├── results
├── readme.md
├── Fig1.png
├── Fig2.png
├── Fig3.png
├── Fig4.png
├── Table1.png
├── Table2.png
├── Table3.png
├── Table4.png
└── Table5.png
├── utils
├── __init__.py
├── google_utils.py
├── autoanchor.py
├── distill_utils.py
├── metrics.py
├── torch_utils.py
├── plots.py
└── general.py
├── tools
├── split_dataset.py
├── aolp2yolov7.py
├── clpd2yolov7.py
└── ccpd2yolov7.py
├── deploy
└── triton-inference-server
│ └── boundingbox.py
├── requirements.txt
├── models
├── attention.py
└── experimental.py
├── data
├── ccpd.yaml
├── ccpd_blur.yaml
└── hyp.scratch.p5.yaml
├── cfg
└── training
│ └── KDNet.yaml
├── README.md
├── detect.py
├── test_ccpd.py
└── LICENSE.md
/results/readme.md:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # init
--------------------------------------------------------------------------------
/results/Fig1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Fig1.png
--------------------------------------------------------------------------------
/results/Fig2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Fig2.png
--------------------------------------------------------------------------------
/results/Fig3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Fig3.png
--------------------------------------------------------------------------------
/results/Fig4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Fig4.png
--------------------------------------------------------------------------------
/results/Table1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Table1.png
--------------------------------------------------------------------------------
/results/Table2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Table2.png
--------------------------------------------------------------------------------
/results/Table3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Table3.png
--------------------------------------------------------------------------------
/results/Table4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Table4.png
--------------------------------------------------------------------------------
/results/Table5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hellloxiaotian/KDNet/HEAD/results/Table5.png
--------------------------------------------------------------------------------
/tools/split_dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import random
3 |
4 | import shutil
5 | from shutil import copy2
6 | trainfiles = os.listdir(" ")
7 | num_train = len(trainfiles)
8 | index_list = list(range(num_train))
9 | random.shuffle(index_list)
10 | num = 0
11 | trainDir = " "
12 | validDir = " "
13 | for i in index_list:
14 | fileName = os.path.join(" ", trainfiles[i])
15 | if num < num_train*0.6: # 6:4
16 | print(str(fileName))
17 | copy2(fileName, trainDir)
18 | else:
19 | print(str(fileName))
20 | copy2(fileName, validDir)
21 | num += 1
22 |
--------------------------------------------------------------------------------
/deploy/triton-inference-server/boundingbox.py:
--------------------------------------------------------------------------------
1 | class BoundingBox:
2 | def __init__(self, classID, confidence, x1, x2, y1, y2, image_width, image_height):
3 | self.classID = classID
4 | self.confidence = confidence
5 | self.x1 = x1
6 | self.x2 = x2
7 | self.y1 = y1
8 | self.y2 = y2
9 | self.u1 = x1 / image_width
10 | self.u2 = x2 / image_width
11 | self.v1 = y1 / image_height
12 | self.v2 = y2 / image_height
13 |
14 | def box(self):
15 | return (self.x1, self.y1, self.x2, self.y2)
16 |
17 | def width(self):
18 | return self.x2 - self.x1
19 |
20 | def height(self):
21 | return self.y2 - self.y1
22 |
23 | def center_absolute(self):
24 | return (0.5 * (self.x1 + self.x2), 0.5 * (self.y1 + self.y2))
25 |
26 | def center_normalized(self):
27 | return (0.5 * (self.u1 + self.u2), 0.5 * (self.v1 + self.v2))
28 |
29 | def size_absolute(self):
30 | return (self.x2 - self.x1, self.y2 - self.y1)
31 |
32 | def size_normalized(self):
33 | return (self.u2 - self.u1, self.v2 - self.v1)
34 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | # Usage: pip install -r requirements.txt
2 |
3 | # Base ----------------------------------------
4 | matplotlib>=3.2.2
5 | numpy>=1.18.5,<1.24.0
6 | opencv-python>=4.1.1
7 | Pillow>=7.1.2
8 | PyYAML>=5.3.1
9 | requests>=2.23.0
10 | scipy>=1.4.1
11 | torch>=1.7.0,!=1.12.0
12 | torchvision>=0.8.1,!=0.13.0
13 | tqdm>=4.41.0
14 | protobuf<4.21.3
15 |
16 | # Logging -------------------------------------
17 | tensorboard>=2.4.1
18 | # wandb
19 |
20 | # Plotting ------------------------------------
21 | pandas>=1.1.4
22 | seaborn>=0.11.0
23 |
24 | # Export --------------------------------------
25 | # coremltools>=4.1 # CoreML export
26 | # onnx>=1.9.0 # ONNX export
27 | # onnx-simplifier>=0.3.6 # ONNX simplifier
28 | # scikit-learn==0.19.2 # CoreML quantization
29 | # tensorflow>=2.4.1 # TFLite export
30 | # tensorflowjs>=3.9.0 # TF.js export
31 | # openvino-dev # OpenVINO export
32 |
33 | # Extras --------------------------------------
34 | ipython # interactive notebook
35 | psutil # system utilization
36 | thop # FLOPs computation
37 | # albumentations>=1.0.3
38 | # pycocotools>=2.0 # COCO mAP
39 | # roboflow
40 |
--------------------------------------------------------------------------------
/models/attention.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from models import common
5 |
6 |
7 | class NonLocalAttention(nn.Module):
8 | def __init__(self, channel=128, reduction=2, ksize=1, scale=3, stride=1, softmax_scale=10, average=True,
9 | res_scale=1, conv=common.default_conv):
10 | super(NonLocalAttention, self).__init__()
11 | self.res_scale = res_scale
12 | self.conv_match1 = common.BasicBlock(conv, channel, channel // reduction, 1, bn=False, act=nn.PReLU()).cuda()
13 | self.conv_match2 = common.BasicBlock(conv, channel, channel // reduction, 1, bn=False, act=nn.PReLU()).cuda()
14 | self.conv_assembly = common.BasicBlock(conv, channel, channel, 1, bn=False, act=nn.PReLU()).cuda()
15 |
16 | def forward(self, input):
17 | x_embed_1 = self.conv_match1(input)
18 | x_embed_2 = self.conv_match2(input)
19 | x_assembly = self.conv_assembly(input)
20 |
21 | N, C, H, W = x_embed_1.shape
22 | x_embed_1 = x_embed_1.permute(0, 2, 3, 1).view((N, H * W, C))
23 | x_embed_2 = x_embed_2.view(N, C, H * W)
24 | score = torch.matmul(x_embed_1, x_embed_2) # (N, H*W, H*W)
25 | score = F.softmax(score, dim=2)
26 | x_assembly = x_assembly.view(N, -1, H * W).permute(0, 2, 1) # (N, H*W, -1)(N, H*W, 2C)
27 | x_final = torch.matmul(score, x_assembly) # (N, H*W, -1)
28 | return x_final.permute(0, 2, 1).view(N, -1, H, W) + self.res_scale * input
29 |
--------------------------------------------------------------------------------
/data/ccpd.yaml:
--------------------------------------------------------------------------------
1 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
2 |
3 | # ccpd_green
4 | #path: ../dataset/ccpd_green
5 | train: /data/zxy/datasets/CCPD2019/splits/train.txt
6 | #train: ../dataset/train
7 | val: /data/zxy/datasets/CCPD2019/splits/val.txt
8 | #val: ../dataset/val
9 | test: /data/zxy/datasets/CCPD2019/splits/test.txt
10 |
11 | # number of classes
12 | nc: 80
13 | #nc: 2
14 |
15 | # class names
16 | #names: [ 'green_licence_plate', 'bule_licence_plate' ]
17 | names: [ 'green_licence_plate', 'bule_licence_plate', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
18 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
19 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
20 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
21 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
22 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
23 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
24 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
25 | 'hair drier', 'toothbrush' ]
26 |
--------------------------------------------------------------------------------
/data/ccpd_blur.yaml:
--------------------------------------------------------------------------------
1 | # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
2 |
3 | # ccpd_green
4 | #path: ../dataset/ccpd_green
5 | train: /data/zxy/datasets/CCPD2019/splits/train.txt
6 | #train: ../dataset/train
7 | val: /data/zxy/datasets/CCPD2019/splits/ccpd_blur.txt
8 | #val: ../dataset/val
9 | test: /data/zxy/datasets/CCPD2019/splits/test.txt
10 |
11 | # number of classes
12 | nc: 80
13 | #nc: 2
14 |
15 | # class names
16 | #names: [ 'green_licence_plate', 'bule_licence_plate' ]
17 | names: [ 'green_licence_plate', 'bule_licence_plate', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
18 | 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
19 | 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
20 | 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
21 | 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
22 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
23 | 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
24 | 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
25 | 'hair drier', 'toothbrush' ]
26 |
--------------------------------------------------------------------------------
/data/hyp.scratch.p5.yaml:
--------------------------------------------------------------------------------
1 | lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
2 | lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf)
3 | momentum: 0.937 # SGD momentum/Adam beta1
4 | weight_decay: 0.0005 # optimizer weight decay 5e-4
5 | warmup_epochs: 3.0 # warmup epochs (fractions ok)
6 | warmup_momentum: 0.8 # warmup initial momentum
7 | warmup_bias_lr: 0.1 # warmup initial bias lr
8 | box: 0.05 # box loss gain
9 | cls: 0.3 # cls loss gain
10 | cls_pw: 1.0 # cls BCELoss positive_weight
11 | obj: 0.7 # obj loss gain (scale with pixels)
12 | obj_pw: 1.0 # obj BCELoss positive_weight
13 | iou_t: 0.20 # IoU training threshold
14 | anchor_t: 4.0 # anchor-multiple threshold
15 | # anchors: 3 # anchors per output layer (0 to ignore)
16 | fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17 | hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18 | hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19 | hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20 | degrees: 0.0 # image rotation (+/- deg)
21 | translate: 0.2 # image translation (+/- fraction)
22 | scale: 0.9 # image scale (+/- gain)
23 | shear: 0.0 # image shear (+/- deg)
24 | perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25 | flipud: 0.0 # image flip up-down (probability)
26 | fliplr: 0.5 # image flip left-right (probability)
27 | mosaic: 1.0 # image mosaic (probability)
28 | mixup: 0.15 # image mixup (probability)
29 | copy_paste: 0.0 # image copy paste (probability)
30 | paste_in: 0.15 # image copy paste (probability), use 0 for faster training
31 | loss_ota: 1 # use ComputeLossOTA, use 0 for faster training
--------------------------------------------------------------------------------
/tools/aolp2yolov7.py:
--------------------------------------------------------------------------------
1 | import shutil
2 | import cv2
3 | import os
4 | import pandas as pd
5 | import numpy as np
6 |
7 |
8 | def AOLP2YOLO(txt_in_path, txt_out_path):
9 | i = 0
10 | for label in os.listdir(txt_in_path):
11 | print('label', label)
12 | with open(txt_in_path+label, 'r', encoding='utf-8') as f:
13 | points = f.readline()
14 | print('points:', points)
15 |
16 | lx, ly = lt.split("&", 1)
17 | rx, ry = rb.split("&", 1)
18 | width = int(rx) - int(lx)
19 | height = int(ry) - int(ly)
20 | cx = float(lx) + width / 2
21 | cy = float(ly) + height / 2
22 |
23 | img = cv2.imread(imagePath + filename)
24 | if img is None:
25 | print('read_error:', os.path.join(imagePath + filename))
26 | continue
27 | width = width / img.shape[1]
28 | height = height / img.shape[0]
29 | cx = cx / img.shape[1]
30 | cy = cy / img.shape[0]
31 |
32 | txtname = filename.split(".", 1)
33 | txtfile = txt_out_path + txtname[0] + ".txt"
34 | i += 1
35 | print('num:', i)
36 | with open(txtfile, "w") as f:
37 | f.write(str(1) + " " + str(cx) + " " + str(cy) + " " + str(width) + " " + str(height))
38 |
39 |
40 | if __name__ == '__main__':
41 |
42 | label_path0 = "/data/zxy/datasets/AOLP/Subset_AC/Subset_AC/groundtruth_localization/"
43 | label_path1 = "/data/zxy/datasets/AOLP/Subset_LE/Subset_LE/groundtruth_localization/"
44 | label_path2 = "/data/zxy/datasets/AOLP/Subset_RP/Subset_RP/groundtruth_localization/"
45 |
46 | AOLP2YOLO(label_path0, label_path)
47 |
--------------------------------------------------------------------------------
/tools/clpd2yolov7.py:
--------------------------------------------------------------------------------
1 | import shutil
2 | import cv2
3 | import os
4 | import pandas as pd
5 | import numpy as np
6 |
7 | imagePath = "/data/zxy/datasets/CLPD/"
8 | labelPath = "/data/zxy/datasets/CLPD/splits/labels/"
9 |
10 |
11 | def CLPD2YOLO(csv_path):
12 | clpd = pd.read_csv(csv_path, encoding="utf-8")
13 | clpd = np.array(clpd)
14 | clpd = clpd.tolist()
15 | for list in clpd:
16 | image = list[0] # CLPD_1200/1199.jpg
17 | lux = list[1] # left upper x
18 | luy = list[2] # left upper y
19 | rux = list[3]
20 | ruy = list[4]
21 | rdx = list[5] # right down x
22 | rdy = list[6] # right down y
23 | ldx = list[7]
24 | ldy = list[8]
25 | if lux < ldx:
26 | lx = lux
27 | else:
28 | lx = ldx
29 | if luy < ruy:
30 | ly = luy
31 | else:
32 | ly = ruy
33 | if rux < rdx:
34 | rx = rdx
35 | else:
36 | rx = rux
37 | if ldy < rdy:
38 | ry = rdy
39 | else:
40 | ry = ldy
41 | width = int(rx) - int(lx)
42 | height = int(ry) - int(ly)
43 | cx = float(lx) + width / 2
44 | cy = float(ly) + height / 2
45 |
46 | img = cv2.imread(imagePath + image)
47 | if img is None:
48 | print('read_error:', os.path.join(csv_path + image))
49 | continue
50 | width = width / img.shape[1]
51 | height = height / img.shape[0]
52 | cx = cx / img.shape[1]
53 | cy = cy / img.shape[0]
54 | txtfile = labelPath + image.split("/", 1)[1].split(".", 1)[0] + ".txt"
55 | print('txtfile:', txtfile)
56 | with open(txtfile, "w") as f:
57 | f.write(str(1) + " " + str(cx) + " " + str(cy) + " " + str(width) + " " + str(height))
58 |
59 |
60 | if __name__ == '__main__':
61 | csv_path = "/data/zxy/datasets/CLPD/CLPD.csv"
62 |
63 | CLPD2YOLO(csv_path)
--------------------------------------------------------------------------------
/tools/ccpd2yolov7.py:
--------------------------------------------------------------------------------
1 | import shutil
2 | import cv2
3 | import os
4 |
5 | imagePath = "/data/zxy/datasets/CCPD2019/"
6 |
7 |
8 | def txt_translate(path, txt_path):
9 | i = 0
10 | for filename in os.listdir(path):
11 | list1 = filename.split("-", 3)
12 | subname = list1[2]
13 | list2 = filename.split(".", 1)
14 | subname1 = list2[1]
15 | if subname1 == 'txt':
16 | continue
17 | lt, rb = subname.split("_", 1)
18 | lx, ly = lt.split("&", 1)
19 | rx, ry = rb.split("&", 1)
20 | width = int(rx) - int(lx)
21 | height = int(ry) - int(ly)
22 | cx = float(lx) + width / 2
23 | cy = float(ly) + height / 2
24 |
25 | img = cv2.imread(path + filename)
26 | if img is None:
27 | print('read_error:', os.path.join(path, filename))
28 | continue
29 | width = width / img.shape[1]
30 | height = height / img.shape[0]
31 | cx = cx / img.shape[1]
32 | cy = cy / img.shape[0]
33 |
34 | txtname = filename.split(".", 1)
35 | txtfile = txt_path + txtname[0] + ".txt"
36 | i += 1
37 | print('num:', i)
38 | with open(txtfile, "w") as f:
39 | f.write(str(1) + " " + str(cx) + " " + str(cy) + " " + str(width) + " " + str(height))
40 |
41 |
42 | def splits_translate(path, txt_path):
43 | i = 0
44 | for filename in os.listdir(path):
45 | pathname = path.split("/", -1)[-2]
46 | print('pathname:', pathname)
47 | txtfile = txt_path + pathname + ".txt"
48 | print('txtfile:', txtfile)
49 | i += 1
50 | print('num:', i)
51 | with open(txtfile, "a") as f:
52 | f.write(pathname + "/" + filename + '\n')
53 |
54 | if __name__ == '__main__':
55 | baseDir = "/data/zxy/datasets/CCPD2019/images/ccpd_base/"
56 | blurDir = "/data/zxy/datasets/CCPD2019/ccpd_blur/"
57 | challengeDir = "/data/zxy/datasets/CCPD2019/ccpd_challenge/"
58 | dbDir = "/data/zxy/datasets/CCPD2019/ccpd_db/"
59 | fnDir = "/data/zxy/datasets/CCPD2019/ccpd_fn/"
60 | npDir = "/data/zxy/datasets/CCPD2019/ccpd_np/"
61 | rotateDir = "/data/zxy/datasets/CCPD2019/ccpd_rotate/"
62 | tiltDir = "/data/zxy/datasets/CCPD2019/ccpd_tilt/"
63 | weatherDir = "/data/zxy/datasets/CCPD2019/ccpd_weather/"
64 |
65 | test_path0 = "/data/zxy/datasets/CCPD2019/labels/ccpd_base/"
66 | test_path = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_blur/"
67 | test_path1 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_challenge/"
68 | test_path2 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_db/"
69 | test_path3 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_fn/"
70 | test_path4 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_np/"
71 | test_path5 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_rotate/"
72 | test_path6 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_tilt/"
73 | test_path7 = "/data/zxy/datasets/CCPD2019/splits/labels/ccpd_weather/"
74 |
75 | split_path = "/data/zxy/datasets/CCPD2019/splits/"
76 |
77 | train_txt_path = "/data/zxy/datasets/CCPD2019/splits/train.txt"
78 | val_txt_path = "/data/zxy/datasets/CCPD2019/splits/val.txt"
79 | test_txt_path = "/data/zxy/datasets/CCPD2019/splits/test.txt"
80 |
81 | label_train_txt_path = "/data/zxy/datasets/CCPD2019/splits/labels/train/"
82 | label_val_txt_path = "/data/zxy/datasets/CCPD2019/splits/labels/val/"
83 | label_test_txt_path = "/data/zxy/datasets/CCPD2019/splits/labels/test/"
84 |
85 | # txt_translate(baseDir, test_path0)
86 | # txt_translate(testDir, test_path)
87 | # txt_translate(challengeDir, test_path1)
88 | # txt_translate(dbDir, test_path2)
89 | # txt_translate(fnDir, test_path3)
90 | # txt_translate(npDir, test_path4)
91 | # txt_translate(rotateDir, test_path5)
92 | # txt_translate(tiltDir, test_path6)
93 | # txt_translate(weatherDir, test_path7)
94 |
95 | splits_translate(weatherDir, split_path)
96 |
97 | # txt_translate_txt(train_txt_path, label_train_txt_path)
98 | # txt_translate_txt(test_txt_path, label_test_txt_path)
99 | # txt_translate_txt(val_txt_path, label_val_txt_path)
100 |
101 | # txt_translate(trainDir, train_txt_path)
102 | # txt_translate(validDir, val_txt_path)
103 | # txt_translate(testDir, test_txt_path)
104 |
--------------------------------------------------------------------------------
/cfg/training/KDNet.yaml:
--------------------------------------------------------------------------------
1 | # parameters
2 | #nc: 80 # number of classes
3 | nc: 2 # number of classes
4 | depth_multiple: 1.0 # model depth multiple
5 | width_multiple: 1.0 # layer channel multiple
6 |
7 | # anchors
8 | anchors:
9 | - [12,16, 19,36, 40,28] # P3/8
10 | - [36,75, 76,55, 72,146] # P4/16
11 | - [142,110, 192,243, 459,401] # P5/32
12 |
13 | # yolov7 backbone
14 | backbone:
15 | # [from, number, module, args]
16 | [[-1, 1, Conv, [32, 3, 1]], # 0
17 |
18 | [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
19 | [-1, 1, Conv, [64, 3, 1]],
20 |
21 | [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
22 | [-1, 1, Conv, [64, 1, 1]],
23 | [-2, 1, Conv, [64, 1, 1]],
24 | [-1, 1, Conv, [64, 3, 1]],
25 | [-1, 1, Conv, [64, 3, 1]],
26 | [-1, 1, Conv, [64, 3, 1]],
27 | [-1, 1, Conv, [64, 3, 1]],
28 | [[-1, -3, -5, -6], 1, Concat, [1]],
29 | [-1, 1, Conv, [256, 1, 1]], # 11
30 |
31 | [-1, 1, MP, []],
32 | [-1, 1, Conv, [128, 1, 1]],
33 | [-3, 1, Conv, [128, 1, 1]],
34 | [-1, 1, Conv, [128, 3, 2]],
35 | [[-1, -3], 1, Concat, [1]], # 16-P3/8
36 | [-1, 1, Conv, [128, 1, 1]],
37 | [-2, 1, Conv, [128, 1, 1]],
38 | [-1, 1, Conv, [128, 3, 1]],
39 | [-1, 1, Conv, [128, 3, 1]],
40 | [-1, 1, Conv, [128, 3, 1]],
41 | [-1, 1, Conv, [128, 3, 1]],
42 | [[-1, -3, -5, -6], 1, Concat, [1]],
43 | [-1, 1, Conv, [512, 1, 1]], # 24
44 |
45 | [-1, 1, MP, []],
46 | [-1, 1, Conv, [256, 1, 1]],
47 | [-3, 1, Conv, [256, 1, 1]],
48 | [-1, 1, Conv, [256, 3, 2]],
49 | [[-1, -3], 1, Concat, [1]], # 29-P4/16
50 | [-1, 1, Conv, [256, 1, 1]],
51 | [-2, 1, Conv, [256, 1, 1]],
52 | [-1, 1, Conv, [256, 3, 1]],
53 | [-1, 1, Conv, [256, 3, 1]],
54 | [-1, 1, Conv, [256, 3, 1]],
55 | [-1, 1, Conv, [256, 3, 1]],
56 | [[-1, -3, -5, -6], 1, Concat, [1]],
57 | [-1, 1, Conv, [1024, 1, 1]], # 37
58 |
59 | [-1, 1, MP, []],
60 | [-1, 1, Conv, [512, 1, 1]],
61 | [-3, 1, Conv, [512, 1, 1]],
62 | [-1, 1, Conv, [512, 3, 2]],
63 | [[-1, -3], 1, Concat, [1]], # 42-P5/32
64 | [-1, 1, Conv, [256, 1, 1]],
65 | [-2, 1, Conv, [256, 1, 1]],
66 | [-1, 1, Conv, [256, 3, 1]],
67 | [-1, 1, Conv, [256, 3, 1]],
68 | [-1, 1, Conv, [256, 3, 1]],
69 | [-1, 1, Conv, [256, 3, 1]],
70 | [[-1, -3, -5, -6], 1, Concat, [1]],
71 | [-1, 1, NLA, [1024, 1, 1]],
72 | [-1, 1, Conv, [1024, 1, 1]], # 50、50+1=51
73 | ]
74 |
75 | # yolov7 head
76 | head:
77 | [[-1, 1, SPPCSPC, [512]], # 51
78 |
79 | [-1, 1, Conv, [256, 1, 1]],
80 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
81 | [37, 1, Conv, [256, 1, 1]], # route backbone P4
82 | [[-1, -2], 1, Concat, [1]],
83 |
84 | [-1, 1, Conv, [256, 1, 1]],
85 | [-2, 1, Conv, [256, 1, 1]],
86 | [-1, 1, Conv, [128, 3, 1]],
87 | [-1, 1, Conv, [128, 3, 1]],
88 | [-1, 1, Conv, [128, 3, 1]],
89 | [-1, 1, Conv, [128, 3, 1]],
90 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
91 | [-1, 1, Conv, [256, 1, 1]], # 63
92 |
93 | [-1, 1, Conv, [128, 1, 1]],
94 | [-1, 1, nn.Upsample, [None, 2, 'nearest']],
95 | [24, 1, Conv, [128, 1, 1]], # route backbone P3
96 | [[-1, -2], 1, Concat, [1]],
97 |
98 | [-1, 1, Conv, [128, 1, 1]],
99 | [-2, 1, Conv, [128, 1, 1]],
100 | [-1, 1, Conv, [64, 3, 1]],
101 | [-1, 1, Conv, [64, 3, 1]],
102 | [-1, 1, Conv, [64, 3, 1]],
103 | [-1, 1, Conv, [64, 3, 1]],
104 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
105 | [-1, 1, Conv, [128, 1, 1]], # 75
106 |
107 | [-1, 1, MP, []],
108 | [-1, 1, Conv, [128, 1, 1]],
109 | [-3, 1, Conv, [128, 1, 1]],
110 | [-1, 1, Conv, [128, 3, 2]],
111 | [[-1, -3, 63], 1, Concat, [1]],
112 |
113 | [-1, 1, Conv, [256, 1, 1]],
114 | [-2, 1, Conv, [256, 1, 1]],
115 | [-1, 1, Conv, [128, 3, 1]],
116 | [-1, 1, Conv, [128, 3, 1]],
117 | [-1, 1, Conv, [128, 3, 1]],
118 | [-1, 1, Conv, [128, 3, 1]],
119 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
120 | [-1, 1, Conv, [256, 1, 1]], # 88
121 |
122 | [-1, 1, MP, []],
123 | [-1, 1, Conv, [256, 1, 1]],
124 | [-3, 1, Conv, [256, 1, 1]],
125 | [-1, 1, Conv, [256, 3, 2]],
126 | [[-1, -3, 51], 1, Concat, [1]],
127 |
128 | [-1, 1, Conv, [512, 1, 1]],
129 | [-2, 1, Conv, [512, 1, 1]],
130 | [-1, 1, Conv, [256, 3, 1]],
131 | [-1, 1, Conv, [256, 3, 1]],
132 | [-1, 1, Conv, [256, 3, 1]],
133 | [-1, 1, Conv, [256, 3, 1]],
134 | [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
135 | [-1, 1, Conv, [512, 1, 1]], # 101
136 |
137 | [76, 1, RepConv, [256, 3, 1]],
138 | [89, 1, RepConv, [512, 3, 1]],
139 | [102, 1, RepConv, [1024, 3, 1]],
140 |
141 | [[103,104,105], 1, IDetect, [nc, anchors]], # Detect(P3, P4, P5)
142 | ]
143 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # KDNet
2 | ## Knowledge Distillation with Fast CNN for License Plate Detection (KDNet) is conducted by Chunwei Tian, Xuanyu Zhang, Xu Liang, Bo Li, Yougang Sun, Shichao Zhang in 2023. It is accepted by the IEEE Transactions on Intelligent Vehicles (SCI-IF:8.2). It is implemented by Pytorch.
3 | ## Its original paper can be obtained at https://ieeexplore.ieee.org/abstract/document/10309208.
4 |
5 | ### Abstract
6 | #### Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts ofconvolutions and parameters usually consume high computational cost and more memory storagefor training a SR model, which limits their applications to SR with resource-constrained devicesin real world. To resolve these problems, we propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB). Specifically, the IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR. To remove redundant information obtained, a heterogeneous architecture is adopted in the IEEB. After that, the RB converts low-frequency features into high-frequency features by fusing global and local features, which is complementary with the IEEB in tackling the long-term dependency problem. Finally,the IRB uses coarse high-frequency features from the RB to learn more accurate SR features and construct a SR image. The proposed LESRCNN can obtain a high-quality image by a model fordifferent scales. Extensive experiments demonstrate that the proposed LESRCNN outperforms state-of-the-arts on SISR in terms of qualitative and quantitative evaluation.
7 |
8 | ## Requirements (Pytorch)
9 | #### Pytorch 1.13.1
10 | #### Python 3.8
11 | #### openCV for Python
12 |
13 | ## Datasets
14 | ### Training datasets
15 | #### The training dataset CCPD is downloaded at (https://github.com/detectRecog/CCPD).
16 | #### The AOLP dataset is downloaded at (https://github.com/AvLab-CV/AOLP).
17 |
18 | ### Test datasets
19 | #### The test dataset of CCPD is downloaded at (https://github.com/detectRecog/CCPD).
20 | #### The test dataset of CLPD is downloaded at (https://github.com/wangpengnorman/CLPD_dataset).
21 | #### The test dataset of AOLP is downloaded at (https://github.com/AvLab-CV/AOLP).
22 |
23 | ## Command
24 | ### preprocessing
25 | ### cd tools
26 | ### Split the dataset and obtain corresponding labels.
27 |
28 | #### Train KDNet
29 | #### Download pre-trained yolov7.pt at (https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt).
30 | #### cd KDNet
31 | #### python train_KDNet.py
32 |
33 | #### Test with your own parameter setting or dataset in the test.py.
34 | #### python test_ccpd.py
35 |
36 |
37 | ## 1. Network architecture of proposed KDNet.
38 |
39 |
40 |
41 | ## 2. 16 visual images of our KDNet on CCPD for license plate detection.
42 |
43 |
44 | ## 3. 16 visual images of our KDNet on CLPD for license plate detection.
45 |
46 |
47 |
48 | ## 4. 16 visual images of our KDNet on AOLP for license plate detection.
49 |
50 |
51 |
52 | ## 5. Comparisons of different datasets.
53 |
54 |
55 |
56 | ## 6. Different detection accuracy (F1) from different methods on CLPD with the IoU is 0.9 (%).
57 |
58 |
59 |
60 | ## 7. Detection accuracy (mAP) from different methods with IoU of 0.7 on CCPD (%).
61 |
62 |
63 |
64 | ## 8. Detection accuracy (F1) from different methods with IoU of 0.9 on CLPD (%).
65 |
66 |
67 |
68 | ## 9. Detection time and FPS of different methods on CCPD via 1080Ti GPU.
69 |
70 |
71 |
72 | ## If you cite this paper, plesae the follow format:
73 |
74 | ### 1. Tian, C., Zhang, X., Liang, X., Li, B., Sun, Y., & Zhang, S.. "Knowledge Distillation with Fast CNN for License Plate Detection." IEEE Transactions on Intelligent Vehicles (2023).
75 | ### 2. @article{tian2023knowledge,
76 | ### title={Knowledge Distillation with Fast CNN for License Plate Detection},
77 | ### author={Tian, Chunwei and Zhang, Xuanyu and Liang, Xu and Sun, Yougang and Zhang, Shichao},
78 | ### journal={IEEE Transactions on Intelligent Vehicles},
79 | ### year={2023}
80 | ### }
81 |
--------------------------------------------------------------------------------
/utils/google_utils.py:
--------------------------------------------------------------------------------
1 | # Google utils: https://cloud.google.com/storage/docs/reference/libraries
2 |
3 | import os
4 | import platform
5 | import subprocess
6 | import time
7 | from pathlib import Path
8 |
9 | import requests
10 | import torch
11 |
12 |
13 | def gsutil_getsize(url=''):
14 | # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
15 | s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
16 | return eval(s.split(' ')[0]) if len(s) else 0 # bytes
17 |
18 |
19 | def attempt_download(file, repo='WongKinYiu/yolov7'):
20 | # Attempt file download if does not exist
21 | file = Path(str(file).strip().replace("'", '').lower())
22 |
23 | if not file.exists():
24 | try:
25 | response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
26 | assets = [x['name'] for x in response['assets']] # release assets
27 | tag = response['tag_name'] # i.e. 'v1.0'
28 | except: # fallback plan
29 | assets = ['yolov7.pt', 'yolov7-tiny.pt', 'yolov7x.pt', 'yolov7-d6.pt', 'yolov7-e6.pt',
30 | 'yolov7-e6e.pt', 'yolov7-w6.pt']
31 | tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
32 |
33 | name = file.name
34 | if name in assets:
35 | msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
36 | redundant = False # second download option
37 | try: # GitHub
38 | url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
39 | print(f'Downloading {url} to {file}...')
40 | torch.hub.download_url_to_file(url, file)
41 | assert file.exists() and file.stat().st_size > 1E6 # check
42 | except Exception as e: # GCP
43 | print(f'Download error: {e}')
44 | assert redundant, 'No secondary mirror'
45 | url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
46 | print(f'Downloading {url} to {file}...')
47 | os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
48 | finally:
49 | if not file.exists() or file.stat().st_size < 1E6: # check
50 | file.unlink(missing_ok=True) # remove partial downloads
51 | print(f'ERROR: Download failure: {msg}')
52 | print('')
53 | return
54 |
55 |
56 | def gdrive_download(id='', file='tmp.zip'):
57 | # Downloads a file from Google Drive. from yolov7.utils.google_utils import *; gdrive_download()
58 | t = time.time()
59 | file = Path(file)
60 | cookie = Path('cookie') # gdrive cookie
61 | print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
62 | file.unlink(missing_ok=True) # remove existing file
63 | cookie.unlink(missing_ok=True) # remove existing cookie
64 |
65 | # Attempt file download
66 | out = "NUL" if platform.system() == "Windows" else "/dev/null"
67 | os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
68 | if os.path.exists('cookie'): # large file
69 | s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
70 | else: # small file
71 | s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
72 | r = os.system(s) # execute, capture return
73 | cookie.unlink(missing_ok=True) # remove existing cookie
74 |
75 | # Error check
76 | if r != 0:
77 | file.unlink(missing_ok=True) # remove partial
78 | print('Download error ') # raise Exception('Download error')
79 | return r
80 |
81 | # Unzip if archive
82 | if file.suffix == '.zip':
83 | print('unzipping... ', end='')
84 | os.system(f'unzip -q {file}') # unzip
85 | file.unlink() # remove zip to free space
86 |
87 | print(f'Done ({time.time() - t:.1f}s)')
88 | return r
89 |
90 |
91 | def get_token(cookie="./cookie"):
92 | with open(cookie) as f:
93 | for line in f:
94 | if "download" in line:
95 | return line.split()[-1]
96 | return ""
97 |
98 | # def upload_blob(bucket_name, source_file_name, destination_blob_name):
99 | # # Uploads a file to a bucket
100 | # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
101 | #
102 | # storage_client = storage.Client()
103 | # bucket = storage_client.get_bucket(bucket_name)
104 | # blob = bucket.blob(destination_blob_name)
105 | #
106 | # blob.upload_from_filename(source_file_name)
107 | #
108 | # print('File {} uploaded to {}.'.format(
109 | # source_file_name,
110 | # destination_blob_name))
111 | #
112 | #
113 | # def download_blob(bucket_name, source_blob_name, destination_file_name):
114 | # # Uploads a blob from a bucket
115 | # storage_client = storage.Client()
116 | # bucket = storage_client.get_bucket(bucket_name)
117 | # blob = bucket.blob(source_blob_name)
118 | #
119 | # blob.download_to_filename(destination_file_name)
120 | #
121 | # print('Blob {} downloaded to {}.'.format(
122 | # source_blob_name,
123 | # destination_file_name))
124 |
--------------------------------------------------------------------------------
/utils/autoanchor.py:
--------------------------------------------------------------------------------
1 | # Auto-anchor utils
2 |
3 | import numpy as np
4 | import torch
5 | import yaml
6 | from scipy.cluster.vq import kmeans
7 | from tqdm import tqdm
8 |
9 | from utils.general import colorstr
10 |
11 |
12 | def check_anchor_order(m):
13 | # Check anchor order against stride order for YOLO Detect() module m, and correct if necessary
14 | a = m.anchor_grid.prod(-1).view(-1) # anchor area
15 | da = a[-1] - a[0] # delta a
16 | ds = m.stride[-1] - m.stride[0] # delta s
17 | if da.sign() != ds.sign(): # same order
18 | print('Reversing anchor order')
19 | m.anchors[:] = m.anchors.flip(0)
20 | m.anchor_grid[:] = m.anchor_grid.flip(0)
21 |
22 |
23 | def check_anchors(dataset, model, thr=4.0, imgsz=640):
24 | # Check anchor fit to data, recompute if necessary
25 | prefix = colorstr('autoanchor: ')
26 | print(f'\n{prefix}Analyzing anchors... ', end='')
27 | m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
28 | shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
29 | scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
30 | wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
31 |
32 | def metric(k): # compute metric
33 | r = wh[:, None] / k[None]
34 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
35 | best = x.max(1)[0] # best_x
36 | aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
37 | bpr = (best > 1. / thr).float().mean() # best possible recall
38 | return bpr, aat
39 |
40 | anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
41 | bpr, aat = metric(anchors)
42 | print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
43 | if bpr < 0.98: # threshold to recompute
44 | print('. Attempting to improve anchors, please wait...')
45 | na = m.anchor_grid.numel() // 2 # number of anchors
46 | try:
47 | anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
48 | except Exception as e:
49 | print(f'{prefix}ERROR: {e}')
50 | new_bpr = metric(anchors)[0]
51 | if new_bpr > bpr: # replace anchors
52 | anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
53 | m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
54 | check_anchor_order(m)
55 | m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
56 | print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
57 | else:
58 | print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
59 | print('') # newline
60 |
61 |
62 | def kmean_anchors(path='./data/coco.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
63 | """ Creates kmeans-evolved anchors from training dataset
64 |
65 | Arguments:
66 | path: path to dataset *.yaml, or a loaded dataset
67 | n: number of anchors
68 | img_size: image size used for training
69 | thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
70 | gen: generations to evolve anchors using genetic algorithm
71 | verbose: print all results
72 |
73 | Return:
74 | k: kmeans evolved anchors
75 |
76 | Usage:
77 | from utils.autoanchor import *; _ = kmean_anchors()
78 | """
79 | thr = 1. / thr
80 | prefix = colorstr('autoanchor: ')
81 |
82 | def metric(k, wh): # compute metrics
83 | r = wh[:, None] / k[None]
84 | x = torch.min(r, 1. / r).min(2)[0] # ratio metric
85 | # x = wh_iou(wh, torch.tensor(k)) # iou metric
86 | return x, x.max(1)[0] # x, best_x
87 |
88 | def anchor_fitness(k): # mutation fitness
89 | _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
90 | return (best * (best > thr).float()).mean() # fitness
91 |
92 | def print_results(k):
93 | k = k[np.argsort(k.prod(1))] # sort small to large
94 | x, best = metric(k, wh0)
95 | bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
96 | print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
97 | print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
98 | f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
99 | for i, x in enumerate(k):
100 | print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
101 | return k
102 |
103 | if isinstance(path, str): # *.yaml file
104 | with open(path) as f:
105 | data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
106 | from utils.datasets_yolov7 import LoadImagesAndLabels
107 | dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
108 | else:
109 | dataset = path # dataset
110 |
111 | # Get label wh
112 | shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
113 | wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
114 |
115 | # Filter
116 | i = (wh0 < 3.0).any(1).sum()
117 | if i:
118 | print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
119 | wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
120 | # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
121 |
122 | # Kmeans calculation
123 | print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
124 | s = wh.std(0) # sigmas for whitening
125 | k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
126 | assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
127 | k *= s
128 | wh = torch.tensor(wh, dtype=torch.float32) # filtered
129 | wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
130 | k = print_results(k)
131 |
132 | # Plot
133 | # k, d = [None] * 20, [None] * 20
134 | # for i in tqdm(range(1, 21)):
135 | # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
136 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
137 | # ax = ax.ravel()
138 | # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
139 | # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
140 | # ax[0].hist(wh[wh[:, 0]<100, 0],400)
141 | # ax[1].hist(wh[wh[:, 1]<100, 1],400)
142 | # fig.savefig('wh.png', dpi=200)
143 |
144 | # Evolve
145 | npr = np.random
146 | f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
147 | pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
148 | for _ in pbar:
149 | v = np.ones(sh)
150 | while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
151 | v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
152 | kg = (k.copy() * v).clip(min=2.0)
153 | fg = anchor_fitness(kg)
154 | if fg > f:
155 | f, k = fg, kg.copy()
156 | pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
157 | if verbose:
158 | print_results(k)
159 |
160 | return print_results(k)
161 |
--------------------------------------------------------------------------------
/utils/distill_utils.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 |
4 |
5 | def bbox_overlaps_batch(anchors, gt_boxes, img_size):
6 | # anchors [N, 4]
7 | # gt_boxes [b, K, 6]
8 | batch_size = gt_boxes.size(0)
9 | if anchors.dim() == 2:
10 | N = anchors.size(0)
11 | K = gt_boxes.size(1)
12 |
13 | # [batch, N, 4]
14 | anchors = anchors.view(1, N, 4).expand(batch_size, N, 4).contiguous()
15 | # [batch, K, 4]
16 | gt_boxes = gt_boxes[:, :, 2:].contiguous()
17 | # [batch, K]
18 | gt_boxes_x = gt_boxes[:, :, 2] - gt_boxes[:, :, 0] + 1
19 | # [batch, K]
20 | gt_boxes_y = gt_boxes[:, :, 3] - gt_boxes[:, :, 1] + 1
21 | # 目标框的面积 [batch, 1, K]
22 | gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K)
23 |
24 | # [batch, N]
25 | anchors_boxes_x = (anchors[:, :, 2] - anchors[:, :, 0] + 1)
26 | # [batch, N]
27 | anchors_boxes_y = (anchors[:, :, 3] - anchors[:, :, 1] + 1)
28 | # [batch, N, 1]
29 | anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1)
30 |
31 | gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1)
32 | anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1)
33 |
34 | boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4)
35 | query_boxes = gt_boxes.view(batch_size, 1, K, 4).expand(batch_size, N, K, 4)
36 |
37 | iw = (torch.min(boxes[:, :, :, 2], query_boxes[:, :, :, 2]) -
38 | torch.max(boxes[:, :, :, 0], query_boxes[:, :, :, 0] + 1))
39 | iw[iw < 0] = 0
40 |
41 | ih = (torch.min(boxes[:, :, :, 3], query_boxes[:, :, :, 3]) -
42 | torch.max(boxes[:, :, :, 1], query_boxes[:, :, :, 1]) + 1)
43 | ih[ih < 0] = 0
44 | ua = anchors_area + gt_boxes_area - (iw * ih)
45 | overlaps = iw * ih / ua
46 |
47 | overlaps.masked_fill_(gt_area_zero.view(batch_size, 1, K).expand(batch_size, N, K), 0)
48 | overlaps.masked_fill_(anchors_area_zero.view(batch_size, N, 1).expand(batch_size, N, K), -1)
49 | elif anchors.dim() == 3:
50 | N = anchors.size(1)
51 | K = gt_boxes.size(1)
52 |
53 | if anchors.size(2) == 4:
54 | anchors = anchors[:, :, :4].contiguous()
55 | else:
56 | anchors = anchors[:, :, 1:5].contiguous()
57 |
58 | gt_boxes = gt_boxes[:, :, :4].contiguous()
59 |
60 | gt_boxes_x = (gt_boxes[:, :, 2] - gt_boxes[:, :, 0] + 1)
61 | gt_boxes_y = (gt_boxes[:, :, 3] - gt_boxes[:, :, 1] + 1)
62 | gt_boxes_area = (gt_boxes_x * gt_boxes_y).view(batch_size, 1, K)
63 |
64 | anchors_boxes_x = (anchors[:, :, 2] - anchors[:, :, 0] + 1)
65 | anchors_boxes_y = (anchors[:, :, 3] - anchors[:, :, 1] + 1)
66 |
67 | anchors_area = (anchors_boxes_x * anchors_boxes_y).view(batch_size, N, 1)
68 |
69 | gt_area_zero = (gt_boxes_x == 1) & (gt_boxes_y == 1)
70 | anchors_area_zero = (anchors_boxes_x == 1) & (anchors_boxes_y == 1)
71 |
72 | boxes = anchors.view(batch_size, N, 1, 4).expand(batch_size, N, K, 4)
73 | query_boxes = gt_boxes.view(
74 | batch_size, 1, K, 4).expand(batch_size, N, K, 4)
75 |
76 | iw = (torch.min(boxes[:, :, :, 2], query_boxes[:, :, :, 2]) -
77 | torch.max(boxes[:, :, :, 0], query_boxes[:, :, :, 0]) + 1)
78 | iw[iw < 0] = 0
79 |
80 | ih = (torch.min(boxes[:, :, :, 3], query_boxes[:, :, :, 3]) -
81 | torch.max(boxes[:, :, :, 1], query_boxes[:, :, :, 1]) + 1)
82 | ih[ih < 0] = 0
83 | ua = anchors_area + gt_boxes_area - (iw * ih)
84 |
85 | overlaps = iw * ih / ua
86 |
87 | # mask the overlap here.
88 | overlaps.masked_fill_(gt_area_zero.view(
89 | batch_size, 1, K).expand(batch_size, N, K), 0)
90 | overlaps.masked_fill_(anchors_area_zero.view(
91 | batch_size, N, 1).expand(batch_size, N, K), -1)
92 | else:
93 | raise ValueError("anchors input dim is not correct")
94 | overlap_shape = overlaps.shape
95 | return overlaps
96 |
97 |
98 | def generate_anchors(base_size, anchors):
99 | base_anchor = np.array([0, 0, base_size - 1, base_size - 1])
100 | x_ctr, y_ctr = _whctrs(base_anchor)
101 | aim_anchor = []
102 | for anchor in anchors:
103 | x1 = x_ctr - 0.5 * anchor[0] * base_size
104 | y1 = y_ctr - 0.5 * anchor[1] * base_size
105 | x2 = x_ctr + 0.5 * anchor[0] * base_size
106 | y2 = y_ctr + 0.5 * anchor[1] * base_size
107 | aim_anchor.append([x1, y1, x2, y2])
108 | return np.array(aim_anchor)
109 |
110 |
111 | def _whctrs(anchor):
112 | w = anchor[2] - anchor[0] + 1
113 | h = anchor[3] - anchor[1] + 1
114 | x_ctr = anchor[0] + 0.5 * (w - 1)
115 | y_ctr = anchor[1] + 0.5 * (h - 1)
116 | return x_ctr, y_ctr
117 |
118 |
119 | def make_gt_boxes(gt_boxes, max_num_box, batch, img_size):
120 | new_gt_boxes = []
121 | for i in range(batch):
122 | boxes = gt_boxes[gt_boxes[:, 0] == i]
123 | num_boxes = boxes.size(0)
124 | if num_boxes < max_num_box:
125 | gt_boxes_padding = torch.zeros([max_num_box, gt_boxes.size(1)], dtype=torch.float)
126 | gt_boxes_padding[:num_boxes, :] = boxes
127 | else:
128 | gt_boxes_padding = boxes[:max_num_box]
129 | new_gt_boxes.append(gt_boxes_padding.unsqueeze(0))
130 | new_gt_boxes = torch.cat(new_gt_boxes)
131 | # transfer [x, y, w, h] to [x1, y1, x2, y2]
132 | new_gt_boxes_aim = torch.zeros(size=new_gt_boxes.size())
133 | new_gt_boxes_aim[:, :, 2] = (new_gt_boxes[:, :, 2] - 0.5 * new_gt_boxes[:, :, 4]) * img_size[1]
134 | new_gt_boxes_aim[:, :, 3] = (new_gt_boxes[:, :, 3] - 0.5 * new_gt_boxes[:, :, 5]) * img_size[0]
135 | new_gt_boxes_aim[:, :, 4] = (new_gt_boxes[:, :, 2] + 0.5 * new_gt_boxes[:, :, 4]) * img_size[1]
136 | new_gt_boxes_aim[:, :, 5] = (new_gt_boxes[:, :, 3] + 0.5 * new_gt_boxes[:, :, 5]) * img_size[0]
137 | return new_gt_boxes_aim
138 |
139 |
140 | def getMask(batch_size, gt_boxes, img_size, feat, anchors, max_num_box, device):
141 | # [b, K, 4]
142 | gt_boxes = make_gt_boxes(gt_boxes, max_num_box, batch_size, img_size)
143 | feat_stride = img_size[0] / feat.size(2)
144 | anchors = torch.from_numpy(generate_anchors(feat_stride, anchors))
145 | feat = feat.cpu()
146 | height, width = feat.size(2), feat.size(3)
147 | feat_height, feat_width = feat.size(2), feat.size(3)
148 | shift_x = np.arange(0, feat_width) * feat_stride
149 | shift_y = np.arange(0, feat_height) * feat_stride
150 | shift_x, shift_y = np.meshgrid(shift_x, shift_y)
151 | shifts = torch.from_numpy(np.vstack((shift_x.ravel(), shift_y.ravel(),
152 | shift_x.ravel(), shift_y.ravel())).transpose())
153 | shifts = shifts.contiguous().type_as(feat).float()
154 |
155 | # num of anchors [3]
156 | A = anchors.size(0)
157 | K = shifts.size(0)
158 |
159 | anchors = anchors.type_as(gt_boxes)
160 | # all_anchors [K, A, 4]
161 | all_anchors = anchors.view(1, A, 4) + shifts.view(K, 1, 4)
162 | all_anchors = all_anchors.view(K * A, 4)
163 | # compute iou [all_anchors, gt_boxes]
164 | IOU_map = bbox_overlaps_batch(all_anchors, gt_boxes, img_size).view(batch_size, height, width, A, gt_boxes.shape[1])
165 |
166 | mask_batch = []
167 | for i in range(batch_size):
168 | max_iou, _ = torch.max(IOU_map[i].view(height * width * A, gt_boxes.shape[1]), dim=0)
169 | mask_per_im = torch.zeros([height, width], dtype=torch.int64).to(device)
170 | for k in range(gt_boxes.shape[1]):
171 | if torch.sum(gt_boxes[i][k]) == 0:
172 | break
173 | max_iou_per_gt = max_iou[k] * 0.5
174 | mask_per_gt = torch.sum(IOU_map[i][:, :, :, k] > max_iou_per_gt, dim=2)
175 | mask_per_im += mask_per_gt.to(device)
176 | mask_batch.append(mask_per_im)
177 | return mask_batch
178 |
179 |
180 | def compute_mask_loss(mask_batch, student_feature, teacher_feature, imitation_loss_weight):
181 | mask_list = []
182 | for mask in mask_batch:
183 | mask = (mask > 0).float().unsqueeze(0)
184 | mask_list.append(mask)
185 | mask_batch = torch.stack(mask_list, dim=0)
186 | norms = mask_batch.sum() * 2
187 | mask_batch_s = mask_batch.unsqueeze(4)
188 | no = student_feature.size(-1)
189 | bs, na, height, width, _ = mask_batch_s.shape
190 | mask_batch_no = mask_batch_s.expand((bs, na, height, width, no))
191 | sup_loss = (torch.pow(teacher_feature - student_feature, 2) * mask_batch_no).sum() / norms
192 | sup_loss = sup_loss * imitation_loss_weight
193 | return sup_loss
194 |
195 | if __name__ == "__main__":
196 | anchors = torch.tensor()
197 | gt_boxes = torch.rand()
198 |
--------------------------------------------------------------------------------
/detect.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import time
3 | from pathlib import Path
4 |
5 | import cv2
6 | import torch
7 | import torch.backends.cudnn as cudnn
8 | from numpy import random
9 |
10 | from models.experimental import attempt_load
11 | from utils.datasets_yolov7 import LoadStreams, LoadImages
12 | from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13 | scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14 | from utils.plots import plot_one_box
15 | from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16 |
17 |
18 | def detect(save_img=False):
19 | source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20 | save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21 | webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22 | ('rtsp://', 'rtmp://', 'http://', 'https://'))
23 |
24 | # Directories
25 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27 |
28 | # Initialize
29 | set_logging()
30 | device = select_device(opt.device)
31 | half = device.type != 'cpu' # half precision only supported on CUDA
32 |
33 | # Load model
34 | model = attempt_load(weights, map_location=device) # load FP32 model
35 | stride = int(model.stride.max()) # model stride
36 | imgsz = check_img_size(imgsz, s=stride) # check img_size
37 |
38 | if trace:
39 | model = TracedModel(model, device, opt.img_size)
40 |
41 | if half:
42 | model.half() # to FP16
43 |
44 | # Second-stage classifier
45 | classify = False
46 | if classify:
47 | modelc = load_classifier(name='resnet101', n=2) # initialize
48 | modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49 |
50 | # Set Dataloader
51 | vid_path, vid_writer = None, None
52 | if webcam:
53 | view_img = check_imshow()
54 | cudnn.benchmark = True # set True to speed up constant image size inference
55 | dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56 | else:
57 | dataset = LoadImages(source, img_size=imgsz, stride=stride)
58 |
59 | # Get names and colors
60 | names = model.module.names if hasattr(model, 'module') else model.names
61 | colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62 |
63 | # Run inference
64 | if device.type != 'cpu':
65 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66 | old_img_w = old_img_h = imgsz
67 | old_img_b = 1
68 |
69 | t0 = time.time()
70 | for path, img, im0s, vid_cap in dataset:
71 | img = torch.from_numpy(img).to(device)
72 | img = img.half() if half else img.float() # uint8 to fp16/32
73 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
74 | if img.ndimension() == 3:
75 | img = img.unsqueeze(0)
76 |
77 | # Warmup
78 | if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79 | old_img_b = img.shape[0]
80 | old_img_h = img.shape[2]
81 | old_img_w = img.shape[3]
82 | for i in range(3):
83 | model(img, augment=opt.augment)[0]
84 |
85 | # Inference
86 | t1 = time_synchronized()
87 | with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
88 | pred = model(img, augment=opt.augment)[0]
89 | t2 = time_synchronized()
90 |
91 | # Apply NMS
92 | pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
93 | t3 = time_synchronized()
94 |
95 | # Apply Classifier
96 | if classify:
97 | pred = apply_classifier(pred, modelc, img, im0s)
98 |
99 | # Process detections
100 | for i, det in enumerate(pred): # detections per image
101 | if webcam: # batch_size >= 1
102 | p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
103 | else:
104 | p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
105 |
106 | p = Path(p) # to Path
107 | save_path = str(save_dir / p.name) # img.jpg
108 | txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
109 | gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
110 | if len(det):
111 | # Rescale boxes from img_size to im0 size
112 | det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
113 |
114 | # Print results
115 | for c in det[:, -1].unique():
116 | n = (det[:, -1] == c).sum() # detections per class
117 | s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
118 |
119 | # Write results
120 | for *xyxy, conf, cls in reversed(det):
121 | if save_txt: # Write to file
122 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
123 | line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
124 | with open(txt_path + '.txt', 'a') as f:
125 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
126 |
127 | if save_img or view_img: # Add bbox to image
128 | label = f'{names[int(cls)]} {conf:.2f}'
129 | plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
130 |
131 | # Print time (inference + NMS)
132 | print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
133 |
134 | # Stream results
135 | if view_img:
136 | cv2.imshow(str(p), im0)
137 | cv2.waitKey(1) # 1 millisecond
138 |
139 | # Save results (image with detections)
140 | if save_img:
141 | if dataset.mode == 'image':
142 | cv2.imwrite(save_path, im0)
143 | print(f" The image with the result is saved in: {save_path}")
144 | else: # 'video' or 'stream'
145 | if vid_path != save_path: # new video
146 | vid_path = save_path
147 | if isinstance(vid_writer, cv2.VideoWriter):
148 | vid_writer.release() # release previous video writer
149 | if vid_cap: # video
150 | fps = vid_cap.get(cv2.CAP_PROP_FPS)
151 | w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
152 | h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
153 | else: # stream
154 | fps, w, h = 30, im0.shape[1], im0.shape[0]
155 | save_path += '.mp4'
156 | vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
157 | vid_writer.write(im0)
158 |
159 | if save_txt or save_img:
160 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
161 | #print(f"Results saved to {save_dir}{s}")
162 |
163 | print(f'Done. ({time.time() - t0:.3f}s)')
164 |
165 |
166 | if __name__ == '__main__':
167 | parser = argparse.ArgumentParser()
168 | parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
169 | parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
170 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
171 | parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
172 | parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
173 | parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
174 | parser.add_argument('--view-img', action='store_true', help='display results')
175 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
176 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
177 | parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
178 | parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
179 | parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
180 | parser.add_argument('--augment', action='store_true', help='augmented inference')
181 | parser.add_argument('--update', action='store_true', help='update all models')
182 | parser.add_argument('--project', default='runs/detect', help='save results to project/name')
183 | parser.add_argument('--name', default='exp', help='save results to project/name')
184 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
185 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
186 | opt = parser.parse_args()
187 | print(opt)
188 | #check_requirements(exclude=('pycocotools', 'thop'))
189 |
190 | with torch.no_grad():
191 | if opt.update: # update all models (to fix SourceChangeWarning)
192 | for opt.weights in ['yolov7.pt']:
193 | detect()
194 | strip_optimizer(opt.weights)
195 | else:
196 | detect()
197 |
--------------------------------------------------------------------------------
/utils/metrics.py:
--------------------------------------------------------------------------------
1 | # Model validation metrics
2 |
3 | from pathlib import Path
4 |
5 | import matplotlib.pyplot as plt
6 | import numpy as np
7 | import torch
8 |
9 | from . import general
10 |
11 |
12 | def fitness(x):
13 | # Model fitness as a weighted combination of metrics
14 | w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
15 | return (x[:, :4] * w).sum(1)
16 |
17 |
18 | def ap_per_class(tp, conf, pred_cls, target_cls, v5_metric=False, plot=False, save_dir='.', names=()):
19 | """ Compute the average precision, given the recall and precision curves.
20 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
21 | # Arguments
22 | tp: True positives (nparray, nx1 or nx10).
23 | conf: Objectness value from 0-1 (nparray).
24 | pred_cls: Predicted object classes (nparray).
25 | target_cls: True object classes (nparray).
26 | plot: Plot precision-recall curve at mAP@0.5
27 | save_dir: Plot save directory
28 | # Returns
29 | The average precision as computed in py-faster-rcnn.
30 | """
31 | # Sort by objectness
32 | i = np.argsort(-conf)
33 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
34 |
35 | # Find unique classes
36 | unique_classes = np.unique(target_cls)
37 | nc = unique_classes.shape[0] # number of classes, number of detections
38 |
39 | # Create Precision-Recall curve and compute AP for each class
40 | px, py = np.linspace(0, 1, 1000), [] # for plotting
41 | ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
42 | for ci, c in enumerate(unique_classes):
43 | i = pred_cls == c
44 | n_l = (target_cls == c).sum() # number of labels
45 | n_p = i.sum() # number of predictions
46 |
47 | if n_p == 0 or n_l == 0:
48 | continue
49 | else:
50 | # Accumulate FPs and TPs
51 | fpc = (1 - tp[i]).cumsum(0)
52 | tpc = tp[i].cumsum(0)
53 |
54 | # Recall
55 | recall = tpc / (n_l + 1e-16) # recall curve
56 | r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
57 |
58 | # Precision
59 | precision = tpc / (tpc + fpc) # precision curve
60 | p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
61 |
62 | # AP from recall-precision curve
63 | for j in range(tp.shape[1]):
64 | ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j], v5_metric=v5_metric)
65 | if plot and j == 0:
66 | py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
67 |
68 | # Compute F1 (harmonic mean of precision and recall)
69 | f1 = 2 * p * r / (p + r + 1e-16)
70 | if plot:
71 | plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
72 | plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
73 | plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
74 | plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
75 |
76 | i = f1.mean(0).argmax() # max F1 index
77 | return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
78 |
79 |
80 | def compute_ap(recall, precision, v5_metric=False):
81 | """ Compute the average precision, given the recall and precision curves
82 | # Arguments
83 | recall: The recall curve (list)
84 | precision: The precision curve (list)
85 | v5_metric: Assume maximum recall to be 1.0, as in YOLOv5, MMDetetion etc.
86 | # Returns
87 | Average precision, precision curve, recall curve
88 | """
89 |
90 | # Append sentinel values to beginning and end
91 | if v5_metric: # New YOLOv5 metric, same as MMDetection and Detectron2 repositories
92 | mrec = np.concatenate(([0.], recall, [1.0]))
93 | else: # Old YOLOv5 metric, i.e. default YOLOv7 metric
94 | mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
95 | mpre = np.concatenate(([1.], precision, [0.]))
96 |
97 | # Compute the precision envelope
98 | mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
99 |
100 | # Integrate area under curve
101 | method = 'interp' # methods: 'continuous', 'interp'
102 | if method == 'interp':
103 | x = np.linspace(0, 1, 101) # 101-point interp (COCO)
104 | ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
105 | else: # 'continuous'
106 | i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
107 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
108 |
109 | return ap, mpre, mrec
110 |
111 |
112 | class ConfusionMatrix:
113 | # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
114 | def __init__(self, nc, conf=0.25, iou_thres=0.45):
115 | self.matrix = np.zeros((nc + 1, nc + 1))
116 | self.nc = nc # number of classes
117 | self.conf = conf
118 | self.iou_thres = iou_thres
119 |
120 | def process_batch(self, detections, labels):
121 | """
122 | Return intersection-over-union (Jaccard index) of boxes.
123 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
124 | Arguments:
125 | detections (Array[N, 6]), x1, y1, x2, y2, conf, class
126 | labels (Array[M, 5]), class, x1, y1, x2, y2
127 | Returns:
128 | None, updates confusion matrix accordingly
129 | """
130 | detections = detections[detections[:, 4] > self.conf]
131 | gt_classes = labels[:, 0].int()
132 | detection_classes = detections[:, 5].int()
133 | iou = general.box_iou(labels[:, 1:], detections[:, :4])
134 |
135 | x = torch.where(iou > self.iou_thres)
136 | if x[0].shape[0]:
137 | matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
138 | if x[0].shape[0] > 1:
139 | matches = matches[matches[:, 2].argsort()[::-1]]
140 | matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
141 | matches = matches[matches[:, 2].argsort()[::-1]]
142 | matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
143 | else:
144 | matches = np.zeros((0, 3))
145 |
146 | n = matches.shape[0] > 0
147 | m0, m1, _ = matches.transpose().astype(np.int16)
148 | for i, gc in enumerate(gt_classes):
149 | j = m0 == i
150 | if n and sum(j) == 1:
151 | self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
152 | else:
153 | self.matrix[self.nc, gc] += 1 # background FP
154 |
155 | if n:
156 | for i, dc in enumerate(detection_classes):
157 | if not any(m1 == i):
158 | self.matrix[dc, self.nc] += 1 # background FN
159 |
160 | def matrix(self):
161 | return self.matrix
162 |
163 | def plot(self, save_dir='', names=()):
164 | try:
165 | import seaborn as sn
166 |
167 | array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
168 | array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
169 |
170 | fig = plt.figure(figsize=(12, 9), tight_layout=True)
171 | sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
172 | labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
173 | sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
174 | xticklabels=names + ['background FP'] if labels else "auto",
175 | yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
176 | fig.axes[0].set_xlabel('True')
177 | fig.axes[0].set_ylabel('Predicted')
178 | fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
179 | except Exception as e:
180 | pass
181 |
182 | def print(self):
183 | for i in range(self.nc + 1):
184 | print(' '.join(map(str, self.matrix[i])))
185 |
186 |
187 | # Plots ----------------------------------------------------------------------------------------------------------------
188 |
189 | def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
190 | # Precision-recall curve
191 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
192 | py = np.stack(py, axis=1)
193 |
194 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
195 | for i, y in enumerate(py.T):
196 | ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
197 | else:
198 | ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
199 |
200 | ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
201 | ax.set_xlabel('Recall')
202 | ax.set_ylabel('Precision')
203 | ax.set_xlim(0, 1)
204 | ax.set_ylim(0, 1)
205 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
206 | fig.savefig(Path(save_dir), dpi=250)
207 |
208 |
209 | def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
210 | # Metric-confidence curve
211 | fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
212 |
213 | if 0 < len(names) < 21: # display per-class legend if < 21 classes
214 | for i, y in enumerate(py):
215 | ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
216 | else:
217 | ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
218 |
219 | y = py.mean(0)
220 | ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
221 | ax.set_xlabel(xlabel)
222 | ax.set_ylabel(ylabel)
223 | ax.set_xlim(0, 1)
224 | ax.set_ylim(0, 1)
225 | plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
226 | fig.savefig(Path(save_dir), dpi=250)
227 |
--------------------------------------------------------------------------------
/models/experimental.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | import torch
4 | import torch.nn as nn
5 |
6 | from models.common import Conv, DWConv
7 | from utils.google_utils import attempt_download
8 |
9 |
10 | class CrossConv(nn.Module):
11 | # Cross Convolution Downsample
12 | def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
13 | # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
14 | super(CrossConv, self).__init__()
15 | c_ = int(c2 * e) # hidden channels
16 | self.cv1 = Conv(c1, c_, (1, k), (1, s))
17 | self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
18 | self.add = shortcut and c1 == c2
19 |
20 | def forward(self, x):
21 | return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
22 |
23 |
24 | class Sum(nn.Module):
25 | # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
26 | def __init__(self, n, weight=False): # n: number of inputs
27 | super(Sum, self).__init__()
28 | self.weight = weight # apply weights boolean
29 | self.iter = range(n - 1) # iter object
30 | if weight:
31 | self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
32 |
33 | def forward(self, x):
34 | y = x[0] # no weight
35 | if self.weight:
36 | w = torch.sigmoid(self.w) * 2
37 | for i in self.iter:
38 | y = y + x[i + 1] * w[i]
39 | else:
40 | for i in self.iter:
41 | y = y + x[i + 1]
42 | return y
43 |
44 |
45 | class MixConv2d(nn.Module):
46 | # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
47 | def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
48 | super(MixConv2d, self).__init__()
49 | groups = len(k)
50 | if equal_ch: # equal c_ per group
51 | i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
52 | c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
53 | else: # equal weight.numel() per group
54 | b = [c2] + [0] * groups
55 | a = np.eye(groups + 1, groups, k=-1)
56 | a -= np.roll(a, 1, axis=1)
57 | a *= np.array(k) ** 2
58 | a[0] = 1
59 | c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
60 |
61 | self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
62 | self.bn = nn.BatchNorm2d(c2)
63 | self.act = nn.LeakyReLU(0.1, inplace=True)
64 |
65 | def forward(self, x):
66 | return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
67 |
68 |
69 | class Ensemble(nn.ModuleList):
70 | # Ensemble of models
71 | def __init__(self):
72 | super(Ensemble, self).__init__()
73 |
74 | def forward(self, x, augment=False):
75 | y = []
76 | for module in self:
77 | y.append(module(x, augment)[0])
78 | # y = torch.stack(y).max(0)[0] # max ensemble
79 | # y = torch.stack(y).mean(0) # mean ensemble
80 | y = torch.cat(y, 1) # nms ensemble
81 | return y, None # inference, train output
82 |
83 |
84 |
85 |
86 |
87 | class ORT_NMS(torch.autograd.Function):
88 | '''ONNX-Runtime NMS operation'''
89 | @staticmethod
90 | def forward(ctx,
91 | boxes,
92 | scores,
93 | max_output_boxes_per_class=torch.tensor([100]),
94 | iou_threshold=torch.tensor([0.45]),
95 | score_threshold=torch.tensor([0.25])):
96 | device = boxes.device
97 | batch = scores.shape[0]
98 | num_det = random.randint(0, 100)
99 | batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
100 | idxs = torch.arange(100, 100 + num_det).to(device)
101 | zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
102 | selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
103 | selected_indices = selected_indices.to(torch.int64)
104 | return selected_indices
105 |
106 | @staticmethod
107 | def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
108 | return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
109 |
110 |
111 | class TRT_NMS(torch.autograd.Function):
112 | '''TensorRT NMS operation'''
113 | @staticmethod
114 | def forward(
115 | ctx,
116 | boxes,
117 | scores,
118 | background_class=-1,
119 | box_coding=1,
120 | iou_threshold=0.45,
121 | max_output_boxes=100,
122 | plugin_version="1",
123 | score_activation=0,
124 | score_threshold=0.25,
125 | ):
126 | batch_size, num_boxes, num_classes = scores.shape
127 | num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
128 | det_boxes = torch.randn(batch_size, max_output_boxes, 4)
129 | det_scores = torch.randn(batch_size, max_output_boxes)
130 | det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
131 | return num_det, det_boxes, det_scores, det_classes
132 |
133 | @staticmethod
134 | def symbolic(g,
135 | boxes,
136 | scores,
137 | background_class=-1,
138 | box_coding=1,
139 | iou_threshold=0.45,
140 | max_output_boxes=100,
141 | plugin_version="1",
142 | score_activation=0,
143 | score_threshold=0.25):
144 | out = g.op("TRT::EfficientNMS_TRT",
145 | boxes,
146 | scores,
147 | background_class_i=background_class,
148 | box_coding_i=box_coding,
149 | iou_threshold_f=iou_threshold,
150 | max_output_boxes_i=max_output_boxes,
151 | plugin_version_s=plugin_version,
152 | score_activation_i=score_activation,
153 | score_threshold_f=score_threshold,
154 | outputs=4)
155 | nums, boxes, scores, classes = out
156 | return nums, boxes, scores, classes
157 |
158 |
159 | class ONNX_ORT(nn.Module):
160 | '''onnx module with ONNX-Runtime NMS operation.'''
161 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
162 | super().__init__()
163 | self.device = device if device else torch.device("cpu")
164 | self.max_obj = torch.tensor([max_obj]).to(device)
165 | self.iou_threshold = torch.tensor([iou_thres]).to(device)
166 | self.score_threshold = torch.tensor([score_thres]).to(device)
167 | self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
168 | self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
169 | dtype=torch.float32,
170 | device=self.device)
171 | self.n_classes=n_classes
172 |
173 | def forward(self, x):
174 | boxes = x[:, :, :4]
175 | conf = x[:, :, 4:5]
176 | scores = x[:, :, 5:]
177 | if self.n_classes == 1:
178 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
179 | # so there is no need to multiplicate.
180 | else:
181 | scores *= conf # conf = obj_conf * cls_conf
182 | boxes @= self.convert_matrix
183 | max_score, category_id = scores.max(2, keepdim=True)
184 | dis = category_id.float() * self.max_wh
185 | nmsbox = boxes + dis
186 | max_score_tp = max_score.transpose(1, 2).contiguous()
187 | selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
188 | X, Y = selected_indices[:, 0], selected_indices[:, 2]
189 | selected_boxes = boxes[X, Y, :]
190 | selected_categories = category_id[X, Y, :].float()
191 | selected_scores = max_score[X, Y, :]
192 | X = X.unsqueeze(1).float()
193 | return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
194 |
195 | class ONNX_TRT(nn.Module):
196 | '''onnx module with TensorRT NMS operation.'''
197 | def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
198 | super().__init__()
199 | assert max_wh is None
200 | self.device = device if device else torch.device('cpu')
201 | self.background_class = -1,
202 | self.box_coding = 1,
203 | self.iou_threshold = iou_thres
204 | self.max_obj = max_obj
205 | self.plugin_version = '1'
206 | self.score_activation = 0
207 | self.score_threshold = score_thres
208 | self.n_classes=n_classes
209 |
210 | def forward(self, x):
211 | boxes = x[:, :, :4]
212 | conf = x[:, :, 4:5]
213 | scores = x[:, :, 5:]
214 | if self.n_classes == 1:
215 | scores = conf # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
216 | # so there is no need to multiplicate.
217 | else:
218 | scores *= conf # conf = obj_conf * cls_conf
219 | num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(boxes, scores, self.background_class, self.box_coding,
220 | self.iou_threshold, self.max_obj,
221 | self.plugin_version, self.score_activation,
222 | self.score_threshold)
223 | return num_det, det_boxes, det_scores, det_classes
224 |
225 |
226 | class End2End(nn.Module):
227 | '''export onnx or tensorrt model with NMS operation.'''
228 | def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
229 | super().__init__()
230 | device = device if device else torch.device('cpu')
231 | assert isinstance(max_wh,(int)) or max_wh is None
232 | self.model = model.to(device)
233 | self.model.model[-1].end2end = True
234 | self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
235 | self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
236 | self.end2end.eval()
237 |
238 | def forward(self, x):
239 | x = self.model(x)
240 | x = self.end2end(x)
241 | return x
242 |
243 |
244 |
245 | def attempt_load(weights, map_location=None):
246 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
247 | model = Ensemble()
248 | # print('weights', weights) # /runs/train/yolov7_distillation19/weights/epoch_074.pt
249 | for w in weights if isinstance(weights, list) else [weights]:
250 | # attempt_download(w) # /runs/train/yolov7_distillation19/weights/epoch_074.pt
251 | ckpt = torch.load(w, map_location=map_location) # load
252 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
253 |
254 | # Compatibility updates
255 | for m in model.modules():
256 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
257 | m.inplace = True # pytorch 1.7.0 compatibility
258 | elif type(m) is nn.Upsample:
259 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
260 | elif type(m) is Conv:
261 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
262 |
263 | if len(model) == 1:
264 | return model[-1] # return model
265 | else:
266 | print('Ensemble created with %s\n' % weights)
267 | for k in ['names', 'stride']:
268 | setattr(model, k, getattr(model[-1], k))
269 | return model # return ensemble
270 |
271 |
272 | def attempt_load_zxy(weights, device, map_location=None):
273 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
274 | model = Ensemble()
275 | for w in weights if isinstance(weights, list) else [weights]:
276 | attempt_download(w)
277 | ckpt = torch.load(w, map_location=map_location) # load
278 | model.append(ckpt['ema' if ckpt.get('ema') else 'model'].to(device).float().fuse().eval()) # FP32 model
279 |
280 | # Compatibility updates
281 | for m in model.modules():
282 | if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
283 | m.inplace = True # pytorch 1.7.0 compatibility
284 | elif type(m) is nn.Upsample:
285 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
286 | elif type(m) is Conv:
287 | m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
288 |
289 | if len(model) == 1:
290 | return model[-1] # return model
291 | else:
292 | print('Ensemble created with %s\n' % weights)
293 | for k in ['names', 'stride']:
294 | setattr(model, k, getattr(model[-1], k))
295 | return model # return ensemble
296 |
297 |
298 | def attempt_loadv5(weights, device=None, inplace=True, fuse=True):
299 | # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
300 | from models.yolo import Detect, Model
301 |
302 | model = Ensemble()
303 | for w in weights if isinstance(weights, list) else [weights]:
304 | ckpt = torch.load(attempt_download(w), map_location='cpu') # load
305 | ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
306 |
307 | # Model compatibility updates
308 | if not hasattr(ckpt, 'stride'):
309 | ckpt.stride = torch.tensor([32.])
310 | if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
311 | ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
312 |
313 | model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
314 |
315 | # Module compatibility updates
316 | for m in model.modules():
317 | t = type(m)
318 | if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
319 | m.inplace = inplace # torch 1.7.0 compatibility
320 | if t is Detect and not isinstance(m.anchor_grid, list):
321 | delattr(m, 'anchor_grid')
322 | setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
323 | elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
324 | m.recompute_scale_factor = None # torch 1.11.0 compatibility
325 |
326 | # Return model
327 | if len(model) == 1:
328 | return model[-1]
329 |
330 | # Return detection ensemble
331 | print(f'Ensemble created with {weights}\n')
332 | for k in 'names', 'nc', 'yaml':
333 | setattr(model, k, getattr(model[0], k))
334 | model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
335 | assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
336 | return model
337 |
--------------------------------------------------------------------------------
/utils/torch_utils.py:
--------------------------------------------------------------------------------
1 | # YOLOR PyTorch utils
2 |
3 | import datetime
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import subprocess
9 | import time
10 | from contextlib import contextmanager
11 | from copy import deepcopy
12 | from pathlib import Path
13 |
14 | import torch
15 | import torch.backends.cudnn as cudnn
16 | import torch.nn as nn
17 | import torch.nn.functional as F
18 | import torchvision
19 |
20 | try:
21 | import thop # for FLOPS computation
22 | except ImportError:
23 | thop = None
24 | logger = logging.getLogger(__name__)
25 |
26 |
27 | @contextmanager
28 | def torch_distributed_zero_first(local_rank: int):
29 | """
30 | Decorator to make all processes in distributed training wait for each local_master to do something.
31 | """
32 | if local_rank not in [-1, 0]:
33 | torch.distributed.barrier()
34 | yield
35 | if local_rank == 0:
36 | torch.distributed.barrier()
37 |
38 |
39 | def init_torch_seeds(seed=0):
40 | # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
41 | torch.manual_seed(seed)
42 | if seed == 0: # slower, more reproducible
43 | cudnn.benchmark, cudnn.deterministic = False, True
44 | else: # faster, less reproducible
45 | cudnn.benchmark, cudnn.deterministic = True, False
46 |
47 |
48 | def date_modified(path=__file__):
49 | # return human-readable file modification date, i.e. '2021-3-26'
50 | t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
51 | return f'{t.year}-{t.month}-{t.day}'
52 |
53 |
54 | def git_describe(path=Path(__file__).parent): # path must be a directory
55 | # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
56 | s = f'git -C {path} describe --tags --long --always'
57 | try:
58 | return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
59 | except subprocess.CalledProcessError as e:
60 | return '' # not a git repository
61 |
62 |
63 | def select_device(device='', batch_size=None):
64 | # device = 'cpu' or '0' or '0,1,2,3'
65 | s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
66 | cpu = device.lower() == 'cpu'
67 | if cpu:
68 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
69 | elif device: # non-cpu device requested
70 | os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
71 | assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
72 |
73 | cuda = not cpu and torch.cuda.is_available()
74 | if cuda:
75 | n = torch.cuda.device_count()
76 | if n > 1 and batch_size: # check that batch_size is compatible with device_count
77 | assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
78 | space = ' ' * len(s)
79 | for i, d in enumerate(device.split(',') if device else range(n)):
80 | p = torch.cuda.get_device_properties(i)
81 | s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
82 | else:
83 | s += 'CPU\n'
84 |
85 | logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
86 | return torch.device('cuda:0' if cuda else 'cpu')
87 |
88 |
89 | def time_synchronized():
90 | # pytorch-accurate time
91 | if torch.cuda.is_available():
92 | torch.cuda.synchronize()
93 | return time.time()
94 |
95 |
96 | def profile(x, ops, n=100, device=None):
97 | # profile a pytorch module or list of modules. Example usage:
98 | # x = torch.randn(16, 3, 640, 640) # input
99 | # m1 = lambda x: x * torch.sigmoid(x)
100 | # m2 = nn.SiLU()
101 | # profile(x, [m1, m2], n=100) # profile speed over 100 iterations
102 |
103 | device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
104 | x = x.to(device)
105 | x.requires_grad = True
106 | print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
107 | print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
108 | for m in ops if isinstance(ops, list) else [ops]:
109 | m = m.to(device) if hasattr(m, 'to') else m # device
110 | m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
111 | dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
112 | try:
113 | flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
114 | except:
115 | flops = 0
116 |
117 | for _ in range(n):
118 | t[0] = time_synchronized()
119 | y = m(x)
120 | t[1] = time_synchronized()
121 | try:
122 | _ = y.sum().backward()
123 | t[2] = time_synchronized()
124 | except: # no backward method
125 | t[2] = float('nan')
126 | dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
127 | dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
128 |
129 | s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
130 | s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
131 | p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
132 | print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
133 |
134 |
135 | def is_parallel(model):
136 | return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
137 |
138 |
139 | def intersect_dicts(da, db, exclude=()):
140 | # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
141 | return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
142 |
143 |
144 | def initialize_weights(model):
145 | for m in model.modules():
146 | t = type(m)
147 | if t is nn.Conv2d:
148 | pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
149 | elif t is nn.BatchNorm2d:
150 | m.eps = 1e-3
151 | m.momentum = 0.03
152 | elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
153 | m.inplace = True
154 |
155 |
156 | def find_modules(model, mclass=nn.Conv2d):
157 | # Finds layer indices matching module class 'mclass'
158 | return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
159 |
160 |
161 | def sparsity(model):
162 | # Return global model sparsity
163 | a, b = 0., 0.
164 | for p in model.parameters():
165 | a += p.numel()
166 | b += (p == 0).sum()
167 | return b / a
168 |
169 |
170 | def prune(model, amount=0.3):
171 | # Prune model to requested global sparsity
172 | import torch.nn.utils.prune as prune
173 | print('Pruning model... ', end='')
174 | for name, m in model.named_modules():
175 | if isinstance(m, nn.Conv2d):
176 | prune.l1_unstructured(m, name='weight', amount=amount) # prune
177 | prune.remove(m, 'weight') # make permanent
178 | print(' %.3g global sparsity' % sparsity(model))
179 |
180 |
181 | def fuse_conv_and_bn(conv, bn):
182 | # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
183 | fusedconv = nn.Conv2d(conv.in_channels,
184 | conv.out_channels,
185 | kernel_size=conv.kernel_size,
186 | stride=conv.stride,
187 | padding=conv.padding,
188 | groups=conv.groups,
189 | bias=True).requires_grad_(False).to(conv.weight.device)
190 |
191 | # prepare filters
192 | w_conv = conv.weight.clone().view(conv.out_channels, -1)
193 | w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
194 | fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
195 |
196 | # prepare spatial bias
197 | b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
198 | b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
199 | fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
200 |
201 | return fusedconv
202 |
203 |
204 | def model_info(model, verbose=False, img_size=640):
205 | # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
206 | n_p = sum(x.numel() for x in model.parameters()) # number parameters
207 | n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
208 | if verbose:
209 | print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
210 | for i, (name, p) in enumerate(model.named_parameters()):
211 | name = name.replace('module_list.', '')
212 | print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
213 | (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
214 |
215 | try: # FLOPS
216 | from thop import profile
217 | stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
218 | img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
219 | flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
220 | img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
221 | fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
222 | except (ImportError, Exception):
223 | fs = ''
224 |
225 | logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
226 |
227 |
228 | def load_classifier(name='resnet101', n=2):
229 | # Loads a pretrained model reshaped to n-class output
230 | model = torchvision.models.__dict__[name](pretrained=True)
231 |
232 | # ResNet model properties
233 | # input_size = [3, 224, 224]
234 | # input_space = 'RGB'
235 | # input_range = [0, 1]
236 | # mean = [0.485, 0.456, 0.406]
237 | # std = [0.229, 0.224, 0.225]
238 |
239 | # Reshape output to n classes
240 | filters = model.fc.weight.shape[1]
241 | model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
242 | model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
243 | model.fc.out_features = n
244 | return model
245 |
246 |
247 | def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
248 | # scales img(bs,3,y,x) by ratio constrained to gs-multiple
249 | if ratio == 1.0:
250 | return img
251 | else:
252 | h, w = img.shape[2:]
253 | s = (int(h * ratio), int(w * ratio)) # new size
254 | img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
255 | if not same_shape: # pad/crop img
256 | h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
257 | return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
258 |
259 |
260 | def copy_attr(a, b, include=(), exclude=()):
261 | # Copy attributes from b to a, options to only include [...] and to exclude [...]
262 | for k, v in b.__dict__.items():
263 | if (len(include) and k not in include) or k.startswith('_') or k in exclude:
264 | continue
265 | else:
266 | setattr(a, k, v)
267 |
268 |
269 | class ModelEMA:
270 | """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
271 | Keep a moving average of everything in the model state_dict (parameters and buffers).
272 | This is intended to allow functionality like
273 | https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
274 | A smoothed version of the weights is necessary for some training schemes to perform well.
275 | This class is sensitive where it is initialized in the sequence of model init,
276 | GPU assignment and distributed training wrappers.
277 | """
278 |
279 | def __init__(self, model, decay=0.9999, updates=0):
280 | # Create EMA
281 | self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
282 | # if next(model.parameters()).device.type != 'cpu':
283 | # self.ema.half() # FP16 EMA
284 | self.updates = updates # number of EMA updates
285 | self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
286 | for p in self.ema.parameters():
287 | p.requires_grad_(False)
288 |
289 | def update(self, model):
290 | # Update EMA parameters
291 | with torch.no_grad():
292 | self.updates += 1
293 | d = self.decay(self.updates)
294 |
295 | msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
296 | for k, v in self.ema.state_dict().items():
297 | if v.dtype.is_floating_point:
298 | v *= d
299 | v += (1. - d) * msd[k].detach()
300 |
301 | def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
302 | # Update EMA attributes
303 | copy_attr(self.ema, model, include, exclude)
304 |
305 |
306 | class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
307 | def _check_input_dim(self, input):
308 | # The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
309 | # is this method that is overwritten by the sub-class
310 | # This original goal of this method was for tensor sanity checks
311 | # If you're ok bypassing those sanity checks (eg. if you trust your inference
312 | # to provide the right dimensional inputs), then you can just use this method
313 | # for easy conversion from SyncBatchNorm
314 | # (unfortunately, SyncBatchNorm does not store the original class - if it did
315 | # we could return the one that was originally created)
316 | return
317 |
318 | def revert_sync_batchnorm(module):
319 | # this is very similar to the function that it is trying to revert:
320 | # https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679
321 | module_output = module
322 | if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
323 | new_cls = BatchNormXd
324 | module_output = BatchNormXd(module.num_features,
325 | module.eps, module.momentum,
326 | module.affine,
327 | module.track_running_stats)
328 | if module.affine:
329 | with torch.no_grad():
330 | module_output.weight = module.weight
331 | module_output.bias = module.bias
332 | module_output.running_mean = module.running_mean
333 | module_output.running_var = module.running_var
334 | module_output.num_batches_tracked = module.num_batches_tracked
335 | if hasattr(module, "qconfig"):
336 | module_output.qconfig = module.qconfig
337 | for name, child in module.named_children():
338 | module_output.add_module(name, revert_sync_batchnorm(child))
339 | del module
340 | return module_output
341 |
342 |
343 | class TracedModel(nn.Module):
344 |
345 | def __init__(self, model=None, device=None, img_size=(640,640)):
346 | super(TracedModel, self).__init__()
347 |
348 | print(" Convert model to Traced-model... ")
349 | self.stride = model.stride
350 | self.names = model.names
351 | self.model = model
352 |
353 | self.model = revert_sync_batchnorm(self.model)
354 | self.model.to('cpu')
355 | self.model.eval()
356 |
357 | self.detect_layer = self.model.model[-1]
358 | self.model.traced = True
359 |
360 | rand_example = torch.rand(1, 3, img_size, img_size)
361 |
362 | traced_script_module = torch.jit.trace(self.model, rand_example, strict=False)
363 | #traced_script_module = torch.jit.script(self.model)
364 | traced_script_module.save("traced_model.pt")
365 | print(" traced_script_module saved! ")
366 | self.model = traced_script_module
367 | self.model.to(device)
368 | self.detect_layer.to(device)
369 | print(" model is traced! \n")
370 |
371 | def forward(self, x, augment=False, profile=False):
372 | out = self.model(x)
373 | out = self.detect_layer(out)
374 | return out
--------------------------------------------------------------------------------
/test_ccpd.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import json
3 | import os
4 | from pathlib import Path
5 | from threading import Thread
6 |
7 | import numpy as np
8 | import torch
9 | import yaml
10 | from tqdm import tqdm
11 |
12 | from models.experimental import attempt_load
13 | from utils.datasets import create_dataloader
14 | from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15 | box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16 | from utils.metrics import ap_per_class, ConfusionMatrix
17 | from utils.plots import plot_images, output_to_target, plot_study_txt
18 | from utils.torch_utils import select_device, time_synchronized, TracedModel
19 |
20 |
21 | def test(data,
22 | weights=None,
23 | batch_size=32,
24 | imgsz=640,
25 | conf_thres=0.001,
26 | iou_thres=0.6, # for NMS
27 | save_json=False,
28 | single_cls=False,
29 | augment=False,
30 | verbose=False,
31 | model=None,
32 | dataloader=None,
33 | save_dir=Path(''), # for saving images
34 | save_txt=False, # for auto-labelling
35 | save_hybrid=False, # for hybrid auto-labelling
36 | save_conf=False, # save auto-label confidences
37 | plots=True,
38 | wandb_logger=None,
39 | compute_loss=None,
40 | half_precision=True,
41 | trace=False,
42 | is_coco=False,
43 | v5_metric=False):
44 | # Initialize/load model and set device
45 | training = model is not None
46 | if training: # called by train.py
47 | device = next(model.parameters()).device # get model device
48 |
49 | else: # called directly
50 | set_logging()
51 | device = select_device(opt.device, batch_size=batch_size)
52 |
53 | # Directories
54 | save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
55 | (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
56 |
57 | # Load model
58 | model = attempt_load(weights, map_location=device) # load FP32 model
59 | gs = max(int(model.stride.max()), 32) # grid size (max stride)
60 | imgsz = check_img_size(imgsz, s=gs) # check img_size
61 |
62 | if trace:
63 | model = TracedModel(model, device, imgsz)
64 |
65 | # Half
66 | half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
67 | if half:
68 | model.half()
69 |
70 | # Configure
71 | model.eval()
72 | if isinstance(data, str):
73 | is_coco = data.endswith('coco.yaml')
74 | with open(data) as f:
75 | data = yaml.load(f, Loader=yaml.SafeLoader)
76 | check_dataset(data) # check
77 | nc = 1 if single_cls else int(data['nc']) # number of classes
78 | iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
79 | niou = iouv.numel()
80 |
81 | # Logging
82 | log_imgs = 0
83 | if wandb_logger and wandb_logger.wandb:
84 | log_imgs = min(wandb_logger.log_imgs, 100)
85 | # Dataloader
86 | if not training:
87 | if device.type != 'cpu':
88 | model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
89 | task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
90 | dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
91 | prefix=colorstr(f'{task}: '))[0]
92 |
93 | if v5_metric:
94 | print("Testing with YOLOv5 AP metric...")
95 |
96 | seen = 0
97 | confusion_matrix = ConfusionMatrix(nc=nc)
98 | names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
99 | coco91class = coco80_to_coco91_class()
100 | s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
101 | p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
102 | loss = torch.zeros(3, device=device)
103 | jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
104 | for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
105 | img = img.to(device, non_blocking=True)
106 | img = img.half() if half else img.float() # uint8 to fp16/32
107 | img /= 255.0 # 0 - 255 to 0.0 - 1.0
108 | targets = targets.to(device)
109 | nb, _, height, width = img.shape # batch size, channels, height, width
110 |
111 | with torch.no_grad():
112 | # Run model
113 | t = time_synchronized()
114 | out, train_out = model(img, augment=augment) # inference and training outputs
115 | t0 += time_synchronized() - t
116 |
117 | # Compute loss
118 | if compute_loss:
119 | loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
120 |
121 | # Run NMS
122 | targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
123 | lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
124 | t = time_synchronized()
125 | out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
126 | t1 += time_synchronized() - t
127 |
128 | # Statistics per image
129 | for si, pred in enumerate(out):
130 | labels = targets[targets[:, 0] == si, 1:]
131 | nl = len(labels)
132 | tcls = labels[:, 0].tolist() if nl else [] # target class
133 | path = Path(paths[si])
134 | seen += 1
135 |
136 | if len(pred) == 0:
137 | if nl:
138 | stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
139 | continue
140 |
141 | # Predictions
142 | predn = pred.clone()
143 | scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
144 |
145 | # Append to text file
146 | if save_txt:
147 | gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
148 | for *xyxy, conf, cls in predn.tolist():
149 | xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
150 | line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
151 | with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
152 | f.write(('%g ' * len(line)).rstrip() % line + '\n')
153 |
154 | # W&B logging - Media Panel Plots
155 | if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
156 | if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
157 | box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
158 | "class_id": int(cls),
159 | "box_caption": "%s %.3f" % (names[cls], conf),
160 | "scores": {"class_score": conf},
161 | "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
162 | boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
163 | wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
164 | wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
165 |
166 | # Append to pycocotools JSON dictionary
167 | if save_json:
168 | # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
169 | image_id = int(path.stem) if path.stem.isnumeric() else path.stem
170 | box = xyxy2xywh(predn[:, :4]) # xywh
171 | box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
172 | for p, b in zip(pred.tolist(), box.tolist()):
173 | jdict.append({'image_id': image_id,
174 | 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
175 | 'bbox': [round(x, 3) for x in b],
176 | 'score': round(p[4], 5)})
177 |
178 | # Assign all predictions as incorrect
179 | correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
180 | if nl:
181 | detected = [] # target indices
182 | tcls_tensor = labels[:, 0]
183 |
184 | # target boxes
185 | tbox = xywh2xyxy(labels[:, 1:5])
186 | scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
187 | if plots:
188 | confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
189 |
190 | # Per target class
191 | for cls in torch.unique(tcls_tensor):
192 | ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
193 | pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
194 |
195 | # Search for detections
196 | if pi.shape[0]:
197 | # Prediction to target ious
198 | ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
199 |
200 | # Append detections
201 | detected_set = set()
202 | for j in (ious > iouv[0]).nonzero(as_tuple=False):
203 | d = ti[i[j]] # detected target
204 | if d.item() not in detected_set:
205 | detected_set.add(d.item())
206 | detected.append(d)
207 | correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
208 | if len(detected) == nl: # all targets already located in image
209 | break
210 |
211 | # Append statistics (correct, conf, pcls, tcls)
212 | stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
213 |
214 | # Plot images
215 | if plots and batch_i < 3:
216 | f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
217 | Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
218 | f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
219 | Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
220 |
221 | # Compute statistics
222 | stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
223 | if len(stats) and stats[0].any():
224 | p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names)
225 | ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
226 | mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
227 | nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
228 | else:
229 | nt = torch.zeros(1)
230 |
231 | # Print results
232 | pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
233 | print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
234 |
235 | # Print results per class
236 | if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
237 | for i, c in enumerate(ap_class):
238 | print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
239 |
240 | # Print speeds
241 | t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
242 | if not training:
243 | print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
244 |
245 | # Plots
246 | if plots:
247 | confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
248 | if wandb_logger and wandb_logger.wandb:
249 | val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
250 | wandb_logger.log({"Validation": val_batches})
251 | if wandb_images:
252 | wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
253 |
254 | # Save JSON
255 | if save_json and len(jdict):
256 | w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
257 | anno_json = './coco/annotations/instances_val2017.json' # annotations json
258 | pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
259 | print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
260 | with open(pred_json, 'w') as f:
261 | json.dump(jdict, f)
262 |
263 | try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
264 | from pycocotools.coco import COCO
265 | from pycocotools.cocoeval import COCOeval
266 |
267 | anno = COCO(anno_json) # init annotations api
268 | pred = anno.loadRes(pred_json) # init predictions api
269 | eval = COCOeval(anno, pred, 'bbox')
270 | if is_coco:
271 | eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
272 | eval.evaluate()
273 | eval.accumulate()
274 | eval.summarize()
275 | map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
276 | except Exception as e:
277 | print(f'pycocotools unable to run: {e}')
278 |
279 | # Return results
280 | model.float() # for training
281 | if not training:
282 | s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
283 | print(f"Results saved to {save_dir}{s}")
284 | maps = np.zeros(nc) + map
285 | for i, c in enumerate(ap_class):
286 | maps[c] = ap[i]
287 | return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
288 |
289 |
290 | if __name__ == '__main__':
291 | parser = argparse.ArgumentParser(prog='test.py')
292 | # example
293 | parser.add_argument('--weights', nargs='+', type=str, default='runs/train/KDNet/weights/epoch_074.pt', help='model.pt path(s)')
294 | parser.add_argument('--data', type=str, default='data/ccpd_blur.yaml', help='*.data path')
295 | parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
296 | # parser.add_argument('--batch-size', type=int, default=1, help='size of each image batch')
297 | parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
298 | parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
299 | # parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
300 | parser.add_argument('--iou-thres', type=float, default=0.7, help='IOU threshold for NMS')
301 | parser.add_argument('--task', default='val', help='train, val, test, speed or study')
302 | parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
303 | parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
304 | parser.add_argument('--augment', action='store_true', help='augmented inference')
305 | parser.add_argument('--verbose', action='store_true', help='report mAP by class')
306 | parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
307 | parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
308 | parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
309 | parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
310 | parser.add_argument('--project', default='runs/test', help='save to project/name')
311 | parser.add_argument('--name', default='exp', help='save to project/name')
312 | parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
313 | parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
314 | parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
315 | opt = parser.parse_args()
316 | opt.save_json |= opt.data.endswith('ccpd.yaml')
317 | opt.data = check_file(opt.data) # check file
318 | print(opt)
319 | #check_requirements()
320 |
321 | if opt.task in ('train', 'val', 'test'): # run normally
322 | test(opt.data,
323 | opt.weights,
324 | opt.batch_size,
325 | opt.img_size,
326 | opt.conf_thres,
327 | opt.iou_thres,
328 | opt.save_json,
329 | opt.single_cls,
330 | opt.augment,
331 | opt.verbose,
332 | save_txt=opt.save_txt | opt.save_hybrid,
333 | save_hybrid=opt.save_hybrid,
334 | save_conf=opt.save_conf,
335 | trace=not opt.no_trace,
336 | v5_metric=opt.v5_metric
337 | )
338 |
339 | elif opt.task == 'speed': # speed benchmarks
340 | for w in opt.weights:
341 | test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, v5_metric=opt.v5_metric)
342 |
343 | elif opt.task == 'study': # run over a range of settings and save/plot
344 | # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
345 | x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
346 | for w in opt.weights:
347 | f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
348 | y = [] # y axis
349 | for i in x: # img-size
350 | print(f'\nRunning {f} point {i}...')
351 | r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
352 | plots=False, v5_metric=opt.v5_metric)
353 | y.append(r + t) # results and times
354 | np.savetxt(f, y, fmt='%10.4g') # save
355 | os.system('zip -r study.zip study_*.txt')
356 | plot_study_txt(x=x) # plot
357 |
--------------------------------------------------------------------------------
/utils/plots.py:
--------------------------------------------------------------------------------
1 | # Plotting utils
2 |
3 | import glob
4 | import math
5 | import os
6 | import random
7 | from copy import copy
8 | from pathlib import Path
9 |
10 | import cv2
11 | import matplotlib
12 | import matplotlib.pyplot as plt
13 | import numpy as np
14 | import pandas as pd
15 | import seaborn as sns
16 | import torch
17 | import yaml
18 | from PIL import Image, ImageDraw, ImageFont
19 | from scipy.signal import butter, filtfilt
20 |
21 | from utils.general import xywh2xyxy, xyxy2xywh
22 | from utils.metrics import fitness
23 |
24 | # Settings
25 | matplotlib.rc('font', **{'size': 11})
26 | matplotlib.use('Agg') # for writing to files only
27 |
28 |
29 | def color_list():
30 | # Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
31 | def hex2rgb(h):
32 | return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
33 |
34 | return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
35 |
36 |
37 | def hist2d(x, y, n=100):
38 | # 2d histogram used in labels.png and evolve.png
39 | xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
40 | hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
41 | xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
42 | yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
43 | return np.log(hist[xidx, yidx])
44 |
45 |
46 | def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
47 | # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
48 | def butter_lowpass(cutoff, fs, order):
49 | nyq = 0.5 * fs
50 | normal_cutoff = cutoff / nyq
51 | return butter(order, normal_cutoff, btype='low', analog=False)
52 |
53 | b, a = butter_lowpass(cutoff, fs, order=order)
54 | return filtfilt(b, a, data) # forward-backward filter
55 |
56 |
57 | def plot_one_box(x, img, color=None, label=None, line_thickness=3):
58 | # Plots one bounding box on image img
59 | tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
60 | color = color or [random.randint(0, 255) for _ in range(3)]
61 | c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
62 | cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
63 | if label:
64 | tf = max(tl - 1, 1) # font thickness
65 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
66 | c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
67 | cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
68 | cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
69 |
70 |
71 | def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
72 | img = Image.fromarray(img)
73 | draw = ImageDraw.Draw(img)
74 | line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
75 | draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
76 | if label:
77 | fontsize = max(round(max(img.size) / 40), 12)
78 | font = ImageFont.truetype("Arial.ttf", fontsize)
79 | txt_width, txt_height = font.getsize(label)
80 | draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
81 | draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
82 | return np.asarray(img)
83 |
84 |
85 | def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
86 | # Compares the two methods for width-height anchor multiplication
87 | # https://github.com/ultralytics/yolov3/issues/168
88 | x = np.arange(-4.0, 4.0, .1)
89 | ya = np.exp(x)
90 | yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
91 |
92 | fig = plt.figure(figsize=(6, 3), tight_layout=True)
93 | plt.plot(x, ya, '.-', label='YOLOv3')
94 | plt.plot(x, yb ** 2, '.-', label='YOLOR ^2')
95 | plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6')
96 | plt.xlim(left=-4, right=4)
97 | plt.ylim(bottom=0, top=6)
98 | plt.xlabel('input')
99 | plt.ylabel('output')
100 | plt.grid()
101 | plt.legend()
102 | fig.savefig('comparison.png', dpi=200)
103 |
104 |
105 | def output_to_target(output):
106 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
107 | targets = []
108 | for i, o in enumerate(output):
109 | for *box, conf, cls in o.cpu().numpy():
110 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
111 | return np.array(targets)
112 |
113 |
114 | def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
115 | # Plot image grid with labels
116 |
117 | if isinstance(images, torch.Tensor):
118 | images = images.cpu().float().numpy()
119 | if isinstance(targets, torch.Tensor):
120 | targets = targets.cpu().numpy()
121 |
122 | # un-normalise
123 | if np.max(images[0]) <= 1:
124 | images *= 255
125 |
126 | tl = 3 # line thickness
127 | tf = max(tl - 1, 1) # font thickness
128 | bs, _, h, w = images.shape # batch size, _, height, width
129 | bs = min(bs, max_subplots) # limit plot images
130 | ns = np.ceil(bs ** 0.5) # number of subplots (square)
131 |
132 | # Check if we should resize
133 | scale_factor = max_size / max(h, w)
134 | if scale_factor < 1:
135 | h = math.ceil(scale_factor * h)
136 | w = math.ceil(scale_factor * w)
137 |
138 | colors = color_list() # list of colors
139 | mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
140 | for i, img in enumerate(images):
141 | if i == max_subplots: # if last batch has fewer images than we expect
142 | break
143 |
144 | block_x = int(w * (i // ns))
145 | block_y = int(h * (i % ns))
146 |
147 | img = img.transpose(1, 2, 0)
148 | if scale_factor < 1:
149 | img = cv2.resize(img, (w, h))
150 |
151 | mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
152 | if len(targets) > 0:
153 | image_targets = targets[targets[:, 0] == i]
154 | boxes = xywh2xyxy(image_targets[:, 2:6]).T
155 | classes = image_targets[:, 1].astype('int')
156 | labels = image_targets.shape[1] == 6 # labels if no conf column
157 | conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
158 |
159 | if boxes.shape[1]:
160 | if boxes.max() <= 1.01: # if normalized with tolerance 0.01
161 | boxes[[0, 2]] *= w # scale to pixels
162 | boxes[[1, 3]] *= h
163 | elif scale_factor < 1: # absolute coords need scale if image scales
164 | boxes *= scale_factor
165 | boxes[[0, 2]] += block_x
166 | boxes[[1, 3]] += block_y
167 | for j, box in enumerate(boxes.T):
168 | cls = int(classes[j])
169 | color = colors[cls % len(colors)]
170 | cls = names[cls] if names else cls
171 | if labels or conf[j] > 0.25: # 0.25 conf thresh
172 | label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
173 | plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
174 |
175 | # Draw image filename labels
176 | if paths:
177 | label = Path(paths[i]).name[:40] # trim to 40 char
178 | t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
179 | cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
180 | lineType=cv2.LINE_AA)
181 |
182 | # Image border
183 | cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
184 |
185 | if fname:
186 | r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
187 | mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
188 | # cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
189 | Image.fromarray(mosaic).save(fname) # PIL save
190 | return mosaic
191 |
192 |
193 | def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
194 | # Plot LR simulating training for full epochs
195 | optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
196 | y = []
197 | for _ in range(epochs):
198 | scheduler.step()
199 | y.append(optimizer.param_groups[0]['lr'])
200 | plt.plot(y, '.-', label='LR')
201 | plt.xlabel('epoch')
202 | plt.ylabel('LR')
203 | plt.grid()
204 | plt.xlim(0, epochs)
205 | plt.ylim(0)
206 | plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
207 | plt.close()
208 |
209 |
210 | def plot_test_txt(): # from utils.plots import *; plot_test()
211 | # Plot test.txt histograms
212 | x = np.loadtxt('test.txt', dtype=np.float32)
213 | box = xyxy2xywh(x[:, :4])
214 | cx, cy = box[:, 0], box[:, 1]
215 |
216 | fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
217 | ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
218 | ax.set_aspect('equal')
219 | plt.savefig('hist2d.png', dpi=300)
220 |
221 | fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
222 | ax[0].hist(cx, bins=600)
223 | ax[1].hist(cy, bins=600)
224 | plt.savefig('hist1d.png', dpi=200)
225 |
226 |
227 | def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
228 | # Plot targets.txt histograms
229 | x = np.loadtxt('targets.txt', dtype=np.float32).T
230 | s = ['x targets', 'y targets', 'width targets', 'height targets']
231 | fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
232 | ax = ax.ravel()
233 | for i in range(4):
234 | ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
235 | ax[i].legend()
236 | ax[i].set_title(s[i])
237 | plt.savefig('targets.jpg', dpi=200)
238 |
239 |
240 | def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
241 | # Plot study.txt generated by test.py
242 | fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
243 | # ax = ax.ravel()
244 |
245 | fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
246 | # for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolor-p6', 'yolor-w6', 'yolor-e6', 'yolor-d6']]:
247 | for f in sorted(Path(path).glob('study*.txt')):
248 | y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
249 | x = np.arange(y.shape[1]) if x is None else np.array(x)
250 | s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
251 | # for i in range(7):
252 | # ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
253 | # ax[i].set_title(s[i])
254 |
255 | j = y[3].argmax() + 1
256 | ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
257 | label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
258 |
259 | ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
260 | 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
261 |
262 | ax2.grid(alpha=0.2)
263 | ax2.set_yticks(np.arange(20, 60, 5))
264 | ax2.set_xlim(0, 57)
265 | ax2.set_ylim(30, 55)
266 | ax2.set_xlabel('GPU Speed (ms/img)')
267 | ax2.set_ylabel('COCO AP val')
268 | ax2.legend(loc='lower right')
269 | plt.savefig(str(Path(path).name) + '.png', dpi=300)
270 |
271 |
272 | def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
273 | # plot dataset labels
274 | print('Plotting labels... ')
275 | c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
276 | nc = int(c.max() + 1) # number of classes
277 | colors = color_list()
278 | x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
279 |
280 | # seaborn correlogram
281 | sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
282 | plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
283 | plt.close()
284 |
285 | # matplotlib labels
286 | matplotlib.use('svg') # faster
287 | ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
288 | ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
289 | ax[0].set_ylabel('instances')
290 | if 0 < len(names) < 30:
291 | ax[0].set_xticks(range(len(names)))
292 | ax[0].set_xticklabels(names, rotation=90, fontsize=10)
293 | else:
294 | ax[0].set_xlabel('classes')
295 | sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
296 | sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
297 |
298 | # rectangles
299 | labels[:, 1:3] = 0.5 # center
300 | labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
301 | img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
302 | for cls, *box in labels[:1000]:
303 | ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
304 | ax[1].imshow(img)
305 | ax[1].axis('off')
306 |
307 | for a in [0, 1, 2, 3]:
308 | for s in ['top', 'right', 'left', 'bottom']:
309 | ax[a].spines[s].set_visible(False)
310 |
311 | plt.savefig(save_dir / 'labels.jpg', dpi=200)
312 | matplotlib.use('Agg')
313 | plt.close()
314 |
315 | # loggers
316 | for k, v in loggers.items() or {}:
317 | if k == 'wandb' and v:
318 | v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
319 |
320 |
321 | def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
322 | # Plot hyperparameter evolution results in evolve.txt
323 | with open(yaml_file) as f:
324 | hyp = yaml.load(f, Loader=yaml.SafeLoader)
325 | x = np.loadtxt('evolve.txt', ndmin=2)
326 | f = fitness(x)
327 | # weights = (f - f.min()) ** 2 # for weighted results
328 | plt.figure(figsize=(10, 12), tight_layout=True)
329 | matplotlib.rc('font', **{'size': 8})
330 | for i, (k, v) in enumerate(hyp.items()):
331 | y = x[:, i + 7]
332 | # mu = (y * weights).sum() / weights.sum() # best weighted result
333 | mu = y[f.argmax()] # best single result
334 | plt.subplot(6, 5, i + 1)
335 | plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
336 | plt.plot(mu, f.max(), 'k+', markersize=15)
337 | plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
338 | if i % 5 != 0:
339 | plt.yticks([])
340 | print('%15s: %.3g' % (k, mu))
341 | plt.savefig('evolve.png', dpi=200)
342 | print('\nPlot saved as evolve.png')
343 |
344 |
345 | def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
346 | # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
347 | ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
348 | s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
349 | files = list(Path(save_dir).glob('frames*.txt'))
350 | for fi, f in enumerate(files):
351 | try:
352 | results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
353 | n = results.shape[1] # number of rows
354 | x = np.arange(start, min(stop, n) if stop else n)
355 | results = results[:, x]
356 | t = (results[0] - results[0].min()) # set t0=0s
357 | results[0] = x
358 | for i, a in enumerate(ax):
359 | if i < len(results):
360 | label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
361 | a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
362 | a.set_title(s[i])
363 | a.set_xlabel('time (s)')
364 | # if fi == len(files) - 1:
365 | # a.set_ylim(bottom=0)
366 | for side in ['top', 'right']:
367 | a.spines[side].set_visible(False)
368 | else:
369 | a.remove()
370 | except Exception as e:
371 | print('Warning: Plotting error for %s; %s' % (f, e))
372 |
373 | ax[1].legend()
374 | plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
375 |
376 |
377 | def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
378 | # Plot training 'results*.txt', overlaying train and val losses
379 | s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
380 | t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
381 | for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
382 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
383 | n = results.shape[1] # number of rows
384 | x = range(start, min(stop, n) if stop else n)
385 | fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
386 | ax = ax.ravel()
387 | for i in range(5):
388 | for j in [i, i + 5]:
389 | y = results[j, x]
390 | ax[i].plot(x, y, marker='.', label=s[j])
391 | # y_smooth = butter_lowpass_filtfilt(y)
392 | # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
393 |
394 | ax[i].set_title(t[i])
395 | ax[i].legend()
396 | ax[i].set_ylabel(f) if i == 0 else None # add filename
397 | fig.savefig(f.replace('.txt', '.png'), dpi=200)
398 |
399 |
400 | def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
401 | # Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
402 | fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
403 | ax = ax.ravel()
404 | s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
405 | 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
406 | if bucket:
407 | # files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
408 | files = ['results%g.txt' % x for x in id]
409 | c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
410 | os.system(c)
411 | else:
412 | files = list(Path(save_dir).glob('results*.txt'))
413 | assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
414 | for fi, f in enumerate(files):
415 | try:
416 | results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
417 | n = results.shape[1] # number of rows
418 | x = range(start, min(stop, n) if stop else n)
419 | for i in range(10):
420 | y = results[i, x]
421 | if i in [0, 1, 2, 5, 6, 7]:
422 | y[y == 0] = np.nan # don't show zero loss values
423 | # y /= y[0] # normalize
424 | label = labels[fi] if len(labels) else f.stem
425 | ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
426 | ax[i].set_title(s[i])
427 | # if i in [5, 6, 7]: # share train and val loss y axes
428 | # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
429 | except Exception as e:
430 | print('Warning: Plotting error for %s; %s' % (f, e))
431 |
432 | ax[1].legend()
433 | fig.savefig(Path(save_dir) / 'results.png', dpi=200)
434 |
435 |
436 | def output_to_keypoint(output):
437 | # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
438 | targets = []
439 | for i, o in enumerate(output):
440 | kpts = o[:,6:]
441 | o = o[:,:6]
442 | for index, (*box, conf, cls) in enumerate(o.detach().cpu().numpy()):
443 | targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf, *list(kpts.detach().cpu().numpy()[index])])
444 | return np.array(targets)
445 |
446 |
447 | def plot_skeleton_kpts(im, kpts, steps, orig_shape=None):
448 | #Plot the skeleton and keypointsfor coco datatset
449 | palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
450 | [230, 230, 0], [255, 153, 255], [153, 204, 255],
451 | [255, 102, 255], [255, 51, 255], [102, 178, 255],
452 | [51, 153, 255], [255, 153, 153], [255, 102, 102],
453 | [255, 51, 51], [153, 255, 153], [102, 255, 102],
454 | [51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0],
455 | [255, 255, 255]])
456 |
457 | skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12],
458 | [7, 13], [6, 7], [6, 8], [7, 9], [8, 10], [9, 11], [2, 3],
459 | [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]]
460 |
461 | pose_limb_color = palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]]
462 | pose_kpt_color = palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]]
463 | radius = 5
464 | num_kpts = len(kpts) // steps
465 |
466 | for kid in range(num_kpts):
467 | r, g, b = pose_kpt_color[kid]
468 | x_coord, y_coord = kpts[steps * kid], kpts[steps * kid + 1]
469 | if not (x_coord % 640 == 0 or y_coord % 640 == 0):
470 | if steps == 3:
471 | conf = kpts[steps * kid + 2]
472 | if conf < 0.5:
473 | continue
474 | cv2.circle(im, (int(x_coord), int(y_coord)), radius, (int(r), int(g), int(b)), -1)
475 |
476 | for sk_id, sk in enumerate(skeleton):
477 | r, g, b = pose_limb_color[sk_id]
478 | pos1 = (int(kpts[(sk[0]-1)*steps]), int(kpts[(sk[0]-1)*steps+1]))
479 | pos2 = (int(kpts[(sk[1]-1)*steps]), int(kpts[(sk[1]-1)*steps+1]))
480 | if steps == 3:
481 | conf1 = kpts[(sk[0]-1)*steps+2]
482 | conf2 = kpts[(sk[1]-1)*steps+2]
483 | if conf1<0.5 or conf2<0.5:
484 | continue
485 | if pos1[0]%640 == 0 or pos1[1]%640==0 or pos1[0]<0 or pos1[1]<0:
486 | continue
487 | if pos2[0] % 640 == 0 or pos2[1] % 640 == 0 or pos2[0]<0 or pos2[1]<0:
488 | continue
489 | cv2.line(im, pos1, pos2, (int(r), int(g), int(b)), thickness=2)
490 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/utils/general.py:
--------------------------------------------------------------------------------
1 | # YOLOR general utils
2 |
3 | import glob
4 | import logging
5 | import math
6 | import os
7 | import platform
8 | import random
9 | import re
10 | import subprocess
11 | import time
12 | from pathlib import Path
13 |
14 | import cv2
15 | import numpy as np
16 | import pandas as pd
17 | import torch
18 | import torchvision
19 | import yaml
20 |
21 | from utils.google_utils import gsutil_getsize
22 | from utils.metrics import fitness
23 | from utils.torch_utils import init_torch_seeds
24 |
25 | # Settings
26 | torch.set_printoptions(linewidth=320, precision=5, profile='long')
27 | np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
28 | pd.options.display.max_columns = 10
29 | cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
30 | os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
31 |
32 |
33 | def set_logging(rank=-1):
34 | logging.basicConfig(
35 | format="%(message)s",
36 | level=logging.INFO if rank in [-1, 0] else logging.WARN)
37 |
38 |
39 | def init_seeds(seed=0):
40 | # Initialize random number generator (RNG) seeds
41 | random.seed(seed)
42 | np.random.seed(seed)
43 | init_torch_seeds(seed)
44 |
45 |
46 | def get_latest_run(search_dir='.'):
47 | # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
48 | last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
49 | return max(last_list, key=os.path.getctime) if last_list else ''
50 |
51 |
52 | def isdocker():
53 | # Is environment a Docker container
54 | return Path('/workspace').exists() # or Path('/.dockerenv').exists()
55 |
56 |
57 | def emojis(str=''):
58 | # Return platform-dependent emoji-safe version of string
59 | return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
60 |
61 |
62 | def check_online():
63 | # Check internet connectivity
64 | import socket
65 | try:
66 | socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
67 | return True
68 | except OSError:
69 | return False
70 |
71 |
72 | def check_git_status():
73 | # Recommend 'git pull' if code is out of date
74 | print(colorstr('github: '), end='')
75 | try:
76 | assert Path('.git').exists(), 'skipping check (not a git repository)'
77 | assert not isdocker(), 'skipping check (Docker image)'
78 | assert check_online(), 'skipping check (offline)'
79 |
80 | cmd = 'git fetch && git config --get remote.origin.url'
81 | url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
82 | branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
83 | n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
84 | if n > 0:
85 | s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
86 | f"Use 'git pull' to update or 'git clone {url}' to download latest."
87 | else:
88 | s = f'up to date with {url} ✅'
89 | print(emojis(s)) # emoji-safe
90 | except Exception as e:
91 | print(e)
92 |
93 |
94 | def check_requirements(requirements='requirements.txt', exclude=()):
95 | # Check installed dependencies meet requirements (pass *.txt file or list of packages)
96 | import pkg_resources as pkg
97 | prefix = colorstr('red', 'bold', 'requirements:')
98 | if isinstance(requirements, (str, Path)): # requirements.txt file
99 | file = Path(requirements)
100 | if not file.exists():
101 | print(f"{prefix} {file.resolve()} not found, check failed.")
102 | return
103 | requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
104 | else: # list or tuple of packages
105 | requirements = [x for x in requirements if x not in exclude]
106 |
107 | n = 0 # number of packages updates
108 | for r in requirements:
109 | try:
110 | pkg.require(r)
111 | except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
112 | n += 1
113 | print(f"{prefix} {e.req} not found and is required by YOLOR, attempting auto-update...")
114 | print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
115 |
116 | if n: # if packages updated
117 | source = file.resolve() if 'file' in locals() else requirements
118 | s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
119 | f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
120 | print(emojis(s)) # emoji-safe
121 |
122 |
123 | def check_img_size(img_size, s=32):
124 | # Verify img_size is a multiple of stride s
125 | new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
126 | if new_size != img_size:
127 | print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
128 | return new_size
129 |
130 |
131 | def check_imshow():
132 | # Check if environment supports image displays
133 | try:
134 | assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
135 | cv2.imshow('test', np.zeros((1, 1, 3)))
136 | cv2.waitKey(1)
137 | cv2.destroyAllWindows()
138 | cv2.waitKey(1)
139 | return True
140 | except Exception as e:
141 | print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
142 | return False
143 |
144 |
145 | def check_file(file):
146 | # Search for file if not found
147 | if Path(file).is_file() or file == '':
148 | return file
149 | else:
150 | files = glob.glob('./**/' + file, recursive=True) # find file
151 | assert len(files), f'File Not Found: {file}' # assert file was found
152 | assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
153 | return files[0] # return file
154 |
155 |
156 | def check_dataset(dict):
157 | # Download dataset if not found locally
158 | val, s = dict.get('val'), dict.get('download')
159 | if val and len(val):
160 | val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
161 | if not all(x.exists() for x in val):
162 | print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
163 | if s and len(s): # download script
164 | print('Downloading %s ...' % s)
165 | if s.startswith('http') and s.endswith('.zip'): # URL
166 | f = Path(s).name # filename
167 | torch.hub.download_url_to_file(s, f)
168 | r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
169 | else: # bash script
170 | r = os.system(s)
171 | print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
172 | else:
173 | raise Exception('Dataset not found.')
174 |
175 |
176 | def make_divisible(x, divisor):
177 | # Returns x evenly divisible by divisor
178 | return math.ceil(x / divisor) * divisor
179 |
180 |
181 | def clean_str(s):
182 | # Cleans a string by replacing special characters with underscore _
183 | return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
184 |
185 |
186 | def one_cycle(y1=0.0, y2=1.0, steps=100):
187 | # lambda function for sinusoidal ramp from y1 to y2
188 | return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
189 |
190 |
191 | def colorstr(*input):
192 | # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
193 | *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
194 | colors = {'black': '\033[30m', # basic colors
195 | 'red': '\033[31m',
196 | 'green': '\033[32m',
197 | 'yellow': '\033[33m',
198 | 'blue': '\033[34m',
199 | 'magenta': '\033[35m',
200 | 'cyan': '\033[36m',
201 | 'white': '\033[37m',
202 | 'bright_black': '\033[90m', # bright colors
203 | 'bright_red': '\033[91m',
204 | 'bright_green': '\033[92m',
205 | 'bright_yellow': '\033[93m',
206 | 'bright_blue': '\033[94m',
207 | 'bright_magenta': '\033[95m',
208 | 'bright_cyan': '\033[96m',
209 | 'bright_white': '\033[97m',
210 | 'end': '\033[0m', # misc
211 | 'bold': '\033[1m',
212 | 'underline': '\033[4m'}
213 | return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
214 |
215 |
216 | def labels_to_class_weights(labels, nc=80):
217 | # Get class weights (inverse frequency) from training labels
218 | if labels[0] is None: # no labels loaded
219 | return torch.Tensor()
220 |
221 | labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
222 | classes = labels[:, 0].astype(np.int32) # labels = [class xywh]
223 | weights = np.bincount(classes, minlength=nc) # occurrences per class
224 |
225 | # Prepend gridpoint count (for uCE training)
226 | # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
227 | # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
228 |
229 | weights[weights == 0] = 1 # replace empty bins with 1
230 | weights = 1 / weights # number of targets per class
231 | weights /= weights.sum() # normalize
232 | return torch.from_numpy(weights)
233 |
234 |
235 | def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
236 | # Produces image weights based on class_weights and image contents
237 | class_counts = np.array([np.bincount(x[:, 0].astype(np.int32), minlength=nc) for x in labels])
238 | image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
239 | # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
240 | return image_weights
241 |
242 |
243 | def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
244 | # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
245 | # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
246 | # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
247 | # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
248 | # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
249 | x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
250 | 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
251 | 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
252 | return x
253 |
254 |
255 | def xyxy2xywh(x):
256 | # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
257 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
258 | y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
259 | y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
260 | y[:, 2] = x[:, 2] - x[:, 0] # width
261 | y[:, 3] = x[:, 3] - x[:, 1] # height
262 | return y
263 |
264 |
265 | def xywh2xyxy(x):
266 | # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
267 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
268 | y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
269 | y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
270 | y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
271 | y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
272 | return y
273 |
274 |
275 | def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
276 | # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
277 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
278 | y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
279 | y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
280 | y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
281 | y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
282 | return y
283 |
284 |
285 | def xyn2xy(x, w=640, h=640, padw=0, padh=0):
286 | # Convert normalized segments into pixel segments, shape (n,2)
287 | y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
288 | y[:, 0] = w * x[:, 0] + padw # top left x
289 | y[:, 1] = h * x[:, 1] + padh # top left y
290 | return y
291 |
292 |
293 | def segment2box(segment, width=640, height=640):
294 | # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
295 | x, y = segment.T # segment xy
296 | inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
297 | x, y, = x[inside], y[inside]
298 | return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
299 |
300 |
301 | def segments2boxes(segments):
302 | # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
303 | boxes = []
304 | for s in segments:
305 | x, y = s.T # segment xy
306 | boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
307 | return xyxy2xywh(np.array(boxes)) # cls, xywh
308 |
309 |
310 | def resample_segments(segments, n=1000):
311 | # Up-sample an (n,2) segment
312 | for i, s in enumerate(segments):
313 | s = np.concatenate((s, s[0:1, :]), axis=0)
314 | x = np.linspace(0, len(s) - 1, n)
315 | xp = np.arange(len(s))
316 | segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
317 | return segments
318 |
319 |
320 | def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
321 | # Rescale coords (xyxy) from img1_shape to img0_shape
322 | if ratio_pad is None: # calculate from img0_shape
323 | gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
324 | pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
325 | else:
326 | gain = ratio_pad[0][0]
327 | pad = ratio_pad[1]
328 |
329 | coords[:, [0, 2]] -= pad[0] # x padding
330 | coords[:, [1, 3]] -= pad[1] # y padding
331 | coords[:, :4] /= gain
332 | clip_coords(coords, img0_shape)
333 | return coords
334 |
335 |
336 | def clip_coords(boxes, img_shape):
337 | # Clip bounding xyxy bounding boxes to image shape (height, width)
338 | boxes[:, 0].clamp_(0, img_shape[1]) # x1
339 | boxes[:, 1].clamp_(0, img_shape[0]) # y1
340 | boxes[:, 2].clamp_(0, img_shape[1]) # x2
341 | boxes[:, 3].clamp_(0, img_shape[0]) # y2
342 |
343 |
344 | def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
345 | # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
346 | box2 = box2.T
347 |
348 | # Get the coordinates of bounding boxes
349 | if x1y1x2y2: # x1, y1, x2, y2 = box1
350 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
351 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
352 | else: # transform from xywh to xyxy
353 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
354 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
355 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
356 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
357 |
358 | # Intersection area
359 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
360 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
361 |
362 | # Union Area
363 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
364 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
365 | union = w1 * h1 + w2 * h2 - inter + eps
366 |
367 | iou = inter / union
368 |
369 | if GIoU or DIoU or CIoU:
370 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
371 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
372 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373 | c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
374 | rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
375 | (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
376 | if DIoU:
377 | return iou - rho2 / c2 # DIoU
378 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
379 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / (h2 + eps)) - torch.atan(w1 / (h1 + eps)), 2)
380 | with torch.no_grad():
381 | alpha = v / (v - iou + (1 + eps))
382 | return iou - (rho2 / c2 + v * alpha) # CIoU
383 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
384 | c_area = cw * ch + eps # convex area
385 | return iou - (c_area - union) / c_area # GIoU
386 | else:
387 | return iou # IoU
388 |
389 |
390 |
391 |
392 | def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, alpha=2, eps=1e-9):
393 | # Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
394 | box2 = box2.T
395 |
396 | # Get the coordinates of bounding boxes
397 | if x1y1x2y2: # x1, y1, x2, y2 = box1
398 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
399 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
400 | else: # transform from xywh to xyxy
401 | b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
402 | b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
403 | b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
404 | b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
405 |
406 | # Intersection area
407 | inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
408 | (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
409 |
410 | # Union Area
411 | w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
412 | w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
413 | union = w1 * h1 + w2 * h2 - inter + eps
414 |
415 | # change iou into pow(iou+eps)
416 | # iou = inter / union
417 | iou = torch.pow(inter/union + eps, alpha)
418 | # beta = 2 * alpha
419 | if GIoU or DIoU or CIoU:
420 | cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
421 | ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
422 | if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
423 | c2 = (cw ** 2 + ch ** 2) ** alpha + eps # convex diagonal
424 | rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
425 | rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
426 | rho2 = ((rho_x ** 2 + rho_y ** 2) / 4) ** alpha # center distance
427 | if DIoU:
428 | return iou - rho2 / c2 # DIoU
429 | elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
430 | v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
431 | with torch.no_grad():
432 | alpha_ciou = v / ((1 + eps) - inter / union + v)
433 | # return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
434 | return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
435 | else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
436 | # c_area = cw * ch + eps # convex area
437 | # return iou - (c_area - union) / c_area # GIoU
438 | c_area = torch.max(cw * ch + eps, union) # convex area
439 | return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
440 | else:
441 | return iou # torch.log(iou+eps) or iou
442 |
443 |
444 | def box_iou(box1, box2):
445 | # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
446 | """
447 | Return intersection-over-union (Jaccard index) of boxes.
448 | Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
449 | Arguments:
450 | box1 (Tensor[N, 4])
451 | box2 (Tensor[M, 4])
452 | Returns:
453 | iou (Tensor[N, M]): the NxM matrix containing the pairwise
454 | IoU values for every element in boxes1 and boxes2
455 | """
456 |
457 | def box_area(box):
458 | # box = 4xn
459 | return (box[2] - box[0]) * (box[3] - box[1])
460 |
461 | area1 = box_area(box1.T)
462 | area2 = box_area(box2.T)
463 |
464 | # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
465 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
466 | return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
467 |
468 |
469 | def wh_iou(wh1, wh2):
470 | # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
471 | wh1 = wh1[:, None] # [N,1,2]
472 | wh2 = wh2[None] # [1,M,2]
473 | inter = torch.min(wh1, wh2).prod(2) # [N,M]
474 | return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
475 |
476 |
477 | def box_giou(box1, box2):
478 | """
479 | Return generalized intersection-over-union (Jaccard index) between two sets of boxes.
480 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
481 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
482 | Args:
483 | boxes1 (Tensor[N, 4]): first set of boxes
484 | boxes2 (Tensor[M, 4]): second set of boxes
485 | Returns:
486 | Tensor[N, M]: the NxM matrix containing the pairwise generalized IoU values
487 | for every element in boxes1 and boxes2
488 | """
489 |
490 | def box_area(box):
491 | # box = 4xn
492 | return (box[2] - box[0]) * (box[3] - box[1])
493 |
494 | area1 = box_area(box1.T)
495 | area2 = box_area(box2.T)
496 |
497 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
498 | union = (area1[:, None] + area2 - inter)
499 |
500 | iou = inter / union
501 |
502 | lti = torch.min(box1[:, None, :2], box2[:, :2])
503 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
504 |
505 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
506 | areai = whi[:, :, 0] * whi[:, :, 1]
507 |
508 | return iou - (areai - union) / areai
509 |
510 |
511 | def box_ciou(box1, box2, eps: float = 1e-7):
512 | """
513 | Return complete intersection-over-union (Jaccard index) between two sets of boxes.
514 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
515 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
516 | Args:
517 | boxes1 (Tensor[N, 4]): first set of boxes
518 | boxes2 (Tensor[M, 4]): second set of boxes
519 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
520 | Returns:
521 | Tensor[N, M]: the NxM matrix containing the pairwise complete IoU values
522 | for every element in boxes1 and boxes2
523 | """
524 |
525 | def box_area(box):
526 | # box = 4xn
527 | return (box[2] - box[0]) * (box[3] - box[1])
528 |
529 | area1 = box_area(box1.T)
530 | area2 = box_area(box2.T)
531 |
532 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
533 | union = (area1[:, None] + area2 - inter)
534 |
535 | iou = inter / union
536 |
537 | lti = torch.min(box1[:, None, :2], box2[:, :2])
538 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
539 |
540 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
541 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
542 |
543 | # centers of boxes
544 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
545 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
546 | x_g = (box2[:, 0] + box2[:, 2]) / 2
547 | y_g = (box2[:, 1] + box2[:, 3]) / 2
548 | # The distance between boxes' centers squared.
549 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
550 |
551 | w_pred = box1[:, None, 2] - box1[:, None, 0]
552 | h_pred = box1[:, None, 3] - box1[:, None, 1]
553 |
554 | w_gt = box2[:, 2] - box2[:, 0]
555 | h_gt = box2[:, 3] - box2[:, 1]
556 |
557 | v = (4 / (torch.pi ** 2)) * torch.pow((torch.atan(w_gt / h_gt) - torch.atan(w_pred / h_pred)), 2)
558 | with torch.no_grad():
559 | alpha = v / (1 - iou + v + eps)
560 | return iou - (centers_distance_squared / diagonal_distance_squared) - alpha * v
561 |
562 |
563 | def box_diou(box1, box2, eps: float = 1e-7):
564 | """
565 | Return distance intersection-over-union (Jaccard index) between two sets of boxes.
566 | Both sets of boxes are expected to be in ``(x1, y1, x2, y2)`` format with
567 | ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
568 | Args:
569 | boxes1 (Tensor[N, 4]): first set of boxes
570 | boxes2 (Tensor[M, 4]): second set of boxes
571 | eps (float, optional): small number to prevent division by zero. Default: 1e-7
572 | Returns:
573 | Tensor[N, M]: the NxM matrix containing the pairwise distance IoU values
574 | for every element in boxes1 and boxes2
575 | """
576 |
577 | def box_area(box):
578 | # box = 4xn
579 | return (box[2] - box[0]) * (box[3] - box[1])
580 |
581 | area1 = box_area(box1.T)
582 | area2 = box_area(box2.T)
583 |
584 | inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
585 | union = (area1[:, None] + area2 - inter)
586 |
587 | iou = inter / union
588 |
589 | lti = torch.min(box1[:, None, :2], box2[:, :2])
590 | rbi = torch.max(box1[:, None, 2:], box2[:, 2:])
591 |
592 | whi = (rbi - lti).clamp(min=0) # [N,M,2]
593 | diagonal_distance_squared = (whi[:, :, 0] ** 2) + (whi[:, :, 1] ** 2) + eps
594 |
595 | # centers of boxes
596 | x_p = (box1[:, None, 0] + box1[:, None, 2]) / 2
597 | y_p = (box1[:, None, 1] + box1[:, None, 3]) / 2
598 | x_g = (box2[:, 0] + box2[:, 2]) / 2
599 | y_g = (box2[:, 1] + box2[:, 3]) / 2
600 | # The distance between boxes' centers squared.
601 | centers_distance_squared = (x_p - x_g) ** 2 + (y_p - y_g) ** 2
602 |
603 | # The distance IoU is the IoU penalized by a normalized
604 | # distance between boxes' centers squared.
605 | return iou - (centers_distance_squared / diagonal_distance_squared)
606 |
607 |
608 | def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
609 | labels=()):
610 | """Runs Non-Maximum Suppression (NMS) on inference results
611 |
612 | Returns:
613 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
614 | """
615 |
616 | nc = prediction.shape[2] - 5 # number of classes
617 | xc = prediction[..., 4] > conf_thres # candidates
618 |
619 | # Settings
620 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
621 | max_det = 300 # maximum number of detections per image
622 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
623 | time_limit = 10.0 # seconds to quit after
624 | redundant = True # require redundant detections
625 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
626 | merge = False # use merge-NMS
627 |
628 | t = time.time()
629 | output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
630 | for xi, x in enumerate(prediction): # image index, image inference
631 | # Apply constraints
632 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
633 | x = x[xc[xi]] # confidence
634 |
635 | # Cat apriori labels if autolabelling
636 | if labels and len(labels[xi]):
637 | l = labels[xi]
638 | v = torch.zeros((len(l), nc + 5), device=x.device)
639 | v[:, :4] = l[:, 1:5] # box
640 | v[:, 4] = 1.0 # conf
641 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
642 | x = torch.cat((x, v), 0)
643 |
644 | # If none remain process next image
645 | if not x.shape[0]:
646 | continue
647 |
648 | # Compute conf
649 | if nc == 1:
650 | x[:, 5:] = x[:, 4:5] # for models with one class, cls_loss is 0 and cls_conf is always 0.5,
651 | # so there is no need to multiplicate.
652 | else:
653 | x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
654 |
655 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
656 | box = xywh2xyxy(x[:, :4])
657 |
658 | # Detections matrix nx6 (xyxy, conf, cls)
659 | if multi_label:
660 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
661 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
662 | else: # best class only
663 | conf, j = x[:, 5:].max(1, keepdim=True)
664 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
665 |
666 | # Filter by class
667 | if classes is not None:
668 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
669 |
670 | # Apply finite constraint
671 | # if not torch.isfinite(x).all():
672 | # x = x[torch.isfinite(x).all(1)]
673 |
674 | # Check shape
675 | n = x.shape[0] # number of boxes
676 | if not n: # no boxes
677 | continue
678 | elif n > max_nms: # excess boxes
679 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
680 |
681 | # Batched NMS
682 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
683 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
684 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
685 | if i.shape[0] > max_det: # limit detections
686 | i = i[:max_det]
687 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
688 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
689 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
690 | weights = iou * scores[None] # box weights
691 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
692 | if redundant:
693 | i = i[iou.sum(1) > 1] # require redundancy
694 |
695 | output[xi] = x[i]
696 | if (time.time() - t) > time_limit:
697 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
698 | break # time limit exceeded
699 |
700 | return output
701 |
702 |
703 | def non_max_suppression_kpt(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
704 | labels=(), kpt_label=False, nc=None, nkpt=None):
705 | """Runs Non-Maximum Suppression (NMS) on inference results
706 |
707 | Returns:
708 | list of detections, on (n,6) tensor per image [xyxy, conf, cls]
709 | """
710 | if nc is None:
711 | nc = prediction.shape[2] - 5 if not kpt_label else prediction.shape[2] - 56 # number of classes
712 | xc = prediction[..., 4] > conf_thres # candidates
713 |
714 | # Settings
715 | min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
716 | max_det = 300 # maximum number of detections per image
717 | max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
718 | time_limit = 10.0 # seconds to quit after
719 | redundant = True # require redundant detections
720 | multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
721 | merge = False # use merge-NMS
722 |
723 | t = time.time()
724 | output = [torch.zeros((0,6), device=prediction.device)] * prediction.shape[0]
725 | for xi, x in enumerate(prediction): # image index, image inference
726 | # Apply constraints
727 | # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
728 | x = x[xc[xi]] # confidence
729 |
730 | # Cat apriori labels if autolabelling
731 | if labels and len(labels[xi]):
732 | l = labels[xi]
733 | v = torch.zeros((len(l), nc + 5), device=x.device)
734 | v[:, :4] = l[:, 1:5] # box
735 | v[:, 4] = 1.0 # conf
736 | v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
737 | x = torch.cat((x, v), 0)
738 |
739 | # If none remain process next image
740 | if not x.shape[0]:
741 | continue
742 |
743 | # Compute conf
744 | x[:, 5:5+nc] *= x[:, 4:5] # conf = obj_conf * cls_conf
745 |
746 | # Box (center x, center y, width, height) to (x1, y1, x2, y2)
747 | box = xywh2xyxy(x[:, :4])
748 |
749 | # Detections matrix nx6 (xyxy, conf, cls)
750 | if multi_label:
751 | i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
752 | x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
753 | else: # best class only
754 | if not kpt_label:
755 | conf, j = x[:, 5:].max(1, keepdim=True)
756 | x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
757 | else:
758 | kpts = x[:, 6:]
759 | conf, j = x[:, 5:6].max(1, keepdim=True)
760 | x = torch.cat((box, conf, j.float(), kpts), 1)[conf.view(-1) > conf_thres]
761 |
762 |
763 | # Filter by class
764 | if classes is not None:
765 | x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
766 |
767 | # Apply finite constraint
768 | # if not torch.isfinite(x).all():
769 | # x = x[torch.isfinite(x).all(1)]
770 |
771 | # Check shape
772 | n = x.shape[0] # number of boxes
773 | if not n: # no boxes
774 | continue
775 | elif n > max_nms: # excess boxes
776 | x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
777 |
778 | # Batched NMS
779 | c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
780 | boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
781 | i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
782 | if i.shape[0] > max_det: # limit detections
783 | i = i[:max_det]
784 | if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
785 | # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
786 | iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
787 | weights = iou * scores[None] # box weights
788 | x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
789 | if redundant:
790 | i = i[iou.sum(1) > 1] # require redundancy
791 |
792 | output[xi] = x[i]
793 | if (time.time() - t) > time_limit:
794 | print(f'WARNING: NMS time limit {time_limit}s exceeded')
795 | break # time limit exceeded
796 |
797 | return output
798 |
799 |
800 | def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
801 | # Strip optimizer from 'f' to finalize training, optionally save as 's'
802 | x = torch.load(f, map_location=torch.device('cpu'))
803 | if x.get('ema'):
804 | x['model'] = x['ema'] # replace model with ema
805 | for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
806 | x[k] = None
807 | x['epoch'] = -1
808 | x['model'].half() # to FP16
809 | for p in x['model'].parameters():
810 | p.requires_grad = False
811 | torch.save(x, s or f)
812 | mb = os.path.getsize(s or f) / 1E6 # filesize
813 | print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
814 |
815 |
816 | def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
817 | # Print mutation results to evolve.txt (for use with train.py --evolve)
818 | a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
819 | b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
820 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
821 | print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
822 |
823 | if bucket:
824 | url = 'gs://%s/evolve.txt' % bucket
825 | if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
826 | os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
827 |
828 | with open('evolve.txt', 'a') as f: # append result
829 | f.write(c + b + '\n')
830 | x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
831 | x = x[np.argsort(-fitness(x))] # sort
832 | np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
833 |
834 | # Save yaml
835 | for i, k in enumerate(hyp.keys()):
836 | hyp[k] = float(x[0, i + 7])
837 | with open(yaml_file, 'w') as f:
838 | results = tuple(x[0, :7])
839 | c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
840 | f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
841 | yaml.dump(hyp, f, sort_keys=False)
842 |
843 | if bucket:
844 | os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
845 |
846 |
847 | def apply_classifier(x, model, img, im0):
848 | # applies a second stage classifier to yolo outputs
849 | im0 = [im0] if isinstance(im0, np.ndarray) else im0
850 | for i, d in enumerate(x): # per image
851 | if d is not None and len(d):
852 | d = d.clone()
853 |
854 | # Reshape and pad cutouts
855 | b = xyxy2xywh(d[:, :4]) # boxes
856 | b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
857 | b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
858 | d[:, :4] = xywh2xyxy(b).long()
859 |
860 | # Rescale boxes from img_size to im0 size
861 | scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
862 |
863 | # Classes
864 | pred_cls1 = d[:, 5].long()
865 | ims = []
866 | for j, a in enumerate(d): # per item
867 | cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
868 | im = cv2.resize(cutout, (224, 224)) # BGR
869 | # cv2.imwrite('test%i.jpg' % j, cutout)
870 |
871 | im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
872 | im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
873 | im /= 255.0 # 0 - 255 to 0.0 - 1.0
874 | ims.append(im)
875 |
876 | pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
877 | x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
878 |
879 | return x
880 |
881 |
882 | def increment_path(path, exist_ok=True, sep=''):
883 | # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
884 | path = Path(path) # os-agnostic
885 | if (path.exists() and exist_ok) or (not path.exists()):
886 | return str(path)
887 | else:
888 | dirs = glob.glob(f"{path}{sep}*") # similar paths
889 | matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
890 | i = [int(m.groups()[0]) for m in matches if m] # indices
891 | n = max(i) + 1 if i else 2 # increment number
892 | return f"{path}{sep}{n}" # update path
893 |
--------------------------------------------------------------------------------