135 | self.conv_k.weight.copy_(self.conv_q.weight)
136 | self.conv_k.bias.copy_(self.conv_q.bias)
137 |
138 | def forward(self, x, c, attn_mask=None):
139 | q = self.conv_q(x)
140 | k = self.conv_k(c)
141 | v = self.conv_v(c)
142 |
143 | x, self.attn = self.attention(q, k, v, mask=attn_mask)
144 |
145 | x = self.conv_o(x)
146 | return x
147 |
148 | def attention(self, query, key, value, mask=None):
149 | # reshape [b, d, t] -> [b, n_h, t, d_k]
150 | b, d, t_s, t_t = (*key.size(), query.size(2))
151 | query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152 | key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153 | value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154 |
155 | scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156 | if self.window_size is not None:
157 | assert t_s == t_t, "Relative attention is only available for self-attention."
158 | key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159 | rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160 | scores_local = self._relative_position_to_absolute_position(rel_logits)
161 | scores = scores + scores_local
162 | if self.proximal_bias:
163 | assert t_s == t_t, "Proximal bias is only available for self-attention."
164 | scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165 | if mask is not None:
166 | scores = scores.masked_fill(mask == 0, -1e4)
167 | if self.block_length is not None:
168 | assert t_s == t_t, "Local attention is only available for self-attention."
169 | block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170 | scores = scores.masked_fill(block_mask == 0, -1e4)
171 | p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172 | p_attn = self.drop(p_attn)
173 | output = torch.matmul(p_attn, value)
174 | if self.window_size is not None:
175 | relative_weights = self._absolute_position_to_relative_position(p_attn)
176 | value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177 | output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178 | output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179 | return output, p_attn
180 |
181 | def _matmul_with_relative_values(self, x, y):
182 | """
183 | x: [b, h, l, m]
184 | y: [h or 1, m, d]
185 | ret: [b, h, l, d]
186 | """
187 | ret = torch.matmul(x, y.unsqueeze(0))
188 | return ret
189 |
190 | def _matmul_with_relative_keys(self, x, y):
191 | """
192 | x: [b, h, l, d]
193 | y: [h or 1, m, d]
194 | ret: [b, h, l, m]
195 | """
196 | ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197 | return ret
198 |
199 | def _get_relative_embeddings(self, relative_embeddings, length):
200 | max_relative_position = 2 * self.window_size + 1
201 | # Pad first before slice to avoid using cond ops.
202 | pad_length = max(length - (self.window_size + 1), 0)
203 | slice_start_position = max((self.window_size + 1) - length, 0)
204 | slice_end_position = slice_start_position + 2 * length - 1
205 | if pad_length > 0:
206 | padded_relative_embeddings = F.pad(
207 | relative_embeddings,
208 | commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209 | else:
210 | padded_relative_embeddings = relative_embeddings
211 | used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212 | return used_relative_embeddings
213 |
214 | def _relative_position_to_absolute_position(self, x):
215 | """
216 | x: [b, h, l, 2*l-1]
217 | ret: [b, h, l, l]
218 | """
219 | batch, heads, length, _ = x.size()
220 | # Concat columns of pad to shift from relative to absolute indexing.
221 | x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222 |
223 | # Concat extra elements so to add up to shape (len+1, 2*len-1).
224 | x_flat = x.view([batch, heads, length * 2 * length])
225 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226 |
227 | # Reshape and slice out the padded elements.
228 | x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229 | return x_final
230 |
231 | def _absolute_position_to_relative_position(self, x):
232 | """
233 | x: [b, h, l, l]
234 | ret: [b, h, l, 2*l-1]
235 | """
236 | batch, heads, length, _ = x.size()
237 | # padd along column
238 | x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239 | x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240 | # add 0's in the beginning that will skew the elements after reshape
241 | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242 | x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243 | return x_final
244 |
245 | def _attention_bias_proximal(self, length):
246 | """Bias for self-attention to encourage attention to close positions.
247 | Args:
248 | length: an integer scalar.
249 | Returns:
250 | a Tensor with shape [1, 1, length, length]
251 | """
252 | r = torch.arange(length, dtype=torch.float32)
253 | diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254 | return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255 |
256 |
257 | class FFN(nn.Module):
258 | def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259 | super().__init__()
260 | self.in_channels = in_channels
261 | self.out_channels = out_channels
262 | self.filter_channels = filter_channels
263 | self.kernel_size = kernel_size
264 | self.p_dropout = p_dropout
265 | self.activation = activation
266 | self.causal = causal
267 |
268 | if causal:
269 | self.padding = self._causal_padding
270 | else:
271 | self.padding = self._same_padding
272 |
273 | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274 | self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275 | self.drop = nn.Dropout(p_dropout)
276 |
277 | def forward(self, x, x_mask):
278 | x = self.conv_1(self.padding(x * x_mask))
279 | if self.activation == "gelu":
280 | x = x * torch.sigmoid(1.702 * x)
281 | else:
282 | x = torch.relu(x)
283 | x = self.drop(x)
284 | x = self.conv_2(self.padding(x * x_mask))
285 | return x * x_mask
286 |
287 | def _causal_padding(self, x):
288 | if self.kernel_size == 1:
289 | return x
290 | pad_l = self.kernel_size - 1
291 | pad_r = 0
292 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293 | x = F.pad(x, commons.convert_pad_shape(padding))
294 | return x
295 |
296 | def _same_padding(self, x):
297 | if self.kernel_size == 1:
298 | return x
299 | pad_l = (self.kernel_size - 1) // 2
300 | pad_r = self.kernel_size // 2
301 | padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302 | x = F.pad(x, commons.convert_pad_shape(padding))
303 | return x
304 |
--------------------------------------------------------------------------------
/commons.py:
--------------------------------------------------------------------------------
1 | import math
2 | import numpy as np
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 |
8 | def init_weights(m, mean=0.0, std=0.01):
9 | classname = m.__class__.__name__
10 | if classname.find("Conv") != -1:
11 | m.weight.data.normal_(mean, std)
12 |
13 |
14 | def get_padding(kernel_size, dilation=1):
15 | return int((kernel_size*dilation - dilation)/2)
16 |
17 |
18 | def convert_pad_shape(pad_shape):
19 | l = pad_shape[::-1]
20 | pad_shape = [item for sublist in l for item in sublist]
21 | return pad_shape
22 |
23 |
24 | def intersperse(lst, item):
25 | result = [item] * (len(lst) * 2 + 1)
26 | result[1::2] = lst
27 | return result
28 |
29 |
30 | def kl_divergence(m_p, logs_p, m_q, logs_q):
31 | """KL(P||Q)"""
32 | kl = (logs_q - logs_p) - 0.5
33 | kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34 | return kl
35 |
36 |
37 | def rand_gumbel(shape):
38 | """Sample from the Gumbel distribution, protect from overflows."""
39 | uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40 | return -torch.log(-torch.log(uniform_samples))
41 |
42 |
43 | def rand_gumbel_like(x):
44 | g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45 | return g
46 |
47 |
48 | def slice_segments(x, ids_str, segment_size=4):
49 | ret = torch.zeros_like(x[:, :, :segment_size])
50 | for i in range(x.size(0)):
51 | idx_str = ids_str[i]
52 | idx_end = idx_str + segment_size
53 | ret[i] = x[i, :, idx_str:idx_end]
54 | return ret
55 |
56 |
57 | def rand_slice_segments(x, x_lengths=None, segment_size=4):
58 | b, d, t = x.size()
59 | if x_lengths is None:
60 | x_lengths = t
61 | ids_str_max = x_lengths - segment_size + 1
62 | ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63 | ret = slice_segments(x, ids_str, segment_size)
64 | return ret, ids_str
65 |
66 |
67 | def get_timing_signal_1d(
68 | length, channels, min_timescale=1.0, max_timescale=1.0e4):
69 | position = torch.arange(length, dtype=torch.float)
70 | num_timescales = channels // 2
71 | log_timescale_increment = (
72 | math.log(float(max_timescale) / float(min_timescale)) /
73 | (num_timescales - 1))
74 | inv_timescales = min_timescale * torch.exp(
75 | torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76 | scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77 | signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78 | signal = F.pad(signal, [0, 0, 0, channels % 2])
79 | signal = signal.view(1, channels, length)
80 | return signal
81 |
82 |
83 | def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84 | b, channels, length = x.size()
85 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86 | return x + signal.to(dtype=x.dtype, device=x.device)
87 |
88 |
89 | def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90 | b, channels, length = x.size()
91 | signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92 | return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93 |
94 |
95 | def subsequent_mask(length):
96 | mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97 | return mask
98 |
99 |
100 | @torch.jit.script
101 | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102 | n_channels_int = n_channels[0]
103 | in_act = input_a + input_b
104 | t_act = torch.tanh(in_act[:, :n_channels_int, :])
105 | s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106 | acts = t_act * s_act
107 | return acts
108 |
109 |
110 | def convert_pad_shape(pad_shape):
111 | l = pad_shape[::-1]
112 | pad_shape = [item for sublist in l for item in sublist]
113 | return pad_shape
114 |
115 |
116 | def shift_1d(x):
117 | x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118 | return x
119 |
120 |
121 | def sequence_mask(length, max_length=None):
122 | if max_length is None:
123 | max_length = length.max()
124 | x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125 | return x.unsqueeze(0) < length.unsqueeze(1)
126 |
127 |
128 | def generate_path(duration, mask):
129 | """
130 | duration: [b, 1, t_x]
131 | mask: [b, 1, t_y, t_x]
132 | """
133 | device = duration.device
134 |
135 | b, _, t_y, t_x = mask.shape
136 | cum_duration = torch.cumsum(duration, -1)
137 |
138 | cum_duration_flat = cum_duration.view(b * t_x)
139 | path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140 | path = path.view(b, t_x, t_y)
141 | path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142 | path = path.unsqueeze(1).transpose(2,3) * mask
143 | return path
144 |
145 |
146 | def clip_grad_value_(parameters, clip_value, norm_type=2):
147 | if isinstance(parameters, torch.Tensor):
148 | parameters = [parameters]
149 | parameters = list(filter(lambda p: p.grad is not None, parameters))
150 | norm_type = float(norm_type)
151 | if clip_value is not None:
152 | clip_value = float(clip_value)
153 |
154 | total_norm = 0
155 | for p in parameters:
156 | param_norm = p.grad.data.norm(norm_type)
157 | total_norm += param_norm.item() ** norm_type
158 | if clip_value is not None:
159 | p.grad.data.clamp_(min=-clip_value, max=clip_value)
160 | total_norm = total_norm ** (1. / norm_type)
161 | return total_norm
162 |
--------------------------------------------------------------------------------
/configs/libritts.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 2000,
4 | "eval_interval": 10000,
5 | "seed": 1234,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 8,
11 | "fp16_run": false,
12 | "lr_decay": 0.9999,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "data_path":"/home/hcy71/DATA/preprocessed_data/LibriTTS",
21 | "training_files":"filelists/libritts_train.txt",
22 | "validation_files":"filelists/libritts_val.txt",
23 | "text_cleaners":["english_cleaners2"],
24 | "max_wav_value": 32768.0,
25 | "sampling_rate": 22050,
26 | "filter_length": 1024,
27 | "hop_length": 256,
28 | "win_length": 1024,
29 | "n_mel_channels": 80,
30 | "mel_fmin": 0.0,
31 | "mel_fmax": null,
32 | "add_blank": true,
33 | "n_speakers": 1147,
34 | "cleaned_text": true
35 | },
36 | "model": {
37 | "inter_channels": 192,
38 | "hidden_channels": 192,
39 | "filter_channels": 768,
40 | "n_heads": 2,
41 | "n_layers": 6,
42 | "kernel_size": 3,
43 | "p_dropout": 0.1,
44 | "resblock": "1",
45 | "resblock_kernel_sizes": [3,7,11],
46 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
47 | "upsample_rates": [8,8,2,2],
48 | "upsample_initial_channel": 512,
49 | "upsample_kernel_sizes": [16,16,4,4],
50 | "n_layers_q": 3,
51 | "use_spectral_norm": false,
52 | "gin_channels": 256
53 | }
54 | }
55 |
--------------------------------------------------------------------------------
/configs/vctk_base.json:
--------------------------------------------------------------------------------
1 | {
2 | "train": {
3 | "log_interval": 200,
4 | "eval_interval": 1000,
5 | "seed": 1234,
6 | "epochs": 10000,
7 | "learning_rate": 2e-4,
8 | "betas": [0.8, 0.99],
9 | "eps": 1e-9,
10 | "batch_size": 64,
11 | "fp16_run": true,
12 | "lr_decay": 0.999875,
13 | "segment_size": 8192,
14 | "init_lr_ratio": 1,
15 | "warmup_epochs": 0,
16 | "c_mel": 45,
17 | "c_kl": 1.0
18 | },
19 | "data": {
20 | "training_files":"filelists/vctk_audio_sid_text_train_filelist.txt.cleaned",
21 | "validation_files":"filelists/vctk_audio_sid_text_val_filelist.txt.cleaned",
22 | "text_cleaners":["english_cleaners2"],
23 | "max_wav_value": 32768.0,
24 | "sampling_rate": 22050,
25 | "filter_length": 1024,
26 | "hop_length": 256,
27 | "win_length": 1024,
28 | "n_mel_channels": 80,
29 | "mel_fmin": 0.0,
30 | "mel_fmax": null,
31 | "add_blank": true,
32 | "n_speakers": 109,
33 | "cleaned_text": true
34 | },
35 | "model": {
36 | "inter_channels": 192,
37 | "hidden_channels": 192,
38 | "filter_channels": 768,
39 | "n_heads": 2,
40 | "n_layers": 6,
41 | "kernel_size": 3,
42 | "p_dropout": 0.1,
43 | "resblock": "1",
44 | "resblock_kernel_sizes": [3,7,11],
45 | "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
46 | "upsample_rates": [8,8,2,2],
47 | "upsample_initial_channel": 512,
48 | "upsample_kernel_sizes": [16,16,4,4],
49 | "n_layers_q": 3,
50 | "use_spectral_norm": false,
51 | "gin_channels": 256
52 | }
53 | }
54 |
--------------------------------------------------------------------------------
/data_utils.py:
--------------------------------------------------------------------------------
1 | import time
2 | import os
3 | import random
4 | import numpy as np
5 | import torch
6 | import torch.utils.data
7 | import librosa
8 |
9 | import commons
10 | from mel_processing import spectrogram_torch
11 | from utils import load_wav_to_torch, load_filepaths_and_text
12 | from text import text_to_sequence
13 |
14 |
15 | class TextAudioLoader(torch.utils.data.Dataset):
16 | """
17 | 1) loads audio, text pairs
18 | 2) normalizes text and converts them to sequences of integers
19 | 3) computes spectrograms from audio files.
20 | """
21 | def __init__(self, audiopaths_and_text, hparams):
22 | self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text)
23 | self.text_cleaners = hparams.text_cleaners
24 | self.max_wav_value = hparams.max_wav_value
25 | self.sampling_rate = hparams.sampling_rate
26 | self.filter_length = hparams.filter_length
27 | self.hop_length = hparams.hop_length
28 | self.win_length = hparams.win_length
29 | self.sampling_rate = hparams.sampling_rate
30 |
31 | self.cleaned_text = getattr(hparams, "cleaned_text", False)
32 |
33 | self.add_blank = hparams.add_blank
34 | self.min_text_len = getattr(hparams, "min_text_len", 1)
35 | self.max_text_len = getattr(hparams, "max_text_len", 190)
36 | random.seed(1234)
37 | random.shuffle(self.audiopaths_and_text)
38 | self._filter()
39 |
40 |
41 | def _filter(self):
42 | """
43 | Filter text & store spec lengths
44 | """
45 | # Store spectrogram lengths for Bucketing
46 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
47 | # spec_length = wav_length // hop_length
48 |
49 | audiopaths_and_text_new = []
50 | lengths = []
51 | for audiopath, text in self.audiopaths_and_text:
52 | if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
53 | audiopaths_and_text_new.append([audiopath, text])
54 | lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
55 | self.audiopaths_and_text = audiopaths_and_text_new
56 | self.lengths = lengths
57 |
58 | def get_audio_text_pair(self, audiopath_and_text):
59 | # separate filename and text
60 | audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
61 | text = self.get_text(text)
62 | spec, wav = self.get_audio(audiopath)
63 | return (text, spec, wav)
64 |
65 | def get_audio(self, filename):
66 | audio, sampling_rate = load_wav_to_torch(filename)
67 | if sampling_rate != self.sampling_rate:
68 | raise ValueError("{} {} SR doesn't match target {} SR".format(
69 | sampling_rate, self.sampling_rate))
70 | audio_norm = audio / self.max_wav_value
71 | audio_norm = audio_norm.unsqueeze(0)
72 | spec_filename = filename.replace(".wav", ".spec.pt")
73 | if os.path.exists(spec_filename):
74 | spec = torch.load(spec_filename)
75 | else:
76 | spec = spectrogram_torch(audio_norm, self.filter_length,
77 | self.sampling_rate, self.hop_length, self.win_length,
78 | center=False)
79 | spec = torch.squeeze(spec, 0)
80 | torch.save(spec, spec_filename)
81 | return spec, audio_norm
82 |
83 | def get_text(self, text):
84 | if self.cleaned_text:
85 | text_norm = cleaned_text_to_sequence(text)
86 | else:
87 | text_norm = text_to_sequence(text, self.text_cleaners)
88 | if self.add_blank:
89 | text_norm = commons.intersperse(text_norm, 0)
90 | text_norm = torch.LongTensor(text_norm)
91 | return text_norm
92 |
93 | def __getitem__(self, index):
94 | return self.get_audio_text_pair(self.audiopaths_and_text[index])
95 |
96 | def __len__(self):
97 | return len(self.audiopaths_and_text)
98 |
99 |
100 | class TextAudioCollate():
101 | """ Zero-pads model inputs and targets
102 | """
103 | def __init__(self, return_ids=False):
104 | self.return_ids = return_ids
105 |
106 | def __call__(self, batch):
107 | """Collate's training batch from normalized text and aduio
108 | PARAMS
109 | ------
110 | batch: [text_normalized, spec_normalized, wav_normalized]
111 | """
112 | # Right zero-pad all one-hot text sequences to max input length
113 | _, ids_sorted_decreasing = torch.sort(
114 | torch.LongTensor([x[1].size(1) for x in batch]),
115 | dim=0, descending=True)
116 |
117 | max_text_len = max([len(x[0]) for x in batch])
118 | max_spec_len = max([x[1].size(1) for x in batch])
119 | max_wav_len = max([x[2].size(1) for x in batch])
120 |
121 | text_lengths = torch.LongTensor(len(batch))
122 | spec_lengths = torch.LongTensor(len(batch))
123 | wav_lengths = torch.LongTensor(len(batch))
124 |
125 | text_padded = torch.LongTensor(len(batch), max_text_len)
126 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
127 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
128 | text_padded.zero_()
129 | spec_padded.zero_()
130 | wav_padded.zero_()
131 | for i in range(len(ids_sorted_decreasing)):
132 | row = batch[ids_sorted_decreasing[i]]
133 |
134 | text = row[0]
135 | text_padded[i, :text.size(0)] = text
136 | text_lengths[i] = text.size(0)
137 |
138 | spec = row[1]
139 | spec_padded[i, :, :spec.size(1)] = spec
140 | spec_lengths[i] = spec.size(1)
141 |
142 | wav = row[2]
143 | wav_padded[i, :, :wav.size(1)] = wav
144 | wav_lengths[i] = wav.size(1)
145 |
146 | if self.return_ids:
147 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
148 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
149 |
150 |
151 | """Multi speaker version"""
152 | class TextAudioSpeakerLoader(torch.utils.data.Dataset):
153 | """
154 | 1) loads audio, speaker_id, text pairs
155 | 2) normalizes text and converts them to sequences of integers
156 | 3) computes spectrograms from audio files.
157 | """
158 | def __init__(self, audiopaths_sid_text, hparams):
159 | self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
160 | self.text_cleaners = hparams.text_cleaners
161 | self.max_wav_value = hparams.max_wav_value
162 | self.sampling_rate = hparams.sampling_rate
163 | self.filter_length = hparams.filter_length
164 | self.hop_length = hparams.hop_length
165 | self.win_length = hparams.win_length
166 | self.sampling_rate = hparams.sampling_rate
167 | self.data_path = hparams.data_path
168 | sids = []
169 | for info in self.audiopaths_sid_text:
170 | sids.append(info[2])
171 | self.sid_dict = self.create_speaker_table(sids)
172 |
173 | self.cleaned_text = getattr(hparams, "cleaned_text", False)
174 |
175 | self.add_blank = hparams.add_blank
176 | self.min_text_len = getattr(hparams, "min_text_len", 1)
177 | self.max_text_len = getattr(hparams, "max_text_len", 190)
178 |
179 |
180 | random.seed(1234)
181 | random.shuffle(self.audiopaths_sid_text)
182 | self._filter()
183 |
184 | def _filter(self):
185 | """
186 | Filter text & store spec lengths
187 | """
188 | # Store spectrogram lengths for Bucketing
189 | # wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
190 | # spec_length = wav_length // hop_length
191 |
192 | audiopaths_sid_text_new = []
193 | lengths = []
194 | for audiopath, text, sid in self.audiopaths_sid_text:
195 | audiopath = os.path.join(self.data_path, 'wav{}'.format(self.sampling_rate//1000), sid, '{}.wav'.format(audiopath))
196 | if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
197 | audiopaths_sid_text_new.append([audiopath, text, sid])
198 | lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
199 | self.audiopaths_sid_text = audiopaths_sid_text_new
200 | self.lengths = lengths
201 |
202 | def get_audio_text_speaker_pair(self, audiopath_sid_text):
203 | # separate filename, speaker_id and text
204 | audiopath, text, sid = audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2]
205 |
206 | # raise ValueError('sotp')
207 | text = self.get_text(text)
208 | spec, wav = self.get_audio(audiopath, sid)
209 | sid = self.get_sid(sid)
210 | return (text, spec, wav, sid)
211 |
212 | def get_audio(self, filename, sid):
213 | # filename = os.path.join(self.data_path, 'wav{}'.format(self.sampling_rate//1000), sid, '{}.wav'.format(filename))
214 | filename = os.path.join(self.data_path, 'wav{}'.format(self.sampling_rate//1000), sid, filename)
215 | audio, _ = librosa.load(filename, sr=None)
216 | audio = torch.from_numpy(audio)
217 | audio = audio.unsqueeze(0)
218 | spec_filename = filename.replace(".wav", ".spec.pt")
219 | if os.path.exists(spec_filename):
220 | spec = torch.load(spec_filename)
221 | else:
222 | spec = spectrogram_torch(audio, self.filter_length,
223 | self.sampling_rate, self.hop_length, self.win_length,
224 | center=False)
225 | spec = torch.squeeze(spec, 0)
226 | torch.save(spec, spec_filename)
227 | return spec, audio
228 |
229 | def get_text(self, text):
230 | # if self.cleaned_text:
231 | # text_norm = cleaned_text_to_sequence(text)
232 | # else:
233 | # text_norm = text_to_sequence(text, [])
234 | text_norm = text_to_sequence(text, [])
235 | if self.add_blank:
236 | text_norm = commons.intersperse(text_norm, 0)
237 | text_norm = torch.LongTensor(text_norm)
238 | return text_norm
239 |
240 | def get_sid(self, sid):
241 | sid = self.sid_dict[sid]
242 | sid = torch.LongTensor([int(sid)])
243 | return sid
244 |
245 | def create_speaker_table(self, sids):
246 | speaker_ids = np.sort(np.unique(sids))
247 | d = {speaker_ids[i]: i for i in range(len(speaker_ids))}
248 | return d
249 |
250 | def __getitem__(self, index):
251 | return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
252 |
253 | def __len__(self):
254 | return len(self.audiopaths_sid_text)
255 |
256 |
257 | class TextAudioSpeakerCollate():
258 | """ Zero-pads model inputs and targets
259 | """
260 | def __init__(self, return_ids=False):
261 | self.return_ids = return_ids
262 |
263 | def __call__(self, batch):
264 | """Collate's training batch from normalized text, audio and speaker identities
265 | PARAMS
266 | ------
267 | batch: [text_normalized, spec_normalized, wav_normalized, sid]
268 | """
269 | # Right zero-pad all one-hot text sequences to max input length
270 | _, ids_sorted_decreasing = torch.sort(
271 | torch.LongTensor([x[1].size(1) for x in batch]),
272 | dim=0, descending=True)
273 |
274 | max_text_len = max([len(x[0]) for x in batch])
275 | max_spec_len = max([x[1].size(1) for x in batch])
276 | max_wav_len = max([x[2].size(1) for x in batch])
277 |
278 | text_lengths = torch.LongTensor(len(batch))
279 | spec_lengths = torch.LongTensor(len(batch))
280 | wav_lengths = torch.LongTensor(len(batch))
281 | sid = torch.LongTensor(len(batch))
282 |
283 | text_padded = torch.LongTensor(len(batch), max_text_len)
284 | spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
285 | wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
286 | text_padded.zero_()
287 | spec_padded.zero_()
288 | wav_padded.zero_()
289 | for i in range(len(ids_sorted_decreasing)):
290 | row = batch[ids_sorted_decreasing[i]]
291 |
292 | text = row[0]
293 | text_padded[i, :text.size(0)] = text
294 | text_lengths[i] = text.size(0)
295 |
296 | spec = row[1]
297 | spec_padded[i, :, :spec.size(1)] = spec
298 | spec_lengths[i] = spec.size(1)
299 |
300 | wav = row[2]
301 | wav_padded[i, :, :wav.size(1)] = wav
302 | wav_lengths[i] = wav.size(1)
303 |
304 | sid[i] = row[3]
305 |
306 | if self.return_ids:
307 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
308 | return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
309 |
310 |
311 | class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
312 | """
313 | Maintain similar input lengths in a batch.
314 | Length groups are specified by boundaries.
315 | Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
316 |
317 | It removes samples which are not included in the boundaries.
318 | Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
319 | """
320 | def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
321 | super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
322 | self.lengths = dataset.lengths
323 | self.batch_size = batch_size
324 | self.boundaries = boundaries
325 |
326 | self.buckets, self.num_samples_per_bucket = self._create_buckets()
327 | self.total_size = sum(self.num_samples_per_bucket)
328 | self.num_samples = self.total_size // self.num_replicas
329 |
330 | def _create_buckets(self):
331 | buckets = [[] for _ in range(len(self.boundaries) - 1)]
332 | for i in range(len(self.lengths)):
333 | length = self.lengths[i]
334 | idx_bucket = self._bisect(length)
335 | if idx_bucket != -1:
336 | buckets[idx_bucket].append(i)
337 |
338 | for i in range(len(buckets) - 1, 0, -1):
339 | if len(buckets[i]) == 0:
340 | buckets.pop(i)
341 | self.boundaries.pop(i+1)
342 |
343 | num_samples_per_bucket = []
344 | for i in range(len(buckets)):
345 | len_bucket = len(buckets[i])
346 | total_batch_size = self.num_replicas * self.batch_size
347 | rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
348 | num_samples_per_bucket.append(len_bucket + rem)
349 | return buckets, num_samples_per_bucket
350 |
351 | def __iter__(self):
352 | # deterministically shuffle based on epoch
353 | g = torch.Generator()
354 | g.manual_seed(self.epoch)
355 |
356 | indices = []
357 | if self.shuffle:
358 | for bucket in self.buckets:
359 | indices.append(torch.randperm(len(bucket), generator=g).tolist())
360 | else:
361 | for bucket in self.buckets:
362 | indices.append(list(range(len(bucket))))
363 |
364 | batches = []
365 | for i in range(len(self.buckets)):
366 | bucket = self.buckets[i]
367 | len_bucket = len(bucket)
368 | ids_bucket = indices[i]
369 | num_samples_bucket = self.num_samples_per_bucket[i]
370 |
371 | # add extra samples to make it evenly divisible
372 | rem = num_samples_bucket - len_bucket
373 | ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
374 |
375 | # subsample
376 | ids_bucket = ids_bucket[self.rank::self.num_replicas]
377 |
378 | # batching
379 | for j in range(len(ids_bucket) // self.batch_size):
380 | batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
381 | batches.append(batch)
382 |
383 | if self.shuffle:
384 | batch_ids = torch.randperm(len(batches), generator=g).tolist()
385 | batches = [batches[i] for i in batch_ids]
386 | self.batches = batches
387 |
388 | assert len(self.batches) * self.batch_size == self.num_samples
389 | return iter(self.batches)
390 |
391 | def _bisect(self, x, lo=0, hi=None):
392 | if hi is None:
393 | hi = len(self.boundaries) - 1
394 |
395 | if hi > lo:
396 | mid = (hi + lo) // 2
397 | if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
398 | return mid
399 | elif x <= self.boundaries[mid]:
400 | return self._bisect(x, lo, mid)
401 | else:
402 | return self._bisect(x, mid + 1, hi)
403 | else:
404 | return -1
405 |
406 | def __len__(self):
407 | return self.num_samples // self.batch_size
408 |
--------------------------------------------------------------------------------
/img/Overview.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hcy71o/TransferTTS/bdee6576a034e02da2ac049fb65c198be89b375a/img/Overview.jpg
--------------------------------------------------------------------------------
/inference.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import math
4 | import torch
5 | from torch import nn
6 | from torch.nn import functional as F
7 | import librosa
8 | import argparse
9 |
10 | import commons
11 | import utils
12 | from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
13 | from models import SynthesizerTrn
14 | from text.symbols import symbols
15 | from text import text_to_sequence
16 | from mel_processing import spectrogram_torch, spec_to_mel_torch
17 |
18 | from scipy.io.wavfile import write
19 |
20 |
21 | def get_text(text, hps):
22 | text_norm = text_to_sequence(text, [])
23 | if hps.data.add_blank:
24 | text_norm = commons.intersperse(text_norm, 0)
25 | text_norm = torch.LongTensor(text_norm)
26 | return text_norm
27 |
28 | def main(args):
29 |
30 | hps = utils.get_hparams_from_file(args.config)
31 |
32 | net_g = SynthesizerTrn(
33 | len(symbols),
34 | hps.data.filter_length // 2 + 1,
35 | hps.train.segment_size // hps.data.hop_length,
36 | # n_speakers=hps.data.n_speakers, #* Few-shot
37 | n_speakers=0, #* Zero-shot
38 | **hps.model).cuda()
39 |
40 | _ = net_g.eval()
41 | _ = utils.load_checkpoint(args.checkpoint_path, net_g, None)
42 |
43 | audio, _ = librosa.load(args.ref_audio, sr=hps.data.sampling_rate)
44 | audio = torch.from_numpy(audio)
45 | audio = audio.unsqueeze(0)
46 | spec = spectrogram_torch(audio, hps.data.filter_length,
47 | hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
48 | center=False)
49 |
50 | spec = torch.squeeze(spec, 0)
51 | mel = spec_to_mel_torch(
52 | spec,
53 | hps.data.filter_length,
54 | hps.data.n_mel_channels,
55 | hps.data.sampling_rate,
56 | hps.data.mel_fmin,
57 | hps.data.mel_fmax)
58 |
59 | os.makedirs(args.save_path, exist_ok=True)
60 |
61 | stn_tst = get_text(args.text, hps)
62 |
63 | with torch.no_grad():
64 | x_tst = stn_tst.cuda().unsqueeze(0)
65 | x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
66 | sid = torch.LongTensor([4]).cuda()
67 | mel = mel.cuda()
68 | audio_gen = net_g.infer(x_tst, x_tst_lengths, mel.unsqueeze(0), sid=None, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
69 | output_file = os.path.join(args.save_path, '{}.wav'.format(args.text[:10]))
70 | ref_file = os.path.join(args.save_path, 'ref_of_{}.wav'.format(args.text[:10]))
71 |
72 | write(output_file, hps.data.sampling_rate, audio_gen)
73 | write(ref_file, hps.data.sampling_rate, audio[0].cpu().float().numpy())
74 |
75 | # audio = y_g_hat.squeeze()
76 | # audio = audio * MAX_WAV_VALUE
77 | # audio = audio.cpu().numpy().astype('int16')
78 |
79 | if __name__ == "__main__":
80 | parser = argparse.ArgumentParser()
81 | parser.add_argument("--checkpoint_path", type=str,
82 | default="logs/libritts_base/G_319000.pth")
83 | parser.add_argument('--config', default='configs/libritts.json')
84 | parser.add_argument("--save_path", type=str, default='wav_results/')
85 | parser.add_argument("--ref_audio", type=str, required=True,
86 | help="path to an reference speech audio sample")
87 | parser.add_argument("--text", type=str,
88 | help="raw text to synthesize", default = 'in being comparatively modern.')
89 |
90 | args = parser.parse_args()
91 |
92 | main(args)
--------------------------------------------------------------------------------
/libritts.py:
--------------------------------------------------------------------------------
1 | from multiprocessing.sharedctypes import Value
2 | from text import _clean_text
3 | import numpy as np
4 | import librosa
5 | import os
6 | from pathlib import Path
7 | from scipy.io.wavfile import write
8 | from joblib import Parallel, delayed
9 | from scipy.interpolate import interp1d
10 | import json
11 |
12 |
13 | def write_single(output_folder, wav_fname, resample_rate, top_db=None):
14 | data, sample_rate = librosa.load(wav_fname, sr=None)
15 | # trim audio
16 | if top_db is not None:
17 | trimmed, _ = librosa.effects.trim(data, top_db=top_db)
18 | else:
19 | trimmed = data
20 | # resample audio
21 | resampled = librosa.resample(trimmed, sample_rate, resample_rate)
22 | y = (resampled * 32767.0).astype(np.int16)
23 | wav_fname = wav_fname.split('/')[-1]
24 | target_wav_fname = os.path.join(output_folder, wav_fname)
25 |
26 | if not os.path.exists(output_folder):
27 | os.makedirs(output_folder, exist_ok=True)
28 |
29 | write(target_wav_fname, resample_rate, y)
30 |
31 | return y.shape[0] / float(resample_rate)
32 |
33 |
34 | def prepare_align_and_resample(data_dir, sr):
35 | wav_foder_names = ['train-clean-100', 'train-clean-360']
36 | wavs = []
37 | for wav_folder in wav_foder_names:
38 | wav_folder = os.path.join(data_dir, wav_folder)
39 | wav_fname_list = [str(f) for f in list(Path(wav_folder).rglob('*.wav'))]
40 |
41 | output_wavs_folder_name = 'wav{}'.format(sr//1000)
42 | output_wavs_folder = os.path.join(data_dir, output_wavs_folder_name)
43 | if not os.path.exists(output_wavs_folder):
44 | os.mkdir(output_wavs_folder)
45 |
46 | for wav_fname in wav_fname_list:
47 | _sid = wav_fname.split('/')[-3]
48 | output_folder = os.path.join(output_wavs_folder, _sid)
49 | wavs.append((output_folder, wav_fname))
50 |
51 | lengths = Parallel(n_jobs=10, verbose=1)(
52 | delayed(write_single)(wav[0], wav[1], sr) for wav in wavs
53 | )
--------------------------------------------------------------------------------
/losses.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import commons
5 |
6 |
7 | def feature_loss(fmap_r, fmap_g):
8 | loss = 0
9 | for dr, dg in zip(fmap_r, fmap_g):
10 | for rl, gl in zip(dr, dg):
11 | rl = rl.float().detach()
12 | gl = gl.float()
13 | loss += torch.mean(torch.abs(rl - gl))
14 |
15 | return loss * 2
16 |
17 |
18 | def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19 | loss = 0
20 | r_losses = []
21 | g_losses = []
22 | for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23 | dr = dr.float()
24 | dg = dg.float()
25 | r_loss = torch.mean((1-dr)**2)
26 | g_loss = torch.mean(dg**2)
27 | loss += (r_loss + g_loss)
28 | r_losses.append(r_loss.item())
29 | g_losses.append(g_loss.item())
30 |
31 | return loss, r_losses, g_losses
32 |
33 |
34 | def generator_loss(disc_outputs):
35 | loss = 0
36 | gen_losses = []
37 | for dg in disc_outputs:
38 | dg = dg.float()
39 | l = torch.mean((1-dg)**2)
40 | gen_losses.append(l)
41 | loss += l
42 |
43 | return loss, gen_losses
44 |
45 |
46 | def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47 | """
48 | z_p, logs_q: [b, h, t_t]
49 | m_p, logs_p: [b, h, t_t]
50 | """
51 | z_p = z_p.float()
52 | logs_q = logs_q.float()
53 | m_p = m_p.float()
54 | logs_p = logs_p.float()
55 | z_mask = z_mask.float()
56 |
57 | kl = logs_p - logs_q - 0.5
58 | kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59 | kl = torch.sum(kl * z_mask)
60 | l = kl / torch.sum(z_mask)
61 | return l
62 |
--------------------------------------------------------------------------------
/mel_processing.py:
--------------------------------------------------------------------------------
1 | import math
2 | import os
3 | import random
4 | import torch
5 | from torch import nn
6 | import torch.nn.functional as F
7 | import torch.utils.data
8 | import numpy as np
9 | import librosa
10 | import librosa.util as librosa_util
11 | from librosa.util import normalize, pad_center, tiny
12 | from scipy.signal import get_window
13 | from scipy.io.wavfile import read
14 | from librosa.filters import mel as librosa_mel_fn
15 |
16 | MAX_WAV_VALUE = 32768.0
17 |
18 |
19 | def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20 | """
21 | PARAMS
22 | ------
23 | C: compression factor
24 | """
25 | return torch.log(torch.clamp(x, min=clip_val) * C)
26 |
27 |
28 | def dynamic_range_decompression_torch(x, C=1):
29 | """
30 | PARAMS
31 | ------
32 | C: compression factor used to compress
33 | """
34 | return torch.exp(x) / C
35 |
36 |
37 | def spectral_normalize_torch(magnitudes):
38 | output = dynamic_range_compression_torch(magnitudes)
39 | return output
40 |
41 |
42 | def spectral_de_normalize_torch(magnitudes):
43 | output = dynamic_range_decompression_torch(magnitudes)
44 | return output
45 |
46 |
47 | mel_basis = {}
48 | hann_window = {}
49 |
50 |
51 | def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52 | if torch.min(y) < -1.:
53 | print('min value is ', torch.min(y))
54 | if torch.max(y) > 1.:
55 | print('max value is ', torch.max(y))
56 |
57 | global hann_window
58 | dtype_device = str(y.dtype) + '_' + str(y.device)
59 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
60 | if wnsize_dtype_device not in hann_window:
61 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
63 | y = y.squeeze(1)
64 |
65 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
66 | center=center, pad_mode='reflect', normalized=False, onesided=True)
67 |
68 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
69 | return spec
70 |
71 |
72 | def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
73 | global mel_basis
74 | dtype_device = str(spec.dtype) + '_' + str(spec.device)
75 | fmax_dtype_device = str(fmax) + '_' + dtype_device
76 | if fmax_dtype_device not in mel_basis:
77 | mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
78 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
79 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
80 | spec = spectral_normalize_torch(spec)
81 |
82 | return spec
83 |
84 |
85 | def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86 | if torch.min(y) < -1.:
87 | print('min value is ', torch.min(y))
88 | if torch.max(y) > 1.:
89 | print('max value is ', torch.max(y))
90 |
91 | global mel_basis, hann_window
92 | dtype_device = str(y.dtype) + '_' + str(y.device)
93 | fmax_dtype_device = str(fmax) + '_' + dtype_device
94 | wnsize_dtype_device = str(win_size) + '_' + dtype_device
95 | if fmax_dtype_device not in mel_basis:
96 | mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
97 | mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98 | if wnsize_dtype_device not in hann_window:
99 | hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100 |
101 | y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102 | y = y.squeeze(1)
103 |
104 | spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105 | center=center, pad_mode='reflect', normalized=False, onesided=True)
106 |
107 | spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108 |
109 | spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110 | spec = spectral_normalize_torch(spec)
111 |
112 | return spec
113 |
--------------------------------------------------------------------------------
/models.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import torch
4 | from torch import nn
5 | from torch.nn import functional as F
6 |
7 | import commons
8 | import modules
9 | import attentions
10 | import monotonic_align
11 |
12 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13 | from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14 | from commons import init_weights, get_padding
15 |
16 | class StochasticDurationPredictor(nn.Module):
17 | def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
18 | super().__init__()
19 | filter_channels = in_channels # it needs to be removed from future version.
20 | self.in_channels = in_channels
21 | self.filter_channels = filter_channels
22 | self.kernel_size = kernel_size
23 | self.p_dropout = p_dropout
24 | self.n_flows = n_flows
25 | self.gin_channels = gin_channels
26 |
27 | self.log_flow = modules.Log()
28 | self.flows = nn.ModuleList()
29 | self.flows.append(modules.ElementwiseAffine(2))
30 | for i in range(n_flows):
31 | self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
32 | self.flows.append(modules.Flip())
33 |
34 | self.post_pre = nn.Conv1d(1, filter_channels, 1)
35 | self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
36 | self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
37 | self.post_flows = nn.ModuleList()
38 | self.post_flows.append(modules.ElementwiseAffine(2))
39 | for i in range(4):
40 | self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
41 | self.post_flows.append(modules.Flip())
42 |
43 | self.pre = nn.Conv1d(in_channels, filter_channels, 1)
44 | self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
45 | self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
46 | # if gin_channels != 0:
47 | # self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
48 |
49 | def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
50 | x = torch.detach(x)
51 | x = self.pre(x)
52 | # if g is not None:
53 | # g = torch.detach(g)
54 | # x = x + self.cond(g)
55 | x = self.convs(x, x_mask)
56 | x = self.proj(x) * x_mask
57 |
58 | if not reverse:
59 | flows = self.flows
60 | assert w is not None
61 |
62 | logdet_tot_q = 0
63 | h_w = self.post_pre(w)
64 | h_w = self.post_convs(h_w, x_mask)
65 | h_w = self.post_proj(h_w) * x_mask
66 | e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
67 | z_q = e_q
68 | for flow in self.post_flows:
69 | z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
70 | logdet_tot_q += logdet_q
71 | z_u, z1 = torch.split(z_q, [1, 1], 1)
72 | u = torch.sigmoid(z_u) * x_mask
73 | z0 = (w - u) * x_mask
74 | logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
75 | logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
76 |
77 | logdet_tot = 0
78 | z0, logdet = self.log_flow(z0, x_mask)
79 | logdet_tot += logdet
80 | z = torch.cat([z0, z1], 1)
81 | for flow in flows:
82 | z, logdet = flow(z, x_mask, g=x, reverse=reverse)
83 | logdet_tot = logdet_tot + logdet
84 | nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
85 | return nll + logq # [b]
86 | else:
87 | flows = list(reversed(self.flows))
88 | flows = flows[:-2] + [flows[-1]] # remove a useless vflow
89 | z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
90 | for flow in flows:
91 | z = flow(z, x_mask, g=x, reverse=reverse)
92 | z0, z1 = torch.split(z, [1, 1], 1)
93 | logw = z0
94 | return logw
95 |
96 |
97 | class DurationPredictor(nn.Module):
98 | def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
99 | super().__init__()
100 |
101 | self.in_channels = in_channels
102 | self.filter_channels = filter_channels
103 | self.kernel_size = kernel_size
104 | self.p_dropout = p_dropout
105 | self.gin_channels = gin_channels
106 |
107 | self.drop = nn.Dropout(p_dropout)
108 | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
109 | self.norm_1 = modules.LayerNorm(filter_channels)
110 | self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
111 | self.norm_2 = modules.LayerNorm(filter_channels)
112 | self.proj = nn.Conv1d(filter_channels, 1, 1)
113 |
114 | # if gin_channels != 0:
115 | # self.cond = nn.Conv1d(gin_channels, in_channels, 1)
116 |
117 | def forward(self, x, x_mask, g=None):
118 | x = torch.detach(x)
119 | if g is not None:
120 | g = torch.detach(g)
121 | x = x + self.cond(g)
122 | x = self.conv_1(x * x_mask)
123 | x = torch.relu(x)
124 | x = self.norm_1(x)
125 | x = self.drop(x)
126 | x = self.conv_2(x * x_mask)
127 | x = torch.relu(x)
128 | x = self.norm_2(x)
129 | x = self.drop(x)
130 | x = self.proj(x * x_mask)
131 | return x * x_mask
132 |
133 |
134 | class TextEncoder(nn.Module):
135 | def __init__(self,
136 | n_vocab,
137 | out_channels,
138 | hidden_channels,
139 | filter_channels,
140 | n_heads,
141 | n_layers,
142 | kernel_size,
143 | p_dropout):
144 | super().__init__()
145 | self.n_vocab = n_vocab
146 | self.out_channels = out_channels
147 | self.hidden_channels = hidden_channels
148 | self.filter_channels = filter_channels
149 | self.n_heads = n_heads
150 | self.n_layers = n_layers
151 | self.kernel_size = kernel_size
152 | self.p_dropout = p_dropout
153 |
154 | self.emb = nn.Embedding(n_vocab, hidden_channels)
155 | nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
156 |
157 | self.encoder = attentions.Encoder(
158 | hidden_channels,
159 | filter_channels,
160 | n_heads,
161 | n_layers,
162 | kernel_size,
163 | p_dropout)
164 | self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
165 |
166 | def forward(self, x, x_lengths):
167 | x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
168 | x = torch.transpose(x, 1, -1) # [b, h, t]
169 | x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
170 |
171 | x = self.encoder(x * x_mask, x_mask)
172 | stats = self.proj(x) * x_mask
173 |
174 | m, logs = torch.split(stats, self.out_channels, dim=1)
175 | return x, m, logs, x_mask
176 |
177 |
178 | class ResidualCouplingBlock(nn.Module):
179 | def __init__(self,
180 | channels,
181 | hidden_channels,
182 | kernel_size,
183 | dilation_rate,
184 | n_layers,
185 | n_flows=4,
186 | gin_channels=0):
187 | super().__init__()
188 | self.channels = channels
189 | self.hidden_channels = hidden_channels
190 | self.kernel_size = kernel_size
191 | self.dilation_rate = dilation_rate
192 | self.n_layers = n_layers
193 | self.n_flows = n_flows
194 | self.gin_channels = gin_channels
195 |
196 | self.flows = nn.ModuleList()
197 | for i in range(n_flows):
198 | self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
199 | self.flows.append(modules.Flip())
200 |
201 | def forward(self, x, x_mask, g=None, reverse=False):
202 | if not reverse:
203 | for flow in self.flows:
204 | x, _ = flow(x, x_mask, g=g, reverse=reverse)
205 | else:
206 | for flow in reversed(self.flows):
207 | x = flow(x, x_mask, g=g, reverse=reverse)
208 | return x
209 |
210 |
211 | class PosteriorEncoder(nn.Module):
212 | def __init__(self,
213 | in_channels,
214 | out_channels,
215 | hidden_channels,
216 | kernel_size,
217 | dilation_rate,
218 | n_layers,
219 | gin_channels=0):
220 | super().__init__()
221 | self.in_channels = in_channels
222 | self.out_channels = out_channels
223 | self.hidden_channels = hidden_channels
224 | self.kernel_size = kernel_size
225 | self.dilation_rate = dilation_rate
226 | self.n_layers = n_layers
227 | self.gin_channels = gin_channels
228 |
229 | self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
230 | self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
231 | self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
232 |
233 | def forward(self, x, x_lengths, g=None):
234 | x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
235 | x = self.pre(x)
236 | x = x * x_mask
237 | x = self.enc(x, x_mask, g=g)
238 | stats = self.proj(x) * x_mask
239 | m, logs = torch.split(stats, self.out_channels, dim=1)
240 | z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
241 | return z, m, logs, x_mask
242 |
243 |
244 | class Generator(torch.nn.Module):
245 | def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
246 | super(Generator, self).__init__()
247 | self.num_kernels = len(resblock_kernel_sizes)
248 | self.num_upsamples = len(upsample_rates)
249 | self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
250 | resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
251 |
252 | self.ups = nn.ModuleList()
253 | for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
254 | self.ups.append(weight_norm(
255 | ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
256 | k, u, padding=(k-u)//2)))
257 |
258 | self.resblocks = nn.ModuleList()
259 | for i in range(len(self.ups)):
260 | ch = upsample_initial_channel//(2**(i+1))
261 | for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
262 | self.resblocks.append(resblock(ch, k, d))
263 |
264 | self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
265 | self.ups.apply(init_weights)
266 |
267 | # if gin_channels != 0:
268 | # self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
269 |
270 | def forward(self, x, g=None):
271 | x = self.conv_pre(x)
272 | if g is not None:
273 | x = x + self.cond(g)
274 |
275 | for i in range(self.num_upsamples):
276 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
277 | x = self.ups[i](x)
278 | xs = None
279 | for j in range(self.num_kernels):
280 | if xs is None:
281 | xs = self.resblocks[i*self.num_kernels+j](x)
282 | else:
283 | xs += self.resblocks[i*self.num_kernels+j](x)
284 | x = xs / self.num_kernels
285 | x = F.leaky_relu(x)
286 | x = self.conv_post(x)
287 | x = torch.tanh(x)
288 |
289 | return x
290 |
291 | def remove_weight_norm(self):
292 | print('Removing weight norm...')
293 | for l in self.ups:
294 | remove_weight_norm(l)
295 | for l in self.resblocks:
296 | l.remove_weight_norm()
297 |
298 |
299 | class DiscriminatorP(torch.nn.Module):
300 | def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
301 | super(DiscriminatorP, self).__init__()
302 | self.period = period
303 | self.use_spectral_norm = use_spectral_norm
304 | norm_f = weight_norm if use_spectral_norm == False else spectral_norm
305 | self.convs = nn.ModuleList([
306 | norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
307 | norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
308 | norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
309 | norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
310 | norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
311 | ])
312 | self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
313 |
314 | def forward(self, x):
315 | fmap = []
316 |
317 | # 1d to 2d
318 | b, c, t = x.shape
319 | if t % self.period != 0: # pad first
320 | n_pad = self.period - (t % self.period)
321 | x = F.pad(x, (0, n_pad), "reflect")
322 | t = t + n_pad
323 | x = x.view(b, c, t // self.period, self.period)
324 |
325 | for l in self.convs:
326 | x = l(x)
327 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
328 | fmap.append(x)
329 | x = self.conv_post(x)
330 | fmap.append(x)
331 | x = torch.flatten(x, 1, -1)
332 |
333 | return x, fmap
334 |
335 |
336 | class DiscriminatorS(torch.nn.Module):
337 | def __init__(self, use_spectral_norm=False):
338 | super(DiscriminatorS, self).__init__()
339 | norm_f = weight_norm if use_spectral_norm == False else spectral_norm
340 | self.convs = nn.ModuleList([
341 | norm_f(Conv1d(1, 16, 15, 1, padding=7)),
342 | norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
343 | norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
344 | norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
345 | norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
346 | norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
347 | ])
348 | self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
349 |
350 | def forward(self, x):
351 | fmap = []
352 |
353 | for l in self.convs:
354 | x = l(x)
355 | x = F.leaky_relu(x, modules.LRELU_SLOPE)
356 | fmap.append(x)
357 | x = self.conv_post(x)
358 | fmap.append(x)
359 | x = torch.flatten(x, 1, -1)
360 |
361 | return x, fmap
362 |
363 |
364 | class MultiPeriodDiscriminator(torch.nn.Module):
365 | def __init__(self, use_spectral_norm=False):
366 | super(MultiPeriodDiscriminator, self).__init__()
367 | periods = [2,3,5,7,11]
368 |
369 | discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
370 | discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
371 | self.discriminators = nn.ModuleList(discs)
372 |
373 | def forward(self, y, y_hat):
374 | y_d_rs = []
375 | y_d_gs = []
376 | fmap_rs = []
377 | fmap_gs = []
378 | for i, d in enumerate(self.discriminators):
379 | y_d_r, fmap_r = d(y)
380 | y_d_g, fmap_g = d(y_hat)
381 | y_d_rs.append(y_d_r)
382 | y_d_gs.append(y_d_g)
383 | fmap_rs.append(fmap_r)
384 | fmap_gs.append(fmap_g)
385 |
386 | return y_d_rs, y_d_gs, fmap_rs, fmap_gs
387 |
388 |
389 |
390 | class SynthesizerTrn(nn.Module):
391 | """
392 | Synthesizer for Training
393 | """
394 |
395 | def __init__(self,
396 | n_vocab,
397 | spec_channels,
398 | segment_size,
399 | inter_channels,
400 | hidden_channels,
401 | filter_channels,
402 | n_heads,
403 | n_layers,
404 | kernel_size,
405 | p_dropout,
406 | resblock,
407 | resblock_kernel_sizes,
408 | resblock_dilation_sizes,
409 | upsample_rates,
410 | upsample_initial_channel,
411 | upsample_kernel_sizes,
412 | n_speakers=0,
413 | gin_channels=0,
414 | use_sdp=True,
415 | **kwargs):
416 |
417 | super().__init__()
418 | self.n_vocab = n_vocab
419 | self.spec_channels = spec_channels
420 | self.inter_channels = inter_channels
421 | self.hidden_channels = hidden_channels
422 | self.filter_channels = filter_channels
423 | self.n_heads = n_heads
424 | self.n_layers = n_layers
425 | self.kernel_size = kernel_size
426 | self.p_dropout = p_dropout
427 | self.resblock = resblock
428 | self.resblock_kernel_sizes = resblock_kernel_sizes
429 | self.resblock_dilation_sizes = resblock_dilation_sizes
430 | self.upsample_rates = upsample_rates
431 | self.upsample_initial_channel = upsample_initial_channel
432 | self.upsample_kernel_sizes = upsample_kernel_sizes
433 | self.segment_size = segment_size
434 | self.n_speakers = n_speakers
435 | self.gin_channels = gin_channels
436 |
437 | self.use_sdp = use_sdp
438 |
439 | self.enc_p = TextEncoder(n_vocab,
440 | inter_channels,
441 | hidden_channels,
442 | filter_channels,
443 | n_heads,
444 | n_layers,
445 | kernel_size,
446 | p_dropout)
447 | self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
448 | self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
449 | self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
450 | self.style_encoder = MelStyleEncoder()
451 | if use_sdp:
452 | self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
453 | else:
454 | self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
455 |
456 | if n_speakers > 1:
457 | self.emb_g = nn.Embedding(n_speakers, gin_channels)
458 |
459 | def forward(self, x, x_lengths, mel, y, y_lengths, sid=None):
460 | '''
461 | set g = None for posterior enc, sdp(dp), vocoder except flow
462 | '''
463 | x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
464 | if self.n_speakers > 0:
465 | g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
466 | else:
467 | g = None
468 | #* g: (8,256,1)
469 | # z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
470 | z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=None)
471 | #* y_mask:(8,1,262)
472 | # z_p = self.flow(z, y_mask, g=g)
473 | #* Zero-shot
474 | style_vector = self.style_encoder(mel.transpose(1,2), (y_mask.int()==0).squeeze(1))
475 | z_p = self.flow(z, y_mask, g=style_vector.unsqueeze(-1))
476 |
477 | with torch.no_grad():
478 | # negative cross-entropy
479 | s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
480 | neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
481 | neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
482 | neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
483 | neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
484 | neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
485 |
486 | attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
487 | attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
488 |
489 | w = attn.sum(2)
490 | if self.use_sdp:
491 | # l_length = self.dp(x, x_mask, w, g=g)
492 | l_length = self.dp(x, x_mask, w, g=None)
493 | l_length = l_length / torch.sum(x_mask)
494 | else:
495 | logw_ = torch.log(w + 1e-6) * x_mask
496 | # logw = self.dp(x, x_mask, g=g)
497 | logw = self.dp(x, x_mask, g=None)
498 | l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
499 |
500 | # expand prior
501 | m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
502 | logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
503 |
504 | z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
505 | # o = self.dec(z_slice, g=g)
506 | o = self.dec(z_slice, g=None)
507 | return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
508 |
509 | def infer(self, x, x_lengths, mel, mel_lengths = None, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
510 | x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
511 | if self.n_speakers > 0:
512 | g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
513 | else:
514 | g = None
515 |
516 | if self.use_sdp:
517 | # logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
518 | logw = self.dp(x, x_mask, g=None, reverse=True, noise_scale=noise_scale_w)
519 | else:
520 | # logw = self.dp(x, x_mask, g=g)
521 | logw = self.dp(x, x_mask, g=None)
522 | w = torch.exp(logw) * x_mask * length_scale
523 | w_ceil = torch.ceil(w)
524 | y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
525 | y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
526 |
527 | attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
528 | attn = commons.generate_path(w_ceil, attn_mask)
529 |
530 | m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
531 | logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
532 |
533 | z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
534 | #* used for mel style encoder
535 | if mel_lengths is not None:
536 | style_mask = torch.unsqueeze(commons.sequence_mask(mel_lengths, mel.size(2)), 1).to(x.dtype)
537 | style_vector = self.style_encoder(mel.transpose(1,2), (style_mask.int()==0).squeeze(1))
538 | else:
539 | style_vector = self.style_encoder(mel.transpose(1,2), None)
540 | # z = self.flow(z_p, y_mask, g=g, reverse=True)
541 | z = self.flow(z_p, y_mask, g=style_vector.unsqueeze(-1), reverse=True)
542 | # o = self.dec((z * y_mask)[:,:,:max_len], g=g)
543 | o = self.dec((z * y_mask)[:,:,:max_len], g=None)
544 | return o, attn, y_mask, (z, z_p, m_p, logs_p)
545 |
546 | def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
547 | assert self.n_speakers > 0, "n_speakers have to be larger than 0."
548 | g_src = self.emb_g(sid_src).unsqueeze(-1)
549 | g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
550 | z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
551 | z_p = self.flow(z, y_mask, g=g_src)
552 | z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
553 | o_hat = self.dec(z_hat * y_mask, g=g_tgt)
554 | return o_hat, y_mask, (z, z_p, z_hat)
555 |
556 | class MelStyleEncoder(nn.Module):
557 | ''' MelStyleEncoder '''
558 | def __init__(self, n_mel_channels=80,
559 | style_hidden=128,
560 | style_vector_dim=256,
561 | style_kernel_size=5,
562 | style_head=2,
563 | dropout=0.1):
564 | super(MelStyleEncoder, self).__init__()
565 | self.in_dim = n_mel_channels
566 | self.hidden_dim = style_hidden
567 | self.out_dim = style_vector_dim
568 | self.kernel_size = style_kernel_size
569 | self.n_head = style_head
570 | self.dropout = dropout
571 |
572 | self.spectral = nn.Sequential(
573 | modules.LinearNorm(self.in_dim, self.hidden_dim),
574 | modules.Mish(),
575 | nn.Dropout(self.dropout),
576 | modules.LinearNorm(self.hidden_dim, self.hidden_dim),
577 | modules.Mish(),
578 | nn.Dropout(self.dropout)
579 | )
580 |
581 | self.temporal = nn.Sequential(
582 | modules.Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
583 | modules.Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
584 | )
585 |
586 | self.slf_attn = modules.MultiHeadAttention(self.n_head, self.hidden_dim,
587 | self.hidden_dim//self.n_head, self.hidden_dim//self.n_head, self.dropout)
588 |
589 | self.fc = modules.LinearNorm(self.hidden_dim, self.out_dim)
590 |
591 | def temporal_avg_pool(self, x, mask=None):
592 | if mask is None:
593 | out = torch.mean(x, dim=1)
594 | else:
595 | len_ = (~mask).sum(dim=1).unsqueeze(1)
596 | x = x.masked_fill(mask.unsqueeze(-1), 0)
597 | x = x.sum(dim=1)
598 | out = torch.div(x, len_)
599 | return out
600 |
601 | def forward(self, x, mask=None):
602 | max_len = x.shape[1]
603 | slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
604 |
605 | # spectral
606 | x = self.spectral(x)
607 | # temporal
608 | x = x.transpose(1,2)
609 | x = self.temporal(x)
610 | x = x.transpose(1,2)
611 | # self-attention
612 | if mask is not None:
613 | x = x.masked_fill(mask.unsqueeze(-1), 0)
614 | x, _ = self.slf_attn(x, mask=slf_attn_mask)
615 | # fc
616 | x = self.fc(x)
617 | # temoral average pooling
618 | w = self.temporal_avg_pool(x, mask=mask)
619 |
620 | return w
621 |
--------------------------------------------------------------------------------
/modules.py:
--------------------------------------------------------------------------------
1 | import copy
2 | import math
3 | import numpy as np
4 | import scipy
5 | import torch
6 | from torch import nn
7 | from torch.nn import functional as F
8 |
9 | from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10 | from torch.nn.utils import weight_norm, remove_weight_norm
11 |
12 | import commons
13 | from commons import init_weights, get_padding
14 | from transforms import piecewise_rational_quadratic_transform
15 |
16 |
17 | LRELU_SLOPE = 0.1
18 |
19 |
20 | class LayerNorm(nn.Module):
21 | def __init__(self, channels, eps=1e-5):
22 | super().__init__()
23 | self.channels = channels
24 | self.eps = eps
25 |
26 | self.gamma = nn.Parameter(torch.ones(channels))
27 | self.beta = nn.Parameter(torch.zeros(channels))
28 |
29 | def forward(self, x):
30 | x = x.transpose(1, -1)
31 | x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32 | return x.transpose(1, -1)
33 |
34 |
35 | class ConvReluNorm(nn.Module):
36 | def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37 | super().__init__()
38 | self.in_channels = in_channels
39 | self.hidden_channels = hidden_channels
40 | self.out_channels = out_channels
41 | self.kernel_size = kernel_size
42 | self.n_layers = n_layers
43 | self.p_dropout = p_dropout
44 | assert n_layers > 1, "Number of layers should be larger than 0."
45 |
46 | self.conv_layers = nn.ModuleList()
47 | self.norm_layers = nn.ModuleList()
48 | self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49 | self.norm_layers.append(LayerNorm(hidden_channels))
50 | self.relu_drop = nn.Sequential(
51 | nn.ReLU(),
52 | nn.Dropout(p_dropout))
53 | for _ in range(n_layers-1):
54 | self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55 | self.norm_layers.append(LayerNorm(hidden_channels))
56 | self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57 | self.proj.weight.data.zero_()
58 | self.proj.bias.data.zero_()
59 |
60 | def forward(self, x, x_mask):
61 | x_org = x
62 | for i in range(self.n_layers):
63 | x = self.conv_layers[i](x * x_mask)
64 | x = self.norm_layers[i](x)
65 | x = self.relu_drop(x)
66 | x = x_org + self.proj(x)
67 | return x * x_mask
68 |
69 |
70 | class DDSConv(nn.Module):
71 | """
72 | Dialted and Depth-Separable Convolution
73 | """
74 | def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75 | super().__init__()
76 | self.channels = channels
77 | self.kernel_size = kernel_size
78 | self.n_layers = n_layers
79 | self.p_dropout = p_dropout
80 |
81 | self.drop = nn.Dropout(p_dropout)
82 | self.convs_sep = nn.ModuleList()
83 | self.convs_1x1 = nn.ModuleList()
84 | self.norms_1 = nn.ModuleList()
85 | self.norms_2 = nn.ModuleList()
86 | for i in range(n_layers):
87 | dilation = kernel_size ** i
88 | padding = (kernel_size * dilation - dilation) // 2
89 | self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90 | groups=channels, dilation=dilation, padding=padding
91 | ))
92 | self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93 | self.norms_1.append(LayerNorm(channels))
94 | self.norms_2.append(LayerNorm(channels))
95 |
96 | def forward(self, x, x_mask, g=None):
97 | if g is not None:
98 | x = x + g
99 | for i in range(self.n_layers):
100 | y = self.convs_sep[i](x * x_mask)
101 | y = self.norms_1[i](y)
102 | y = F.gelu(y)
103 | y = self.convs_1x1[i](y)
104 | y = self.norms_2[i](y)
105 | y = F.gelu(y)
106 | y = self.drop(y)
107 | x = x + y
108 | return x * x_mask
109 |
110 |
111 | class WN(torch.nn.Module):
112 | def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113 | super(WN, self).__init__()
114 | assert(kernel_size % 2 == 1)
115 | self.hidden_channels =hidden_channels
116 | self.kernel_size = kernel_size,
117 | self.dilation_rate = dilation_rate
118 | self.n_layers = n_layers
119 | self.gin_channels = gin_channels
120 | self.p_dropout = p_dropout
121 |
122 | self.in_layers = torch.nn.ModuleList()
123 | self.res_skip_layers = torch.nn.ModuleList()
124 | self.drop = nn.Dropout(p_dropout)
125 |
126 | if gin_channels != 0:
127 | cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128 | self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129 |
130 | for i in range(n_layers):
131 | dilation = dilation_rate ** i
132 | padding = int((kernel_size * dilation - dilation) / 2)
133 | in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134 | dilation=dilation, padding=padding)
135 | in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136 | self.in_layers.append(in_layer)
137 |
138 | # last one is not necessary
139 | if i < n_layers - 1:
140 | res_skip_channels = 2 * hidden_channels
141 | else:
142 | res_skip_channels = hidden_channels
143 |
144 | res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145 | res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146 | self.res_skip_layers.append(res_skip_layer)
147 |
148 | def forward(self, x, x_mask, g=None, **kwargs):
149 | output = torch.zeros_like(x)
150 | n_channels_tensor = torch.IntTensor([self.hidden_channels])
151 |
152 | if g is not None:
153 | g = self.cond_layer(g)
154 |
155 | for i in range(self.n_layers):
156 | x_in = self.in_layers[i](x)
157 | if g is not None:
158 | cond_offset = i * 2 * self.hidden_channels
159 | g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160 | else:
161 | g_l = torch.zeros_like(x_in)
162 |
163 | acts = commons.fused_add_tanh_sigmoid_multiply(
164 | x_in,
165 | g_l,
166 | n_channels_tensor)
167 | acts = self.drop(acts)
168 |
169 | res_skip_acts = self.res_skip_layers[i](acts)
170 | if i < self.n_layers - 1:
171 | res_acts = res_skip_acts[:,:self.hidden_channels,:]
172 | x = (x + res_acts) * x_mask
173 | output = output + res_skip_acts[:,self.hidden_channels:,:]
174 | else:
175 | output = output + res_skip_acts
176 | return output * x_mask
177 |
178 | def remove_weight_norm(self):
179 | if self.gin_channels != 0:
180 | torch.nn.utils.remove_weight_norm(self.cond_layer)
181 | for l in self.in_layers:
182 | torch.nn.utils.remove_weight_norm(l)
183 | for l in self.res_skip_layers:
184 | torch.nn.utils.remove_weight_norm(l)
185 |
186 |
187 | class ResBlock1(torch.nn.Module):
188 | def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189 | super(ResBlock1, self).__init__()
190 | self.convs1 = nn.ModuleList([
191 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192 | padding=get_padding(kernel_size, dilation[0]))),
193 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194 | padding=get_padding(kernel_size, dilation[1]))),
195 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196 | padding=get_padding(kernel_size, dilation[2])))
197 | ])
198 | self.convs1.apply(init_weights)
199 |
200 | self.convs2 = nn.ModuleList([
201 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202 | padding=get_padding(kernel_size, 1))),
203 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204 | padding=get_padding(kernel_size, 1))),
205 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206 | padding=get_padding(kernel_size, 1)))
207 | ])
208 | self.convs2.apply(init_weights)
209 |
210 | def forward(self, x, x_mask=None):
211 | for c1, c2 in zip(self.convs1, self.convs2):
212 | xt = F.leaky_relu(x, LRELU_SLOPE)
213 | if x_mask is not None:
214 | xt = xt * x_mask
215 | xt = c1(xt)
216 | xt = F.leaky_relu(xt, LRELU_SLOPE)
217 | if x_mask is not None:
218 | xt = xt * x_mask
219 | xt = c2(xt)
220 | x = xt + x
221 | if x_mask is not None:
222 | x = x * x_mask
223 | return x
224 |
225 | def remove_weight_norm(self):
226 | for l in self.convs1:
227 | remove_weight_norm(l)
228 | for l in self.convs2:
229 | remove_weight_norm(l)
230 |
231 |
232 | class ResBlock2(torch.nn.Module):
233 | def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234 | super(ResBlock2, self).__init__()
235 | self.convs = nn.ModuleList([
236 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237 | padding=get_padding(kernel_size, dilation[0]))),
238 | weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239 | padding=get_padding(kernel_size, dilation[1])))
240 | ])
241 | self.convs.apply(init_weights)
242 |
243 | def forward(self, x, x_mask=None):
244 | for c in self.convs:
245 | xt = F.leaky_relu(x, LRELU_SLOPE)
246 | if x_mask is not None:
247 | xt = xt * x_mask
248 | xt = c(xt)
249 | x = xt + x
250 | if x_mask is not None:
251 | x = x * x_mask
252 | return x
253 |
254 | def remove_weight_norm(self):
255 | for l in self.convs:
256 | remove_weight_norm(l)
257 |
258 |
259 | class Log(nn.Module):
260 | def forward(self, x, x_mask, reverse=False, **kwargs):
261 | if not reverse:
262 | y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263 | logdet = torch.sum(-y, [1, 2])
264 | return y, logdet
265 | else:
266 | x = torch.exp(x) * x_mask
267 | return x
268 |
269 |
270 | class Flip(nn.Module):
271 | def forward(self, x, *args, reverse=False, **kwargs):
272 | x = torch.flip(x, [1])
273 | if not reverse:
274 | logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275 | return x, logdet
276 | else:
277 | return x
278 |
279 |
280 | class ElementwiseAffine(nn.Module):
281 | def __init__(self, channels):
282 | super().__init__()
283 | self.channels = channels
284 | self.m = nn.Parameter(torch.zeros(channels,1))
285 | self.logs = nn.Parameter(torch.zeros(channels,1))
286 |
287 | def forward(self, x, x_mask, reverse=False, **kwargs):
288 | if not reverse:
289 | y = self.m + torch.exp(self.logs) * x
290 | y = y * x_mask
291 | logdet = torch.sum(self.logs * x_mask, [1,2])
292 | return y, logdet
293 | else:
294 | x = (x - self.m) * torch.exp(-self.logs) * x_mask
295 | return x
296 |
297 |
298 | class ResidualCouplingLayer(nn.Module):
299 | def __init__(self,
300 | channels,
301 | hidden_channels,
302 | kernel_size,
303 | dilation_rate,
304 | n_layers,
305 | p_dropout=0,
306 | gin_channels=0,
307 | mean_only=False):
308 | assert channels % 2 == 0, "channels should be divisible by 2"
309 | super().__init__()
310 | self.channels = channels
311 | self.hidden_channels = hidden_channels
312 | self.kernel_size = kernel_size
313 | self.dilation_rate = dilation_rate
314 | self.n_layers = n_layers
315 | self.half_channels = channels // 2
316 | self.mean_only = mean_only
317 |
318 | self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319 | self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320 | self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321 | self.post.weight.data.zero_()
322 | self.post.bias.data.zero_()
323 |
324 | def forward(self, x, x_mask, g=None, reverse=False):
325 | x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326 | h = self.pre(x0) * x_mask
327 | h = self.enc(h, x_mask, g=g)
328 | stats = self.post(h) * x_mask
329 | if not self.mean_only:
330 | m, logs = torch.split(stats, [self.half_channels]*2, 1)
331 | else:
332 | m = stats
333 | logs = torch.zeros_like(m)
334 |
335 | if not reverse:
336 | x1 = m + x1 * torch.exp(logs) * x_mask
337 | x = torch.cat([x0, x1], 1)
338 | logdet = torch.sum(logs, [1,2])
339 | return x, logdet
340 | else:
341 | x1 = (x1 - m) * torch.exp(-logs) * x_mask
342 | x = torch.cat([x0, x1], 1)
343 | return x
344 |
345 |
346 | class ConvFlow(nn.Module):
347 | def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348 | super().__init__()
349 | self.in_channels = in_channels
350 | self.filter_channels = filter_channels
351 | self.kernel_size = kernel_size
352 | self.n_layers = n_layers
353 | self.num_bins = num_bins
354 | self.tail_bound = tail_bound
355 | self.half_channels = in_channels // 2
356 |
357 | self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358 | self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359 | self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360 | self.proj.weight.data.zero_()
361 | self.proj.bias.data.zero_()
362 |
363 | def forward(self, x, x_mask, g=None, reverse=False):
364 | x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365 | h = self.pre(x0)
366 | h = self.convs(h, x_mask, g=g)
367 | h = self.proj(h) * x_mask
368 |
369 | b, c, t = x0.shape
370 | h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371 |
372 | unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373 | unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374 | unnormalized_derivatives = h[..., 2 * self.num_bins:]
375 |
376 | x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377 | unnormalized_widths,
378 | unnormalized_heights,
379 | unnormalized_derivatives,
380 | inverse=reverse,
381 | tails='linear',
382 | tail_bound=self.tail_bound
383 | )
384 |
385 | x = torch.cat([x0, x1], 1) * x_mask
386 | logdet = torch.sum(logabsdet * x_mask, [1,2])
387 | if not reverse:
388 | return x, logdet
389 | else:
390 | return x
391 |
392 | class LinearNorm(nn.Module):
393 | def __init__(self,
394 | in_channels,
395 | out_channels,
396 | bias=True,
397 | spectral_norm=False,
398 | ):
399 | super(LinearNorm, self).__init__()
400 | self.fc = nn.Linear(in_channels, out_channels, bias)
401 |
402 | if spectral_norm:
403 | self.fc = nn.utils.spectral_norm(self.fc)
404 |
405 | def forward(self, input):
406 | out = self.fc(input)
407 | return out
408 |
409 | class Mish(nn.Module):
410 | def __init__(self):
411 | super(Mish, self).__init__()
412 | def forward(self, x):
413 | return x * torch.tanh(F.softplus(x))
414 |
415 | class Conv1dGLU(nn.Module):
416 | '''
417 | Conv1d + GLU(Gated Linear Unit) with residual connection.
418 | For GLU refer to https://arxiv.org/abs/1612.08083 paper.
419 | '''
420 | def __init__(self, in_channels, out_channels, kernel_size, dropout):
421 | super(Conv1dGLU, self).__init__()
422 | self.out_channels = out_channels
423 | self.conv1 = ConvNorm(in_channels, 2*out_channels, kernel_size=kernel_size)
424 | self.dropout = nn.Dropout(dropout)
425 |
426 | def forward(self, x):
427 | residual = x
428 | x = self.conv1(x)
429 | x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
430 | x = x1 * torch.sigmoid(x2)
431 | x = residual + self.dropout(x)
432 | return x
433 |
434 | class ConvNorm(nn.Module):
435 | def __init__(self,
436 | in_channels,
437 | out_channels,
438 | kernel_size=1,
439 | stride=1,
440 | padding=None,
441 | dilation=1,
442 | bias=True,
443 | spectral_norm=False,
444 | ):
445 | super(ConvNorm, self).__init__()
446 |
447 | if padding is None:
448 | assert(kernel_size % 2 == 1)
449 | padding = int(dilation * (kernel_size - 1) / 2)
450 |
451 | self.conv = torch.nn.Conv1d(in_channels,
452 | out_channels,
453 | kernel_size=kernel_size,
454 | stride=stride,
455 | padding=padding,
456 | dilation=dilation,
457 | bias=bias)
458 |
459 | if spectral_norm:
460 | self.conv = nn.utils.spectral_norm(self.conv)
461 |
462 | def forward(self, input):
463 | out = self.conv(input)
464 | return out
465 |
466 | class MultiHeadAttention(nn.Module):
467 | ''' Multi-Head Attention module '''
468 | def __init__(self, n_head, d_model, d_k, d_v, dropout=0., spectral_norm=False):
469 | super().__init__()
470 |
471 | self.n_head = n_head
472 | self.d_k = d_k
473 | self.d_v = d_v
474 |
475 | self.w_qs = nn.Linear(d_model, n_head * d_k)
476 | self.w_ks = nn.Linear(d_model, n_head * d_k)
477 | self.w_vs = nn.Linear(d_model, n_head * d_v)
478 |
479 | self.attention = ScaledDotProductAttention(temperature=np.power(d_model, 0.5), dropout=dropout)
480 |
481 | self.fc = nn.Linear(n_head * d_v, d_model)
482 | self.dropout = nn.Dropout(dropout)
483 |
484 | if spectral_norm:
485 | self.w_qs = nn.utils.spectral_norm(self.w_qs)
486 | self.w_ks = nn.utils.spectral_norm(self.w_ks)
487 | self.w_vs = nn.utils.spectral_norm(self.w_vs)
488 | self.fc = nn.utils.spectral_norm(self.fc)
489 |
490 | def forward(self, x, mask=None):
491 | d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
492 | sz_b, len_x, _ = x.size()
493 |
494 | residual = x
495 |
496 | q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
497 | k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
498 | v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
499 | q = q.permute(2, 0, 1, 3).contiguous().view(-1,
500 | len_x, d_k) # (n*b) x lq x dk
501 | k = k.permute(2, 0, 1, 3).contiguous().view(-1,
502 | len_x, d_k) # (n*b) x lk x dk
503 | v = v.permute(2, 0, 1, 3).contiguous().view(-1,
504 | len_x, d_v) # (n*b) x lv x dv
505 |
506 | if mask is not None:
507 | slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
508 | else:
509 | slf_mask = None
510 | output, attn = self.attention(q, k, v, mask=slf_mask)
511 |
512 | output = output.view(n_head, sz_b, len_x, d_v)
513 | output = output.permute(1, 2, 0, 3).contiguous().view(
514 | sz_b, len_x, -1) # b x lq x (n*dv)
515 |
516 | output = self.fc(output)
517 |
518 | output = self.dropout(output) + residual
519 | return output, attn
520 |
521 |
522 | class ScaledDotProductAttention(nn.Module):
523 | ''' Scaled Dot-Product Attention '''
524 |
525 | def __init__(self, temperature, dropout):
526 | super().__init__()
527 | self.temperature = temperature
528 | self.softmax = nn.Softmax(dim=2)
529 | self.dropout = nn.Dropout(dropout)
530 |
531 | def forward(self, q, k, v, mask=None):
532 |
533 | attn = torch.bmm(q, k.transpose(1, 2))
534 | attn = attn / self.temperature
535 |
536 | if mask is not None:
537 | attn = attn.masked_fill(mask, -np.inf)
538 |
539 | attn = self.softmax(attn)
540 | p_attn = self.dropout(attn)
541 |
542 | output = torch.bmm(p_attn, v)
543 | return output, attn
--------------------------------------------------------------------------------
/monotonic_align/__init__.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import torch
3 | from .monotonic_align.core import maximum_path_c
4 |
5 |
6 | def maximum_path(neg_cent, mask):
7 | """ Cython optimized version.
8 | neg_cent: [b, t_t, t_s]
9 | mask: [b, t_t, t_s]
10 | """
11 | device = neg_cent.device
12 | dtype = neg_cent.dtype
13 | neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14 | path = np.zeros(neg_cent.shape, dtype=np.int32)
15 |
16 | t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17 | t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18 | maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19 | return torch.from_numpy(path).to(device=device, dtype=dtype)
20 |
--------------------------------------------------------------------------------
/monotonic_align/core.pyx:
--------------------------------------------------------------------------------
1 | cimport cython
2 | from cython.parallel import prange
3 |
4 |
5 | @cython.boundscheck(False)
6 | @cython.wraparound(False)
7 | cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8 | cdef int x
9 | cdef int y
10 | cdef float v_prev
11 | cdef float v_cur
12 | cdef float tmp
13 | cdef int index = t_x - 1
14 |
15 | for y in range(t_y):
16 | for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17 | if x == y:
18 | v_cur = max_neg_val
19 | else:
20 | v_cur = value[y-1, x]
21 | if x == 0:
22 | if y == 0:
23 | v_prev = 0.
24 | else:
25 | v_prev = max_neg_val
26 | else:
27 | v_prev = value[y-1, x-1]
28 | value[y, x] += max(v_prev, v_cur)
29 |
30 | for y in range(t_y - 1, -1, -1):
31 | path[y, index] = 1
32 | if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33 | index = index - 1
34 |
35 |
36 | @cython.boundscheck(False)
37 | @cython.wraparound(False)
38 | cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39 | cdef int b = paths.shape[0]
40 | cdef int i
41 | for i in prange(b, nogil=True):
42 | maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
43 |
--------------------------------------------------------------------------------
/monotonic_align/setup.py:
--------------------------------------------------------------------------------
1 | from distutils.core import setup
2 | from Cython.Build import cythonize
3 | import numpy
4 |
5 | setup(
6 | name = 'monotonic_align',
7 | ext_modules = cythonize("core.pyx"),
8 | include_dirs=[numpy.get_include()]
9 | )
10 |
--------------------------------------------------------------------------------
/prepare_wav.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import libritts
3 |
4 | '''
5 | resample to 22050Hz, trim
6 | normalize txt
7 | save them as /LibriTTS/wav22/NAME.wav, /LibriTTS/wav22/NAME.txt
8 | '''
9 | def main(data_path, sr):
10 | libritts.prepare_align_and_resample(data_path, sr)
11 |
12 |
13 | if __name__ == "__main__":
14 | parser = argparse.ArgumentParser()
15 | parser.add_argument('--data_path', type=str, default='/home/hcy71/DATA/LibriTTS')
16 | parser.add_argument('--resample_rate', '-sr', type=int, default=22050)
17 |
18 | args = parser.parse_args()
19 |
20 | main(args.data_path, args.resample_rate)
21 |
--------------------------------------------------------------------------------
/preprocess.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import text
3 | from utils import load_filepaths_and_text
4 |
5 | if __name__ == '__main__':
6 | parser = argparse.ArgumentParser()
7 | parser.add_argument("--out_extension", default="cleaned")
8 | parser.add_argument("--text_index", default=1, type=int)
9 | parser.add_argument("--filelists", nargs="+", default=["filelists/ljs_audio_text_val_filelist.txt", "filelists/ljs_audio_text_test_filelist.txt"])
10 | parser.add_argument("--text_cleaners", nargs="+", default=["english_cleaners2"])
11 |
12 | args = parser.parse_args()
13 |
14 |
15 | for filelist in args.filelists:
16 | print("START:", filelist)
17 | filepaths_and_text = load_filepaths_and_text(filelist)
18 | for i in range(len(filepaths_and_text)):
19 | original_text = filepaths_and_text[i][args.text_index]
20 | cleaned_text = text._clean_text(original_text, args.text_cleaners)
21 | filepaths_and_text[i][args.text_index] = cleaned_text
22 |
23 | new_filelist = filelist + "." + args.out_extension
24 | with open(new_filelist, "w", encoding="utf-8") as f:
25 | f.writelines(["|".join(x) + "\n" for x in filepaths_and_text])
26 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | Cython==0.29.21
2 | librosa==0.8.0
3 | matplotlib==3.3.1
4 | numpy==1.18.5
5 | phonemizer==2.2.1
6 | scipy==1.5.2
7 | tensorboard==2.3.0
8 | torch==1.6.0
9 | torchvision==0.7.0
10 | Unidecode==1.1.1
11 |
--------------------------------------------------------------------------------
/text/__init__.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 | import re
3 | from text import cleaners
4 | from text.symbols import symbols
5 |
6 |
7 | # Mappings from symbol to numeric ID and vice versa:
8 | _symbol_to_id = {s: i for i, s in enumerate(symbols)}
9 | _id_to_symbol = {i: s for i, s in enumerate(symbols)}
10 |
11 | # Regular expression matching text enclosed in curly braces:
12 | _curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
13 |
14 |
15 | def text_to_sequence(text, cleaner_names):
16 | '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
17 |
18 | The text can optionally have ARPAbet sequences enclosed in curly braces embedded
19 | in it. For example, "Turn left on {HH AW1 S S T AH0 N} Street."
20 |
21 | Args:
22 | text: string to convert to a sequence
23 | cleaner_names: names of the cleaner functions to run the text through
24 |
25 | Returns:
26 | List of integers corresponding to the symbols in the text
27 | '''
28 | sequence = []
29 |
30 | # Check for curly braces and treat their contents as ARPAbet:
31 | while len(text):
32 | m = _curly_re.match(text)
33 |
34 | if not m:
35 | sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
36 | break
37 | sequence += _symbols_to_sequence(
38 | _clean_text(m.group(1), cleaner_names))
39 | sequence += _arpabet_to_sequence(m.group(2))
40 | text = m.group(3)
41 |
42 | return sequence
43 |
44 |
45 | def sequence_to_text(sequence):
46 | '''Converts a sequence of IDs back to a string'''
47 | result = ''
48 | for symbol_id in sequence:
49 | if symbol_id in _id_to_symbol:
50 | s = _id_to_symbol[symbol_id]
51 | # Enclose ARPAbet back in curly braces:
52 | if len(s) > 1 and s[0] == '@':
53 | s = '{%s}' % s[1:]
54 | result += s
55 | return result.replace('}{', ' ')
56 |
57 |
58 | def _clean_text(text, cleaner_names):
59 | for name in cleaner_names:
60 | cleaner = getattr(cleaners, name)
61 | if not cleaner:
62 | raise Exception('Unknown cleaner: %s' % name)
63 | text = cleaner(text)
64 | return text
65 |
66 |
67 | def _symbols_to_sequence(symbols):
68 | return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
69 |
70 |
71 | def _arpabet_to_sequence(text):
72 | return _symbols_to_sequence(['@' + s for s in text.split()])
73 |
74 |
75 | def _should_keep_symbol(s):
76 | return s in _symbol_to_id and s is not '_' and s is not '~'
77 |
--------------------------------------------------------------------------------
/text/cleaners.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Cleaners are transformations that run over the input text at both training and eval time.
5 |
6 | Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
7 | hyperparameter. Some cleaners are English-specific. You'll typically want to use:
8 | 1. "english_cleaners" for English text
9 | 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
10 | the Unidecode library (https://pypi.python.org/pypi/Unidecode)
11 | 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
12 | the symbols in symbols.py to match your data).
13 | '''
14 |
15 |
16 | # Regular expression matching whitespace:
17 | import re
18 | from unidecode import unidecode
19 | from .numbers import normalize_numbers
20 | _whitespace_re = re.compile(r'\s+')
21 |
22 | # List of (regular expression, replacement) pairs for abbreviations:
23 | _abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [
24 | ('mrs', 'misess'),
25 | ('mr', 'mister'),
26 | ('dr', 'doctor'),
27 | ('st', 'saint'),
28 | ('co', 'company'),
29 | ('jr', 'junior'),
30 | ('maj', 'major'),
31 | ('gen', 'general'),
32 | ('drs', 'doctors'),
33 | ('rev', 'reverend'),
34 | ('lt', 'lieutenant'),
35 | ('hon', 'honorable'),
36 | ('sgt', 'sergeant'),
37 | ('capt', 'captain'),
38 | ('esq', 'esquire'),
39 | ('ltd', 'limited'),
40 | ('col', 'colonel'),
41 | ('ft', 'fort'),
42 | ]]
43 |
44 |
45 | def expand_abbreviations(text):
46 | for regex, replacement in _abbreviations:
47 | text = re.sub(regex, replacement, text)
48 | return text
49 |
50 |
51 | def expand_numbers(text):
52 | return normalize_numbers(text)
53 |
54 |
55 | def lowercase(text):
56 | return text.lower()
57 |
58 |
59 | def collapse_whitespace(text):
60 | return re.sub(_whitespace_re, ' ', text)
61 |
62 |
63 | def convert_to_ascii(text):
64 | return unidecode(text)
65 |
66 |
67 | def basic_cleaners(text):
68 | '''Basic pipeline that lowercases and collapses whitespace without transliteration.'''
69 | text = lowercase(text)
70 | text = collapse_whitespace(text)
71 | return text
72 |
73 |
74 | def transliteration_cleaners(text):
75 | '''Pipeline for non-English text that transliterates to ASCII.'''
76 | text = convert_to_ascii(text)
77 | text = lowercase(text)
78 | text = collapse_whitespace(text)
79 | return text
80 |
81 |
82 | def english_cleaners(text):
83 | '''Pipeline for English text, including number and abbreviation expansion.'''
84 | text = convert_to_ascii(text)
85 | text = lowercase(text)
86 | text = expand_numbers(text)
87 | text = expand_abbreviations(text)
88 | text = collapse_whitespace(text)
89 | return text
90 |
--------------------------------------------------------------------------------
/text/cmudict.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | import re
4 |
5 |
6 | valid_symbols = [
7 | 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1', 'AH2',
8 | 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0', 'AY1', 'AY2',
9 | 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0', 'ER1', 'ER2', 'EY',
10 | 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0', 'IH1', 'IH2', 'IY', 'IY0', 'IY1',
11 | 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG', 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0',
12 | 'OY1', 'OY2', 'P', 'R', 'S', 'SH', 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW',
13 | 'UW0', 'UW1', 'UW2', 'V', 'W', 'Y', 'Z', 'ZH'
14 | ]
15 |
16 | _valid_symbol_set = set(valid_symbols)
17 |
18 |
19 | class CMUDict:
20 | '''Thin wrapper around CMUDict data. http://www.speech.cs.cmu.edu/cgi-bin/cmudict'''
21 |
22 | def __init__(self, file_or_path, keep_ambiguous=True):
23 | if isinstance(file_or_path, str):
24 | with open(file_or_path, encoding='latin-1') as f:
25 | entries = _parse_cmudict(f)
26 | else:
27 | entries = _parse_cmudict(file_or_path)
28 | if not keep_ambiguous:
29 | entries = {word: pron for word,
30 | pron in entries.items() if len(pron) == 1}
31 | self._entries = entries
32 |
33 | def __len__(self):
34 | return len(self._entries)
35 |
36 | def lookup(self, word):
37 | '''Returns list of ARPAbet pronunciations of the given word.'''
38 | return self._entries.get(word.upper())
39 |
40 |
41 | _alt_re = re.compile(r'\([0-9]+\)')
42 |
43 |
44 | def _parse_cmudict(file):
45 | cmudict = {}
46 | for line in file:
47 | if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
48 | parts = line.split(' ')
49 | word = re.sub(_alt_re, '', parts[0])
50 | pronunciation = _get_pronunciation(parts[1])
51 | if pronunciation:
52 | if word in cmudict:
53 | cmudict[word].append(pronunciation)
54 | else:
55 | cmudict[word] = [pronunciation]
56 | return cmudict
57 |
58 |
59 | def _get_pronunciation(s):
60 | parts = s.strip().split(' ')
61 | for part in parts:
62 | if part not in _valid_symbol_set:
63 | return None
64 | return ' '.join(parts)
65 |
--------------------------------------------------------------------------------
/text/numbers.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | import inflect
4 | import re
5 |
6 |
7 | _inflect = inflect.engine()
8 | _comma_number_re = re.compile(r'([0-9][0-9\,]+[0-9])')
9 | _decimal_number_re = re.compile(r'([0-9]+\.[0-9]+)')
10 | _pounds_re = re.compile(r'£([0-9\,]*[0-9]+)')
11 | _dollars_re = re.compile(r'\$([0-9\.\,]*[0-9]+)')
12 | _ordinal_re = re.compile(r'[0-9]+(st|nd|rd|th)')
13 | _number_re = re.compile(r'[0-9]+')
14 |
15 |
16 | def _remove_commas(m):
17 | return m.group(1).replace(',', '')
18 |
19 |
20 | def _expand_decimal_point(m):
21 | return m.group(1).replace('.', ' point ')
22 |
23 |
24 | def _expand_dollars(m):
25 | match = m.group(1)
26 | parts = match.split('.')
27 | if len(parts) > 2:
28 | return match + ' dollars' # Unexpected format
29 | dollars = int(parts[0]) if parts[0] else 0
30 | cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
31 | if dollars and cents:
32 | dollar_unit = 'dollar' if dollars == 1 else 'dollars'
33 | cent_unit = 'cent' if cents == 1 else 'cents'
34 | return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
35 | elif dollars:
36 | dollar_unit = 'dollar' if dollars == 1 else 'dollars'
37 | return '%s %s' % (dollars, dollar_unit)
38 | elif cents:
39 | cent_unit = 'cent' if cents == 1 else 'cents'
40 | return '%s %s' % (cents, cent_unit)
41 | else:
42 | return 'zero dollars'
43 |
44 |
45 | def _expand_ordinal(m):
46 | return _inflect.number_to_words(m.group(0))
47 |
48 |
49 | def _expand_number(m):
50 | num = int(m.group(0))
51 | if num > 1000 and num < 3000:
52 | if num == 2000:
53 | return 'two thousand'
54 | elif num > 2000 and num < 2010:
55 | return 'two thousand ' + _inflect.number_to_words(num % 100)
56 | elif num % 100 == 0:
57 | return _inflect.number_to_words(num // 100) + ' hundred'
58 | else:
59 | return _inflect.number_to_words(num, andword='', zero='oh', group=2).replace(', ', ' ')
60 | else:
61 | return _inflect.number_to_words(num, andword='')
62 |
63 |
64 | def normalize_numbers(text):
65 | text = re.sub(_comma_number_re, _remove_commas, text)
66 | text = re.sub(_pounds_re, r'\1 pounds', text)
67 | text = re.sub(_dollars_re, _expand_dollars, text)
68 | text = re.sub(_decimal_number_re, _expand_decimal_point, text)
69 | text = re.sub(_ordinal_re, _expand_ordinal, text)
70 | text = re.sub(_number_re, _expand_number, text)
71 | return text
72 |
--------------------------------------------------------------------------------
/text/symbols.py:
--------------------------------------------------------------------------------
1 | """ from https://github.com/keithito/tacotron """
2 |
3 | '''
4 | Defines the set of symbols used in text input to the model.
5 |
6 | The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. '''
7 |
8 | from text import cmudict
9 | _pad = '_'
10 | _punctuation = '!\'(),.:;? '
11 | _special = '-'
12 | _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
13 | _silences = ['@sp', '@spn', '@sil']
14 |
15 | # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters):
16 | _arpabet = ['@' + s for s in cmudict.valid_symbols]
17 |
18 | # Export all symbols:
19 | symbols = [_pad] + list(_special) + list(_punctuation) + \
20 | list(_letters) + _arpabet + _silences
21 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioLoader,
20 | TextAudioCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | assert torch.cuda.is_available(), "CPU training is not allowed."
44 |
45 | n_gpus = torch.cuda.device_count()
46 | os.environ['MASTER_ADDR'] = 'localhost'
47 | os.environ['MASTER_PORT'] = '80000'
48 |
49 | hps = utils.get_hparams()
50 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
51 |
52 |
53 | def run(rank, n_gpus, hps):
54 | global global_step
55 | if rank == 0:
56 | logger = utils.get_logger(hps.model_dir)
57 | logger.info(hps)
58 | utils.check_git_hash(hps.model_dir)
59 | writer = SummaryWriter(log_dir=hps.model_dir)
60 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
61 |
62 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
63 | torch.manual_seed(hps.train.seed)
64 | torch.cuda.set_device(rank)
65 |
66 | train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
67 | train_sampler = DistributedBucketSampler(
68 | train_dataset,
69 | hps.train.batch_size,
70 | [32,300,400,500,600,700,800,900,1000],
71 | num_replicas=n_gpus,
72 | rank=rank,
73 | shuffle=True)
74 | collate_fn = TextAudioCollate()
75 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
76 | collate_fn=collate_fn, batch_sampler=train_sampler)
77 | if rank == 0:
78 | eval_dataset = TextAudioLoader(hps.data.validation_files, hps.data)
79 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
80 | batch_size=hps.train.batch_size, pin_memory=True,
81 | drop_last=False, collate_fn=collate_fn)
82 |
83 | net_g = SynthesizerTrn(
84 | len(symbols),
85 | hps.data.filter_length // 2 + 1,
86 | hps.train.segment_size // hps.data.hop_length,
87 | **hps.model).cuda(rank)
88 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
89 | optim_g = torch.optim.AdamW(
90 | net_g.parameters(),
91 | hps.train.learning_rate,
92 | betas=hps.train.betas,
93 | eps=hps.train.eps)
94 | optim_d = torch.optim.AdamW(
95 | net_d.parameters(),
96 | hps.train.learning_rate,
97 | betas=hps.train.betas,
98 | eps=hps.train.eps)
99 | net_g = DDP(net_g, device_ids=[rank])
100 | net_d = DDP(net_d, device_ids=[rank])
101 |
102 | try:
103 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
104 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
105 | global_step = (epoch_str - 1) * len(train_loader)
106 | except:
107 | epoch_str = 1
108 | global_step = 0
109 |
110 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
111 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
112 |
113 | scaler = GradScaler(enabled=hps.train.fp16_run)
114 |
115 | for epoch in range(epoch_str, hps.train.epochs + 1):
116 | if rank==0:
117 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
118 | else:
119 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
120 | scheduler_g.step()
121 | scheduler_d.step()
122 |
123 |
124 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
125 | net_g, net_d = nets
126 | optim_g, optim_d = optims
127 | scheduler_g, scheduler_d = schedulers
128 | train_loader, eval_loader = loaders
129 | if writers is not None:
130 | writer, writer_eval = writers
131 |
132 | train_loader.batch_sampler.set_epoch(epoch)
133 | global global_step
134 |
135 | net_g.train()
136 | net_d.train()
137 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
138 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
139 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
140 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
141 |
142 | with autocast(enabled=hps.train.fp16_run):
143 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
144 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths)
145 |
146 | mel = spec_to_mel_torch(
147 | spec,
148 | hps.data.filter_length,
149 | hps.data.n_mel_channels,
150 | hps.data.sampling_rate,
151 | hps.data.mel_fmin,
152 | hps.data.mel_fmax)
153 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
154 | y_hat_mel = mel_spectrogram_torch(
155 | y_hat.squeeze(1),
156 | hps.data.filter_length,
157 | hps.data.n_mel_channels,
158 | hps.data.sampling_rate,
159 | hps.data.hop_length,
160 | hps.data.win_length,
161 | hps.data.mel_fmin,
162 | hps.data.mel_fmax
163 | )
164 |
165 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
166 |
167 | # Discriminator
168 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
169 | with autocast(enabled=False):
170 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
171 | loss_disc_all = loss_disc
172 | optim_d.zero_grad()
173 | scaler.scale(loss_disc_all).backward()
174 | scaler.unscale_(optim_d)
175 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
176 | scaler.step(optim_d)
177 |
178 | with autocast(enabled=hps.train.fp16_run):
179 | # Generator
180 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
181 | with autocast(enabled=False):
182 | loss_dur = torch.sum(l_length.float())
183 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
184 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
185 |
186 | loss_fm = feature_loss(fmap_r, fmap_g)
187 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
188 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
189 | optim_g.zero_grad()
190 | scaler.scale(loss_gen_all).backward()
191 | scaler.unscale_(optim_g)
192 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
193 | scaler.step(optim_g)
194 | scaler.update()
195 |
196 | if rank==0:
197 | if global_step % hps.train.log_interval == 0:
198 | lr = optim_g.param_groups[0]['lr']
199 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
200 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
201 | epoch,
202 | 100. * batch_idx / len(train_loader)))
203 | logger.info([x.item() for x in losses] + [global_step, lr])
204 |
205 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
206 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
207 |
208 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
209 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
210 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
211 | image_dict = {
212 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
213 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
214 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
215 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
216 | }
217 | utils.summarize(
218 | writer=writer,
219 | global_step=global_step,
220 | images=image_dict,
221 | scalars=scalar_dict)
222 |
223 | if global_step % hps.train.eval_interval == 0:
224 | evaluate(hps, net_g, eval_loader, writer_eval)
225 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
226 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
227 | global_step += 1
228 |
229 | if rank == 0:
230 | logger.info('====> Epoch: {}'.format(epoch))
231 |
232 |
233 | def evaluate(hps, generator, eval_loader, writer_eval):
234 | generator.eval()
235 | with torch.no_grad():
236 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths) in enumerate(eval_loader):
237 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
238 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
239 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
240 |
241 | # remove else
242 | x = x[:1]
243 | x_lengths = x_lengths[:1]
244 | spec = spec[:1]
245 | spec_lengths = spec_lengths[:1]
246 | y = y[:1]
247 | y_lengths = y_lengths[:1]
248 | break
249 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, max_len=1000)
250 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
251 |
252 | mel = spec_to_mel_torch(
253 | spec,
254 | hps.data.filter_length,
255 | hps.data.n_mel_channels,
256 | hps.data.sampling_rate,
257 | hps.data.mel_fmin,
258 | hps.data.mel_fmax)
259 | y_hat_mel = mel_spectrogram_torch(
260 | y_hat.squeeze(1).float(),
261 | hps.data.filter_length,
262 | hps.data.n_mel_channels,
263 | hps.data.sampling_rate,
264 | hps.data.hop_length,
265 | hps.data.win_length,
266 | hps.data.mel_fmin,
267 | hps.data.mel_fmax
268 | )
269 | image_dict = {
270 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
271 | }
272 | audio_dict = {
273 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
274 | }
275 | if global_step == 0:
276 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
277 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
278 |
279 | utils.summarize(
280 | writer=writer_eval,
281 | global_step=global_step,
282 | images=image_dict,
283 | audios=audio_dict,
284 | audio_sampling_rate=hps.data.sampling_rate
285 | )
286 | generator.train()
287 |
288 |
289 | if __name__ == "__main__":
290 | main()
291 |
--------------------------------------------------------------------------------
/train_ms.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import argparse
4 | import itertools
5 | import math
6 | import torch
7 | from torch import nn, optim
8 | from torch.nn import functional as F
9 | from torch.utils.data import DataLoader
10 | from torch.utils.tensorboard import SummaryWriter
11 | import torch.multiprocessing as mp
12 | import torch.distributed as dist
13 | from torch.nn.parallel import DistributedDataParallel as DDP
14 | from torch.cuda.amp import autocast, GradScaler
15 |
16 | import commons
17 | import utils
18 | from data_utils import (
19 | TextAudioSpeakerLoader,
20 | TextAudioSpeakerCollate,
21 | DistributedBucketSampler
22 | )
23 | from models import (
24 | SynthesizerTrn,
25 | MultiPeriodDiscriminator,
26 | )
27 | from losses import (
28 | generator_loss,
29 | discriminator_loss,
30 | feature_loss,
31 | kl_loss
32 | )
33 | from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34 | from text.symbols import symbols
35 |
36 |
37 | torch.backends.cudnn.benchmark = True
38 | global_step = 0
39 |
40 |
41 | def main():
42 | """Assume Single Node Multi GPUs Training Only"""
43 | print(torch.cuda.is_available())
44 | assert torch.cuda.is_available(), "CPU training is not allowed."
45 |
46 | n_gpus = torch.cuda.device_count()
47 | os.environ['MASTER_ADDR'] = 'localhost'
48 | os.environ['MASTER_PORT'] = '8888'
49 |
50 | hps = utils.get_hparams()
51 | mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
52 |
53 |
54 | def run(rank, n_gpus, hps):
55 | global global_step
56 | if rank == 0:
57 | logger = utils.get_logger(hps.model_dir)
58 | logger.info(hps)
59 | utils.check_git_hash(hps.model_dir)
60 | writer = SummaryWriter(log_dir=hps.model_dir)
61 | writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
62 |
63 | dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
64 | torch.manual_seed(hps.train.seed)
65 | torch.cuda.set_device(rank)
66 |
67 | train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
68 | train_sampler = DistributedBucketSampler(
69 | train_dataset,
70 | hps.train.batch_size,
71 | [32,300,400,500,600,700,800,900,1000],
72 | num_replicas=n_gpus,
73 | rank=rank,
74 | shuffle=True)
75 | collate_fn = TextAudioSpeakerCollate()
76 | train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
77 | collate_fn=collate_fn, batch_sampler=train_sampler)
78 | if rank == 0:
79 | eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
80 | eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
81 | batch_size=hps.train.batch_size, pin_memory=True,
82 | drop_last=False, collate_fn=collate_fn)
83 |
84 | net_g = SynthesizerTrn(
85 | len(symbols),
86 | hps.data.filter_length // 2 + 1,
87 | hps.train.segment_size // hps.data.hop_length,
88 | n_speakers=hps.data.n_speakers,
89 | **hps.model).cuda(rank)
90 | net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
91 | optim_g = torch.optim.AdamW(
92 | net_g.parameters(),
93 | hps.train.learning_rate,
94 | betas=hps.train.betas,
95 | eps=hps.train.eps)
96 | optim_d = torch.optim.AdamW(
97 | net_d.parameters(),
98 | hps.train.learning_rate,
99 | betas=hps.train.betas,
100 | eps=hps.train.eps)
101 | net_g = DDP(net_g, device_ids=[rank],find_unused_parameters=True)
102 | net_d = DDP(net_d, device_ids=[rank],find_unused_parameters=True)
103 |
104 | try:
105 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g)
106 | _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d)
107 | global_step = (epoch_str - 1) * len(train_loader)
108 | except:
109 | epoch_str = 1
110 | global_step = 0
111 |
112 | scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
113 | scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str-2)
114 |
115 | scaler = GradScaler(enabled=hps.train.fp16_run)
116 |
117 | for epoch in range(epoch_str, hps.train.epochs + 1):
118 | if rank==0:
119 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, eval_loader], logger, [writer, writer_eval])
120 | else:
121 | train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler, [train_loader, None], None, None)
122 | scheduler_g.step()
123 | scheduler_d.step()
124 |
125 |
126 | def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
127 | net_g, net_d = nets
128 | optim_g, optim_d = optims
129 | scheduler_g, scheduler_d = schedulers
130 | train_loader, eval_loader = loaders
131 | if writers is not None:
132 | writer, writer_eval = writers
133 |
134 | train_loader.batch_sampler.set_epoch(epoch)
135 | global global_step
136 |
137 | net_g.train()
138 | net_d.train()
139 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader):
140 | x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
141 | spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
142 | y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
143 | speakers = speakers.cuda(rank, non_blocking=True)
144 |
145 | with autocast(enabled=hps.train.fp16_run):
146 |
147 | mel = spec_to_mel_torch(
148 | spec,
149 | hps.data.filter_length,
150 | hps.data.n_mel_channels,
151 | hps.data.sampling_rate,
152 | hps.data.mel_fmin,
153 | hps.data.mel_fmax)
154 |
155 | y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
156 | (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, mel, spec, spec_lengths, speakers)
157 |
158 | y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
159 | y_hat_mel = mel_spectrogram_torch(
160 | y_hat.squeeze(1),
161 | hps.data.filter_length,
162 | hps.data.n_mel_channels,
163 | hps.data.sampling_rate,
164 | hps.data.hop_length,
165 | hps.data.win_length,
166 | hps.data.mel_fmin,
167 | hps.data.mel_fmax
168 | )
169 |
170 | y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
171 |
172 | # Discriminator
173 | y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
174 | with autocast(enabled=False):
175 | loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
176 | loss_disc_all = loss_disc
177 | optim_d.zero_grad()
178 | scaler.scale(loss_disc_all).backward()
179 | scaler.unscale_(optim_d)
180 | grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
181 | scaler.step(optim_d)
182 |
183 | with autocast(enabled=hps.train.fp16_run):
184 | # Generator
185 | y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
186 | with autocast(enabled=False):
187 | loss_dur = torch.sum(l_length.float())
188 | loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
189 | loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
190 |
191 | loss_fm = feature_loss(fmap_r, fmap_g)
192 | loss_gen, losses_gen = generator_loss(y_d_hat_g)
193 | loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
194 | optim_g.zero_grad()
195 | scaler.scale(loss_gen_all).backward()
196 | scaler.unscale_(optim_g)
197 | grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
198 | scaler.step(optim_g)
199 | scaler.update()
200 |
201 | if rank==0:
202 | if global_step % hps.train.log_interval == 0:
203 | lr = optim_g.param_groups[0]['lr']
204 | losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
205 | logger.info('Train Epoch: {} [{:.0f}%]'.format(
206 | epoch,
207 | 100. * batch_idx / len(train_loader)))
208 | logger.info([x.item() for x in losses] + [global_step, lr])
209 |
210 | scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
211 | scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
212 |
213 | scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
214 | scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
215 | scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
216 | image_dict = {
217 | "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
218 | "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
219 | "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
220 | "all/attn": utils.plot_alignment_to_numpy(attn[0,0].data.cpu().numpy())
221 | }
222 | utils.summarize(
223 | writer=writer,
224 | global_step=global_step,
225 | images=image_dict,
226 | scalars=scalar_dict)
227 |
228 | if global_step % hps.train.eval_interval == 0:
229 | evaluate(hps, net_g, eval_loader, writer_eval)
230 | utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
231 | utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
232 | global_step += 1
233 |
234 | if rank == 0:
235 | logger.info('====> Epoch: {}'.format(epoch))
236 |
237 |
238 | def evaluate(hps, generator, eval_loader, writer_eval):
239 | generator.eval()
240 | with torch.no_grad():
241 | for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(eval_loader):
242 | print(x[0])
243 | x, x_lengths = x.cuda(0), x_lengths.cuda(0)
244 | spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
245 | y, y_lengths = y.cuda(0), y_lengths.cuda(0)
246 | speakers = speakers.cuda(0)
247 |
248 | # remove else
249 | x = x[:1]
250 | x_lengths = x_lengths[:1]
251 | spec = spec[:1]
252 | spec_lengths = spec_lengths[:1]
253 | y = y[:1]
254 | y_lengths = y_lengths[:1]
255 | speakers = speakers[:1]
256 | break
257 | mel = spec_to_mel_torch(
258 | spec,
259 | hps.data.filter_length,
260 | hps.data.n_mel_channels,
261 | hps.data.sampling_rate,
262 | hps.data.mel_fmin,
263 | hps.data.mel_fmax)
264 | y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, mel, y_lengths, speakers, max_len=1000)
265 | y_hat_lengths = mask.sum([1,2]).long() * hps.data.hop_length
266 |
267 | y_hat_mel = mel_spectrogram_torch(
268 | y_hat.squeeze(1).float(),
269 | hps.data.filter_length,
270 | hps.data.n_mel_channels,
271 | hps.data.sampling_rate,
272 | hps.data.hop_length,
273 | hps.data.win_length,
274 | hps.data.mel_fmin,
275 | hps.data.mel_fmax
276 | )
277 | image_dict = {
278 | "gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
279 | }
280 | audio_dict = {
281 | "gen/audio": y_hat[0,:,:y_hat_lengths[0]]
282 | }
283 | if global_step == 0:
284 | image_dict.update({"gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
285 | audio_dict.update({"gt/audio": y[0,:,:y_lengths[0]]})
286 |
287 | utils.summarize(
288 | writer=writer_eval,
289 | global_step=global_step,
290 | images=image_dict,
291 | audios=audio_dict,
292 | audio_sampling_rate=hps.data.sampling_rate
293 | )
294 | generator.train()
295 |
296 |
297 | if __name__ == "__main__":
298 | main()
299 |
--------------------------------------------------------------------------------
/transforms.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.nn import functional as F
3 |
4 | import numpy as np
5 |
6 |
7 | DEFAULT_MIN_BIN_WIDTH = 1e-3
8 | DEFAULT_MIN_BIN_HEIGHT = 1e-3
9 | DEFAULT_MIN_DERIVATIVE = 1e-3
10 |
11 |
12 | def piecewise_rational_quadratic_transform(inputs,
13 | unnormalized_widths,
14 | unnormalized_heights,
15 | unnormalized_derivatives,
16 | inverse=False,
17 | tails=None,
18 | tail_bound=1.,
19 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21 | min_derivative=DEFAULT_MIN_DERIVATIVE):
22 |
23 | if tails is None:
24 | spline_fn = rational_quadratic_spline
25 | spline_kwargs = {}
26 | else:
27 | spline_fn = unconstrained_rational_quadratic_spline
28 | spline_kwargs = {
29 | 'tails': tails,
30 | 'tail_bound': tail_bound
31 | }
32 |
33 | outputs, logabsdet = spline_fn(
34 | inputs=inputs,
35 | unnormalized_widths=unnormalized_widths,
36 | unnormalized_heights=unnormalized_heights,
37 | unnormalized_derivatives=unnormalized_derivatives,
38 | inverse=inverse,
39 | min_bin_width=min_bin_width,
40 | min_bin_height=min_bin_height,
41 | min_derivative=min_derivative,
42 | **spline_kwargs
43 | )
44 | return outputs, logabsdet
45 |
46 |
47 | def searchsorted(bin_locations, inputs, eps=1e-6):
48 | bin_locations[..., -1] += eps
49 | return torch.sum(
50 | inputs[..., None] >= bin_locations,
51 | dim=-1
52 | ) - 1
53 |
54 |
55 | def unconstrained_rational_quadratic_spline(inputs,
56 | unnormalized_widths,
57 | unnormalized_heights,
58 | unnormalized_derivatives,
59 | inverse=False,
60 | tails='linear',
61 | tail_bound=1.,
62 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64 | min_derivative=DEFAULT_MIN_DERIVATIVE):
65 | inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66 | outside_interval_mask = ~inside_interval_mask
67 |
68 | outputs = torch.zeros_like(inputs)
69 | logabsdet = torch.zeros_like(inputs)
70 |
71 | if tails == 'linear':
72 | unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73 | constant = np.log(np.exp(1 - min_derivative) - 1)
74 | unnormalized_derivatives[..., 0] = constant
75 | unnormalized_derivatives[..., -1] = constant
76 |
77 | outputs[outside_interval_mask] = inputs[outside_interval_mask]
78 | logabsdet[outside_interval_mask] = 0
79 | else:
80 | raise RuntimeError('{} tails are not implemented.'.format(tails))
81 |
82 | outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83 | inputs=inputs[inside_interval_mask],
84 | unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85 | unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86 | unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87 | inverse=inverse,
88 | left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89 | min_bin_width=min_bin_width,
90 | min_bin_height=min_bin_height,
91 | min_derivative=min_derivative
92 | )
93 |
94 | return outputs, logabsdet
95 |
96 | def rational_quadratic_spline(inputs,
97 | unnormalized_widths,
98 | unnormalized_heights,
99 | unnormalized_derivatives,
100 | inverse=False,
101 | left=0., right=1., bottom=0., top=1.,
102 | min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103 | min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104 | min_derivative=DEFAULT_MIN_DERIVATIVE):
105 | if torch.min(inputs) < left or torch.max(inputs) > right:
106 | raise ValueError('Input to a transform is not within its domain')
107 |
108 | num_bins = unnormalized_widths.shape[-1]
109 |
110 | if min_bin_width * num_bins > 1.0:
111 | raise ValueError('Minimal bin width too large for the number of bins')
112 | if min_bin_height * num_bins > 1.0:
113 | raise ValueError('Minimal bin height too large for the number of bins')
114 |
115 | widths = F.softmax(unnormalized_widths, dim=-1)
116 | widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117 | cumwidths = torch.cumsum(widths, dim=-1)
118 | cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119 | cumwidths = (right - left) * cumwidths + left
120 | cumwidths[..., 0] = left
121 | cumwidths[..., -1] = right
122 | widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123 |
124 | derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125 |
126 | heights = F.softmax(unnormalized_heights, dim=-1)
127 | heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128 | cumheights = torch.cumsum(heights, dim=-1)
129 | cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130 | cumheights = (top - bottom) * cumheights + bottom
131 | cumheights[..., 0] = bottom
132 | cumheights[..., -1] = top
133 | heights = cumheights[..., 1:] - cumheights[..., :-1]
134 |
135 | if inverse:
136 | bin_idx = searchsorted(cumheights, inputs)[..., None]
137 | else:
138 | bin_idx = searchsorted(cumwidths, inputs)[..., None]
139 |
140 | input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141 | input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142 |
143 | input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144 | delta = heights / widths
145 | input_delta = delta.gather(-1, bin_idx)[..., 0]
146 |
147 | input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148 | input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149 |
150 | input_heights = heights.gather(-1, bin_idx)[..., 0]
151 |
152 | if inverse:
153 | a = (((inputs - input_cumheights) * (input_derivatives
154 | + input_derivatives_plus_one
155 | - 2 * input_delta)
156 | + input_heights * (input_delta - input_derivatives)))
157 | b = (input_heights * input_derivatives
158 | - (inputs - input_cumheights) * (input_derivatives
159 | + input_derivatives_plus_one
160 | - 2 * input_delta))
161 | c = - input_delta * (inputs - input_cumheights)
162 |
163 | discriminant = b.pow(2) - 4 * a * c
164 | assert (discriminant >= 0).all()
165 |
166 | root = (2 * c) / (-b - torch.sqrt(discriminant))
167 | outputs = root * input_bin_widths + input_cumwidths
168 |
169 | theta_one_minus_theta = root * (1 - root)
170 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171 | * theta_one_minus_theta)
172 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173 | + 2 * input_delta * theta_one_minus_theta
174 | + input_derivatives * (1 - root).pow(2))
175 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176 |
177 | return outputs, -logabsdet
178 | else:
179 | theta = (inputs - input_cumwidths) / input_bin_widths
180 | theta_one_minus_theta = theta * (1 - theta)
181 |
182 | numerator = input_heights * (input_delta * theta.pow(2)
183 | + input_derivatives * theta_one_minus_theta)
184 | denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185 | * theta_one_minus_theta)
186 | outputs = input_cumheights + numerator / denominator
187 |
188 | derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189 | + 2 * input_delta * theta_one_minus_theta
190 | + input_derivatives * (1 - theta).pow(2))
191 | logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192 |
193 | return outputs, logabsdet
194 |
--------------------------------------------------------------------------------
/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import glob
3 | import sys
4 | import argparse
5 | import logging
6 | import json
7 | import subprocess
8 | import numpy as np
9 | from scipy.io.wavfile import read
10 | import torch
11 |
12 | MATPLOTLIB_FLAG = False
13 |
14 | logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15 | logger = logging
16 |
17 |
18 | def load_checkpoint(checkpoint_path, model, optimizer=None):
19 | assert os.path.isfile(checkpoint_path)
20 | checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21 | iteration = checkpoint_dict['iteration']
22 | learning_rate = checkpoint_dict['learning_rate']
23 | if optimizer is not None:
24 | optimizer.load_state_dict(checkpoint_dict['optimizer'])
25 | saved_state_dict = checkpoint_dict['model']
26 | if hasattr(model, 'module'):
27 | state_dict = model.module.state_dict()
28 | else:
29 | state_dict = model.state_dict()
30 | new_state_dict= {}
31 | for k, v in state_dict.items():
32 | try:
33 | new_state_dict[k] = saved_state_dict[k]
34 | except:
35 | logger.info("%s is not in the checkpoint" % k)
36 | new_state_dict[k] = v
37 | if hasattr(model, 'module'):
38 | model.module.load_state_dict(new_state_dict)
39 | else:
40 | model.load_state_dict(new_state_dict)
41 | logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42 | checkpoint_path, iteration))
43 | return model, optimizer, learning_rate, iteration
44 |
45 |
46 | def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47 | logger.info("Saving model and optimizer state at iteration {} to {}".format(
48 | iteration, checkpoint_path))
49 | if hasattr(model, 'module'):
50 | state_dict = model.module.state_dict()
51 | else:
52 | state_dict = model.state_dict()
53 | torch.save({'model': state_dict,
54 | 'iteration': iteration,
55 | 'optimizer': optimizer.state_dict(),
56 | 'learning_rate': learning_rate}, checkpoint_path)
57 |
58 |
59 | def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60 | for k, v in scalars.items():
61 | writer.add_scalar(k, v, global_step)
62 | for k, v in histograms.items():
63 | writer.add_histogram(k, v, global_step)
64 | for k, v in images.items():
65 | writer.add_image(k, v, global_step, dataformats='HWC')
66 | for k, v in audios.items():
67 | writer.add_audio(k, v, global_step, audio_sampling_rate)
68 |
69 |
70 | def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71 | f_list = glob.glob(os.path.join(dir_path, regex))
72 | f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73 | x = f_list[-1]
74 | print(x)
75 | return x
76 |
77 |
78 | def plot_spectrogram_to_numpy(spectrogram):
79 | global MATPLOTLIB_FLAG
80 | if not MATPLOTLIB_FLAG:
81 | import matplotlib
82 | matplotlib.use("Agg")
83 | MATPLOTLIB_FLAG = True
84 | mpl_logger = logging.getLogger('matplotlib')
85 | mpl_logger.setLevel(logging.WARNING)
86 | import matplotlib.pylab as plt
87 | import numpy as np
88 |
89 | fig, ax = plt.subplots(figsize=(10,2))
90 | im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91 | interpolation='none')
92 | plt.colorbar(im, ax=ax)
93 | plt.xlabel("Frames")
94 | plt.ylabel("Channels")
95 | plt.tight_layout()
96 |
97 | fig.canvas.draw()
98 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100 | plt.close()
101 | return data
102 |
103 |
104 | def plot_alignment_to_numpy(alignment, info=None):
105 | global MATPLOTLIB_FLAG
106 | if not MATPLOTLIB_FLAG:
107 | import matplotlib
108 | matplotlib.use("Agg")
109 | MATPLOTLIB_FLAG = True
110 | mpl_logger = logging.getLogger('matplotlib')
111 | mpl_logger.setLevel(logging.WARNING)
112 | import matplotlib.pylab as plt
113 | import numpy as np
114 |
115 | fig, ax = plt.subplots(figsize=(6, 4))
116 | im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117 | interpolation='none')
118 | fig.colorbar(im, ax=ax)
119 | xlabel = 'Decoder timestep'
120 | if info is not None:
121 | xlabel += '\n\n' + info
122 | plt.xlabel(xlabel)
123 | plt.ylabel('Encoder timestep')
124 | plt.tight_layout()
125 |
126 | fig.canvas.draw()
127 | data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128 | data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129 | plt.close()
130 | return data
131 |
132 |
133 | def load_wav_to_torch(full_path):
134 | sampling_rate, data = read(full_path)
135 | return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136 |
137 |
138 | def load_filepaths_and_text(filename, split="|"):
139 | with open(filename, encoding='utf-8') as f:
140 | filepaths_and_text = [line.strip().split(split) for line in f]
141 | return filepaths_and_text
142 |
143 |
144 | def get_hparams(init=True):
145 | parser = argparse.ArgumentParser()
146 | parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
147 | help='JSON file for configuration')
148 | parser.add_argument('-m', '--model', type=str, required=True,
149 | help='Model name')
150 |
151 | args = parser.parse_args()
152 | model_dir = os.path.join("./logs", args.model)
153 |
154 | if not os.path.exists(model_dir):
155 | os.makedirs(model_dir)
156 |
157 | config_path = args.config
158 | config_save_path = os.path.join(model_dir, "config.json")
159 | if init:
160 | with open(config_path, "r") as f:
161 | data = f.read()
162 | with open(config_save_path, "w") as f:
163 | f.write(data)
164 | else:
165 | with open(config_save_path, "r") as f:
166 | data = f.read()
167 | config = json.loads(data)
168 |
169 | hparams = HParams(**config)
170 | hparams.model_dir = model_dir
171 | return hparams
172 |
173 |
174 | def get_hparams_from_dir(model_dir):
175 | config_save_path = os.path.join(model_dir, "config.json")
176 | with open(config_save_path, "r") as f:
177 | data = f.read()
178 | config = json.loads(data)
179 |
180 | hparams =HParams(**config)
181 | hparams.model_dir = model_dir
182 | return hparams
183 |
184 |
185 | def get_hparams_from_file(config_path):
186 | with open(config_path, "r") as f:
187 | data = f.read()
188 | config = json.loads(data)
189 |
190 | hparams =HParams(**config)
191 | return hparams
192 |
193 |
194 | def check_git_hash(model_dir):
195 | source_dir = os.path.dirname(os.path.realpath(__file__))
196 | if not os.path.exists(os.path.join(source_dir, ".git")):
197 | logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
198 | source_dir
199 | ))
200 | return
201 |
202 | cur_hash = subprocess.getoutput("git rev-parse HEAD")
203 |
204 | path = os.path.join(model_dir, "githash")
205 | if os.path.exists(path):
206 | saved_hash = open(path).read()
207 | if saved_hash != cur_hash:
208 | logger.warn("git hash values are different. {}(saved) != {}(current)".format(
209 | saved_hash[:8], cur_hash[:8]))
210 | else:
211 | open(path, "w").write(cur_hash)
212 |
213 |
214 | def get_logger(model_dir, filename="train.log"):
215 | global logger
216 | logger = logging.getLogger(os.path.basename(model_dir))
217 | logger.setLevel(logging.DEBUG)
218 |
219 | formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
220 | if not os.path.exists(model_dir):
221 | os.makedirs(model_dir)
222 | h = logging.FileHandler(os.path.join(model_dir, filename))
223 | h.setLevel(logging.DEBUG)
224 | h.setFormatter(formatter)
225 | logger.addHandler(h)
226 | return logger
227 |
228 |
229 | class HParams():
230 | def __init__(self, **kwargs):
231 | for k, v in kwargs.items():
232 | if type(v) == dict:
233 | v = HParams(**v)
234 | self[k] = v
235 |
236 | def keys(self):
237 | return self.__dict__.keys()
238 |
239 | def items(self):
240 | return self.__dict__.items()
241 |
242 | def values(self):
243 | return self.__dict__.values()
244 |
245 | def __len__(self):
246 | return len(self.__dict__)
247 |
248 | def __getitem__(self, key):
249 | return getattr(self, key)
250 |
251 | def __setitem__(self, key, value):
252 | return setattr(self, key, value)
253 |
254 | def __contains__(self, key):
255 | return key in self.__dict__
256 |
257 | def __repr__(self):
258 | return self.__dict__.__repr__()
259 |
--------------------------------------------------------------------------------