528 |
529 |
530 |
531 |
532 |
533 |
--------------------------------------------------------------------------------
/Depth Map Prediction from a Single Image using a Multi-Scale Deep Network学习笔记.doc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/Depth Map Prediction from a Single Image using a Multi-Scale Deep Network学习笔记.doc
--------------------------------------------------------------------------------
/Depth Map Prediction from a Single Image.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/Depth Map Prediction from a Single Image.pdf
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README:
--------------------------------------------------------------------------------
1 | =========================================================================
2 | Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
3 | =========================================================================
4 |
5 | Authors: David Eigen, Christian Puhrsch and Rob Fergus
6 |
7 | Email: deigen@cs.nyu.edu, cpuhrsch@nyu.edu, fergus@cs.nyu.edu
8 |
9 |
10 | Requirements
11 | -------------
12 |
13 | * theano
14 | * numpy, scipy
15 | * PIL or Pillow
16 |
17 |
18 | Running the Demo
19 | -----------------
20 |
21 | The demo loads the depth prediction network, compiles a theano function for
22 | inference, and infers depth for a single image. To run:
23 |
24 | > THEANO_FLAGS=device=gpu0 python demo_depth.py
25 |
26 | This should create a file called "demo_nyud_depth_prediction.png" with the
27 | predicted depth for the input "demo_nyud_rgb.jpg". (Substitute the gpu you
28 | want to run on for gpu0).
29 |
30 |
31 |
32 | Other Information
33 | ------------------
34 |
35 | This tree contains code for depth prediction network inference. While there is
36 | some code relating to training, much of the training code including most data
37 | processing is not provided here. We may release this in the future, however.
38 |
39 | While developing this project, we made a few modifications in theano not
40 | currently part of the main codeline. While the above instructions should work
41 | for inference on a current unmodified theano build, it may take up more GPU
42 | memory than needed due to use of test values for shape information. The git
43 | patch file "theano_test_value_size.patch" is also included and might be used to
44 | enable this feature on your own tree.
45 |
--------------------------------------------------------------------------------
/common/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/common/__init__.py
--------------------------------------------------------------------------------
/common/__init__.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/common/__init__.pyc
--------------------------------------------------------------------------------
/common/configuration.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | '''
3 | Copyright (C) 2014 New York University
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 | '''
18 | import importlib
19 |
20 | from ConfigParser import SafeConfigParser, NoOptionError, NoSectionError
21 |
22 | def read_config(fn):
23 | conf = _ConfigParser()
24 | conf.read(fn)
25 | conf.set_eval_environ(section='config')
26 | return conf
27 |
28 | _ERROR = object()
29 |
30 | class _ConfigParser(SafeConfigParser):
31 | def __init__(self):
32 | SafeConfigParser.__init__(self)
33 | self.eval_globals = None
34 | self.eval_locals = None
35 |
36 | def get_section(self, section):
37 | return _ConfigSection(self, section)
38 |
39 | def set_eval_environ(self, section=None, globals=None, locals=None):
40 | self.eval_globals = globals or {}
41 | self.eval_locals = locals
42 | self.eval_globals.update(self._read_eval_env(section))
43 |
44 | def _read_eval_env(self, section):
45 | if not section or not self.has_section(section):
46 | return {}
47 | mods = self.get(section, 'imports', '')
48 | eval_env = {}
49 | for modstr in mods.split(','):
50 | if ' as ' in modstr:
51 | (mod, name) = modstr.split(' as ')
52 | else:
53 | mod = name = modstr
54 | eval_env[name.strip()] = importlib.import_module(mod.strip())
55 | return eval_env
56 |
57 | def get_eval_environ(self, globals, locals):
58 | if globals is None:
59 | globals = self.eval_globals
60 | if locals is None:
61 | locals = self.eval_locals
62 | return (globals, locals)
63 |
64 | def geteval(self, section, option,
65 | default=_ERROR, globals=None, locals=None):
66 | (globals, locals) = self.get_eval_environ(globals, locals)
67 | if isinstance(section, (tuple, list)):
68 | for sec in section:
69 | try:
70 | return self.geteval(sec, option, _ERROR, globals, locals)
71 | except (NoOptionError, NoSectionError), ex:
72 | pass
73 | if default is not _ERROR:
74 | return default
75 | raise ex
76 | try:
77 | return eval(self.get(section, option), globals, locals)
78 | except NoOptionError:
79 | if default is not _ERROR:
80 | return default
81 | raise
82 |
83 | def __get(self, section, option, default, getf):
84 | if isinstance(section, (tuple, list)):
85 | for sec in section:
86 | try:
87 | return self.__get(sec, option, _ERROR, getf)
88 | except (NoOptionError, NoSectionError), ex:
89 | pass
90 | if default is not _ERROR:
91 | return default
92 | raise ex
93 | try:
94 | return getf(self, section, option)
95 | except NoOptionError:
96 | if default is not _ERROR:
97 | return default
98 | raise
99 |
100 | def get(self, section, option, default=_ERROR):
101 | return self.__get(section, option, default, SafeConfigParser.get)
102 |
103 | def getint(self, section, option, default=_ERROR):
104 | return self.__get(section, option, default, SafeConfigParser.getint)
105 |
106 | def getfloat(self, section, option, default=_ERROR):
107 | return self.__get(section, option, default, SafeConfigParser.getfloat)
108 |
109 | def getboolean(self, section, option, default=_ERROR):
110 | return self.__get(section, option, default, SafeConfigParser.getboolean)
111 |
112 | class _ConfigSection(object):
113 | def __init__(self, conf, section):
114 | self.conf = conf
115 | self.parent = conf
116 | self.section = section
117 | self.eval_globals = None
118 | self.eval_locals = None
119 |
120 | def set_eval_environ(self, section=None, globals=None, locals=None):
121 | self.eval_globals = globals or {}
122 | self.eval_locals = locals
123 | self.eval_globals.update(self.conf._read_eval_env(section))
124 |
125 | def get_eval_environ(self, globals, locals):
126 | if globals is None:
127 | globals = self.eval_globals
128 | if globals is None:
129 | globals = self.conf.eval_globals
130 | if locals is None:
131 | locals = self.eval_locals
132 | if locals is None:
133 | locals = self.conf.eval_locals
134 | return (globals, locals)
135 |
136 | def geteval(self, option, default=_ERROR, globals=None, locals=None):
137 | (globals, locals) = self.get_eval_environ(globals, locals)
138 | try:
139 | return eval(self.get(option), globals, locals)
140 | except NoOptionError:
141 | if default is not _ERROR:
142 | return default
143 | raise
144 |
145 | def __getattr__(self, option):
146 | val = self.conf.get(self.section, option)
147 |
148 | def has_option(self, *args):
149 | return self.conf.has_option(self.section, *args)
150 |
151 | def get(self, option, default=_ERROR):
152 | return self.conf.get(self.section, option, default)
153 |
154 | def getint(self, option, default=_ERROR):
155 | return self.conf.getint(self.section, option, default)
156 |
157 | def getfloat(self, option, default=_ERROR):
158 | return self.conf.getfloat(self.section, option, default)
159 |
160 | def getboolean(self, option, default=_ERROR):
161 | return self.conf.getboolean(self.section, option, default)
162 |
163 | def items(self, *args):
164 | return self.conf.items(self.section, *args)
165 |
166 | def set(self, *args):
167 | return self.conf.set(self.section, *args)
168 |
169 | def remove_option(self, *args):
170 | return self.conf.remove_option(self.section, *args)
171 |
--------------------------------------------------------------------------------
/common/configuration.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/common/configuration.pyc
--------------------------------------------------------------------------------
/common/imgutil.py:
--------------------------------------------------------------------------------
1 | '''
2 | Misc image and filter manipulation utilities.
3 |
4 | Author: deigen
5 |
6 | '''
7 | '''
8 | Copyright (C) 2014 New York University
9 |
10 | This program is free software: you can redistribute it and/or modify
11 | it under the terms of the GNU General Public License as published by
12 | the Free Software Foundation, either version 3 of the License, or
13 | (at your option) any later version.
14 |
15 | This program is distributed in the hope that it will be useful,
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 | GNU General Public License for more details.
19 |
20 | You should have received a copy of the GNU General Public License
21 | along with this program. If not, see .
22 | '''
23 |
24 | import numpy as np
25 |
26 | def rot180(x):
27 | '''180 degree matrix rotation for a 2D matrix'''
28 | return x[::-1, ::-1]
29 |
30 | def scale_values(x, min=None, max=None, center=None):
31 | '''Scales values of x so min->0 and max->1.
32 | By default uses min(x) and max(x). If min or max is supplied,
33 | clamps x first.
34 | If center is supplied, instead scales values so that center->0.5, and
35 | [min, max] fit within [0,1] (i.e. scales by max difference from center)
36 | '''
37 | min = min if min is not None else np.min(x.flat)
38 | max = max if max is not None else np.max(x.flat)
39 | if center is None:
40 | x = np.maximum(np.minimum(x, max), min)
41 | return (x - min) / (max - min)
42 | else:
43 | x = (x - center)/np.maximum(np.abs(min - center), np.abs(max - center))
44 | return 0.5 * (x + 1)
45 |
46 | def boxslice((i0, j0), (i1, j1)):
47 | '''Given top-left and bottom-right corners, returns array index slices for
48 | the box formed by these two points.
49 | '''
50 | return (slice(i0, i1), slice(j0, j1))
51 |
52 | def filter_truncate(i, j, xshape, yshape):
53 | '''Given (i,j) center of filter y placed in x, and shapes (ilen, jlen) of
54 | image x and filter y, returns slices for x and y s.t. y gets truncated
55 | at x's boundary. Example:
56 | (xbox, ybox) = filter_truncate(i, j, recons.shape, filter.shape)
57 | recons[xbox] += k * filter[ybox]
58 | '''
59 | (xi, xj) = xshape
60 | (yi, yj) = yshape
61 |
62 | xi0 = i - yi//2
63 | xi1 = i + yi//2 + (int(yi) % 2)
64 | xj0 = j - yj//2
65 | xj1 = j + yj//2 + (int(yi) % 2)
66 | yi0 = 0
67 | yi1 = yi
68 | yj0 = 0
69 | yj1 = yj
70 |
71 | if xi0 < 0:
72 | yi0 -= xi0
73 | xi0 = 0
74 | if xi1 > xi:
75 | yi1 -= (xi1 - xi)
76 | xi1 = xi
77 | if xj0 < 0:
78 | yj0 -= xj0
79 | xj0 = 0
80 | if xj1 > xj:
81 | yj1 -= (xj1 - xj)
82 | xj1 = xj
83 |
84 | return (boxslice((xi0, xj0), (xi1, xj1)),
85 | boxslice((yi0, yj0), (yi1, yj1)))
86 |
87 | def montage(imgs, layout=None, fill=0, border=0):
88 | '''Tiles given images together in a single montage image.
89 | imgs is an iterable of (h, w) or (h, w, c) arrays.
90 | '''
91 | sz = imgs[0].shape
92 | assert all([sz == x.shape for x in imgs])
93 | if len(sz) == 3:
94 | (h, w, c) = sz
95 | elif len(sz) == 2:
96 | (h, w) = sz
97 | c = 1
98 | else:
99 | raise ValueError('images must be 2 or 3 dimensional')
100 |
101 | bw = bh = 0
102 | if border:
103 | try:
104 | (bh, bw) = border
105 | except TypeError:
106 | bh = bw = int(border)
107 | nimgs = len(imgs)
108 |
109 | if layout is None:
110 | (ncols, nrows) = (None, None)
111 | else:
112 | (nrows, ncols) = layout
113 |
114 | if not (nrows and nrows > 0) and not (ncols and ncols > 0):
115 | if w >= h:
116 | ncols = np.ceil(np.sqrt(nimgs * h / float(w)))
117 | nrows = np.ceil(nimgs / float(ncols))
118 | else:
119 | nrows = np.ceil(np.sqrt(nimgs * w / float(h)))
120 | ncols = np.ceil(nimgs / float(nrows))
121 | elif not (nrows and nrows > 0):
122 | nrows = np.ceil(nimgs / float(ncols))
123 | elif not (ncols and ncols > 0):
124 | ncols = np.ceil(nimgs / float(nrows))
125 |
126 | mw = w * ncols + bw * (ncols-1)
127 | mh = h * nrows + bh * (nrows-1)
128 | assert mh * mw >= w*h*nimgs, 'layout not big enough to for images'
129 | M = np.zeros((mh, mw, c))
130 | M += fill
131 | i = 0
132 | j = 0
133 | for img in imgs:
134 | M[i:i+h, j:j+w, :] = img.reshape((h, w, c))
135 | j += w + bw
136 | if j >= mw:
137 | i += h + bh
138 | j = 0
139 | if len(sz) == 1:
140 | M = M.reshape((mh, mw))
141 | return M
142 |
143 | def colormap(x, m=None, M=None, center=0, colors=None):
144 | '''color a grayscale array (currently red/blue by sign)'''
145 | if center is None:
146 | center = 0
147 | if colors is None:
148 | colors = np.array(((0, 0.7, 1),
149 | (0, 0, 0),
150 | (1, 0, 0)),
151 | dtype=float)
152 | if x.shape[-1] == 1:
153 | x = x[..., 0]
154 | x = scale_values(x, min=m, max=M, center=center)
155 | y = np.empty(x.shape + (3,))
156 | for c in xrange(3):
157 | y[..., c] = np.interp(x, (0, 0.5, 1), colors[:, c])
158 | return y
159 |
160 | def chan_to_pix(x, nchan=3, imsize=(1,1)):
161 | return (x.reshape((-1, nchan,) + imsize)
162 | .transpose((0,2,3,1))
163 | .reshape((-1, nchan)))
164 |
165 | def pix_to_chan(x, nchan=3, imsize=(1,1)):
166 | return (x.reshape((-1,) + imsize + (nchan,))
167 | .transpose((0,3,1,2))
168 | .reshape((-1, nchan*imsize[0]*imsize[1])))
169 |
170 | def bcxy_from_bxyc(im):
171 | return im.transpose((0,3,1,2))
172 |
173 | def bxyc_from_bcxy(im):
174 | return im.transpose((0,2,3,1))
175 |
176 | def bxyc_from_cxyb(im):
177 | return im.transpose((3,1,2,0))
178 |
179 | def cxyb_from_bxyc(im):
180 | return im.transpose((3,1,2,0))
181 |
182 | def filter_montage(imgs, m=None, M=None, center=None):
183 | (nf, nc) = imgs.shape[:2]
184 |
185 | if nc == 1:
186 | return montage(
187 | colormap(bxyc_from_bcxy(imgs), m, M, center),
188 | border=1,
189 | fill=0.2)
190 | elif nc == 3:
191 | return image_montage(imgs, m, M, center)
192 | else:
193 | imgs = imgs.reshape((nf*nc, 1,) + imgs.shape[2:])
194 | return montage(
195 | colormap(bxyc_from_bcxy(imgs), m, M, center),
196 | layout=(nf, nc),
197 | border=1,
198 | fill=0.2)
199 |
200 | def image_montage(imgs, m=None, M=None, center=None):
201 | imgs = bxyc_from_bcxy(imgs)
202 | return montage(
203 | scale_values(imgs, m, M, center),
204 | border=1)
205 |
206 | def acts_montage(acts, scale=True, nimgs=16, m=None, M=None):
207 | if nimgs:
208 | acts = acts[:nimgs]
209 | if len(acts.shape) == 2:
210 | acts = acts[:, :, np.newaxis, np.newaxis]
211 | if scale:
212 | inner_fill = 0.2
213 | outer_fill = 1.0
214 | else:
215 | inner_fill = np.min(acts) + 0.2 * (np.max(acts) - np.min(acts))
216 | outer_fill = np.max(acts)
217 | return montage([montage(
218 | (scale_values(x, min=m, max=M)
219 | if scale
220 | else x),
221 | border=1,
222 | fill=inner_fill)
223 | for x in acts],
224 | border=3,
225 | fill=outer_fill)
226 |
227 |
--------------------------------------------------------------------------------
/common/imgutil.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/common/imgutil.pyc
--------------------------------------------------------------------------------
/common/logutil.py:
--------------------------------------------------------------------------------
1 | '''
2 | logutil.py
3 |
4 | utilities for logging, tracking experiment runs
5 | '''
6 | '''
7 | Copyright (C) 2014 New York University
8 |
9 | This program is free software: you can redistribute it and/or modify
10 | it under the terms of the GNU General Public License as published by
11 | the Free Software Foundation, either version 3 of the License, or
12 | (at your option) any later version.
13 |
14 | This program is distributed in the hope that it will be useful,
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | GNU General Public License for more details.
18 |
19 | You should have received a copy of the GNU General Public License
20 | along with this program. If not, see .
21 | '''
22 |
23 | import os
24 | import time
25 | import logging
26 | import subprocess
27 | import shutil
28 | import numpy as np
29 | from PIL import Image
30 |
31 | from __builtin__ import open as _open
32 |
33 | try:
34 | from matplotlib import pyplot
35 | _have_plot = True
36 | except ImportError:
37 | _have_plot = False
38 |
39 | try:
40 | import IPython
41 | _ipython_app = IPython.Application.instance()
42 | _ipython_logger = _ipython_app.shell.logger
43 | except (ImportError, AttributeError):
44 | _ipython_app = None
45 | _ipython_logger = None
46 |
47 | class _Config(object):
48 | log_file = True
49 | log_console = True
50 | output_dir = None
51 | ipython_logfname = None
52 |
53 | _config = _Config()
54 |
55 | _log = logging.getLogger()
56 | _log.setLevel(logging.INFO)
57 |
58 | def _setup_logs():
59 | # setup python logger
60 | handlers = list(_log.handlers)
61 | fmt = logging.Formatter('%(asctime)s - %(levelname)s : %(message)s')
62 | for h in handlers:
63 | _log.removeHandler(h)
64 | if _config.log_console:
65 | h = logging.StreamHandler()
66 | h.setFormatter(fmt)
67 | _log.addHandler(h)
68 | if _config.log_file and _config.output_dir:
69 | h = logging.FileHandler(filename('log'))
70 | h.setFormatter(fmt)
71 | _log.addHandler(h)
72 |
73 | # setup ipython session history
74 | iplogger = _ipython_logger
75 | if iplogger:
76 | if iplogger.log_active and \
77 | iplogger.logfname != _config.ipython_logfname:
78 | # user turned on logging to their own file
79 | _config.ipython_logfname = None
80 | else:
81 | if iplogger.log_active:
82 | iplogger.logstop()
83 | if _config.output_dir:
84 | _config.ipython_logfname = filename('ipython_log.py')
85 | iplogger.logstart(_config.ipython_logfname,
86 | log_output=True,
87 | timestamp=True)
88 |
89 | _setup_logs()
90 |
91 | class Subdir(object):
92 | '''
93 | Atomically swappable/recoverable subdirectory
94 | '''
95 | def __init__(self, name):
96 | self.name = name
97 | self.current = name
98 | self.next = self.current + '.next'
99 | self.recover()
100 |
101 | def create_next(self):
102 | try:
103 | os.mkdir(filename(self.next))
104 | except OSError, ex:
105 | if ex.errno != os.errno.EEXIST:
106 | raise
107 |
108 | def swap(self):
109 | curr = filename(self.current)
110 | next = curr + '.next'
111 | prev = curr + '.prev'
112 |
113 | if os.path.exists(prev):
114 | shutil.rmtree(prev)
115 | if os.path.exists(curr):
116 | os.rename(curr, prev)
117 |
118 | os.rename(next, curr)
119 |
120 | try:
121 | if os.path.exists(prev):
122 | shutil.rmtree(prev)
123 | except (OSError, IOError):
124 | _log.warn('Error removing prev state dir')
125 | _log.exception()
126 |
127 | def recover(self):
128 | curr = filename(self.current)
129 | prev = curr + '.prev'
130 | if not os.path.exists(curr) and os.path.exists(prev):
131 | _log.info('Recovering state from %s' % prev)
132 | os.rename(prev, curr)
133 |
134 | class consistent_dir(object):
135 | '''
136 | Checks a directory remains the same (not swapped) while used and
137 | between uses. For use in with statement.
138 | '''
139 |
140 | _dir_inums = {}
141 |
142 | def __init__(self, dirname):
143 | self.dirname = dirname
144 |
145 | def __enter__(self):
146 | name = os.path.abspath(self.dirname)
147 | if name not in self._dir_inums:
148 | inum = os.stat(name).st_ino
149 | self._dir_inums[name] = inum
150 |
151 | def __exit__(self, *args):
152 | name = os.path.abspath(self.dirname)
153 | inum = os.stat(name).st_ino
154 | if self._dir_inums[name] != inum:
155 | raise IOError('Directory changed while reading files: %s'
156 | % self.dirname)
157 |
158 | def set_output_dir(dirname):
159 | '''
160 | Set the current directory for logging and output.
161 | '''
162 | assert os.path.exists(dirname)
163 | _config.output_dir = dirname
164 | _setup_logs()
165 |
166 | def filename(fn):
167 | '''
168 | Returns a path for the given filename in the current output directory.
169 | '''
170 | if _config.output_dir:
171 | return os.path.join(_config.output_dir, fn)
172 | else:
173 | return fn
174 |
175 | def output_dir():
176 | return _config.output_dir if _config.output_dir else '.'
177 |
178 | def getLogger():
179 | return _log
180 |
181 | def open(fn, *args, **kwargs):
182 | '''
183 | Open a file in the current output directory
184 | args same as for open()
185 | '''
186 | return _open(filename(fn), *args, **kwargs)
187 |
188 | def copy(src, dst=None):
189 | '''
190 | Copy a file to the output directory.
191 |
192 | If dst is None, uses basename(src). Otherwise, dst is the name of the
193 | file within the current output directory.
194 | '''
195 | if dst is None:
196 | dst = os.path.basename(src)
197 | dst = filename(dst)
198 | if os.path.realpath(src) != os.path.realpath(dst):
199 | shutil.copy(src, dst)
200 |
201 | def save_image(fn, img, **kwargs):
202 | '''
203 | Save an image img to filename fn in the current output dir.
204 | kwargs the same as for PIL Image.save()
205 | '''
206 | (h, w, c) = img.shape
207 | if not isinstance(img, np.ndarray):
208 | img = np.array(img)
209 | if c == 1:
210 | img = np.concatenate((img,)*3, axis=2)
211 | if img.dtype.kind == 'f':
212 | img = (img * 255).astype('uint8')
213 | elif img.dtype.kind == 'f':
214 | img = img.astype('uint8')
215 | else:
216 | raise ValueError('bad dtype: %s' % img.dtype)
217 | i = Image.fromarray(img)
218 | with open(fn, 'w') as f:
219 | i.save(f, **kwargs)
220 |
221 | def save_fig(fn, *args, **kwargs):
222 | '''
223 | Save a matplotlib figure to fn in the current output dir.
224 | args same as for pyplot.savefig().
225 | '''
226 | with open(fn, 'w') as f:
227 | pyplot.savefig(f, *args, **kwargs)
228 |
229 |
--------------------------------------------------------------------------------
/common/logutil.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/common/logutil.pyc
--------------------------------------------------------------------------------
/common/strhist.py:
--------------------------------------------------------------------------------
1 | '''
2 | strhist.py
3 |
4 | Prints histograms using text.
5 | '''
6 | '''
7 | Copyright (C) 2014 New York University
8 |
9 | This program is free software: you can redistribute it and/or modify
10 | it under the terms of the GNU General Public License as published by
11 | the Free Software Foundation, either version 3 of the License, or
12 | (at your option) any later version.
13 |
14 | This program is distributed in the hope that it will be useful,
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | GNU General Public License for more details.
18 |
19 | You should have received a copy of the GNU General Public License
20 | along with this program. If not, see .
21 | '''
22 |
23 | import numpy as np
24 |
25 | _strhist_chars = ' .oO@^'
26 |
27 | def _gethist(x, bins, m, M):
28 | x = np.array(x)
29 | if m == None:
30 | m = x.min()
31 | if M == None:
32 | M = x.max()
33 | (h, hbins) = np.histogram(x, bins=bins, range=(m,M))
34 | h = h.astype(float)
35 | h /= np.sum(h)
36 | return (h, hbins, m, M)
37 |
38 | def hist_chars(x, m=None, M=None, width=50):
39 | '''
40 | Prints a one-line histogram with one char per bin. The bin count is
41 | quantized into only a few values and scaled to create a visual
42 | representation. Min and max values are displayed on the ends.
43 | '''
44 | (h, hbins, m, M) = _gethist(x, width, m, M)
45 | nchars = len(_strhist_chars)
46 | if np.any(h > 0):
47 | hmin = np.min(h)
48 | hmax = np.max(h)
49 | hchar = np.round((nchars-1)*(h - hmin)/(hmax - hmin))
50 | hstr = ''.join([_strhist_chars[int(i)] for i in hchar])
51 | else:
52 | hstr = ' ' * width
53 | return '% .5f |%s| %.5f' % (m, hstr, M)
54 |
55 | def hist_bins(x, m=None, M=None, width=50, sep=''):
56 | '''
57 | Prints a one-line histogram with a percent in each bin.
58 | Min and max values are displayed on the ends.
59 | '''
60 | w = 7
61 | bins = width / w
62 | (h, hbins, m, M) = _gethist(x, bins, m, M)
63 | hstr = sep.join([str(int(np.round(x*100))).center(w-2) for x in h])
64 | return '% .2f ||%s|| %.2f' % (m, hstr, M)
65 |
66 | def hist_bars(x, m=None, M=None, bins=10, width=50):
67 | '''
68 | Prints a histogram with one bin per line.
69 | '''
70 | (h, hbins, m, M) = _gethist(x, bins, m, M)
71 | barlengths = np.round(width * h / np.maximum(1e-8, np.max(h)))
72 | s = ['% .3f ~ % .3f | %s' % (hbins[i], hbins[i+1], '*' * barlengths[i])
73 | for i in xrange(len(h))]
74 | return '\n'.join(s)
75 |
76 | strhist = hist_chars
77 | hist = hist_chars
78 |
79 | if __name__ == '__main__':
80 | x = np.random.randn(10000)
81 | for fname in ('hist_chars', 'hist_bins', 'hist_bars'):
82 | print fname
83 | print eval(fname)(x)
84 | print
85 |
86 |
--------------------------------------------------------------------------------
/demo_nyud_depth_prediction.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/demo_nyud_depth_prediction.png
--------------------------------------------------------------------------------
/demo_nyud_rgb.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/demo_nyud_rgb.jpg
--------------------------------------------------------------------------------
/demo_nyud_rgb1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/demo_nyud_rgb1.jpg
--------------------------------------------------------------------------------
/models/.depth.conf.swp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/models/.depth.conf.swp
--------------------------------------------------------------------------------
/models/.depth.py.swp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/models/.depth.py.swp
--------------------------------------------------------------------------------
/models/depth.conf:
--------------------------------------------------------------------------------
1 | [config]
2 | imports = numpy as np
3 |
4 | [train]
5 | resumptive = True
6 | learning_rate = 1
7 | bsize = 32
8 | momentum = 0.9
9 | nepochs = 151
10 | evaluate_epochs = 10
11 | save_stats_epochs = 10
12 | checkpoint_all_freq = 50
13 | train_conv = True
14 |
15 | [data]
16 | data_dir = /home/deigen/proj/depth/output/000433-data-all-320x240-normals
17 | local_dir = /scratch/deigen/data/000433-data-all-320x240-normals
18 | depth_space = log
19 | zero_mean_images = False
20 | divide_std_images = False
21 | zero_mean_depths = False
22 | divide_std_depths = True
23 |
24 | [init]
25 |
26 | [load]
27 |
28 | [full1]
29 | type = full
30 | load_key = coarse_stack
31 | noutput = 4096
32 | init_w = lambda shp: 0.01*np.random.randn(*shp)
33 | bias = True
34 | weight_decay_w = 0.0001
35 | learning_rate_scale_w = 0.1
36 | learning_rate_scale_b = 0.1
37 | dropout = False
38 |
39 | [full2]
40 | type = full
41 | load_key = coarse_stack
42 | noutput = 4070
43 | output_size = (55, 74)
44 | init_w = lambda shp: 0.01*(np.random.rand(*shp)-0.5)
45 | bias = True
46 | weight_decay_w = 0.0001
47 | learning_rate_scale_w = 0.1
48 | learning_rate_scale_b = 0.1
49 |
50 | [conv_s2_1]
51 | type = conv
52 | load_key = fine_stack
53 | filter_shape = (64,3,9,9)
54 | stride = 2
55 | init_w = lambda shp: 0.001*np.random.randn(*shp)
56 | init_b = 0.0
57 | conv_mode = valid
58 | weight_decay_w = 0.0001
59 | learning_rate_scale_w = 0.001
60 | learning_rate_scale_b = 0.001
61 |
62 | [pool_s2_1]
63 | type = maxpool
64 | poolsize = (3,3)
65 | poolstride = (2,2)
66 |
67 | [conv_s2_2]
68 | type = conv
69 | load_key = fine_stack
70 | filter_shape = (64,64,5,5)
71 | init_w = lambda shp: 0.01*np.random.randn(*shp)
72 | init_b = 0.0
73 | conv_mode = same
74 | weight_decay_w = 0.0001
75 | learning_rate_scale_w = 0.01
76 | learning_rate_scale_b = 0.01
77 |
78 | [conv_s2_3]
79 | type = conv
80 | load_key = fine_stack
81 | filter_shape = (64,1,5,5)
82 | transpose = True
83 | init_w = lambda shp: 0.01*np.random.randn(*shp)
84 | init_b = 0.0
85 | conv_mode = same
86 | weight_decay_w = 0.0001
87 | learning_rate_scale_w = 0.001
88 | learning_rate_scale_b = 0.001
89 |
90 | [imnet_conv1]
91 | type = conv
92 | load_key = imagenet
93 | filter_shape = (96, 3, 11, 11)
94 | stride = 4
95 | conv_mode = valid
96 | init_w = lambda shp: 0.01*np.random.randn(*shp)
97 | learning_rate_scale_w = 0.001
98 | learning_rate_scale_b = 0.001
99 | weight_decay_w = 0.0005
100 |
101 | [imnet_pool1]
102 | type = maxpool
103 | load_key = imagenet
104 | poolsize = (3,3)
105 | poolstride = (2,2)
106 |
107 | [imnet_conv2]
108 | type = conv
109 | load_key = imagenet
110 | filter_shape = (256, 96, 5, 5)
111 | conv_mode = same
112 | stride = 1
113 | init_w = lambda shp: 0.01*np.random.randn(*shp)
114 | learning_rate_scale_w = 0.001
115 | learning_rate_scale_b = 0.001
116 | weight_decay_w = 0.0005
117 |
118 | [imnet_pool2]
119 | type = maxpool
120 | load_key = imagenet
121 | poolsize = (3,3)
122 | poolstride = (2,2)
123 |
124 | [imnet_conv3]
125 | type = conv
126 | load_key = imagenet
127 | filter_shape = (384, 256, 3, 3)
128 | conv_mode = same
129 | stride = 1
130 | init_w = lambda shp: 0.01*np.random.randn(*shp)
131 | learning_rate_scale_w = 0.001
132 | learning_rate_scale_b = 0.001
133 | weight_decay_w = 0.0005
134 |
135 | [imnet_conv4]
136 | type = conv
137 | load_key = imagenet
138 | filter_shape = (384, 384, 3, 3)
139 | conv_mode = same
140 | stride = 1
141 | init_w = lambda shp: 0.01*np.random.randn(*shp)
142 | learning_rate_scale_w = 0.001
143 | learning_rate_scale_b = 0.001
144 | weight_decay_w = 0.0005
145 |
146 | [imnet_conv5]
147 | type = conv
148 | load_key = imagenet
149 | filter_shape = (256, 384, 3, 3)
150 | conv_mode = same
151 | stride = 1
152 | init_w = lambda shp: 0.01*np.random.randn(*shp)
153 | learning_rate_scale_w = 0.001
154 | learning_rate_scale_b = 0.001
155 | weight_decay_w = 0.0005
156 |
157 | [imnet_pool5]
158 | type = maxpool
159 | load_key = imagenet
160 | poolsize = (3,3)
161 | poolstride = (2,2)
162 |
163 |
--------------------------------------------------------------------------------
/models/depth.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | '''
3 | Copyright (C) 2014 New York University
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 | '''
18 | import os
19 | import time
20 | import numpy as np
21 | import ipdb
22 |
23 | import theano
24 | import theano.tensor as T
25 |
26 | from common import imgutil, logutil
27 |
28 | import matplotlib.pyplot as plt
29 |
30 | import thutil
31 | from thutil import test_shape, theano_function, maximum
32 |
33 | from net import *
34 | from pooling import cmrnorm
35 |
36 | _log = logutil.getLogger()
37 | xx = np.newaxis
38 |
39 | def _image_montage(imgs, min, max):
40 | imgs = imgutil.bxyc_from_bcxy(imgs)
41 | return imgutil.montage(
42 | imgutil.scale_values(imgs, min=min, max=max),
43 | border=1)
44 |
45 | def _depth_montage(depths):
46 | if depths.ndim == 4:
47 | assert depths.shape[1] == 1
48 | depths = depths[:,0,:,:]
49 | #depths = imgutil.scale_values(depths, min=-2.5, max=2.5)
50 | #depths = map(imgutil.scale_values, depths)
51 | masks = []
52 | for i in xrange(len(depths)):
53 | x = depths[i]
54 | mask = x != x.min()
55 | masks.append(mask)
56 | x = x[mask]
57 | if len(x) == 0:
58 | d = np.zeros_like(depths[i])
59 | else:
60 | d = imgutil.scale_values(depths[i], min=x.min(), max=x.max())
61 | depths[i] = d
62 | depths = plt.cm.jet(depths)[...,:3]
63 | for i in xrange(len(depths)):
64 | for c in xrange(3):
65 | depths[i, :, :, c][masks[i] == 0] = 0.2
66 | return imgutil.montage(depths, border=1)
67 |
68 | def _zero_pad_batch(batch, bsize):
69 | assert len(batch) <= bsize
70 | if len(batch) == bsize:
71 | return batch
72 | n = batch.shape[0]
73 | shp = batch.shape[1:]
74 | return np.concatenate((batch, np.zeros((bsize - n,) + shp,
75 | dtype=batch.dtype)))
76 |
77 | class machine(Machine):
78 | def __init__(self, conf):
79 | Machine.__init__(self, conf)
80 |
81 | def infer_depth(self, images):
82 | '''
83 | Infers depth maps for a list of 320x240 images.
84 | images is a nimgs x 240 x 320 x 3 numpy uint8 array.
85 | returns depths (nimgs x 55 x 74) corresponding to the center box
86 | in the original rgb image.
87 | '''
88 | images = images.transpose((0,3,1,2))
89 | (nimgs, nc, nh, nw) = images.shape
90 | assert (nc, nh, nw) == (3, 240, 320)#网络的输出图片数据为(1,3, 240, 320)
91 |
92 | (input_h, input_w) = self.input_size#网络输入feature map 图片的大小
93 | (output_h, output_w) = self.output_size#网络输出feature map大小
94 |
95 | bsize = self.bsize
96 | b = 0
97 |
98 | # pred_depth为输出,Tensor 类型变量,
99 | v = self.vars
100 | pred_depth = self.inverse_depth_transform(self.fine.pred_mean)
101 | infer_f = theano.function([v.images], pred_depth)
102 |
103 | depths = np.zeros((nimgs, output_h, output_w), dtype=np.float32)
104 |
105 | # 一张图片的中心 bbox ,(i0, i1)为矩形的左上角、(j0, j1)为矩形的右下角
106 | dh = nh - input_h
107 | dw = nw - input_w
108 | (i0, i1) = (dh/2, nh - dh/2)
109 | (j0, j1) = (dw/2, nw - dw/2)
110 |
111 | # infer depth for images in batches
112 | b = 0
113 | while b < nimgs:
114 | batch = images[b:b+bsize]
115 | n = len(batch)
116 | if n < bsize:
117 | batch = _zero_pad_batch(batch, bsize)
118 |
119 | # crop to network input size
120 | batch = batch[:, :, i0:i1, j0:j1]
121 |
122 | # infer depth with nnet
123 | depths[b:b+n] = infer_f(batch)[:n]
124 |
125 | b += n
126 |
127 | return depths
128 |
129 | def inverse_depth_transform(self, logdepths):
130 | # map network output log depths back to depth
131 | # output bias is init'd with the mean, and output is logdepth / stdev
132 | return T.exp(logdepths * self.meta.logdepths_std)
133 |
134 | def get_predicted_depth_region(self):
135 | '''
136 | Returns the region of a 320x240 image covered by the predicted
137 | depth map (y0 y1 x0 x1) where y runs the 240-dim and x runs the 320-dim.
138 | '''
139 | (orig_h, orig_w) = self.orig_input_size # input before transforms
140 | (input_h, input_w) = self.input_size # input after transforms
141 | dt = self.target_crop # net output size difference from valid convs
142 | off_h = (orig_h - input_h + dt) / 2
143 | off_w = (orig_w - input_w + dt) / 2
144 | return (off_h, off_h + input_h,
145 | off_w, off_w + input_w)
146 |
147 | def define_machine(self):
148 | self.orig_input_size = (240, 320) #
149 | self.input_size = (228, 304) # 采用random crop的方法吗
150 | self.output_size = self.conf.geteval('full2', 'output_size')#获取配置文件中,full2层下的选项output_size
151 |
152 | (input_h, input_w) = self.input_size
153 | (output_h, output_w) = self.output_size
154 | #因为输出与输出的比例是4倍,所以我们需要回溯输入图片对应的区域
155 | self.target_crop = input_h - output_h * 4
156 | assert self.target_crop == input_w - output_w * 4
157 |
158 | self.define_meta()
159 |
160 | # input vars
161 | images = T.tensor4('images')
162 | depths = T.tensor3('depths')
163 | masks = T.tensor3('masks')
164 |
165 | test_values = self.make_test_values()
166 | images.tag.test_value = test_values['images']
167 | depths.tag.test_value = test_values['depths']
168 | masks.tag.test_value = test_values['masks']
169 |
170 | x0 = images
171 | y0 = depths
172 | m0 = masks
173 |
174 | # downsample depth and mask by 4x
175 | m0 = m0[:,1::4,1::4]
176 | y0 = y0[:,1::4,1::4]
177 | #构建网络
178 | # 这一部分的网络是粗网络的前半部分,结构与Alexnet相同。因为文献的部分参数采用的是Alexnet训练好的模型参数,然后在进行fine-tuning
179 | self.define_imagenet_stack(x0)
180 |
181 | # pretrained features are rather large, rescale down to nicer range
182 | imnet_r5 = 0.01 * self.imagenet.r5
183 | imnet_feats = imnet_r5.reshape((
184 | self.bsize, T.prod(imnet_r5.shape[1:])))
185 |
186 | # 这一部分的网络是粗网络的后半部分
187 | self.define_coarse_stack(imnet_feats)
188 |
189 | # fine stack
190 | self.define_fine_stack(x0)
191 |
192 | self.vars = MachinePart(locals())
193 |
194 | def define_meta(self):
195 | '''
196 | precomputed means and stdev
197 | '''
198 | # just hardcoding for this release, was in meta.mat file
199 | images_mean = 109.31410628
200 | images_std = 76.18328376
201 | images_istd = 1.0 / images_std
202 | depths_mean = 2.53434899
203 | depths_std = 1.22576694
204 | depths_istd = 1.0 / depths_std
205 | logdepths_mean = 0.82473954
206 | logdepths_std = 0.45723134
207 | logdepths_istd = 1.0 / logdepths_std
208 | self.meta = MachinePart(locals())
209 |
210 | def make_test_values(self):
211 | (input_h, input_w) = self.input_size
212 | (output_h, output_w) = self.output_size
213 | test_images_size = (self.bsize, 3, input_h, input_w)
214 | test_depths_size = (self.bsize, output_h, output_w)
215 |
216 | test_values = {}
217 | test_values['images'] = \
218 | (255 * np.random.rand(*test_images_size)).astype(np.float32)
219 | test_values['depths'] = \
220 | np.random.randn(*test_depths_size).astype(np.float32)
221 | test_values['masks'] = \
222 | np.ones(test_depths_size, dtype=np.float32)
223 | return test_values
224 | #在coarse部分,与Alexnet相同的部分
225 | def define_imagenet_stack(self, x0):
226 | print "create net"
227 | conv1 = self.create_unit('imnet_conv1')
228 | pool1 = self.create_unit('imnet_pool1')
229 | conv2 = self.create_unit('imnet_conv2')
230 | pool2 = self.create_unit('imnet_pool2')
231 | conv3 = self.create_unit('imnet_conv3')
232 | conv4 = self.create_unit('imnet_conv4')
233 | conv5 = self.create_unit('imnet_conv5')
234 | pool5 = self.create_unit('imnet_pool5')
235 |
236 | z1 = conv1.infer(x0 - 128)
237 | (p1, s1) = pool1.infer(z1)
238 | r1 = cmrnorm(relu(p1))#局部对比度归一化层?
239 |
240 | z2 = conv2.infer(r1)
241 | (p2, s2) = pool2.infer(z2)
242 | r2 = cmrnorm(relu(p2))
243 |
244 | z3 = conv3.infer(r2)
245 | r3 = relu(z3)
246 |
247 | z4 = conv4.infer(r3)
248 | r4 = relu(z4)
249 |
250 | z5 = conv5.infer(r4)
251 | (p5, s5) = pool5.infer(z5)
252 | r5 = relu(p5)
253 |
254 |
255 |
256 | self.imagenet = MachinePart(locals())
257 |
258 | def define_coarse_stack(self, imnet_feats):
259 | full1 = self.create_unit('full1', ninput=test_shape(imnet_feats)[1])
260 | f_1 = relu(full1.infer(imnet_feats))
261 | f_1_drop = random_zero(f_1, 0.5)
262 | f_1_mean = 0.5 * f_1
263 |
264 | full2 = self.create_unit('full2', ninput=test_shape(f_1_mean)[1])
265 |
266 | f_2_drop = full2.infer(f_1_drop)
267 | f_2_mean = full2.infer(f_1_mean)
268 |
269 | # prediction
270 | (h, w) = self.output_size
271 | pred_drop = f_2_drop.reshape((self.bsize, h, w))
272 | pred_mean = f_2_mean.reshape((self.bsize, h, w))
273 |
274 | self.coarse = MachinePart(locals())
275 |
276 | def define_fine_stack(self, x0):
277 | # pproc slightly different from imagenet because no cmrnorm
278 | x0_pproc = (x0 - self.meta.images_mean) \
279 | * self.meta.images_istd
280 |
281 | conv_s2_1 = self.create_unit('conv_s2_1')
282 | z_s2_1 = relu(conv_s2_1.infer(x0_pproc))
283 |
284 | pool_s2_1 = self.create_unit('pool_s2_1')
285 | (p_s2_1, s_s2_1) = pool_s2_1.infer(z_s2_1)
286 |
287 | # concat input features with coarse prediction
288 | (h, w) = self.output_size
289 | coarse_drop = self.coarse.pred_drop.reshape((self.bsize, 1, h, w))
290 | coarse_mean = self.coarse.pred_mean.reshape((self.bsize, 1, h, w))
291 | p_1_concat_drop = T.concatenate(
292 | (coarse_drop,
293 | p_s2_1[:, 1:, :, :]),
294 | axis=1)
295 | p_1_concat_mean = T.concatenate(
296 | (coarse_mean,
297 | p_s2_1[:, 1:, :, :]),
298 | axis=1)
299 |
300 | conv_s2_2 = self.create_unit('conv_s2_2')
301 | z_s2_2_drop = relu(conv_s2_2.infer(p_1_concat_drop))
302 | z_s2_2_mean = relu(conv_s2_2.infer(p_1_concat_mean))
303 |
304 | conv_s2_3 = self.create_unit('conv_s2_3')
305 | z_s2_3_drop = conv_s2_3.infer(z_s2_2_drop)
306 | z_s2_3_mean = conv_s2_3.infer(z_s2_2_mean)
307 |
308 | # prediction
309 | pred_drop = z_s2_3_drop[:,0,:,:]
310 | pred_mean = z_s2_3_mean[:,0,:,:]
311 |
312 | self.fine = MachinePart(locals())
313 | #定义损失函数 这个会不会就是文献的创新点呢?缩放不变的损失函数
314 | def define_cost(self, pred, y0, m0):
315 | bsize = self.bsize
316 | npix = int(np.prod(test_shape(y0)[1:]))
317 | y0_target = y0.reshape((self.bsize, npix))
318 | y0_mask = m0.reshape((self.bsize, npix))
319 | pred = pred.reshape((self.bsize, npix))
320 |
321 | p = pred * y0_mask
322 | t = y0_target * y0_mask
323 |
324 | d = (p - t)
325 |
326 | nvalid_pix = T.sum(y0_mask, axis=1)
327 | depth_cost = (T.sum(nvalid_pix * T.sum(d**2, axis=1))
328 | - 0.5*T.sum(T.sum(d, axis=1)**2)) \
329 | / T.maximum(T.sum(nvalid_pix**2), 1)
330 |
331 | return depth_cost
332 |
333 | def train(self):
334 | raise NotImplementedError()
335 |
--------------------------------------------------------------------------------
/models/depth.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/models/depth.pyc
--------------------------------------------------------------------------------
/net.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | '''
3 | Copyright (C) 2014 New York University
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 | '''
18 | import os
19 | import sys
20 | import time
21 | import numpy as np
22 | import ipdb
23 | import cPickle
24 |
25 | from collections import OrderedDict
26 |
27 | import theano, theano.tensor as T
28 | from theano.tensor.nnet import conv as theano_conv
29 | from theano.tensor.nnet import sigmoid
30 | from theano.tensor import tanh
31 |
32 | from common import imgutil, logutil, configuration
33 |
34 | #import matplotlib.pyplot as plt
35 |
36 | import pooling
37 | import thutil
38 |
39 | from thutil import test_shape, theano_function, maximum
40 |
41 | _log = logutil.getLogger()
42 |
43 | floatX = theano.config.floatX
44 |
45 | theano.config.compute_test_value = 'raise'
46 | theano.config.store_test_value_maxsize = 32
47 | theano.config.on_unused_input = 'ignore'
48 |
49 | # to enable feature not yet in theano main for logicals as float32 on gpu
50 | # theano.config.scalar.logical_op_type = 'same_as_input'
51 |
52 | theano_rng = theano.tensor.shared_randomstreams.RandomStreams()
53 |
54 | xx = np.newaxis
55 |
56 | #网络结构,relu 激活函数
57 | def relu(x):
58 | return maximum(0, x)
59 | #softmat 层
60 | def softmax(x, axis=None):
61 | '''
62 | Applies softmax to x over the given axis (i.e. exp/sum(exp)).
63 | '''
64 | if isinstance(axis, int):
65 | m = T.max(x, axis=axis, keepdims=True)
66 | else:
67 | m = T.max(x)
68 | exp_x = T.exp(x - m)
69 | Z = T.sum(exp_x, axis=axis, keepdims=True)
70 | return exp_x / Z
71 | #log softmax 层,输入数据x
72 | def logsoftmax(x, axis=None):
73 | '''
74 | Applies logsoftmax to x over the given axis (i.e. exp/sum(exp)).
75 | '''
76 | if isinstance(axis, int):
77 | m = T.max(x, axis=axis, keepdims=True)
78 | else:
79 | m = T.max(x)
80 | exp_x = T.exp(x - m)
81 | Z = T.sum(exp_x, axis=axis, keepdims=True)
82 | return x - m - T.log(Z)
83 |
84 | _mm_enable_compatibility_padding = True
85 | #卷积层,输入图片数据x,k为滤波器,stride 为卷积跨步
86 | def conv_theano_mm(x, k, border_mode, transpose=False, stride=1):
87 | #输入图片x: (bsize, xchan, h, w)
88 | #k为滤波器:(nfilt, xchan, filt_h, filt_w)
89 |
90 | (xh, xw) = test_shape(x)[-2:]
91 | (kh, kw) = test_shape(k)[-2:]
92 |
93 | if border_mode == 'valid':
94 | pad = (0,0)
95 | elif border_mode == 'same':#卷积后的图片大小与原图片的大小相同,因此左右两边都要加上卷积核宽度的一半
96 | pad = (kh // 2, kw // 2)
97 | elif border_mode == 'full':
98 | pad = (kh - 1, kw - 1)
99 | else:
100 | raise ValueError(border_mode)
101 |
102 | if stride != 1 and not transpose and _mm_enable_compatibility_padding:
103 | print 'True'
104 | # semi-compatibility with cudaconv
105 | # cudaconv strided convs go one filter tile past the end at the
106 | # bottom/right. Get the same size with some extra padding if needed.
107 | # The padding is centered, so this results in up to a half-stride image
108 | # shift to the right, not exactly the same as before.
109 | if border_mode != 'valid':
110 | raise NotImplementedError()
111 | old_h = np.ceil((xh - kh) / float(stride)) * stride + kh
112 | old_w = np.ceil((xw - kw) / float(stride)) * stride + kw
113 | pad = (int(np.ceil((old_h - xh) / 2.0)),
114 | int(np.ceil((old_w - xw) / 2.0)))
115 |
116 | if transpose:
117 | (ph, pw) = pad
118 | bottom_shape = T.constant(np.array((stride * (xh - 1) - 2*ph + kh,
119 | stride * (xw - 1) - 2*pw + kw)))
120 | res = theano.sandbox.cuda.blas.GpuCorrMM_gradInputs(
121 | pad=pad,
122 | subsample=(stride, stride)) \
123 | (k, x, shape=bottom_shape)
124 | else:
125 | res = theano.sandbox.cuda.blas.GpuCorrMM(
126 | pad=pad,
127 | subsample=(stride, stride)) \
128 | (x, k)
129 | return res
130 | conv = conv_theano_mm
131 |
132 | def upsample_bilinear(x, scale):
133 | '''
134 | Bilinearly upsamples x:
135 | (nimgs, nfeat, h, w) -> (nimgs, nfeat, h*scale, w*scale)
136 | '''
137 | kx = np.linspace(0, 1, scale + 1)[1:-1]
138 | kx = np.concatenate((kx, [1], kx[::-1]))
139 | ker = kx[xx,:] * kx[:, xx]
140 | ker = T.constant(ker[xx,xx,:,:].astype(np.float32))
141 | xbatch = x.reshape((x.shape[0] * x.shape[1], 1, x.shape[2], x.shape[3]))
142 | xup = conv(xbatch, ker, 'valid', transpose=True, stride=scale)
143 | return xup.reshape((x.shape[0], x.shape[1], xup.shape[2], xup.shape[3]))
144 |
145 | def filter_transpose(w):
146 | '''
147 | Transposes and filps a set of filters.
148 | (output_maps, input_maps, h, w) -> (input_maps, output_maps, h, w)
149 | and each filter is rotated by 180deg in (h, w).
150 | '''
151 | return w.transpose((1,0,2,3))[:,:,::-1,::-1]
152 |
153 | _conv_mode_transpose = {'valid': 'full', 'full': 'valid', 'same': 'same'}
154 |
155 | def random_zero(x, p):
156 | '''
157 | Keeps 1-p entries of x and zeros out a random subset with prob p
158 | '''
159 | return x * theano_rng.binomial(size=x.shape,
160 | n=1,
161 | p=1-p,
162 | dtype=x.dtype)
163 |
164 | def feature_map_vectors(x):
165 | '''
166 | Transpose/Reshape feature maps into (bsize*ni*nj, #feature maps)
167 | '''
168 | (bsize, nc, ni, nj) = x.shape
169 | return x.transpose((0,2,3,1)).reshape((bsize*ni*nj, nc))
170 |
171 | def feature_map_maps(x, xshape):
172 | '''
173 | Transpose/Reshape feature map vectors back to xshape == (bsize, nc, ni, nj)
174 | '''
175 | (bsize, nc, ni, nj) = xshape
176 | return x.reshape((bsize, ni, nj, nc)).transpose((0,3,1,2))
177 |
178 |
179 | ### Machine class for tracking training state etc. ###
180 |
181 | _unit_types = {}
182 | def register_unit_class(cls):
183 | typename = getattr(cls, 'type', cls.__name__.lower())
184 | _unit_types[typename] = cls
185 | return cls
186 |
187 | class Machine(object):
188 | def __init__(self, conf, state_subdir_name='state', **kwargs):
189 | self.conf = conf
190 | self.bsize = self.conf.getint('train', 'bsize')
191 | self.state_dir = logutil.Subdir(state_subdir_name)
192 | self.units = []
193 | self.define_machine(**kwargs)
194 | #根据配置参数,创建网络的每一层
195 | def create_unit(self, sec, cls=None, name=None, load_key=None, **kwargs):
196 | conf_sec = self.conf.get_section(sec)
197 | if cls is None:
198 | cls = _unit_types[conf_sec.get('type')]
199 | if name is None:
200 | name = sec
201 | if load_key is None:
202 | load_key = conf_sec.get('load_key', name)
203 |
204 | kwargs['name'] = name
205 | kwargs['load_key'] = load_key
206 | kwargs['machine'] = self
207 | unit = cls(conf_sec, **kwargs)
208 | self.units.append(unit)
209 | return unit
210 |
211 | def define_machine(self):
212 | raise NotImplementedError
213 |
214 |
215 | class MachinePart(object):
216 | __slots__ = ('vars',)
217 |
218 | def __init__(self, vars, exclude=('self',)):
219 | self.vars = dict((k,v) for (k,v) in vars.iteritems()
220 | if k not in exclude)
221 |
222 | def __getattr__(self, k):
223 | if k in self.vars:
224 | return self.vars[k]
225 | return self.__getattribute__(k)
226 |
227 | def __getitem__(self, k):
228 | return getattr(self, k)
229 |
230 | def __setattr__(self, k, v):
231 | if k in self.__slots__:
232 | object.__setattr__(self, k, v)
233 | self.vars[k] = v
234 |
235 | def __setitem__(self, k, v):
236 | return setattr(self, k, v)
237 |
238 |
239 | def import_module(mod_file, modpath=''):
240 | import importlib
241 | (fpath, fname) = os.path.split(mod_file)
242 | (modname, ext) = os.path.splitext(fname)
243 | modpath = os.path.join(modpath, fpath)
244 | sys.path.insert(0, modpath)
245 | try:
246 | mod = importlib.import_module(modname, modpath)
247 | finally:
248 | sys.path.remove(modpath)
249 | assert (os.path.realpath(os.path.dirname(mod.__file__)) ==
250 | os.path.realpath(modpath)), 'module path does not match'
251 | return mod
252 |
253 | #加载网络模型
254 | def create_machine(module_fn, config_fn, params_dir=None,
255 | edit_conf=None, load_saved_params=True):
256 |
257 | #读取网络结构 配置文件包 ConfigParser
258 | conf = configuration.read_config(config_fn)
259 |
260 | s=conf.sections()
261 | print 'section:',s
262 | conf.set_eval_environ(section='config')
263 |
264 | #加载网络模型训练好的参数
265 | if load_saved_params:
266 | assert params_dir, 'must supply params dir'
267 | if not conf.has_section('load'):
268 | conf.add_section('load')
269 | conf.set('load', 'all', params_dir)
270 |
271 | # user-supplied config edits
272 | if edit_conf:
273 | edit_conf(conf)
274 |
275 | # load definition module
276 | mod = import_module(module_fn)
277 |
278 | # construct machine class
279 | machine = getattr(mod, 'machine')(conf)
280 |
281 | return machine
282 |
283 |
284 | ### Units with parameters and inference methods ###
285 |
286 | class Unit(object):
287 | def __init__(self, conf, name, load_key=None, machine=None, tie_params={}):
288 | self.conf = conf
289 | self.name = name
290 | self.load_key = load_key
291 | self.params = None
292 | self.grads = None
293 | self.constraints = {}
294 | self.tie_params = tie_params
295 | self.machine = machine
296 |
297 | def infer(self, x):
298 | raise NotImplementedError
299 |
300 | def add_constraint(self, param, constraint):
301 | if param in self.constraints:
302 | prev = self.constraints[param]
303 | self.constraints[param] = lambda x: constraint(prev(x))
304 | else:
305 | self.constraints[param] = constraint
306 |
307 | def _params_filename(self):
308 | return 'params-%s.pk' % self.name
309 |
310 | def _check_file(self, dir, fn, check_state_dir=True):
311 | if dir is None:
312 | return None
313 | fpaths = [os.path.join(dir, fn)]
314 | if check_state_dir:
315 | fpaths.append(os.path.join(dir, 'state', fn))
316 | for fpath in fpaths:
317 | if os.path.exists(fpath):
318 | return fpath
319 | return None
320 |
321 | def init_params(self, *args, **kwargs):
322 | '''
323 | Initializes parameters, either from a file or from initialization code
324 | for the unit. This looks for parameters to use in the following
325 | order (highest precedence first):
326 |
327 | * load overrides for debug and interactive sessions
328 | 1. params_file in unit config
329 | 2. load_key in [load] config section
330 | 3. default load dir ("all" in [load] config section)
331 |
332 | * params saved during training, loaded when resuming a run
333 | 4. current training state in output
334 | 5. current output directory
335 |
336 | * initializations, loaded once nothing was found for resuming
337 | 6. load_key in [init] config section
338 | 7. default init dir ("all" in [init] config section)
339 |
340 | * initialize by calling unit init code (since no was file specified)
341 | 8. call unit _init_params()
342 | '''
343 | params_dir = None
344 | params_file = None
345 | fn = self._params_filename()
346 |
347 | # first check if a file is explicitly specified in unit config
348 | # if so, use it (even if it doesn't exist -- that case should error)
349 | case = 'in_config'
350 | params_file = self.conf.get('params_file', None)
351 |
352 | # if not, look in the dir for the load key specified for this unit
353 | if self.conf.parent.has_section('load'):
354 | if params_file is None and self.load_key is not None:
355 | case = 'load_key'
356 | params_dir = self.conf.parent.get('load', self.load_key, None)
357 | params_file = self._check_file(params_dir, fn)
358 |
359 | # then check in the default load dir
360 | if params_file is None:
361 | case = 'load_default'
362 | params_dir = self.conf.parent.get('load', 'all', None)
363 | params_file = self._check_file(params_dir, fn)
364 |
365 | # check current training state and output dir if the run is resumptive
366 | if self.conf.parent.getboolean('train', 'resumptive', True):
367 | if params_file is None:
368 | case = 'resume_current'
369 | params_dir = logutil.filename(self.machine.state_dir.current)
370 | params_file = self._check_file(params_dir, fn,
371 | check_state_dir=0)
372 |
373 | if params_file is None:
374 | case = 'resume_current'
375 | params_dir = logutil.filename(logutil.output_dir())
376 | params_file = self._check_file(params_dir, fn,
377 | check_state_dir=0)
378 |
379 | # next, look for initializations by key, then default init
380 | if self.conf.parent.has_section('init'):
381 | if params_file is None and self.load_key is not None:
382 | case = 'init_key'
383 | params_dir = self.conf.parent.get('init', self.load_key, None)
384 | params_file = self._check_file(params_dir, fn)
385 |
386 | if params_file is None:
387 | case = 'init_default'
388 | params_dir = self.conf.parent.get('init', 'all', None)
389 | params_file = self._check_file(params_dir, fn)
390 |
391 | # if we did not find a params file, init with _init_params()
392 | if params_file is None:
393 | case = 'none'
394 |
395 | kwargs['tie_params'] = self.tie_params
396 | for (k, x) in self.tie_params.iteritems():
397 | setattr(self, k, x)
398 |
399 | # 参数加载 如果params_file不为 None ,那么我们就加载参数文件
400 | if params_file is not None:
401 | assert case != 'none'
402 | self.load_params(params_file)
403 | self.loaded = case in ('in_config', 'load_key', 'load_default')
404 | self.resumed = case in ('resume_current',)
405 | self.init_from_load = case in ('init_key', 'init_default')
406 | #如果为None,那么我们就采用初始化的方法
407 | else:
408 | self.params = []
409 | self._init_params(*args, **kwargs)
410 | self.loaded = False
411 | self.resumed = False
412 | self.init_from_load = False
413 | #参数保存
414 | def _save_params(self, dir=None, fn=None, attrs=[]):
415 | if fn is None:
416 | fn = self._params_filename()
417 | if dir:
418 | fn = os.path.join(dir, fn)
419 | pdict = dict((x, getattr(self, x)) for x in attrs)
420 | if self.params:
421 | pdict.update((p.name, p) for p in self.params)
422 | pdict['params'] = [p.name for p in self.params]
423 | with logutil.open(fn, 'w') as f:
424 | cPickle.dump(pdict, f, cPickle.HIGHEST_PROTOCOL)
425 | #根据文件名,加载参数模型,记住是文件名,而不是文件夹名
426 | def _load_params(self, fn):
427 | _log.info('Loading parameters from %s' % fn)
428 |
429 | with logutil.consistent_dir(os.path.dirname(fn)):
430 | with open(fn, 'r') as f:
431 | pdict = cPickle.load(f)
432 | params = pdict.pop('params', [])
433 |
434 | for (name, value) in pdict.iteritems():
435 | setattr(self, name, value)
436 | self.params = [pdict[x] for x in params]
437 |
438 | save_params = _save_params
439 | load_params = _load_params
440 |
441 | def get_updates(self, cost, learning_rate, momentum):
442 | if not self.params:
443 | self.learning_rate = T.constant(0)
444 | return {}
445 |
446 | if self.grads is None:
447 | self.grads = [theano.shared(np.zeros_like(p.get_value()))
448 | for p in self.params]
449 |
450 | # compute the gradients of the cost with respect to the parameters
451 | gparams = T.grad(cost, self.params, disconnected_inputs='ignore')
452 | grad_mult = self.conf.geteval('grad_mult', None)
453 | if grad_mult is not None:
454 | grad_mult = T.constant(grad_mult, dtype=floatX)
455 | gparams = [g * grad_mult for g in gparams]
456 |
457 | clip = self.conf.getfloat('grad_clip', None)
458 | if clip is not None:
459 | gparams = [T.clip(g, -clip, clip) for g in gparams]
460 |
461 | self.gparams = gparams
462 |
463 | # generate the list of updates
464 | gupdates = OrderedDict()
465 | pupdates = OrderedDict()
466 |
467 | self.learning_rate = self.conf.getfloat('learning_rate', None)
468 | if self.learning_rate:
469 | self.learning_rate = T.constant(self.learning_rate)
470 | else:
471 | self.learning_rate = learning_rate
472 | for (gparam, param, gold) in zip(gparams, self.params, self.grads):
473 | lrscale = self.conf.getfloat(
474 | 'learning_rate_scale_%s' % param.name,
475 | None)
476 | if lrscale is None:
477 | lrscale = self.conf.getfloat('learning_rate_scale', 1.0)
478 | decay = self.conf.getfloat('weight_decay_%s' % param.name, 0.0)
479 |
480 | lr = self.learning_rate
481 | if lrscale != 1.0:
482 | lr *= lrscale
483 |
484 | if decay:
485 | gparam += decay * param
486 |
487 | if momentum:
488 | gnew = momentum * gold + gparam
489 | gupdates[gold] = gnew
490 | pupdates[param] = param - lr * gnew
491 | else:
492 | gupdates[gold] = gparam
493 | pupdates[param] = param - lr * gparam
494 |
495 | # apply update constraints
496 | for (p, constraint) in self.constraints.iteritems():
497 | pupdates[p] = constraint(pupdates[p])
498 |
499 | return OrderedDict(gupdates.items() + pupdates.items())
500 |
501 | #最大池化
502 | @register_unit_class
503 | class MaxPool(Unit):
504 | #加载配置文件的相关参数
505 | def __init__(self, conf, **kwargs):
506 | Unit.__init__(self, conf, **kwargs)
507 | self.conf = conf
508 | self.vis_shape = kwargs.get('vis_shape', None)
509 | self.poolsize = self.conf.geteval('poolsize', None)
510 | self.poolstride = self.conf.geteval('poolstride', None)
511 | #池化操作计算,输入图片y,进行最大池化
512 | def pool(self, y):
513 | print "pool"
514 | '''apply pooling to unpooled output'''
515 | if self.vis_shape is None:
516 | self.vis_shape = test_shape(y)[-2:]
517 | (p_y, p_inds) = pooling.maxpool2d(y, winsize=self.poolsize,stride=self.poolstride)
518 |
519 | return (p_y, p_inds)
520 |
521 | infer = pool
522 | # #这个函数是反卷积要用的函数,可能paper一开始的思想是模仿FCN等网络的思想,所以才有了这个函数,本篇paper中没有用到,所以可以把它注释掉
523 | # def unpool(self, y, inds):
524 | # print "unpool"
525 | # '''unpool pooled output'''
526 | # y = pooling.index_unpool_2d(y, inds,
527 | # winsize=self.poolsize,
528 | # stride=self.poolstride,
529 | # output_shape=self.vis_shape[-2:])
530 | # return y
531 |
532 |
533 | # @register_unit_class
534 | # class SumPool(Unit):
535 | # def __init__(self, conf, **kwargs):
536 | # Unit.__init__(self, conf, **kwargs)
537 | # self.conf = conf
538 | # self.vis_shape = kwargs.get('vis_shape', None)
539 | # self.average = self.conf.getboolean('average', False)
540 | # self.poolsize = self.conf.geteval('poolsize', None)
541 | # self.poolstride = self.conf.geteval('poolstride', None)
542 | #
543 | # def pool(self, y):
544 | # print "unpool"
545 | # '''apply pooling to unpooled output'''
546 | # self.vis_shape = self.vis_shape or test_shape(y)[-2:]
547 | # p_y = pooling.sumpool2d(y, winsize=self.poolsize,
548 | # stride=self.poolstride,
549 | # average=self.average)
550 | # return p_y
551 | #
552 | # infer = pool
553 | #
554 | # def unpool(self, y):
555 | # print "unpool"
556 | # '''unpool pooled output'''
557 | # y = pooling.sum_unpool_2d(y,
558 | # winsize=self.poolsize,
559 | # stride=self.poolstride,
560 | # average=self.average,
561 | # output_shape=self.vis_shape[-2:])
562 | # return y
563 |
564 | #卷积层
565 | @register_unit_class
566 | class Conv(Unit):
567 | #根据配置文件,获取相关的参数
568 | def __init__(self, conf, init_W=None, **kwargs):
569 |
570 | Unit.__init__(self, conf, **kwargs)
571 | self.conf = conf
572 | assert self.conf.get('type') == 'conv'
573 | self.filter_shape = self.conf.geteval('filter_shape')
574 | self.conv_mode = self.conf.get('conv_mode', 'valid')
575 |
576 | self.transpose = self.conf.getboolean('transpose', False)
577 | self.have_bias = self.conf.getboolean('bias', True)
578 | self.stride = self.conf.getint('stride', 1)
579 |
580 | self.init_params(init_W)
581 | #本层网络参数初始化
582 | def _init_params(self, init_W, tie_params):
583 | (nfilt, fc, fi, fj) = self.filter_shape
584 |
585 | if 'W' not in tie_params:
586 | if init_W is None:
587 | w_shape = self.filter_shape
588 | init_W = self.conf.geteval('init_W')(w_shape).astype(floatX)
589 | self.W = theano.shared(value=init_W, name='W')
590 | self.params.append(self.W)
591 |
592 | if self.have_bias and 'b' not in tie_params:
593 | init_b = self.conf.geteval('init_b', 0)
594 | nb = nfilt if not self.transpose else fc
595 | self.b = theano.shared(init_b + np.zeros(nb, dtype=floatX),
596 | name='b')
597 | self.params.append(self.b)
598 | #计算网络的输出
599 | def infer(self, x):
600 | (nfilt, fc, fi, fj) = self.filter_shape
601 | if (fi, fj) == (1, 1):#如果卷积核的大小为1*1的情况
602 | W = self.W.reshape((nfilt, fc))
603 | (bsize, nc, ni, nj) = x.shape
604 | xvec = x.transpose((1,0,2,3)).reshape((nc, bsize*ni*nj))
605 | if self.transpose:
606 | y = T.dot(W.T, xvec)
607 | y = y.reshape((fc, bsize, ni, nj)).transpose((1,0,2,3))
608 | else:
609 | y = T.dot(W, xvec)
610 | y = y.reshape((nfilt, bsize, ni, nj)).transpose((1,0,2,3))
611 | y = thutil.gpu_contiguous(y)
612 | else:#正常的卷积层
613 | y = conv(x, self.W, border_mode=self.conv_mode,
614 | transpose=self.transpose,
615 | stride=self.stride)
616 | if self.have_bias:
617 | y += self.b.reshape((1, self.b.shape[0], 1, 1))
618 | return y
619 |
620 | #全连接层
621 | @register_unit_class
622 | class Full(Unit):
623 | #权连接层的输入神经元个数ninput。然后通过conf可以获取本层神经元的个数
624 | def __init__(self, conf, ninput, init_W=None, **kwargs):
625 | Unit.__init__(self, conf, **kwargs)
626 | self.conf = conf
627 | assert self.conf.get('type') == 'full'
628 |
629 | self.ninput = ninput#输入个数
630 | self.noutput = self.conf.getint('noutput')#输出个数
631 | self.transpose = self.conf.getboolean('transpose', False)
632 | self.have_bias = self.conf.getboolean('bias', True)
633 |
634 | self.init_params(init_W)
635 | #参数初始化
636 | def _init_params(self, init_W, tie_params):
637 | if 'W' not in tie_params:
638 | if init_W is None:
639 | w_shape = (self.ninput, self.noutput)
640 | init_W = self.conf.geteval('init_W')(w_shape).astype(floatX)
641 | self.W = theano.shared(value=init_W, name='W')
642 | self.params.append(self.W)
643 |
644 | if self.have_bias and 'b' not in tie_params:
645 | nbias = self.noutput if not self.transpose else self.ninput
646 | init_b = self.conf.geteval('init_b', 0)
647 | init_b = self.conf.geteval('init_bias', init_b)
648 | self.bias = theano.shared(init_b + np.zeros(nbias, dtype=floatX),
649 | name='bias')
650 | self.params.append(self.bias)
651 | #网络输出计算
652 | def infer(self, x):
653 | W = self.W
654 | if self.transpose:
655 | W = W.T
656 | y = T.dot(x, W)
657 | if self.have_bias:
658 | y += self.bias.reshape((1, self.bias.size))
659 | return y
660 |
661 |
--------------------------------------------------------------------------------
/net.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/net.pyc
--------------------------------------------------------------------------------
/pooling.py:
--------------------------------------------------------------------------------
1 | '''
2 | Copyright (C) 2014 New York University
3 |
4 | This program is free software: you can redistribute it and/or modify
5 | it under the terms of the GNU General Public License as published by
6 | the Free Software Foundation, either version 3 of the License, or
7 | (at your option) any later version.
8 |
9 | This program is distributed in the hope that it will be useful,
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 | GNU General Public License for more details.
13 |
14 | You should have received a copy of the GNU General Public License
15 | along with this program. If not, see .
16 | '''
17 | import numpy as np
18 | import theano
19 | import theano.tensor as T
20 | from theano import Op, Apply
21 | from theano.gradient import DisconnectedType
22 |
23 | import thutil
24 | from thutil import test_value, Eval
25 |
26 | if thutil.use_gpu:
27 | import theano.sandbox.cuda
28 | from theano.sandbox.cuda import GpuOp, gpu_from_host, host_from_gpu, \
29 | CudaNdarrayType, CudaNdarray
30 |
31 |
32 | def subsample2d(input, stride=(2,2), output_shape=None, transpose='n'):
33 | (bsize, ic, ix, iy) = input.shape
34 | (dx, dy) = stride
35 | if transpose.lower() == 't':
36 | if output_shape is None:
37 | output_shape = (ix * dx, iy * dy)
38 | out = T.zeros((bsize, ic,) + output_shape, dtype=input.dtype)
39 | out = T.set_subtensor(out[:, :, ::dx, ::dy], input)
40 | else:
41 | out = input[:, :, ::dx, ::dy]
42 | return out
43 |
44 | def maxpool2d(input, winsize, stride=None, input_shape=None):
45 | if input_shape is None:
46 | input_shape = test_value(input).shape[-2:]
47 | inds = maxinds_2d(input, winsize, stride, input_shape)
48 | vals = index_pool_2d(input, inds, winsize, stride, input_shape)
49 | return (vals, inds)
50 |
51 | def maxinds_2d(input, winsize, stride=None, input_shape=None):
52 | if input_shape is None:
53 | input_shape = test_value(input).shape[-2:]
54 | return MaxInds2D(input_shape, winsize, stride)(input)
55 |
56 | def index_pool_2d(input, inds, winsize, stride=None,
57 | input_shape=None):
58 | if input_shape is None:
59 | input_shape = test_value(input).shape[-2:]
60 | return IndexPool2D(input_shape, winsize, stride)(input, inds)
61 |
62 | def index_unpool_2d(input, inds, winsize, stride=None,
63 | input_shape=None, output_shape=None):
64 | if input_shape is None:
65 | input_shape = test_value(input).shape[-2:]
66 | return IndexUnpool2D(input_shape, winsize, stride,
67 | output_shape=output_shape)(input, inds)
68 |
69 | def sumpool2d(input, winsize, stride=None, input_shape=None, average=False):
70 | if input_shape is None:
71 | input_shape = test_value(input).shape[-2:]
72 | return SumPool2D(input_shape, winsize, stride, average=average)(input)
73 |
74 | def sum_unpool_2d(input, winsize, stride=None,
75 | input_shape=None, output_shape=None, average=False):
76 | if input_shape is None:
77 | input_shape = test_value(input).shape[-2:]
78 | return SumUnpool2D(input_shape, winsize, stride, output_shape,
79 | average=average)(input)
80 |
81 | def maxpool_features(input, winsize):
82 | if winsize == 1:
83 | return (input, T.zeros_like(input))
84 | (bsize, nc, ni, nj) = input.shape
85 | inp = input.transpose((0,2,3,1)).reshape((bsize, ni*nj, nc, 1))
86 | (vals, inds) = maxpool2d(inp, (winsize, 1))
87 | sz = vals.size / (bsize*ni*nj)
88 | vals = vals.reshape((bsize, ni, nj, sz)).transpose((0,3,1,2))
89 | return (vals, inds)
90 |
91 | def index_unpool_features(input, inds, winsize):
92 | if winsize == 1:
93 | return input
94 | (bsize, nc, ni, nj) = input.shape
95 | inp = input.transpose((0,2,3,1)).reshape((bsize, ni*nj, nc, 1))
96 | vals = index_unpool_2d(inp, inds, (winsize,1))
97 | sz = vals.size / (bsize*ni*nj)
98 | vals = vals.reshape((bsize, ni, nj, sz)).transpose((0,3,1,2))
99 | return vals
100 |
101 | def cmrnorm(x, winsize=5, scale=0.0001, pow=0.75, input_shape=None):
102 | if input_shape is None:
103 | input_shape = test_value(x.shape)[1:]
104 | return CMRNorm(input_shape, winsize, scale, pow, x.dtype)(x)
105 |
106 | class PoolOp(Op):
107 | (is_pooling, is_unpooling) = (True, False)
108 |
109 | def __init__(self, input_shape, winsize, stride,
110 | output_shape=None, dtype=None):
111 | if stride is None:
112 | stride = winsize
113 | self.input_shape = input_shape
114 | self.winsize = winsize
115 | self.stride = stride
116 | if output_shape is None:
117 | output_shape = self._infer_shape(input_shape)
118 | self.output_shape = output_shape
119 | self.output_dtype = dtype
120 | self._hash_key = (type(self), self.input_shape,
121 | self.winsize, self.stride,
122 | self.output_shape, self.output_dtype)
123 |
124 | def __eq__(self, other):
125 | return (type(self) == type(other) and
126 | self.input_shape == other.input_shape and
127 | self.winsize == other.winsize and
128 | self.stride == other.stride and
129 | self.output_shape == other.output_shape and
130 | self.output_dtype == other.output_dtype)
131 |
132 | def __hash__(self):
133 | return hash(self._hash_key)
134 |
135 | def _infer_shape(self, input_shape):
136 | (x, y) = input_shape
137 | (wx, wy) = self.winsize
138 | (sx, sy) = self.stride
139 | if self.is_pooling:
140 | return ((x-wx)//sx + 1, (y-wy)//sy + 1)
141 | else: # unpooling
142 | return ((x-1)*sx + wx, (y-1)*sy + wy)
143 |
144 | def infer_shape(self, node, input_shapes):
145 | s = input_shapes[0][:-2] + self.output_shape
146 | return (s,)
147 |
148 | def make_node(self, *inputs):
149 | inputs = tuple(map(T.as_tensor_variable, inputs))
150 | output = T.tensor4(dtype=(self.output_dtype or inputs[0].dtype))
151 | return Apply(self, inputs, (output,))
152 |
153 | def perform(self, node, inputs, (output,)):
154 | (bsize, nchan, unpooli, unpoolj) = inputs[0].shape
155 | (pooli, poolj) = self.output_shape
156 | (wi, wj) = self.winsize
157 | (si, sj) = self.stride
158 | output_dtype = self.output_dtype or node.inputs[0].dtype
159 | out = output[0]
160 | if out is None or out.dtype != output_dtype or \
161 | out.shape != (bsize, nchan, pooli, poolj):
162 | out = output[0] = np.empty((bsize, nchan, pooli, poolj),
163 | dtype=output_dtype)
164 | inp = inputs[0]
165 | poolfunc = self.perform_pool
166 | for b in xrange(bsize):
167 | for c in xrange(nchan):
168 | x = out[b, c].flat
169 | x[:] = [poolfunc(inp[b, c, i*si:i*si+wi, j*sj:j*sj+wj],
170 | inputs, b, c, i, j)
171 | for i in xrange(pooli)
172 | for j in xrange(poolj)]
173 |
174 | def _pool_c_code(self, node, name, input, output, body, sub,
175 | output_type=None):
176 | (unpooli, unpoolj) = self.input_shape
177 | (pooli, poolj) = self.output_shape
178 | (wi, wj) = self.winsize
179 | (si, sj) = self.stride
180 | fail = sub['fail']
181 | if output_type is None:
182 | output_type = 'PyArray_ObjectType((PyObject*) %s, 0)' % input
183 |
184 | code = '''
185 | #define MIN(a,b) ((a) < (b) ? (a) : (b))
186 | int istart, jstart, iend, jend;
187 | int ind;
188 | int bsize = PyArray_DIMS(%(input)s)[0];
189 | int nchan = PyArray_DIMS(%(input)s)[1];
190 | npy_intp dims[4] = {0, 0, %(pooli)d, %(poolj)d};
191 | dims[0] = bsize;
192 | dims[1] = nchan;
193 |
194 | if (PyArray_NDIM(%(input)s) != 4) {
195 | PyErr_SetString(PyExc_ValueError, "input must be a 4d ndarray");
196 | %(fail)s;
197 | }
198 | Py_XDECREF(%(output)s);
199 | %(output)s = (PyArrayObject*) PyArray_ZEROS(
200 | 4, dims, %(output_type)s, 0);
201 |
202 | for (int b = 0; b < bsize; ++b) {
203 | for (int c = 0; c < nchan; ++c) {
204 | for (int i = 0; i < %(pooli)d; ++i) {
205 | istart = i * %(si)d;
206 | iend = MIN(istart + %(wi)d, %(unpooli)d);
207 | for (int j = 0; j < %(poolj)d; ++j) {
208 | jstart = j * %(sj)d;
209 | jend = MIN(jstart + %(wj)d, %(unpoolj)d);
210 |
211 | %(body)s
212 | }
213 | }
214 | }
215 | }
216 | ''' % locals()
217 | return code
218 |
219 | class UnpoolOp(PoolOp):
220 | (is_pooling, is_unpooling) = (False, True)
221 |
222 | def perform(self, node, inputs, (output,)):
223 | vals = inputs[0]
224 | (bsize, nchan, pooli, poolj) = vals.shape
225 | (wi, wj) = self.winsize
226 | (si, sj) = self.stride
227 | (unpooli, unpoolj) = self.output_shape
228 | out = output[0] = np.zeros((bsize, nchan, unpooli, unpoolj),
229 | dtype=vals.dtype)
230 | for b in xrange(bsize):
231 | for c in xrange(nchan):
232 | for i in xrange(pooli):
233 | for j in xrange(poolj):
234 | x = out[b, c, i*si:i*si+wi, j*sj:j*sj+wj]
235 | self.perform_unpool(x, vals[b,c,i,j],
236 | inputs, b, c, i, j)
237 |
238 |
239 | class MaxInds2D(PoolOp):
240 | def perform_pool(self, pool_vals, inputs, b, c, i, j):
241 | return np.argmax(pool_vals)
242 |
243 | def make_gpu_node(self, input):
244 | return MaxInds2D_GPU(self.input_shape, self.winsize, self.stride) \
245 | (input)
246 |
247 | def c_support_code(self):
248 | code = '''
249 | template
250 | inline int _argmax(PyArrayObject *x, int b, int c,
251 | int istart, int iend, int jstart, int jend)
252 | {
253 | int k = 0, kmax = 0;
254 | T v, vmax;
255 | vmax = *(T*) PyArray_GETPTR4(x, b, c, istart, jstart);
256 | for (int i = istart; i < iend; ++i) {
257 | for (int j = jstart; j < jend; ++j, ++k) {
258 | v = *(T*) PyArray_GETPTR4(x, b, c, i, j);
259 | if (v > vmax) {
260 | vmax = v;
261 | kmax = k;
262 | }
263 | }
264 | }
265 | return kmax;
266 | }
267 | '''
268 | return code
269 |
270 | def c_code(self, node, name, (input,), (output,), sub):
271 | output_type = {'int32': 'NPY_INT',
272 | 'float32': 'NPY_FLOAT32',
273 | 'float64': 'NPY_FLOAT64',
274 | }[self.output_dtype or node.inputs[0].dtype]
275 | body = '''
276 | int v = _argmax(
277 | %(input)s, b, c, istart, iend, jstart, jend);
278 | *(dtype_%(output)s*) PyArray_GETPTR4(%(output)s, b, c, i, j)
279 | = (dtype_%(output)s) v;
280 | ''' % locals()
281 | return self._pool_c_code(node, name, input, output, body, sub)
282 |
283 |
284 | class IndexPool2D(PoolOp):
285 | def perform_pool(self, pool_vals, inputs, b, c, i, j):
286 | return pool_vals.flat[int(inputs[1][b,c,i,j])]
287 |
288 | def grad(self, (vals, inds), (dvals,)):
289 | return (IndexUnpool2D(self.output_shape, self.winsize, self.stride,
290 | output_shape=self.input_shape)(dvals, inds),
291 | DisconnectedType()(),)
292 |
293 | def make_gpu_node(self, input, inds):
294 | return IndexPool2D_GPU(self.input_shape, self.winsize, self.stride) \
295 | (input, inds)
296 |
297 | def c_support_code(self):
298 | code = '''
299 | template
300 | inline T _select_ind(PyArrayObject *x, int b, int c,
301 | int istart, int iend, int jstart, int jend,
302 | int ind)
303 | {
304 | int jlen = jend - jstart;
305 | int i = istart + ind / jlen;
306 | int j = jstart + ind % jlen;
307 | return *(T*) PyArray_GETPTR4(x, b, c, i, j);
308 | }
309 | '''
310 | return code
311 |
312 | def c_code(self, node, name, (input, inds), (output,), sub):
313 | body = '''
314 | int ind = (int) *(dtype_%(inds)s*)
315 | PyArray_GETPTR4(%(inds)s, b, c, i, j);
316 | dtype_%(input)s v = _select_ind(
317 | %(input)s, b, c,
318 | istart, iend, jstart, jend,
319 | ind);
320 | *(dtype_%(output)s*)
321 | PyArray_GETPTR4(%(output)s, b, c, i, j) = v;
322 | ''' % locals()
323 | return self._pool_c_code(node, name, input, output, body, sub)
324 |
325 |
326 | class IndexUnpool2D(UnpoolOp):
327 | def perform_unpool(self, unpool_vals, pool_val, inputs, b, c, i, j):
328 | unpool_vals.flat[int(inputs[1][b,c,i,j])] += pool_val
329 |
330 | def make_gpu_node(self, input, inds):
331 | return IndexUnpool2D_GPU(self.input_shape, self.winsize, self.stride,
332 | self.output_shape)(input, inds)
333 |
334 | def grad(self, (vals, inds), (doutput,)):
335 | return (IndexPool2D(self.output_shape, self.winsize, self.stride)
336 | (doutput, inds),
337 | DisconnectedType()(),)
338 |
339 | def c_support_code(self):
340 | code = '''
341 | #define MIN(a,b) ((a) < (b) ? (a) : (b))
342 | template
343 | inline void _add_ind(
344 | PyArrayObject *x, int b, int c,
345 | int istart, int iend, int jstart, int jend,
346 | int ind, T val)
347 | {
348 | int jlen = jend - jstart;
349 | int i = istart + ind / jlen;
350 | int j = jstart + ind % jlen;
351 | *(T*) PyArray_GETPTR4(x, b, c, i, j) += val;
352 | }
353 | '''
354 | return code
355 |
356 | def c_code(self, node, name, (input, inds), (output,), sub):
357 | (unpooli, unpoolj) = self.output_shape
358 | (pooli, poolj) = self.input_shape
359 | (wi, wj) = self.winsize
360 | (si, sj) = self.stride
361 | fail = sub['fail']
362 |
363 | code = '''
364 | int istart, jstart;
365 | int ind;
366 | int bsize = PyArray_DIMS(%(input)s)[0];
367 | int nchan = PyArray_DIMS(%(input)s)[1];
368 | npy_intp dims[4] = {0, 0, %(unpooli)d, %(unpoolj)d};
369 | dims[0] = bsize;
370 | dims[1] = nchan;
371 | dtype_%(output)s v;
372 |
373 | if (PyArray_NDIM(%(input)s) != 4) {
374 | PyErr_SetString(PyExc_ValueError, "input must be a 4d ndarray");
375 | %(fail)s;
376 | }
377 | Py_XDECREF(%(output)s);
378 | %(output)s = (PyArrayObject*) PyArray_ZEROS(
379 | 4, dims,
380 | PyArray_ObjectType((PyObject*) %(input)s, 0),
381 | 0);
382 |
383 | for (int b = 0; b < bsize; ++b) {
384 | for (int c = 0; c < nchan; ++c) {
385 | for (int i = 0; i < %(pooli)d; ++i) {
386 | istart = i * %(si)d;
387 | for (int j = 0; j < %(poolj)d; ++j) {
388 | jstart = j * %(sj)d;
389 |
390 | ind = (int) *(dtype_%(inds)s*)
391 | PyArray_GETPTR4(%(inds)s, b, c, i, j);
392 | v = *(dtype_%(input)s*)
393 | PyArray_GETPTR4(%(input)s, b, c, i, j);
394 | _add_ind(
395 | %(output)s, b, c,
396 | istart, MIN(istart + %(wi)d, %(unpooli)d),
397 | jstart, MIN(jstart + %(wj)d, %(unpoolj)d),
398 | ind, v);
399 | }
400 | }
401 | }
402 | }
403 | ''' % locals()
404 | return code
405 |
406 |
407 | class SumPool2D(PoolOp):
408 | def __init__(self, *args, **kwargs):
409 | self.average = kwargs.pop('average', False)
410 | PoolOp.__init__(self, *args, **kwargs)
411 | self._hash_key = self._hash_key + (self.average,)
412 |
413 | def __eq__(self, other):
414 | return PoolOp.__eq__(self, other) and self.average == other.average
415 |
416 | def perform_pool(self, pool_vals, inputs, b, c, i, j):
417 | if self.average:
418 | return np.mean(pool_vals)
419 | return np.sum(pool_vals)
420 |
421 | def make_gpu_node(self, input):
422 | return SumPool2D_GPU(self.input_shape, self.winsize, self.stride,
423 | average=self.average)(input)
424 |
425 | def grad(self, (vals,), (dvals,)):
426 | return (SumUnpool2D(self.output_shape, self.winsize, self.stride,
427 | output_shape=self.input_shape,
428 | average=self.average)
429 | (dvals),
430 | )
431 |
432 | def c_support_code(self):
433 | code = '''
434 | template
435 | inline T _sum_window(PyArrayObject *x, int b, int c,
436 | int istart, int iend, int jstart, int jend)
437 | {
438 | T vsum = 0;
439 | for (int i = istart; i < iend; ++i) {
440 | for (int j = jstart; j < jend; ++j) {
441 | vsum += *(T*) PyArray_GETPTR4(x, b, c, i, j);
442 | }
443 | }
444 | if (average)
445 | vsum /= (iend - istart) * (jend - jstart);
446 | return vsum;
447 | }
448 | '''
449 | return code
450 |
451 | def c_code(self, node, name, (input,), (output,), sub):
452 | output_type = {'int32': 'NPY_INT',
453 | 'float32': 'NPY_FLOAT32',
454 | 'float64': 'NPY_FLOAT64',
455 | }[self.output_dtype or node.inputs[0].dtype]
456 | average = int(self.average)
457 | body = '''
458 | dtype_%(input)s v = _sum_window(
459 | %(input)s, b, c, istart, iend, jstart, jend);
460 | *(dtype_%(output)s*) PyArray_GETPTR4(%(output)s, b, c, i, j)
461 | = (dtype_%(output)s) v;
462 | ''' % locals()
463 | return self._pool_c_code(node, name, input, output, body, sub)
464 |
465 |
466 | class SumUnpool2D(UnpoolOp):
467 | def __init__(self, *args, **kwargs):
468 | self.average = kwargs.pop('average', False)
469 | UnpoolOp.__init__(self, *args, **kwargs)
470 | self._hash_key = self._hash_key + (self.average,)
471 |
472 | def __eq__(self, other):
473 | return UnpoolOp.__eq__(self, other) and self.average == other.average
474 |
475 | def perform_unpool(self, unpool_vals, pool_val, inputs, b, c, i, j):
476 | if self.average:
477 | unpool_vals += pool_val / float(unpool_vals.size)
478 | else:
479 | unpool_vals += pool_val
480 |
481 | def make_gpu_node(self, input):
482 | return SumUnpool2D_GPU(self.input_shape, self.winsize, self.stride,
483 | self.output_shape,
484 | average=self.average)(input)
485 |
486 | def grad(self, (vals,), (dvals,)):
487 | return (SumPool2D(self.output_shape, self.winsize, self.stride,
488 | average=self.average)
489 | (dvals),
490 | )
491 |
492 | def c_support_code(self):
493 | code = '''
494 | #define MIN(a,b) ((a) < (b) ? (a) : (b))
495 | template
496 | inline void _add_val_to_window(
497 | PyArrayObject *x, int b, int c,
498 | int istart, int iend, int jstart, int jend,
499 | T val)
500 | {
501 | if (average) {
502 | val /= (T) ((iend - istart) * (jend - jstart));
503 | }
504 | for (int i = istart; i < iend; ++i) {
505 | for (int j = jstart; j < jend; ++j) {
506 | *(T*) PyArray_GETPTR4(x, b, c, i, j) += val;
507 | }
508 | }
509 | }
510 | '''
511 | return code
512 |
513 | def c_code(self, node, name, (input,), (output,), sub):
514 | (unpooli, unpoolj) = self.output_shape
515 | (pooli, poolj) = self.input_shape
516 | (wi, wj) = self.winsize
517 | (si, sj) = self.stride
518 | average = self.average
519 | fail = sub['fail']
520 |
521 | code = '''
522 | int istart, jstart;
523 | int bsize = PyArray_DIMS(%(input)s)[0];
524 | int nchan = PyArray_DIMS(%(input)s)[1];
525 | npy_intp dims[4] = {0, 0, %(unpooli)d, %(unpoolj)d};
526 | dims[0] = bsize;
527 | dims[1] = nchan;
528 | dtype_%(output)s v;
529 |
530 | if (PyArray_NDIM(%(input)s) != 4) {
531 | PyErr_SetString(PyExc_ValueError, "input must be a 4d ndarray");
532 | %(fail)s;
533 | }
534 | Py_XDECREF(%(output)s);
535 | %(output)s = (PyArrayObject*) PyArray_ZEROS(
536 | 4, dims,
537 | PyArray_ObjectType((PyObject*) %(input)s, 0),
538 | 0);
539 |
540 | for (int b = 0; b < bsize; ++b) {
541 | for (int c = 0; c < nchan; ++c) {
542 | for (int i = 0; i < %(pooli)d; ++i) {
543 | istart = i * %(si)d;
544 | for (int j = 0; j < %(poolj)d; ++j) {
545 | jstart = j * %(sj)d;
546 |
547 | v = *(dtype_%(input)s*)
548 | PyArray_GETPTR4(%(input)s, b, c, i, j);
549 | /* add val to all elements in this pooling window */
550 | _add_val_to_window(
551 | %(output)s, b, c,
552 | istart, MIN(istart + %(wi)d, %(unpooli)d),
553 | jstart, MIN(jstart + %(wj)d, %(unpoolj)d),
554 | v);
555 | }
556 | }
557 | }
558 | }
559 | ''' % locals()
560 | return code
561 |
562 |
563 | class CMRNorm(Op):
564 | def __init__(self, input_shape, winsize, scale, pow, dtype=None):
565 | self.input_shape = tuple(input_shape)
566 | self.winsize = winsize
567 | self.scale = scale
568 | self.pow = pow
569 | self.output_dtype = dtype
570 | self.enable_grad = True
571 | self._hash_key = (type(self), self.__class__, self.input_shape,
572 | self.winsize, self.scale, self.pow,
573 | self.output_dtype)
574 |
575 | def __eq__(self, other):
576 | return (type(self) == type(other) and
577 | self.__class__ == other.__class__ and
578 | self.input_shape == other.input_shape and
579 | self.winsize == other.winsize and
580 | self.scale == other.scale and
581 | self.pow == other.pow and
582 | self.output_dtype == other.output_dtype)
583 |
584 | def __hash__(self):
585 | return hash(self._hash_key)
586 |
587 | def make_gpu_node(self, input):
588 | return CMRNorm_GPU(self.input_shape,
589 | self.winsize, self.scale, self.pow,
590 | dtype=self.output_dtype)(input)
591 |
592 | def infer_shape(self, node, input_shapes):
593 | return input_shapes
594 |
595 | def make_node(self, *inputs):
596 | inputs = tuple(map(T.as_tensor_variable, inputs))
597 | output = T.tensor4(dtype=(self.output_dtype or inputs[0].dtype))
598 | return Apply(self, inputs, (output,))
599 |
600 | def perform(self, node, (input,), (output,)):
601 | (bsize, nchan, ni, nj) = input.shape
602 | output_dtype = self.output_dtype or node.inputs[0].dtype
603 | out = output[0]
604 | if out is None or out.dtype != output_dtype or \
605 | out.shape != (bsize, nchan, ni, ni):
606 | out = output[0] = np.empty((bsize, nchan, ni, nj),
607 | dtype=output_dtype)
608 | x = input
609 | x2 = x ** 2
610 | sums = np.zeros_like(x)
611 | for p in xrange(self.winsize):
612 | d = p - (self.winsize//2)
613 | sums[:,max(0,-d):min(nchan,nchan-d),:,:] += \
614 | x2[:,max(0,d):min(nchan,nchan+d),:,:]
615 | out[:] = x * ((2 + self.scale * sums) ** (-self.pow))
616 |
617 | def grad(self, (x,), (dy,)):
618 | if not self.enable_grad:
619 | return [dy]
620 | return (CMRNormGrad(self.input_shape,
621 | self.winsize, self.scale, self.pow,
622 | dtype=self.output_dtype)
623 | (x, self(x), dy),
624 | )
625 |
626 | class CMRNormGrad(CMRNorm):
627 | def perform(self, node, (x, y, dy), (output,)):
628 | (bsize, nchan, ni, nj) = x.shape
629 | output_dtype = self.output_dtype or node.inputs[0].dtype
630 | dx = output[0]
631 | if dx is None or dx.dtype != output_dtype or \
632 | dx.shape != (bsize, nchan, ni, ni):
633 | dx = output[0] = np.empty((bsize, nchan, ni, nj),
634 | dtype=output_dtype)
635 | x2 = x ** 2
636 | sums = np.zeros_like(x)
637 | for p in xrange(self.winsize):
638 | d = p - (self.winsize//2)
639 | sums[:,max(0,-d):min(nchan,nchan-d),:,:] += \
640 | x2[:,max(0,d):min(nchan,nchan+d),:,:]
641 | denom = (2 + self.scale * sums) ** (-self.pow)
642 | a = (-2 * self.scale * self.pow) * y * denom
643 | dx[:] = 0
644 | x_dy = x * dy
645 | for p in xrange(self.winsize):
646 | d = p - (self.winsize//2)
647 | # slices of "convolution" window sliding
648 | lhs = slice(max(0,-d), min(nchan,nchan-d))
649 | rhs = slice(max(0,d), min(nchan,nchan+d))
650 | dx[:,lhs,:,:] += x_dy[:,rhs,:,:]
651 | dx *= a
652 | dx += dy * denom
653 |
654 | def make_gpu_node(self, *inputs):
655 | return CMRNormGrad_GPU(self.input_shape,
656 | self.winsize, self.scale, self.pow,
657 | dtype=self.output_dtype)(*inputs)
658 |
659 | def infer_shape(self, node, input_shapes):
660 | return (input_shapes[0],)
661 |
662 | def grad(self, inputs, doutputs):
663 | raise NotImplementedError
664 |
665 |
666 | if thutil.use_gpu:
667 |
668 | source_support_defs = '''
669 | #define MOD %
670 | #define MIN(a,b) ((a) < (b) ? (a) : (b))
671 | #define IDX4(n1, n2, n3, n4, i1, i2, i3, i4) \\
672 | ((i1)*(n2)*(n3)*(n4) + (i2)*(n3)*(n4) + (i3)*(n4) + (i4))
673 | #define IDX3(n1, n2, n3, i1, i2, i3) \\
674 | ((i1)*(n2)*(n3) + (i2)*(n3) + (i3))
675 | #define UNRAVEL_IDX4(ind, n1, n2, n3, n4, i1, i2, i3, i4) \\
676 | { \\
677 | i1 = (ind) / ((n2)*(n3)*(n4)); \\
678 | i2 = ((ind) MOD ((n2)*(n3)*(n4))) / ((n3)*(n4)); \\
679 | i3 = ((ind) MOD ((n3)*(n4))) / (n4); \\
680 | i4 = ((ind) MOD (n4)); \\
681 | }
682 | #define SETIF(var, val, cond) \
683 | (var = (val)*!!(cond) + (var)*!(cond))
684 | #define DIVUP(x,y) (1 + (((x) - 1) / (y)))
685 |
686 | static void launch_sizes(int nthreads, dim3 &grid_size, dim3 &block_size)
687 | {
688 | static const int min_threads = 16;
689 | static const int max_threads = 256;
690 | static const int max_blocks = 65535;
691 |
692 | int ngroups = (nthreads + min_threads - 1) / min_threads;
693 |
694 | if (ngroups == 1) {
695 | grid_size = dim3(1);
696 | block_size = dim3(min_threads);
697 | } else if (nthreads < max_blocks * min_threads) {
698 | grid_size = dim3(ngroups);
699 | block_size = dim3(min_threads);
700 | } else if (nthreads < max_blocks * max_threads) {
701 | grid_size = dim3(max_blocks);
702 | block_size = dim3((ngroups + max_blocks - 1)
703 | / max_blocks * min_threads);
704 | } else {
705 | grid_size = dim3(max_blocks);
706 | block_size = dim3(max_threads);
707 | }
708 | }
709 | '''
710 |
711 | class PoolGpuOp(GpuOp):
712 | def make_node(self, *inputs):
713 | output = CudaNdarrayType((False,) * 4)()
714 | return Apply(self, inputs, (output,))
715 |
716 | def c_support_code(self):
717 | if self.is_pooling:
718 | unpooled_shape = self.input_shape
719 | pooled_shape = self.output_shape
720 | pooled_stride_i = 1
721 | pooled_stride_j = 1
722 | else:
723 | unpooled_shape = self.output_shape
724 | pooled_shape = self.input_shape
725 | pooled_stride_i = 'DIVUP(wsize_i, stride_i)'
726 | pooled_stride_j = 'DIVUP(wsize_j, stride_j)'
727 | assert unpooled_shape[0] >= (pooled_shape[0] - 1) * self.stride[0] + self.winsize[0]
728 | assert unpooled_shape[1] >= (pooled_shape[1] - 1) * self.stride[1] + self.winsize[1]
729 |
730 | source = source_support_defs + '''
731 |
732 | #define unpooled_i %(unpooled_shape[0])d
733 | #define unpooled_j %(unpooled_shape[1])d
734 | #define pooled_i %(pooled_shape[0])d
735 | #define pooled_j %(pooled_shape[1])d
736 | #define wsize_i %(self.winsize[0])d
737 | #define wsize_j %(self.winsize[1])d
738 | #define stride_i %(self.stride[0])d
739 | #define stride_j %(self.stride[1])d
740 | #define pooled_stride_i %(pooled_stride_i)s
741 | #define pooled_stride_j %(pooled_stride_j)s
742 | #define pooled_si DIVUP(pooled_i, pooled_stride_i)
743 | #define pooled_sj DIVUP(pooled_j, pooled_stride_j)
744 |
745 | #define ntiles_per_call (pooled_si * pooled_sj)
746 | static __global__ void %(self.ker_name)s ( %(self.ker_args)s,
747 | float *out,
748 | int nimgs,
749 | int pooled_start_i,
750 | int pooled_start_j,
751 | uint32_t randseed)
752 | {
753 | unsigned total_threads = gridDim.x * blockDim.x;
754 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
755 | int t, tnum, img, tile;
756 | int pi, pj, ui0, uj0;
757 |
758 | %(self.ker_defs)s
759 |
760 | for (t = tid; t < nimgs * ntiles_per_call; t += total_threads) {
761 | tnum = t; /* tile number */
762 | img = tnum / ntiles_per_call; /* image the tile is in */
763 | tile = tnum MOD ntiles_per_call; /* tile in image */
764 | pi = (tile / pooled_sj); /* pooled pixel indices */
765 | pj = (tile MOD pooled_sj);
766 | pi = pi * pooled_stride_i + pooled_start_i;
767 | pj = pj * pooled_stride_j + pooled_start_j;
768 | if (pi >= pooled_i || pj >= pooled_j)
769 | continue;
770 | ui0 = pi * stride_i; /* unpooled window top-left pixel */
771 | uj0 = pj * stride_j;
772 |
773 | %(self.ker_loop_body)s
774 | }
775 | }
776 |
777 | ''' % Eval()
778 | return source
779 |
780 | def c_code(self, node, nodename, inputs, outputs, sub):
781 | (output,) = outputs
782 |
783 | source = '''
784 | const int *input_dims = CudaNdarray_HOST_DIMS(%(inputs[0])s);
785 | const int *output_dims = %(output)s ?
786 | CudaNdarray_HOST_DIMS(%(output)s) :
787 | NULL;
788 | const int dims[] = { input_dims[0],
789 | input_dims[1],
790 | %(self.output_shape[0])s,
791 | %(self.output_shape[1])s };
792 | const int nimgs = dims[0] * dims[1]; /* imgs * channels */
793 |
794 | int ntiles = nimgs * ntiles_per_call; /* one thread per tile */
795 | dim3 grid_size, block_size;
796 | launch_sizes(ntiles, grid_size, block_size);
797 |
798 | CudaNdarray %(', '.join('*%s_contig' % inp for inp in inputs))s ;
799 | cudaError_t err;
800 | '''
801 |
802 | source += '''
803 | if (%(output)s == NULL
804 | || !CudaNdarray_is_c_contiguous(%(output)s)
805 | || %(output)s->nd != 4
806 | || dims[0] != output_dims[0]
807 | || dims[1] != output_dims[1]
808 | || dims[2] != output_dims[2]
809 | || dims[3] != output_dims[3]) {
810 |
811 | Py_XDECREF(%(output)s);
812 | %(output)s = (CudaNdarray*)CudaNdarray_New();
813 | if (%(output)s == NULL
814 | || CudaNdarray_alloc_contiguous(%(output)s, 4, dims)) {
815 | Py_XDECREF(%(output)s);
816 | %(output)s = NULL;
817 | %(sub['fail'])s;
818 | }
819 | }
820 |
821 | if (%(self.zero_output)d) {
822 | if (cudaMemset(
823 | CudaNdarray_DEV_DATA(%(output)s),
824 | 0, CudaNdarray_SIZE(%(output)s) * sizeof(float))
825 | != cudaSuccess) {
826 | PyErr_Format(PyExc_MemoryError,
827 | "%(self.ker_name)s: Error in memset");
828 | Py_XDECREF(%(output)s);
829 | %(output)s = NULL;
830 | %(sub['fail'])s;
831 | }
832 |
833 | }
834 | '''
835 |
836 | for inp in inputs:
837 | source += '''
838 | %(inp)s_contig = %(inp)s;
839 | if (!CudaNdarray_is_c_contiguous(%(inp)s)) {
840 | %(inp)s_contig = (CudaNdarray*) CudaNdarray_Copy(%(inp)s);
841 | assert(CudaNdarray_is_c_contiguous(%(inp)s_contig));
842 | }
843 | ''' % Eval()
844 |
845 | source += '''
846 | /* call kernel once for each offset within the pooled stride */
847 | for (int j = 0; j < pooled_stride_j; ++j) {
848 | for (int i = 0; i < pooled_stride_i; ++i) {
849 | %(self.ker_name)s <<>> (
850 | %(', '.join('CudaNdarray_DEV_DATA(%s_contig)' % x
851 | for x in inputs))s,
852 | CudaNdarray_DEV_DATA(%(output)s),
853 | nimgs,
854 | i, j,
855 | rand()
856 | );
857 | }
858 | }
859 | CNDA_THREAD_SYNC;
860 | '''
861 |
862 | for inp in inputs:
863 | source += '''
864 | if (%(inp)s_contig != %(inp)s) {
865 | Py_DECREF(%(inp)s_contig);
866 | }
867 | ''' % Eval()
868 |
869 | source += '''
870 | err = cudaGetLastError();
871 |
872 | if (err != cudaSuccess) {
873 | PyErr_Format(PyExc_RuntimeError,
874 | "Cuda error: %%s: %%s",
875 | "%(self.ker_name)s", cudaGetErrorString(err));
876 | %(sub['fail'])s
877 | }
878 | '''
879 |
880 | source = source % Eval()
881 | return source
882 |
883 |
884 | class MaxInds2D_GPU(PoolGpuOp, MaxInds2D):
885 | ker_name = 'pool_maxind'
886 |
887 | ker_args = 'float *X'
888 |
889 | ker_defs = '''
890 | int u, ui, uj, ismax, max_ind;
891 | float val, max_val;
892 | '''
893 |
894 | zero_output = False
895 |
896 | ker_loop_body = '''
897 | max_val = -1000000;
898 | for (u = 0; u < wsize_i * wsize_j; ++u) {
899 | ui = ui0 + u / wsize_j;
900 | uj = uj0 + u MOD wsize_j;
901 | if ((ui < unpooled_i) && (uj < unpooled_j)) {
902 | val = X[IDX3(nimgs, unpooled_i, unpooled_j,
903 | img, ui, uj)];
904 | ismax = (val > max_val);
905 | SETIF(max_val, val, ismax);
906 | SETIF(max_ind, u, ismax);
907 | }
908 | }
909 |
910 | out[IDX3(nimgs, pooled_i, pooled_j,
911 | img, pi, pj)]
912 | = max_ind;
913 | '''
914 |
915 | def perform(self, node, (input,), (output,)):
916 | output_host = [None]
917 | MaxInds2D.perform(self, node, (np.array(input),), (output_host,))
918 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
919 |
920 |
921 | class IndexPool2D_GPU(PoolGpuOp, IndexPool2D):
922 | ker_name = 'pool_index'
923 |
924 | ker_args = 'float *input, float *inds'
925 |
926 | ker_defs = '''
927 | int ui, uj, ind;
928 | float val;
929 | '''
930 |
931 | zero_output = False
932 |
933 | ker_loop_body = '''
934 | ind = (int) inds[IDX3(nimgs, pooled_i, pooled_j,
935 | img, pi, pj)];
936 |
937 | ui = ui0 + ind / wsize_j;
938 | uj = uj0 + ind MOD wsize_j;
939 | val = input[IDX3(nimgs, unpooled_i, unpooled_j,
940 | img, ui, uj)];
941 |
942 | out[IDX3(nimgs, pooled_i, pooled_j,
943 | img, pi, pj)] = val;
944 | '''
945 |
946 | def perform(self, node, inputs, (output,)):
947 | output_host = [None]
948 | IndexPool2D.perform(self, node,
949 | map(np.array, inputs), (output_host,))
950 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
951 |
952 |
953 | class IndexUnpool2D_GPU(PoolGpuOp, IndexUnpool2D):
954 | ker_name = 'unpool_index'
955 |
956 | ker_args = 'float *input, float *inds'
957 |
958 | ker_defs = '''
959 | int ui, uj, ind;
960 | float val;
961 | '''
962 |
963 | zero_output = True
964 |
965 | ker_loop_body = '''
966 | ind = (int) inds[IDX3(nimgs, pooled_i, pooled_j,
967 | img, pi, pj)];
968 | val = input[IDX3(nimgs, pooled_i, pooled_j,
969 | img, pi, pj)];
970 |
971 | ui = ui0 + ind / wsize_j;
972 | uj = uj0 + ind MOD wsize_j;
973 | out[IDX3(nimgs, unpooled_i, unpooled_j,
974 | img, ui, uj)] += val;
975 | '''
976 |
977 | def perform(self, node, inputs, (output,)):
978 | output_host = [None]
979 | IndexUnpool2D.perform(self, node,
980 | map(np.array, inputs), (output_host,))
981 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
982 |
983 |
984 | class SumPool2D_GPU(PoolGpuOp, SumPool2D):
985 | ker_name = 'pool_sum'
986 |
987 | ker_args = 'float *X'
988 |
989 | ker_defs = '''
990 | int u, ui, uj, usize_i, usize_j;
991 | float vsum;
992 | '''
993 |
994 | zero_output = False
995 |
996 | def __init__(self, *args, **kwargs):
997 | super(SumPool2D_GPU, self).__init__(*args, **kwargs)
998 |
999 | self.ker_loop_body = '''
1000 | vsum = 0;
1001 | for (u = 0; u < wsize_i * wsize_j; ++u) {
1002 | ui = ui0 + u / wsize_j;
1003 | uj = uj0 + u MOD wsize_j;
1004 | if (ui < unpooled_i && uj < unpooled_j)
1005 | vsum += X[IDX3(nimgs, unpooled_i, unpooled_j,
1006 | img, ui, uj)];
1007 | }
1008 |
1009 | if (%(average)s) {
1010 | usize_i = MIN(ui0 + wsize_i, unpooled_i) - ui0;
1011 | usize_j = MIN(uj0 + wsize_j, unpooled_j) - uj0;
1012 | vsum /= (usize_i * usize_j);
1013 | }
1014 |
1015 | out[IDX3(nimgs, pooled_i, pooled_j,
1016 | img, pi, pj)]
1017 | = vsum;
1018 | ''' % {'average': int(self.average)}
1019 |
1020 | def perform(self, node, (input,), (output,)):
1021 | output_host = [None]
1022 | SumPool2D.perform(self, node, (np.array(input),), (output_host,))
1023 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
1024 |
1025 |
1026 | class SumUnpool2D_GPU(PoolGpuOp, SumUnpool2D):
1027 | ker_name = 'unpool_sum'
1028 |
1029 | ker_args = 'float *input'
1030 |
1031 | ker_defs = '''
1032 | int u, ui, uj, usize_i, usize_j;
1033 | float val;
1034 | '''
1035 |
1036 | zero_output = True
1037 |
1038 | def __init__(self, *args, **kwargs):
1039 | super(SumUnpool2D_GPU, self).__init__(*args, **kwargs)
1040 |
1041 | self.ker_loop_body = '''
1042 | val = input[IDX3(nimgs, pooled_i, pooled_j,
1043 | img, pi, pj)];
1044 | if (%(average)d) { /* average? */
1045 | usize_i = MIN(ui0 + wsize_i, unpooled_i) - ui0;
1046 | usize_j = MIN(uj0 + wsize_j, unpooled_j) - uj0;
1047 | val /= (float) (usize_i * usize_j);
1048 | }
1049 |
1050 | for (u = 0; u < wsize_i * wsize_j; ++u) {
1051 | ui = ui0 + u / wsize_j;
1052 | uj = uj0 + u MOD wsize_j;
1053 | if (ui < unpooled_i && uj < unpooled_j)
1054 | out[IDX3(nimgs, unpooled_i, unpooled_j,
1055 | img, ui, uj)] += val;
1056 | }
1057 | ''' % {'average': int(self.average)}
1058 |
1059 | def perform(self, node, (input,), (output,)):
1060 | output_host = [None]
1061 | SumUnpool2D.perform(self, node, (np.array(input),), (output_host,))
1062 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
1063 |
1064 |
1065 | class CMRNorm_GPU(GpuOp, CMRNorm):
1066 | def __init__(self, *args, **kwargs):
1067 | CMRNorm.__init__(self, *args, **kwargs)
1068 | self._define_kernel_code()
1069 |
1070 | def make_node(self, *inputs):
1071 | output = CudaNdarrayType((False,) * 4)()
1072 | return Apply(self, inputs, (output,))
1073 |
1074 | def perform(self, node, inputs, (output,)):
1075 | output_host = [None]
1076 | CMRNorm.perform(self, node,
1077 | map(np.array, inputs), (output_host,))
1078 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
1079 |
1080 | def c_support_code(self):
1081 | source = source_support_defs + '''
1082 |
1083 | static __global__ void %(self.ker_name)s ( %(self.ker_args)s,
1084 | float *output,
1085 | int nimgs,
1086 | int nchan,
1087 | int ni, int nj)
1088 | {
1089 | unsigned total_threads = gridDim.x * blockDim.x;
1090 | int tid = blockIdx.x * blockDim.x + threadIdx.x;
1091 | int t, img, chan, i, j;
1092 |
1093 | for (t = tid; t < nchan * ni * nj * nimgs; t += total_threads) {
1094 | UNRAVEL_IDX4(t, nimgs, nchan, ni, nj,
1095 | img, chan, i, j);
1096 |
1097 | %(self.ker_loop_body)s
1098 | }
1099 | }
1100 |
1101 | ''' % Eval()
1102 | return source
1103 |
1104 | zero_output = False
1105 |
1106 | ker_name = 'cmrnorm'
1107 |
1108 | ker_args = 'float *input'
1109 |
1110 | def _define_kernel_code(self):
1111 | self.ker_loop_body = '''
1112 |
1113 | int d;
1114 | float sum = 0;
1115 | float x;
1116 |
1117 | for (d = -%(self.winsize / 2)d; d <= %(self.winsize / 2)d; ++d) {
1118 | if (chan + d >= 0 && chan + d < nchan) {
1119 | x = input[IDX4(nimgs, nchan, ni, nj,
1120 | img, chan + d, i, j)];
1121 | sum += x * x;
1122 | }
1123 | }
1124 |
1125 | x = input[IDX4(nimgs, nchan, ni, nj,
1126 | img, chan, i, j)];
1127 | output[IDX4(nimgs, nchan, ni, nj,
1128 | img, chan, i, j)]
1129 | = x * __powf(2 + %(self.scale)s * sum, -%(self.pow)s);
1130 |
1131 | ''' % Eval()
1132 |
1133 | def c_code_cache_version(self):
1134 | return (1, hash(self))
1135 |
1136 | def c_code(self, node, nodename, inputs, outputs, sub):
1137 | (output,) = outputs
1138 |
1139 | source = '''
1140 | const int *dims = CudaNdarray_HOST_DIMS(%(inputs[0])s);
1141 | const int *output_dims = %(output)s ?
1142 | CudaNdarray_HOST_DIMS(%(output)s) :
1143 | NULL;
1144 |
1145 | const int nchan = dims[0];
1146 | const int ni = dims[1];
1147 | const int nj = dims[2];
1148 | const int nimgs = dims[3];
1149 |
1150 | int nelems = nimgs * nchan * ni * nj; /* one thread elem */
1151 | dim3 grid_size, block_size;
1152 | launch_sizes(nelems, grid_size, block_size);
1153 |
1154 | CudaNdarray %(', '.join('*%s_contig' % inp for inp in inputs))s ;
1155 | cudaError_t err;
1156 | '''
1157 |
1158 | source += '''
1159 | if (%(output)s == NULL
1160 | || !CudaNdarray_is_c_contiguous(%(output)s)
1161 | || %(output)s->nd != 4
1162 | || dims[0] != output_dims[0]
1163 | || dims[1] != output_dims[1]
1164 | || dims[2] != output_dims[2]
1165 | || dims[3] != output_dims[3]) {
1166 |
1167 | Py_XDECREF(%(output)s);
1168 | %(output)s = (CudaNdarray*)CudaNdarray_New();
1169 | if (%(output)s == NULL
1170 | || CudaNdarray_alloc_contiguous(%(output)s, 4, dims)) {
1171 | Py_XDECREF(%(output)s);
1172 | %(output)s = NULL;
1173 | %(sub['fail'])s;
1174 | }
1175 | }
1176 |
1177 | if (%(self.zero_output)d) {
1178 | if (cudaMemset(
1179 | CudaNdarray_DEV_DATA(%(output)s),
1180 | 0, CudaNdarray_SIZE(%(output)s) * sizeof(float))
1181 | != cudaSuccess) {
1182 | PyErr_Format(PyExc_MemoryError,
1183 | "%(self.ker_name)s: Error in memset");
1184 | Py_XDECREF(%(output)s);
1185 | %(output)s = NULL;
1186 | %(sub['fail'])s;
1187 | }
1188 |
1189 | }
1190 | '''
1191 |
1192 | for inp in inputs:
1193 | source += '''
1194 | %(inp)s_contig = %(inp)s;
1195 | if (!CudaNdarray_is_c_contiguous(%(inp)s)) {
1196 | %(inp)s_contig = (CudaNdarray*) CudaNdarray_Copy(%(inp)s);
1197 | assert(CudaNdarray_is_c_contiguous(%(inp)s_contig));
1198 | }
1199 | ''' % Eval()
1200 |
1201 | source += '''
1202 | %(self.ker_name)s <<>> (
1203 | %(', '.join('CudaNdarray_DEV_DATA(%s_contig)' % x
1204 | for x in inputs))s,
1205 | CudaNdarray_DEV_DATA(%(output)s),
1206 | nimgs, nchan, ni, nj
1207 | );
1208 |
1209 | CNDA_THREAD_SYNC;
1210 | '''
1211 |
1212 | for inp in inputs:
1213 | source += '''
1214 | if (%(inp)s_contig != %(inp)s) {
1215 | Py_DECREF(%(inp)s_contig);
1216 | }
1217 | ''' % Eval()
1218 |
1219 | source += '''
1220 | err = cudaGetLastError();
1221 |
1222 | if (err != cudaSuccess) {
1223 | PyErr_Format(PyExc_RuntimeError,
1224 | "Cuda error: %%s: %%s",
1225 | "%(self.ker_name)s", cudaGetErrorString(err));
1226 | %(sub['fail'])s
1227 | }
1228 | '''
1229 |
1230 | source = source % Eval()
1231 | return source
1232 |
1233 | class CMRNormGrad_GPU(CMRNorm_GPU, CMRNormGrad):
1234 | def __init__(self, *args, **kwargs):
1235 | CMRNormGrad.__init__(self, *args, **kwargs)
1236 | self._define_kernel_code()
1237 |
1238 | def perform(self, node, inputs, (output,)):
1239 | output_host = [None]
1240 | CMRNormGrad.perform(self, node,
1241 | map(np.array, inputs), (output_host,))
1242 | output[0] = CudaNdarray(output_host[0].astype(np.float32))
1243 |
1244 | zero_output = False
1245 |
1246 | ker_name = 'cmrnormgrad'
1247 |
1248 | ker_args = 'float *input, float *ys, float *dys'
1249 |
1250 | def _define_kernel_code(self):
1251 | self.ker_loop_body = '''
1252 |
1253 | int d;
1254 | float sum = 0;
1255 | float x, denom, a, y, dx, x_d, dy_d;
1256 |
1257 | for (d = -%(self.winsize / 2)d; d <= %(self.winsize / 2)d; ++d) {
1258 | if (chan + d >= 0 && chan + d < nchan) {
1259 | x_d = input[IDX4(nimgs, nchan, ni, nj,
1260 | img, chan + d, i, j)];
1261 | sum += x_d * x_d;
1262 | }
1263 | }
1264 |
1265 | x = input[IDX4(nimgs, nchan, ni, nj,
1266 | img, chan, i, j)];
1267 | y = ys[IDX4(nimgs, nchan, ni, nj,
1268 | img, chan, i, j)];
1269 |
1270 | denom = __powf(2 + %(self.scale)s * sum, -%(self.pow)s);
1271 | a = (-2 * %(self.scale)s * %(self.pow)s) * y * denom;
1272 |
1273 | dx = 0;
1274 | for (d = -%(self.winsize / 2)d; d <= %(self.winsize / 2)d; ++d) {
1275 | if (chan + d >= 0 && chan + d < nchan) {
1276 | x_d = input[IDX4(nimgs, nchan, ni, nj,
1277 | img, chan + d, i, j)];
1278 | dy_d = dys[IDX4(nimgs, nchan, ni, nj,
1279 | img, chan + d, i, j)];
1280 | dx += x_d * dy_d;
1281 | }
1282 | }
1283 |
1284 | dx *= a;
1285 | dx += denom * dys[IDX4(nimgs, nchan, ni, nj,
1286 | img, chan, i, j)];
1287 |
1288 | output[IDX4(nimgs, nchan, ni, nj,
1289 | img, chan, i, j)] = dx;
1290 |
1291 | ''' % Eval()
1292 |
1293 |
1294 | def test_pooling():
1295 | from theano.tests.unittest_tools import verify_grad
1296 |
1297 | winsize = (5,5)
1298 | stride = (3,3)
1299 |
1300 | xtest = np.random.rand(3,2,16,30)
1301 | xtest = xtest.astype(theano.config.floatX)
1302 |
1303 | x = T.tensor4('x', dtype=theano.config.floatX)
1304 | x.tag.test_value = xtest
1305 |
1306 | # max pool/unpool
1307 |
1308 | xinds = maxinds_2d(x, winsize, stride=stride)
1309 | indf = theano.function([x], xinds, mode='DEBUG_MODE')
1310 | theano.printing.debugprint(indf)
1311 | xinds_val = indf(xtest)
1312 |
1313 | xshape = xtest.shape[-2:]
1314 |
1315 | xmax = index_pool_2d(x, xinds, winsize, stride=stride)
1316 | poolf = theano.function([x], xmax, mode='DEBUG_MODE')
1317 | theano.printing.debugprint(poolf)
1318 | xmax_val = poolf(xtest)
1319 |
1320 | unpoolf = theano.function([x], index_unpool_2d(xmax, xinds, winsize,
1321 | stride=stride,
1322 | input_shape=xmax_val.shape[-2:],
1323 | output_shape=xshape),
1324 | mode='DEBUG_MODE')
1325 | theano.printing.debugprint(unpoolf)
1326 | ux_val = unpoolf(xtest)
1327 | if stride == winsize:
1328 | assert np.sum(xtest == ux_val) == np.prod(xmax_val.shape)
1329 |
1330 | # sum pool/unpool
1331 |
1332 | xsum = sumpool2d(x, winsize, stride)
1333 | poolf = theano.function([x], xsum, mode='DEBUG_MODE')
1334 | theano.printing.debugprint(poolf)
1335 | xsum_val = poolf(xtest)
1336 | assert xsum_val.shape == xmax_val.shape
1337 |
1338 | xavg = sumpool2d(x, winsize, stride, average=True)
1339 | poolf = theano.function([x], xavg, mode='DEBUG_MODE')
1340 | theano.printing.debugprint(poolf)
1341 | xavg_val = poolf(xtest)
1342 | assert xavg_val.shape == xsum_val.shape
1343 |
1344 | unpoolf = theano.function([x], sum_unpool_2d(xsum, winsize, stride,
1345 | input_shape=xsum_val.shape[-2:],
1346 | output_shape=xshape),
1347 | mode='DEBUG_MODE')
1348 | theano.printing.debugprint(unpoolf)
1349 | ux_val = unpoolf(xtest)
1350 |
1351 |
1352 | T.verify_grad(lambda x: sumpool2d(x, winsize=winsize, stride=stride,
1353 | input_shape=(16,30)),
1354 | (xtest,),
1355 | rng=np.random.RandomState(0))
1356 |
1357 | T.verify_grad(lambda xsum: sum_unpool_2d(xsum,
1358 | winsize=winsize, stride=stride,
1359 | input_shape=xsum_val.shape[-2:],
1360 | output_shape=xshape),
1361 | (xsum_val,),
1362 | rng=np.random.RandomState(0))
1363 |
1364 | T.verify_grad(lambda x: sumpool2d(x, winsize=winsize, stride=stride,
1365 | average=True,
1366 | input_shape=(16,30)),
1367 | (xtest,),
1368 | rng=np.random.RandomState(0))
1369 |
1370 | T.verify_grad(lambda x: index_pool_2d(x, xinds_val,
1371 | winsize=winsize, stride=stride,
1372 | input_shape=(16,30))[0],
1373 | (xtest,),
1374 | rng=np.random.RandomState(0))
1375 |
1376 | T.verify_grad(lambda xmax: index_unpool_2d(xmax, xinds_val,
1377 | winsize=winsize,
1378 | stride=stride,
1379 | input_shape=xmax_val.shape[-2:],
1380 | output_shape=(16,30)),
1381 | (xmax_val,),
1382 | rng=np.random.RandomState(0))
1383 |
1384 | def test_cmrnorm():
1385 | from theano.tests.unittest_tools import verify_grad
1386 |
1387 | xtest = np.random.rand(2,8,3,4)
1388 | xtest = xtest.astype(theano.config.floatX)
1389 |
1390 | x = T.tensor4('x', dtype=theano.config.floatX)
1391 | x.tag.test_value = xtest
1392 |
1393 | y = cmrnorm(x, input_shape=xtest.shape[1:])
1394 | f = theano.function([x], y, mode='DEBUG_MODE')
1395 | f(xtest)
1396 |
1397 | f = theano.function([x], gpu_from_host(T.grad(T.sum(y), wrt=x)),
1398 | mode='DEBUG_MODE')
1399 | f(xtest)
1400 | theano.printing.debugprint(f)
1401 |
1402 | T.verify_grad(lambda x: cmrnorm(x, input_shape=xtest.shape[1:]),
1403 | (xtest,),
1404 | rng=np.random.RandomState(0))
1405 |
1406 | print 'cmrnorm passed'
1407 |
1408 | if __name__ == '__main__':
1409 | test_pooling()
1410 | test_cmrnorm()
1411 |
--------------------------------------------------------------------------------
/pooling.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/pooling.pyc
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 | import os
3 | import sys
4 | import numpy as np
5 |
6 | from PIL import Image
7 |
8 | import net
9 |
10 | def main():
11 | # location of depth module, config and parameters
12 | module_fn = 'models/depth.py'
13 | config_fn = 'models/depth.conf'#网络结构
14 | params_dir = 'weights/depth'#网络相关参数
15 |
16 | # load depth network
17 | machine = net.create_machine(module_fn, config_fn, params_dir)
18 |
19 | # demo image
20 | rgb = Image.open('demo_nyud_rgb.jpg')
21 | rgb = rgb.resize((320, 240), Image.BICUBIC)
22 |
23 | # build depth inference function and run
24 | rgb_imgs = np.asarray(rgb).reshape((1, 240, 320, 3))
25 | pred_depths = machine.infer_depth(rgb_imgs)
26 |
27 | # save prediction
28 | (m, M) = (pred_depths.min(), pred_depths.max())
29 | depth_img_np = (pred_depths[0] - m) / (M - m)
30 | depth_img = Image.fromarray((255*depth_img_np).astype(np.uint8))
31 | depth_img.save('demo_nyud_depth_prediction.png')
32 |
33 |
34 | if __name__ == '__main__':
35 | main()
--------------------------------------------------------------------------------
/theano_test_value_size.patch:
--------------------------------------------------------------------------------
1 | diff --git a/theano/configdefaults.py b/theano/configdefaults.py
2 | index 58ed2e9..97d6564 100644
3 | --- a/theano/configdefaults.py
4 | +++ b/theano/configdefaults.py
5 | @@ -470,6 +470,14 @@ AddConfigVar('compute_test_value',
6 | EnumStr('off', 'ignore', 'warn', 'raise', 'pdb'),
7 | in_c_key=False)
8 |
9 | +AddConfigVar('store_test_value_maxsize',
10 | + ("Maximum size for test values that are kept. If compute_test_value "
11 | + "is enabled, keeps test values smaller than the given size (in "
12 | + "number of entries). Beyond that, only the shape is stored; a "
13 | + "an array with the same shape and type is created on demand, filled "
14 | + "with a single random entry from the array."),
15 | + IntParam(sys.maxint),
16 | + in_c_key=False)
17 |
18 | AddConfigVar('compute_test_value_opt',
19 | ("For debugging Theano optimization only."
20 | diff --git a/theano/gof/op.py b/theano/gof/op.py
21 | index ac85eec..a306077 100644
22 | --- a/theano/gof/op.py
23 | +++ b/theano/gof/op.py
24 | @@ -18,6 +18,7 @@ import numpy
25 | import os
26 | import sys
27 | import warnings
28 | +import numpy
29 |
30 | import theano
31 | from theano import config
32 | @@ -461,6 +462,10 @@ class PureOp(object):
33 | elif isinstance(v, graph.Variable) and hasattr(v.tag, 'test_value'):
34 | # ensure that the test value is correct
35 | return v.type.filter(v.tag.test_value)
36 | + elif isinstance(v, graph.Variable) and hasattr(v.tag, 'test_shape'):
37 | + test_value = numpy.empty(v.tag.test_shape, dtype=v.type.dtype)
38 | + test_value.fill(v.tag.test_value_fill)
39 | + return v.type.filter(test_value, strict=False, allow_downcast=True)
40 |
41 | raise AttributeError('%s has no test value' % v)
42 |
43 | @@ -552,7 +557,14 @@ class PureOp(object):
44 |
45 | # add 'test_value' to output tag, so that downstream ops can use these
46 | # numerical values as inputs to their perform method.
47 | - output.tag.test_value = storage_map[output][0]
48 | + test_value = storage_map[output][0]
49 | + if not hasattr(test_value, 'size') or \
50 | + test_value.size < config.store_test_value_maxsize:
51 | + output.tag.test_value = test_value
52 | + elif hasattr(test_value, 'shape'):
53 | + test_value = numpy.asarray(test_value)
54 | + output.tag.test_shape = test_value.shape
55 | + output.tag.test_value_fill = test_value.flat[0]
56 |
57 | if self.default_output is not None:
58 | rval = node.outputs[self.default_output]
59 |
--------------------------------------------------------------------------------
/thutil.py:
--------------------------------------------------------------------------------
1 | '''
2 | Copyright (C) 2014 New York University
3 |
4 | This program is free software: you can redistribute it and/or modify
5 | it under the terms of the GNU General Public License as published by
6 | the Free Software Foundation, either version 3 of the License, or
7 | (at your option) any later version.
8 |
9 | This program is distributed in the hope that it will be useful,
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 | GNU General Public License for more details.
13 |
14 | You should have received a copy of the GNU General Public License
15 | along with this program. If not, see .
16 | '''
17 | import sys
18 | import time
19 | import numpy as np
20 | import operator
21 | import types
22 | import ipdb
23 | import inspect
24 | import traceback
25 |
26 | import theano
27 | import theano.tensor as T
28 |
29 | from theano import Op, Apply
30 |
31 | from theano.tensor.shared_randomstreams import RandomStreams
32 | from theano.tensor.nnet import conv
33 | from theano.gof import local_optimizer
34 |
35 | from common import imgutil, logutil
36 |
37 | _log = logutil.getLogger()
38 |
39 | use_gpu = theano.config.device.startswith('gpu')
40 |
41 | checkgrad = False
42 |
43 | if use_gpu:
44 | from theano.sandbox.cuda import GpuOp, gpu_from_host, host_from_gpu, \
45 | CudaNdarrayType, CudaNdarray
46 | from theano.sandbox.cuda.basic_ops import gpu_contiguous
47 |
48 | class Eval(object):
49 | def __init__(self, globals=None, locals=None):
50 | self.globals = globals or {}
51 | self.locals = locals or sys._getframe(1).f_locals
52 |
53 | def __getitem__(self, key):
54 | return eval(key, self.globals, self.locals)
55 |
56 | def c_contiguous(x):
57 | if x.is_c_contiguous():
58 | return x
59 | return x.copy()
60 |
61 | def isvalid(x):
62 | return T.all(T.logical_not(T.logical_or(T.isnan(x), T.isinf(x))))
63 |
64 | def maximum(x, y):
65 | if checkgrad:
66 | return x + y
67 | return T.maximum(x, y)
68 |
69 | def minimum(x, y):
70 | if checkgrad:
71 | return x + y
72 | return T.minimum(x, y)
73 |
74 | def named(x, name):
75 | x.name = name
76 | return x
77 |
78 | def test_value(x):
79 | if isinstance(x, np.ndarray):
80 | return x
81 | return theano.gof.op.get_test_value(x)
82 |
83 | def test_shape(x):
84 | return tuple(test_value(x.shape))
85 |
86 | def theano_function(*vars_by_pos, **kwargs):
87 | '''theano function decorator'''
88 | mode = kwargs.pop('mode', 'FAST_RUN')
89 | check_valid = kwargs.pop('check_valid', False)
90 | checks = kwargs.pop('checks', ())
91 | vars_by_name = kwargs
92 | def compile_func(f):
93 | argnames = f.func_code.co_varnames[:f.func_code.co_argcount]
94 | if any([a in vars_by_name for a in argnames[:len(vars_by_pos)]]):
95 | raise ValueError('Argument supplied twice to %s' % f.func_name)
96 | varspec = dict(vars_by_name)
97 | varspec.update(zip(argnames[:len(vars_by_pos)], vars_by_pos))
98 | argvars = []
99 | for name in argnames:
100 | spec = varspec[name]
101 | if isinstance(spec, (tuple, list)):
102 | (var, test_val) = spec
103 | else:
104 | var = spec
105 | test_val = None
106 | assert isinstance(var, T.Variable)
107 | var.name = name
108 | if test_val is not None:
109 | var.tag.test_value = test_val
110 | argvars.append(var)
111 | return function(argvars, f(*argvars),
112 | check_valid=check_valid,
113 | checks=checks,
114 | mode=mode)
115 | return compile_func
116 |
117 | def function(inputs, outputs=None, check_valid=False, checks=(), **kwargs):
118 | input_names = None
119 | output_names = None
120 | if isinstance(inputs, dict):
121 | if inputs:
122 | (input_names, inputs) = zip(*inputs.iteritems())
123 | else:
124 | (input_names, inputs) = ((), ())
125 | if isinstance(outputs, dict):
126 | if outputs:
127 | (output_names, outputs) = zip(*outputs.iteritems())
128 | else:
129 | (output_names, outputs) = ((), ())
130 |
131 | if check_valid or checks:
132 | updates = kwargs.setdefault('updates', {})
133 | asserts = [assert_(c, 'check failed: %s' % c) for c in checks]
134 |
135 | if check_valid:
136 | if outputs:
137 | if not isinstance(outputs, (list, tuple)):
138 | outputs = [outputs]
139 | asserts += (assert_(isvalid(x),
140 | 'output invalid: %d (%s)' % (i, x.name))
141 | for (i, x) in enumerate(outputs))
142 |
143 | if updates:
144 | asserts += (assert_(isvalid(xnew),
145 | 'update invalid: variable %s' % str(x))
146 | for (x, xnew) in updates.iteritems())
147 |
148 | checks_passed = theano.shared(np.int8(1), name='checks_passed')
149 | updates[checks_passed] = \
150 | T.all(T.as_tensor_variable(asserts)).astype('int8')
151 |
152 | f = _CheckedFunction(inputs, outputs, **kwargs)
153 | else:
154 | f = theano.function(inputs, outputs, **kwargs)
155 | if hasattr(f.fn, 'clear_storage'):
156 | f.clear_storage = f.fn.clear_storage
157 | else:
158 | _log.warn('Function %s has no clear_storage: disabling', f.fn)
159 | f.clear_storage = lambda: None
160 |
161 | if input_names is not None or output_names is not None:
162 | return NamedInputOutputFunction(input_names, output_names, f)
163 | return f
164 |
165 | class NamedInputOutputFunction(object):
166 | def __init__(self, input_names, output_names, f):
167 | self.input_names = input_names
168 | self.output_names = output_names
169 | self.f = f
170 |
171 | if output_names:
172 | class _NamedOutputs(object):
173 | __slots__ = output_names
174 |
175 | def __init__(self, vals):
176 | [setattr(self, k, v) for (k,v) in zip(self.__slots__, vals)]
177 |
178 | def __eq__(self, other):
179 | return type(self) == type(other) and \
180 | self.items() == other.items()
181 |
182 | def __getitem__(self, k):
183 | return getattr(self, k)
184 |
185 | def iteritems(self):
186 | return ((s, self[s]) for s in self.__slots__)
187 |
188 | __iter__ = iteritems
189 |
190 | def items(self):
191 | return list(self.iteritems())
192 |
193 | self._NamedOutputs = _NamedOutputs
194 |
195 | if hasattr(f.fn, 'clear_storage'):
196 | self.clear_storage = f.fn.clear_storage
197 | else:
198 | _log.warn('Function %s has no clear_storage: disabling', f.fn)
199 | self.clear_storage = lambda: None
200 |
201 | def __call__(self, *args, **kwargs):
202 | inputs = args
203 | if self.input_names:
204 | assert not inputs, \
205 | 'theano function with kw args cannot take positional args'
206 | inputs = [kwargs[k] for k in self.input_names]
207 |
208 | outputs = self.f(*inputs)
209 |
210 | if self.output_names:
211 | outputs = self._NamedOutputs(outputs)
212 |
213 | return outputs
214 |
215 | class _CheckedFunction(object):
216 | def __init__(self, inputs, outputs, **kwargs):
217 | self.f = theano.function(inputs, outputs,
218 | inplace_updates=False,
219 | **kwargs)
220 | self.dbg_kwargs = dict(kwargs)
221 | self.dbg_kwargs.update(inputs=inputs,
222 | outputs=outputs,
223 | inplace_updates=False,
224 | mode='DEBUG_MODE')
225 | self.f_dbg = None
226 | self.fn = self.f.fn
227 | self.clear_storage = self.f.fn.clear_storage
228 |
229 | def __call__(self, *args, **kwargs):
230 | try:
231 | return self.f(*args, **kwargs)
232 | except AssertionError:
233 | _log.exception('assertion failed in function %s' % self.f.name)
234 | if self.f_dbg is None:
235 | _log.info('creating debug function for %s' % self.f.name)
236 | self.f_dbg = theano.function(**self.dbg_kwargs)
237 | _log.error('calling debug function for %s' % self.f.name)
238 | self.f_dbg(*args, **kwargs)
239 | _log.error('debug version seems to have passed' % self.f.name)
240 | raise
241 |
242 | class Assert(theano.Op):
243 | view_map = {0: [0]}
244 |
245 | def __init__(self, msg=None):
246 | self.msg = msg
247 |
248 | def __eq__(self, other):
249 | return (type(self) == type(other) and
250 | self.msg == other.msg)
251 |
252 | def __hash__(self):
253 | return reduce(operator.xor, map(hash, (type(self), self.msg)))
254 |
255 | def make_node(self, input):
256 | output = T.as_tensor_variable(input).type()
257 | return theano.Apply(self, (input,), (output,))
258 |
259 | def make_gpu_node(self, input):
260 | return Assert_GPU(self.msg)(input)
261 |
262 | def infer_shape(self, node, input_shapes):
263 | return input_shapes
264 |
265 | def perform(self, node, (input,), (output,)):
266 | assert np.all(input), self.msg
267 | output[0] = input
268 |
269 | def grad(self, inputs, doutputs):
270 | return (None,)
271 |
272 | def assert_(cond, msg=None):
273 | return Assert(msg)(cond)
274 |
275 | class Constant(theano.Op):
276 | def __init__(self, ninputs):
277 | self.view_map = dict((i,[i]) for i in xrange(ninputs))
278 |
279 | def __eq__(self, other):
280 | return (type(self) == type(other) and
281 | len(self.view_map) == len(other.view_map))
282 |
283 | def __hash__(self):
284 | return reduce(operator.xor,
285 | map(hash, (type(self), len(self.view_map))))
286 |
287 | def make_node(self, *inputs):
288 | outputs = tuple([T.as_tensor_variable(inp).type() for inp in inputs])
289 | return theano.Apply(self, inputs, outputs)
290 |
291 | def make_gpu_node(self, *inputs):
292 | return Constant_GPU(len(inputs))(*inputs)
293 |
294 | def infer_shape(self, node, input_shapes):
295 | return input_shapes
296 |
297 | def perform(self, node, inputs, outputs):
298 | for (inp, out) in zip(inputs, outputs):
299 | out[0] = inp
300 |
301 | def grad(self, inputs, doutputs):
302 | return [T.DisconnectedType()() for _ in inputs]
303 |
304 | def constant(*inputs):
305 | return Constant(len(inputs))(*inputs)
306 |
307 |
308 | class _BreakpointVars(object):
309 | def __init__(self, th_vars, py_vars):
310 | self.th_vars = th_vars
311 | self.py_vars = py_vars
312 |
313 | def __getattr__(self, k):
314 | if k in self.th_vars:
315 | return self.th_vars[k]
316 | if k in self.py_vars:
317 | return self.py_vars[k]
318 | return object.__getattr__(self, k)
319 |
320 | def __repr__(self):
321 | s = []
322 | s.append('Theano runtime variables:')
323 | s += ('%-16s %s' % (k, str(v.shape))
324 | for (k, v) in sorted(self.th_vars.items(), key=lambda (k,v): k))
325 | s.append('')
326 | s.append('Python creation-time variables:')
327 | s.append(', '.join(sorted(self.py_vars.keys())))
328 | s.append('')
329 | return '\n'.join(s)
330 |
331 | class Breakpoint(theano.Op):
332 | view_map = {0: [0]}
333 |
334 | global_breakpoint_enable = False
335 |
336 | def __init__(self, var_names, cond, tb, py_vars,
337 | breakpoint_grad, is_grad=False):
338 | self.var_names = var_names
339 | self.cond = cond
340 | self.tb = tb
341 | self.py_vars = py_vars
342 | self.nvars = len(var_names)
343 | self.breakpoint_grad = breakpoint_grad
344 | self.is_grad = is_grad
345 |
346 | def __eq__(self, other):
347 | return (type(self) == type(other) and
348 | self.var_names == other.var_names and
349 | self.cond == other.cond and
350 | self.tb == other.tb)
351 |
352 | def __hash__(self):
353 | return reduce(operator.xor, map(hash, (
354 | type(self), self.var_names, self.cond, self.tb)))
355 |
356 | def make_node(self, *inputs):
357 | output = T.as_tensor_variable(inputs[0]).type()
358 | return theano.Apply(self, inputs, (output,))
359 |
360 | def make_gpu_node(self, *inputs):
361 | return Breakpoint_GPU(
362 | self.var_names, self.cond, self.tb, self.py_vars,
363 | self.breakpoint_grad, self.is_grad)(*inputs)
364 |
365 | def infer_shape(self, node, input_shapes):
366 | return (input_shapes[0],)
367 |
368 | def perform(self, node, inputs, (output,)):
369 | output[0] = inputs[0]
370 | if not Breakpoint.global_breakpoint_enable:
371 | return
372 | x = inputs[0]
373 | if not isinstance(x, np.ndarray):
374 | x = np.array(x)
375 | if self.cond(x):
376 | vars = _BreakpointVars(
377 | dict(zip(self.var_names, map(np.array, inputs[1:]))),
378 | self.py_vars)
379 | if self.is_grad:
380 | place = 'theano gradient eval'
381 | else:
382 | place = 'theano eval'
383 | print >> sys.stderr, 'Breakpoint in %s, created at' % place
384 | print >> sys.stderr, ' ...'
385 | traceback.print_list(self.tb[-4:], sys.stderr)
386 | ipdb.set_trace()
387 | pass # in theano breakpoint
388 |
389 | def grad(self, inputs, (doutput,)):
390 | if self.breakpoint_grad:
391 | doutput = Breakpoint(self.var_names, self.cond,
392 | self.tb, self.py_vars, True, True) \
393 | (doutput, *inputs[1:])
394 | return [doutput] + [T.DisconnectedType()() for _ in xrange(self.nvars)]
395 |
396 | _theano_types = (theano.tensor.basic.TensorConstant,
397 | theano.tensor.basic.TensorVariable,
398 | theano.compile.SharedVariable,
399 | )
400 |
401 | def is_theano_var(x):
402 | return isinstance(x, _theano_types)
403 |
404 | def breakpoint(output, vars=None, cond=lambda v: True, grad=True):
405 | tb = tuple(traceback.extract_stack()[:-1])
406 | py_vars = {}
407 | if type(vars) not in (tuple, list, dict, types.NoneType):
408 | raise ValueError('vars keyword arg must be None, dict, list or tuple')
409 | if not isinstance(vars, dict):
410 | frame_locals = inspect.stack()[1][0].f_locals
411 | if vars is not None:
412 | frame_locals = dict((name, val)
413 | for (name, val) in frame_locals.iteritems()
414 | if name in vars or val in vars)
415 | vars = frame_locals
416 | assert isinstance(vars, dict)
417 | th_vars = dict((name, val) for (name, val) in vars.iteritems()
418 | if isinstance(val, _theano_types))
419 | py_vars = dict((name, val) for (name, val) in vars.iteritems()
420 | if name not in th_vars)
421 | (th_var_names, th_var_vals) = zip(*th_vars.iteritems())
422 | return Breakpoint(th_var_names, cond, tb, py_vars, grad) \
423 | (output, *th_var_vals)
424 |
425 | def enable_breakpoints(enable=True):
426 | Breakpoint.global_breakpoint_enable = enable
427 |
428 | def cross(x, y, axis=None):
429 | ndim = x.ndim
430 | assert x.ndim == y.ndim
431 | if axis is None:
432 | axis = ndim - 1
433 | def _getindexslice(a, i):
434 | return a[tuple([slice(i,i+1) if d == axis else slice(None)
435 | for d in xrange(ndim)])]
436 | x0 = _getindexslice(x, 0)
437 | x1 = _getindexslice(x, 1)
438 | x2 = _getindexslice(x, 2)
439 | y0 = _getindexslice(y, 0)
440 | y1 = _getindexslice(y, 1)
441 | y2 = _getindexslice(y, 2)
442 |
443 | res = T.concatenate((x1*y2 - x2*y1,
444 | x2*y0 - x0*y2,
445 | x0*y1 - x1*y0), axis=axis)
446 | return res
447 |
448 |
449 | if use_gpu:
450 |
451 | class Constant_GPU(Constant, GpuOp):
452 | def make_node(self, *inputs):
453 | outputs = tuple([inp.type() for inp in inputs])
454 | return theano.Apply(self, inputs, outputs)
455 |
456 | class Assert_GPU(Assert, GpuOp):
457 | def make_node(self, input):
458 | output = input.type()
459 | return theano.Apply(self, (input,), (output,))
460 |
461 | def perform(self, node, (input,), (output,)):
462 | assert np.all(np.array(input))
463 | output[0] = input
464 |
465 | class Breakpoint_GPU(Breakpoint, GpuOp):
466 | def make_node(self, *inputs):
467 | output = inputs[0].type()
468 | return theano.Apply(self, inputs, (output,))
469 |
470 | @theano.sandbox.cuda.opt.register_opt()
471 | @theano.gof.local_optimizer(None)
472 | def local_gpu_togpu(node):
473 | if node.op == gpu_from_host:
474 | host_input = node.inputs[0]
475 | if host_input.owner and \
476 | hasattr(host_input.owner.op, 'make_gpu_node'):
477 | try:
478 | gpu_inputs = map(gpu_from_host, host_input.owner.inputs)
479 | except TypeError:
480 | return False
481 | return [host_input.owner.op.make_gpu_node(*gpu_inputs)]
482 | elif hasattr(node.op, 'make_gpu_node') and \
483 | all([x.owner and x.owner.op == host_from_gpu
484 | for x in node.inputs]):
485 | gpu_inputs = [x.owner.inputs[0] for x in node.inputs]
486 | return [host_from_gpu(node.op.make_gpu_node(*gpu_inputs))]
487 | return False
488 |
489 | @theano.sandbox.cuda.opt.register_opt()
490 | @theano.gof.local_optimizer([Breakpoint])
491 | def local_gpu_togpu_breakpoint(node):
492 | if isinstance(node.op, Breakpoint):
493 | result_input = node.inputs[0]
494 | if result_input.owner and result_input.owner.op == host_from_gpu:
495 | gpu_inputs = [x.owner.inputs[0]
496 | if x.owner and x.owner.op == host_from_gpu
497 | else x
498 | for x in node.inputs]
499 | return [host_from_gpu(node.op.make_gpu_node(*gpu_inputs))]
500 | return False
501 |
502 |
--------------------------------------------------------------------------------
/thutil.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hjimce/Depth-Map-Prediction/fea99a9b52648820c6c8dd0374b9b06117a5124b/thutil.pyc
--------------------------------------------------------------------------------