├── .gitignore
├── README.md
└── rsc
└── contributing.jpg
/.gitignore:
--------------------------------------------------------------------------------
1 | .idea
2 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Awesome Model-based Reinforcement Learning[](https://awesome.re)
2 |
3 |
6 |
7 | A curated list of awesome Model-based Reinforcement Learning resources. Inspired by [awesome-deep-vision](https://github.com/kjw0612/awesome-deep-vision), [awesome-adversarial-machine-learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning), [awesome-deep-learning-papers](https://github.com/terryum/awesome-deep-learning-papers), and [awesome-architecture-search](https://github.com/markdtw/awesome-architecture-search)
8 |
9 | Model-based Reinforcement Learning is gaining popularity in Robotics community. These are some of the awesome resources!
10 |
11 |
12 |
13 |
14 |
15 | ## Contributing
16 | Please help contribute this list by adding [pull request](https://github.com/hjzh4/awesome-model-based-reinforcement-learning/pulls)
17 |
18 | Markdown format:
19 | ```markdown
20 | - Paper Name [[pdf]](link) [[code]](link)
21 | - Author 1, Author 2 and Author 3. *Conference/Journal Year*
22 | ```
23 |
24 | ## Table of Contents
25 | - [Thesis](#thesis)
26 | - [Survey](#survey)
27 | - [Conference Papers](#conference_papers)
28 | - [Journal Papers](#journal_papers)
29 | - [Tutorials](#tutorials)
30 | - [Tools](#tools)
31 |
32 | ## Thesis
33 | - Efficient Reinforcement Learning using Gaussian Processes. [[pdf]](https://pdfs.semanticscholar.org/c9f2/1b84149991f4d547b3f0f625f710750ad8d9.pdf)
34 | - Marc Peter Deisenroth.
35 | ## Survey
36 | #### 2017
37 | - Survey of Model-Based Reinforcement Learning: Applications on Robotics. [[pdf]](https://link.springer.com/article/10.1007/s10846-017-0468-y)
38 | - Athanasios S. Polydoros and Lazaros Nalpantidis. *J Intell Robot Syst 2017*
39 | ## CV/CG
40 | - Curiosity-driven Exploration by Self-supervised Prediction. [[pdf]](https://arxiv.org/pdf/1705.05363.pdf) [[code]](https://github.com/pathak22/noreward-rl)
41 | - Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, Trevor Darrell. *ICML 2017*
42 | ## Conference Papers
43 | ### Physics Model
44 | - Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning. [[pdf]](http://www.roboticsproceedings.org/rss14/p44.pdf) [[code]](https://github.com/MarcToussaint/18-RSS-PhysicalManipulation)
45 | - Marc Toussaint, Kelsey R. Allen, Kevin A. Smith, Joshua B. Tenenbaum. *RSS 2018*
46 | - A convex, smooth and invertible contact model for trajectory optimization. [[pdf]](https://homes.cs.washington.edu/~todorov/courses/amath533/ContactConvex.pdf)
47 | - Emanuel Todorov. *ICRA 2011*
48 | - A Modular Differentiable Rigid Body Physics Engine. [[pdf]](https://drive.google.com/file/d/1K8t4gQExFXbuG4F9Zd2_30Y5wtpdEST7/view) [[code]](https://github.com/locuslab/lcp-physics)
49 | - Filipe de Avila Belbute-Peres, J. Zico Kolter. *Deep Reinforcement Learning Symposium, NIPS 2017*
50 | - A DIFFERENTIABLE PHYSICS ENGINE FOR DEEP LEARNING IN ROBOTICS. [[pdf]](https://openreview.net/pdf?id=HkrB8XXte)
51 | - Jonas Degrave, Michiel Hermans, Joni Dambre, Francis wyffels. *ICLR 2017*
52 | - Discovery of Complex Behaviors through Contact-Invariant Optimization. [[pdf]](https://homes.cs.washington.edu/~todorov/papers/MordatchSIGGRAPH12.pdf)
53 | - Igor Mordatch, Emanuel Tordorov, Zoran Popovic. *TOG'12*
54 | ### Hybrid model-based and model-free algorithm
55 | - Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. [[pdf]](https://arxiv.org/abs/1708.02596) [[code]](https://github.com/nagaban2/nn_dynamics)
56 | - Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, Sergey Levine.
57 | - Combining Model-Based and Model-Free Updates for Trajectory-Centric Reinforcement Learning. [[pdf]](https://arxiv.org/abs/1703.03078)
58 | - Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, Sergey Levine. *ICML 2017*
59 | ### Optimal Control
60 | - Local Gaussian Process Regression for Real-time Model-based Robot Control. [[pdf]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4650850)
61 | - Duy Nguyen-Tuong and Jan Peters. *IROS 2008*
62 | ### Local model
63 | - Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics. [[pdf]](https://people.eecs.berkeley.edu/~svlevine/papers/mfcgps.pdf) [[code]](https://github.com/cbfinn/gps/blob/master/docs/index.md)
64 | - Sergey Levine and Pieter Abbeel. *NIPS 2014*
65 | ### Learn in latent space
66 | #### Foward Dynamics Model
67 | - Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images. [[pdf]](https://arxiv.org/pdf/1506.07365.pdf) [[code]](https://github.com/ericjang/e2c)
68 | - Manuel Watter, Jost Tobias Springenberg, Martin Riedmiller, Joschka Boedecker. *ICRA 2017*
69 | - Deep Spatial Autoencoders for Visuomotor Learning. [[pdf]](https://arxiv.org/pdf/1509.06113.pdf) [[code]](https://github.com/cbfinn/gps/blob/master/docs/index.md)
70 | - Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel. *ICRA 2016*
71 | ### Gaussian Process
72 | - Data-Efficient Reinforcement Learning in Continuous-State POMDPs. [[pdf]](https://papers.nips.cc/paper/6799-data-efficient-reinforcement-learning-in-continuous-state-action-gaussian-pomdps.pdf)
73 | - Rowan McAllister, Carl Rasmussen. *NIPS 2017*
74 | - Improving PILCO with Bayesian Neural Network Dynamics Models. [[pdf]](http://mlg.eng.cam.ac.uk/yarin/PDFs/DeepPILCO.pdf)
75 | - Yarin Gal and Rowan Thomas McAllister and Carl Edward Rasmussen. *Data-Efficient Machine Learning workshop, ICML, 2016*
76 | - PILCO: A Model-Based and Data-Efficient Approach to Policy Search. [[pdf]](http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf) [[code]](http://mlg.eng.cam.ac.uk/pilco/) [[unofficial code]](https://github.com/nrontsis/PILCO)
77 | - Marc Peter Deisenroth, Carl Rasmussen. *ICML 2011*
78 | - Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. [[pdf]](http://www.roboticsproceedings.org/rss07/p08.pdf)
79 | - Marc Peter Deisenroth, Carl Edward Rasmussen and Dieter Fox. *RSS 2011*
80 | - Learning Dynamics Across Similar Spatiotemporally-Evolving Physical Systems. [[pdf]](http://proceedings.mlr.press/v78/whitman17a/whitman17a.pdf)
81 | - Joshua Whitman, Girish Chowdhary. *CoRL 2017*
82 | ## Journal Papers
83 | ## Tutorials
84 | - Deep RL Bootcamp Lecture 9 Model-based Reinforcement Learning. Chelsea Finn (UC Berkeley) [[link]](https://www.youtube.com/watch?v=iC2a7M9voYU)
85 | - Highlight Talk: Gaussian Processes for Data Efficient Learning. Marc Diesenroth [[link]](https://www.youtube.com/watch?v=dWsjjszwfi0)
86 | ## Tools
87 | - [GPFlow](https://github.com/GPflow/GPflow)
88 | - [GPy](https://github.com/SheffieldML/GPy)
89 | ## License
90 | To the extent possible under law, we have waived all copyright and related or neighboring rights to this work.
91 |
--------------------------------------------------------------------------------
/rsc/contributing.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hejia-zhang/awesome-model-based-reinforcement-learning/5ef10dde31588ec39c31fe65da3c30808af72e3d/rsc/contributing.jpg
--------------------------------------------------------------------------------