├── CODE_OF_CONDUCT.rst
├── LICENSE.md
├── Makefile
├── README.md
├── README.rst
├── agents
├── eval
│ ├── analyse_experiments.py
│ ├── analyse_experiments_cross_val.py
│ ├── analyse_experiments_cross_val_sens.py
│ ├── analyse_experiments_latency.py
│ └── results
│ │ ├── CrossVal
│ │ ├── DDQN
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-25_22-49.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-25_22-56.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-25_23-03.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-25_23_11.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-25_23_18.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-25_23_25.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-25_23_33.txt
│ │ │ └── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-25_23_40.txt
│ │ ├── DQN
│ │ │ ├── 0_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_12-14.txt
│ │ │ ├── 1_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_13-01.txt
│ │ │ ├── 2_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_14-29.txt
│ │ │ └── 3_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_15-37.txt
│ │ └── PPO
│ │ │ ├── 0_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-21_07-19.txt
│ │ │ ├── 1_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-20_17-42.txt
│ │ │ ├── 2_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-20_20-57.txt
│ │ │ └── 3_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-21_00-08.txt
│ │ ├── Sens
│ │ ├── DDQN
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-43.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-50.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-57.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_23-04.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_23-12.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-19.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-26.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-33.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-41.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-48.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_23-55.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-03.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-10.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-17.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-24.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-32.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-39.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-46.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-53.txt
│ │ │ └── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_01-01.txt
│ │ ├── DQN
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_17-38.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_17-51.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-03.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-12.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-23.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-34.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-46.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-57.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_19-09.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_19-21.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-33.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-45.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-56.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_20-08.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_20-20.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-32.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-43.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-52.txt
│ │ │ ├── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_21-01.txt
│ │ │ └── DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_21-10.txt
│ │ └── PPO
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-08.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-32.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-57.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_02-20.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_02-45.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-09.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-32.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-56.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_04-19.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_04-43.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-08.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-31.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-56.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_06-20.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_06-45.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-09.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-34.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-59.txt
│ │ │ ├── PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_08-28.txt
│ │ │ └── PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_08-58.txt
│ │ ├── res_left_deep.txt
│ │ └── res_postgres_stat.txt
├── queries
│ ├── crossval
│ │ ├── job_queries_simple_crossval_7400_0_test.txt
│ │ ├── job_queries_simple_crossval_7400_0_train.txt
│ │ ├── job_queries_simple_crossval_7400_0_train_sort.txt
│ │ ├── job_queries_simple_crossval_7400_0_train_sort_a.txt
│ │ ├── job_queries_simple_crossval_7400_1_test.txt
│ │ ├── job_queries_simple_crossval_7400_1_train.txt
│ │ ├── job_queries_simple_crossval_7400_1_train_sort.txt
│ │ ├── job_queries_simple_crossval_7400_1_train_sort_a.txt
│ │ ├── job_queries_simple_crossval_7400_2_test.txt
│ │ ├── job_queries_simple_crossval_7400_2_train.txt
│ │ ├── job_queries_simple_crossval_7400_2_train_sort.txt
│ │ ├── job_queries_simple_crossval_7400_2_train_sort_a.txt
│ │ ├── job_queries_simple_crossval_7400_3_test.txt
│ │ ├── job_queries_simple_crossval_7400_3_train.txt
│ │ ├── job_queries_simple_crossval_7400_3_train_sort.txt
│ │ └── job_queries_simple_crossval_7400_3_train_sort_a.txt
│ ├── crossval_sens
│ │ ├── job_queries_simple_crossval_0_test.txt
│ │ ├── job_queries_simple_crossval_0_train.txt
│ │ ├── job_queries_simple_crossval_1_test.txt
│ │ ├── job_queries_simple_crossval_1_train.txt
│ │ ├── job_queries_simple_crossval_2_test.txt
│ │ ├── job_queries_simple_crossval_2_train.txt
│ │ ├── job_queries_simple_crossval_3_test.txt
│ │ └── job_queries_simple_crossval_3_train.txt
│ ├── helper_func
│ │ ├── createTable_movie_info_idx.py
│ │ ├── create_4_fold_after_sensitivity.py
│ │ ├── create_4_fold_crossvalidaton_sets.py
│ │ ├── indices_preprocessing.py
│ │ ├── query_parser_joinonly.py
│ │ └── sql_to_rl_schema
│ ├── imdb_schema.json
│ ├── imdb_schema.sql
│ ├── indices.txt
│ ├── job_queries.txt
│ ├── job_queries_label.txt
│ ├── job_queries_simple.txt
│ ├── job_queries_simple_label.txt
│ ├── res_greedy_left_deep.txt
│ └── synt_queries.txt
├── rollout
│ ├── custom_rollout_dqn.py
│ ├── custom_rollout_ppo.py
│ └── custom_rollout_sens.py
├── run
│ ├── configs.py
│ ├── execute.py
│ ├── masking_envs_cross.py
│ ├── models.py
│ └── simple_corridor.py
└── trad_models_job.py
├── bin
├── docker_entrypoint
└── render.py
├── docs
├── agents.md
├── environments.md
├── misc.md
├── readme.md
└── wrappers.md
├── examples
├── agents
│ ├── _policies.py
│ ├── cem.py
│ ├── keyboard_agent.py
│ └── random_agent.py
└── scripts
│ ├── list_envs
│ └── sim_env
├── gym.egg-info
├── PKG-INFO
├── SOURCES.txt
├── dependency_links.txt
├── not-zip-safe
├── requires.txt
└── top_level.txt
├── gym
├── __init__.py
├── __pycache__
│ ├── __init__.cpython-36.pyc
│ ├── core.cpython-36.pyc
│ ├── error.cpython-36.pyc
│ ├── logger.cpython-36.pyc
│ └── version.cpython-36.pyc
├── core.py
├── envs
│ ├── README.md
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ └── registration.cpython-36.pyc
│ ├── algorithmic
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-36.pyc
│ │ │ ├── algorithmic_env.cpython-36.pyc
│ │ │ ├── copy_.cpython-36.pyc
│ │ │ ├── duplicated_input.cpython-36.pyc
│ │ │ ├── repeat_copy.cpython-36.pyc
│ │ │ ├── reverse.cpython-36.pyc
│ │ │ └── reversed_addition.cpython-36.pyc
│ │ ├── algorithmic_env.py
│ │ ├── copy_.py
│ │ ├── duplicated_input.py
│ │ ├── repeat_copy.py
│ │ ├── reverse.py
│ │ ├── reversed_addition.py
│ │ └── tests
│ │ │ ├── __init__.py
│ │ │ └── test_algorithmic.py
│ ├── atari
│ │ ├── __init__.py
│ │ └── atari_env.py
│ ├── box2d
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ └── __init__.cpython-36.pyc
│ │ ├── bipedal_walker.py
│ │ ├── car_dynamics.py
│ │ ├── car_racing.py
│ │ ├── lunar_lander.py
│ │ └── test_lunar_lander.py
│ ├── classic_control
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-36.pyc
│ │ │ ├── acrobot.cpython-36.pyc
│ │ │ ├── cartpole.cpython-36.pyc
│ │ │ ├── continuous_mountain_car.cpython-36.pyc
│ │ │ ├── mountain_car.cpython-36.pyc
│ │ │ ├── pendulum.cpython-36.pyc
│ │ │ └── rendering.cpython-36.pyc
│ │ ├── acrobot.py
│ │ ├── assets
│ │ │ └── clockwise.png
│ │ ├── cartpole.py
│ │ ├── continuous_mountain_car.py
│ │ ├── mountain_car.py
│ │ ├── pendulum.py
│ │ └── rendering.py
│ ├── database
│ │ ├── __init__.py
│ │ ├── __pycache__
│ │ │ ├── __init__.cpython-36.pyc
│ │ │ ├── cm1_postgres_card_env_job_crossval_0.cpython-36.pyc
│ │ │ ├── cm1_postgres_card_env_job_crossval_1.cpython-36.pyc
│ │ │ ├── cm1_postgres_card_env_job_crossval_2.cpython-36.pyc
│ │ │ ├── cm1_postgres_card_env_job_crossval_3.cpython-36.pyc
│ │ │ ├── cm1_postgres_card_env_job_one.cpython-36.pyc
│ │ │ └── simple_corridor_ray.cpython-36.pyc
│ │ ├── cm1_postgres_card_env_job.py
│ │ ├── cm1_postgres_card_env_job_crossval_0.py
│ │ ├── cm1_postgres_card_env_job_crossval_1.py
│ │ ├── cm1_postgres_card_env_job_crossval_2.py
│ │ ├── cm1_postgres_card_env_job_crossval_3.py
│ │ ├── cm1_postgres_card_env_job_one.py
│ │ └── simple_corridor_ray.py
│ ├── mujoco
│ │ ├── __init__.py
│ │ ├── ant.py
│ │ ├── ant_v3.py
│ │ ├── assets
│ │ │ ├── ant.xml
│ │ │ ├── half_cheetah.xml
│ │ │ ├── hopper.xml
│ │ │ ├── humanoid.xml
│ │ │ ├── humanoidstandup.xml
│ │ │ ├── inverted_double_pendulum.xml
│ │ │ ├── inverted_pendulum.xml
│ │ │ ├── point.xml
│ │ │ ├── pusher.xml
│ │ │ ├── reacher.xml
│ │ │ ├── striker.xml
│ │ │ ├── swimmer.xml
│ │ │ ├── thrower.xml
│ │ │ └── walker2d.xml
│ │ ├── half_cheetah.py
│ │ ├── half_cheetah_v3.py
│ │ ├── hopper.py
│ │ ├── hopper_v3.py
│ │ ├── humanoid.py
│ │ ├── humanoid_v3.py
│ │ ├── humanoidstandup.py
│ │ ├── inverted_double_pendulum.py
│ │ ├── inverted_pendulum.py
│ │ ├── mujoco_env.py
│ │ ├── pusher.py
│ │ ├── reacher.py
│ │ ├── striker.py
│ │ ├── swimmer.py
│ │ ├── swimmer_v3.py
│ │ ├── thrower.py
│ │ ├── walker2d.py
│ │ └── walker2d_v3.py
│ ├── registration.py
│ ├── robotics
│ │ ├── README.md
│ │ ├── __init__.py
│ │ ├── assets
│ │ │ ├── LICENSE.md
│ │ │ ├── fetch
│ │ │ │ ├── pick_and_place.xml
│ │ │ │ ├── push.xml
│ │ │ │ ├── reach.xml
│ │ │ │ ├── robot.xml
│ │ │ │ ├── shared.xml
│ │ │ │ └── slide.xml
│ │ │ ├── hand
│ │ │ │ ├── manipulate_block.xml
│ │ │ │ ├── manipulate_block_touch_sensors.xml
│ │ │ │ ├── manipulate_egg.xml
│ │ │ │ ├── manipulate_egg_touch_sensors.xml
│ │ │ │ ├── manipulate_pen.xml
│ │ │ │ ├── manipulate_pen_touch_sensors.xml
│ │ │ │ ├── reach.xml
│ │ │ │ ├── robot.xml
│ │ │ │ ├── robot_touch_sensors_92.xml
│ │ │ │ ├── shared.xml
│ │ │ │ ├── shared_asset.xml
│ │ │ │ └── shared_touch_sensors_92.xml
│ │ │ ├── stls
│ │ │ │ ├── .get
│ │ │ │ ├── fetch
│ │ │ │ │ ├── base_link_collision.stl
│ │ │ │ │ ├── bellows_link_collision.stl
│ │ │ │ │ ├── elbow_flex_link_collision.stl
│ │ │ │ │ ├── estop_link.stl
│ │ │ │ │ ├── forearm_roll_link_collision.stl
│ │ │ │ │ ├── gripper_link.stl
│ │ │ │ │ ├── head_pan_link_collision.stl
│ │ │ │ │ ├── head_tilt_link_collision.stl
│ │ │ │ │ ├── l_wheel_link_collision.stl
│ │ │ │ │ ├── laser_link.stl
│ │ │ │ │ ├── r_wheel_link_collision.stl
│ │ │ │ │ ├── shoulder_lift_link_collision.stl
│ │ │ │ │ ├── shoulder_pan_link_collision.stl
│ │ │ │ │ ├── torso_fixed_link.stl
│ │ │ │ │ ├── torso_lift_link_collision.stl
│ │ │ │ │ ├── upperarm_roll_link_collision.stl
│ │ │ │ │ ├── wrist_flex_link_collision.stl
│ │ │ │ │ └── wrist_roll_link_collision.stl
│ │ │ │ └── hand
│ │ │ │ │ ├── F1.stl
│ │ │ │ │ ├── F2.stl
│ │ │ │ │ ├── F3.stl
│ │ │ │ │ ├── TH1_z.stl
│ │ │ │ │ ├── TH2_z.stl
│ │ │ │ │ ├── TH3_z.stl
│ │ │ │ │ ├── forearm_electric.stl
│ │ │ │ │ ├── forearm_electric_cvx.stl
│ │ │ │ │ ├── knuckle.stl
│ │ │ │ │ ├── lfmetacarpal.stl
│ │ │ │ │ ├── palm.stl
│ │ │ │ │ └── wrist.stl
│ │ │ └── textures
│ │ │ │ ├── block.png
│ │ │ │ └── block_hidden.png
│ │ ├── fetch
│ │ │ ├── __init__.py
│ │ │ ├── pick_and_place.py
│ │ │ ├── push.py
│ │ │ ├── reach.py
│ │ │ └── slide.py
│ │ ├── fetch_env.py
│ │ ├── hand
│ │ │ ├── __init__.py
│ │ │ ├── manipulate.py
│ │ │ ├── manipulate_touch_sensors.py
│ │ │ └── reach.py
│ │ ├── hand_env.py
│ │ ├── robot_env.py
│ │ ├── rotations.py
│ │ └── utils.py
│ ├── tests
│ │ ├── __init__.py
│ │ ├── spec_list.py
│ │ ├── test_determinism.py
│ │ ├── test_envs.py
│ │ ├── test_envs_semantics.py
│ │ ├── test_kellycoinflip.py
│ │ ├── test_mujoco_v2_to_v3_conversion.py
│ │ └── test_registration.py
│ ├── toy_text
│ │ ├── __init__.py
│ │ ├── blackjack.py
│ │ ├── cliffwalking.py
│ │ ├── discrete.py
│ │ ├── frozen_lake.py
│ │ ├── guessing_game.py
│ │ ├── hotter_colder.py
│ │ ├── kellycoinflip.py
│ │ ├── nchain.py
│ │ ├── roulette.py
│ │ └── taxi.py
│ └── unittest
│ │ ├── __init__.py
│ │ ├── cube_crash.py
│ │ └── memorize_digits.py
├── error.py
├── logger.py
├── spaces
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ ├── box.cpython-36.pyc
│ │ ├── dict_space.cpython-36.pyc
│ │ ├── discrete.cpython-36.pyc
│ │ ├── multi_binary.cpython-36.pyc
│ │ ├── multi_discrete.cpython-36.pyc
│ │ ├── space.cpython-36.pyc
│ │ └── tuple_space.cpython-36.pyc
│ ├── box.py
│ ├── dict_space.py
│ ├── discrete.py
│ ├── multi_binary.py
│ ├── multi_discrete.py
│ ├── space.py
│ ├── tests
│ │ ├── __init__.py
│ │ └── test_spaces.py
│ └── tuple_space.py
├── tests
│ └── test_core.py
├── utils
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ ├── atomic_write.cpython-36.pyc
│ │ ├── closer.cpython-36.pyc
│ │ ├── colorize.cpython-36.pyc
│ │ ├── ezpickle.cpython-36.pyc
│ │ ├── json_utils.cpython-36.pyc
│ │ └── seeding.cpython-36.pyc
│ ├── atomic_write.py
│ ├── closer.py
│ ├── colorize.py
│ ├── ezpickle.py
│ ├── json_utils.py
│ ├── play.py
│ ├── seeding.py
│ └── tests
│ │ ├── test_atexit.py
│ │ └── test_seeding.py
├── version.py
└── wrappers
│ ├── README.md
│ ├── __init__.py
│ ├── __pycache__
│ ├── __init__.cpython-36.pyc
│ ├── dict.cpython-36.pyc
│ ├── monitor.cpython-36.pyc
│ └── time_limit.cpython-36.pyc
│ ├── dict.py
│ ├── monitor.py
│ ├── monitoring
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ ├── stats_recorder.cpython-36.pyc
│ │ └── video_recorder.cpython-36.pyc
│ ├── stats_recorder.py
│ ├── tests
│ │ ├── __init__.py
│ │ ├── helpers.py
│ │ └── test_video_recorder.py
│ └── video_recorder.py
│ ├── tests
│ └── __init__.py
│ └── time_limit.py
├── queryoptimization
├── QueryGraph.py
├── __pycache__
│ ├── QueryGraph.cpython-36.pyc
│ └── cm1_postgres_card.cpython-36.pyc
├── cm1_postgres_card.py
└── reward_mapping.py
├── requirements.txt
├── requirements_dev.txt
├── scripts
└── generate_json.py
└── setup.py
/CODE_OF_CONDUCT.rst:
--------------------------------------------------------------------------------
1 | OpenAI Gym is dedicated to providing a harassment-free experience for
2 | everyone, regardless of gender, gender identity and expression, sexual
3 | orientation, disability, physical appearance, body size, age, race, or
4 | religion. We do not tolerate harassment of participants in any form.
5 |
6 | This code of conduct applies to all OpenAI Gym spaces (including Gist
7 | comments) both online and off. Anyone who violates this code of
8 | conduct may be sanctioned or expelled from these spaces at the
9 | discretion of the OpenAI team.
10 |
11 | We may add additional rules over time, which will be made clearly
12 | available to participants. Participants are responsible for knowing
13 | and abiding by these rules.
14 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | # gym
2 |
3 | The MIT License
4 |
5 | Copyright (c) 2016 OpenAI (https://openai.com)
6 |
7 | Permission is hereby granted, free of charge, to any person obtaining a copy
8 | of this software and associated documentation files (the "Software"), to deal
9 | in the Software without restriction, including without limitation the rights
10 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 | copies of the Software, and to permit persons to whom the Software is
12 | furnished to do so, subject to the following conditions:
13 |
14 | The above copyright notice and this permission notice shall be included in
15 | all copies or substantial portions of the Software.
16 |
17 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 | THE SOFTWARE.
24 |
25 | # Mujoco models
26 | This work is derived from [MuJuCo models](http://www.mujoco.org/forum/index.php?resources/) used under the following license:
27 | ```
28 | This file is part of MuJoCo.
29 | Copyright 2009-2015 Roboti LLC.
30 | Mujoco :: Advanced physics simulation engine
31 | Source : www.roboti.us
32 | Version : 1.31
33 | Released : 23Apr16
34 | Author :: Vikash Kumar
35 | Contacts : kumar@roboti.us
36 | ```
37 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | .PHONY: install test
2 |
3 | install:
4 | pip install -r requirements.txt
5 |
6 | base:
7 | docker pull ubuntu:14.04
8 | docker tag ubuntu:14.04 quay.io/openai/gym:base
9 | docker push quay.io/openai/gym:base
10 |
11 | test:
12 | docker build -f test.dockerfile -t quay.io/openai/gym:test .
13 | docker push quay.io/openai/gym:test
14 |
15 | upload:
16 | rm -rf dist
17 | python setup.py sdist
18 | twine upload dist/*
19 |
20 | docker-build:
21 | docker build -t quay.io/openai/gym .
22 |
23 | docker-run:
24 | docker run -ti quay.io/openai/gym bash
25 |
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-25_22-49.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09232526502748559
3 | 1
4 | Episode reward -0.05924896486052718
5 | 2
6 | Episode reward -0.05924896486052718
7 | 3
8 | Episode reward -0.0380780432400844
9 | 4
10 | Episode reward -0.6660070845738382
11 | 5
12 | Episode reward -0.08959885774269408
13 | 6
14 | Episode reward -0.13403700504932164
15 | 7
16 | Episode reward -0.17593507436925426
17 | 8
18 | Episode reward -0.40541110058287255
19 | 9
20 | Episode reward -0.055199048005318795
21 | 10
22 | Episode reward -0.055199048005318795
23 | 11
24 | Episode reward -0.05924896486052718
25 | 12
26 | Episode reward -0.06282709365173889
27 | 13
28 | Episode reward -0.30721756470010503
29 | 14
30 | Episode reward -0.09207927439907027
31 | 15
32 | Episode reward -0.07957090298063017
33 | 16
34 | Episode reward -0.08959885774269408
35 | 17
36 | Episode reward -0.03735954940271086
37 | 18
38 | Episode reward -0.19417733641309376
39 | 19
40 | Episode reward -0.07141141313514943
41 | 20
42 | Episode reward -0.0380780432400844
43 | 21
44 | Episode reward -0.0676730838366675
45 | 22
46 | Episode reward -0.2018877166542457
47 | 23
48 | Episode reward -0.07116586478402431
49 | 24
50 | Episode reward -0.08124529087940868
51 | 25
52 | Episode reward -1.0412401369915116
53 | 26
54 | Episode reward -0.03312091317731878
55 | 27
56 | Episode reward -0.034055850069849854
57 | 28
58 | Episode reward -0.19417733641309376
59 | 29
60 | Episode reward -0.03312091317731878
61 | 30
62 | Episode reward -0.03237362943516202
63 | 31
64 | Episode reward -0.30856854020371943
65 | 32
66 | Episode reward -1.0231810121908724
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-25_22-56.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.0912465162216765
3 | 1
4 | Episode reward -0.0757571670267232
5 | 2
6 | Episode reward -0.0757571670267232
7 | 3
8 | Episode reward -0.0687174990246987
9 | 4
10 | Episode reward -0.29222770118129276
11 | 5
12 | Episode reward -0.06454881965346083
13 | 6
14 | Episode reward -0.06408073965423712
15 | 7
16 | Episode reward -0.095090280976639
17 | 8
18 | Episode reward -0.6898582210167801
19 | 9
20 | Episode reward -3.136981211210088
21 | 10
22 | Episode reward -3.136981211210088
23 | 11
24 | Episode reward -0.0757571670267232
25 | 12
26 | Episode reward -0.17739969119777252
27 | 13
28 | Episode reward -0.23983126648104836
29 | 14
30 | Episode reward -0.21552077474554615
31 | 15
32 | Episode reward -0.9891107370461636
33 | 16
34 | Episode reward -0.06454881965346083
35 | 17
36 | Episode reward -0.11682229079565579
37 | 18
38 | Episode reward -0.5342858626354794
39 | 19
40 | Episode reward -0.04700762600867747
41 | 20
42 | Episode reward -0.0687174990246987
43 | 21
44 | Episode reward -0.046330917179086675
45 | 22
46 | Episode reward -0.07618937301541505
47 | 23
48 | Episode reward -0.058530481465487075
49 | 24
50 | Episode reward -0.06738229645862026
51 | 25
52 | Episode reward -0.2737287010723212
53 | 26
54 | Episode reward -0.029687702102654655
55 | 27
56 | Episode reward -0.10308373252179798
57 | 28
58 | Episode reward -0.5342858626354794
59 | 29
60 | Episode reward -0.029687702102654655
61 | 30
62 | Episode reward -0.02825540333877366
63 | 31
64 | Episode reward -0.6518353590784514
65 | 32
66 | Episode reward -2.685334394432857
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-25_23-03.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.03568160525141344
3 | 1
4 | Episode reward -0.03568160525141344
5 | 2
6 | Episode reward -0.1355938215280049
7 | 3
8 | Episode reward -0.05192720695014784
9 | 4
10 | Episode reward -0.07545556640403842
11 | 5
12 | Episode reward -0.1355938215280049
13 | 6
14 | Episode reward -0.08641757785774706
15 | 7
16 | Episode reward -0.06577161766742984
17 | 8
18 | Episode reward -0.10057788186073036
19 | 9
20 | Episode reward -0.19112854103197646
21 | 10
22 | Episode reward -0.8520942526542834
23 | 11
24 | Episode reward -0.06577161766742984
25 | 12
26 | Episode reward -0.035387398791473776
27 | 13
28 | Episode reward -0.40349863553810794
29 | 14
30 | Episode reward -0.060794006592682505
31 | 15
32 | Episode reward -0.10057788186073036
33 | 16
34 | Episode reward -0.06577161766742984
35 | 17
36 | Episode reward -0.12152513732901479
37 | 18
38 | Episode reward -0.12064593952365024
39 | 19
40 | Episode reward -0.6522490405089769
41 | 20
42 | Episode reward -0.19112854103197646
43 | 21
44 | Episode reward -1.1643301465952296
45 | 22
46 | Episode reward -0.07889019883589055
47 | 23
48 | Episode reward -0.40349863553810794
49 | 24
50 | Episode reward -0.05969766230248122
51 | 25
52 | Episode reward -0.035387398791473776
53 | 26
54 | Episode reward -0.1342049906862556
55 | 27
56 | Episode reward -0.07373562202690227
57 | 28
58 | Episode reward -0.060794006592682505
59 | 29
60 | Episode reward -0.1342049906862556
61 | 30
62 | Episode reward -1.1643301465952296
63 | 31
64 | Episode reward -0.1342049906862556
65 | 32
66 | Episode reward -0.05192720695014784
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-25_23_11.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09917009633690389
3 | 1
4 | Episode reward -0.09917009633690389
5 | 2
6 | Episode reward -1.3965699455848108
7 | 3
8 | Episode reward -0.05341589760853796
9 | 4
10 | Episode reward -0.7250663247925099
11 | 5
12 | Episode reward -1.3965699455848108
13 | 6
14 | Episode reward -0.05776417903571414
15 | 7
16 | Episode reward -0.17457846899822493
17 | 8
18 | Episode reward -0.08194215178680397
19 | 9
20 | Episode reward -0.12245221512677709
21 | 10
22 | Episode reward -3.220201024362526
23 | 11
24 | Episode reward -0.17457846899822493
25 | 12
26 | Episode reward -0.0806868574244709
27 | 13
28 | Episode reward -0.5973610753690145
29 | 14
30 | Episode reward -0.036183304173653764
31 | 15
32 | Episode reward -0.08194215178680397
33 | 16
34 | Episode reward -0.17457846899822493
35 | 17
36 | Episode reward -0.15042265845509317
37 | 18
38 | Episode reward -1.3181789952375915
39 | 19
40 | Episode reward -1.157941237538758
41 | 20
42 | Episode reward -0.12245221512677709
43 | 21
44 | Episode reward -0.08872898146199591
45 | 22
46 | Episode reward -0.2873069201438187
47 | 23
48 | Episode reward -0.5973610753690145
49 | 24
50 | Episode reward -0.059282276064932124
51 | 25
52 | Episode reward -0.0806868574244709
53 | 26
54 | Episode reward -0.21543175072185602
55 | 27
56 | Episode reward -0.17090875943315603
57 | 28
58 | Episode reward -0.036183304173653764
59 | 29
60 | Episode reward -0.21543175072185602
61 | 30
62 | Episode reward -0.08872898146199591
63 | 31
64 | Episode reward -0.21543175072185602
65 | 32
66 | Episode reward -0.05341589760853796
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-25_23_18.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.4004279199434673
3 | 1
4 | Episode reward -0.0799585779471935
5 | 2
6 | Episode reward -0.26480080776301795
7 | 3
8 | Episode reward -0.061575979644339626
9 | 4
10 | Episode reward -0.10837808330368688
11 | 5
12 | Episode reward -4.9406331502030785
13 | 6
14 | Episode reward -0.26480080776301795
15 | 7
16 | Episode reward -0.29155253990025254
17 | 8
18 | Episode reward -0.07538121678662917
19 | 9
20 | Episode reward -0.4004279199434673
21 | 10
22 | Episode reward -0.18937078398773496
23 | 11
24 | Episode reward -0.29155253990025254
25 | 12
26 | Episode reward -0.09132586390525599
27 | 13
28 | Episode reward -0.07538121678662917
29 | 14
30 | Episode reward -2.6932711826106495
31 | 15
32 | Episode reward -0.061575979644339626
33 | 16
34 | Episode reward -0.07674917475154754
35 | 17
36 | Episode reward -0.0168918524304905
37 | 18
38 | Episode reward -0.0168918524304905
39 | 19
40 | Episode reward -0.0168918524304905
41 | 20
42 | Episode reward -0.07674917475154754
43 | 21
44 | Episode reward -0.0168918524304905
45 | 22
46 | Episode reward -0.03233059533208041
47 | 23
48 | Episode reward -0.07251991839428569
49 | 24
50 | Episode reward -0.18937078398773496
51 | 25
52 | Episode reward -0.14626074949630433
53 | 26
54 | Episode reward -0.03261364543201184
55 | 27
56 | Episode reward -0.0799585779471935
57 | 28
58 | Episode reward -0.4632697416752851
59 | 29
60 | Episode reward -0.07710728395264174
61 | 30
62 | Episode reward -0.0799585779471935
63 | 31
64 | Episode reward -0.09132586390525599
65 | 32
66 | Episode reward -0.07538121678662917
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-25_23_25.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.20864121641017075
3 | 1
4 | Episode reward -0.06132569611577271
5 | 2
6 | Episode reward -3.362908422196969
7 | 3
8 | Episode reward -0.14036077027472663
9 | 4
10 | Episode reward -0.09253804613416579
11 | 5
12 | Episode reward -10.0
13 | 6
14 | Episode reward -3.362908422196969
15 | 7
16 | Episode reward -0.5211803099934719
17 | 8
18 | Episode reward -0.04267227031799767
19 | 9
20 | Episode reward -0.20864121641017075
21 | 10
22 | Episode reward -0.352576638966663
23 | 11
24 | Episode reward -0.5211803099934719
25 | 12
26 | Episode reward -0.034275611671883484
27 | 13
28 | Episode reward -0.04267227031799767
29 | 14
30 | Episode reward -3.108213285017131
31 | 15
32 | Episode reward -0.14036077027472663
33 | 16
34 | Episode reward -1.5459709807873585
35 | 17
36 | Episode reward -0.031333601870507335
37 | 18
38 | Episode reward -0.031333601870507335
39 | 19
40 | Episode reward -0.031333601870507335
41 | 20
42 | Episode reward -1.5459709807873585
43 | 21
44 | Episode reward -0.031333601870507335
45 | 22
46 | Episode reward -0.03973752923757494
47 | 23
48 | Episode reward -0.07251991839428569
49 | 24
50 | Episode reward -0.352576638966663
51 | 25
52 | Episode reward -0.1931696363289294
53 | 26
54 | Episode reward -0.07185843696020319
55 | 27
56 | Episode reward -0.06132569611577271
57 | 28
58 | Episode reward -0.7360834640744801
59 | 29
60 | Episode reward -0.12835971592996637
61 | 30
62 | Episode reward -0.06132569611577271
63 | 31
64 | Episode reward -0.034275611671883484
65 | 32
66 | Episode reward -0.04267227031799767
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-25_23_33.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -2.177216918151554
3 | 1
4 | Episode reward -0.07195425714814593
5 | 2
6 | Episode reward -0.07644971717708265
7 | 3
8 | Episode reward -0.27115671771615124
9 | 4
10 | Episode reward -0.7110507063939326
11 | 5
12 | Episode reward -0.2753104668689248
13 | 6
14 | Episode reward -0.2696091911358208
15 | 7
16 | Episode reward -0.27115671771615124
17 | 8
18 | Episode reward -0.2686456723363504
19 | 9
20 | Episode reward -0.07644971717708265
21 | 10
22 | Episode reward -0.18568298962429827
23 | 11
24 | Episode reward -0.2696091911358208
25 | 12
26 | Episode reward -0.0712537610215057
27 | 13
28 | Episode reward -0.03133693696263822
29 | 14
30 | Episode reward -0.04354700646007917
31 | 15
32 | Episode reward -0.04354700646007917
33 | 16
34 | Episode reward -0.28913007829629245
35 | 17
36 | Episode reward -0.2686456723363504
37 | 18
38 | Episode reward -0.0984704007082432
39 | 19
40 | Episode reward -0.28458434697436374
41 | 20
42 | Episode reward -0.09629964082675532
43 | 21
44 | Episode reward -0.5545606080887343
45 | 22
46 | Episode reward -3.0047203124331583
47 | 23
48 | Episode reward -3.0047203124331583
49 | 24
50 | Episode reward -0.04354700646007917
51 | 25
52 | Episode reward -0.3878442085713193
53 | 26
54 | Episode reward -0.25230858175250803
55 | 27
56 | Episode reward -0.06045214544948912
57 | 28
58 | Episode reward -0.2753104668689248
59 | 29
60 | Episode reward -0.0984704007082432
61 | 30
62 | Episode reward -0.08135292678097
63 | 31
64 | Episode reward -0.30888595472609837
65 | 32
66 | Episode reward -0.07630053362970107
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-25_23_40.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -6.977853083402471
3 | 1
4 | Episode reward -0.014750229888273883
5 | 2
6 | Episode reward -0.11004934329238769
7 | 3
8 | Episode reward -0.3075102355308754
9 | 4
10 | Episode reward -0.25075572931808277
11 | 5
12 | Episode reward -1.1749104344738168
13 | 6
14 | Episode reward -0.24536790923130328
15 | 7
16 | Episode reward -0.3075102355308754
17 | 8
18 | Episode reward -1.1949637406197033
19 | 9
20 | Episode reward -0.11004934329238769
21 | 10
22 | Episode reward -0.02189230905882976
23 | 11
24 | Episode reward -0.24536790923130328
25 | 12
26 | Episode reward -0.12098504290918799
27 | 13
28 | Episode reward -0.10954992285765683
29 | 14
30 | Episode reward -0.08080491672505738
31 | 15
32 | Episode reward -0.08080491672505738
33 | 16
34 | Episode reward -0.11001252688796674
35 | 17
36 | Episode reward -1.1949637406197033
37 | 18
38 | Episode reward -0.07165981984008177
39 | 19
40 | Episode reward -0.07246075374336153
41 | 20
42 | Episode reward -0.33133572714142434
43 | 21
44 | Episode reward -0.16070164166087963
45 | 22
46 | Episode reward -0.0677775278199148
47 | 23
48 | Episode reward -0.0677775278199148
49 | 24
50 | Episode reward -0.08080491672505738
51 | 25
52 | Episode reward -0.09690876096169423
53 | 26
54 | Episode reward -1.4278224798306347
55 | 27
56 | Episode reward -0.15211313680231775
57 | 28
58 | Episode reward -1.1749104344738168
59 | 29
60 | Episode reward -0.07165981984008177
61 | 30
62 | Episode reward -0.17291788928291846
63 | 31
64 | Episode reward -0.42250667202209813
65 | 32
66 | Episode reward -0.10117533490750025
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DQN/0_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_12-14.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.04250667623658374
3 | 1
4 | Episode reward -0.043735200688653275
5 | 2
6 | Episode reward -0.043735200688653275
7 | 3
8 | Episode reward -0.4545835561617039
9 | 4
10 | Episode reward -2.9474540890304906
11 | 5
12 | Episode reward -0.08572392697992298
13 | 6
14 | Episode reward -0.04702122636745635
15 | 7
16 | Episode reward -0.08430166857587773
17 | 8
18 | Episode reward -0.13739781374467325
19 | 9
20 | Episode reward -0.4989685545251943
21 | 10
22 | Episode reward -0.4989685545251943
23 | 11
24 | Episode reward -0.043735200688653275
25 | 12
26 | Episode reward -0.14637348863957508
27 | 13
28 | Episode reward -0.3489252407850174
29 | 14
30 | Episode reward -0.16450907339208837
31 | 15
32 | Episode reward -0.9015001256074497
33 | 16
34 | Episode reward -0.08572392697992298
35 | 17
36 | Episode reward -0.129074092148704
37 | 18
38 | Episode reward -0.43953727442311596
39 | 19
40 | Episode reward -0.06645427207950612
41 | 20
42 | Episode reward -0.4545835561617039
43 | 21
44 | Episode reward -0.040663677026966744
45 | 22
46 | Episode reward -0.6414444243152285
47 | 23
48 | Episode reward -0.1403180474811257
49 | 24
50 | Episode reward -0.07635491035295133
51 | 25
52 | Episode reward -0.8016359770581806
53 | 26
54 | Episode reward -0.02964481674562209
55 | 27
56 | Episode reward -0.030743152709410658
57 | 28
58 | Episode reward -0.43953727442311596
59 | 29
60 | Episode reward -0.02964481674562209
61 | 30
62 | Episode reward -0.032205543990432864
63 | 31
64 | Episode reward -0.1888662928927437
65 | 32
66 | Episode reward -0.8587329194541353
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DQN/1_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_13-01.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.025093990216201855
3 | 1
4 | Episode reward -0.025093990216201855
5 | 2
6 | Episode reward -0.14758284754696152
7 | 3
8 | Episode reward -0.07187718427034381
9 | 4
10 | Episode reward -0.23134228941100562
11 | 5
12 | Episode reward -0.14758284754696152
13 | 6
14 | Episode reward -0.08895933399804828
15 | 7
16 | Episode reward -0.06790813125945544
17 | 8
18 | Episode reward -0.12451151971730107
19 | 9
20 | Episode reward -0.04372475176813919
21 | 10
22 | Episode reward -0.2551682254260556
23 | 11
24 | Episode reward -0.1358670652291641
25 | 12
26 | Episode reward -0.03509420931094406
27 | 13
28 | Episode reward -0.30854284840175594
29 | 14
30 | Episode reward -0.08126113139956363
31 | 15
32 | Episode reward -0.12451151971730107
33 | 16
34 | Episode reward -0.1358670652291641
35 | 17
36 | Episode reward -0.1990731049765641
37 | 18
38 | Episode reward -0.33603354505443994
39 | 19
40 | Episode reward -0.6008547373389358
41 | 20
42 | Episode reward -0.08805867672996827
43 | 21
44 | Episode reward -0.3897968186737239
45 | 22
46 | Episode reward -0.053488699667351224
47 | 23
48 | Episode reward -0.30854284840175594
49 | 24
50 | Episode reward -0.015745716776087385
51 | 25
52 | Episode reward -0.03509420931094406
53 | 26
54 | Episode reward -0.10243642789224044
55 | 27
56 | Episode reward -0.25042281217404794
57 | 28
58 | Episode reward -0.08126113139956363
59 | 29
60 | Episode reward -0.10243642789224044
61 | 30
62 | Episode reward -0.3897968204951858
63 | 31
64 | Episode reward -0.10243642789224044
65 | 32
66 | Episode reward -0.07187718427034381
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DQN/2_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_14-29.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09070589197376257
3 | 1
4 | Episode reward -0.05035065858078603
5 | 2
6 | Episode reward -0.453347968433121
7 | 3
8 | Episode reward -0.141900378884525
9 | 4
10 | Episode reward -0.08478151928805357
11 | 5
12 | Episode reward -0.7262140050224025
13 | 6
14 | Episode reward -0.453347968433121
15 | 7
16 | Episode reward -0.423866350342025
17 | 8
18 | Episode reward -0.046877088985411056
19 | 9
20 | Episode reward -0.20330354703062414
21 | 10
22 | Episode reward -0.5817834156360889
23 | 11
24 | Episode reward -0.40793614969403025
25 | 12
26 | Episode reward -0.06817616500507305
27 | 13
28 | Episode reward -0.046877088985411056
29 | 14
30 | Episode reward -0.39199721066887877
31 | 15
32 | Episode reward -0.141900378884525
33 | 16
34 | Episode reward -0.5328449487931493
35 | 17
36 | Episode reward -0.017322226877799354
37 | 18
38 | Episode reward -0.017322226877799354
39 | 19
40 | Episode reward -0.017322226877799354
41 | 20
42 | Episode reward -0.5328449487931493
43 | 21
44 | Episode reward -0.017322226877799354
45 | 22
46 | Episode reward -0.03770671354254604
47 | 23
48 | Episode reward -0.027885441107498778
49 | 24
50 | Episode reward -0.4843840951278181
51 | 25
52 | Episode reward -0.10691694083316836
53 | 26
54 | Episode reward -0.0806868574244709
55 | 27
56 | Episode reward -0.05035065858078603
57 | 28
58 | Episode reward -0.2088368085785675
59 | 29
60 | Episode reward -0.05235456946724033
61 | 30
62 | Episode reward -0.05035065858078603
63 | 31
64 | Episode reward -0.06817616500507305
65 | 32
66 | Episode reward -0.046877088985411056
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/DQN/3_DQN_CM1-postgres-card-job-masking-v0_0_2019-06-20_15-37.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.5216030282187517
3 | 1
4 | Episode reward -0.015565521585496138
5 | 2
6 | Episode reward -0.12493232650842861
7 | 3
8 | Episode reward -0.2914432549192331
9 | 4
10 | Episode reward -0.2810219568527235
11 | 5
12 | Episode reward -0.3864728736355608
13 | 6
14 | Episode reward -0.21374867856632412
15 | 7
16 | Episode reward -0.8888746788945107
17 | 8
18 | Episode reward -0.6270598137150882
19 | 9
20 | Episode reward -0.12493232650842861
21 | 10
22 | Episode reward -0.4370397427470111
23 | 11
24 | Episode reward -0.7484225477159483
25 | 12
26 | Episode reward -0.10058668017072649
27 | 13
28 | Episode reward -0.03486750334587033
29 | 14
30 | Episode reward -0.04353870610803556
31 | 15
32 | Episode reward -0.04353870610803556
33 | 16
34 | Episode reward -0.17230925414802278
35 | 17
36 | Episode reward -0.6270598137150882
37 | 18
38 | Episode reward -0.04415429513603606
39 | 19
40 | Episode reward -0.27980718192570736
41 | 20
42 | Episode reward -0.1476950448166174
43 | 21
44 | Episode reward -0.4827212209691818
45 | 22
46 | Episode reward -1.89325383278709
47 | 23
48 | Episode reward -1.89325383278709
49 | 24
50 | Episode reward -0.04353870610803556
51 | 25
52 | Episode reward -0.13679131661471217
53 | 26
54 | Episode reward -2.199049985903023
55 | 27
56 | Episode reward -1.2091431046764913
57 | 28
58 | Episode reward -0.3864728736355608
59 | 29
60 | Episode reward -0.04415429513603606
61 | 30
62 | Episode reward -0.13774419793714146
63 | 31
64 | Episode reward -0.3473456757452176
65 | 32
66 | Episode reward -0.09302876836460415
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/PPO/0_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-21_07-19.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.035074630589971595
3 | 1
4 | Episode reward -0.04349101333777846
5 | 2
6 | Episode reward -0.04349101333777846
7 | 3
8 | Episode reward -0.5440642168242524
9 | 4
10 | Episode reward -0.23682535416763306
11 | 5
12 | Episode reward -0.09909943265261287
13 | 6
14 | Episode reward -0.04757897952222104
15 | 7
16 | Episode reward -0.09337368563928766
17 | 8
18 | Episode reward -0.17729405711224014
19 | 9
20 | Episode reward -0.5413416659532867
21 | 10
22 | Episode reward -0.5413416659532867
23 | 11
24 | Episode reward -0.04349102966298874
25 | 12
26 | Episode reward -0.046965483821373194
27 | 13
28 | Episode reward -0.32209073173912334
29 | 14
30 | Episode reward -0.21618728078611385
31 | 15
32 | Episode reward -0.12250606105321278
33 | 16
34 | Episode reward -0.09909943265261287
35 | 17
36 | Episode reward -0.1882907224834501
37 | 18
38 | Episode reward -0.4395332232436422
39 | 19
40 | Episode reward -0.0647717433572532
41 | 20
42 | Episode reward -0.5440642168242524
43 | 21
44 | Episode reward -0.08088948015849032
45 | 22
46 | Episode reward -0.3259102668400463
47 | 23
48 | Episode reward -0.12022757604421293
49 | 24
50 | Episode reward -0.12644832351960167
51 | 25
52 | Episode reward -0.3862463333141468
53 | 26
54 | Episode reward -0.11365564092362716
55 | 27
56 | Episode reward -0.14279889245072025
57 | 28
58 | Episode reward -0.4395332232436422
59 | 29
60 | Episode reward -0.11365564092362716
61 | 30
62 | Episode reward -0.03616146217681379
63 | 31
64 | Episode reward -0.2600023808739524
65 | 32
66 | Episode reward -0.1984183728110506
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/PPO/1_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-20_17-42.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07553546777879044
3 | 1
4 | Episode reward -0.07553546777879044
5 | 2
6 | Episode reward -0.27510596257138636
7 | 3
8 | Episode reward -0.08172802675916649
9 | 4
10 | Episode reward -0.3067228808646211
11 | 5
12 | Episode reward -0.27510596257138636
13 | 6
14 | Episode reward -0.09899059705807331
15 | 7
16 | Episode reward -0.26013479444513204
17 | 8
18 | Episode reward -0.16452782205736638
19 | 9
20 | Episode reward -0.03376752987745191
21 | 10
22 | Episode reward -0.7129951685882668
23 | 11
24 | Episode reward -0.26013479444513204
25 | 12
26 | Episode reward -0.048688101308770715
27 | 13
28 | Episode reward -0.12834168008546049
29 | 14
30 | Episode reward -0.03269284479641088
31 | 15
32 | Episode reward -0.16452782205736638
33 | 16
34 | Episode reward -0.26013479444513204
35 | 17
36 | Episode reward -0.020569669280548226
37 | 18
38 | Episode reward -0.6722845110268765
39 | 19
40 | Episode reward -0.4483860274774437
41 | 20
42 | Episode reward -0.03376752987745191
43 | 21
44 | Episode reward -0.22716133367769076
45 | 22
46 | Episode reward -0.14160626281077177
47 | 23
48 | Episode reward -0.12834168008546049
49 | 24
50 | Episode reward -0.0826441464654666
51 | 25
52 | Episode reward -0.048688101308770715
53 | 26
54 | Episode reward -0.045314552820709474
55 | 27
56 | Episode reward -0.21459611178012783
57 | 28
58 | Episode reward -0.03269284479641088
59 | 29
60 | Episode reward -0.045314552820709474
61 | 30
62 | Episode reward -0.22716133367769076
63 | 31
64 | Episode reward -0.045314552820709474
65 | 32
66 | Episode reward -0.08172802675916649
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/PPO/2_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-20_20-57.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.8311808828384866
3 | 1
4 | Episode reward -0.049162934917470265
5 | 2
6 | Episode reward -0.05569238881718234
7 | 3
8 | Episode reward -0.10435047727203843
9 | 4
10 | Episode reward -0.11223347161001132
11 | 5
12 | Episode reward -0.5047332646790449
13 | 6
14 | Episode reward -0.05569238881718234
15 | 7
16 | Episode reward -0.09079292432968282
17 | 8
18 | Episode reward -0.048212168136698805
19 | 9
20 | Episode reward -0.8311808828384866
21 | 10
22 | Episode reward -0.09301256986630256
23 | 11
24 | Episode reward -0.09079292432968282
25 | 12
26 | Episode reward -0.034734270463721476
27 | 13
28 | Episode reward -0.048212168136698805
29 | 14
30 | Episode reward -0.22555615770702875
31 | 15
32 | Episode reward -0.10435047727203843
33 | 16
34 | Episode reward -1.4189650181967743
35 | 17
36 | Episode reward -0.03591519743771626
37 | 18
38 | Episode reward -0.03591519743771626
39 | 19
40 | Episode reward -0.03591519743771626
41 | 20
42 | Episode reward -1.4189650181967743
43 | 21
44 | Episode reward -0.03591519743771626
45 | 22
46 | Episode reward -0.0391763592933125
47 | 23
48 | Episode reward -0.032061254572963986
49 | 24
50 | Episode reward -0.09301256986630256
51 | 25
52 | Episode reward -0.09054801950288247
53 | 26
54 | Episode reward -0.07192739488786601
55 | 27
56 | Episode reward -0.049162934917470265
57 | 28
58 | Episode reward -0.05639203918999746
59 | 29
60 | Episode reward -0.0556131204418698
61 | 30
62 | Episode reward -0.049162934917470265
63 | 31
64 | Episode reward -0.034734270463721476
65 | 32
66 | Episode reward -0.048212168136698805
--------------------------------------------------------------------------------
/agents/eval/results/CrossVal/PPO/3_PPO_CM1-postgres-card-job-masking-v0_0_2019-06-21_00-08.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.7105046486911155
3 | 1
4 | Episode reward -0.015172820799754048
5 | 2
6 | Episode reward -0.07698279800471737
7 | 3
8 | Episode reward -0.11564666784397715
9 | 4
10 | Episode reward -0.085401774977727
11 | 5
12 | Episode reward -0.039470935076274444
13 | 6
14 | Episode reward -0.2858248492304062
15 | 7
16 | Episode reward -0.11564666784397715
17 | 8
18 | Episode reward -0.1202385385545359
19 | 9
20 | Episode reward -0.07698279800471737
21 | 10
22 | Episode reward -0.03655240500442934
23 | 11
24 | Episode reward -0.2858248492304062
25 | 12
26 | Episode reward -0.03217557746998145
27 | 13
28 | Episode reward -0.03978472855609879
29 | 14
30 | Episode reward -0.03998895437382237
31 | 15
32 | Episode reward -0.03998895437382237
33 | 16
34 | Episode reward -0.055421172300400084
35 | 17
36 | Episode reward -0.1202385385545359
37 | 18
38 | Episode reward -0.05721184971069869
39 | 19
40 | Episode reward -0.024014963037070135
41 | 20
42 | Episode reward -0.07073874471883848
43 | 21
44 | Episode reward -0.11493200164852475
45 | 22
46 | Episode reward -0.08118705582254972
47 | 23
48 | Episode reward -0.08118705582254972
49 | 24
50 | Episode reward -0.04027287131792835
51 | 25
52 | Episode reward -0.030814154360475497
53 | 26
54 | Episode reward -0.41711998304673437
55 | 27
56 | Episode reward -0.05254144678309079
57 | 28
58 | Episode reward -0.039470935076274444
59 | 29
60 | Episode reward -0.05721184971069869
61 | 30
62 | Episode reward -0.13540081603645562
63 | 31
64 | Episode reward -0.11523795546597759
65 | 32
66 | Episode reward -0.07172370683692394
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-43.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.27558095252481823
3 | 1
4 | Episode reward -0.04881196206116656
5 | 2
6 | Episode reward -0.057129895014628645
7 | 3
8 | Episode reward -0.02413986852228746
9 | 4
10 | Episode reward -0.04881196206116656
11 | 5
12 | Episode reward -0.08477171086290694
13 | 6
14 | Episode reward -0.05112417053965845
15 | 7
16 | Episode reward -0.04881196206116656
17 | 8
18 | Episode reward -0.057129895014628645
19 | 9
20 | Episode reward -0.02413986852228746
21 | 10
22 | Episode reward -0.02782363695521269
23 | 11
24 | Episode reward -0.02413986852228746
25 | 12
26 | Episode reward -0.030745056326600684
27 | 13
28 | Episode reward -0.105541811240415
29 | 14
30 | Episode reward -0.030745056326600684
31 | 15
32 | Episode reward -0.2943353362872508
33 | 16
34 | Episode reward -0.0702008636757136
35 | 17
36 | Episode reward -0.02421676437192152
37 | 18
38 | Episode reward -0.11364518206031764
39 | 19
40 | Episode reward -0.030745056326600684
41 | 20
42 | Episode reward -0.02421676437192152
43 | 21
44 | Episode reward -0.2943353362872508
45 | 22
46 | Episode reward -1.0471927184970582
47 | 23
48 | Episode reward -0.030745056326600684
49 | 24
50 | Episode reward -0.1381363327374976
51 | 25
52 | Episode reward -0.1502010898763279
53 | 26
54 | Episode reward -0.11364518206031764
55 | 27
56 | Episode reward -0.9019950180524843
57 | 28
58 | Episode reward -0.11051189246089237
59 | 29
60 | Episode reward -0.9019950180524843
61 | 30
62 | Episode reward -0.34422406832617164
63 | 31
64 | Episode reward -0.9226552034835453
65 | 32
66 | Episode reward -0.11051189246089237
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-50.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.18955668888006516
3 | 1
4 | Episode reward -0.07538435579269818
5 | 2
6 | Episode reward -0.13763983299347746
7 | 3
8 | Episode reward -0.017133534059142582
9 | 4
10 | Episode reward -0.07538435579269818
11 | 5
12 | Episode reward -0.23681765202843313
13 | 6
14 | Episode reward -0.045608404028343846
15 | 7
16 | Episode reward -0.07538435579269818
17 | 8
18 | Episode reward -0.13763983299347746
19 | 9
20 | Episode reward -0.017133534059142582
21 | 10
22 | Episode reward -0.031359789481813165
23 | 11
24 | Episode reward -0.017133534059142582
25 | 12
26 | Episode reward -0.5117432024854952
27 | 13
28 | Episode reward -0.10017040999921636
29 | 14
30 | Episode reward -0.5117432024854952
31 | 15
32 | Episode reward -0.3063057927273395
33 | 16
34 | Episode reward -0.04335828061621043
35 | 17
36 | Episode reward -0.17030093301048227
37 | 18
38 | Episode reward -0.03498822105248509
39 | 19
40 | Episode reward -0.5117432024854952
41 | 20
42 | Episode reward -0.17030093301048227
43 | 21
44 | Episode reward -0.3063057927273395
45 | 22
46 | Episode reward -0.8720589518975661
47 | 23
48 | Episode reward -0.5117432024854952
49 | 24
50 | Episode reward -0.05334939724697757
51 | 25
52 | Episode reward -0.07515711857741253
53 | 26
54 | Episode reward -0.03498822105248509
55 | 27
56 | Episode reward -0.150037775640448
57 | 28
58 | Episode reward -1.7061491096309487
59 | 29
60 | Episode reward -0.150037775640448
61 | 30
62 | Episode reward -0.4694407429840971
63 | 31
64 | Episode reward -0.20142884531108737
65 | 32
66 | Episode reward -1.7061491096309487
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_22-57.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.30314392267308243
3 | 1
4 | Episode reward -0.048942487896884775
5 | 2
6 | Episode reward -0.11224204517838968
7 | 3
8 | Episode reward -0.04041163490023662
9 | 4
10 | Episode reward -0.048942487896884775
11 | 5
12 | Episode reward -0.2071402573830317
13 | 6
14 | Episode reward -0.04354609630754805
15 | 7
16 | Episode reward -0.048942487896884775
17 | 8
18 | Episode reward -0.11224204517838968
19 | 9
20 | Episode reward -0.04041163490023662
21 | 10
22 | Episode reward -0.08099384277832641
23 | 11
24 | Episode reward -0.04041163490023662
25 | 12
26 | Episode reward -0.26289383628627916
27 | 13
28 | Episode reward -0.2585818592369886
29 | 14
30 | Episode reward -0.26289383628627916
31 | 15
32 | Episode reward -0.4255944763681336
33 | 16
34 | Episode reward -0.09146664393435837
35 | 17
36 | Episode reward -0.04172631416874164
37 | 18
38 | Episode reward -0.08634590894513532
39 | 19
40 | Episode reward -0.26289383628627916
41 | 20
42 | Episode reward -0.04172631416874164
43 | 21
44 | Episode reward -0.4255944763681336
45 | 22
46 | Episode reward -0.9930748713927716
47 | 23
48 | Episode reward -0.26289383628627916
49 | 24
50 | Episode reward -0.08685939077874871
51 | 25
52 | Episode reward -0.1439642353522919
53 | 26
54 | Episode reward -0.08634590894513532
55 | 27
56 | Episode reward -0.08292824481266547
57 | 28
58 | Episode reward -0.3116669475828783
59 | 29
60 | Episode reward -0.08292824481266547
61 | 30
62 | Episode reward -1.2917472689985068
63 | 31
64 | Episode reward -2.267584795565996
65 | 32
66 | Episode reward -0.3116669475828783
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_23-04.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.35994174180248356
3 | 1
4 | Episode reward -0.08967003284303779
5 | 2
6 | Episode reward -0.06633110985036819
7 | 3
8 | Episode reward -0.024138197204125588
9 | 4
10 | Episode reward -0.08967003284303779
11 | 5
12 | Episode reward -0.12131197018291068
13 | 6
14 | Episode reward -0.08159943393092112
15 | 7
16 | Episode reward -0.08967003284303779
17 | 8
18 | Episode reward -0.06633110985036819
19 | 9
20 | Episode reward -0.024138197204125588
21 | 10
22 | Episode reward -0.04519726996489192
23 | 11
24 | Episode reward -0.024138197204125588
25 | 12
26 | Episode reward -0.6726173034448367
27 | 13
28 | Episode reward -0.1200718130108979
29 | 14
30 | Episode reward -0.6726173034448367
31 | 15
32 | Episode reward -0.5184339075768208
33 | 16
34 | Episode reward -0.09218501270709711
35 | 17
36 | Episode reward -0.08457872345546512
37 | 18
38 | Episode reward -0.3840608534754276
39 | 19
40 | Episode reward -0.6726173034448367
41 | 20
42 | Episode reward -0.08457872345546512
43 | 21
44 | Episode reward -0.5184339075768208
45 | 22
46 | Episode reward -2.2553578165652315
47 | 23
48 | Episode reward -0.6726173034448367
49 | 24
50 | Episode reward -0.043849090187531505
51 | 25
52 | Episode reward -0.12250719817545971
53 | 26
54 | Episode reward -0.3840608534754276
55 | 27
56 | Episode reward -0.9414336002787038
57 | 28
58 | Episode reward -0.259607297292651
59 | 29
60 | Episode reward -0.9414336002787038
61 | 30
62 | Episode reward -1.4906706850052123
63 | 31
64 | Episode reward -0.9268063509174941
65 | 32
66 | Episode reward -0.259607297292651
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_23-12.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.24037279887272653
3 | 1
4 | Episode reward -0.08967267166823349
5 | 2
6 | Episode reward -0.14574456497635793
7 | 3
8 | Episode reward -0.04052620453777192
9 | 4
10 | Episode reward -0.08967267166823349
11 | 5
12 | Episode reward -0.05839430481639012
13 | 6
14 | Episode reward -0.042049859058254466
15 | 7
16 | Episode reward -0.08967267166823349
17 | 8
18 | Episode reward -0.14574456497635793
19 | 9
20 | Episode reward -0.04052620453777192
21 | 10
22 | Episode reward -0.035387398791473776
23 | 11
24 | Episode reward -0.04052620453777192
25 | 12
26 | Episode reward -0.3081372521894369
27 | 13
28 | Episode reward -0.19697085808248865
29 | 14
30 | Episode reward -0.3081372521894369
31 | 15
32 | Episode reward -0.3473515640807032
33 | 16
34 | Episode reward -0.0770283963830053
35 | 17
36 | Episode reward -0.10444999606979488
37 | 18
38 | Episode reward -0.17725048363198728
39 | 19
40 | Episode reward -0.3081372521894369
41 | 20
42 | Episode reward -0.10444999606979488
43 | 21
44 | Episode reward -0.3473515640807032
45 | 22
46 | Episode reward -1.0628416694913883
47 | 23
48 | Episode reward -0.3081372521894369
49 | 24
50 | Episode reward -0.03471436694667969
51 | 25
52 | Episode reward -0.1749982005862832
53 | 26
54 | Episode reward -0.17725048363198728
55 | 27
56 | Episode reward -0.2183680134462438
57 | 28
58 | Episode reward -1.1151569754978479
59 | 29
60 | Episode reward -0.2183680134462438
61 | 30
62 | Episode reward -4.282459636853341
63 | 31
64 | Episode reward -0.12185140992527171
65 | 32
66 | Episode reward -1.1151569754978479
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-19.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08345432741603323
3 | 1
4 | Episode reward -0.03270266088480268
5 | 2
6 | Episode reward -0.04387940004763255
7 | 3
8 | Episode reward -0.0668200687255869
9 | 4
10 | Episode reward -0.08345432741603323
11 | 5
12 | Episode reward -0.0355272172597055
13 | 6
14 | Episode reward -0.0355272172597055
15 | 7
16 | Episode reward -0.05776827532233728
17 | 8
18 | Episode reward -0.0489256947357149
19 | 9
20 | Episode reward -0.024451252478888984
21 | 10
22 | Episode reward -0.03270266088480268
23 | 11
24 | Episode reward -0.0668200687255869
25 | 12
26 | Episode reward -0.12206811525563288
27 | 13
28 | Episode reward -0.03324864307828557
29 | 14
30 | Episode reward -1.5218863274271832
31 | 15
32 | Episode reward -0.14863094541553515
33 | 16
34 | Episode reward -0.06068943193275675
35 | 17
36 | Episode reward -0.06311483931967421
37 | 18
38 | Episode reward -1.1792024986090612
39 | 19
40 | Episode reward -0.06311483931967421
41 | 20
42 | Episode reward -1.5218863274271832
43 | 21
44 | Episode reward -0.2047816586063136
45 | 22
46 | Episode reward -0.08459361693182295
47 | 23
48 | Episode reward -0.6860024684503246
49 | 24
50 | Episode reward -0.12206811525563288
51 | 25
52 | Episode reward -1.5218863274271832
53 | 26
54 | Episode reward -0.23051751623213476
55 | 27
56 | Episode reward -1.0450177089505237
57 | 28
58 | Episode reward -0.12483834537697638
59 | 29
60 | Episode reward -0.21784941761188364
61 | 30
62 | Episode reward -0.12483834537697638
63 | 31
64 | Episode reward -0.34286462753048075
65 | 32
66 | Episode reward -0.042434700141162504
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-26.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.1817401715663023
3 | 1
4 | Episode reward -0.045736034886930114
5 | 2
6 | Episode reward -0.0425799752619166
7 | 3
8 | Episode reward -0.12594518851555642
9 | 4
10 | Episode reward -0.1817401715663023
11 | 5
12 | Episode reward -0.027127691490268103
13 | 6
14 | Episode reward -0.027127691490268103
15 | 7
16 | Episode reward -0.09848810221539772
17 | 8
18 | Episode reward -0.07452432521926988
19 | 9
20 | Episode reward -0.030514058614199084
21 | 10
22 | Episode reward -0.045736034886930114
23 | 11
24 | Episode reward -0.12594518851555642
25 | 12
26 | Episode reward -1.3661655350838076
27 | 13
28 | Episode reward -0.07751913636594289
29 | 14
30 | Episode reward -0.5914126560557297
31 | 15
32 | Episode reward -0.6751187579548755
33 | 16
34 | Episode reward -0.13527973671640817
35 | 17
36 | Episode reward -0.13355235938620955
37 | 18
38 | Episode reward -2.8791312530476403
39 | 19
40 | Episode reward -0.13355235938620955
41 | 20
42 | Episode reward -0.5914126560557297
43 | 21
44 | Episode reward -1.2266405256197506
45 | 22
46 | Episode reward -0.13445133076216104
47 | 23
48 | Episode reward -4.502093600931535
49 | 24
50 | Episode reward -1.3661655350838076
51 | 25
52 | Episode reward -0.5914126560557297
53 | 26
54 | Episode reward -0.2250079152360116
55 | 27
56 | Episode reward -0.4241127696417123
57 | 28
58 | Episode reward -0.0567903693993498
59 | 29
60 | Episode reward -0.16528777169532158
61 | 30
62 | Episode reward -0.0567903693993498
63 | 31
64 | Episode reward -0.2210223646672177
65 | 32
66 | Episode reward -0.5524230978942932
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-33.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07507031161221572
3 | 1
4 | Episode reward -0.02788544515979268
5 | 2
6 | Episode reward -0.05886797839695098
7 | 3
8 | Episode reward -0.03507463058997159
9 | 4
10 | Episode reward -0.07507031161221572
11 | 5
12 | Episode reward -0.03182842533498737
13 | 6
14 | Episode reward -0.03182842533498737
15 | 7
16 | Episode reward -0.04284168035384416
17 | 8
18 | Episode reward -0.04534374048979065
19 | 9
20 | Episode reward -0.017854296454287696
21 | 10
22 | Episode reward -0.02788544515979268
23 | 11
24 | Episode reward -0.03507463058997159
25 | 12
26 | Episode reward -1.728129218727309
27 | 13
28 | Episode reward -0.04288417768717584
29 | 14
30 | Episode reward -0.8669459063341383
31 | 15
32 | Episode reward -0.5957924260804778
33 | 16
34 | Episode reward -0.1608013042102145
35 | 17
36 | Episode reward -0.14116973877176903
37 | 18
38 | Episode reward -0.4582300689516999
39 | 19
40 | Episode reward -0.14116973877176903
41 | 20
42 | Episode reward -0.8669459063341383
43 | 21
44 | Episode reward -0.23507669847117002
45 | 22
46 | Episode reward -0.257464863977234
47 | 23
48 | Episode reward -0.7225274961235719
49 | 24
50 | Episode reward -1.728129218727309
51 | 25
52 | Episode reward -0.8669459063341383
53 | 26
54 | Episode reward -0.5018922720520662
55 | 27
56 | Episode reward -1.4458065035486747
57 | 28
58 | Episode reward -0.12576175130619727
59 | 29
60 | Episode reward -2.1847724413496845
61 | 30
62 | Episode reward -0.12576175130619727
63 | 31
64 | Episode reward -10.0
65 | 32
66 | Episode reward -0.29220435425971747
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-41.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.1124822015130597
3 | 1
4 | Episode reward -0.08120008151070614
5 | 2
6 | Episode reward -0.07195425714814593
7 | 3
8 | Episode reward -0.034734270463721476
9 | 4
10 | Episode reward -0.1124822015130597
11 | 5
12 | Episode reward -0.08062936653669973
13 | 6
14 | Episode reward -0.08062936653669973
15 | 7
16 | Episode reward -0.048794264008057545
17 | 8
18 | Episode reward -0.04762437651883879
19 | 9
20 | Episode reward -0.017894443551591956
21 | 10
22 | Episode reward -0.08120008151070614
23 | 11
24 | Episode reward -0.034734270463721476
25 | 12
26 | Episode reward -0.6070125224098926
27 | 13
28 | Episode reward -0.03598834660714644
29 | 14
30 | Episode reward -0.05377848955867573
31 | 15
32 | Episode reward -0.6654611568242396
33 | 16
34 | Episode reward -0.24455632389856444
35 | 17
36 | Episode reward -0.20230449864180236
37 | 18
38 | Episode reward -0.47358455571548486
39 | 19
40 | Episode reward -0.20230449864180236
41 | 20
42 | Episode reward -0.05377848955867573
43 | 21
44 | Episode reward -0.5112261565659746
45 | 22
46 | Episode reward -0.03992135685784581
47 | 23
48 | Episode reward -2.718542781042719
49 | 24
50 | Episode reward -0.6070125224098926
51 | 25
52 | Episode reward -0.05377848955867573
53 | 26
54 | Episode reward -0.46669785892018956
55 | 27
56 | Episode reward -0.6275660161703391
57 | 28
58 | Episode reward -0.11820991523285349
59 | 29
60 | Episode reward -0.034985686879062824
61 | 30
62 | Episode reward -0.11820991523285349
63 | 31
64 | Episode reward -0.05374457139886684
65 | 32
66 | Episode reward -0.19551536736181602
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_23-48.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.20157036788938326
3 | 1
4 | Episode reward -0.036161478686099854
5 | 2
6 | Episode reward -0.059360435260922134
7 | 3
8 | Episode reward -0.09129731384613651
9 | 4
10 | Episode reward -0.20157036788938326
11 | 5
12 | Episode reward -0.07240424243259115
13 | 6
14 | Episode reward -0.07240424243259115
15 | 7
16 | Episode reward -0.0864612244971949
17 | 8
18 | Episode reward -0.03413359703445045
19 | 9
20 | Episode reward -0.03583480936761567
21 | 10
22 | Episode reward -0.036161478686099854
23 | 11
24 | Episode reward -0.09129731384613651
25 | 12
26 | Episode reward -1.7192917302088107
27 | 13
28 | Episode reward -0.36275042991950734
29 | 14
30 | Episode reward -0.4398737094495282
31 | 15
32 | Episode reward -0.47360335950245774
33 | 16
34 | Episode reward -0.24184035576527704
35 | 17
36 | Episode reward -0.2365740773515336
37 | 18
38 | Episode reward -1.6995748408268063
39 | 19
40 | Episode reward -0.2365740773515336
41 | 20
42 | Episode reward -0.4398737094495282
43 | 21
44 | Episode reward -0.9245131209769015
45 | 22
46 | Episode reward -0.10469117557857596
47 | 23
48 | Episode reward -0.7950366384880169
49 | 24
50 | Episode reward -1.7192917302088107
51 | 25
52 | Episode reward -0.4398737094495282
53 | 26
54 | Episode reward -0.36933313026683123
55 | 27
56 | Episode reward -0.324041770054891
57 | 28
58 | Episode reward -0.09400403700733229
59 | 29
60 | Episode reward -0.8668116684172212
61 | 30
62 | Episode reward -0.09400403700733229
63 | 31
64 | Episode reward -4.219869712828589
65 | 32
66 | Episode reward -1.4243612634000198
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_23-55.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.12314729665130966
3 | 1
4 | Episode reward -0.07587524328597077
5 | 2
6 | Episode reward -0.014006730368606715
7 | 3
8 | Episode reward -0.12314729665130966
9 | 4
10 | Episode reward -0.05676713993368714
11 | 5
12 | Episode reward -0.09316599325929086
13 | 6
14 | Episode reward -0.0712537610215057
15 | 7
16 | Episode reward -0.12596776349839567
17 | 8
18 | Episode reward -0.0712537610215057
19 | 9
20 | Episode reward -0.09316599325929086
21 | 10
22 | Episode reward -0.12596776349839567
23 | 11
24 | Episode reward -0.05676713993368714
25 | 12
26 | Episode reward -0.06896061967207592
27 | 13
28 | Episode reward -0.06665287033774699
29 | 14
30 | Episode reward -0.7835202043523772
31 | 15
32 | Episode reward -0.2377034070649619
33 | 16
34 | Episode reward -0.17014958076671238
35 | 17
36 | Episode reward -0.08444590701218813
37 | 18
38 | Episode reward -0.13683176219830362
39 | 19
40 | Episode reward -0.17014958076671238
41 | 20
42 | Episode reward -0.12423777548516589
43 | 21
44 | Episode reward -0.12423777548516589
45 | 22
46 | Episode reward -0.03744309781786968
47 | 23
48 | Episode reward -0.07870519799511859
49 | 24
50 | Episode reward -0.07379302575813697
51 | 25
52 | Episode reward -0.03744309781786968
53 | 26
54 | Episode reward -0.08444590701218813
55 | 27
56 | Episode reward -0.3645164290635234
57 | 28
58 | Episode reward -1.4489497044968553
59 | 29
60 | Episode reward -0.9268010821400807
61 | 30
62 | Episode reward -0.9268010821400807
63 | 31
64 | Episode reward -0.9548521854644674
65 | 32
66 | Episode reward -1.00334055246423
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-03.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.14719356641033804
3 | 1
4 | Episode reward -0.08551378235852217
5 | 2
6 | Episode reward -0.05927291532671435
7 | 3
8 | Episode reward -0.14719356641033804
9 | 4
10 | Episode reward -0.05614627746556709
11 | 5
12 | Episode reward -0.10182138800251893
13 | 6
14 | Episode reward -0.026253729619348028
15 | 7
16 | Episode reward -0.034734270463721476
17 | 8
18 | Episode reward -0.026253729619348028
19 | 9
20 | Episode reward -0.10182138800251893
21 | 10
22 | Episode reward -0.034734270463721476
23 | 11
24 | Episode reward -0.05614627746556709
25 | 12
26 | Episode reward -0.07560449897727003
27 | 13
28 | Episode reward -0.09260405700373572
29 | 14
30 | Episode reward -0.16051743846256955
31 | 15
32 | Episode reward -1.0382032331025535
33 | 16
34 | Episode reward -0.15590348112402602
35 | 17
36 | Episode reward -0.075731574204734
37 | 18
38 | Episode reward -0.7484736185366027
39 | 19
40 | Episode reward -0.15590348112402602
41 | 20
42 | Episode reward -0.6002671736052771
43 | 21
44 | Episode reward -0.6002671736052771
45 | 22
46 | Episode reward -0.04541963194802768
47 | 23
48 | Episode reward -0.19873324788643287
49 | 24
50 | Episode reward -0.1529152908387798
51 | 25
52 | Episode reward -0.04541963194802768
53 | 26
54 | Episode reward -0.075731574204734
55 | 27
56 | Episode reward -0.17848711256492703
57 | 28
58 | Episode reward -0.4690045020919547
59 | 29
60 | Episode reward -0.11503302349873121
61 | 30
62 | Episode reward -0.11503302349873121
63 | 31
64 | Episode reward -0.18300526095468556
65 | 32
66 | Episode reward -0.706397972363886
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-10.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.12329995411308095
3 | 1
4 | Episode reward -0.04375222683962195
5 | 2
6 | Episode reward -0.01461044637738746
7 | 3
8 | Episode reward -0.12329995411308095
9 | 4
10 | Episode reward -0.06150175381439599
11 | 5
12 | Episode reward -0.0935300959626787
13 | 6
14 | Episode reward -0.09951648607317835
15 | 7
16 | Episode reward -0.03486750334587033
17 | 8
18 | Episode reward -0.09951648607317835
19 | 9
20 | Episode reward -0.0935300959626787
21 | 10
22 | Episode reward -0.03486750334587033
23 | 11
24 | Episode reward -0.06150175381439599
25 | 12
26 | Episode reward -0.05137716531652278
27 | 13
28 | Episode reward -0.07447613641072884
29 | 14
30 | Episode reward -1.5593855104272059
31 | 15
32 | Episode reward -0.6529194568462344
33 | 16
34 | Episode reward -0.19924611485773427
35 | 17
36 | Episode reward -0.2606020317905099
37 | 18
38 | Episode reward -0.16470856244558463
39 | 19
40 | Episode reward -0.19924611485773427
41 | 20
42 | Episode reward -0.18501918965666792
43 | 21
44 | Episode reward -0.18501918965666792
45 | 22
46 | Episode reward -0.03492596567000414
47 | 23
48 | Episode reward -0.18420492025227028
49 | 24
50 | Episode reward -0.17108075900247405
51 | 25
52 | Episode reward -0.03492596567000414
53 | 26
54 | Episode reward -0.2606020317905099
55 | 27
56 | Episode reward -0.9786893372543106
57 | 28
58 | Episode reward -1.5280842547680897
59 | 29
60 | Episode reward -1.3794981620790647
61 | 30
62 | Episode reward -1.3794981620790647
63 | 31
64 | Episode reward -0.41376949056270346
65 | 32
66 | Episode reward -8.885142737640974
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-17.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.12711612910190045
3 | 1
4 | Episode reward -0.04054538166539806
5 | 2
6 | Episode reward -0.0592822880415303
7 | 3
8 | Episode reward -0.12711612910190045
9 | 4
10 | Episode reward -0.05770323033389274
11 | 5
12 | Episode reward -0.08435470944512642
13 | 6
14 | Episode reward -0.09939703748088827
15 | 7
16 | Episode reward -0.0347342737169928
17 | 8
18 | Episode reward -0.09939703748088827
19 | 9
20 | Episode reward -0.08435470944512642
21 | 10
22 | Episode reward -0.0347342737169928
23 | 11
24 | Episode reward -0.05770323033389274
25 | 12
26 | Episode reward -0.12444219570783058
27 | 13
28 | Episode reward -0.08223803235917913
29 | 14
30 | Episode reward -0.1250378800342006
31 | 15
32 | Episode reward -0.884138791877237
33 | 16
34 | Episode reward -0.0312910405373954
35 | 17
36 | Episode reward -0.028473507214146647
37 | 18
38 | Episode reward -0.08930232640581404
39 | 19
40 | Episode reward -0.0312910405373954
41 | 20
42 | Episode reward -0.10189253795155429
43 | 21
44 | Episode reward -0.10189253795155429
45 | 22
46 | Episode reward -0.07225842946070764
47 | 23
48 | Episode reward -0.2117268565270504
49 | 24
50 | Episode reward -0.06104193298554494
51 | 25
52 | Episode reward -0.07225842946070764
53 | 26
54 | Episode reward -0.028473507214146647
55 | 27
56 | Episode reward -2.676010011780778
57 | 28
58 | Episode reward -0.11993982816627774
59 | 29
60 | Episode reward -0.16525165736781894
61 | 30
62 | Episode reward -0.16525165736781894
63 | 31
64 | Episode reward -0.1910254021722515
65 | 32
66 | Episode reward -0.0765156692152971
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-27_00-24.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.10033450635101224
3 | 1
4 | Episode reward -0.03433214802294838
5 | 2
6 | Episode reward -0.016352774771925534
7 | 3
8 | Episode reward -0.10033450635101224
9 | 4
10 | Episode reward -0.09909943265261287
11 | 5
12 | Episode reward -0.044642636137402276
13 | 6
14 | Episode reward -0.1212074396442906
15 | 7
16 | Episode reward -0.042397458718117176
17 | 8
18 | Episode reward -0.1212074396442906
19 | 9
20 | Episode reward -0.044642636137402276
21 | 10
22 | Episode reward -0.042397458718117176
23 | 11
24 | Episode reward -0.09909943265261287
25 | 12
26 | Episode reward -0.0718108292925205
27 | 13
28 | Episode reward -0.06691023716665473
29 | 14
30 | Episode reward -1.3500543844307473
31 | 15
32 | Episode reward -0.9417540616095432
33 | 16
34 | Episode reward -0.1942975708833093
35 | 17
36 | Episode reward -0.5400520252712872
37 | 18
38 | Episode reward -0.8823172001295022
39 | 19
40 | Episode reward -0.1942975708833093
41 | 20
42 | Episode reward -0.27701588384744286
43 | 21
44 | Episode reward -0.27701588384744286
45 | 22
46 | Episode reward -0.06858444675276336
47 | 23
48 | Episode reward -0.10401866491158338
49 | 24
50 | Episode reward -0.622081793021284
51 | 25
52 | Episode reward -0.06858444675276336
53 | 26
54 | Episode reward -0.5400520252712872
55 | 27
56 | Episode reward -1.7628042608502752
57 | 28
58 | Episode reward -0.4414320090095663
59 | 29
60 | Episode reward -0.877436660174117
61 | 30
62 | Episode reward -0.877436660174117
63 | 31
64 | Episode reward -0.5558796473358404
65 | 32
66 | Episode reward -2.1705803199830895
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-32.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.060102243961668966
3 | 1
4 | Episode reward -0.024956575331624833
5 | 2
6 | Episode reward -0.06575958981344368
7 | 3
8 | Episode reward -0.742025981099217
9 | 4
10 | Episode reward -0.06575958981344368
11 | 5
12 | Episode reward -0.04881608706462487
13 | 6
14 | Episode reward -0.099469884796484
15 | 7
16 | Episode reward -0.04881608706462487
17 | 8
18 | Episode reward -0.06575958981344368
19 | 9
20 | Episode reward -0.060102243961668966
21 | 10
22 | Episode reward -0.08091762494516386
23 | 11
24 | Episode reward -0.742025981099217
25 | 12
26 | Episode reward -0.20732534130293798
27 | 13
28 | Episode reward -4.1430095198090955
29 | 14
30 | Episode reward -0.7632885115426113
31 | 15
32 | Episode reward -0.3327704423887685
33 | 16
34 | Episode reward -0.46821006861671277
35 | 17
36 | Episode reward -0.4126078499259603
37 | 18
38 | Episode reward -0.049348952891950154
39 | 19
40 | Episode reward -0.08104127927648287
41 | 20
42 | Episode reward -0.20732534130293798
43 | 21
44 | Episode reward -0.15129520099138563
45 | 22
46 | Episode reward -4.1430095198090955
47 | 23
48 | Episode reward -0.08104127927648287
49 | 24
50 | Episode reward -0.15129520099138563
51 | 25
52 | Episode reward -0.3327704423887685
53 | 26
54 | Episode reward -1.875939323668768
55 | 27
56 | Episode reward -0.36934881398733993
57 | 28
58 | Episode reward -0.36934881398733993
59 | 29
60 | Episode reward -0.06518270716132102
61 | 30
62 | Episode reward -0.16378253598131856
63 | 31
64 | Episode reward -0.06518270716132102
65 | 32
66 | Episode reward -3.8351389288818547
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-39.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08654496093362701
3 | 1
4 | Episode reward -0.025480169052106025
5 | 2
6 | Episode reward -0.07504537221695146
7 | 3
8 | Episode reward -0.7230040041310137
9 | 4
10 | Episode reward -0.07504537221695146
11 | 5
12 | Episode reward -0.0514000585621904
13 | 6
14 | Episode reward -0.030288961912586593
15 | 7
16 | Episode reward -0.0514000585621904
17 | 8
18 | Episode reward -0.07504537221695146
19 | 9
20 | Episode reward -0.08654496093362701
21 | 10
22 | Episode reward -0.0676045357726634
23 | 11
24 | Episode reward -0.7230040041310137
25 | 12
26 | Episode reward -0.2991053947898695
27 | 13
28 | Episode reward -0.7298191132408043
29 | 14
30 | Episode reward -0.5973730273668652
31 | 15
32 | Episode reward -1.5673774660263595
33 | 16
34 | Episode reward -0.4452954603213519
35 | 17
36 | Episode reward -0.10678871636265225
37 | 18
38 | Episode reward -0.053377974754769575
39 | 19
40 | Episode reward -0.05067382064521689
41 | 20
42 | Episode reward -0.2991053947898695
43 | 21
44 | Episode reward -0.21699494268457162
45 | 22
46 | Episode reward -0.7298191132408043
47 | 23
48 | Episode reward -0.05067382064521689
49 | 24
50 | Episode reward -0.21699494268457162
51 | 25
52 | Episode reward -1.5673774660263595
53 | 26
54 | Episode reward -0.8399540108662341
55 | 27
56 | Episode reward -0.1325701992813082
57 | 28
58 | Episode reward -0.1325701992813082
59 | 29
60 | Episode reward -0.9022965065009941
61 | 30
62 | Episode reward -0.16013945241090471
63 | 31
64 | Episode reward -0.9022965065009941
65 | 32
66 | Episode reward -0.10351044055283086
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-46.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08887787229635742
3 | 1
4 | Episode reward -0.016831525549694693
5 | 2
6 | Episode reward -0.10621850716441615
7 | 3
8 | Episode reward -0.3599290393131559
9 | 4
10 | Episode reward -0.10621850716441615
11 | 5
12 | Episode reward -0.03618330729664126
13 | 6
14 | Episode reward -0.026253729619348028
15 | 7
16 | Episode reward -0.03618330729664126
17 | 8
18 | Episode reward -0.10621850716441615
19 | 9
20 | Episode reward -0.08887787229635742
21 | 10
22 | Episode reward -0.12945145547180198
23 | 11
24 | Episode reward -0.3599290393131559
25 | 12
26 | Episode reward -0.5819137281301746
27 | 13
28 | Episode reward -0.8796683587941776
29 | 14
30 | Episode reward -0.44386292489847545
31 | 15
32 | Episode reward -0.4560707109736925
33 | 16
34 | Episode reward -0.08908873900600649
35 | 17
36 | Episode reward -0.08320263014032528
37 | 18
38 | Episode reward -0.02113275847255507
39 | 19
40 | Episode reward -0.05698526727788568
41 | 20
42 | Episode reward -0.5819137281301746
43 | 21
44 | Episode reward -0.12885721898449576
45 | 22
46 | Episode reward -0.8796683587941776
47 | 23
48 | Episode reward -0.05698526727788568
49 | 24
50 | Episode reward -0.12885721898449576
51 | 25
52 | Episode reward -0.4560707109736925
53 | 26
54 | Episode reward -0.15085967474399561
55 | 27
56 | Episode reward -0.2868043256188304
57 | 28
58 | Episode reward -0.2868043256188304
59 | 29
60 | Episode reward -0.20486975638478636
61 | 30
62 | Episode reward -2.256328249160063
63 | 31
64 | Episode reward -0.20486975638478636
65 | 32
66 | Episode reward -0.09733838664923591
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_00-53.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07546580235781458
3 | 1
4 | Episode reward -0.016877838264604338
5 | 2
6 | Episode reward -0.14358227431541454
7 | 3
8 | Episode reward -0.4759352365326977
9 | 4
10 | Episode reward -0.14358227431541454
11 | 5
12 | Episode reward -0.08120009164616435
13 | 6
14 | Episode reward -0.030288961912586593
15 | 7
16 | Episode reward -0.08120009164616435
17 | 8
18 | Episode reward -0.14358227431541454
19 | 9
20 | Episode reward -0.07546580235781458
21 | 10
22 | Episode reward -0.10115976642583667
23 | 11
24 | Episode reward -0.4759352365326977
25 | 12
26 | Episode reward -0.5278627799721357
27 | 13
28 | Episode reward -8.12105414816833
29 | 14
30 | Episode reward -0.520155235763466
31 | 15
32 | Episode reward -4.578419398237171
33 | 16
34 | Episode reward -0.2492442849019238
35 | 17
36 | Episode reward -0.05295112116265456
37 | 18
38 | Episode reward -0.033379618563127614
39 | 19
40 | Episode reward -0.11169698038721343
41 | 20
42 | Episode reward -0.5278627799721357
43 | 21
44 | Episode reward -0.5594416931204723
45 | 22
46 | Episode reward -8.12105414816833
47 | 23
48 | Episode reward -0.11169698038721343
49 | 24
50 | Episode reward -0.5594416931204723
51 | 25
52 | Episode reward -4.578419398237171
53 | 26
54 | Episode reward -1.0737933120005951
55 | 27
56 | Episode reward -0.0433228383383041
57 | 28
58 | Episode reward -0.0433228383383041
59 | 29
60 | Episode reward -0.2865444118330874
61 | 30
62 | Episode reward -0.8160530174959545
63 | 31
64 | Episode reward -0.2865444118330874
65 | 32
66 | Episode reward -0.8905360222099052
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DDQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-27_01-01.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09909943265261287
3 | 1
4 | Episode reward -0.04048878034633957
5 | 2
6 | Episode reward -0.14027873736176988
7 | 3
8 | Episode reward -0.2757943796277473
9 | 4
10 | Episode reward -0.14027873736176988
11 | 5
12 | Episode reward -0.03269284479641088
13 | 6
14 | Episode reward -0.09909702864375958
15 | 7
16 | Episode reward -0.03269284479641088
17 | 8
18 | Episode reward -0.14027873736176988
19 | 9
20 | Episode reward -0.09909943265261287
21 | 10
22 | Episode reward -0.12242821421088672
23 | 11
24 | Episode reward -0.2757943796277473
25 | 12
26 | Episode reward -0.32204197199604767
27 | 13
28 | Episode reward -10.0
29 | 14
30 | Episode reward -0.66544804218219
31 | 15
32 | Episode reward -1.5961380430876475
33 | 16
34 | Episode reward -0.5683126437885454
35 | 17
36 | Episode reward -0.5402698261583266
37 | 18
38 | Episode reward -0.12431533109568649
39 | 19
40 | Episode reward -0.12336994669697467
41 | 20
42 | Episode reward -0.32204197199604767
43 | 21
44 | Episode reward -0.523340791579023
45 | 22
46 | Episode reward -10.0
47 | 23
48 | Episode reward -0.12336994669697467
49 | 24
50 | Episode reward -0.523340791579023
51 | 25
52 | Episode reward -1.5961380430876475
53 | 26
54 | Episode reward -2.3073709254846864
55 | 27
56 | Episode reward -0.5234042161515298
57 | 28
58 | Episode reward -0.5234042161515298
59 | 29
60 | Episode reward -10.0
61 | 30
62 | Episode reward -2.052019313053443
63 | 31
64 | Episode reward -10.0
65 | 32
66 | Episode reward -0.9794231398823333
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_17-38.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.39784343381026127
3 | 1
4 | Episode reward -0.04284168035384416
5 | 2
6 | Episode reward -0.12396041652325344
7 | 3
8 | Episode reward -0.03639454160250224
9 | 4
10 | Episode reward -0.049985586581092416
11 | 5
12 | Episode reward -0.13491842733406806
13 | 6
14 | Episode reward -0.048625955604474816
15 | 7
16 | Episode reward -0.04284168035384416
17 | 8
18 | Episode reward -0.12396041652325344
19 | 9
20 | Episode reward -0.03639454160250224
21 | 10
22 | Episode reward -0.02836784515033639
23 | 11
24 | Episode reward -0.03639454160250224
25 | 12
26 | Episode reward -0.4076676587973248
27 | 13
28 | Episode reward -0.4484038853696569
29 | 14
30 | Episode reward -0.34323308530049235
31 | 15
32 | Episode reward -0.3381496352541543
33 | 16
34 | Episode reward -0.08198499639662102
35 | 17
36 | Episode reward -0.17457871715582302
37 | 18
38 | Episode reward -0.07471460752909874
39 | 19
40 | Episode reward -0.4076676587973248
41 | 20
42 | Episode reward -0.11454849439488829
43 | 21
44 | Episode reward -0.3381496352541543
45 | 22
46 | Episode reward -2.5874656845005433
47 | 23
48 | Episode reward -0.4076676587973248
49 | 24
50 | Episode reward -0.04741382107368106
51 | 25
52 | Episode reward -0.1429815682749804
53 | 26
54 | Episode reward -0.07471460752909874
55 | 27
56 | Episode reward -0.7560860131589566
57 | 28
58 | Episode reward -0.16725233488156255
59 | 29
60 | Episode reward -0.7560860131589566
61 | 30
62 | Episode reward -0.5372025035465239
63 | 31
64 | Episode reward -0.9146002008448023
65 | 32
66 | Episode reward -0.05618179320419906
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_17-51.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.3979051669516898
3 | 1
4 | Episode reward -0.04273331904513919
5 | 2
6 | Episode reward -0.0796796558532023
7 | 3
8 | Episode reward -0.030775531753543035
9 | 4
10 | Episode reward -0.04273331904513919
11 | 5
12 | Episode reward -0.0710344022610779
13 | 6
14 | Episode reward -0.04637159394535056
15 | 7
16 | Episode reward -0.04273331904513919
17 | 8
18 | Episode reward -0.0796796558532023
19 | 9
20 | Episode reward -0.030775531753543035
21 | 10
22 | Episode reward -0.035387381921055984
23 | 11
24 | Episode reward -0.030775531753543035
25 | 12
26 | Episode reward -0.22207973948548543
27 | 13
28 | Episode reward -0.3841930827519314
29 | 14
30 | Episode reward -0.22207973948548543
31 | 15
32 | Episode reward -0.4664622149849865
33 | 16
34 | Episode reward -0.058516577073671854
35 | 17
36 | Episode reward -0.017085697328236425
37 | 18
38 | Episode reward -0.10041435493147516
39 | 19
40 | Episode reward -0.22207973948548543
41 | 20
42 | Episode reward -0.12684105947549254
43 | 21
44 | Episode reward -0.4664622149849865
45 | 22
46 | Episode reward -1.0855410951502236
47 | 23
48 | Episode reward -0.250526470127113
49 | 24
50 | Episode reward -0.03634948690323592
51 | 25
52 | Episode reward -0.11518717538341036
53 | 26
54 | Episode reward -0.10041435493147516
55 | 27
56 | Episode reward -0.20124123583849185
57 | 28
58 | Episode reward -0.6211836852356291
59 | 29
60 | Episode reward -0.20124123583849185
61 | 30
62 | Episode reward -0.6594887862053045
63 | 31
64 | Episode reward -0.5231349789710306
65 | 32
66 | Episode reward -0.5221915024111332
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-03.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.2899316782658249
3 | 1
4 | Episode reward -0.08078777447526607
5 | 2
6 | Episode reward -0.13222059277672488
7 | 3
8 | Episode reward -0.024247621631712984
9 | 4
10 | Episode reward -0.08078777447526607
11 | 5
12 | Episode reward -0.11689761812160805
13 | 6
14 | Episode reward -0.08614108563298156
15 | 7
16 | Episode reward -0.08078777447526607
17 | 8
18 | Episode reward -0.1321855216553659
19 | 9
20 | Episode reward -0.024247621631712984
21 | 10
22 | Episode reward -0.027127717662776323
23 | 11
24 | Episode reward -0.024247621631712984
25 | 12
26 | Episode reward -0.4942176450301103
27 | 13
28 | Episode reward -0.17020055323301045
29 | 14
30 | Episode reward -0.4942176450301103
31 | 15
32 | Episode reward -0.3037227804540725
33 | 16
34 | Episode reward -0.112218243112666
35 | 17
36 | Episode reward -0.03542479246928049
37 | 18
38 | Episode reward -0.061620293359461176
39 | 19
40 | Episode reward -0.4942176450301103
41 | 20
42 | Episode reward -0.03542479246928049
43 | 21
44 | Episode reward -0.3037227804540725
45 | 22
46 | Episode reward -1.124520336388186
47 | 23
48 | Episode reward -0.4942176450301103
49 | 24
50 | Episode reward -0.06952757078604364
51 | 25
52 | Episode reward -0.09076328681684806
53 | 26
54 | Episode reward -0.061620293359461176
55 | 27
56 | Episode reward -1.1333812287757818
57 | 28
58 | Episode reward -0.16934397519173275
59 | 29
60 | Episode reward -1.1333812287757818
61 | 30
62 | Episode reward -1.5436626004964369
63 | 31
64 | Episode reward -0.7565640324459745
65 | 32
66 | Episode reward -0.152578458682799
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-12.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.19402753446010804
3 | 1
4 | Episode reward -0.08896199390427148
5 | 2
6 | Episode reward -0.11280996802857843
7 | 3
8 | Episode reward -0.016376576834589908
9 | 4
10 | Episode reward -0.08896199390427148
11 | 5
12 | Episode reward -0.09021399966666245
13 | 6
14 | Episode reward -0.07668234606490741
15 | 7
16 | Episode reward -0.08896199390427148
17 | 8
18 | Episode reward -0.11280996802857843
19 | 9
20 | Episode reward -0.016376576834589908
21 | 10
22 | Episode reward -0.07017649946010493
23 | 11
24 | Episode reward -0.016376576834589908
25 | 12
26 | Episode reward -0.034562587192761535
27 | 13
28 | Episode reward -0.2165894966038312
29 | 14
30 | Episode reward -0.5715255042411844
31 | 15
32 | Episode reward -0.3105274978045144
33 | 16
34 | Episode reward -0.06892287060937181
35 | 17
36 | Episode reward -0.04009297682568206
37 | 18
38 | Episode reward -0.029270136447821504
39 | 19
40 | Episode reward -0.034562587192761535
41 | 20
42 | Episode reward -0.04009297682568206
43 | 21
44 | Episode reward -0.3105274978045144
45 | 22
46 | Episode reward -1.1635291832214676
47 | 23
48 | Episode reward -0.034562587192761535
49 | 24
50 | Episode reward -0.12107961930906216
51 | 25
52 | Episode reward -0.12877193157758035
53 | 26
54 | Episode reward -0.029270136447821504
55 | 27
56 | Episode reward -0.22809935283321492
57 | 28
58 | Episode reward -1.2008879297941095
59 | 29
60 | Episode reward -0.22809935283321492
61 | 30
62 | Episode reward -0.6754784674814706
63 | 31
64 | Episode reward -0.5857228659589171
65 | 32
66 | Episode reward -1.2008879297941095
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v0_0_2019-06-26_18-23.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.25209366621778034
3 | 1
4 | Episode reward -0.04267227031799767
5 | 2
6 | Episode reward -0.0905675852292019
7 | 3
8 | Episode reward -0.024438088585689702
9 | 4
10 | Episode reward -0.04267227031799767
11 | 5
12 | Episode reward -0.07833828157222134
13 | 6
14 | Episode reward -0.07001048044505005
15 | 7
16 | Episode reward -0.04267227031799767
17 | 8
18 | Episode reward -0.0905675852292019
19 | 9
20 | Episode reward -0.024438088585689702
21 | 10
22 | Episode reward -0.031983805781932564
23 | 11
24 | Episode reward -0.024438088585689702
25 | 12
26 | Episode reward -0.04851686772029544
27 | 13
28 | Episode reward -0.0997079581185358
29 | 14
30 | Episode reward -0.04851686772029544
31 | 15
32 | Episode reward -0.5948991465605741
33 | 16
34 | Episode reward -0.05754361367803335
35 | 17
36 | Episode reward -0.03541821214354241
37 | 18
38 | Episode reward -0.20081949438948138
39 | 19
40 | Episode reward -0.04851686772029544
41 | 20
42 | Episode reward -0.03541821214354241
43 | 21
44 | Episode reward -0.5948991465605741
45 | 22
46 | Episode reward -0.695539328900599
47 | 23
48 | Episode reward -0.04851686772029544
49 | 24
50 | Episode reward -0.044204227664346465
51 | 25
52 | Episode reward -0.1477177336342962
53 | 26
54 | Episode reward -0.20081949438948138
55 | 27
56 | Episode reward -0.17209134076281396
57 | 28
58 | Episode reward -0.678325686590574
59 | 29
60 | Episode reward -0.17209134076281396
61 | 30
62 | Episode reward -0.6465893119034476
63 | 31
64 | Episode reward -1.452779600265249
65 | 32
66 | Episode reward -0.678325686590574
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-34.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08719419478544864
3 | 1
4 | Episode reward -0.07071197300329211
5 | 2
6 | Episode reward -0.0720533415267356
7 | 3
8 | Episode reward -0.0317137719701762
9 | 4
10 | Episode reward -0.08719419478544864
11 | 5
12 | Episode reward -0.03580333870168962
13 | 6
14 | Episode reward -0.03580333870168962
15 | 7
16 | Episode reward -0.04284168035384416
17 | 8
18 | Episode reward -0.046558280088157725
19 | 9
20 | Episode reward -0.01773482318638659
21 | 10
22 | Episode reward -0.03205124204657616
23 | 11
24 | Episode reward -0.0317137719701762
25 | 12
26 | Episode reward -0.5485133615352417
27 | 13
28 | Episode reward -0.07970587114700266
29 | 14
30 | Episode reward -1.385235486540009
31 | 15
32 | Episode reward -0.4736033599796503
33 | 16
34 | Episode reward -0.1266616958686347
35 | 17
36 | Episode reward -0.07336936856963146
37 | 18
38 | Episode reward -3.038768066502795
39 | 19
40 | Episode reward -0.07336936856963146
41 | 20
42 | Episode reward -1.385235486540009
43 | 21
44 | Episode reward -0.2709781952610177
45 | 22
46 | Episode reward -0.20560885251248306
47 | 23
48 | Episode reward -0.2798808981108424
49 | 24
50 | Episode reward -0.5485133613292303
51 | 25
52 | Episode reward -1.385235486540009
53 | 26
54 | Episode reward -0.28598128355633595
55 | 27
56 | Episode reward -1.0790819373447889
57 | 28
58 | Episode reward -0.053806786444806624
59 | 29
60 | Episode reward -0.04599434666943311
61 | 30
62 | Episode reward -0.053806786444806624
63 | 31
64 | Episode reward -0.4842562839307456
65 | 32
66 | Episode reward -0.42341501087942923
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-46.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.2016713512949556
3 | 1
4 | Episode reward -0.03631124021361177
5 | 2
6 | Episode reward -0.04314501359542282
7 | 3
8 | Episode reward -0.10950759039076349
9 | 4
10 | Episode reward -0.20163971447077939
11 | 5
12 | Episode reward -0.026732097288849274
13 | 6
14 | Episode reward -0.026732097288849274
15 | 7
16 | Episode reward -0.05264889304810305
17 | 8
18 | Episode reward -0.08621862980449882
19 | 9
20 | Episode reward -0.016981360335281147
21 | 10
22 | Episode reward -0.03631124021361177
23 | 11
24 | Episode reward -0.10950759039076349
25 | 12
26 | Episode reward -2.3753856294235023
27 | 13
28 | Episode reward -0.348129165654634
29 | 14
30 | Episode reward -0.08142745489724607
31 | 15
32 | Episode reward -0.3478016767018247
33 | 16
34 | Episode reward -0.14736283820414361
35 | 17
36 | Episode reward -0.08424126425724544
37 | 18
38 | Episode reward -0.34364911182988844
39 | 19
40 | Episode reward -0.08424126425724544
41 | 20
42 | Episode reward -0.21230781864891596
43 | 21
44 | Episode reward -0.9245089253001698
45 | 22
46 | Episode reward -0.34654802601595264
47 | 23
48 | Episode reward -0.307190171025344
49 | 24
50 | Episode reward -2.3753856294235023
51 | 25
52 | Episode reward -0.08142745489724607
53 | 26
54 | Episode reward -0.05882627917906343
55 | 27
56 | Episode reward -0.629782112628289
57 | 28
58 | Episode reward -0.051152035752774064
59 | 29
60 | Episode reward -0.346092736326578
61 | 30
62 | Episode reward -0.051152035752774064
63 | 31
64 | Episode reward -0.19972449830450825
65 | 32
66 | Episode reward -1.3278448827770521
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_18-57.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09348888094322813
3 | 1
4 | Episode reward -0.07252436682921387
5 | 2
6 | Episode reward -0.059282276064932124
7 | 3
8 | Episode reward -0.03157472989110686
9 | 4
10 | Episode reward -0.09348888094322813
11 | 5
12 | Episode reward -0.02674410550990102
13 | 6
14 | Episode reward -0.02674410550990102
15 | 7
16 | Episode reward -0.0498577916135476
17 | 8
18 | Episode reward -0.05282970954962578
19 | 9
20 | Episode reward -0.040532042981876085
21 | 10
22 | Episode reward -0.07252436682921387
23 | 11
24 | Episode reward -0.03157472989110686
25 | 12
26 | Episode reward -0.1492117938248044
27 | 13
28 | Episode reward -0.028268925623610386
29 | 14
30 | Episode reward -0.8942625652427555
31 | 15
32 | Episode reward -0.30893377412320533
33 | 16
34 | Episode reward -0.10022956448372186
35 | 17
36 | Episode reward -0.3163885382313505
37 | 18
38 | Episode reward -0.39106424344489
39 | 19
40 | Episode reward -0.3163885382313505
41 | 20
42 | Episode reward -0.8942625652427555
43 | 21
44 | Episode reward -0.2920731477843733
45 | 22
46 | Episode reward -0.03978563944804344
47 | 23
48 | Episode reward -0.6010554753870632
49 | 24
50 | Episode reward -0.1492117938248044
51 | 25
52 | Episode reward -0.8942625652427555
53 | 26
54 | Episode reward -0.24916330912523105
55 | 27
56 | Episode reward -2.145127723206545
57 | 28
58 | Episode reward -0.10507481481340653
59 | 29
60 | Episode reward -1.479982676369177
61 | 30
62 | Episode reward -0.10507481481340653
63 | 31
64 | Episode reward -1.2437144507042455
65 | 32
66 | Episode reward -2.2274005625633047
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_19-09.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.09218974639239949
3 | 1
4 | Episode reward -0.03205124204657616
5 | 2
6 | Episode reward -0.04314501359542282
7 | 3
8 | Episode reward -0.12594518851555642
9 | 4
10 | Episode reward -0.09218581820335764
11 | 5
12 | Episode reward -0.08068685882494693
13 | 6
14 | Episode reward -0.08068685882494693
15 | 7
16 | Episode reward -0.08959885774269408
17 | 8
18 | Episode reward -0.0563390788299665
19 | 9
20 | Episode reward -0.030916863223574977
21 | 10
22 | Episode reward -0.03205124204657616
23 | 11
24 | Episode reward -0.12594518851555642
25 | 12
26 | Episode reward -0.13318390928259827
27 | 13
28 | Episode reward -0.14396982028442945
29 | 14
30 | Episode reward -0.18998648174406074
31 | 15
32 | Episode reward -0.4076873416588953
33 | 16
34 | Episode reward -0.20829998455806076
35 | 17
36 | Episode reward -0.1719953566822089
37 | 18
38 | Episode reward -0.35603076818695145
39 | 19
40 | Episode reward -0.1719953566822089
41 | 20
42 | Episode reward -0.18222873872891543
43 | 21
44 | Episode reward -0.12327202028684002
45 | 22
46 | Episode reward -0.08346533743205173
47 | 23
48 | Episode reward -4.134675345219987
49 | 24
50 | Episode reward -0.13318390928259827
51 | 25
52 | Episode reward -0.18222873872891543
53 | 26
54 | Episode reward -0.09850663004263019
55 | 27
56 | Episode reward -0.4544971714771918
57 | 28
58 | Episode reward -0.5845022059550186
59 | 29
60 | Episode reward -0.7933472684304075
61 | 30
62 | Episode reward -0.538842359583124
63 | 31
64 | Episode reward -0.3054935622016144
65 | 32
66 | Episode reward -0.1228689644526975
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v1_0_2019-06-26_19-21.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.2032193792279949
3 | 1
4 | Episode reward -0.03223009602650772
5 | 2
6 | Episode reward -0.04359257028475401
7 | 3
8 | Episode reward -0.09008855361029362
9 | 4
10 | Episode reward -0.15785715175400838
11 | 5
12 | Episode reward -0.035235191217756576
13 | 6
14 | Episode reward -0.035235191217756576
15 | 7
16 | Episode reward -0.08641757785774706
17 | 8
18 | Episode reward -0.07780369314718592
19 | 9
20 | Episode reward -0.0404829356629038
21 | 10
22 | Episode reward -0.03223009602650772
23 | 11
24 | Episode reward -0.09008855361029362
25 | 12
26 | Episode reward -2.080935431983229
27 | 13
28 | Episode reward -0.02910479597435644
29 | 14
30 | Episode reward -0.2168761042704439
31 | 15
32 | Episode reward -0.539191739416298
33 | 16
34 | Episode reward -0.2926669802717692
35 | 17
36 | Episode reward -0.2713227108621786
37 | 18
38 | Episode reward -7.606665787901584
39 | 19
40 | Episode reward -0.2713227108621786
41 | 20
42 | Episode reward -0.2168761042704439
43 | 21
44 | Episode reward -0.10960322098956127
45 | 22
46 | Episode reward -0.2791613754177095
47 | 23
48 | Episode reward -0.4808911463227717
49 | 24
50 | Episode reward -0.14454850882464038
51 | 25
52 | Episode reward -0.31920671827405656
53 | 26
54 | Episode reward -0.4409075884422382
55 | 27
56 | Episode reward -0.14585693017277035
57 | 28
58 | Episode reward -0.07425979669681125
59 | 29
60 | Episode reward -0.3138775590957599
61 | 30
62 | Episode reward -0.07425979669681125
63 | 31
64 | Episode reward -6.531898146941159
65 | 32
66 | Episode reward -0.18954075266435366
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-33.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.1525956343561072
3 | 1
4 | Episode reward -0.08028356854640394
5 | 2
6 | Episode reward -0.042868060415267924
7 | 3
8 | Episode reward -0.1525956343561072
9 | 4
10 | Episode reward -0.07234282707600294
11 | 5
12 | Episode reward -0.10343109063429162
13 | 6
14 | Episode reward -0.03568160525141344
15 | 7
16 | Episode reward -0.1105298681790817
17 | 8
18 | Episode reward -0.03568160525141344
19 | 9
20 | Episode reward -0.10343109063429162
21 | 10
22 | Episode reward -0.1105298681790817
23 | 11
24 | Episode reward -0.07234282707600294
25 | 12
26 | Episode reward -0.07329878561934841
27 | 13
28 | Episode reward -0.12614407874027564
29 | 14
30 | Episode reward -1.2511119120838476
31 | 15
32 | Episode reward -0.18194601345024072
33 | 16
34 | Episode reward -0.20401492934148013
35 | 17
36 | Episode reward -0.08255230170920888
37 | 18
38 | Episode reward -0.07015902747493663
39 | 19
40 | Episode reward -0.20401492934148013
41 | 20
42 | Episode reward -0.3705825359014394
43 | 21
44 | Episode reward -0.3705825359014394
45 | 22
46 | Episode reward -0.023581346348501595
47 | 23
48 | Episode reward -0.3992917426311112
49 | 24
50 | Episode reward -0.12979643251920056
51 | 25
52 | Episode reward -0.023581346348501595
53 | 26
54 | Episode reward -0.08255230170920888
55 | 27
56 | Episode reward -0.4357656255548021
57 | 28
58 | Episode reward -1.2962174170577865
59 | 29
60 | Episode reward -0.08480081884697746
61 | 30
62 | Episode reward -0.08480081884697746
63 | 31
64 | Episode reward -1.327526020085683
65 | 32
66 | Episode reward -1.0202167604378118
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-45.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.16463456118462452
3 | 1
4 | Episode reward -0.06090781894778568
5 | 2
6 | Episode reward -0.043598014382293666
7 | 3
8 | Episode reward -0.16463456118462452
9 | 4
10 | Episode reward -0.04693771008810361
11 | 5
12 | Episode reward -0.07682533820435325
13 | 6
14 | Episode reward -0.12116918092566707
15 | 7
16 | Episode reward -0.04250667623658374
17 | 8
18 | Episode reward -0.12116918092566707
19 | 9
20 | Episode reward -0.07682533820435325
21 | 10
22 | Episode reward -0.04250667623658374
23 | 11
24 | Episode reward -0.04405453454617585
25 | 12
26 | Episode reward -0.1017523799395114
27 | 13
28 | Episode reward -0.08831188259741074
29 | 14
30 | Episode reward -1.521449812391113
31 | 15
32 | Episode reward -0.9978421157903133
33 | 16
34 | Episode reward -0.1791948342756533
35 | 17
36 | Episode reward -0.06498849269178673
37 | 18
38 | Episode reward -0.16657834635640534
39 | 19
40 | Episode reward -0.1791948342756533
41 | 20
42 | Episode reward -0.34849208466574
43 | 21
44 | Episode reward -0.34849208466574
45 | 22
46 | Episode reward -0.029520192261300995
47 | 23
48 | Episode reward -0.20253669629998247
49 | 24
50 | Episode reward -0.1629028657198343
51 | 25
52 | Episode reward -0.034492175213677305
53 | 26
54 | Episode reward -0.03418986257496029
55 | 27
56 | Episode reward -0.5045587383089822
57 | 28
58 | Episode reward -0.09927996969001973
59 | 29
60 | Episode reward -0.16994977558176597
61 | 30
62 | Episode reward -0.12851577227574199
63 | 31
64 | Episode reward -0.1486119384119285
65 | 32
66 | Episode reward -2.212988798657585
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_19-56.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.11230344611456233
3 | 1
4 | Episode reward -0.04353870610803556
5 | 2
6 | Episode reward -0.015686594678480263
7 | 3
8 | Episode reward -0.11230344611456229
9 | 4
10 | Episode reward -0.09899059705807331
11 | 5
12 | Episode reward -0.10100584115890524
13 | 6
14 | Episode reward -0.036166565759027325
15 | 7
16 | Episode reward -0.04048098084126644
17 | 8
18 | Episode reward -0.036166565759027325
19 | 9
20 | Episode reward -0.10100584115890524
21 | 10
22 | Episode reward -0.04048098084126644
23 | 11
24 | Episode reward -0.09899059705807331
25 | 12
26 | Episode reward -0.06562858440276698
27 | 13
28 | Episode reward -0.14613204293192303
29 | 14
30 | Episode reward -0.4157930692115822
31 | 15
32 | Episode reward -0.28196187876067585
33 | 16
34 | Episode reward -0.17087173220200844
35 | 17
36 | Episode reward -0.06768660752429305
37 | 18
38 | Episode reward -0.09137038863250388
39 | 19
40 | Episode reward -0.05243246390278
41 | 20
42 | Episode reward -0.4205077326217383
43 | 21
44 | Episode reward -0.4205077326217383
45 | 22
46 | Episode reward -0.12855087773536522
47 | 23
48 | Episode reward -0.17996878715731915
49 | 24
50 | Episode reward -0.18040760265767708
51 | 25
52 | Episode reward -0.1269123912652957
53 | 26
54 | Episode reward -0.06768660752429305
55 | 27
56 | Episode reward -1.546529717107116
57 | 28
58 | Episode reward -1.4308355191422348
59 | 29
60 | Episode reward -0.08360209623526821
61 | 30
62 | Episode reward -0.08360209623526821
63 | 31
64 | Episode reward -0.7307464211688164
65 | 32
66 | Episode reward -0.9803724256368135
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_20-08.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.21784791073538257
3 | 1
4 | Episode reward -0.08079019176054422
5 | 2
6 | Episode reward -0.04363910288304664
7 | 3
8 | Episode reward -0.21784791073538257
9 | 4
10 | Episode reward -0.0990550240381061
11 | 5
12 | Episode reward -0.10403988951565578
13 | 6
14 | Episode reward -0.025197663532403644
15 | 7
16 | Episode reward -0.0900885523559721
17 | 8
18 | Episode reward -0.025197663532403644
19 | 9
20 | Episode reward -0.10403988951565578
21 | 10
22 | Episode reward -0.0900885523559721
23 | 11
24 | Episode reward -0.0990550240381061
25 | 12
26 | Episode reward -0.05780933187809634
27 | 13
28 | Episode reward -0.08952909762499525
29 | 14
30 | Episode reward -0.2381146871905646
31 | 15
32 | Episode reward -2.1078020783638487
33 | 16
34 | Episode reward -0.10008085450083719
35 | 17
36 | Episode reward -0.10404125833753813
37 | 18
38 | Episode reward -0.0876175237248979
39 | 19
40 | Episode reward -0.10008085450083719
41 | 20
42 | Episode reward -0.37935842054352914
43 | 21
44 | Episode reward -0.37935842054352914
45 | 22
46 | Episode reward -0.08794642596181713
47 | 23
48 | Episode reward -0.3179212288120924
49 | 24
50 | Episode reward -0.1710628670116646
51 | 25
52 | Episode reward -0.08794642596181713
53 | 26
54 | Episode reward -0.1593380030214384
55 | 27
56 | Episode reward -0.14086257302856015
57 | 28
58 | Episode reward -2.612402072102313
59 | 29
60 | Episode reward -1.9295695134381272
61 | 30
62 | Episode reward -1.9295695134381272
63 | 31
64 | Episode reward -0.26945104941415016
65 | 32
66 | Episode reward -0.2185817629991091
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v2_0_2019-06-26_20-20.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.13706725407894918
3 | 1
4 | Episode reward -0.0815782962282361
5 | 2
6 | Episode reward -0.042858790086604044
7 | 3
8 | Episode reward -0.13706725407894918
9 | 4
10 | Episode reward -0.06843098788034561
11 | 5
12 | Episode reward -0.09772327155280763
13 | 6
14 | Episode reward -0.09909702864375958
15 | 7
16 | Episode reward -0.09000811391283597
17 | 8
18 | Episode reward -0.09914380517687128
19 | 9
20 | Episode reward -0.09772327155280763
21 | 10
22 | Episode reward -0.09000811391283597
23 | 11
24 | Episode reward -0.06843098788034561
25 | 12
26 | Episode reward -0.18776308801118957
27 | 13
28 | Episode reward -0.0887979280980542
29 | 14
30 | Episode reward -0.7926174460975745
31 | 15
32 | Episode reward -0.7650388603936703
33 | 16
34 | Episode reward -0.12544130176920204
35 | 17
36 | Episode reward -0.3847248506937407
37 | 18
38 | Episode reward -0.277683710622039
39 | 19
40 | Episode reward -0.12544130176920204
41 | 20
42 | Episode reward -0.4579526915043374
43 | 21
44 | Episode reward -0.4579526915043374
45 | 22
46 | Episode reward -0.039217431937860196
47 | 23
48 | Episode reward -0.1331458662849965
49 | 24
50 | Episode reward -0.09586109145495311
51 | 25
52 | Episode reward -0.039217431937860196
53 | 26
54 | Episode reward -0.18226516790121786
55 | 27
56 | Episode reward -1.126274376390317
57 | 28
58 | Episode reward -1.2965861780327492
59 | 29
60 | Episode reward -0.5969621982792432
61 | 30
62 | Episode reward -0.37418219153673155
63 | 31
64 | Episode reward -1.5887702333909348
65 | 32
66 | Episode reward -0.12043867300226864
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-32.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07458499673722707
3 | 1
4 | Episode reward -0.01655620492174436
5 | 2
6 | Episode reward -0.2027705928816882
7 | 3
8 | Episode reward -0.245265435272713
9 | 4
10 | Episode reward -0.14383790358224166
11 | 5
12 | Episode reward -0.03220554749914568
13 | 6
14 | Episode reward -0.030048865074964633
15 | 7
16 | Episode reward -0.03220554749914568
17 | 8
18 | Episode reward -0.2027705928816882
19 | 9
20 | Episode reward -0.07458499673722707
21 | 10
22 | Episode reward -0.12234115401914353
23 | 11
24 | Episode reward -0.2652627676030573
25 | 12
26 | Episode reward -0.20539711391058402
27 | 13
28 | Episode reward -6.197492739057111
29 | 14
30 | Episode reward -0.13652927237052215
31 | 15
32 | Episode reward -0.32859912338248615
33 | 16
34 | Episode reward -0.44720092242175274
35 | 17
36 | Episode reward -0.18140211242064586
37 | 18
38 | Episode reward -0.08088810135173463
39 | 19
40 | Episode reward -0.05790191443521681
41 | 20
42 | Episode reward -0.20539711391058402
43 | 21
44 | Episode reward -0.09804842451232632
45 | 22
46 | Episode reward -6.197492739057111
47 | 23
48 | Episode reward -0.05790191443521681
49 | 24
50 | Episode reward -0.1163724939075198
51 | 25
52 | Episode reward -0.32859912338248615
53 | 26
54 | Episode reward -0.1232255837010093
55 | 27
56 | Episode reward -0.7305897055804521
57 | 28
58 | Episode reward -0.07206166290954107
59 | 29
60 | Episode reward -0.08009450866016365
61 | 30
62 | Episode reward -0.04682310730013908
63 | 31
64 | Episode reward -0.08009450866016365
65 | 32
66 | Episode reward -1.6180401879302642
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-43.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.06960018915504923
3 | 1
4 | Episode reward -0.0404829356629038
5 | 2
6 | Episode reward -0.0768701504805474
7 | 3
8 | Episode reward -0.2785686773706815
9 | 4
10 | Episode reward -0.12369333906077647
11 | 5
12 | Episode reward -0.060704667402973755
13 | 6
14 | Episode reward -0.03567497301008607
15 | 7
16 | Episode reward -0.060704667402973755
17 | 8
18 | Episode reward -0.12369333906077647
19 | 9
20 | Episode reward -0.06960018915504923
21 | 10
22 | Episode reward -0.07071333403282269
23 | 11
24 | Episode reward -0.2785686773706815
25 | 12
26 | Episode reward -0.5579055772008945
27 | 13
28 | Episode reward -0.9643524988143982
29 | 14
30 | Episode reward -0.594686550913344
31 | 15
32 | Episode reward -0.3791631272717163
33 | 16
34 | Episode reward -0.08158676984438162
35 | 17
36 | Episode reward -0.03886057710603955
37 | 18
38 | Episode reward -0.07829579809302156
39 | 19
40 | Episode reward -0.07816679319893298
41 | 20
42 | Episode reward -0.25104288407412184
43 | 21
44 | Episode reward -0.14184366554049055
45 | 22
46 | Episode reward -0.9643524988143982
47 | 23
48 | Episode reward -0.08227565195687173
49 | 24
50 | Episode reward -0.14184366554049055
51 | 25
52 | Episode reward -0.3791631272717163
53 | 26
54 | Episode reward -0.5312007994077466
55 | 27
56 | Episode reward -0.21332917670336085
57 | 28
58 | Episode reward -0.21332917670336085
59 | 29
60 | Episode reward -0.21080046210026074
61 | 30
62 | Episode reward -0.7287759560203941
63 | 31
64 | Episode reward -0.21080046210026074
65 | 32
66 | Episode reward -0.5278184606142843
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_20-52.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.06194061475045251
3 | 1
4 | Episode reward -0.024451252478888984
5 | 2
6 | Episode reward -0.12137995281474322
7 | 3
8 | Episode reward -0.7555147393017903
9 | 4
10 | Episode reward -0.12137800332540474
11 | 5
12 | Episode reward -0.07078205629260816
13 | 6
14 | Episode reward -0.09947226364908522
15 | 7
16 | Episode reward -0.07078205629260816
17 | 8
18 | Episode reward -0.12137995281474322
19 | 9
20 | Episode reward -0.06194061475045251
21 | 10
22 | Episode reward -0.04934557231909009
23 | 11
24 | Episode reward -0.7555147393017903
25 | 12
26 | Episode reward -0.07018652720155671
27 | 13
28 | Episode reward -0.4410034924650916
29 | 14
30 | Episode reward -0.4684295582012572
31 | 15
32 | Episode reward -0.4865754368374606
33 | 16
34 | Episode reward -0.4667528966507081
35 | 17
36 | Episode reward -0.18441724338296556
37 | 18
38 | Episode reward -0.07597843277715213
39 | 19
40 | Episode reward -0.06934310766649168
41 | 20
42 | Episode reward -0.15730100583391274
43 | 21
44 | Episode reward -0.07271525119774239
45 | 22
46 | Episode reward -0.4410034924650916
47 | 23
48 | Episode reward -0.05125225786908703
49 | 24
50 | Episode reward -0.10260522184949045
51 | 25
52 | Episode reward -0.4865754368374606
53 | 26
54 | Episode reward -2.157055304809026
55 | 27
56 | Episode reward -0.08068925303332256
57 | 28
58 | Episode reward -0.08068925303332256
59 | 29
60 | Episode reward -4.47103400907581
61 | 30
62 | Episode reward -2.5689069041306785
63 | 31
64 | Episode reward -4.47103400907581
65 | 32
66 | Episode reward -0.45126337373629527
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_21-01.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.0483443133958614
3 | 1
4 | Episode reward -0.024436437664151225
5 | 2
6 | Episode reward -0.05139647585350354
7 | 3
8 | Episode reward -0.997242671804258
9 | 4
10 | Episode reward -0.05139647585350354
11 | 5
12 | Episode reward -0.027885419698467206
13 | 6
14 | Episode reward -0.12116918092566707
15 | 7
16 | Episode reward -0.027885419698467206
17 | 8
18 | Episode reward -0.05139647585350354
19 | 9
20 | Episode reward -0.0483443133958614
21 | 10
22 | Episode reward -0.048305213438503344
23 | 11
24 | Episode reward -0.997242671804258
25 | 12
26 | Episode reward -0.13988815376889335
27 | 13
28 | Episode reward -4.949638164285324
29 | 14
30 | Episode reward -0.3058153233248805
31 | 15
32 | Episode reward -0.634070351116121
33 | 16
34 | Episode reward -0.33324732370624954
35 | 17
36 | Episode reward -0.047925050356583294
37 | 18
38 | Episode reward -0.0823085185231105
39 | 19
40 | Episode reward -0.07069513434303808
41 | 20
42 | Episode reward -0.17982991673211632
43 | 21
44 | Episode reward -0.17433239164073405
45 | 22
46 | Episode reward -4.949638164285324
47 | 23
48 | Episode reward -0.07069513434303808
49 | 24
50 | Episode reward -0.17186940213403062
51 | 25
52 | Episode reward -0.634070351116121
53 | 26
54 | Episode reward -1.194599853492742
55 | 27
56 | Episode reward -0.6861110536646657
57 | 28
58 | Episode reward -0.6861107098178766
59 | 29
60 | Episode reward -0.2892792468882762
61 | 30
62 | Episode reward -0.11007024460564203
63 | 31
64 | Episode reward -0.2892792468882762
65 | 32
66 | Episode reward -0.17519787996842232
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/DQN/DQN_CM1-postgres-card-job-masking-v3_0_2019-06-26_21-10.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.0991018203975945
3 | 1
4 | Episode reward -0.024124862490818452
5 | 2
6 | Episode reward -0.1795644567233154
7 | 3
8 | Episode reward -0.21673003285929412
9 | 4
10 | Episode reward -0.1795644567233154
11 | 5
12 | Episode reward -0.0812000829023305
13 | 6
14 | Episode reward -0.036166565759027325
15 | 7
16 | Episode reward -0.0812000829023305
17 | 8
18 | Episode reward -0.1795644567233154
19 | 9
20 | Episode reward -0.0991018203975945
21 | 10
22 | Episode reward -0.08099025779649172
23 | 11
24 | Episode reward -0.21673003285929412
25 | 12
26 | Episode reward -0.2023948798422745
27 | 13
28 | Episode reward -2.8257900866424883
29 | 14
30 | Episode reward -0.3085266485489856
31 | 15
32 | Episode reward -1.5689272182422171
33 | 16
34 | Episode reward -0.1622527443237719
35 | 17
36 | Episode reward -0.25360809223624237
37 | 18
38 | Episode reward -0.11082099851620798
39 | 19
40 | Episode reward -0.09566085789443858
41 | 20
42 | Episode reward -0.2023948798422745
43 | 21
44 | Episode reward -0.19667119887760903
45 | 22
46 | Episode reward -2.8257900866424883
47 | 23
48 | Episode reward -0.09972863502816062
49 | 24
50 | Episode reward -0.19667119887760903
51 | 25
52 | Episode reward -1.5689272182422171
53 | 26
54 | Episode reward -0.17648099217353141
55 | 27
56 | Episode reward -0.5131099836606042
57 | 28
58 | Episode reward -0.5131099836606042
59 | 29
60 | Episode reward -0.20203772729845365
61 | 30
62 | Episode reward -0.034777839567026195
63 | 31
64 | Episode reward -0.20203772729845365
65 | 32
66 | Episode reward -0.5759645905795954
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-08.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -1.4493740611244967
3 | 1
4 | Episode reward -0.07546580235781458
5 | 2
6 | Episode reward -0.057129895014628645
7 | 3
8 | Episode reward -0.016398674668754578
9 | 4
10 | Episode reward -0.07546580235781458
11 | 5
12 | Episode reward -0.07864015452952385
13 | 6
14 | Episode reward -0.04080925895602077
15 | 7
16 | Episode reward -0.07546580235781458
17 | 8
18 | Episode reward -0.057129895014628645
19 | 9
20 | Episode reward -0.016398674668754578
21 | 10
22 | Episode reward -0.03593260156341571
23 | 11
24 | Episode reward -0.016398674668754578
25 | 12
26 | Episode reward -0.5201622386245232
27 | 13
28 | Episode reward -0.31187261490944146
29 | 14
30 | Episode reward -0.5201622386245232
31 | 15
32 | Episode reward -0.1532045524622669
33 | 16
34 | Episode reward -0.04992459960026284
35 | 17
36 | Episode reward -0.045880934324684514
37 | 18
38 | Episode reward -0.06917486532344098
39 | 19
40 | Episode reward -0.5201622386245232
41 | 20
42 | Episode reward -0.045880934324684514
43 | 21
44 | Episode reward -0.1532045524622669
45 | 22
46 | Episode reward -1.0772492609069624
47 | 23
48 | Episode reward -0.5201622386245232
49 | 24
50 | Episode reward -0.05443054896166734
51 | 25
52 | Episode reward -0.09972567817027413
53 | 26
54 | Episode reward -0.06917486532344098
55 | 27
56 | Episode reward -0.3259963268126813
57 | 28
58 | Episode reward -0.144750656203263
59 | 29
60 | Episode reward -0.3259963268126813
61 | 30
62 | Episode reward -3.475879100718198
63 | 31
64 | Episode reward -0.5140550960191563
65 | 32
66 | Episode reward -0.144750656203263
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-32.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.24784912734750347
3 | 1
4 | Episode reward -0.04881196206116656
5 | 2
6 | Episode reward -0.08337909572073422
7 | 3
8 | Episode reward -0.035908608340380094
9 | 4
10 | Episode reward -0.04881196206116656
11 | 5
12 | Episode reward -0.09093306786247939
13 | 6
14 | Episode reward -0.046637947848397206
15 | 7
16 | Episode reward -0.04881196206116656
17 | 8
18 | Episode reward -0.08337909572073422
19 | 9
20 | Episode reward -0.035908608340380094
21 | 10
22 | Episode reward -0.044968067561467547
23 | 11
24 | Episode reward -0.035908608340380094
25 | 12
26 | Episode reward -0.05073957923998277
27 | 13
28 | Episode reward -0.1219190936663595
29 | 14
30 | Episode reward -0.05073957923998277
31 | 15
32 | Episode reward -0.5155737097851529
33 | 16
34 | Episode reward -0.06804463961993845
35 | 17
36 | Episode reward -0.13916174378254642
37 | 18
38 | Episode reward -0.07613805698663692
39 | 19
40 | Episode reward -0.05073957923998277
41 | 20
42 | Episode reward -0.13916174378254642
43 | 21
44 | Episode reward -0.5155737097851529
45 | 22
46 | Episode reward -0.7134281983128921
47 | 23
48 | Episode reward -0.05073957923998277
49 | 24
50 | Episode reward -0.056356952557875324
51 | 25
52 | Episode reward -0.13449429336916677
53 | 26
54 | Episode reward -0.07613805698663692
55 | 27
56 | Episode reward -0.23599387281730597
57 | 28
58 | Episode reward -1.327833311602074
59 | 29
60 | Episode reward -0.23599387281730597
61 | 30
62 | Episode reward -0.351642397846502
63 | 31
64 | Episode reward -0.22023504873282015
65 | 32
66 | Episode reward -1.327833311602074
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_01-57.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.3181419644395108
3 | 1
4 | Episode reward -0.0483443133958614
5 | 2
6 | Episode reward -0.09454964771993384
7 | 3
8 | Episode reward -0.024436437664151225
9 | 4
10 | Episode reward -0.0483443133958614
11 | 5
12 | Episode reward -0.14226027843990283
13 | 6
14 | Episode reward -0.08154652934971324
15 | 7
16 | Episode reward -0.0483443133958614
17 | 8
18 | Episode reward -0.09454964771993384
19 | 9
20 | Episode reward -0.024436437664151225
21 | 10
22 | Episode reward -0.045625412526001635
23 | 11
24 | Episode reward -0.024436437664151225
25 | 12
26 | Episode reward -0.5275869936198233
27 | 13
28 | Episode reward -0.6504819221628477
29 | 14
30 | Episode reward -0.5275869936198233
31 | 15
32 | Episode reward -0.3474382026452049
33 | 16
34 | Episode reward -0.10373892444100452
35 | 17
36 | Episode reward -0.06195675885538232
37 | 18
38 | Episode reward -0.12930557965530062
39 | 19
40 | Episode reward -0.5275869936198233
41 | 20
42 | Episode reward -0.06195675885538232
43 | 21
44 | Episode reward -0.3474382026452049
45 | 22
46 | Episode reward -1.2942052562181643
47 | 23
48 | Episode reward -0.5275869936198233
49 | 24
50 | Episode reward -0.03744569246546241
51 | 25
52 | Episode reward -0.14662565189593593
53 | 26
54 | Episode reward -0.12930557965530062
55 | 27
56 | Episode reward -1.1345123300589655
57 | 28
58 | Episode reward -0.7531891850786193
59 | 29
60 | Episode reward -1.1345123300589655
61 | 30
62 | Episode reward -0.18175167978692053
63 | 31
64 | Episode reward -0.15269916853638596
65 | 32
66 | Episode reward -0.7531891850786193
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_02-20.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.1773691985773834
3 | 1
4 | Episode reward -0.07165981984008177
5 | 2
6 | Episode reward -0.05600778338487589
7 | 3
8 | Episode reward -0.017147995667289386
9 | 4
10 | Episode reward -0.07165981984008177
11 | 5
12 | Episode reward -0.11765390253724728
13 | 6
14 | Episode reward -0.04375219438411577
15 | 7
16 | Episode reward -0.07165981984008177
17 | 8
18 | Episode reward -0.05600778338487589
19 | 9
20 | Episode reward -0.017147995667289386
21 | 10
22 | Episode reward -0.03168755415632625
23 | 11
24 | Episode reward -0.017147995667289386
25 | 12
26 | Episode reward -0.056816767989868205
27 | 13
28 | Episode reward -0.06900285468108834
29 | 14
30 | Episode reward -0.056816767989868205
31 | 15
32 | Episode reward -0.23648286291487264
33 | 16
34 | Episode reward -0.04939413367980093
35 | 17
36 | Episode reward -0.10061051871572697
37 | 18
38 | Episode reward -0.12799412850693462
39 | 19
40 | Episode reward -0.056816767989868205
41 | 20
42 | Episode reward -0.10061051871572697
43 | 21
44 | Episode reward -0.23648286291487264
45 | 22
46 | Episode reward -2.915489470988342
47 | 23
48 | Episode reward -0.056816767989868205
49 | 24
50 | Episode reward -0.09268751073956763
51 | 25
52 | Episode reward -0.15251251125729526
53 | 26
54 | Episode reward -0.26682053860848115
55 | 27
56 | Episode reward -0.18616009283828266
57 | 28
58 | Episode reward -0.9934347421533327
59 | 29
60 | Episode reward -0.18616009283828266
61 | 30
62 | Episode reward -0.8512097466557835
63 | 31
64 | Episode reward -2.694261235972555
65 | 32
66 | Episode reward -0.9934347421533327
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v0_0_2019-06-27_02-45.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.8165815641921785
3 | 1
4 | Episode reward -0.05759667146404953
5 | 2
6 | Episode reward -0.10692309240409559
7 | 3
8 | Episode reward -0.025563028993975754
9 | 4
10 | Episode reward -0.05759667146404953
11 | 5
12 | Episode reward -0.11432644621019947
13 | 6
14 | Episode reward -0.06334511663309476
15 | 7
16 | Episode reward -0.05759667146404953
17 | 8
18 | Episode reward -0.10692309240409559
19 | 9
20 | Episode reward -0.025563028993975754
21 | 10
22 | Episode reward -0.05838854071581314
23 | 11
24 | Episode reward -0.025563028993975754
25 | 12
26 | Episode reward -0.41666053219449506
27 | 13
28 | Episode reward -0.21909425719591408
29 | 14
30 | Episode reward -0.41666053219449506
31 | 15
32 | Episode reward -0.24924418376416793
33 | 16
34 | Episode reward -0.08682577698973708
35 | 17
36 | Episode reward -0.1382021423349986
37 | 18
38 | Episode reward -0.02181178854599989
39 | 19
40 | Episode reward -0.41666053219449506
41 | 20
42 | Episode reward -0.1382021423349986
43 | 21
44 | Episode reward -0.24924418376416793
45 | 22
46 | Episode reward -0.593509910706975
47 | 23
48 | Episode reward -0.41666053219449506
49 | 24
50 | Episode reward -0.04499950800281678
51 | 25
52 | Episode reward -0.20121016743334105
53 | 26
54 | Episode reward -0.02181178854599989
55 | 27
56 | Episode reward -0.15650724943417768
57 | 28
58 | Episode reward -1.1510654576222714
59 | 29
60 | Episode reward -0.15650724943417768
61 | 30
62 | Episode reward -0.08704831661635361
63 | 31
64 | Episode reward -0.03661957039752506
65 | 32
66 | Episode reward -1.1510654576222714
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-09.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.12344744103434088
3 | 1
4 | Episode reward -0.04562751049736301
5 | 2
6 | Episode reward -0.01547414921554427
7 | 3
8 | Episode reward -0.03486750334587033
9 | 4
10 | Episode reward -0.12344744103434088
11 | 5
12 | Episode reward -0.04551660878378537
13 | 6
14 | Episode reward -0.04551660878378537
15 | 7
16 | Episode reward -0.07528506440711924
17 | 8
18 | Episode reward -0.04730982724362852
19 | 9
20 | Episode reward -0.03556957911642329
21 | 10
22 | Episode reward -0.04562751049736301
23 | 11
24 | Episode reward -0.03486750334587033
25 | 12
26 | Episode reward -0.42348452396269953
27 | 13
28 | Episode reward -0.04946264769151922
29 | 14
30 | Episode reward -0.3471255142446494
31 | 15
32 | Episode reward -0.42351063723373694
33 | 16
34 | Episode reward -0.2834440125140251
35 | 17
36 | Episode reward -0.23346073893995894
37 | 18
38 | Episode reward -1.8089780133965547
39 | 19
40 | Episode reward -0.23346073893995894
41 | 20
42 | Episode reward -0.3471255142446494
43 | 21
44 | Episode reward -0.16488923643114498
45 | 22
46 | Episode reward -0.03139897887813531
47 | 23
48 | Episode reward -0.7769356664981362
49 | 24
50 | Episode reward -0.42348452396269953
51 | 25
52 | Episode reward -0.3471255142446494
53 | 26
54 | Episode reward -0.11389052609899208
55 | 27
56 | Episode reward -0.1198322471206175
57 | 28
58 | Episode reward -0.14464017206183744
59 | 29
60 | Episode reward -0.2958707532655944
61 | 30
62 | Episode reward -0.14464017206183744
63 | 31
64 | Episode reward -0.33940754469184703
65 | 32
66 | Episode reward -0.12442741856286436
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-32.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.18931413848411932
3 | 1
4 | Episode reward -0.04573603241623027
5 | 2
6 | Episode reward -0.015875507399865162
7 | 3
8 | Episode reward -0.03148454241572586
9 | 4
10 | Episode reward -0.18931413848411932
11 | 5
12 | Episode reward -0.02674410550990102
13 | 6
14 | Episode reward -0.02674410550990102
15 | 7
16 | Episode reward -0.09909943265261287
17 | 8
18 | Episode reward -0.08550953924088311
19 | 9
20 | Episode reward -0.030681680366898924
21 | 10
22 | Episode reward -0.04573603241623027
23 | 11
24 | Episode reward -0.03148454241572586
25 | 12
26 | Episode reward -0.12036283025386654
27 | 13
28 | Episode reward -0.05190992748467346
29 | 14
30 | Episode reward -1.5278571992515406
31 | 15
32 | Episode reward -0.4240902811044562
33 | 16
34 | Episode reward -0.28946871716165434
35 | 17
36 | Episode reward -0.21162755169075234
37 | 18
38 | Episode reward -6.5258739890010995
39 | 19
40 | Episode reward -0.21162755169075234
41 | 20
42 | Episode reward -1.5278571992515406
43 | 21
44 | Episode reward -0.231131219194128
45 | 22
46 | Episode reward -0.039702131852407216
47 | 23
48 | Episode reward -0.8224055849209042
49 | 24
50 | Episode reward -0.12036283025386654
51 | 25
52 | Episode reward -1.5278571992515406
53 | 26
54 | Episode reward -0.07201079165344185
55 | 27
56 | Episode reward -1.1627035418678109
57 | 28
58 | Episode reward -0.4881785845587996
59 | 29
60 | Episode reward -0.15608422290618762
61 | 30
62 | Episode reward -0.4881785845587996
63 | 31
64 | Episode reward -3.8926088646590706
65 | 32
66 | Episode reward -0.08971771788742115
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_03-56.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07736028009554574
3 | 1
4 | Episode reward -0.03237363292565743
5 | 2
6 | Episode reward -0.07229358945740837
7 | 3
8 | Episode reward -0.0900885523559721
9 | 4
10 | Episode reward -0.07736028009554574
11 | 5
12 | Episode reward -0.08062936653669973
13 | 6
14 | Episode reward -0.08062936653669973
15 | 7
16 | Episode reward -0.05776417903571414
17 | 8
18 | Episode reward -0.04332702401184624
19 | 9
20 | Episode reward -0.017147995667289386
21 | 10
22 | Episode reward -0.03237363292565743
23 | 11
24 | Episode reward -0.0900885523559721
25 | 12
26 | Episode reward -0.16372880339974427
27 | 13
28 | Episode reward -0.08614939218689693
29 | 14
30 | Episode reward -0.2570017943925532
31 | 15
32 | Episode reward -0.44723571267954254
33 | 16
34 | Episode reward -0.08663626766305371
35 | 17
36 | Episode reward -0.1692793712699529
37 | 18
38 | Episode reward -2.131332801165025
39 | 19
40 | Episode reward -0.1692793712699529
41 | 20
42 | Episode reward -0.2570017943925532
43 | 21
44 | Episode reward -0.6558510394487903
45 | 22
46 | Episode reward -0.11146176209073871
47 | 23
48 | Episode reward -1.2932839327117354
49 | 24
50 | Episode reward -0.16372880339974427
51 | 25
52 | Episode reward -0.2570017943925532
53 | 26
54 | Episode reward -0.12682125442670505
55 | 27
56 | Episode reward -0.17269189545039185
57 | 28
58 | Episode reward -0.18250507906579033
59 | 29
60 | Episode reward -0.3587506452066707
61 | 30
62 | Episode reward -0.18250507906579033
63 | 31
64 | Episode reward -1.2755510641871817
65 | 32
66 | Episode reward -0.12141618321372546
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v1_0_2019-06-27_04-43.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.07684152353032814
3 | 1
4 | Episode reward -0.045962537780843735
5 | 2
6 | Episode reward -0.05894668692531575
7 | 3
8 | Episode reward -0.10950759039076349
9 | 4
10 | Episode reward -0.07684152353032814
11 | 5
12 | Episode reward -0.05838853878050166
13 | 6
14 | Episode reward -0.05838853878050166
15 | 7
16 | Episode reward -0.0864913709226286
17 | 8
18 | Episode reward -0.04688075494038591
19 | 9
20 | Episode reward -0.02424549349434644
21 | 10
22 | Episode reward -0.045962537780843735
23 | 11
24 | Episode reward -0.10950759039076349
25 | 12
26 | Episode reward -0.1606009322801893
27 | 13
28 | Episode reward -0.022903628019543487
29 | 14
30 | Episode reward -0.06933409029273846
31 | 15
32 | Episode reward -0.2396586573600612
33 | 16
34 | Episode reward -0.6702433471005993
35 | 17
36 | Episode reward -0.1265282454590266
37 | 18
38 | Episode reward -0.5916317683684801
39 | 19
40 | Episode reward -0.1265282454590266
41 | 20
42 | Episode reward -0.06933409029273846
43 | 21
44 | Episode reward -0.8578763175453542
45 | 22
46 | Episode reward -0.15471405110604453
47 | 23
48 | Episode reward -5.192889907337971
49 | 24
50 | Episode reward -0.1606009322801893
51 | 25
52 | Episode reward -0.06933409029273846
53 | 26
54 | Episode reward -0.14788017738309175
55 | 27
56 | Episode reward -0.13133883916415992
57 | 28
58 | Episode reward -0.05222499467443732
59 | 29
60 | Episode reward -0.019273972168408884
61 | 30
62 | Episode reward -0.05222499467443732
63 | 31
64 | Episode reward -0.18084060746506173
65 | 32
66 | Episode reward -0.03812054518652109
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-08.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08345432741603323
3 | 1
4 | Episode reward -0.049814829420080545
5 | 2
6 | Episode reward -0.059693698413934466
7 | 3
8 | Episode reward -0.08345432741603323
9 | 4
10 | Episode reward -0.05776417903571414
11 | 5
12 | Episode reward -0.07384804646944561
13 | 6
14 | Episode reward -0.07290085303652788
15 | 7
16 | Episode reward -0.06681652737493046
17 | 8
18 | Episode reward -0.07290085303652788
19 | 9
20 | Episode reward -0.07384804646944561
21 | 10
22 | Episode reward -0.06681652737493046
23 | 11
24 | Episode reward -0.05776417903571414
25 | 12
26 | Episode reward -0.028530000865686894
27 | 13
28 | Episode reward -0.06444955932645753
29 | 14
30 | Episode reward -0.238145106977467
31 | 15
32 | Episode reward -0.1018512652713162
33 | 16
34 | Episode reward -0.10097466511748529
35 | 17
36 | Episode reward -0.1079718827556172
37 | 18
38 | Episode reward -0.27400442916099493
39 | 19
40 | Episode reward -0.10097466511748529
41 | 20
42 | Episode reward -0.09566163485491369
43 | 21
44 | Episode reward -0.09566163485491369
45 | 22
46 | Episode reward -0.03911855824319398
47 | 23
48 | Episode reward -0.11204630450593825
49 | 24
50 | Episode reward -0.12282162323677014
51 | 25
52 | Episode reward -0.03911855824319398
53 | 26
54 | Episode reward -0.1079718827556172
55 | 27
56 | Episode reward -0.24487390083943764
57 | 28
58 | Episode reward -0.06113684865751117
59 | 29
60 | Episode reward -0.3034009938896316
61 | 30
62 | Episode reward -0.3034009938896316
63 | 31
64 | Episode reward -0.1594554777880175
65 | 32
66 | Episode reward -0.06361680330470688
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-31.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.11524133504110637
3 | 1
4 | Episode reward -0.08992858856178663
5 | 2
6 | Episode reward -0.04353272655726756
7 | 3
8 | Episode reward -0.11524133504110637
9 | 4
10 | Episode reward -0.08564947271047978
11 | 5
12 | Episode reward -0.14586820444412588
13 | 6
14 | Episode reward -0.025093990216201855
15 | 7
16 | Episode reward -0.03148454241572586
17 | 8
18 | Episode reward -0.025093990216201855
19 | 9
20 | Episode reward -0.14586820444412588
21 | 10
22 | Episode reward -0.03148454241572586
23 | 11
24 | Episode reward -0.08564947271047978
25 | 12
26 | Episode reward -0.20385336109473223
27 | 13
28 | Episode reward -0.14636261585596758
29 | 14
30 | Episode reward -1.1327020689984626
31 | 15
32 | Episode reward -0.9172768276009582
33 | 16
34 | Episode reward -0.03964059990890294
35 | 17
36 | Episode reward -0.05988501200318379
37 | 18
38 | Episode reward -0.07106387323392532
39 | 19
40 | Episode reward -0.03964059990890294
41 | 20
42 | Episode reward -0.8493923732967822
43 | 21
44 | Episode reward -0.8493923732967822
45 | 22
46 | Episode reward -0.12660927280807988
47 | 23
48 | Episode reward -0.06303161263444255
49 | 24
50 | Episode reward -0.19174354671946267
51 | 25
52 | Episode reward -0.12660927280807988
53 | 26
54 | Episode reward -0.05988501200318379
55 | 27
56 | Episode reward -0.15333588656015726
57 | 28
58 | Episode reward -0.4160170647065091
59 | 29
60 | Episode reward -0.1142545253694997
61 | 30
62 | Episode reward -0.1142545253694997
63 | 31
64 | Episode reward -4.544507568526969
65 | 32
66 | Episode reward -0.32672450951052096
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_05-56.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.12641352283690965
3 | 1
4 | Episode reward -0.03987387065476032
5 | 2
6 | Episode reward -0.07212509973790678
7 | 3
8 | Episode reward -0.12641352283690965
9 | 4
10 | Episode reward -0.0990550240381061
11 | 5
12 | Episode reward -0.06550302314446718
13 | 6
14 | Episode reward -0.03225649838479324
15 | 7
16 | Episode reward -0.07273056934311439
17 | 8
18 | Episode reward -0.03225649838479324
19 | 9
20 | Episode reward -0.06550302314446718
21 | 10
22 | Episode reward -0.07273056934311439
23 | 11
24 | Episode reward -0.0990550240381061
25 | 12
26 | Episode reward -0.366807798898546
27 | 13
28 | Episode reward -0.05511382020649011
29 | 14
30 | Episode reward -1.2419186930408141
31 | 15
32 | Episode reward -0.11410802485392574
33 | 16
34 | Episode reward -0.1406051267734579
35 | 17
36 | Episode reward -0.03346788350060282
37 | 18
38 | Episode reward -0.10942606316324431
39 | 19
40 | Episode reward -0.1406051267734579
41 | 20
42 | Episode reward -0.4096951355007897
43 | 21
44 | Episode reward -0.4096951355007897
45 | 22
46 | Episode reward -0.12606541887944125
47 | 23
48 | Episode reward -0.14865581891690366
49 | 24
50 | Episode reward -0.08639532465599752
51 | 25
52 | Episode reward -0.12606541887944125
53 | 26
54 | Episode reward -0.03346788350060282
55 | 27
56 | Episode reward -0.6813509193447291
57 | 28
58 | Episode reward -0.589865888306975
59 | 29
60 | Episode reward -0.11282948322601336
61 | 30
62 | Episode reward -0.11282948322601336
63 | 31
64 | Episode reward -0.2643869403848182
65 | 32
66 | Episode reward -0.21995722381435445
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_06-20.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.25809252295867663
3 | 1
4 | Episode reward -0.0486330136688752
5 | 2
6 | Episode reward -0.015171608188249835
7 | 3
8 | Episode reward -0.25809252295867663
9 | 4
10 | Episode reward -0.09905263516505987
11 | 5
12 | Episode reward -0.10149092910226445
13 | 6
14 | Episode reward -0.12116918092566707
15 | 7
16 | Episode reward -0.09129731384613651
17 | 8
18 | Episode reward -0.12116918092566707
19 | 9
20 | Episode reward -0.10149092910226445
21 | 10
22 | Episode reward -0.09129731384613651
23 | 11
24 | Episode reward -0.09905263516505987
25 | 12
26 | Episode reward -0.40642233821717
27 | 13
28 | Episode reward -0.07991105104162759
29 | 14
30 | Episode reward -0.8671670103871931
31 | 15
32 | Episode reward -1.7115912484353442
33 | 16
34 | Episode reward -0.04413342453034792
35 | 17
36 | Episode reward -0.17140264352070717
37 | 18
38 | Episode reward -0.7589566813089693
39 | 19
40 | Episode reward -0.04413342453034792
41 | 20
42 | Episode reward -0.1797310791497288
43 | 21
44 | Episode reward -0.1797310791497288
45 | 22
46 | Episode reward -0.07116373360376546
47 | 23
48 | Episode reward -0.39566124408991843
49 | 24
50 | Episode reward -0.6324063165052787
51 | 25
52 | Episode reward -0.07116373360376546
53 | 26
54 | Episode reward -0.17140264352070717
55 | 27
56 | Episode reward -1.0969050499136508
57 | 28
58 | Episode reward -1.2239555114924352
59 | 29
60 | Episode reward -0.3994809520897124
61 | 30
62 | Episode reward -0.3994809520897124
63 | 31
64 | Episode reward -0.32079908401553336
65 | 32
66 | Episode reward -1.9966199293143185
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v2_0_2019-06-27_06-45.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.1469759633620184
3 | 1
4 | Episode reward -0.0617906829854538
5 | 2
6 | Episode reward -0.07236097546061052
7 | 3
8 | Episode reward -0.1469759633620184
9 | 4
10 | Episode reward -0.07528506440711924
11 | 5
12 | Episode reward -0.13433717680764212
13 | 6
14 | Episode reward -0.07135866194937979
15 | 7
16 | Episode reward -0.06682007041669577
17 | 8
18 | Episode reward -0.07135866194937979
19 | 9
20 | Episode reward -0.13433717680764212
21 | 10
22 | Episode reward -0.06682007041669577
23 | 11
24 | Episode reward -0.07528506440711924
25 | 12
26 | Episode reward -0.1134068767232039
27 | 13
28 | Episode reward -0.1348765494708712
29 | 14
30 | Episode reward -0.18081824358046317
31 | 15
32 | Episode reward -0.3172515550235411
33 | 16
34 | Episode reward -0.07343577718851581
35 | 17
36 | Episode reward -0.2176521854777649
37 | 18
38 | Episode reward -0.8987355873773807
39 | 19
40 | Episode reward -0.07343577718851581
41 | 20
42 | Episode reward -0.2519617099927493
43 | 21
44 | Episode reward -0.2519617099927493
45 | 22
46 | Episode reward -0.047098776181865615
47 | 23
48 | Episode reward -0.23280796788760255
49 | 24
50 | Episode reward -0.28608538179796
51 | 25
52 | Episode reward -0.047098776181865615
53 | 26
54 | Episode reward -0.2176521854777649
55 | 27
56 | Episode reward -0.11629730784719988
57 | 28
58 | Episode reward -0.4716620192431292
59 | 29
60 | Episode reward -0.05573872295523574
61 | 30
62 | Episode reward -0.05573872295523574
63 | 31
64 | Episode reward -0.11691391111790872
65 | 32
66 | Episode reward -0.07538045293191908
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-09.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08638740568091152
3 | 1
4 | Episode reward -0.03605660072729882
5 | 2
6 | Episode reward -0.12358864913662346
7 | 3
8 | Episode reward -0.44374220064663006
9 | 4
10 | Episode reward -0.12358864913662346
11 | 5
12 | Episode reward -0.06054641382102512
13 | 6
14 | Episode reward -0.09944367289528483
15 | 7
16 | Episode reward -0.06054641382102512
17 | 8
18 | Episode reward -0.12358864913662346
19 | 9
20 | Episode reward -0.08638740568091152
21 | 10
22 | Episode reward -0.10586118611020318
23 | 11
24 | Episode reward -0.44374220064663006
25 | 12
26 | Episode reward -0.12971442013354983
27 | 13
28 | Episode reward -1.109465576657242
29 | 14
30 | Episode reward -0.3313346820727754
31 | 15
32 | Episode reward -1.755194911563077
33 | 16
34 | Episode reward -0.15381031714992777
35 | 17
36 | Episode reward -0.0605740521421638
37 | 18
38 | Episode reward -0.08663104816688905
39 | 19
40 | Episode reward -0.09468269002558587
41 | 20
42 | Episode reward -0.12971442013354983
43 | 21
44 | Episode reward -0.2875202458311226
45 | 22
46 | Episode reward -1.109465576657242
47 | 23
48 | Episode reward -0.09468269002558587
49 | 24
50 | Episode reward -0.2875202458311226
51 | 25
52 | Episode reward -1.755194911563077
53 | 26
54 | Episode reward -0.19502062082073335
55 | 27
56 | Episode reward -0.19813540052136996
57 | 28
58 | Episode reward -0.19813540052136996
59 | 29
60 | Episode reward -1.0318108575341531
61 | 30
62 | Episode reward -0.09908492324154165
63 | 31
64 | Episode reward -1.0318108575341531
65 | 32
66 | Episode reward -1.6302487731690234
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-34.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.0695084660249576
3 | 1
4 | Episode reward -0.016995289137993072
5 | 2
6 | Episode reward -0.0961452535614264
7 | 3
8 | Episode reward -0.19028714263690982
9 | 4
10 | Episode reward -0.0961452535614264
11 | 5
12 | Episode reward -0.06062825286595766
13 | 6
14 | Episode reward -0.03547135150824786
15 | 7
16 | Episode reward -0.06062825286595766
17 | 8
18 | Episode reward -0.0961452535614264
19 | 9
20 | Episode reward -0.0695084660249576
21 | 10
22 | Episode reward -0.05518622453612801
23 | 11
24 | Episode reward -0.19028714263690982
25 | 12
26 | Episode reward -0.12239771997108517
27 | 13
28 | Episode reward -0.9519199936776028
29 | 14
30 | Episode reward -0.15036890418926624
31 | 15
32 | Episode reward -0.3480009766027503
33 | 16
34 | Episode reward -0.13129563046748455
35 | 17
36 | Episode reward -0.046428506152584946
37 | 18
38 | Episode reward -0.03561639758387669
39 | 19
40 | Episode reward -0.06264168283497852
41 | 20
42 | Episode reward -0.12239771997108517
43 | 21
44 | Episode reward -0.21077005252265207
45 | 22
46 | Episode reward -0.9519199936776028
47 | 23
48 | Episode reward -0.06264168283497852
49 | 24
50 | Episode reward -0.21077005252265207
51 | 25
52 | Episode reward -0.3480009766027503
53 | 26
54 | Episode reward -0.5365086518819182
55 | 27
56 | Episode reward -0.10795683896570846
57 | 28
58 | Episode reward -0.10795683896570846
59 | 29
60 | Episode reward -0.06075249694528274
61 | 30
62 | Episode reward -0.3171565974196827
63 | 31
64 | Episode reward -0.06075249694528274
65 | 32
66 | Episode reward -0.13507089333536895
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_07-59.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.06242321623935916
3 | 1
4 | Episode reward -0.024625444252667814
5 | 2
6 | Episode reward -0.131026387398842
7 | 3
8 | Episode reward -0.4543350993133133
9 | 4
10 | Episode reward -0.131026387398842
11 | 5
12 | Episode reward -0.06062294509106389
13 | 6
14 | Episode reward -0.029447313268181625
15 | 7
16 | Episode reward -0.06062294509106389
17 | 8
18 | Episode reward -0.131026387398842
19 | 9
20 | Episode reward -0.06242321623935916
21 | 10
22 | Episode reward -0.10487375155800603
23 | 11
24 | Episode reward -0.4543350993133133
25 | 12
26 | Episode reward -0.12411247735981543
27 | 13
28 | Episode reward -1.0313379121421788
29 | 14
30 | Episode reward -0.4037729201163162
31 | 15
32 | Episode reward -0.8908111586607186
33 | 16
34 | Episode reward -0.193051643952839
35 | 17
36 | Episode reward -0.2498163781436723
37 | 18
38 | Episode reward -0.018739988557059398
39 | 19
40 | Episode reward -0.10345987921119307
41 | 20
42 | Episode reward -0.12411247735981543
43 | 21
44 | Episode reward -0.11830773447950055
45 | 22
46 | Episode reward -1.0313379121421788
47 | 23
48 | Episode reward -0.10345987921119307
49 | 24
50 | Episode reward -0.11830773447950055
51 | 25
52 | Episode reward -0.8908111586607186
53 | 26
54 | Episode reward -0.19830565585104554
55 | 27
56 | Episode reward -0.1051440014433829
57 | 28
58 | Episode reward -0.1051440014433829
59 | 29
60 | Episode reward -1.0946871157166271
61 | 30
62 | Episode reward -1.1348713559956034
63 | 31
64 | Episode reward -1.0946871157166271
65 | 32
66 | Episode reward -3.555349719262672
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_08-28.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.08893002419236667
3 | 1
4 | Episode reward -0.024451252478888984
5 | 2
6 | Episode reward -0.12122142648667115
7 | 3
8 | Episode reward -0.1940514291305161
9 | 4
10 | Episode reward -0.12122142648667115
11 | 5
12 | Episode reward -0.07077750997983465
13 | 6
14 | Episode reward -0.12098504290918799
15 | 7
16 | Episode reward -0.07077750997983465
17 | 8
18 | Episode reward -0.12122142648667115
19 | 9
20 | Episode reward -0.08893002419236667
21 | 10
22 | Episode reward -0.07525614096104498
23 | 11
24 | Episode reward -0.1940514291305161
25 | 12
26 | Episode reward -0.19391441894371905
27 | 13
28 | Episode reward -0.587710279001769
29 | 14
30 | Episode reward -0.5183879693420832
31 | 15
32 | Episode reward -0.5296855328330918
33 | 16
34 | Episode reward -0.0878620331768716
35 | 17
36 | Episode reward -0.20220720274702203
37 | 18
38 | Episode reward -0.019818743534297516
39 | 19
40 | Episode reward -0.07638195185657574
41 | 20
42 | Episode reward -0.19391441894371905
43 | 21
44 | Episode reward -0.8848771177687619
45 | 22
46 | Episode reward -0.587710279001769
47 | 23
48 | Episode reward -0.07638195185657574
49 | 24
50 | Episode reward -0.8848771177687619
51 | 25
52 | Episode reward -0.5296855328330918
53 | 26
54 | Episode reward -1.6267307193556293
55 | 27
56 | Episode reward -0.04291500949749171
57 | 28
58 | Episode reward -0.04291500949749171
59 | 29
60 | Episode reward -0.6291206053605887
61 | 30
62 | Episode reward -1.339652036249995
63 | 31
64 | Episode reward -0.6291206053605887
65 | 32
66 | Episode reward -1.3896864640460618
67 |
--------------------------------------------------------------------------------
/agents/eval/results/Sens/PPO/PPO_CM1-postgres-card-job-masking-v3_0_2019-06-27_08-58.txt:
--------------------------------------------------------------------------------
1 | 0
2 | Episode reward -0.05676713993368714
3 | 1
4 | Episode reward -0.035779255638086066
5 | 2
6 | Episode reward -0.12304238972786152
7 | 3
8 | Episode reward -0.8165766586278007
9 | 4
10 | Episode reward -0.12304238972786152
11 | 5
12 | Episode reward -0.04573603241623027
13 | 6
14 | Episode reward -0.12117113377469224
15 | 7
16 | Episode reward -0.04573603241623027
17 | 8
18 | Episode reward -0.12304238972786152
19 | 9
20 | Episode reward -0.05676713993368714
21 | 10
22 | Episode reward -0.0522474199839503
23 | 11
24 | Episode reward -0.8165766586278007
25 | 12
26 | Episode reward -0.05506908981688788
27 | 13
28 | Episode reward -0.7592097666218125
29 | 14
30 | Episode reward -0.40702406028496463
31 | 15
32 | Episode reward -3.8101528257318575
33 | 16
34 | Episode reward -0.12045180527025628
35 | 17
36 | Episode reward -0.0824610699905283
37 | 18
38 | Episode reward -0.06125761542248886
39 | 19
40 | Episode reward -0.04587997515798381
41 | 20
42 | Episode reward -0.05506908981688788
43 | 21
44 | Episode reward -1.1526870312087054
45 | 22
46 | Episode reward -0.7592097666218125
47 | 23
48 | Episode reward -0.04587997515798381
49 | 24
50 | Episode reward -1.1526870312087054
51 | 25
52 | Episode reward -3.8101528257318575
53 | 26
54 | Episode reward -0.17664643057360693
55 | 27
56 | Episode reward -0.06593226188070841
57 | 28
58 | Episode reward -0.06593226188070841
59 | 29
60 | Episode reward -4.335980234620824
61 | 30
62 | Episode reward -0.3875338469504931
63 | 31
64 | Episode reward -4.335980234620824
65 | 32
66 | Episode reward -0.38531682450277915
67 |
--------------------------------------------------------------------------------
/agents/queries/helper_func/createTable_movie_info_idx.py:
--------------------------------------------------------------------------------
1 | import psycopg2
2 | try:
3 | #conn = psycopg2.connect(host="localhost", database="imdbload", user="postgres", password="admin")
4 | #conn = psycopg2.connect(host="localhost", database="imdbload", user="docker", password="docker")
5 | conn = psycopg2.connect(host="localhost", database="imdbload", user="postgres", password="docker")
6 | except:
7 | print("I am unable to connect to the database")
8 | # print(query)
9 | cursor = conn.cursor()
10 | #cursor.execute("""CREATE TABLE movie_info_idx AS SELECT * FROM movie_info;""")
11 | cursor.execute("""SELECT * FROM movie_info LIMIT 1;""")
12 | rows = cursor.fetchall()
13 | print(rows)
14 |
--------------------------------------------------------------------------------
/agents/queries/helper_func/indices_preprocessing.py:
--------------------------------------------------------------------------------
1 | import csv
2 |
3 | # Open the CSV
4 | f = open('indices.txt', 'rU')
5 | # Change each fieldname to the appropriate field name. I know, so difficult.
6 | reader = csv.DictReader(f)#, fieldnames=("schema", "name", "type", "owner", "table"))
7 |
8 | keys = []
9 | for r in reader:
10 | keys.append(r["table_name"].replace("_","") + "." + r["column_name"])
11 | keys.append(r["table_name"].replace("_","") + "2." + r["column_name"])
12 | print(r["table_name"].replace("_","") + "." + r["column_name"])
13 | print(keys)
14 |
15 | '''
16 | select
17 | t.relname as table_name,
18 | i.relname as index_name,
19 | a.attname as column_name
20 | from
21 | pg_class t,
22 | pg_class i,
23 | pg_index ix,
24 | pg_attribute a
25 | where
26 | t.oid = ix.indrelid
27 | and i.oid = ix.indexrelid
28 | and a.attrelid = t.oid
29 | and a.attnum = ANY(ix.indkey)
30 | and t.relkind = 'r'
31 | order by
32 | t.relname,
33 | i.relname;
34 | '''
--------------------------------------------------------------------------------
/agents/queries/helper_func/query_parser_joinonly.py:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | f = open("~//PycharmProjects/mt-join-queryoptimization-with-drl/agents/queries/job_queries_label.txt", "r")
5 | w = open("~//PycharmProjects/mt-join-queryoptimization-with-drl/agents/queries/job_queries_simple_labled.txt", "w")
6 | qselect="SELECT * "
7 | for x in f:
8 | y=x.split('WHERE')
9 | qwhere = "WHERE"
10 | e=0
11 | for i in y[1].split('AND'):
12 | if not(("'" in i) or ('%' in i) or ("LIKE" in i) or ("<" in i) or (">" in i) or ("BETWEEN" in i) or ("OR" in i) or ("=" not in i)):
13 | #print(i)
14 | if e is 0:
15 | qwhere=qwhere+i
16 | e = 1
17 | else:
18 | qwhere = qwhere +"AND"+ i
19 |
20 | z = y[0].split('FROM')
21 | alias = {}
22 | relations = []
23 | qfrom = 'FROM '
24 | e = 0
25 | for i in z[1].split(','):
26 | a = i.split(' AS ')
27 | rel = a[0].replace(' ', '')
28 | if rel in alias.values():
29 | alias[a[1].replace(' ', '')] = rel+"2"
30 | rel = rel+" AS "+rel+"2"
31 | else:
32 | alias[a[1].replace(' ', '')] = rel
33 | if e is 0:
34 | qfrom = qfrom + rel
35 | e = 1
36 | else:
37 | qfrom = qfrom + ", " + rel
38 | qfrom = qfrom
39 | for key, val in alias.items():
40 | qwhere = qwhere.replace(' '+key+'.', ' '+val+'.')
41 |
42 | #print(relations)
43 | #print(alias)
44 | print(qselect)
45 | print(qfrom)
46 | print(qwhere)
47 | w.write(x.split("|")[0]+"|"+qselect+qfrom+' '+qwhere)
48 | #print(j)
49 |
--------------------------------------------------------------------------------
/agents/queries/helper_func/sql_to_rl_schema:
--------------------------------------------------------------------------------
1 | import json as j
2 |
3 | f = open("imdb_schema.sql", "r")
4 | w = open("imdb_schema.json", "w")
5 | sql = f.read().replace(' ','')
6 | json = {}
7 | for table in sql.split(');\n\n'):
8 | element=table.split(' (')
9 | key = element[0].replace('CREATE TABLE ','')
10 | values = []
11 | for column in element[1].split(',\n'):
12 | values.append(column.split(' ')[0].replace('\n',''))
13 | json[key]=values
14 |
15 | print(len(json))
16 | print(sum(len(x) for x in json.values()))
17 | print(j.dumps(json))
18 | w.write(j.dumps(json))
19 | f.close()
20 | w.close()
--------------------------------------------------------------------------------
/agents/queries/imdb_schema.json:
--------------------------------------------------------------------------------
1 | {"aka_name": ["id", "person_id", "name", "imdb_index", "name_pcode_cf", "name_pcode_nf", "surname_pcode", "md5sum"], "aka_title": ["id", "movie_id", "title", "imdb_index", "kind_id", "production_year", "phonetic_code", "episode_of_id", "season_nr", "episode_nr", "note", "md5sum"], "cast_info": ["id", "person_id", "movie_id", "person_role_id", "note", "nr_order", "role_id"], "char_name": ["id", "name", "imdb_index", "imdb_id", "name_pcode_nf", "surname_pcode", "md5sum"], "comp_cast_type": ["id", "kind"], "company_name": ["id", "name", "country_code", "imdb_id", "name_pcode_nf", "name_pcode_sf", "md5sum"], "company_type": ["id", "kind"], "complete_cast": ["id", "movie_id", "subject_id", "status_id"], "info_type": ["id", "info"], "keyword": ["id", "keyword", "phonetic_code"], "kind_type": ["id", "kind"], "link_type": ["id", "link"], "movie_companies": ["id", "movie_id", "company_id", "company_type_id", "note"], "movie_info": ["id", "movie_id", "info_type_id", "info", "note"], "movie_info_idx": ["id", "movie_id", "info_type_id", "info", "note"], "movie_keyword": ["id", "movie_id", "keyword_id"], "movie_link": ["id", "movie_id", "linked_movie_id", "link_type_id"], "name": ["id", "name", "imdb_index", "imdb_id", "gender", "name_pcode_cf", "name_pcode_nf", "surname_pcode", "md5sum"], "person_info": ["id", "person_id", "info_type_id", "info", "note"], "role_type": ["id", "role"], "title": ["id", "title", "imdb_index", "kind_id", "production_year", "imdb_id", "phonetic_code", "episode_of_id", "season_nr", "episode_nr", "series_years", "md5sum"]}
--------------------------------------------------------------------------------
/bin/docker_entrypoint:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # This script is the entrypoint for our Docker image.
3 |
4 | set -ex
5 |
6 | # Set up display; otherwise rendering will fail
7 | Xvfb -screen 0 1024x768x24 &
8 | export DISPLAY=:0
9 |
10 | # Wait for the file to come up
11 | display=0
12 | file="/tmp/.X11-unix/X$display"
13 | for i in $(seq 1 10); do
14 | if [ -e "$file" ]; then
15 | break
16 | fi
17 |
18 | echo "Waiting for $file to be created (try $i/10)"
19 | sleep "$i"
20 | done
21 | if ! [ -e "$file" ]; then
22 | echo "Timing out: $file was not created"
23 | exit 1
24 | fi
25 |
26 | exec "$@"
27 |
--------------------------------------------------------------------------------
/bin/render.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | import argparse
3 | import gym
4 |
5 |
6 | parser = argparse.ArgumentParser(description='Renders a Gym environment for quick inspection.')
7 | parser.add_argument('env_id', type=str, help='the ID of the environment to be rendered (e.g. HalfCheetah-v1')
8 | parser.add_argument('--step', type=int, default=1)
9 | args = parser.parse_args()
10 |
11 | env = gym.make(args.env_id)
12 | env.reset()
13 |
14 | step = 0
15 | while True:
16 | if args.step:
17 | env.step(env.action_space.sample())
18 | env.render()
19 | if step % 10 == 0:
20 | env.reset()
21 | step += 1
22 |
--------------------------------------------------------------------------------
/docs/misc.md:
--------------------------------------------------------------------------------
1 | # Miscellaneous
2 |
3 | Here we have a bunch of tools, libs, apis, tutorials, resources, etc. provided by the community to add value to the gym ecosystem.
4 |
5 | ## OpenAIGym.jl
6 |
7 | Convenience wrapper of the OpenAI Gym for the Julia language [/tbreloff/OpenAIGym.jl](https://github.com/tbreloff/OpenAIGym.jl)
--------------------------------------------------------------------------------
/docs/readme.md:
--------------------------------------------------------------------------------
1 | # Table of Contents
2 |
3 | - [Agents](agents.md) contains a listing of agents compatible with gym environments. Agents facilitate the running of an algorithm against an environment.
4 |
5 | - [Environments](environments.md) lists more environments to run your algorithms against. These do not come prepackaged with the gym.
6 |
7 | - [Wrappers](wrappers.md) list of general purpose wrappers for environments. These can perform pre/postprocessing on the data that is exchanged between the agent and the environment.
8 |
9 | - [Miscellaneous](misc.md) is a collection of other value-add tools and utilities. These could be anything from a small convenience lib to a collection of video tutorials or a new language binding.
10 |
--------------------------------------------------------------------------------
/docs/wrappers.md:
--------------------------------------------------------------------------------
1 | # Wrappers
2 |
3 | ## Space Wrappers
4 | Wrappers that transform observation and/or action space. Contains
5 | * Discretize (make a discrete version of a continuous space)
6 | * Flatten (put all actions/observations into a single dimension)
7 | * Rescale (rescale the range of values for continuous spaces).
8 |
9 | Learn more here: https://github.com/ngc92/space-wrappers
10 |
11 | ## Utility wrappers for Atari Games
12 | The baseline repository contains wrappers that are used when doing Atari
13 | experiments.
14 | These can be found here: https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers_deprecated.py
15 |
--------------------------------------------------------------------------------
/examples/agents/_policies.py:
--------------------------------------------------------------------------------
1 | # Support code for cem.py
2 |
3 | class BinaryActionLinearPolicy(object):
4 | def __init__(self, theta):
5 | self.w = theta[:-1]
6 | self.b = theta[-1]
7 | def act(self, ob):
8 | y = ob.dot(self.w) + self.b
9 | a = int(y < 0)
10 | return a
11 |
12 | class ContinuousActionLinearPolicy(object):
13 | def __init__(self, theta, n_in, n_out):
14 | assert len(theta) == (n_in + 1) * n_out
15 | self.W = theta[0 : n_in * n_out].reshape(n_in, n_out)
16 | self.b = theta[n_in * n_out : None].reshape(1, n_out)
17 | def act(self, ob):
18 | a = ob.dot(self.W) + self.b
19 | return a
20 |
--------------------------------------------------------------------------------
/examples/scripts/list_envs:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | from gym import envs
3 | envids = [spec.id for spec in envs.registry.all()]
4 | for envid in sorted(envids):
5 | print(envid)
6 |
--------------------------------------------------------------------------------
/gym.egg-info/PKG-INFO:
--------------------------------------------------------------------------------
1 | Metadata-Version: 2.1
2 | Name: gym
3 | Version: 0.12.0
4 | Summary: The OpenAI Gym: A toolkit for developing and comparing your reinforcement learning agents.
5 | Home-page: https://github.com/openai/gym
6 | Author: OpenAI
7 | Author-email: gym@openai.com
8 | License: UNKNOWN
9 | Description: UNKNOWN
10 | Platform: UNKNOWN
11 | Provides-Extra: classic_control
12 | Provides-Extra: robotics
13 | Provides-Extra: atari
14 | Provides-Extra: mujoco
15 | Provides-Extra: all
16 | Provides-Extra: box2d
17 |
--------------------------------------------------------------------------------
/gym.egg-info/dependency_links.txt:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/gym.egg-info/not-zip-safe:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/gym.egg-info/requires.txt:
--------------------------------------------------------------------------------
1 | scipy
2 | numpy>=1.10.4
3 | requests>=2.0
4 | six
5 | pyglet>=1.2.0
6 | psycopg2
7 |
8 | [all]
9 | atari_py>=0.1.4
10 | Pillow
11 | PyOpenGL
12 | box2d-py>=2.3.5
13 | PyOpenGL
14 | mujoco_py>=1.50
15 | imageio
16 | mujoco_py>=1.50
17 | imageio
18 |
19 | [atari]
20 | atari_py>=0.1.4
21 | Pillow
22 | PyOpenGL
23 |
24 | [box2d]
25 | box2d-py>=2.3.5
26 |
27 | [classic_control]
28 | PyOpenGL
29 |
30 | [mujoco]
31 | mujoco_py>=1.50
32 | imageio
33 |
34 | [robotics]
35 | mujoco_py>=1.50
36 | imageio
37 |
--------------------------------------------------------------------------------
/gym.egg-info/top_level.txt:
--------------------------------------------------------------------------------
1 | gym
2 |
--------------------------------------------------------------------------------
/gym/__init__.py:
--------------------------------------------------------------------------------
1 | import distutils.version
2 | import os
3 | import sys
4 | import warnings
5 |
6 | from gym import error
7 | from gym.version import VERSION as __version__
8 |
9 | from gym.core import Env, GoalEnv, Wrapper, ObservationWrapper, ActionWrapper, RewardWrapper
10 | from gym.spaces import Space
11 | from gym.envs import make, spec, register
12 | from gym import logger
13 |
14 | __all__ = ["Env", "Space", "Wrapper", "make", "spec", "register"]
15 |
--------------------------------------------------------------------------------
/gym/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/__pycache__/core.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/__pycache__/core.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/__pycache__/error.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/__pycache__/error.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/__pycache__/logger.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/__pycache__/logger.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/__pycache__/version.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/__pycache__/version.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/__pycache__/registration.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/__pycache__/registration.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.algorithmic.copy_ import CopyEnv
2 | from gym.envs.algorithmic.repeat_copy import RepeatCopyEnv
3 | from gym.envs.algorithmic.duplicated_input import DuplicatedInputEnv
4 | from gym.envs.algorithmic.reverse import ReverseEnv
5 | from gym.envs.algorithmic.reversed_addition import ReversedAdditionEnv
6 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/algorithmic_env.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/algorithmic_env.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/copy_.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/copy_.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/duplicated_input.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/duplicated_input.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/repeat_copy.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/repeat_copy.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/reverse.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/reverse.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/__pycache__/reversed_addition.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/__pycache__/reversed_addition.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/algorithmic/copy_.py:
--------------------------------------------------------------------------------
1 | """
2 | Task is to copy content from the input tape to
3 | the output tape. http://arxiv.org/abs/1511.07275
4 | """
5 | from gym.envs.algorithmic import algorithmic_env
6 |
7 |
8 | class CopyEnv(algorithmic_env.TapeAlgorithmicEnv):
9 | def __init__(self, base=5, chars=True):
10 | super(CopyEnv, self).__init__(base=base, chars=chars)
11 |
12 | def target_from_input_data(self, input_data):
13 | return input_data
14 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/duplicated_input.py:
--------------------------------------------------------------------------------
1 | """
2 | Task is to return every nth character from the input tape.
3 | http://arxiv.org/abs/1511.07275
4 | """
5 | from __future__ import division
6 | from gym.envs.algorithmic import algorithmic_env
7 |
8 |
9 | class DuplicatedInputEnv(algorithmic_env.TapeAlgorithmicEnv):
10 | def __init__(self, duplication=2, base=5):
11 | self.duplication = duplication
12 | super(DuplicatedInputEnv, self).__init__(base=base, chars=True)
13 |
14 | def generate_input_data(self, size):
15 | res = []
16 | if size < self.duplication:
17 | size = self.duplication
18 | for i in range(size//self.duplication):
19 | char = self.np_random.randint(self.base)
20 | for _ in range(self.duplication):
21 | res.append(char)
22 | return res
23 |
24 | def target_from_input_data(self, input_data):
25 | return [input_data[i] for i in range(0, len(input_data), self.duplication)]
26 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/repeat_copy.py:
--------------------------------------------------------------------------------
1 | """
2 | Task is to copy content multiple times from the input tape to
3 | the output tape. http://arxiv.org/abs/1511.07275
4 | """
5 | from gym.envs.algorithmic import algorithmic_env
6 |
7 |
8 | class RepeatCopyEnv(algorithmic_env.TapeAlgorithmicEnv):
9 | MIN_REWARD_SHORTFALL_FOR_PROMOTION = -.1
10 |
11 | def __init__(self, base=5):
12 | super(RepeatCopyEnv, self).__init__(base=base, chars=True)
13 | self.last = 50
14 |
15 | def target_from_input_data(self, input_data):
16 | return input_data + list(reversed(input_data)) + input_data
17 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/reverse.py:
--------------------------------------------------------------------------------
1 | """
2 | Task is to reverse content over the input tape.
3 | http://arxiv.org/abs/1511.07275
4 | """
5 | from gym.envs.algorithmic import algorithmic_env
6 |
7 |
8 | class ReverseEnv(algorithmic_env.TapeAlgorithmicEnv):
9 | MIN_REWARD_SHORTFALL_FOR_PROMOTION = -.1
10 |
11 | def __init__(self, base=2):
12 | super(ReverseEnv, self).__init__(base=base, chars=True, starting_min_length=1)
13 | self.last = 50
14 |
15 | def target_from_input_data(self, input_str):
16 | return list(reversed(input_str))
17 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/reversed_addition.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | from gym.envs.algorithmic import algorithmic_env
3 |
4 |
5 | class ReversedAdditionEnv(algorithmic_env.GridAlgorithmicEnv):
6 | def __init__(self, rows=2, base=3):
7 | super(ReversedAdditionEnv, self).__init__(rows=rows, base=base, chars=False)
8 |
9 | def target_from_input_data(self, input_strings):
10 | curry = 0
11 | target = []
12 | for digits in input_strings:
13 | total = sum(digits) + curry
14 | target.append(total % self.base)
15 | curry = total // self.base
16 |
17 | if curry > 0:
18 | target.append(curry)
19 | return target
20 |
21 | @property
22 | def time_limit(self):
23 | # Quirk preserved for the sake of consistency: add the length of the input
24 | # rather than the length of the desired output (which may differ if there's
25 | # an extra carried digit).
26 | # TODO: It seems like this time limit is so strict as to make Addition3-v0
27 | # unsolvable, since agents aren't even given enough time steps to look at
28 | # all the digits. (The solutions on the scoreboard seem to only work by
29 | # save-scumming.)
30 | return self.input_width*2 + 4
31 |
--------------------------------------------------------------------------------
/gym/envs/algorithmic/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/algorithmic/tests/__init__.py
--------------------------------------------------------------------------------
/gym/envs/atari/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.atari.atari_env import AtariEnv
2 |
--------------------------------------------------------------------------------
/gym/envs/box2d/__init__.py:
--------------------------------------------------------------------------------
1 | try:
2 | import Box2D
3 | from gym.envs.box2d.lunar_lander import LunarLander
4 | from gym.envs.box2d.lunar_lander import LunarLanderContinuous
5 | from gym.envs.box2d.bipedal_walker import BipedalWalker, BipedalWalkerHardcore
6 | from gym.envs.box2d.car_racing import CarRacing
7 | except ImportError:
8 | Box2D = None
9 |
--------------------------------------------------------------------------------
/gym/envs/box2d/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/box2d/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/box2d/test_lunar_lander.py:
--------------------------------------------------------------------------------
1 | import pytest
2 | try:
3 | import Box2D
4 | from .lunar_lander import LunarLander, LunarLanderContinuous, demo_heuristic_lander
5 | except ImportError:
6 | Box2D = None
7 |
8 |
9 | @pytest.mark.skipif(Box2D is None, reason='Box2D not installed')
10 | def test_lunar_lander():
11 | _test_lander(LunarLander(), seed=0)
12 |
13 | @pytest.mark.skipif(Box2D is None, reason='Box2D not installed')
14 | def test_lunar_lander_continuous():
15 | _test_lander(LunarLanderContinuous(), seed=0)
16 |
17 | @pytest.mark.skipif(Box2D is None, reason='Box2D not installed')
18 | def _test_lander(env, seed=None, render=False):
19 | total_reward = demo_heuristic_lander(env, seed=seed, render=render)
20 | assert total_reward > 100
21 |
22 |
23 |
--------------------------------------------------------------------------------
/gym/envs/classic_control/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.classic_control.cartpole import CartPoleEnv
2 | from gym.envs.classic_control.mountain_car import MountainCarEnv
3 | from gym.envs.classic_control.continuous_mountain_car import Continuous_MountainCarEnv
4 | from gym.envs.classic_control.pendulum import PendulumEnv
5 | from gym.envs.classic_control.acrobot import AcrobotEnv
6 |
7 |
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/acrobot.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/acrobot.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/cartpole.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/cartpole.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/continuous_mountain_car.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/continuous_mountain_car.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/mountain_car.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/mountain_car.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/pendulum.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/pendulum.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/__pycache__/rendering.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/__pycache__/rendering.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/classic_control/assets/clockwise.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/classic_control/assets/clockwise.png
--------------------------------------------------------------------------------
/gym/envs/database/__init__.py:
--------------------------------------------------------------------------------
1 |
2 | from gym.envs.database.cm1_postgres_card_env_job import CM1PostgresCardJob
3 | from gym.envs.database.cm1_postgres_card_env_job_one import CM1PostgresCardJobOne
4 | from gym.envs.database.simple_corridor_ray import SimpleCorridor
5 |
6 |
7 | from gym.envs.database.cm1_postgres_card_env_job_crossval_0 import CM1PostgresCardJob0
8 | from gym.envs.database.cm1_postgres_card_env_job_crossval_1 import CM1PostgresCardJob1
9 | from gym.envs.database.cm1_postgres_card_env_job_crossval_2 import CM1PostgresCardJob2
10 | from gym.envs.database.cm1_postgres_card_env_job_crossval_3 import CM1PostgresCardJob3
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_0.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_0.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_1.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_1.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_2.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_2.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_3.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/cm1_postgres_card_env_job_crossval_3.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/cm1_postgres_card_env_job_one.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/cm1_postgres_card_env_job_one.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/__pycache__/simple_corridor_ray.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/database/__pycache__/simple_corridor_ray.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/envs/database/simple_corridor_ray.py:
--------------------------------------------------------------------------------
1 | import gym
2 | from gym import error, spaces, utils
3 | from gym.utils import seeding
4 | import os
5 | import numpy as np
6 | import random
7 | from itertools import permutations
8 | from gym.spaces import Discrete, Box
9 |
10 | """
11 | Simple example for environment tests
12 | """
13 |
14 | class SimpleCorridor(gym.Env):
15 | actions = []
16 | action_obj = []
17 | action_list = []
18 | action_space = None
19 | observation_space = None
20 | obs = []
21 | reward_range = [float(0), float(1)]
22 |
23 | def __init__(self):#, config):
24 | self.end_pos = 9 #config["corridor_length"]
25 | self.cur_pos = 0
26 | self.action_space = Discrete(2)
27 | self.observation_space = Box(0.0, self.end_pos, shape=(1,), dtype=np.float32)
28 |
29 | def reset(self):
30 | self.cur_pos = 0
31 | return [self.cur_pos]#, 0, False
32 |
33 | def step(self, action):
34 | assert action in [0, 1], action
35 | if action == 0 and self.cur_pos > 0:
36 | self.cur_pos -= 1
37 | elif action == 1:
38 | self.cur_pos += 1
39 | done = self.cur_pos >= self.end_pos
40 | return [self.cur_pos], 1 if done else 0, done, {}
41 |
42 | def render(self, mode='human', close=False):
43 | return self.cur_pos
44 |
45 | def close(self):
46 | return
47 |
48 | def seed(self, seed=None):
49 | self.np_random, seed = seeding.np_random(seed)
50 | return [seed]
51 |
52 |
53 |
54 |
55 |
56 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.mujoco.mujoco_env import MujocoEnv
2 | # ^^^^^ so that user gets the correct error
3 | # message if mujoco is not installed correctly
4 | from gym.envs.mujoco.ant import AntEnv
5 | from gym.envs.mujoco.half_cheetah import HalfCheetahEnv
6 | from gym.envs.mujoco.hopper import HopperEnv
7 | from gym.envs.mujoco.walker2d import Walker2dEnv
8 | from gym.envs.mujoco.humanoid import HumanoidEnv
9 | from gym.envs.mujoco.inverted_pendulum import InvertedPendulumEnv
10 | from gym.envs.mujoco.inverted_double_pendulum import InvertedDoublePendulumEnv
11 | from gym.envs.mujoco.reacher import ReacherEnv
12 | from gym.envs.mujoco.swimmer import SwimmerEnv
13 | from gym.envs.mujoco.humanoidstandup import HumanoidStandupEnv
14 | from gym.envs.mujoco.pusher import PusherEnv
15 | from gym.envs.mujoco.thrower import ThrowerEnv
16 | from gym.envs.mujoco.striker import StrikerEnv
17 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/assets/inverted_pendulum.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/half_cheetah.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from gym import utils
3 | from gym.envs.mujoco import mujoco_env
4 |
5 | class HalfCheetahEnv(mujoco_env.MujocoEnv, utils.EzPickle):
6 | def __init__(self):
7 | mujoco_env.MujocoEnv.__init__(self, 'half_cheetah.xml', 5)
8 | utils.EzPickle.__init__(self)
9 |
10 | def step(self, action):
11 | xposbefore = self.sim.data.qpos[0]
12 | self.do_simulation(action, self.frame_skip)
13 | xposafter = self.sim.data.qpos[0]
14 | ob = self._get_obs()
15 | reward_ctrl = - 0.1 * np.square(action).sum()
16 | reward_run = (xposafter - xposbefore)/self.dt
17 | reward = reward_ctrl + reward_run
18 | done = False
19 | return ob, reward, done, dict(reward_run=reward_run, reward_ctrl=reward_ctrl)
20 |
21 | def _get_obs(self):
22 | return np.concatenate([
23 | self.sim.data.qpos.flat[1:],
24 | self.sim.data.qvel.flat,
25 | ])
26 |
27 | def reset_model(self):
28 | qpos = self.init_qpos + self.np_random.uniform(low=-.1, high=.1, size=self.model.nq)
29 | qvel = self.init_qvel + self.np_random.randn(self.model.nv) * .1
30 | self.set_state(qpos, qvel)
31 | return self._get_obs()
32 |
33 | def viewer_setup(self):
34 | self.viewer.cam.distance = self.model.stat.extent * 0.5
35 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/inverted_pendulum.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from gym import utils
3 | from gym.envs.mujoco import mujoco_env
4 |
5 | class InvertedPendulumEnv(mujoco_env.MujocoEnv, utils.EzPickle):
6 | def __init__(self):
7 | utils.EzPickle.__init__(self)
8 | mujoco_env.MujocoEnv.__init__(self, 'inverted_pendulum.xml', 2)
9 |
10 | def step(self, a):
11 | reward = 1.0
12 | self.do_simulation(a, self.frame_skip)
13 | ob = self._get_obs()
14 | notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2)
15 | done = not notdone
16 | return ob, reward, done, {}
17 |
18 | def reset_model(self):
19 | qpos = self.init_qpos + self.np_random.uniform(size=self.model.nq, low=-0.01, high=0.01)
20 | qvel = self.init_qvel + self.np_random.uniform(size=self.model.nv, low=-0.01, high=0.01)
21 | self.set_state(qpos, qvel)
22 | return self._get_obs()
23 |
24 | def _get_obs(self):
25 | return np.concatenate([self.sim.data.qpos, self.sim.data.qvel]).ravel()
26 |
27 | def viewer_setup(self):
28 | v = self.viewer
29 | v.cam.trackbodyid = 0
30 | v.cam.distance = self.model.stat.extent
31 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/swimmer.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from gym import utils
3 | from gym.envs.mujoco import mujoco_env
4 |
5 | class SwimmerEnv(mujoco_env.MujocoEnv, utils.EzPickle):
6 | def __init__(self):
7 | mujoco_env.MujocoEnv.__init__(self, 'swimmer.xml', 4)
8 | utils.EzPickle.__init__(self)
9 |
10 | def step(self, a):
11 | ctrl_cost_coeff = 0.0001
12 | xposbefore = self.sim.data.qpos[0]
13 | self.do_simulation(a, self.frame_skip)
14 | xposafter = self.sim.data.qpos[0]
15 | reward_fwd = (xposafter - xposbefore) / self.dt
16 | reward_ctrl = - ctrl_cost_coeff * np.square(a).sum()
17 | reward = reward_fwd + reward_ctrl
18 | ob = self._get_obs()
19 | return ob, reward, False, dict(reward_fwd=reward_fwd, reward_ctrl=reward_ctrl)
20 |
21 | def _get_obs(self):
22 | qpos = self.sim.data.qpos
23 | qvel = self.sim.data.qvel
24 | return np.concatenate([qpos.flat[2:], qvel.flat])
25 |
26 | def reset_model(self):
27 | self.set_state(
28 | self.init_qpos + self.np_random.uniform(low=-.1, high=.1, size=self.model.nq),
29 | self.init_qvel + self.np_random.uniform(low=-.1, high=.1, size=self.model.nv)
30 | )
31 | return self._get_obs()
32 |
--------------------------------------------------------------------------------
/gym/envs/mujoco/walker2d.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | from gym import utils
3 | from gym.envs.mujoco import mujoco_env
4 |
5 | class Walker2dEnv(mujoco_env.MujocoEnv, utils.EzPickle):
6 |
7 | def __init__(self):
8 | mujoco_env.MujocoEnv.__init__(self, "walker2d.xml", 4)
9 | utils.EzPickle.__init__(self)
10 |
11 | def step(self, a):
12 | posbefore = self.sim.data.qpos[0]
13 | self.do_simulation(a, self.frame_skip)
14 | posafter, height, ang = self.sim.data.qpos[0:3]
15 | alive_bonus = 1.0
16 | reward = ((posafter - posbefore) / self.dt)
17 | reward += alive_bonus
18 | reward -= 1e-3 * np.square(a).sum()
19 | done = not (height > 0.8 and height < 2.0 and
20 | ang > -1.0 and ang < 1.0)
21 | ob = self._get_obs()
22 | return ob, reward, done, {}
23 |
24 | def _get_obs(self):
25 | qpos = self.sim.data.qpos
26 | qvel = self.sim.data.qvel
27 | return np.concatenate([qpos[1:], np.clip(qvel, -10, 10)]).ravel()
28 |
29 | def reset_model(self):
30 | self.set_state(
31 | self.init_qpos + self.np_random.uniform(low=-.005, high=.005, size=self.model.nq),
32 | self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv)
33 | )
34 | return self._get_obs()
35 |
36 | def viewer_setup(self):
37 | self.viewer.cam.trackbodyid = 2
38 | self.viewer.cam.distance = self.model.stat.extent * 0.5
39 | self.viewer.cam.lookat[2] = 1.15
40 | self.viewer.cam.elevation = -20
41 |
--------------------------------------------------------------------------------
/gym/envs/robotics/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.robotics.fetch_env import FetchEnv
2 | from gym.envs.robotics.fetch.slide import FetchSlideEnv
3 | from gym.envs.robotics.fetch.pick_and_place import FetchPickAndPlaceEnv
4 | from gym.envs.robotics.fetch.push import FetchPushEnv
5 | from gym.envs.robotics.fetch.reach import FetchReachEnv
6 |
7 | from gym.envs.robotics.hand.reach import HandReachEnv
8 | from gym.envs.robotics.hand.manipulate import HandBlockEnv
9 | from gym.envs.robotics.hand.manipulate import HandEggEnv
10 | from gym.envs.robotics.hand.manipulate import HandPenEnv
11 |
12 | from gym.envs.robotics.hand.manipulate_touch_sensors import HandBlockTouchSensorsEnv
13 | from gym.envs.robotics.hand.manipulate_touch_sensors import HandEggTouchSensorsEnv
14 | from gym.envs.robotics.hand.manipulate_touch_sensors import HandPenTouchSensorsEnv
15 |
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/fetch/push.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/fetch/reach.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/fetch/slide.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/.get:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/.get
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/base_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/base_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/bellows_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/bellows_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/elbow_flex_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/elbow_flex_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/estop_link.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/estop_link.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/forearm_roll_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/forearm_roll_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/gripper_link.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/gripper_link.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/head_pan_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/head_pan_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/head_tilt_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/head_tilt_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/l_wheel_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/l_wheel_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/laser_link.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/laser_link.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/r_wheel_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/r_wheel_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/shoulder_lift_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/shoulder_lift_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/shoulder_pan_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/shoulder_pan_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/torso_fixed_link.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/torso_fixed_link.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/torso_lift_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/torso_lift_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/upperarm_roll_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/upperarm_roll_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/wrist_flex_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/wrist_flex_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/fetch/wrist_roll_link_collision.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/fetch/wrist_roll_link_collision.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/F1.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/F1.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/F2.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/F2.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/F3.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/F3.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/TH1_z.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/TH1_z.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/TH2_z.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/TH2_z.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/TH3_z.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/TH3_z.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/forearm_electric.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/forearm_electric.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/forearm_electric_cvx.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/forearm_electric_cvx.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/knuckle.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/knuckle.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/lfmetacarpal.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/lfmetacarpal.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/palm.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/palm.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/stls/hand/wrist.stl:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/stls/hand/wrist.stl
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/textures/block.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/textures/block.png
--------------------------------------------------------------------------------
/gym/envs/robotics/assets/textures/block_hidden.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/assets/textures/block_hidden.png
--------------------------------------------------------------------------------
/gym/envs/robotics/fetch/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/fetch/__init__.py
--------------------------------------------------------------------------------
/gym/envs/robotics/fetch/pick_and_place.py:
--------------------------------------------------------------------------------
1 | import os
2 | from gym import utils
3 | from gym.envs.robotics import fetch_env
4 |
5 |
6 | # Ensure we get the path separator correct on windows
7 | MODEL_XML_PATH = os.path.join('fetch', 'pick_and_place.xml')
8 |
9 |
10 | class FetchPickAndPlaceEnv(fetch_env.FetchEnv, utils.EzPickle):
11 | def __init__(self, reward_type='sparse'):
12 | initial_qpos = {
13 | 'robot0:slide0': 0.405,
14 | 'robot0:slide1': 0.48,
15 | 'robot0:slide2': 0.0,
16 | 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.],
17 | }
18 | fetch_env.FetchEnv.__init__(
19 | self, MODEL_XML_PATH, has_object=True, block_gripper=False, n_substeps=20,
20 | gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0,
21 | obj_range=0.15, target_range=0.15, distance_threshold=0.05,
22 | initial_qpos=initial_qpos, reward_type=reward_type)
23 | utils.EzPickle.__init__(self)
24 |
--------------------------------------------------------------------------------
/gym/envs/robotics/fetch/push.py:
--------------------------------------------------------------------------------
1 | import os
2 | from gym import utils
3 | from gym.envs.robotics import fetch_env
4 |
5 |
6 | # Ensure we get the path separator correct on windows
7 | MODEL_XML_PATH = os.path.join('fetch', 'push.xml')
8 |
9 |
10 | class FetchPushEnv(fetch_env.FetchEnv, utils.EzPickle):
11 | def __init__(self, reward_type='sparse'):
12 | initial_qpos = {
13 | 'robot0:slide0': 0.405,
14 | 'robot0:slide1': 0.48,
15 | 'robot0:slide2': 0.0,
16 | 'object0:joint': [1.25, 0.53, 0.4, 1., 0., 0., 0.],
17 | }
18 | fetch_env.FetchEnv.__init__(
19 | self, MODEL_XML_PATH, has_object=True, block_gripper=True, n_substeps=20,
20 | gripper_extra_height=0.0, target_in_the_air=False, target_offset=0.0,
21 | obj_range=0.15, target_range=0.15, distance_threshold=0.05,
22 | initial_qpos=initial_qpos, reward_type=reward_type)
23 | utils.EzPickle.__init__(self)
24 |
--------------------------------------------------------------------------------
/gym/envs/robotics/fetch/reach.py:
--------------------------------------------------------------------------------
1 | import os
2 | from gym import utils
3 | from gym.envs.robotics import fetch_env
4 |
5 |
6 | # Ensure we get the path separator correct on windows
7 | MODEL_XML_PATH = os.path.join('fetch', 'reach.xml')
8 |
9 |
10 | class FetchReachEnv(fetch_env.FetchEnv, utils.EzPickle):
11 | def __init__(self, reward_type='sparse'):
12 | initial_qpos = {
13 | 'robot0:slide0': 0.4049,
14 | 'robot0:slide1': 0.48,
15 | 'robot0:slide2': 0.0,
16 | }
17 | fetch_env.FetchEnv.__init__(
18 | self, MODEL_XML_PATH, has_object=False, block_gripper=True, n_substeps=20,
19 | gripper_extra_height=0.2, target_in_the_air=True, target_offset=0.0,
20 | obj_range=0.15, target_range=0.15, distance_threshold=0.05,
21 | initial_qpos=initial_qpos, reward_type=reward_type)
22 | utils.EzPickle.__init__(self)
23 |
--------------------------------------------------------------------------------
/gym/envs/robotics/fetch/slide.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 |
4 | from gym import utils
5 | from gym.envs.robotics import fetch_env
6 |
7 |
8 | # Ensure we get the path separator correct on windows
9 | MODEL_XML_PATH = os.path.join('fetch', 'slide.xml')
10 |
11 |
12 | class FetchSlideEnv(fetch_env.FetchEnv, utils.EzPickle):
13 | def __init__(self, reward_type='sparse'):
14 | initial_qpos = {
15 | 'robot0:slide0': 0.05,
16 | 'robot0:slide1': 0.48,
17 | 'robot0:slide2': 0.0,
18 | 'object0:joint': [1.7, 1.1, 0.4, 1., 0., 0., 0.],
19 | }
20 | fetch_env.FetchEnv.__init__(
21 | self, MODEL_XML_PATH, has_object=True, block_gripper=True, n_substeps=20,
22 | gripper_extra_height=-0.02, target_in_the_air=False, target_offset=np.array([0.4, 0.0, 0.0]),
23 | obj_range=0.1, target_range=0.3, distance_threshold=0.05,
24 | initial_qpos=initial_qpos, reward_type=reward_type)
25 | utils.EzPickle.__init__(self)
26 |
--------------------------------------------------------------------------------
/gym/envs/robotics/hand/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/robotics/hand/__init__.py
--------------------------------------------------------------------------------
/gym/envs/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/envs/tests/__init__.py
--------------------------------------------------------------------------------
/gym/envs/tests/spec_list.py:
--------------------------------------------------------------------------------
1 | from gym import envs, logger
2 | import os
3 |
4 | skip_mujoco = not (os.environ.get('MUJOCO_KEY'))
5 | if not skip_mujoco:
6 | try:
7 | import mujoco_py
8 | except ImportError:
9 | skip_mujoco = True
10 |
11 | def should_skip_env_spec_for_tests(spec):
12 | # We skip tests for envs that require dependencies or are otherwise
13 | # troublesome to run frequently
14 | ep = spec._entry_point
15 | # Skip mujoco tests for pull request CI
16 | if skip_mujoco and (ep.startswith('gym.envs.mujoco') or ep.startswith('gym.envs.robotics:')):
17 | return True
18 | try:
19 | import atari_py
20 | except ImportError:
21 | if ep.startswith('gym.envs.atari'):
22 | return True
23 | try:
24 | import Box2D
25 | except ImportError:
26 | if ep.startswith('gym.envs.box2d'):
27 | return True
28 |
29 | if ( 'GoEnv' in ep or
30 | 'HexEnv' in ep or
31 | (ep.startswith("gym.envs.atari") and not spec.id.startswith("Pong") and not spec.id.startswith("Seaquest"))
32 | ):
33 | logger.warn("Skipping tests for env {}".format(ep))
34 | return True
35 | return False
36 |
37 | spec_list = [spec for spec in sorted(envs.registry.all(), key=lambda x: x.id) if spec._entry_point is not None and not should_skip_env_spec_for_tests(spec)]
38 |
--------------------------------------------------------------------------------
/gym/envs/tests/test_kellycoinflip.py:
--------------------------------------------------------------------------------
1 | from gym.envs.toy_text.kellycoinflip import KellyCoinflipEnv
2 |
3 |
4 | class TestKellyCoinflipEnv:
5 | @staticmethod
6 | def test_done_when_reaches_max_wealth():
7 | # https://github.com/openai/gym/issues/1266
8 | env = KellyCoinflipEnv()
9 | env.seed(1)
10 | env.reset()
11 | done = False
12 |
13 | while not done:
14 | action = int(env.wealth * 20) # bet 20% of the wealth
15 | observation, reward, done, info = env.step(action)
16 |
17 | assert env.wealth == env.max_wealth
18 |
--------------------------------------------------------------------------------
/gym/envs/toy_text/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.toy_text.blackjack import BlackjackEnv
2 | from gym.envs.toy_text.roulette import RouletteEnv
3 | from gym.envs.toy_text.frozen_lake import FrozenLakeEnv
4 | from gym.envs.toy_text.nchain import NChainEnv
5 | from gym.envs.toy_text.hotter_colder import HotterColder
6 | from gym.envs.toy_text.guessing_game import GuessingGame
7 | from gym.envs.toy_text.kellycoinflip import KellyCoinflipEnv
8 | from gym.envs.toy_text.kellycoinflip import KellyCoinflipGeneralizedEnv
9 | from gym.envs.toy_text.cliffwalking import CliffWalkingEnv
10 | from gym.envs.toy_text.taxi import TaxiEnv
11 | from gym.envs.toy_text.guessing_game import GuessingGame
12 | from gym.envs.toy_text.hotter_colder import HotterColder
13 |
--------------------------------------------------------------------------------
/gym/envs/toy_text/roulette.py:
--------------------------------------------------------------------------------
1 | import gym
2 | from gym import spaces
3 | from gym.utils import seeding
4 |
5 |
6 | class RouletteEnv(gym.Env):
7 | """Simple roulette environment
8 |
9 | The roulette wheel has 37 spots. If the bet is 0 and a 0 comes up,
10 | you win a reward of 35. If the parity of your bet matches the parity
11 | of the spin, you win 1. Otherwise you receive a reward of -1.
12 |
13 | The long run reward for playing 0 should be -1/37 for any state
14 |
15 | The last action (38) stops the rollout for a return of 0 (walking away)
16 | """
17 | def __init__(self, spots=37):
18 | self.n = spots + 1
19 | self.action_space = spaces.Discrete(self.n)
20 | self.observation_space = spaces.Discrete(1)
21 | self.seed()
22 |
23 | def seed(self, seed=None):
24 | self.np_random, seed = seeding.np_random(seed)
25 | return [seed]
26 |
27 | def step(self, action):
28 | assert self.action_space.contains(action)
29 | if action == self.n - 1:
30 | # observation, reward, done, info
31 | return 0, 0, True, {}
32 |
33 | # N.B. np.random.randint draws from [A, B) while random.randint draws from [A,B]
34 | val = self.np_random.randint(0, self.n - 1)
35 | if val == action == 0:
36 | reward = self.n - 2.0
37 | elif val != 0 and action != 0 and val % 2 == action % 2:
38 | reward = 1.0
39 | else:
40 | reward = -1.0
41 | return 0, reward, False, {}
42 |
43 | def reset(self):
44 | return 0
45 |
--------------------------------------------------------------------------------
/gym/envs/unittest/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.envs.unittest.cube_crash import CubeCrash
2 | from gym.envs.unittest.cube_crash import CubeCrashSparse
3 | from gym.envs.unittest.cube_crash import CubeCrashScreenBecomesBlack
4 | from gym.envs.unittest.memorize_digits import MemorizeDigits
5 |
6 |
--------------------------------------------------------------------------------
/gym/logger.py:
--------------------------------------------------------------------------------
1 | import warnings
2 |
3 | from gym.utils import colorize
4 |
5 | DEBUG = 10
6 | INFO = 20
7 | WARN = 30
8 | ERROR = 40
9 | DISABLED = 50
10 |
11 | MIN_LEVEL = 30
12 |
13 | def set_level(level):
14 | """
15 | Set logging threshold on current logger.
16 | """
17 | global MIN_LEVEL
18 | MIN_LEVEL = level
19 |
20 | def debug(msg, *args):
21 | if MIN_LEVEL <= DEBUG:
22 | print('%s: %s'%('DEBUG', msg % args))
23 |
24 | def info(msg, *args):
25 | if MIN_LEVEL <= INFO:
26 | print('%s: %s'%('INFO', msg % args))
27 |
28 | def warn(msg, *args):
29 | if MIN_LEVEL <= WARN:
30 | warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))
31 |
32 | def error(msg, *args):
33 | if MIN_LEVEL <= ERROR:
34 | print(colorize('%s: %s'%('ERROR', msg % args), 'red'))
35 |
36 | # DEPRECATED:
37 | setLevel = set_level
38 |
--------------------------------------------------------------------------------
/gym/spaces/__init__.py:
--------------------------------------------------------------------------------
1 | from gym.spaces.space import Space
2 | from gym.spaces.box import Box
3 | from gym.spaces.discrete import Discrete
4 | from gym.spaces.multi_discrete import MultiDiscrete
5 | from gym.spaces.multi_binary import MultiBinary
6 | from gym.spaces.tuple_space import Tuple
7 | from gym.spaces.dict_space import Dict
8 |
9 | __all__ = ["Space", "Box", "Discrete", "MultiDiscrete", "MultiBinary", "Tuple", "Dict"]
10 |
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/box.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/box.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/dict_space.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/dict_space.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/discrete.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/discrete.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/multi_binary.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/multi_binary.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/multi_discrete.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/multi_discrete.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/space.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/space.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/__pycache__/tuple_space.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/__pycache__/tuple_space.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/spaces/discrete.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import gym
3 | from .space import Space
4 |
5 |
6 | class Discrete(Space):
7 | """
8 | {0,1,...,n-1}
9 |
10 | Example usage:
11 | self.observation_space = spaces.Discrete(2)
12 | """
13 | def __init__(self, n):
14 | self.n = n
15 | super(Discrete, self).__init__((), np.int64)
16 | self.np_random = np.random.RandomState()
17 |
18 | def seed(self, seed):
19 | self.np_random.seed(seed)
20 |
21 | def sample(self):
22 | return self.np_random.randint(self.n)
23 |
24 | def contains(self, x):
25 | if isinstance(x, int):
26 | as_int = x
27 | elif isinstance(x, (np.generic, np.ndarray)) and (x.dtype.kind in np.typecodes['AllInteger'] and x.shape == ()):
28 | as_int = int(x)
29 | else:
30 | return False
31 | return as_int >= 0 and as_int < self.n
32 |
33 | def __repr__(self):
34 | return "Discrete(%d)" % self.n
35 |
36 | def __eq__(self, other):
37 | return self.n == other.n
38 |
--------------------------------------------------------------------------------
/gym/spaces/multi_binary.py:
--------------------------------------------------------------------------------
1 | import gym
2 | import numpy as np
3 | from .space import Space
4 |
5 |
6 | class MultiBinary(Space):
7 | def __init__(self, n):
8 | self.n = n
9 | super(MultiBinary, self).__init__((self.n,), np.int8)
10 | self.np_random = np.random.RandomState()
11 |
12 | def seed(self, seed):
13 | self.np_random.seed(seed)
14 |
15 | def sample(self):
16 | return self.np_random.randint(low=0, high=2, size=self.n).astype(self.dtype)
17 |
18 | def contains(self, x):
19 | return ((x==0) | (x==1)).all()
20 |
21 | def to_jsonable(self, sample_n):
22 | return np.array(sample_n).tolist()
23 |
24 | def from_jsonable(self, sample_n):
25 | return [np.asarray(sample) for sample in sample_n]
26 |
27 | def __repr__(self):
28 | return "MultiBinary({})".format(self.n)
29 |
30 | def __eq__(self, other):
31 | return self.n == other.n
32 |
--------------------------------------------------------------------------------
/gym/spaces/space.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 |
4 | class Space(object):
5 | """Defines the observation and action spaces, so you can write generic
6 | code that applies to any Env. For example, you can choose a random
7 | action.
8 | """
9 | def __init__(self, shape=None, dtype=None):
10 | import numpy as np # takes about 300-400ms to import, so we load lazily
11 | self.shape = None if shape is None else tuple(shape)
12 | self.dtype = None if dtype is None else np.dtype(dtype)
13 |
14 | def sample(self):
15 | """
16 | Uniformly randomly sample a random element of this space
17 | """
18 | raise NotImplementedError
19 |
20 | def seed(self, seed):
21 | """Set the seed for this space's pseudo-random number generator. """
22 | raise NotImplementedError
23 |
24 | def contains(self, x):
25 | """
26 | Return boolean specifying if x is a valid
27 | member of this space
28 | """
29 | raise NotImplementedError
30 |
31 | def __contains__(self, x):
32 | return self.contains(x)
33 |
34 | def to_jsonable(self, sample_n):
35 | """Convert a batch of samples from this space to a JSONable data type."""
36 | # By default, assume identity is JSONable
37 | return sample_n
38 |
39 | def from_jsonable(self, sample_n):
40 | """Convert a JSONable data type to a batch of samples from this space."""
41 | # By default, assume identity is JSONable
42 | return sample_n
43 |
--------------------------------------------------------------------------------
/gym/spaces/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/spaces/tests/__init__.py
--------------------------------------------------------------------------------
/gym/tests/test_core.py:
--------------------------------------------------------------------------------
1 | from gym import core
2 |
3 | class ArgumentEnv(core.Env):
4 | calls = 0
5 |
6 | def __init__(self, arg):
7 | self.calls += 1
8 | self.arg = arg
9 |
10 | def test_env_instantiation():
11 | # This looks like a pretty trivial, but given our usage of
12 | # __new__, it's worth having.
13 | env = ArgumentEnv('arg')
14 | assert env.arg == 'arg'
15 | assert env.calls == 1
16 |
--------------------------------------------------------------------------------
/gym/utils/__init__.py:
--------------------------------------------------------------------------------
1 | """A set of common utilities used within the environments. These are
2 | not intended as API functions, and will not remain stable over time.
3 | """
4 |
5 | # These submodules should not have any import-time dependencies.
6 | # We want this since we use `utils` during our import-time sanity checks
7 | # that verify that our dependencies are actually present.
8 | from .colorize import colorize
9 | from .ezpickle import EzPickle
10 |
--------------------------------------------------------------------------------
/gym/utils/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/atomic_write.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/atomic_write.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/closer.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/closer.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/colorize.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/colorize.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/ezpickle.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/ezpickle.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/json_utils.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/json_utils.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/__pycache__/seeding.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/utils/__pycache__/seeding.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/utils/colorize.py:
--------------------------------------------------------------------------------
1 | """A set of common utilities used within the environments. These are
2 | not intended as API functions, and will not remain stable over time.
3 | """
4 |
5 | color2num = dict(
6 | gray=30,
7 | red=31,
8 | green=32,
9 | yellow=33,
10 | blue=34,
11 | magenta=35,
12 | cyan=36,
13 | white=37,
14 | crimson=38
15 | )
16 |
17 |
18 | def colorize(string, color, bold=False, highlight = False):
19 | """Return string surrounded by appropriate terminal color codes to
20 | print colorized text. Valid colors: gray, red, green, yellow,
21 | blue, magenta, cyan, white, crimson
22 | """
23 |
24 | # Import six here so that `utils` has no import-time dependencies.
25 | # We want this since we use `utils` during our import-time sanity checks
26 | # that verify that our dependencies (including six) are actually present.
27 | import six
28 |
29 | attr = []
30 | num = color2num[color]
31 | if highlight: num += 10
32 | attr.append(six.u(str(num)))
33 | if bold: attr.append(six.u('1'))
34 | attrs = six.u(';').join(attr)
35 | return six.u('\x1b[%sm%s\x1b[0m') % (attrs, string)
36 |
--------------------------------------------------------------------------------
/gym/utils/ezpickle.py:
--------------------------------------------------------------------------------
1 | class EzPickle(object):
2 | """Objects that are pickled and unpickled via their constructor
3 | arguments.
4 |
5 | Example usage:
6 |
7 | class Dog(Animal, EzPickle):
8 | def __init__(self, furcolor, tailkind="bushy"):
9 | Animal.__init__()
10 | EzPickle.__init__(furcolor, tailkind)
11 | ...
12 |
13 | When this object is unpickled, a new Dog will be constructed by passing the provided
14 | furcolor and tailkind into the constructor. However, philosophers are still not sure
15 | whether it is still the same dog.
16 |
17 | This is generally needed only for environments which wrap C/C++ code, such as MuJoCo
18 | and Atari.
19 | """
20 | def __init__(self, *args, **kwargs):
21 | self._ezpickle_args = args
22 | self._ezpickle_kwargs = kwargs
23 | def __getstate__(self):
24 | return {"_ezpickle_args" : self._ezpickle_args, "_ezpickle_kwargs": self._ezpickle_kwargs}
25 | def __setstate__(self, d):
26 | out = type(self)(*d["_ezpickle_args"], **d["_ezpickle_kwargs"])
27 | self.__dict__.update(out.__dict__)
28 |
--------------------------------------------------------------------------------
/gym/utils/json_utils.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 |
3 | def json_encode_np(obj):
4 | """
5 | JSON can't serialize numpy types, so convert to pure python
6 | """
7 | if isinstance(obj, np.ndarray):
8 | return list(obj)
9 | elif isinstance(obj, np.float32):
10 | return float(obj)
11 | elif isinstance(obj, np.float64):
12 | return float(obj)
13 | elif isinstance(obj, np.int8):
14 | return int(obj)
15 | elif isinstance(obj, np.int16):
16 | return int(obj)
17 | elif isinstance(obj, np.int32):
18 | return int(obj)
19 | elif isinstance(obj, np.int64):
20 | return int(obj)
21 | else:
22 | return obj
23 |
--------------------------------------------------------------------------------
/gym/utils/tests/test_atexit.py:
--------------------------------------------------------------------------------
1 | from gym.utils.closer import Closer
2 |
3 | class Closeable(object):
4 | close_called = False
5 | def close(self):
6 | self.close_called = True
7 |
8 | def test_register_unregister():
9 | registry = Closer(atexit_register=False)
10 | c1 = Closeable()
11 | c2 = Closeable()
12 |
13 | assert not c1.close_called
14 | assert not c2.close_called
15 | registry.register(c1)
16 | id2 = registry.register(c2)
17 |
18 | registry.unregister(id2)
19 | registry.close()
20 | assert c1.close_called
21 | assert not c2.close_called
22 |
--------------------------------------------------------------------------------
/gym/utils/tests/test_seeding.py:
--------------------------------------------------------------------------------
1 | from gym import error
2 | from gym.utils import seeding
3 |
4 | def test_invalid_seeds():
5 | for seed in [-1, 'test']:
6 | try:
7 | seeding.np_random(seed)
8 | except error.Error:
9 | pass
10 | else:
11 | assert False, 'Invalid seed {} passed validation'.format(seed)
12 |
13 | def test_valid_seeds():
14 | for seed in [0, 1]:
15 | random, seed1 = seeding.np_random(seed)
16 | assert seed == seed1
17 |
--------------------------------------------------------------------------------
/gym/version.py:
--------------------------------------------------------------------------------
1 | VERSION = '0.12.0'
2 |
--------------------------------------------------------------------------------
/gym/wrappers/README.md:
--------------------------------------------------------------------------------
1 | # Wrappers
2 |
3 | Wrappers are used to transform an environment in a modular way:
4 |
5 | ```
6 | env = gym.make('Pong-v0')
7 | env = MyWrapper(env)
8 | ```
9 |
10 | Note that we may later restructure any of the files in this directory,
11 | but will keep the wrappers available at the wrappers' top-level
12 | folder. So for example, you should access `MyWrapper` as follows:
13 |
14 | ```
15 | # Will be supported in future releases
16 | from gym.wrappers import MyWrapper
17 | ```
18 |
19 | ## Quick tips for writing your own wrapper
20 |
21 | - Don't forget to call super(class_name, self).__init__(env) if you override the wrapper's __init__ function
22 | - You can access the inner environment with `self.unwrapped`
23 | - You can access the previous layer using `self.env`
24 | - The variables `metadata`, `action_space`, `observation_space`, `reward_range`, and `spec` are copied to `self` from the previous layer
25 | - Create a wrapped function for at least one of the following: `__init__(self, env)`, `_step`, `_reset`, `_render`, `_close`, or `_seed`
26 | - Your layered function should take its input from the previous layer (`self.env`) and/or the inner layer (`self.unwrapped`)
27 |
--------------------------------------------------------------------------------
/gym/wrappers/__init__.py:
--------------------------------------------------------------------------------
1 | from gym import error
2 | from gym.wrappers.monitor import Monitor
3 | from gym.wrappers.time_limit import TimeLimit
4 | from gym.wrappers.dict import FlattenDictWrapper
5 |
--------------------------------------------------------------------------------
/gym/wrappers/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/__pycache__/dict.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/__pycache__/dict.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/__pycache__/monitor.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/__pycache__/monitor.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/__pycache__/time_limit.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/__pycache__/time_limit.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/dict.py:
--------------------------------------------------------------------------------
1 | import gym
2 | import numpy as np
3 |
4 |
5 | __all__ = ['FlattenDictWrapper']
6 |
7 |
8 | class FlattenDictWrapper(gym.ObservationWrapper):
9 | """Flattens selected keys of a Dict observation space into
10 | an array.
11 | """
12 | def __init__(self, env, dict_keys):
13 | super(FlattenDictWrapper, self).__init__(env)
14 | self.dict_keys = dict_keys
15 |
16 | # Figure out observation_space dimension.
17 | size = 0
18 | for key in dict_keys:
19 | shape = self.env.observation_space.spaces[key].shape
20 | size += np.prod(shape)
21 | self.observation_space = gym.spaces.Box(-np.inf, np.inf, shape=(size,), dtype='float32')
22 |
23 | def observation(self, observation):
24 | assert isinstance(observation, dict)
25 | obs = []
26 | for key in self.dict_keys:
27 | obs.append(observation[key].ravel())
28 | return np.concatenate(obs)
29 |
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/monitoring/__init__.py
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/monitoring/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/__pycache__/stats_recorder.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/monitoring/__pycache__/stats_recorder.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/__pycache__/video_recorder.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/monitoring/__pycache__/video_recorder.cpython-36.pyc
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/monitoring/tests/__init__.py
--------------------------------------------------------------------------------
/gym/wrappers/monitoring/tests/helpers.py:
--------------------------------------------------------------------------------
1 | import contextlib
2 | import shutil
3 | import tempfile
4 |
5 | @contextlib.contextmanager
6 | def tempdir():
7 | temp = tempfile.mkdtemp()
8 | yield temp
9 | shutil.rmtree(temp)
10 |
--------------------------------------------------------------------------------
/gym/wrappers/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/gym/wrappers/tests/__init__.py
--------------------------------------------------------------------------------
/queryoptimization/__pycache__/QueryGraph.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/queryoptimization/__pycache__/QueryGraph.cpython-36.pyc
--------------------------------------------------------------------------------
/queryoptimization/__pycache__/cm1_postgres_card.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/heitzjon/mt-join-query-optimization-with-drl/d38a13cb85b15222c8e184248b1638b737993327/queryoptimization/__pycache__/cm1_postgres_card.cpython-36.pyc
--------------------------------------------------------------------------------
/queryoptimization/reward_mapping.py:
--------------------------------------------------------------------------------
1 | from math import log, sqrt
2 | import matplotlib.pyplot as plt
3 | import numpy as np
4 |
5 | ################################################################
6 | # Reward plot
7 |
8 | cost = {'max': 1.e+13, 'min': 1.e+6}
9 | y_array = np.arange(cost['min']+2,1.e18,1.e+12)
10 | sqt = lambda y2 : map(lambda y : ((sqrt(y-cost['min']))/(sqrt(cost['max']-cost['min']))*-10),y2) # SQRT
11 |
12 | sq = list(sqt(y_array))
13 |
14 | for i in range(0,len(sq)):
15 | if sq[i]<-10:sq[i]=-10
16 |
17 |
18 | plt.plot(sq,y_array)
19 |
20 | plt.ylim(-0.5*1e11,2*1e13)
21 | #plt.xlim(-10,0)
22 | #plt.xscale('log')
23 | plt.ylabel("Cost Value")
24 | plt.xlabel("Reward")
25 |
26 | plt.show()
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | absl-py==0.7.1
2 | astor==0.7.1
3 | atari-py==0.1.7
4 | atomicwrites==1.3.0
5 | attrs==19.1.0
6 | certifi==2019.3.9
7 | chardet==3.0.4
8 | Click==7.0
9 | colorama==0.4.1
10 | cycler==0.10.0
11 | filelock==3.0.10
12 | flatbuffers==1.10
13 | funcsigs==1.0.2
14 | future==0.17.1
15 | gast==0.2.2
16 | grpcio==1.19.0
17 | h5py==2.9.0
18 | idna==2.8
19 | Keras==2.2.4
20 | Keras-Applications==1.0.7
21 | Keras-Preprocessing==1.0.9
22 | kiwisolver==1.0.1
23 | lz4==2.1.6
24 | Markdown==3.1
25 | matplotlib==3.0.3
26 | mock==2.0.0
27 | more-itertools==7.0.0
28 | numpy==1.16.2
29 | opencv-contrib-python==4.1.0.25
30 | opencv-python==4.1.0.25
31 | opencv-python-headless==4.0.1.24
32 | pandas==0.24.2
33 | pbr==5.1.3
34 | Pillow==6.0.0
35 | pluggy==0.9.0
36 | protobuf==3.7.0
37 | psutil==5.6.2
38 | psycopg2==2.8.1
39 | py==1.8.0
40 | pyglet==1.3.2
41 | PyOpenGL==3.1.0
42 | pyparsing==2.3.1
43 | pytest==4.4.0
44 | python-dateutil==2.8.0
45 | pytz==2018.9
46 | PyYAML==5.1
47 | ray==0.6.5
48 | redis==3.2.1
49 | requests==2.21.0
50 | scipy==1.2.1
51 | six==1.12.0
52 | tensorboard==1.13.1
53 | tensorflow==1.13.1
54 | tensorflow-estimator==1.13.0
55 | termcolor==1.1.0
56 | typing==3.6.6
57 | urllib3==1.24.1
58 | Werkzeug==0.15.1
59 | -e .
60 |
--------------------------------------------------------------------------------
/requirements_dev.txt:
--------------------------------------------------------------------------------
1 | # Testing
2 | pytest
3 | mock
4 |
5 | -e .[all]
6 |
--------------------------------------------------------------------------------