\n", 244 | " | firstNames | \n", 245 | "heights | \n", 246 | "
---|---|---|
0 | \n", 251 | "jeff | \n", 252 | "188.2 | \n", 253 | "
1 | \n", 256 | "roger | \n", 257 | "181.3 | \n", 258 | "
2 | \n", 261 | "andrew | \n", 262 | "193.4 | \n", 263 | "
3 | \n", 266 | "brian | \n", 267 | "192.3 | \n", 268 | "
\n", 150 | " | address | \n", 151 | "direction | \n", 152 | "street | \n", 153 | "crossStreet | \n", 154 | "intersection | \n", 155 | "Location 1 | \n", 156 | "
---|---|---|---|---|---|---|
0 | \n", 161 | "S CATON AVE & BENSON AVE | \n", 162 | "N/B | \n", 163 | "Caton Ave | \n", 164 | "Benson Ave | \n", 165 | "Caton Ave & Benson Ave | \n", 166 | "(39.2693779962, -76.6688185297) | \n", 167 | "
1 | \n", 170 | "S CATON AVE & BENSON AVE | \n", 171 | "S/B | \n", 172 | "Caton Ave | \n", 173 | "Benson Ave | \n", 174 | "Caton Ave & Benson Ave | \n", 175 | "(39.2693157898, -76.6689698176) | \n", 176 | "
2 | \n", 179 | "WILKENS AVE & PINE HEIGHTS AVE | \n", 180 | "E/B | \n", 181 | "Wilkens Ave | \n", 182 | "Pine Heights | \n", 183 | "Wilkens Ave & Pine Heights | \n", 184 | "(39.2720252302, -76.676960806) | \n", 185 | "
3 | \n", 188 | "THE ALAMEDA & E 33RD ST | \n", 189 | "S/B | \n", 190 | "The Alameda | \n", 191 | "33rd St | \n", 192 | "The Alameda & 33rd St | \n", 193 | "(39.3285013141, -76.5953545714) | \n", 194 | "
4 | \n", 197 | "E 33RD ST & THE ALAMEDA | \n", 198 | "E/B | \n", 199 | "E 33rd | \n", 200 | "The Alameda | \n", 201 | "E 33rd & The Alameda | \n", 202 | "(39.3283410623, -76.5953594625) | \n", 203 | "
\n",
240 | "sudo pip install openpyxl==1.5.8\n",
241 | "sudo pip install xlrd\n",
242 | "
\n",
243 | "\n",
244 | "Pandas `ExcelFile()` can't download and read at once (in contrast to `read_csv()`), so we need to resort to the basic Python way.\n",
245 | "Also notice I'm using .xls; .xlsx doesn't work in my computer."
246 | ]
247 | },
248 | {
249 | "cell_type": "code",
250 | "collapsed": false,
251 | "input": [
252 | "import urllib2\n",
253 | "\n",
254 | "# download the file as camera.xls and save it in ./data subfolder\n",
255 | "fileUrl = 'https://data.baltimorecity.gov/api/views/dz54-2aru/rows.xls?accessType=DOWNLOAD'\n",
256 | "f = urllib2.urlopen(fileUrl)\n",
257 | "data = f.read()\n",
258 | "with open('../data/camera.xls', 'wb') as w:\n",
259 | " w.write(data)\n",
260 | "\n",
261 | "# load the Excel file as a pandas DataFrame\n",
262 | "cameraData = pd.ExcelFile('../data/camera.xls')\n",
263 | "cameraData = cameraData.parse('Baltimore Fixed Speed Cameras', index_col=None, na_values=['NA'])\n",
264 | "cameraData.head()"
265 | ],
266 | "language": "python",
267 | "metadata": {},
268 | "outputs": [
269 | {
270 | "html": [
271 | "\n", 276 | " | address | \n", 277 | "direction | \n", 278 | "street | \n", 279 | "crossStreet | \n", 280 | "intersection | \n", 281 | "Location 1 | \n", 282 | "
---|---|---|---|---|---|---|
0 | \n", 287 | "S CATON AVE & BENSON AVE | \n", 288 | "N/B | \n", 289 | "Caton Ave | \n", 290 | "Benson Ave | \n", 291 | "Caton Ave & Benson Ave | \n", 292 | "(39.2693779962, -76.6688185297) | \n", 293 | "
1 | \n", 296 | "S CATON AVE & BENSON AVE | \n", 297 | "S/B | \n", 298 | "Caton Ave | \n", 299 | "Benson Ave | \n", 300 | "Caton Ave & Benson Ave | \n", 301 | "(39.2693157898, -76.6689698176) | \n", 302 | "
2 | \n", 305 | "WILKENS AVE & PINE HEIGHTS AVE | \n", 306 | "E/B | \n", 307 | "Wilkens Ave | \n", 308 | "Pine Heights | \n", 309 | "Wilkens Ave & Pine Heights | \n", 310 | "(39.2720252302, -76.676960806) | \n", 311 | "
3 | \n", 314 | "THE ALAMEDA & E 33RD ST | \n", 315 | "S/B | \n", 316 | "The Alameda | \n", 317 | "33rd St | \n", 318 | "The Alameda & 33rd St | \n", 319 | "(39.3285013141, -76.5953545714) | \n", 320 | "
4 | \n", 323 | "E 33RD ST & THE ALAMEDA | \n", 324 | "E/B | \n", 325 | "E 33rd | \n", 326 | "The Alameda | \n", 327 | "E 33rd & The Alameda | \n", 328 | "(39.3283410623, -76.5953594625) | \n", 329 | "
\n", 442 | " | street | \n", 443 | "crossStreet | \n", 444 | "intersection | \n", 445 | "Location 1 | \n", 446 | "
---|---|---|---|---|
0 | \n", 451 | "Caton Ave | \n", 452 | "Benson Ave | \n", 453 | "Caton Ave & Benson Ave | \n", 454 | "(39.2693779962, -76.6688185297) | \n", 455 | "
1 | \n", 458 | "Caton Ave | \n", 459 | "Benson Ave | \n", 460 | "Caton Ave & Benson Ave | \n", 461 | "(39.2693157898, -76.6689698176) | \n", 462 | "
2 | \n", 465 | "Wilkens Ave | \n", 466 | "Pine Heights | \n", 467 | "Wilkens Ave & Pine Heights | \n", 468 | "(39.2720252302, -76.676960806) | \n", 469 | "
3 | \n", 472 | "The Alameda | \n", 473 | "33rd St | \n", 474 | "The Alameda & 33rd St | \n", 475 | "(39.3285013141, -76.5953545714) | \n", 476 | "
4 | \n", 479 | "E 33rd | \n", 480 | "The Alameda | \n", 481 | "E 33rd & The Alameda | \n", 482 | "(39.3283410623, -76.5953594625) | \n", 483 | "
\n", 369 | " | RT_x | \n", 370 | "SERIALNO | \n", 371 | "DIVISION | \n", 372 | "PUMA_x | \n", 373 | "REGION | \n", 374 | "ST_x | \n", 375 | "ADJUST_x | \n", 376 | "WGTP | \n", 377 | "NP | \n", 378 | "TYPE | \n", 379 | "ACR | \n", 380 | "AGS | \n", 381 | "BDS | \n", 382 | "BLD | \n", 383 | "BUS | \n", 384 | "CONP | \n", 385 | "ELEP | \n", 386 | "FS | \n", 387 | "FULP | \n", 388 | "GASP | \n", 389 | "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 394 | "H | \n", 395 | "186 | \n", 396 | "8 | \n", 397 | "700 | \n", 398 | "4 | \n", 399 | "16 | \n", 400 | "1015675 | \n", 401 | "89 | \n", 402 | "4 | \n", 403 | "1 | \n", 404 | "1 | \n", 405 | "NaN | \n", 406 | "4 | \n", 407 | "2 | \n", 408 | "2 | \n", 409 | "NaN | \n", 410 | "180 | \n", 411 | "0 | \n", 412 | "2 | \n", 413 | "3 | \n", 414 | "
1 | \n", 417 | "H | \n", 418 | "186 | \n", 419 | "8 | \n", 420 | "700 | \n", 421 | "4 | \n", 422 | "16 | \n", 423 | "1015675 | \n", 424 | "89 | \n", 425 | "4 | \n", 426 | "1 | \n", 427 | "1 | \n", 428 | "NaN | \n", 429 | "4 | \n", 430 | "2 | \n", 431 | "2 | \n", 432 | "NaN | \n", 433 | "180 | \n", 434 | "0 | \n", 435 | "2 | \n", 436 | "3 | \n", 437 | "
2 | \n", 440 | "H | \n", 441 | "186 | \n", 442 | "8 | \n", 443 | "700 | \n", 444 | "4 | \n", 445 | "16 | \n", 446 | "1015675 | \n", 447 | "89 | \n", 448 | "4 | \n", 449 | "1 | \n", 450 | "1 | \n", 451 | "NaN | \n", 452 | "4 | \n", 453 | "2 | \n", 454 | "2 | \n", 455 | "NaN | \n", 456 | "180 | \n", 457 | "0 | \n", 458 | "2 | \n", 459 | "3 | \n", 460 | "
3 | \n", 463 | "H | \n", 464 | "186 | \n", 465 | "8 | \n", 466 | "700 | \n", 467 | "4 | \n", 468 | "16 | \n", 469 | "1015675 | \n", 470 | "89 | \n", 471 | "4 | \n", 472 | "1 | \n", 473 | "1 | \n", 474 | "NaN | \n", 475 | "4 | \n", 476 | "2 | \n", 477 | "2 | \n", 478 | "NaN | \n", 479 | "180 | \n", 480 | "0 | \n", 481 | "2 | \n", 482 | "3 | \n", 483 | "
4 | \n", 486 | "H | \n", 487 | "306 | \n", 488 | "8 | \n", 489 | "700 | \n", 490 | "4 | \n", 491 | "16 | \n", 492 | "1015675 | \n", 493 | "310 | \n", 494 | "1 | \n", 495 | "1 | \n", 496 | "NaN | \n", 497 | "NaN | \n", 498 | "1 | \n", 499 | "7 | \n", 500 | "NaN | \n", 501 | "NaN | \n", 502 | "60 | \n", 503 | "0 | \n", 504 | "2 | \n", 505 | "3 | \n", 506 | "
5 | \n", 509 | "H | \n", 510 | "395 | \n", 511 | "8 | \n", 512 | "100 | \n", 513 | "4 | \n", 514 | "16 | \n", 515 | "1015675 | \n", 516 | "106 | \n", 517 | "2 | \n", 518 | "1 | \n", 519 | "1 | \n", 520 | "NaN | \n", 521 | "3 | \n", 522 | "2 | \n", 523 | "2 | \n", 524 | "NaN | \n", 525 | "70 | \n", 526 | "0 | \n", 527 | "2 | \n", 528 | "30 | \n", 529 | "
6 | \n", 532 | "H | \n", 533 | "395 | \n", 534 | "8 | \n", 535 | "100 | \n", 536 | "4 | \n", 537 | "16 | \n", 538 | "1015675 | \n", 539 | "106 | \n", 540 | "2 | \n", 541 | "1 | \n", 542 | "1 | \n", 543 | "NaN | \n", 544 | "3 | \n", 545 | "2 | \n", 546 | "2 | \n", 547 | "NaN | \n", 548 | "70 | \n", 549 | "0 | \n", 550 | "2 | \n", 551 | "30 | \n", 552 | "
7 | \n", 555 | "H | \n", 556 | "506 | \n", 557 | "8 | \n", 558 | "700 | \n", 559 | "4 | \n", 560 | "16 | \n", 561 | "1015675 | \n", 562 | "240 | \n", 563 | "4 | \n", 564 | "1 | \n", 565 | "1 | \n", 566 | "NaN | \n", 567 | "4 | \n", 568 | "2 | \n", 569 | "2 | \n", 570 | "NaN | \n", 571 | "40 | \n", 572 | "0 | \n", 573 | "2 | \n", 574 | "80 | \n", 575 | "
8 | \n", 578 | "H | \n", 579 | "506 | \n", 580 | "8 | \n", 581 | "700 | \n", 582 | "4 | \n", 583 | "16 | \n", 584 | "1015675 | \n", 585 | "240 | \n", 586 | "4 | \n", 587 | "1 | \n", 588 | "1 | \n", 589 | "NaN | \n", 590 | "4 | \n", 591 | "2 | \n", 592 | "2 | \n", 593 | "NaN | \n", 594 | "40 | \n", 595 | "0 | \n", 596 | "2 | \n", 597 | "80 | \n", 598 | "
9 | \n", 601 | "H | \n", 602 | "506 | \n", 603 | "8 | \n", 604 | "700 | \n", 605 | "4 | \n", 606 | "16 | \n", 607 | "1015675 | \n", 608 | "240 | \n", 609 | "4 | \n", 610 | "1 | \n", 611 | "1 | \n", 612 | "NaN | \n", 613 | "4 | \n", 614 | "2 | \n", 615 | "2 | \n", 616 | "NaN | \n", 617 | "40 | \n", 618 | "0 | \n", 619 | "2 | \n", 620 | "80 | \n", 621 | "
10 | \n", 624 | "H | \n", 625 | "506 | \n", 626 | "8 | \n", 627 | "700 | \n", 628 | "4 | \n", 629 | "16 | \n", 630 | "1015675 | \n", 631 | "240 | \n", 632 | "4 | \n", 633 | "1 | \n", 634 | "1 | \n", 635 | "NaN | \n", 636 | "4 | \n", 637 | "2 | \n", 638 | "2 | \n", 639 | "NaN | \n", 640 | "40 | \n", 641 | "0 | \n", 642 | "2 | \n", 643 | "80 | \n", 644 | "
11 | \n", 647 | "H | \n", 648 | "835 | \n", 649 | "8 | \n", 650 | "800 | \n", 651 | "4 | \n", 652 | "16 | \n", 653 | "1015675 | \n", 654 | "118 | \n", 655 | "4 | \n", 656 | "1 | \n", 657 | "2 | \n", 658 | "1 | \n", 659 | "5 | \n", 660 | "2 | \n", 661 | "2 | \n", 662 | "NaN | \n", 663 | "250 | \n", 664 | "0 | \n", 665 | "2 | \n", 666 | "3 | \n", 667 | "
12 | \n", 670 | "H | \n", 671 | "835 | \n", 672 | "8 | \n", 673 | "800 | \n", 674 | "4 | \n", 675 | "16 | \n", 676 | "1015675 | \n", 677 | "118 | \n", 678 | "4 | \n", 679 | "1 | \n", 680 | "2 | \n", 681 | "1 | \n", 682 | "5 | \n", 683 | "2 | \n", 684 | "2 | \n", 685 | "NaN | \n", 686 | "250 | \n", 687 | "0 | \n", 688 | "2 | \n", 689 | "3 | \n", 690 | "
13 | \n", 693 | "H | \n", 694 | "835 | \n", 695 | "8 | \n", 696 | "800 | \n", 697 | "4 | \n", 698 | "16 | \n", 699 | "1015675 | \n", 700 | "118 | \n", 701 | "4 | \n", 702 | "1 | \n", 703 | "2 | \n", 704 | "1 | \n", 705 | "5 | \n", 706 | "2 | \n", 707 | "2 | \n", 708 | "NaN | \n", 709 | "250 | \n", 710 | "0 | \n", 711 | "2 | \n", 712 | "3 | \n", 713 | "
14 | \n", 716 | "H | \n", 717 | "835 | \n", 718 | "8 | \n", 719 | "800 | \n", 720 | "4 | \n", 721 | "16 | \n", 722 | "1015675 | \n", 723 | "118 | \n", 724 | "4 | \n", 725 | "1 | \n", 726 | "2 | \n", 727 | "1 | \n", 728 | "5 | \n", 729 | "2 | \n", 730 | "2 | \n", 731 | "NaN | \n", 732 | "250 | \n", 733 | "0 | \n", 734 | "2 | \n", 735 | "3 | \n", 736 | "
15 | \n", 739 | "H | \n", 740 | "989 | \n", 741 | "8 | \n", 742 | "700 | \n", 743 | "4 | \n", 744 | "16 | \n", 745 | "1015675 | \n", 746 | "115 | \n", 747 | "4 | \n", 748 | "1 | \n", 749 | "1 | \n", 750 | "NaN | \n", 751 | "3 | \n", 752 | "2 | \n", 753 | "2 | \n", 754 | "NaN | \n", 755 | "130 | \n", 756 | "0 | \n", 757 | "2 | \n", 758 | "3 | \n", 759 | "
\n", 40 | " | X | \n", 41 | "score | \n", 42 | "rating | \n", 43 | "genre | \n", 44 | "box_office | \n", 45 | "running_time | \n", 46 | "
---|---|---|---|---|---|---|
0 | \n", 51 | "2 Fast 2 Furious | \n", 52 | "48.9 | \n", 53 | "PG-13 | \n", 54 | "action/adventure | \n", 55 | "127.146 | \n", 56 | "107 | \n", 57 | "
1 | \n", 60 | "28 Days Later | \n", 61 | "78.2 | \n", 62 | "R | \n", 63 | "horror | \n", 64 | "45.065 | \n", 65 | "113 | \n", 66 | "
2 | \n", 69 | "A Guy Thing | \n", 70 | "39.5 | \n", 71 | "PG-13 | \n", 72 | "rom comedy | \n", 73 | "15.545 | \n", 74 | "101 | \n", 75 | "
3 | \n", 78 | "A Man Apart | \n", 79 | "42.9 | \n", 80 | "R | \n", 81 | "action/adventure | \n", 82 | "26.248 | \n", 83 | "110 | \n", 84 | "
4 | \n", 87 | "A Mighty Wind | \n", 88 | "79.9 | \n", 89 | "PG-13 | \n", 90 | "comedy | \n", 91 | "17.781 | \n", 92 | "91 | \n", 93 | "
\n", 134 | " | df | \n", 135 | "sum_sq | \n", 136 | "mean_sq | \n", 137 | "F | \n", 138 | "PR(>F) | \n", 139 | "
---|---|---|---|---|---|
rating | \n", 144 | "3 | \n", 145 | "570.123813 | \n", 146 | "190.041271 | \n", 147 | "0.918184 | \n", 148 | "0.433975 | \n", 149 | "
Residual | \n", 152 | "136 | \n", 153 | "28148.635044 | \n", 154 | "206.975258 | \n", 155 | "NaN | \n", 156 | "NaN | \n", 157 | "
\n", 214 | " | df | \n", 215 | "sum_sq | \n", 216 | "mean_sq | \n", 217 | "F | \n", 218 | "PR(>F) | \n", 219 | "
---|---|---|---|---|---|
rating | \n", 224 | "3 | \n", 225 | "570.123813 | \n", 226 | "190.041271 | \n", 227 | "0.973214 | \n", 228 | "0.407720 | \n", 229 | "
genre | \n", 232 | "12 | \n", 233 | "3934.928021 | \n", 234 | "327.910668 | \n", 235 | "1.679252 | \n", 236 | "0.079134 | \n", 237 | "
Residual | \n", 240 | "124 | \n", 241 | "24213.707023 | \n", 242 | "195.271831 | \n", 243 | "NaN | \n", 244 | "NaN | \n", 245 | "
\n", 281 | " | df | \n", 282 | "sum_sq | \n", 283 | "mean_sq | \n", 284 | "F | \n", 285 | "PR(>F) | \n", 286 | "
---|---|---|---|---|---|
genre | \n", 291 | "12 | \n", 292 | "4221.505277 | \n", 293 | "351.792106 | \n", 294 | "1.801551 | \n", 295 | "0.054737 | \n", 296 | "
rating | \n", 299 | "3 | \n", 300 | "283.546557 | \n", 301 | "94.515519 | \n", 302 | "0.484020 | \n", 303 | "0.693992 | \n", 304 | "
Residual | \n", 307 | "124 | \n", 308 | "24213.707023 | \n", 309 | "195.271831 | \n", 310 | "NaN | \n", 311 | "NaN | \n", 312 | "
\n", 348 | " | df | \n", 349 | "sum_sq | \n", 350 | "mean_sq | \n", 351 | "F | \n", 352 | "PR(>F) | \n", 353 | "
---|---|---|---|---|---|
genre | \n", 358 | "12 | \n", 359 | "4221.505277 | \n", 360 | "351.792106 | \n", 361 | "2.186135 | \n", 362 | "0.016198 | \n", 363 | "
rating | \n", 366 | "3 | \n", 367 | "283.546557 | \n", 368 | "94.515519 | \n", 369 | "0.587346 | \n", 370 | "0.624421 | \n", 371 | "
box_office | \n", 374 | "1 | \n", 375 | "4420.588612 | \n", 376 | "4420.588612 | \n", 377 | "27.470780 | \n", 378 | "0.000001 | \n", 379 | "
Residual | \n", 382 | "123 | \n", 383 | "19793.118411 | \n", 384 | "160.919662 | \n", 385 | "NaN | \n", 386 | "NaN | \n", 387 | "
\n", 38 | " | sbp | \n", 39 | "tobacco | \n", 40 | "ldl | \n", 41 | "adiposity | \n", 42 | "famhist | \n", 43 | "typea | \n", 44 | "obesity | \n", 45 | "alcohol | \n", 46 | "age | \n", 47 | "chd | \n", 48 | "
---|---|---|---|---|---|---|---|---|---|---|
1 | \n", 53 | "160 | \n", 54 | "12.00 | \n", 55 | "5.73 | \n", 56 | "23.11 | \n", 57 | "Present | \n", 58 | "49 | \n", 59 | "25.30 | \n", 60 | "97.20 | \n", 61 | "52 | \n", 62 | "1 | \n", 63 | "
2 | \n", 66 | "144 | \n", 67 | "0.01 | \n", 68 | "4.41 | \n", 69 | "28.61 | \n", 70 | "Absent | \n", 71 | "55 | \n", 72 | "28.87 | \n", 73 | "2.06 | \n", 74 | "63 | \n", 75 | "1 | \n", 76 | "
3 | \n", 79 | "118 | \n", 80 | "0.08 | \n", 81 | "3.48 | \n", 82 | "32.28 | \n", 83 | "Present | \n", 84 | "52 | \n", 85 | "29.14 | \n", 86 | "3.81 | \n", 87 | "46 | \n", 88 | "0 | \n", 89 | "
4 | \n", 92 | "170 | \n", 93 | "7.50 | \n", 94 | "6.41 | \n", 95 | "38.03 | \n", 96 | "Present | \n", 97 | "51 | \n", 98 | "31.99 | \n", 99 | "24.26 | \n", 100 | "58 | \n", 101 | "1 | \n", 102 | "
5 | \n", 105 | "134 | \n", 106 | "13.60 | \n", 107 | "3.50 | \n", 108 | "27.78 | \n", 109 | "Present | \n", 110 | "60 | \n", 111 | "25.99 | \n", 112 | "57.34 | \n", 113 | "49 | \n", 114 | "1 | \n", 115 | "
\n", 245 | " | Region | \n", 246 | "Area | \n", 247 | "Palmitic | \n", 248 | "Palmitoleic | \n", 249 | "Stearic | \n", 250 | "Oleic | \n", 251 | "Linoleic | \n", 252 | "Linolenic | \n", 253 | "Arachidic | \n", 254 | "
---|---|---|---|---|---|---|---|---|---|
1 | \n", 259 | "1 | \n", 260 | "1 | \n", 261 | "1075 | \n", 262 | "75 | \n", 263 | "226 | \n", 264 | "7823 | \n", 265 | "672 | \n", 266 | "36 | \n", 267 | "60 | \n", 268 | "
2 | \n", 271 | "1 | \n", 272 | "1 | \n", 273 | "1088 | \n", 274 | "73 | \n", 275 | "224 | \n", 276 | "7709 | \n", 277 | "781 | \n", 278 | "31 | \n", 279 | "61 | \n", 280 | "
3 | \n", 283 | "1 | \n", 284 | "1 | \n", 285 | "911 | \n", 286 | "54 | \n", 287 | "246 | \n", 288 | "8113 | \n", 289 | "549 | \n", 290 | "31 | \n", 291 | "63 | \n", 292 | "
4 | \n", 295 | "1 | \n", 296 | "1 | \n", 297 | "966 | \n", 298 | "57 | \n", 299 | "240 | \n", 300 | "7952 | \n", 301 | "619 | \n", 302 | "50 | \n", 303 | "78 | \n", 304 | "
5 | \n", 307 | "1 | \n", 308 | "1 | \n", 309 | "1051 | \n", 310 | "67 | \n", 311 | "259 | \n", 312 | "7771 | \n", 313 | "672 | \n", 314 | "50 | \n", 315 | "80 | \n", 316 | "
col_0 | \n", 182 | "not zero | \n", 183 | "zero | \n", 184 | "
---|---|---|
row_0 | \n", 187 | "\n", 188 | " | \n", 189 | " |
False | \n", 194 | "0 | \n", 195 | "470 | \n", 196 | "
True | \n", 199 | "500 | \n", 200 | "30 | \n", 201 | "
col_0 | \n", 235 | "not zero | \n", 236 | "zero | \n", 237 | "
---|---|---|
row_0 | \n", 240 | "\n", 241 | " | \n", 242 | " |
False | \n", 247 | "29 | \n", 248 | "500 | \n", 249 | "
True | \n", 252 | "471 | \n", 253 | "0 | \n", 254 | "
col_0 | \n", 308 | "not zero | \n", 309 | "zero | \n", 310 | "
---|---|---|
row_0 | \n", 313 | "\n", 314 | " | \n", 315 | " |
False | \n", 320 | "0 | \n", 321 | "483 | \n", 322 | "
True | \n", 325 | "500 | \n", 326 | "17 | \n", 327 | "