├── .RData
├── .Rhistory
├── .dropbox
├── DATA
├── APPLE
│ ├── Apple1.csv
│ ├── Apple2.csv
│ └── Apple3.csv
├── EX_HELP_PAGE
│ ├── Example_Data_Set1.csv
│ ├── Example_Data_Set2.csv
│ ├── Example_Data_Set3.txt
│ ├── titi.txt
│ └── toto.txt
├── SMALL_DATASET
│ ├── titi
│ ├── tktk
│ ├── toto
│ ├── tutu
│ └── tyty
├── SORGHUM
│ ├── CIRAD
│ ├── S2
│ ├── S4
│ ├── S5
│ ├── S6
│ └── TAMU
├── WHEAT_MACAF
│ └── CLEAN
│ │ ├── Ben_Pi41025
│ │ ├── Colosseo_Lloyd
│ │ ├── Kofa_svevo
│ │ ├── Langdon_G1816
│ │ ├── Latino_MG5323
│ │ ├── Mohawk_Cocorrit69
│ │ ├── Simeto_Levante
│ │ ├── Simeto_MoliseColi
│ │ ├── Svevo_Ciccio
│ │ ├── W9292-260D3_Kofa
│ │ └── Zvevo_Zavitan
└── WHEAT_TRAM
│ ├── map_DL
│ ├── map_DS
│ ├── map_consensus
│ └── physical_position
├── LEGEND
├── legend_sheet1.txt
├── legend_sheet2.txt
├── legend_sheet3.txt
├── legend_sheet4.txt
├── legend_sheet5.txt
└── legend_sheet6.txt
├── README.md
├── RESSOURCES
├── Figure1.jpg
├── INRA_logo - copie.jpg
├── INRA_logo.jpg
├── LOGO_genmapcomp.png
├── Logo_GenMap_Small.png
├── Logo_supagro.jpg
├── donut_function.R
└── tmp
├── global.R
├── server.R
├── ui.R
└── www
├── Rscript_for_background_image_sheet1
├── genComp.css
├── logo-institut-agro-montpellier.png
├── logo_INRAE.png
├── logo_INRA_old.png
├── logo_SUPAGRO.jpg
├── logo_arvalis.png
├── map_montpellier.png
└── my_image.png
/.RData:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/.RData
--------------------------------------------------------------------------------
/.Rhistory:
--------------------------------------------------------------------------------
1 | DL_MATRIX_K2 <- read.table("~/MesDocuments/cloud/Dropbox/2013-2014/recherche_2013_2014/EPO/DL_MATRIX_K2.txt", header=T, quote="\"")
2 | View(DL_MATRIX_K2)
3 | install.packages("igraph")
4 | graph.adjacency
5 | ?graph
6 | ?igraph
7 | library(markdown)
8 | updater()
9 | install.packages("installr")
10 | install.packages("installr")
11 | title: "test"
12 | cwd
13 | setwd(/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir)
14 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir")
15 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir/")
16 | setwd(/Users/ranwez/MesDocuments/cloud/Dropbox/)
17 | setwd('/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir/')
18 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir/")
19 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparatordir")
20 | setwd("/Users/ranwez/MesDocuments/cloud/")
21 | ls()
22 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/")
23 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap\-Comparatordir")
24 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap\-Comparatordir")
25 | dir()
26 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/GenMap-Comparator")
27 | ls
28 | ls()
29 | dir()
30 | library(shiny)
31 | runApp("GenMap-Comparator")
32 | setwd("/Users/ranwez/MesDocuments/cloud/Dropbox/")
33 | runApp("GenMap-Comparator")
34 | runApp("GenMap-Comparator")
35 | runApp("GenMap-Comparator")
36 | runApp("GenMap-Comparator")
37 | runApp("GenMap-Comparator")
38 | runApp("GenMap-Comparator")
39 | runApp("GenMap-Comparator")
40 | runApp("GenMap-Comparator")
41 | runApp("GenMap-Comparator")
42 | runApp("GenMap-Comparator")
43 | is.null(())
44 | is.null(c())
45 | runApp("GenMap-Comparator")
46 | runApp("GenMap-Comparator")
47 | runApp("GenMap-Comparator")
48 | runApp("GenMap-Comparator")
49 | runApp("GenMap-Comparator")
50 | runApp("GenMap-Comparator")
51 | runApp("GenMap-Comparator")
52 | runApp("GenMap-Comparator")
53 | runApp("GenMap-Comparator")
54 | runApp("GenMap-Comparator")
55 | runApp("GenMap-Comparator")
56 | runApp("GenMap-Comparator")
57 | runApp("GenMap-Comparator")
58 | runApp("GenMap-Comparator")
59 | runApp("GenMap-Comparator")
60 | runApp("GenMap-Comparator")
61 | runApp("GenMap-Comparator")
62 | runApp("GenMap-Comparator")
63 | runApp("GenMap-Comparator")
64 | runApp("GenMap-Comparator")
65 | runApp("GenMap-Comparator")
66 | runApp("GenMap-Comparator")
67 | runApp("GenMap-Comparator")
68 | runApp("GenMap-Comparator")
69 | runApp("GenMap-Comparator")
70 | runApp("GenMap-Comparator")
71 | runApp("GenMap-Comparator")
72 | runApp("GenMap-Comparator")
73 | runApp("GenMap-Comparator")
74 | runApp("GenMap-Comparator")
75 | runApp("GenMap-Comparator")
76 | runApp("GenMap-Comparator")
77 | runApp("GenMap-Comparator")
78 | runApp("GenMap-Comparator")
79 | runApp("GenMap-Comparator")
80 | runApp("GenMap-Comparator")
81 | runApp("GenMap-Comparator")
82 | runApp("GenMap-Comparator")
83 | runApp("GenMap-Comparator")
84 | runApp("GenMap-Comparator")
85 | runApp("GenMap-Comparator")
86 | runApp("GenMap-Comparator")
87 | runApp("GenMap-Comparator")
88 | runApp("GenMap-Comparator")
89 | runApp("GenMap-Comparator")
90 | runApp("GenMap-Comparator")
91 | runApp("GenMap-Comparator")
92 | runApp("GenMap-Comparator")
93 | runApp("GenMap-Comparator")
94 | runApp("GenMap-Comparator")
95 | runApp("GenMap-Comparator")
96 | runApp("GenMap-Comparator")
97 | runApp("GenMap-Comparator")
98 | runApp("GenMap-Comparator")
99 | runApp("GenMap-Comparator")
100 | runApp("GenMap-Comparator")
101 | runApp("GenMap-Comparator")
102 | runApp("GenMap-Comparator")
103 | runApp("GenMap-Comparator")
104 | runApp("GenMap-Comparator")
105 | runApp("GenMap-Comparator")
106 | runApp("GenMap-Comparator")
107 | runApp("GenMap-Comparator")
108 | runApp("GenMap-Comparator")
109 | runApp("GenMap-Comparator")
110 | runApp("GenMap-Comparator")
111 | runApp("GenMap-Comparator")
112 | runApp("GenMap-Comparator")
113 | runApp("GenMap-Comparator")
114 | legend1=read.table("LEGEND/legend_sheet1.txt",sep="@")[,2]
115 | legend1=read.table("LEGEND/legend_sheet1.txt",sep="@")[,2]
116 | runApp("GenMap-Comparator")
117 | runApp("GenMap-Comparator")
118 | runApp("GenMap-Comparator")
119 | runApp("GenMap-Comparator")
120 | runApp("GenMap-Comparator")
121 | runApp("GenMap-Comparator")
122 | runApp("GenMap-Comparator")
123 | legend2
124 | runApp("GenMap-Comparator")
125 | runApp("GenMap-Comparator")
126 | runApp("GenMap-Comparator")
127 | runApp("GenMap-Comparator")
128 | runApp("GenMap-Comparator")
129 | runApp("GenMap-Comparator")
130 | runApp("GenMap-Comparator")
131 | runApp("GenMap-Comparator")
132 | runApp("GenMap-Comparator")
133 | runApp("GenMap-Comparator")
134 | runApp("GenMap-Comparator")
135 | runApp("GenMap-Comparator")
136 | runApp("GenMap-Comparator")
137 | runApp("GenMap-Comparator")
138 | runApp("GenMap-Comparator")
139 | runApp("GenMap-Comparator")
140 | runApp("GenMap-Comparator")
141 | runApp("GenMap-Comparator")
142 | runApp("GenMap-Comparator")
143 | runApp("GenMap-Comparator")
144 | runApp("GenMap-Comparator")
145 | runApp("GenMap-Comparator")
146 | runApp("GenMap-Comparator")
147 | runApp("GenMap-Comparator")
148 | runApp("GenMap-Comparator")
149 | runApp("GenMap-Comparator")
150 | runApp("GenMap-Comparator")
151 | runApp("GenMap-Comparator")
152 | runApp("GenMap-Comparator")
153 | runApp("GenMap-Comparator")
154 | runApp("GenMap-Comparator")
155 | runApp("GenMap-Comparator")
156 | runApp("GenMap-Comparator")
157 | runApp("GenMap-Comparator")
158 | runApp("GenMap-Comparator")
159 | runApp("GenMap-Comparator")
160 | runApp("GenMap-Comparator")
161 | runApp("GenMap-Comparator")
162 | runApp("GenMap-Comparator")
163 | runApp("GenMap-Comparator")
164 | runApp("GenMap-Comparator")
165 | runApp("GenMap-Comparator")
166 | runApp("GenMap-Comparator")
167 | runApp("GenMap-Comparator")
168 | runApp("GenMap-Comparator")
169 | runApp("GenMap-Comparator")
170 | runApp("GenMap-Comparator")
171 | runApp("GenMap-Comparator")
172 | runApp("GenMap-Comparator")
173 | runApp("GenMap-Comparator")
174 | runApp("GenMap-Comparator")
175 | runApp("GenMap-Comparator")
176 | runApp("GenMap-Comparator")
177 | runApp("GenMap-Comparator")
178 | runApp("GenMap-Comparator")
179 | runApp("GenMap-Comparator")
180 | runApp("GenMap-Comparator")
181 | runApp("GenMap-Comparator")
182 | runApp("GenMap-Comparator")
183 | runApp("GenMap-Comparator")
184 | runApp("GenMap-Comparator")
185 | runApp("GenMap-Comparator")
186 | runApp("GenMap-Comparator")
187 | runApp("GenMap-Comparator")
188 | runApp("GenMap-Comparator")
189 | runApp("GenMap-Comparator")
190 | runApp("GenMap-Comparator")
191 | runApp("GenMap-Comparator")
192 | runApp("GenMap-Comparator")
193 | runApp("GenMap-Comparator")
194 | runApp("GenMap-Comparator")
195 | runApp("GenMap-Comparator")
196 | runApp("GenMap-Comparator")
197 | runApp("GenMap-Comparator")
198 | runApp("GenMap-Comparator")
199 | runApp("GenMap-Comparator")
200 | runApp("GenMap-Comparator")
201 | runApp("GenMap-Comparator")
202 | runApp("GenMap-Comparator")
203 | runApp("GenMap-Comparator")
204 | runApp("GenMap-Comparator")
205 | runApp("GenMap-Comparator")
206 | runApp("GenMap-Comparator")
207 | runApp("GenMap-Comparator")
208 | runApp("GenMap-Comparator")
209 | runApp("GenMap-Comparator")
210 | runApp("GenMap-Comparator")
211 | runApp("GenMap-Comparator")
212 | runApp("GenMap-Comparator")
213 | runApp("GenMap-Comparator")
214 | runApp("GenMap-Comparator")
215 | runApp("GenMap-Comparator")
216 | runApp("GenMap-Comparator")
217 | runApp("GenMap-Comparator")
218 | runApp("GenMap-Comparator")
219 | runApp("GenMap-Comparator")
220 | runApp("GenMap-Comparator")
221 | runApp("GenMap-Comparator")
222 | runApp("GenMap-Comparator")
223 | runApp("GenMap-Comparator")
224 | runApp("GenMap-Comparator")
225 | runApp("GenMap-Comparator")
226 | runApp("GenMap-Comparator")
227 | runApp("GenMap-Comparator")
228 | runApp("GenMap-Comparator")
229 | runApp("GenMap-Comparator")
230 | runApp("GenMap-Comparator")
231 | runApp("GenMap-Comparator")
232 | runApp("GenMap-Comparator")
233 | runApp("GenMap-Comparator")
234 | runApp("GenMap-Comparator")
235 | runApp("GenMap-Comparator")
236 | runApp("GenMap-Comparator")
237 | runApp("GenMap-Comparator")
238 | runApp("GenMap-Comparator")
239 | runApp("GenMap-Comparator")
240 | ?
241 | quit()
242 | ?<-
243 | ?variable.names
244 | runApp("GenMap-Comparator")
245 | runApp("GenMap-Comparator")
246 | runApp("GenMap-Comparator")
247 |
--------------------------------------------------------------------------------
/.dropbox:
--------------------------------------------------------------------------------
1 | {"tag": "shared", "ns": 1165075255}
--------------------------------------------------------------------------------
/DATA/APPLE/Apple1.csv:
--------------------------------------------------------------------------------
1 | group;LG1
2 | Map_1_1;0.000
3 | Map_1_2;1.275
4 | Map_1_3;1.412
5 | Mrk_17036;3.743
6 | Map_1_4;4.765
7 | Mrk_16976;5.038
8 | Map_1_5;9.671
9 | Mrk_16756;12.513
10 | Mrk_15204;12.683
11 | Map_1_6;14.325
12 | Map_1_7;14.425
13 | Map_1_8;14.427
14 | Map_1_9;14.429
15 | Mrk_16667;14.434
16 | Map_1_10;14.465
17 | Mrk_16703;14.471
18 | Map_1_11;16.199
19 | Map_1_12;17.359
20 | Map_1_13;17.365
21 | Map_1_14;17.365
22 | Map_1_15;17.367
23 | Map_1_16;18.537
24 | Map_1_17;18.550
25 | Mrk_16437;18.550
26 | Mrk_16433;18.555
27 | Map_1_18;20.460
28 | Mrk_16417;20.892
29 | Mrk_17062;21.493
30 | Mrk_16185;22.700
31 | Mrk_16081;24.506
32 | Mrk_16051;28.803
33 | Mrk_15912;29.414
34 | Mrk_15895;29.423
35 | Map_1_19;30.608
36 | Mrk_15839;30.627
37 | Map_1_20;32.544
38 | Mrk_15801;33.725
39 | Mrk_15604;38.672
40 | Mrk_15612;38.695
41 | Map_1_21;39.705
42 | Mrk_15572;39.763
43 | Mrk_15560;40.903
44 | Map_1_22;42.687
45 | Mrk_15516;43.207
46 | Map_1_23;43.228
47 | Map_1_24;47.928
48 | Mrk_15152;49.309
49 | Map_1_25;49.369
50 | Map_1_26;50.902
51 | Map_1_27;51.047
52 | group;LG2
53 | Map_1_29;0.000
54 | Mrk_17252;0.561
55 | Mrk_17269;1.043
56 | Mrk_17183;4.349
57 | Mrk_17102;4.898
58 | Mrk_17105;4.898
59 | Map_1_30;8.888
60 | Map_1_31;9.463
61 | Mrk_17106;10.750
62 | Map_1_32;14.004
63 | Map_1_33;14.736
64 | Mrk_17272;14.778
65 | Mrk_17249;14.805
66 | Map_1_34;15.919
67 | Mrk_17185;15.942
68 | Map_1_35;17.657
69 | Map_1_36;18.595
70 | Mrk_16812;18.928
71 | Map_1_37;18.939
72 | Map_1_38;19.263
73 | Mrk_16674;20.738
74 | Mrk_16468;21.653
75 | Map_1_39;21.667
76 | Mrk_16469;21.667
77 | Mrk_16473;21.716
78 | Mrk_16421;23.465
79 | Map_1_40;23.528
80 | Map_1_41;23.916
81 | Mrk_16389;23.983
82 | Mrk_16323;25.459
83 | Mrk_14850;25.555
84 | Mrk_16322;25.632
85 | Map_1_42;25.705
86 | Mrk_16273;27.413
87 | Map_1_43;27.960
88 | Map_1_44;28.087
89 | Map_1_45;28.381
90 | Map_1_46;29.961
91 | Map_1_47;30.696
92 | Mrk_14873;31.710
93 | Mrk_15842;33.438
94 | Mrk_15844;33.438
95 | Mrk_15793;33.841
96 | Map_1_48;33.906
97 | Mrk_14929;33.906
98 | Mrk_15660;34.801
99 | Map_1_49;35.612
100 | Mrk_15668;35.941
101 | Mrk_15719;35.962
102 | Mrk_14723;36.474
103 | Mrk_15664;36.474
104 | Mrk_15662;36.794
105 | Mrk_15205;37.280
106 | Map_1_50;37.689
107 | Map_1_51;37.846
108 | Mrk_15598;38.657
109 | Mrk_15599;38.660
110 | Mrk_15597;38.660
111 | Mrk_15618;38.663
112 | Mrk_15614;38.670
113 | Map_1_52;38.670
114 | Map_1_53;39.566
115 | Mrk_14665;39.616
116 | Mrk_15558;40.334
117 | Mrk_15545;40.404
118 | Mrk_14721;40.975
119 | Mrk_15551;41.579
120 | Map_1_54;41.771
121 | Mrk_15544;42.141
122 | Mrk_14970;42.721
123 | Mrk_15510;43.921
124 | Mrk_15389;44.479
125 | Mrk_15354;44.929
126 | Mrk_15338;45.054
127 | Mrk_15331;45.089
128 | Mrk_15379;45.089
129 | Mrk_14808;45.323
130 | Mrk_15335;46.007
131 | Mrk_15355;46.191
132 | Mrk_15314;46.276
133 | Mrk_15318;46.280
134 | Map_1_55;46.285
135 | Mrk_14885;46.430
136 | Map_1_56;46.456
137 | Mrk_15353;46.789
138 | Map_1_57;47.824
139 | Mrk_14883;48.406
140 | Mrk_17924;49.163
141 | Map_1_58;49.417
142 | Mrk_14914;49.530
143 | Map_1_59;49.533
144 | Mrk_15266;49.562
145 | Mrk_15267;49.566
146 | Mrk_17893;50.054
147 | Map_1_60;50.057
148 | Mrk_17889;50.059
149 | Map_1_61;50.068
150 | Mrk_17894;50.312
151 | Mrk_17890;50.935
152 | Map_1_62;51.173
153 | Map_1_63;51.482
154 | Map_1_64;51.568
155 | Mrk_17739;51.702
156 | Mrk_17734;52.272
157 | Mrk_17733;52.648
158 | Mrk_17692;53.229
159 | Map_1_65;53.243
160 | Map_1_66;53.410
161 | Mrk_17657;53.890
162 | Mrk_17639;54.315
163 | Mrk_17648;54.395
164 | Map_1_67;54.447
165 | Mrk_17630;54.775
166 | Mrk_17631;54.801
167 | Mrk_14901;54.945
168 | Map_1_68;54.964
169 | Map_1_69;55.124
170 | Mrk_17650;55.132
171 | Mrk_14744;55.608
172 | Mrk_17632;55.670
173 | Mrk_17608;55.718
174 | Map_1_70;56.202
175 | Map_1_71;56.203
176 | Mrk_17548;56.203
177 | Mrk_17611;56.732
178 | Map_1_72;56.844
179 | Map_1_73;57.227
180 | Map_1_74;58.569
181 | Mrk_17480;58.569
182 | Mrk_17482;58.571
183 | Mrk_17446;59.097
184 | Map_1_75;59.206
185 | Mrk_17448;59.206
186 | Map_1_76;60.028
187 | Map_1_77;61.252
188 | Mrk_17404;61.261
189 | Map_1_78;62.689
190 | Mrk_17361;62.754
191 | Map_1_79;62.824
192 | Map_1_80;62.929
193 | Mrk_17347;63.352
194 | Map_1_81;63.444
195 | Map_1_82;63.994
196 | Map_1_83;63.994
197 | Map_1_84;64.006
198 | Mrk_17341;64.276
199 | Mrk_17322;65.152
200 | Map_1_85;65.601
201 | Mrk_17307;65.644
202 | Map_1_86;66.117
203 | Mrk_14949;66.117
204 | Map_1_87;66.263
205 | Mrk_17283;66.263
206 | Map_1_88;66.680
207 | Mrk_14997;67.244
208 | Mrk_16997;67.278
209 | Mrk_16875;67.293
210 | Mrk_16827;67.891
211 | Mrk_16649;68.525
212 | Map_1_89;69.745
213 | Map_1_90;70.292
214 | Map_1_91;70.592
215 | Mrk_15984;70.755
216 | Map_1_92;71.392
217 | Mrk_15908;71.561
218 | Mrk_15929;71.719
219 | Mrk_4;72.127
220 | Map_1_93;72.825
221 | Mrk_15485;73.356
222 | Mrk_14896;73.380
223 | Mrk_15445;75.145
224 | group;LG3
225 | Map_1_95;0.000
226 | Map_1_96;1.089
227 | Map_1_97;2.039
228 | Mrk_14747;2.339
229 | Mrk_17207;2.339
230 | Map_1_98;2.864
231 | Mrk_17189;4.100
232 | Mrk_17190;4.100
233 | Mrk_17198;4.234
234 | Mrk_17167;5.280
235 | Mrk_17192;5.349
236 | Mrk_17193;5.632
237 | Mrk_15049;7.045
238 | Mrk_17154;8.026
239 | Map_1_99;8.165
240 | Mrk_17116;9.896
241 | Mrk_17113;9.993
242 | Mrk_17115;10.007
243 | Mrk_17129;10.007
244 | Mrk_17111;10.588
245 | Map_1_100;11.184
246 | Map_1_101;12.624
247 | Map_1_102;13.013
248 | Mrk_14934;13.351
249 | Map_1_103;13.632
250 | Map_1_104;14.171
251 | Mrk_16908;14.213
252 | Map_1_105;14.763
253 | Mrk_16760;16.916
254 | Map_1_106;17.468
255 | Map_1_107;17.555
256 | Mrk_15032;17.704
257 | Mrk_16640;20.051
258 | Mrk_16642;20.051
259 | Mrk_16602;21.242
260 | Mrk_16466;24.635
261 | Mrk_16467;24.780
262 | Map_1_108;25.837
263 | Map_1_109;25.840
264 | Mrk_16271;26.745
265 | Map_1_110;26.845
266 | Map_1_111;27.195
267 | Mrk_16206;27.203
268 | Map_1_112;27.208
269 | Map_1_113;27.210
270 | Map_1_114;27.222
271 | Mrk_15388;28.175
272 | Mrk_15339;28.437
273 | Mrk_15165;28.609
274 | Mrk_15760;28.621
275 | Map_1_115;29.373
276 | Map_1_116;29.373
277 | Mrk_14715;29.740
278 | Mrk_15594;30.239
279 | Map_1_117;30.567
280 | Mrk_15100;30.768
281 | Map_1_118;31.749
282 | Mrk_15265;34.200
283 | Map_1_119;37.120
284 | Map_1_120;37.730
285 | Mrk_17908;38.640
286 | Mrk_17909;39.514
287 | Map_1_121;41.933
288 | Map_1_122;43.335
289 | Map_1_123;43.396
290 | Map_1_124;43.597
291 | Map_1_125;44.739
292 | Mrk_17647;44.750
293 | Mrk_17642;45.848
294 | Mrk_17599;48.539
295 | Mrk_17591;48.551
296 | Map_1_126;49.436
297 | Mrk_15946;55.803
298 | Map_1_127;56.090
299 | Mrk_15987;56.119
300 | Mrk_15990;56.161
301 | Mrk_15713;56.197
302 | Map_1_128;56.488
303 | Mrk_15823;56.488
304 | Map_1_129;57.307
305 | Mrk_17694;57.319
306 | Mrk_17687;57.343
307 | Map_1_130;57.362
308 | Mrk_15258;57.601
309 | Mrk_15304;57.616
310 | Mrk_15317;57.924
311 | Map_1_131;58.065
312 | Mrk_14792;58.325
313 | Mrk_17754;59.673
314 | Map_1_132;62.598
315 | Mrk_16428;62.728
316 | Map_1_133;62.753
317 | group;LG4
318 | Map_1_135;0.000
319 | Map_1_136;0.243
320 | Map_1_137;0.459
321 | Map_1_138;1.084
322 | Map_1_139;1.660
323 | Map_1_140;2.268
324 | Map_1_141;2.557
325 | Mrk_14985;6.183
326 | Map_1_142;12.352
327 | Mrk_17244;14.029
328 | Mrk_17376;17.879
329 | Mrk_17400;17.886
330 | Mrk_17375;17.897
331 | Map_1_143;18.423
332 | Map_1_144;21.426
333 | Mrk_17726;22.948
334 | Map_1_145;23.216
335 | Map_1_146;24.367
336 | Mrk_17730;25.408
337 | Map_1_147;26.839
338 | Map_1_148;27.326
339 | Mrk_15430;27.350
340 | Mrk_15281;27.418
341 | Mrk_15283;27.428
342 | Mrk_15282;27.440
343 | Mrk_15068;27.707
344 | Mrk_15429;28.684
345 | Map_1_149;29.257
346 | Map_1_150;29.571
347 | Mrk_15533;30.671
348 | Map_1_151;30.682
349 | Mrk_15541;31.273
350 | Mrk_15567;32.216
351 | Map_1_152;32.348
352 | Mrk_15030;32.349
353 | Mrk_14923;32.356
354 | Map_1_153;32.383
355 | Mrk_15565;32.399
356 | Map_1_154;32.823
357 | Mrk_14892;34.187
358 | Map_1_155;35.036
359 | Map_1_156;35.227
360 | Map_1_157;35.850
361 | Mrk_15613;36.655
362 | Map_1_158;39.538
363 | Mrk_15721;39.949
364 | Map_1_159;41.764
365 | Mrk_14864;45.428
366 | Mrk_15978;46.504
367 | Map_1_160;47.445
368 | Mrk_16068;52.671
369 | Mrk_16054;57.094
370 | Map_1_161;57.757
371 | Mrk_16123;57.759
372 | Map_1_162;58.282
373 | Map_1_163;58.316
374 | Mrk_16220;60.146
375 | Mrk_14828;60.147
376 | Mrk_16256;61.351
377 | Mrk_16272;61.805
378 | Mrk_14740;61.955
379 | Mrk_16296;62.210
380 | Mrk_16291;62.625
381 | Map_1_164;62.625
382 | Mrk_16279;62.861
383 | Mrk_14724;63.308
384 | Map_1_165;63.442
385 | Map_1_166;63.488
386 | Mrk_16253;63.508
387 | Map_1_167;64.268
388 | Mrk_16242;64.712
389 | Mrk_16238;65.039
390 | group;LG5
391 | Map_1_169;0.000
392 | Map_1_170;7.661
393 | Map_1_171;7.661
394 | Mrk_16989;8.992
395 | Mrk_16990;9.040
396 | Mrk_16899;11.584
397 | Map_1_172;13.388
398 | Mrk_15183;14.948
399 | Mrk_16753;15.957
400 | Mrk_14967;16.196
401 | Mrk_15021;16.462
402 | Mrk_15060;17.984
403 | Map_1_173;19.856
404 | Map_1_174;22.446
405 | Map_1_175;22.450
406 | Map_1_176;23.058
407 | Map_1_177;23.912
408 | Map_1_178;24.289
409 | Map_1_179;24.291
410 | Mrk_15771;24.543
411 | Mrk_16090;24.713
412 | Map_1_180;25.086
413 | Mrk_16089;27.356
414 | Mrk_16014;27.405
415 | Mrk_16096;27.412
416 | Mrk_16012;28.128
417 | Map_1_181;30.223
418 | Mrk_15891;34.475
419 | Mrk_15555;39.154
420 | Map_1_182;42.717
421 | Mrk_15071;49.187
422 | Mrk_14912;51.218
423 | Map_1_183;51.228
424 | Mrk_17697;52.052
425 | Map_1_184;52.108
426 | Mrk_15586;52.109
427 | Map_1_185;52.209
428 | Mrk_15588;52.219
429 | Mrk_15606;52.258
430 | Mrk_15605;52.306
431 | Mrk_15081;52.431
432 | Map_1_186;52.729
433 | Mrk_17860;53.271
434 | Map_1_187;56.244
435 | Map_1_188;56.492
436 | Map_1_189;56.492
437 | Map_1_190;56.527
438 | Mrk_17602;58.753
439 | Map_1_191;60.938
440 | Map_1_192;61.296
441 | Map_1_193;61.296
442 | Map_1_194;61.298
443 | Map_1_195;61.425
444 | Map_1_196;61.676
445 | Mrk_17326;64.676
446 | Mrk_17324;64.820
447 | Mrk_17334;64.839
448 | Mrk_17311;65.294
449 | Map_1_197;65.400
450 | Mrk_17315;65.498
451 | Mrk_15156;66.707
452 | Map_1_198;69.543
453 | Mrk_16299;69.543
454 | Mrk_15421;69.548
455 | Mrk_16261;70.087
456 | Mrk_17961;70.123
457 | Map_1_199;72.055
458 | Mrk_15483;72.055
459 | Mrk_17580;72.358
460 | Mrk_17955;72.788
461 | Map_1_200;73.727
462 | group;LG6
463 | Map_1_202;0.000
464 | Map_1_203;1.398
465 | Mrk_16381;5.867
466 | Mrk_15191;6.313
467 | Mrk_16865;6.431
468 | Map_1_204;7.274
469 | Map_1_205;7.295
470 | Map_1_206;7.519
471 | Mrk_17239;7.646
472 | Mrk_17243;7.646
473 | Mrk_17286;7.965
474 | Mrk_14711;8.245
475 | Mrk_17304;8.252
476 | Mrk_17368;8.529
477 | Mrk_17362;8.529
478 | Map_1_207;9.053
479 | Mrk_17396;9.088
480 | Mrk_17395;9.094
481 | Map_1_208;9.715
482 | Mrk_17781;9.718
483 | Mrk_17469;9.719
484 | Mrk_17784;9.746
485 | Map_1_209;9.775
486 | Mrk_17474;10.275
487 | Map_1_210;10.310
488 | Mrk_17478;10.585
489 | Map_1_211;11.202
490 | Mrk_14682;11.446
491 | Mrk_15776;11.568
492 | Map_1_212;11.595
493 | Mrk_17601;11.974
494 | Mrk_17656;14.489
495 | Map_1_213;16.444
496 | Map_1_214;18.204
497 | Map_1_215;18.602
498 | Mrk_14843;18.794
499 | Map_1_216;18.794
500 | Mrk_15988;18.820
501 | Map_1_217;18.886
502 | Mrk_14786;23.298
503 | Map_1_218;26.321
504 | Mrk_16058;28.629
505 | Mrk_14686;31.552
506 | Map_1_219;32.240
507 | Mrk_16228;38.336
508 | Mrk_16148;39.658
509 | Mrk_14972;40.185
510 | Mrk_16234;41.559
511 | Map_1_220;42.711
512 | Map_1_221;42.806
513 | Mrk_15003;46.860
514 | Mrk_14948;49.672
515 | Mrk_16354;52.482
516 | Mrk_16364;52.508
517 | Mrk_14960;52.663
518 | Mrk_16369;53.787
519 | Mrk_16368;53.811
520 | Map_1_222;54.544
521 | Map_1_223;59.090
522 | Mrk_16477;59.904
523 | Mrk_16517;60.446
524 | Mrk_15004;61.185
525 | Mrk_16553;64.225
526 | Mrk_16559;64.232
527 | Map_1_224;64.242
528 | Mrk_16560;64.252
529 | Mrk_16573;64.825
530 | Map_1_225;64.833
531 | Map_1_226;65.053
532 | Mrk_16574;65.446
533 | Mrk_16577;65.519
534 | Mrk_16654;67.780
535 | Mrk_16659;67.929
536 | Mrk_16658;70.644
537 | group;LG7
538 | Map_1_228;0.000
539 | Mrk_17789;2.300
540 | Map_1_229;3.488
541 | Mrk_16545;4.608
542 | Mrk_16542;4.693
543 | Mrk_16568;4.693
544 | Mrk_15321;5.210
545 | Map_1_230;5.228
546 | Mrk_17048;7.008
547 | Map_1_231;7.331
548 | Map_1_232;7.567
549 | Mrk_17227;8.127
550 | Mrk_17336;9.356
551 | Map_1_233;9.356
552 | Map_1_234;11.096
553 | Map_1_235;11.244
554 | Mrk_17540;12.241
555 | Map_1_236;14.676
556 | Mrk_17057;15.169
557 | Mrk_17745;15.295
558 | Map_1_237;15.821
559 | Map_1_238;15.831
560 | Map_1_239;15.941
561 | Mrk_17813;16.467
562 | Mrk_17340;16.490
563 | Map_1_240;16.503
564 | Mrk_17832;18.144
565 | Mrk_16637;18.656
566 | Map_1_241;18.749
567 | Map_1_242;21.851
568 | Map_1_243;22.226
569 | Mrk_15066;22.467
570 | Map_1_244;22.564
571 | Map_1_245;22.564
572 | Mrk_15311;23.546
573 | Mrk_15141;23.561
574 | Map_1_246;23.671
575 | Map_1_247;24.005
576 | Mrk_15345;24.085
577 | Mrk_15194;24.641
578 | Map_1_248;24.725
579 | Map_1_249;25.197
580 | Map_1_250;25.408
581 | Map_1_251;26.954
582 | Mrk_14928;26.956
583 | Map_1_252;26.986
584 | Map_1_253;26.986
585 | Map_1_254;27.023
586 | Mrk_15873;27.240
587 | Mrk_15199;27.511
588 | Mrk_15176;27.524
589 | Mrk_14860;29.803
590 | Mrk_16061;30.979
591 | Map_1_255;31.621
592 | Map_1_256;31.633
593 | Mrk_16373;33.163
594 | Map_1_257;33.428
595 | Map_1_258;33.968
596 | Map_1_259;34.525
597 | Mrk_15140;38.087
598 | Map_1_260;42.256
599 | Mrk_16359;43.620
600 | Mrk_16372;43.662
601 | Map_1_261;49.152
602 | Map_1_262;49.154
603 | Map_1_263;49.748
604 | Map_1_264;49.766
605 | Map_1_265;49.814
606 | Map_1_266;49.822
607 | Mrk_16481;51.991
608 | Mrk_16482;52.059
609 | Map_1_267;52.089
610 | Map_1_268;53.541
611 | Map_1_269;53.557
612 | Map_1_270;54.985
613 | Map_1_271;55.129
614 | Map_1_272;57.048
615 | Map_1_273;57.290
616 | Map_1_274;57.290
617 | Map_1_275;57.338
618 | Map_1_276;57.443
619 | Mrk_14962;58.435
620 | Mrk_16599;58.860
621 | Map_1_277;58.990
622 | Mrk_16531;59.849
623 | Map_1_278;61.552
624 | Map_1_279;61.969
625 | Mrk_16727;62.615
626 | Mrk_16598;63.358
627 | Mrk_16597;63.359
628 | Mrk_16524;63.655
629 | Map_1_280;63.655
630 | Mrk_16523;63.676
631 | Map_1_281;67.215
632 | Mrk_16701;71.467
633 | group;LG8
634 | Map_1_283;0.000
635 | Map_1_284;5.486
636 | Map_1_285;6.025
637 | Map_1_286;6.458
638 | Mrk_16540;11.880
639 | Mrk_16529;11.895
640 | Map_1_287;11.897
641 | Mrk_16530;12.153
642 | Mrk_16528;12.153
643 | Mrk_16471;12.448
644 | Mrk_16532;12.645
645 | Map_1_288;15.138
646 | Map_1_289;15.183
647 | Mrk_16005;15.224
648 | Map_1_290;15.274
649 | Map_1_291;15.353
650 | Map_1_292;15.362
651 | Map_1_293;15.364
652 | Mrk_14951;15.393
653 | Mrk_16165;15.395
654 | Mrk_16166;15.397
655 | Map_1_294;15.404
656 | Map_1_295;15.442
657 | Map_1_296;15.447
658 | Mrk_16230;15.557
659 | Mrk_16235;15.660
660 | Map_1_297;15.736
661 | Mrk_15971;17.168
662 | Mrk_16146;18.251
663 | Mrk_15181;18.694
664 | Map_1_298;18.968
665 | Mrk_14683;26.105
666 | Map_1_299;26.431
667 | Map_1_300;26.676
668 | Mrk_15578;29.933
669 | Mrk_15667;30.112
670 | Map_1_301;32.220
671 | Map_1_302;33.617
672 | Map_1_303;34.061
673 | Map_1_304;34.075
674 | Mrk_15576;34.075
675 | Map_1_305;36.981
676 | Map_1_306;36.989
677 | Map_1_307;38.174
678 | Map_1_308;38.766
679 | Mrk_15253;38.766
680 | Map_1_309;39.407
681 | Mrk_14722;39.904
682 | Mrk_17887;40.319
683 | Map_1_310;40.463
684 | Map_1_311;40.481
685 | Mrk_17879;41.064
686 | Mrk_14989;41.423
687 | Mrk_17886;42.273
688 | Mrk_17831;42.752
689 | Map_1_312;42.818
690 | Mrk_17450;43.353
691 | Mrk_17598;43.427
692 | Mrk_17827;44.779
693 | Mrk_17457;45.367
694 | Mrk_17460;45.548
695 | Mrk_16607;48.220
696 | Map_1_313;49.433
697 | Mrk_15773;50.234
698 | Mrk_15704;51.285
699 | Mrk_14776;51.285
700 | Mrk_15702;51.296
701 | Mrk_15724;51.848
702 | Mrk_15728;51.848
703 | Mrk_15455;51.931
704 | Mrk_15529;52.068
705 | Mrk_14787;52.068
706 | Map_1_314;52.232
707 | Mrk_15498;52.444
708 | Map_1_315;53.536
709 | Map_1_316;54.381
710 | Map_1_317;54.384
711 | Mrk_17607;54.796
712 | Mrk_16345;55.054
713 | Mrk_16539;55.058
714 | group;LG9
715 | Map_1_319;0.000
716 | Mrk_17511;0.277
717 | Map_1_320;1.060
718 | Map_1_321;1.111
719 | Mrk_17445;1.185
720 | Map_1_322;1.209
721 | Map_1_323;2.421
722 | Mrk_14933;2.702
723 | Mrk_17963;3.010
724 | Mrk_15236;3.611
725 | Map_1_324;4.228
726 | Mrk_15489;4.615
727 | Map_1_325;4.974
728 | Mrk_15539;4.974
729 | Map_1_326;5.626
730 | Mrk_15815;6.650
731 | Mrk_16038;7.233
732 | Mrk_14977;7.233
733 | Mrk_16259;7.841
734 | Mrk_15825;8.336
735 | Mrk_16009;9.139
736 | Map_1_327;10.237
737 | Mrk_16702;11.368
738 | Mrk_17038;14.273
739 | Mrk_17165;14.439
740 | Mrk_17158;14.442
741 | Mrk_17323;15.628
742 | Mrk_17349;16.141
743 | Map_1_328;16.351
744 | Mrk_17387;16.797
745 | Map_1_329;16.968
746 | Mrk_17388;19.162
747 | Mrk_17485;22.656
748 | Mrk_17565;24.419
749 | Mrk_17609;24.923
750 | Mrk_17673;26.026
751 | Mrk_17677;26.034
752 | Map_1_330;26.042
753 | Mrk_17729;26.043
754 | Map_1_331;26.057
755 | Map_1_332;27.667
756 | Mrk_17771;27.711
757 | Map_1_333;27.962
758 | Mrk_15059;29.278
759 | Map_1_334;29.870
760 | Mrk_17812;29.910
761 | Mrk_17801;30.416
762 | Map_1_335;37.501
763 | Map_1_336;39.169
764 | Mrk_15500;43.157
765 | Map_1_337;43.168
766 | Mrk_15573;44.492
767 | Mrk_14752;44.558
768 | Mrk_15574;44.709
769 | Mrk_15861;47.404
770 | Map_1_338;50.339
771 | Map_1_339;50.353
772 | Map_1_340;52.783
773 | Map_1_341;53.224
774 | Map_1_342;53.245
775 | Mrk_15986;53.549
776 | Map_1_343;53.804
777 | Map_1_344;53.870
778 | Map_1_345;54.336
779 | Map_1_346;54.662
780 | Map_1_347;55.175
781 | Mrk_17074;55.186
782 | Mrk_16101;55.186
783 | Mrk_16104;55.190
784 | Map_1_348;55.198
785 | Map_1_349;55.599
786 | Map_1_350;55.603
787 | Map_1_351;55.603
788 | Mrk_16630;55.671
789 | Mrk_16635;55.674
790 | Mrk_16634;55.674
791 | Mrk_16626;55.680
792 | Mrk_16105;55.681
793 | Map_1_352;55.689
794 | Map_1_353;56.332
795 | Map_1_354;56.332
796 | Map_1_355;56.693
797 | Map_1_356;57.383
798 | Mrk_17080;58.019
799 | Mrk_15160;62.743
800 | Map_1_357;62.749
801 | Mrk_14785;63.938
802 | Mrk_16789;64.512
803 | Mrk_16797;65.101
804 | Mrk_15108;65.686
805 | Mrk_16799;65.687
806 | Map_1_358;66.237
807 | Mrk_16815;66.259
808 | Mrk_16816;66.262
809 | Mrk_16828;67.422
810 | Mrk_16829;68.007
811 | Map_1_359;68.512
812 | Map_1_360;68.578
813 | Mrk_16890;68.592
814 | Mrk_16879;68.603
815 | Mrk_16834;68.608
816 | Mrk_16907;68.621
817 | Map_1_361;68.720
818 | Map_1_362;69.172
819 | Mrk_14910;69.778
820 | Mrk_14753;70.339
821 | group;LG10
822 | Map_1_364;0.000
823 | Map_1_365;0.532
824 | Mrk_16926;1.055
825 | Mrk_17136;2.105
826 | Mrk_17134;2.105
827 | Map_1_366;2.640
828 | Map_1_367;2.640
829 | Mrk_17147;2.982
830 | Map_1_368;4.651
831 | Mrk_17148;5.627
832 | Mrk_17151;5.648
833 | Map_1_369;7.501
834 | Map_1_370;8.166
835 | Mrk_16741;13.489
836 | Mrk_16699;14.138
837 | Mrk_16736;14.138
838 | Mrk_16738;14.480
839 | Map_1_371;14.627
840 | Map_1_372;14.690
841 | Mrk_16685;14.690
842 | Map_1_373;14.700
843 | Mrk_16664;15.728
844 | Map_1_374;16.172
845 | Map_1_375;16.319
846 | Map_1_376;17.057
847 | Map_1_377;19.917
848 | Mrk_16549;20.011
849 | Map_1_378;20.080
850 | Mrk_14732;20.080
851 | Mrk_16582;20.149
852 | Mrk_17090;20.156
853 | Mrk_14921;26.383
854 | Mrk_16427;26.602
855 | Mrk_16430;26.657
856 | Map_1_379;26.670
857 | Map_1_380;26.775
858 | Mrk_16255;27.603
859 | Mrk_16360;28.458
860 | Mrk_16300;28.787
861 | Mrk_16301;28.787
862 | Mrk_16254;29.934
863 | Map_1_381;29.979
864 | Mrk_16431;30.436
865 | Mrk_16361;30.899
866 | Map_1_382;32.687
867 | Map_1_383;33.379
868 | Map_1_384;34.397
869 | Mrk_16164;34.570
870 | Map_1_385;34.570
871 | Map_1_386;35.813
872 | Map_1_387;38.324
873 | Mrk_16048;38.350
874 | Mrk_16047;38.360
875 | Mrk_16003;40.312
876 | Mrk_15833;43.437
877 | Mrk_15951;43.807
878 | Mrk_15126;43.860
879 | Mrk_15948;43.913
880 | Map_1_388;43.988
881 | Mrk_15821;43.999
882 | Map_1_389;45.628
883 | Mrk_15052;45.629
884 | Mrk_15788;45.744
885 | Mrk_15764;46.309
886 | Mrk_15834;46.458
887 | Mrk_15192;46.730
888 | Map_1_390;46.831
889 | Mrk_15748;46.986
890 | Map_1_391;47.246
891 | Map_1_392;48.573
892 | Mrk_15098;49.168
893 | Mrk_15758;49.640
894 | Map_1_393;49.706
895 | Map_1_394;50.125
896 | Mrk_14667;50.233
897 | Map_1_395;50.620
898 | Mrk_15756;50.755
899 | Map_1_396;51.461
900 | Mrk_17847;51.467
901 | Mrk_14922;51.580
902 | Map_1_397;51.917
903 | Map_1_398;51.932
904 | Mrk_14734;53.699
905 | Mrk_17838;53.711
906 | Map_1_399;53.764
907 | Map_1_400;55.148
908 | Mrk_15556;55.427
909 | Mrk_15557;55.430
910 | Map_1_401;55.482
911 | Map_1_402;56.069
912 | Mrk_15459;56.785
913 | Map_1_403;57.671
914 | Mrk_15521;57.925
915 | Mrk_15515;57.925
916 | Map_1_404;57.928
917 | Mrk_15280;57.928
918 | Map_1_405;57.940
919 | Map_1_406;58.378
920 | Map_1_407;58.388
921 | Map_1_408;58.397
922 | Map_1_409;58.426
923 | Map_1_410;58.492
924 | Map_1_411;59.005
925 | Mrk_17937;59.120
926 | Mrk_15106;59.126
927 | Map_1_412;59.141
928 | Map_1_413;60.170
929 | Mrk_17279;61.960
930 | Mrk_17278;61.960
931 | Map_1_414;61.992
932 | Mrk_15077;63.129
933 | Mrk_16851;63.189
934 | Mrk_16910;63.189
935 | Map_1_415;63.190
936 | Map_1_416;63.223
937 | Map_1_417;64.662
938 | Map_1_418;64.925
939 | Map_1_419;65.025
940 | Mrk_15276;65.025
941 | Map_1_420;65.049
942 | Mrk_16386;65.066
943 | Mrk_16382;65.066
944 | Map_1_421;66.214
945 | Mrk_17934;66.783
946 | Mrk_17865;68.491
947 | Mrk_16337;69.795
948 | Map_1_422;70.223
949 | Mrk_16334;76.755
950 | Map_1_423;79.136
951 | Mrk_15492;80.203
952 | Map_1_424;80.228
953 | Map_1_425;80.853
954 | group;LG11
955 | Map_1_427;0.000
956 | Mrk_17267;0.104
957 | Map_1_428;0.667
958 | Map_1_429;1.280
959 | Mrk_17220;2.428
960 | Map_1_430;2.456
961 | Map_1_431;6.550
962 | Mrk_17172;6.557
963 | Mrk_17140;8.913
964 | Map_1_432;8.925
965 | Mrk_17082;10.081
966 | Mrk_17084;10.124
967 | Mrk_17085;10.163
968 | Map_1_433;10.281
969 | Mrk_17070;10.742
970 | Mrk_17069;11.338
971 | Map_1_434;12.519
972 | Mrk_16962;14.297
973 | Map_1_435;26.261
974 | Mrk_17254;26.261
975 | Map_1_436;26.825
976 | Map_1_437;28.695
977 | Mrk_17217;29.314
978 | Mrk_16639;30.058
979 | Mrk_16633;30.353
980 | Mrk_16604;30.687
981 | Mrk_17202;32.187
982 | Mrk_16571;34.353
983 | Mrk_17139;35.334
984 | Mrk_15058;37.536
985 | Map_1_438;39.151
986 | Map_1_439;39.877
987 | Mrk_14719;39.970
988 | Mrk_16439;40.324
989 | Mrk_14801;41.461
990 | Mrk_16313;41.751
991 | Map_1_440;42.871
992 | Map_1_441;43.805
993 | Map_1_442;43.828
994 | Map_1_443;43.829
995 | Mrk_16176;44.550
996 | Mrk_16175;44.558
997 | Mrk_15942;45.082
998 | Map_1_444;45.090
999 | Mrk_15202;45.097
1000 | Map_1_445;45.097
1001 | Mrk_14938;45.433
1002 | Map_1_446;45.578
1003 | Mrk_15757;45.657
1004 | Map_1_447;46.146
1005 | Mrk_14908;46.552
1006 | Map_1_448;46.869
1007 | Map_1_449;47.317
1008 | Map_1_450;47.461
1009 | Map_1_451;47.465
1010 | Mrk_16311;48.525
1011 | Mrk_15763;49.147
1012 | Map_1_452;49.691
1013 | Map_1_453;50.104
1014 | Map_1_454;50.234
1015 | Mrk_15644;50.349
1016 | Mrk_15642;50.360
1017 | Mrk_15159;52.626
1018 | Mrk_15691;52.655
1019 | Map_1_455;53.268
1020 | Mrk_15511;53.818
1021 | Mrk_15502;53.828
1022 | Mrk_15505;53.835
1023 | Mrk_15453;54.133
1024 | Mrk_15433;54.331
1025 | Map_1_456;54.600
1026 | Mrk_15410;54.869
1027 | Mrk_15413;54.886
1028 | Mrk_15414;54.889
1029 | Map_1_457;54.889
1030 | Mrk_14671;54.929
1031 | Mrk_15440;54.993
1032 | Map_1_458;55.509
1033 | Map_1_459;55.895
1034 | Mrk_15342;56.190
1035 | Map_1_460;56.200
1036 | Map_1_461;56.214
1037 | Mrk_15340;56.309
1038 | Mrk_15360;56.343
1039 | Map_1_462;56.895
1040 | Mrk_15306;56.927
1041 | Mrk_15273;57.361
1042 | Mrk_17975;57.449
1043 | Map_1_463;57.475
1044 | Map_1_464;57.847
1045 | Mrk_15261;57.851
1046 | Map_1_465;60.143
1047 | Mrk_14838;60.393
1048 | Mrk_17866;60.435
1049 | Map_1_466;61.124
1050 | Mrk_17864;61.218
1051 | Map_1_467;61.484
1052 | Mrk_17825;62.080
1053 | Mrk_17826;62.150
1054 | Mrk_17861;63.971
1055 | Map_1_468;65.971
1056 | Mrk_17723;67.932
1057 | Map_1_469;68.813
1058 | Mrk_17635;69.345
1059 | Mrk_17636;69.401
1060 | Mrk_17665;70.540
1061 | Mrk_17666;70.624
1062 | Map_1_470;71.195
1063 | Mrk_17640;71.756
1064 | Mrk_17634;71.865
1065 | Mrk_17466;73.937
1066 | Map_1_471;74.039
1067 | Mrk_17463;74.645
1068 | Mrk_15013;74.835
1069 | Mrk_17459;75.204
1070 | Mrk_17456;75.219
1071 | Mrk_17447;75.651
1072 | Mrk_17444;75.717
1073 | Map_1_472;75.733
1074 | Mrk_17416;76.556
1075 | Mrk_17417;76.556
1076 | Map_1_473;76.599
1077 | Mrk_17355;80.557
1078 | Mrk_14902;80.708
1079 | Map_1_474;80.719
1080 | Mrk_17001;80.999
1081 | Mrk_16661;84.687
1082 | Mrk_17509;84.749
1083 | Map_1_475;84.893
1084 | Map_1_476;84.922
1085 | Map_1_477;84.954
1086 | Map_1_478;85.074
1087 | Map_1_479;85.374
1088 | group;LG12
1089 | Map_1_481;0.000
1090 | Map_1_482;1.444
1091 | Map_1_483;1.976
1092 | Mrk_17441;2.018
1093 | Mrk_17462;3.530
1094 | Map_1_484;4.893
1095 | Mrk_15638;6.361
1096 | Mrk_16611;6.409
1097 | Map_1_485;6.949
1098 | Mrk_15840;6.962
1099 | Mrk_14692;6.984
1100 | Mrk_14780;7.714
1101 | Mrk_16622;8.144
1102 | Map_1_486;8.154
1103 | Mrk_16668;8.239
1104 | Map_1_487;8.717
1105 | Map_1_488;9.882
1106 | Mrk_17156;9.926
1107 | Mrk_17329;10.470
1108 | Mrk_17386;11.636
1109 | Map_1_489;11.640
1110 | Map_1_490;11.702
1111 | Mrk_15009;15.141
1112 | Map_1_491;15.253
1113 | Map_1_492;15.776
1114 | Mrk_17875;16.318
1115 | Map_1_493;16.938
1116 | Mrk_15804;18.203
1117 | Map_1_494;18.210
1118 | Map_1_495;18.215
1119 | Map_1_496;18.222
1120 | Map_1_497;18.641
1121 | Map_1_498;18.824
1122 | Mrk_16079;21.748
1123 | Mrk_16087;21.762
1124 | Mrk_16095;21.767
1125 | Map_1_499;21.771
1126 | Map_1_500;21.783
1127 | Mrk_16077;21.817
1128 | Map_1_501;22.674
1129 | Map_1_502;24.124
1130 | Mrk_16263;28.820
1131 | Map_1_503;32.308
1132 | Mrk_16584;33.419
1133 | Mrk_15027;33.509
1134 | Map_1_504;34.179
1135 | Mrk_16761;36.553
1136 | Map_1_505;37.334
1137 | Mrk_16733;37.334
1138 | Mrk_14841;38.158
1139 | Mrk_16706;38.375
1140 | Map_1_506;38.608
1141 | Mrk_16708;38.833
1142 | Map_1_507;40.010
1143 | Mrk_14764;41.657
1144 | Mrk_14852;42.130
1145 | Map_1_508;42.414
1146 | Mrk_16825;42.818
1147 | Map_1_509;43.050
1148 | Mrk_16837;43.061
1149 | Mrk_16839;43.632
1150 | Map_1_510;44.246
1151 | Mrk_16846;44.349
1152 | Mrk_16883;45.534
1153 | Mrk_16888;46.118
1154 | Mrk_16889;46.207
1155 | Map_1_511;46.899
1156 | Mrk_15097;47.252
1157 | Mrk_16931;47.254
1158 | Map_1_512;47.734
1159 | Mrk_16942;47.888
1160 | Mrk_16938;48.521
1161 | Map_1_513;51.645
1162 | Mrk_15133;53.267
1163 | Mrk_15064;53.276
1164 | Map_1_514;53.276
1165 | Mrk_17022;53.479
1166 | Mrk_17004;54.163
1167 | Mrk_17002;54.296
1168 | Mrk_17009;54.606
1169 | Mrk_17013;54.611
1170 | Mrk_17007;54.791
1171 | Map_1_515;55.329
1172 | Mrk_17023;55.886
1173 | Mrk_17024;55.934
1174 | Map_1_516;56.330
1175 | Mrk_15039;56.454
1176 | Map_1_517;56.582
1177 | Mrk_17034;57.291
1178 | Mrk_17050;58.246
1179 | Map_1_518;58.380
1180 | Map_1_519;58.797
1181 | Mrk_17060;58.797
1182 | Map_1_520;58.845
1183 | Mrk_14755;58.868
1184 | Mrk_15057;58.916
1185 | Mrk_17066;58.955
1186 | Map_1_521;59.079
1187 | group;LG13
1188 | Map_1_523;0.000
1189 | Mrk_14739;0.010
1190 | Mrk_17895;0.098
1191 | Mrk_17850;0.107
1192 | Mrk_17871;0.107
1193 | Mrk_17841;0.248
1194 | Mrk_16856;0.796
1195 | Mrk_16391;0.796
1196 | Mrk_17297;0.801
1197 | Mrk_16951;0.861
1198 | Mrk_17155;0.868
1199 | Mrk_17576;0.868
1200 | Mrk_15297;0.907
1201 | Map_1_524;0.916
1202 | Map_1_525;1.400
1203 | Map_1_526;1.499
1204 | Mrk_16953;1.948
1205 | Map_1_527;4.161
1206 | Map_1_528;4.851
1207 | Mrk_14981;6.075
1208 | Mrk_16126;7.425
1209 | Map_1_529;7.825
1210 | Mrk_16142;7.931
1211 | Mrk_14687;8.411
1212 | Map_1_530;8.685
1213 | Map_1_531;9.139
1214 | Mrk_16526;9.892
1215 | Mrk_16527;9.906
1216 | Mrk_16533;10.266
1217 | Map_1_532;11.288
1218 | Map_1_533;14.651
1219 | Mrk_17175;16.207
1220 | Mrk_17173;16.253
1221 | Mrk_17210;16.697
1222 | Mrk_17366;18.920
1223 | Map_1_534;22.042
1224 | Mrk_17522;23.627
1225 | Mrk_17523;23.634
1226 | Mrk_17573;24.175
1227 | Map_1_535;24.183
1228 | Mrk_17616;25.945
1229 | Map_1_536;27.599
1230 | Mrk_17708;28.668
1231 | Mrk_17717;29.127
1232 | Mrk_17768;29.963
1233 | Map_1_537;31.220
1234 | Mrk_15268;33.013
1235 | Mrk_15275;33.290
1236 | Map_1_538;33.622
1237 | Map_1_539;33.654
1238 | Mrk_15029;33.661
1239 | Map_1_540;33.876
1240 | Mrk_15405;34.009
1241 | Map_1_541;35.013
1242 | Map_1_542;37.890
1243 | Map_1_543;41.000
1244 | Map_1_544;41.187
1245 | Mrk_16719;45.750
1246 | Map_1_545;46.385
1247 | Mrk_15072;47.015
1248 | group;LG14
1249 | Map_1_547;0.000
1250 | Mrk_15025;0.601
1251 | Mrk_17089;1.179
1252 | Mrk_17086;1.197
1253 | Mrk_17426;1.772
1254 | Mrk_17428;1.789
1255 | Mrk_17589;2.942
1256 | Map_1_548;2.958
1257 | Mrk_17624;4.547
1258 | Mrk_17629;5.144
1259 | Map_1_549;6.869
1260 | Map_1_550;9.417
1261 | Mrk_17910;11.186
1262 | Map_1_551;11.430
1263 | Map_1_552;11.463
1264 | Mrk_17901;11.688
1265 | Mrk_17911;11.750
1266 | Map_1_553;13.559
1267 | Mrk_17899;13.621
1268 | Map_1_554;14.062
1269 | Mrk_15310;14.240
1270 | Mrk_15462;14.425
1271 | Mrk_15463;14.455
1272 | Mrk_15457;17.360
1273 | Map_1_555;17.384
1274 | Map_1_556;17.392
1275 | Mrk_16023;18.996
1276 | Map_1_557;19.107
1277 | Mrk_16128;19.461
1278 | Mrk_16129;19.469
1279 | Map_1_558;20.980
1280 | Mrk_15706;21.038
1281 | Mrk_14733;21.056
1282 | Map_1_559;21.082
1283 | Mrk_16016;22.130
1284 | Mrk_16072;22.611
1285 | Map_1_560;23.561
1286 | Map_1_561;25.417
1287 | Map_1_562;25.604
1288 | Map_1_563;26.989
1289 | Map_1_564;27.445
1290 | Map_1_565;27.828
1291 | Map_1_566;28.985
1292 | Map_1_567;29.002
1293 | Map_1_568;29.463
1294 | Map_1_569;30.465
1295 | Map_1_570;30.474
1296 | Mrk_16152;31.026
1297 | Map_1_571;31.026
1298 | Mrk_16151;31.033
1299 | Map_1_572;31.318
1300 | Mrk_16158;31.319
1301 | Map_1_573;31.454
1302 | Mrk_16159;31.645
1303 | Mrk_16201;32.518
1304 | Mrk_16215;32.532
1305 | Mrk_16225;32.545
1306 | Mrk_16210;32.901
1307 | Mrk_16246;32.943
1308 | Mrk_16247;32.969
1309 | Mrk_16227;33.160
1310 | Map_1_574;33.176
1311 | Map_1_575;34.405
1312 | Mrk_16330;34.573
1313 | Mrk_16328;34.573
1314 | Map_1_576;35.135
1315 | Mrk_14966;35.725
1316 | Mrk_16327;36.165
1317 | Mrk_15178;36.165
1318 | Map_1_577;38.387
1319 | Mrk_16606;38.904
1320 | Map_1_578;39.494
1321 | Map_1_579;39.546
1322 | Mrk_14783;39.560
1323 | Mrk_16614;39.925
1324 | Mrk_16616;39.925
1325 | Mrk_16609;40.665
1326 | Mrk_15045;40.846
1327 | Mrk_16605;40.867
1328 | Map_1_580;41.261
1329 | Mrk_16618;41.280
1330 | Map_1_581;41.586
1331 | Mrk_16465;41.615
1332 | Mrk_16619;42.119
1333 | Map_1_582;42.275
1334 | Mrk_14706;43.737
1335 | Map_1_583;43.971
1336 | Map_1_584;47.429
1337 | Map_1_585;48.258
1338 | Mrk_16770;49.611
1339 | Mrk_14720;49.611
1340 | Mrk_16800;52.145
1341 | Mrk_14913;56.189
1342 | Mrk_16877;57.007
1343 | Mrk_15209;57.007
1344 | Map_1_586;57.887
1345 | Mrk_16900;57.893
1346 | group;LG15
1347 | Map_1_588;0.000
1348 | Map_1_589;2.361
1349 | Mrk_17451;7.702
1350 | Mrk_17452;7.702
1351 | Map_1_590;10.035
1352 | Map_1_591;11.685
1353 | Mrk_17380;14.661
1354 | Map_1_592;15.259
1355 | Mrk_17373;15.259
1356 | Mrk_17344;21.246
1357 | Mrk_14718;34.108
1358 | Map_1_593;36.561
1359 | Mrk_16454;36.561
1360 | Mrk_16451;36.657
1361 | Mrk_17498;38.149
1362 | Mrk_17500;38.157
1363 | Map_1_594;38.171
1364 | Mrk_17507;38.470
1365 | Map_1_595;39.401
1366 | Map_1_596;39.918
1367 | Map_1_597;39.964
1368 | Mrk_17436;39.964
1369 | Mrk_17382;41.717
1370 | Mrk_17383;41.734
1371 | Mrk_16141;41.952
1372 | Map_1_598;42.272
1373 | Map_1_599;43.447
1374 | Map_1_600;43.456
1375 | Map_1_601;43.462
1376 | Map_1_602;43.462
1377 | Map_1_603;43.892
1378 | Mrk_16018;44.462
1379 | Mrk_16318;45.595
1380 | Mrk_14809;45.734
1381 | Map_1_604;45.759
1382 | Mrk_14963;46.313
1383 | Map_1_605;49.334
1384 | Map_1_606;49.439
1385 | Mrk_17314;50.035
1386 | Mrk_17313;50.114
1387 | Map_1_607;50.503
1388 | Mrk_14762;50.503
1389 | Mrk_17257;50.512
1390 | Map_1_608;50.554
1391 | Map_1_609;51.488
1392 | Map_1_610;51.638
1393 | Map_1_611;51.640
1394 | Mrk_16932;51.723
1395 | Map_1_612;52.454
1396 | Mrk_15778;55.076
1397 | Map_1_613;56.450
1398 | Mrk_16317;57.929
1399 | Mrk_15816;57.933
1400 | Mrk_15820;58.538
1401 | Mrk_15734;60.514
1402 | Map_1_614;64.623
1403 | Map_1_615;65.384
1404 | Mrk_14736;65.633
1405 | Mrk_15652;66.363
1406 | Mrk_15630;67.372
1407 | Mrk_14849;67.515
1408 | Map_1_616;67.758
1409 | Map_1_617;68.169
1410 | Map_1_618;68.282
1411 | Mrk_15363;68.386
1412 | Map_1_619;69.264
1413 | Mrk_15295;73.295
1414 | Mrk_15296;73.323
1415 | Mrk_14867;75.418
1416 | Mrk_17820;77.719
1417 | Mrk_17806;78.260
1418 | Mrk_17661;78.780
1419 | Map_1_620;79.371
1420 | Mrk_17744;79.969
1421 | Mrk_14737;80.506
1422 | Mrk_17660;81.224
1423 | Map_1_621;81.265
1424 | Mrk_17684;81.743
1425 | Mrk_14679;82.348
1426 | Mrk_17652;82.831
1427 | Mrk_17646;83.054
1428 | Map_1_622;83.897
1429 | Mrk_17649;83.907
1430 | Map_1_623;84.464
1431 | Mrk_17644;84.610
1432 | Map_1_624;85.948
1433 | Map_1_625;86.942
1434 | Mrk_14751;87.452
1435 | Map_1_626;87.808
1436 | Mrk_17562;87.808
1437 | Mrk_17557;87.818
1438 | Mrk_17424;89.004
1439 | Map_1_627;89.312
1440 | Mrk_17553;89.701
1441 | Mrk_17552;89.753
1442 | Map_1_628;90.361
1443 | Map_1_629;91.022
1444 | Mrk_17077;91.854
1445 | Mrk_14695;91.854
1446 | Map_1_630;92.087
1447 | Mrk_17284;92.628
1448 | Mrk_15050;92.801
1449 | Mrk_14890;93.123
1450 | Mrk_17215;93.289
1451 | Mrk_17033;93.598
1452 | Mrk_17061;93.820
1453 | Mrk_15047;94.294
1454 | Mrk_17037;94.427
1455 | Mrk_17049;94.427
1456 | Mrk_16993;95.006
1457 | Mrk_16680;95.250
1458 | Map_1_631;95.568
1459 | Mrk_16371;97.422
1460 | Mrk_16694;97.917
1461 | Mrk_16689;97.917
1462 | Mrk_16677;97.928
1463 | Mrk_16383;98.160
1464 | Mrk_14853;98.185
1465 | Map_1_632;98.364
1466 | Mrk_16377;98.401
1467 | Mrk_16208;98.605
1468 | Map_1_633;100.003
1469 | Mrk_15675;100.469
1470 | Mrk_15658;100.993
1471 | Mrk_15655;101.033
1472 | Mrk_15672;101.063
1473 | Mrk_15657;101.245
1474 | Mrk_15602;101.490
1475 | Mrk_15601;101.490
1476 | Mrk_14886;102.163
1477 | Map_1_634;102.549
1478 | Mrk_15289;102.656
1479 | Mrk_15271;102.679
1480 | Mrk_17951;103.113
1481 | Mrk_14758;104.198
1482 | Map_1_635;104.329
1483 | Mrk_15301;104.747
1484 | Mrk_15235;104.884
1485 | Mrk_14831;106.371
1486 | group;LG16
1487 | Map_1_637;0.000
1488 | Map_1_638;0.052
1489 | Mrk_17712;1.127
1490 | Map_1_639;1.130
1491 | Map_1_640;1.718
1492 | Map_1_641;2.742
1493 | Mrk_17765;4.282
1494 | Mrk_15418;5.616
1495 | Mrk_15425;5.655
1496 | Mrk_14984;5.932
1497 | Map_1_642;6.815
1498 | Mrk_15720;7.455
1499 | Mrk_15699;7.455
1500 | Mrk_15673;7.799
1501 | Map_1_643;8.086
1502 | Mrk_15759;8.755
1503 | Map_1_644;9.098
1504 | Map_1_645;10.523
1505 | Map_1_646;11.837
1506 | Mrk_15939;11.837
1507 | Mrk_14836;12.727
1508 | Map_1_647;16.406
1509 | Map_1_648;16.564
1510 | Map_1_649;16.567
1511 | Mrk_14759;16.598
1512 | Mrk_16717;16.627
1513 | Map_1_650;16.643
1514 | Map_1_651;16.742
1515 | Mrk_16943;16.835
1516 | Mrk_16996;16.835
1517 | Mrk_16999;16.944
1518 | Mrk_16715;16.944
1519 | Map_1_652;18.092
1520 | Mrk_17160;18.239
1521 | Mrk_17199;18.407
1522 | Mrk_17177;18.407
1523 | Mrk_17208;18.722
1524 | Mrk_17166;19.196
1525 | Mrk_17258;19.426
1526 | Mrk_17256;19.441
1527 | Map_1_653;19.441
1528 | Mrk_17255;19.562
1529 | Mrk_14907;19.771
1530 | Mrk_17295;20.517
1531 | Mrk_17318;20.777
1532 | Mrk_17317;20.777
1533 | Mrk_14741;21.910
1534 | Map_1_654;21.910
1535 | Map_1_655;23.772
1536 | Mrk_17495;24.206
1537 | Mrk_17493;24.349
1538 | Mrk_17513;25.492
1539 | Mrk_15061;27.174
1540 | Mrk_17579;27.232
1541 | Map_1_656;27.270
1542 | Mrk_14884;27.555
1543 | Mrk_17663;27.861
1544 | Map_1_657;29.206
1545 | Mrk_17641;29.271
1546 | Mrk_17645;29.296
1547 | Map_1_658;29.438
1548 | Map_1_659;29.541
1549 | Map_1_660;29.834
1550 | Map_1_661;29.921
1551 | Map_1_662;30.061
1552 | Map_1_663;30.838
1553 | Map_1_664;31.128
1554 | Map_1_665;31.644
1555 | Map_1_666;32.882
1556 | Map_1_667;34.042
1557 | Map_1_668;34.243
1558 | Map_1_669;34.523
1559 | Map_1_670;34.524
1560 | Map_1_671;34.649
1561 | Map_1_672;35.925
1562 | Map_1_673;35.928
1563 | Map_1_674;35.928
1564 | Mrk_17817;36.556
1565 | Mrk_17828;36.885
1566 | Mrk_17823;36.885
1567 | Mrk_17898;37.710
1568 | Map_1_675;37.968
1569 | Mrk_17903;38.029
1570 | Mrk_17905;38.029
1571 | Mrk_17907;38.552
1572 | Map_1_676;39.454
1573 | Mrk_17914;39.828
1574 | Map_1_677;40.294
1575 | Mrk_15014;40.569
1576 | Mrk_15437;41.468
1577 | Mrk_15432;41.651
1578 | Mrk_15443;41.813
1579 | Mrk_15493;42.080
1580 | Mrk_15113;42.088
1581 | Mrk_14954;43.850
1582 | Mrk_15568;45.014
1583 | Map_1_678;45.020
1584 | Mrk_14993;45.700
1585 | Map_1_679;47.259
1586 | Mrk_15621;48.347
1587 | Mrk_14761;48.348
1588 | Mrk_15651;48.930
1589 | Mrk_15118;49.454
1590 | Mrk_15674;50.066
1591 | Mrk_15677;50.067
1592 | Mrk_15676;50.068
1593 | Mrk_15683;50.069
1594 | Mrk_15710;51.757
1595 | Mrk_15187;51.763
1596 | Map_1_680;52.237
1597 | Map_1_681;52.310
1598 | Map_1_682;52.371
1599 | Map_1_683;52.784
1600 | Map_1_684;53.191
1601 | Mrk_17953;53.464
1602 | Mrk_15128;53.981
1603 | Map_1_685;54.210
1604 | Mrk_16010;54.737
1605 | Map_1_686;54.737
1606 | Mrk_14917;54.751
1607 | Mrk_15234;55.415
1608 | Map_1_687;55.431
1609 | Mrk_17981;55.581
1610 | Mrk_17967;55.600
1611 | Mrk_14814;55.987
1612 | Map_1_688;58.315
1613 | Map_1_689;58.695
1614 | Map_1_690;59.374
1615 | Map_1_691;59.491
1616 | Map_1_692;59.735
1617 | Map_1_693;60.167
1618 | Mrk_15883;60.613
1619 | Mrk_16216;60.613
1620 | Map_1_694;60.635
1621 | Map_1_695;60.636
1622 | Map_1_696;60.660
1623 | Map_1_697;61.112
1624 | Map_1_698;61.137
1625 | group;LG17
1626 | Map_1_700;0.000
1627 | Map_1_701;0.004
1628 | Map_1_702;3.482
1629 | Map_1_703;3.602
1630 | Map_1_704;3.694
1631 | Map_1_705;4.152
1632 | Map_1_706;4.234
1633 | Mrk_16370;4.239
1634 | Mrk_16374;4.289
1635 | Map_1_707;4.834
1636 | Map_1_708;4.865
1637 | Mrk_16331;4.885
1638 | Mrk_16125;5.438
1639 | Mrk_16124;5.454
1640 | Map_1_709;6.637
1641 | Map_1_710;6.637
1642 | Map_1_711;7.226
1643 | Mrk_16059;7.810
1644 | Map_1_712;7.814
1645 | Map_1_713;9.019
1646 | Mrk_15997;9.591
1647 | Mrk_15994;10.257
1648 | Map_1_714;10.782
1649 | Map_1_715;11.781
1650 | Map_1_716;11.991
1651 | Map_1_717;12.093
1652 | Map_1_718;12.159
1653 | Map_1_719;16.096
1654 | Map_1_720;17.285
1655 | Map_1_721;17.285
1656 | Map_1_722;19.051
1657 | Mrk_15476;23.922
1658 | Mrk_14829;25.145
1659 | Map_1_723;25.214
1660 | Map_1_724;25.411
1661 | Map_1_725;25.684
1662 | Map_1_726;28.099
1663 | Mrk_15246;28.126
1664 | Map_1_727;28.126
1665 | Map_1_728;28.133
1666 | Mrk_14889;28.222
1667 | Mrk_17857;31.872
1668 | Map_1_729;32.940
1669 | Mrk_17933;33.486
1670 | Map_1_730;34.484
1671 | Map_1_731;34.484
1672 | Mrk_17750;36.577
1673 | Mrk_17685;37.410
1674 | Map_1_732;38.187
1675 | Mrk_17402;40.314
1676 | Mrk_14806;41.374
1677 | Mrk_14982;41.471
1678 | Mrk_17008;41.471
1679 | Mrk_17525;41.518
1680 | Map_1_733;41.636
1681 | Mrk_16748;42.863
1682 | Mrk_17222;44.245
1683 | Mrk_16412;44.387
1684 | Map_1_734;44.424
1685 | Mrk_17224;44.424
1686 | Map_1_735;44.433
1687 | Mrk_17039;44.953
1688 | Mrk_16743;44.963
1689 | Mrk_16281;44.982
1690 | Mrk_16240;45.557
1691 | Map_1_736;46.577
1692 | Map_1_737;46.577
1693 | Map_1_738;47.308
1694 | Mrk_16040;47.661
1695 | Map_1_739;47.768
1696 | Map_1_740;48.236
1697 | Mrk_15538;48.254
1698 | Map_1_741;48.254
1699 | Map_1_742;48.258
1700 | Mrk_14911;48.261
1701 | Mrk_15707;48.261
1702 | Mrk_15534;48.263
1703 | Map_1_743;48.298
1704 | Mrk_15326;49.912
1705 | Map_1_744;51.200
1706 | Mrk_17800;51.322
1707 | Mrk_17792;52.388
1708 | Mrk_15092;53.435
1709 | Mrk_17702;53.471
1710 | Mrk_17294;53.567
1711 | Mrk_16972;54.415
1712 | Mrk_14684;54.708
--------------------------------------------------------------------------------
/DATA/EX_HELP_PAGE/Example_Data_Set1.csv:
--------------------------------------------------------------------------------
1 | LG;marker;position
LG1;marker_52;0
LG1;marker_23;29.4
LG1;marker_18;31.2
LG1;marker_8;40.5
LG2;marker_12;0
LG2;marker_3;3.3
LG2;marker_98;4.6
LG2;marker_72;10.8
--------------------------------------------------------------------------------
/DATA/EX_HELP_PAGE/Example_Data_Set2.csv:
--------------------------------------------------------------------------------
1 | group;LG1
Map_1_1;0.000
Map_1_2;1.275
Map_1_3;1.412
Mrk_17036;3.743
Map_1_4;4.765
Mrk_16976;5.038
Map_1_5;9.671
Mrk_16756;12.513
Mrk_15204;12.683
Map_1_6;14.325
Map_1_7;14.425
Map_1_8;14.427
Map_1_9;14.429
--------------------------------------------------------------------------------
/DATA/EX_HELP_PAGE/Example_Data_Set3.txt:
--------------------------------------------------------------------------------
1 | 0 -801.56 {1 -485.24 MS4 0.0 MS5 3.3 MS13 38.8 MS6 64.2 MS11 86.4 MS17 137.9 MS16 159.5 MS8 186.5 MS7 192.4 MS2 207.4 MS3 208.0 MS9 231.5 MS15 249.3 MS12 252.8 MS20 291.1 MS19 293.8 MS1 483.9} {2 -316.32 MS4 0.0 MS5 84.4 MS6 138.5 MS8 229.0 MS7 307.2 MS3 493.5 MS9 706.1 MS15 862.8 MS1 1622.9 G36 1726.5 G39 1786.2 G37 1845.9 G40 1871.3}
--------------------------------------------------------------------------------
/DATA/EX_HELP_PAGE/titi.txt:
--------------------------------------------------------------------------------
1 | yo
2 | yo
--------------------------------------------------------------------------------
/DATA/EX_HELP_PAGE/toto.txt:
--------------------------------------------------------------------------------
1 | 0 -801.56 {1 -485.24 MS4 0.0 MS5 3.3 MS13 38.8 MS6 64.2 MS11 86.4 MS17 137.9 MS16 159.5 MS8 186.5 MS7 192.4 MS2 207.4 MS3 208.0 MS9 231.5 MS15 249.3 MS12 252.8 MS20 291.1 MS19 293.8 MS1 483.9} {2 -316.32 MS4 0.0 MS5 84.4 MS6 138.5 MS8 229.0 MS7 307.2 MS3 493.5 MS9 706.1 MS15 862.8 MS1 1622.9 G36 1726.5 G39 1786.2 G37 1845.9 G40 1871.3}
--------------------------------------------------------------------------------
/DATA/SMALL_DATASET/titi:
--------------------------------------------------------------------------------
1 | group marker position
2 | 1A Cluster_3354|Contig2|original@283 0
3 | 1A Cluster_9277|Contig1|likelySeq@519 6.09999999999999
4 | 1A Cluster_9277|Contig1|likelySeq@549 6.09999999999999
5 | 1A Cluster_10029|Contig1|original@626 7
6 | 1A Cluster_10029|Contig1|original@668 7
7 | 1A Cluster_16263|Contig2|original@713 7
8 | 1A Cluster_9277|Contig2|original@99 7
9 | 1A Cluster_10305|Contig1|complementarySeq@190 8.5
10 | 1A Cluster_2150|Contig5|original@1711 8.5
11 | 1A Cluster_1882|Contig4|original@2077 9.59999999999999
12 | 1A Cluster_1386|Contig2|original@858 10.7
13 | 1A Cluster_1882|Contig10|original@1836 10.7
14 | 1A Cluster_1973|Contig2|original@1480 10.7
15 | 1A Cluster_10103|Contig1|original@140 11.4
16 | 1A Cluster_1882|Contig10|original@1818 11.4
17 | 1A Cluster_1882|Contig4|original@2428 11.4
18 | 1A Cluster_1882|Contig6|original@1226 11.4
19 | 1A Cluster_1882|Contig8|original@1158 11.4
20 | 1A Cluster_21164|Contig1|original@399 11.4
21 |
--------------------------------------------------------------------------------
/DATA/SMALL_DATASET/tktk:
--------------------------------------------------------------------------------
1 | group marker position
2 | 1A Cluster_3354|Contig2|original@283 0
3 | 1A cluster_singlet|EPO_092_2826919364122958018+,...,87210-|original@654 0
4 | 1A Cluster_10322|Contig1|complementarySeq@393 0.7
5 | 1A Cluster_3335|Contig1|complementarySeq@1206 0.7
6 | 1A Cluster_3335|Contig1|likelySeq@1206 0.7
7 | 1A Cluster_5949|Contig4|original@2220 0.7
8 | 1A Cluster_7725|Contig5|original@540 0.7
9 | 1A Cluster_1386|Contig2|original@880 1.3
10 | 1A Cluster_6015|Contig5|original@225 7.6
11 | 1A Cluster_6015|Contig8|original@230 7.6
12 | 1A Cluster_7051|Contig4|original@1363 7.6
13 | 1A Cluster_10103|Contig1|original@211 8.9
14 | 1A Cluster_2150|Contig2|original@1760 9.3
15 | 1A Cluster_2150|Contig3|original@1573 9.3
16 | 1A Cluster_2150|Contig5|original@1711 9.3
17 | 1A Cluster_10029|Contig1|original@800 13.2
18 | 1A Cluster_9277|Contig1|likelySeq@519 13.2
19 | 1A Cluster_9277|Contig2|original@99 13.2
20 | 1A Cluster_9687|Contig1|original@1017 13.7
21 | 1A Cluster_10014|Contig7|original@280 15.9
22 | 1A Cluster_11076|Contig1|original@251 17.6
23 | 1A Cluster_11076|Contig1|original@547 17.6
24 | 1A Cluster_11076|Contig1|original@868 17.6
25 | 1A Cluster_14274|Contig1|original@346 18.6
26 | 1A Cluster_8411|Contig1|original@146 18.6
27 | 1A Cluster_297|Contig37|complementarySeq@365 40.7
28 | 1A Cluster_4373|Contig2|original@910 40.7
29 | 1A Cluster_4946|Contig1|original@164 40.7
30 | 1A Cluster_6679|Contig1|original@278 40.7
31 |
--------------------------------------------------------------------------------
/DATA/SMALL_DATASET/toto:
--------------------------------------------------------------------------------
1 | group marker position
2 | 1A Cluster_10322|Contig1|complementarySeq@393 0
3 | 1A Cluster_5949|Contig4|original@2220 0.4
4 | 1A Cluster_7725|Contig5|original@540 0.4
5 | 1A Cluster_1386|Contig2|original@880 0.8
6 | 1A Cluster_16263|Contig2|original@713 19.6
7 | 1A Cluster_9687|Contig1|original@1470 19.6
8 | 1A Cluster_10029|Contig1|original@626 19.6
9 | 1A Cluster_11076|Contig1|original@547 24.5
10 | 1A Cluster_11076|Contig1|original@251 24.5
11 | 1A Cluster_11076|Contig1|original@868 24.5
12 | 1A Cluster_8411|Contig1|original@146 25
13 | 1A Cluster_6179|Contig1|original@815 47.5
14 | 1A Cluster_9630|Contig1|likelySeq@1992 47.9
15 | 1A Cluster_9947|Contig2|original@442 47.9
16 | 1A Cluster_677|Contig6|original@814 48.1
17 | 1A Cluster_5602|Contig2|original@450 48.1
18 | 1A Cluster_677|Contig3|original@1738 48.1
19 | 1A Cluster_5602|Contig2|original@984 48.82
20 | 1A Cluster_2587|Contig1|original@394 49.1
21 |
--------------------------------------------------------------------------------
/DATA/SMALL_DATASET/tutu:
--------------------------------------------------------------------------------
1 | group marker position
2 | 1A Cluster_3354|Contig2|original@283 0
3 | 1A cluster_singlet|EPO_092_2826919364122958018+,...,87210-|original@654 0
4 | 1A Cluster_10322|Contig1|complementarySeq@393 0.7
5 | 1A Cluster_3335|Contig1|complementarySeq@1206 0.7
6 | 1A Cluster_3335|Contig1|likelySeq@1206 0.7
7 | 1A Cluster_5949|Contig4|original@2220 0.7
8 | 1A Cluster_7725|Contig5|original@540 0.7
9 | 1A Cluster_1386|Contig2|original@880 1.3
10 | 1A Cluster_6015|Contig5|original@225 7.6
11 | 1A Cluster_6015|Contig8|original@230 7.6
12 | 1A Cluster_7051|Contig4|original@1363 7.6
13 | 1A Cluster_10103|Contig1|original@211 8.9
14 | 1A Cluster_2150|Contig2|original@1760 9.3
15 | 1A Cluster_2150|Contig3|original@1573 9.3
16 | 1A Cluster_2150|Contig5|original@1711 9.3
17 | 1A Cluster_10029|Contig1|original@800 13.2
18 | 1A Cluster_9277|Contig1|likelySeq@519 13.2
19 | 1A Cluster_9277|Contig2|original@99 13.2
20 | 1A Cluster_9687|Contig1|original@1017 13.7
21 |
--------------------------------------------------------------------------------
/DATA/SMALL_DATASET/tyty:
--------------------------------------------------------------------------------
1 | group marker position
2 | 1A Cluster_10322|Contig1|complementarySeq@393 0
3 | 1A Cluster_5949|Contig4|original@2220 0.4
4 | 1A Cluster_7725|Contig5|original@540 0.4
5 | 1A Cluster_1386|Contig2|original@880 0.8
6 | 1A Cluster_16263|Contig2|original@713 19.6
7 | 1A Cluster_9687|Contig1|original@1470 19.6
8 | 1A Cluster_10029|Contig1|original@626 19.6
9 | 1A Cluster_11076|Contig1|original@547 24.5
10 | 1A Cluster_11076|Contig1|original@251 24.5
11 | 1A Cluster_11076|Contig1|original@868 24.5
12 | 1A Cluster_8411|Contig1|original@146 25
13 | 1A Cluster_6179|Contig1|original@815 47.5
14 | 1A Cluster_9630|Contig1|likelySeq@1992 47.9
15 | 1A Cluster_9947|Contig2|original@442 47.9
16 | 1A Cluster_677|Contig6|original@814 48.1
17 | 1A Cluster_5602|Contig2|original@450 48.1
18 | 1A Cluster_677|Contig3|original@1738 48.1
19 | 1A Cluster_5602|Contig2|original@984 48.82
20 | 1A Cluster_2587|Contig1|original@394 49.1
21 | 1A Cluster_5099|Contig2|original@689 49.66
22 | 1A Cluster_9|Contig6|original@329 49.66
23 | 1A Cluster_31|Contig1|original@914 51.7
24 | 1A Cluster_4529|Contig2|original@487 52.5
25 | 1A Cluster_369|Contig8|original@2061 53.8
26 | 1A Cluster_31|Contig2|original@448 53.8
27 | 1A Cluster_9272|Contig2|original@86 55.9
28 | 1A Cluster_117|Contig9|original@2312 56.875
29 | 1A Cluster_31|Contig8|original@906 58.1454545454545
30 | 1A Cluster_13257|Contig1|original@341 58.4
31 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/CIRAD:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 sPb-1040 0
3 | 1 M188427 1.3
4 | 1 umc84 3.6
5 | 1 sPb-8325 4.6
6 | 1 sPb-7161 8.7
7 | 1 sPb-5521 8.7
8 | 1 sPb-0623 8.7
9 | 1 sPb-2583 8.7
10 | 1 txp208 8.7
11 | 1 SbRPG837 9.4
12 | 1 msbcir268 11.3
13 | 1 HVHGA1 14.2
14 | 1 HVGAD1 14.2
15 | 1 umc107 14.2
16 | 1 msbcir347 14.2
17 | 1 txp302 14.2
18 | 1 sPb-3891 14.2
19 | 1 msbcir242 14.2
20 | 1 msbcir228 16
21 | 1 M340904 18.5
22 | 1 M342631 20.8
23 | 1 sbAGFO8 23.5
24 | 1 umc140 24.2
25 | 1 sPb-6917 25.6
26 | 1 sPb-6577 35.4
27 | 1 sPb-4329 41
28 | 1 SbRPG873 41.3
29 | 1 umc27 41.3
30 | 1 M189295 47.5
31 | 1 sPb-5315 48.7
32 | 1 M340898 49.9
33 | 1 sPb-8041 50.5
34 | 1 sPb-6176 58.2
35 | 1 txp182 60
36 | 1 sPb-3618 60
37 | 1 umc83 63.4
38 | 1 sPb-4793 66.6
39 | 1 gpsb089 71.4
40 | 1 sPb-3727 73.7
41 | 1 sPb-1191 74.4
42 | 1 sPb-3525 74.8
43 | 1 sPb-4234 75.2
44 | 1 M187880 76.4
45 | 1 M187200 78.8
46 | 1 sPb-2684 82.1
47 | 1 sPb-2412 82.1
48 | 1 sPb-9216 82.1
49 | 1 sPb-0810 82.4
50 | 1 M188404 84.2
51 | 1 txp43 84.8
52 | 1 M343014 84.8
53 | 1 txp88 85.1
54 | 1 sPb-0232 88.6
55 | 1 M343356 89.3
56 | 1 sPb-5358 91.9
57 | 1 sPb-2602 98.3
58 | 1 sPb-6600 100.4
59 | 1 sPb-7567 101.5
60 | 1 sPb-8492 102.2
61 | 1 M188582 107.5
62 | 1 M189251 107.5
63 | 1 msbcir304b 112.4
64 | 1 sPb-3311 112.4
65 | 1 msbcir286 115.5
66 | 1 gpsb173 115.5
67 | 1 sPb-3801 122.3
68 | 1 gap57 125.2
69 | 1 sPb-8423 125.2
70 | 1 sPb-7958 125.6
71 | 1 sPb-6083 126
72 | 1 gpsb051 126
73 | 1 txp75 127.4
74 | 1 M187238 128.6
75 | 1 M343241 131.6
76 | 1 M187616 131.6
77 | 1 gap36 132.9
78 | 1 msbcir336 134.2
79 | 1 bnl5.09 137.4
80 | 1 sPb-0233 142.1
81 | 1 M343279 146.2
82 | 1 SbRPG80 149.1
83 | 1 txp340 153.5
84 | 1 M342904 153.5
85 | 1 M340364 154.2
86 | 1 msbcir306 158.3
87 | 1 sPb-7611 158.3
88 | 1 sPb-4435 160.1
89 | 1 gpsb129 163
90 | 1 M340373 163
91 | 1 sPb-8743 166.3
92 | 2 sPb-7549 0
93 | 2 sPb-7657 0
94 | 2 sPb-4855 0
95 | 2 M200042 1.8
96 | 2 M341662 1.8
97 | 2 M341592 2.4
98 | 2 msbcir266 2.4
99 | 2 sPb-2754 4.4
100 | 2 gpsb011 4.4
101 | 2 gpsb174 4.4
102 | 2 M187772 6.7
103 | 2 sPb-0333 6.7
104 | 2 sPb-3103 7.7
105 | 2 txp25 9.9
106 | 2 gpsb178 9.9
107 | 2 M342927 9.9
108 | 2 M342711 9.9
109 | 2 sPb-8345 9.9
110 | 2 M340957 10.6
111 | 2 M341741 11
112 | 2 msbcir223 13.4
113 | 2 sPb-7668 13.4
114 | 2 sPb-7668 13.4
115 | 2 txp211 15.2
116 | 2 OPA7 15.5
117 | 2 sPb-3086 15.5
118 | 2 sPb-1764 15.5
119 | 2 sPb-9687 15.5
120 | 2 M188881 17.3
121 | 2 M343289 17.3
122 | 2 sPb-1127 17.3
123 | 2 M342329 20.9
124 | 2 M340416 20.9
125 | 2 M342090 20.9
126 | 2 SbRPG136 20.9
127 | 2 sPb-3798 21.5
128 | 2 sPb-5347 30.2
129 | 2 sPb-8376 30.2
130 | 2 M342380 32
131 | 2 sPb-7177 32
132 | 2 sPb-8897 32
133 | 2 sPb-5643 32
134 | 2 umc55 36.2
135 | 2 sPb-0364 40.1
136 | 2 sPb-5224 40.1
137 | 2 sPb-4081 42.3
138 | 2 msbcir238 43.6
139 | 2 sPb-8616 43.6
140 | 2 sPb-4419 43.6
141 | 2 gpsb087 44.8
142 | 2 M187382 47
143 | 2 M340431 47
144 | 2 M342471 47
145 | 2 sPb-7695 47
146 | 2 sPb-1920 47.3
147 | 2 sPb-6434 47.6
148 | 2 sPb-6288 47.6
149 | 2 sPb-4970 47.9
150 | 2 M340888 50.5
151 | 2 M343120 50.9
152 | 2 M343067 50.9
153 | 2 sPb-7882 54
154 | 2 M343086 57.8
155 | 2 M188424 57.8
156 | 2 M342358 57.8
157 | 2 M188643 57.8
158 | 2 M188479 58.6
159 | 2 M342759 58.6
160 | 2 M342673 58.6
161 | 2 sPb-0350 58.6
162 | 2 M340532 60
163 | 2 M342498 60
164 | 2 sbAGAB03 66.3
165 | 2 msbcir312 66.3
166 | 2 M341108 71.5
167 | 2 M188174 71.5
168 | 2 M187697 71.5
169 | 2 M188348 71.5
170 | 2 sPb-1970 74.1
171 | 2 M187871 75
172 | 2 M187894 75
173 | 2 M188335 78.8
174 | 2 msbcir339 86.2
175 | 2 M189020 86.2
176 | 2 txp1 88.8
177 | 2 M342762 91.4
178 | 2 sPb-3917 92.8
179 | 2 sPb-2568 96.8
180 | 2 sPb-3361 99.3
181 | 2 M340414 99.3
182 | 2 M342409 99.3
183 | 2 M340589 99.3
184 | 2 sPb-4862 99.6
185 | 2 sPb-2229 100.2
186 | 2 sPb-6424 102.2
187 | 2 sPb-1925 102.8
188 | 3 sPb-8706 0
189 | 3 SSmsbcir78 1.3
190 | 3 sPb-8568 3
191 | 3 sPb-0363 4.3
192 | 3 M342700 6
193 | 3 M189270 6
194 | 3 sPb-5454 6.4
195 | 3 M199861 6.4
196 | 3 M340963 6.7
197 | 3 M340747 9.1
198 | 3 M342200 9.1
199 | 3 M188917 12.9
200 | 3 M342283 12.9
201 | 3 gpsb012 15.5
202 | 3 sPb-2309 15.5
203 | 3 sPb-6714 15.5
204 | 3 sPb-2461 15.5
205 | 3 sPb-5594 15.5
206 | 3 M341408 15.5
207 | 3 umc124 15.8
208 | 3 M342808 15.8
209 | 3 sPb-1906 16.5
210 | 3 sPb-4915 16.5
211 | 3 sPb-6982 16.5
212 | 3 sPb-2055 17.5
213 | 3 sPb-1669 17.5
214 | 3 sPb-0656 17.5
215 | 3 M188933 17.5
216 | 3 M188681 18.1
217 | 3 M340763 18.1
218 | 3 M188657 18.1
219 | 3 M341540 18.1
220 | 3 SBRPG846 19.1
221 | 3 M342547 20.2
222 | 3 sPb-0319 22
223 | 3 M341223 24.4
224 | 3 sPb-5409 25
225 | 3 txp215 25
226 | 3 sPb-9135 25.8
227 | 3 M187276 28.4
228 | 3 sPb-6857 29.9
229 | 3 M340732 36.9
230 | 3 sPb-9388 37.5
231 | 3 SbRPG106 37.5
232 | 3 sPb-4226 45.1
233 | 3 gpsb086 45.1
234 | 3 sPb-2562 51.5
235 | 3 sPb-9076 64.5
236 | 3 sPb-7688 72.4
237 | 3 sPb-5108 73.4
238 | 3 sPb-1362 73.4
239 | 3 sPb-6122 73.7
240 | 3 sPb-1137 75.2
241 | 3 msbcir224 77.2
242 | 3 txp33 77.2
243 | 3 gap236 80.3
244 | 3 sPb-9779 80.3
245 | 3 M187546 80.3
246 | 3 sPb-5922 82.1
247 | 3 csu58 85
248 | 3 M340384 85
249 | 3 M341885 85
250 | 3 M340852 85
251 | 3 M342663 85
252 | 3 M340802 85
253 | 3 M188114 85
254 | 3 txp31 85.7
255 | 3 msbcir276 88.3
256 | 3 sPb-2209 95.9
257 | 3 sPb-3965 101.5
258 | 3 sPb-1496 102.1
259 | 3 sPb-9139 106.1
260 | 3 msbcir314 106.1
261 | 3 sPb-1725 108.3
262 | 3 sbAGEO1 110.2
263 | 3 sPb-1480 110.2
264 | 3 M341446 117
265 | 3 M341571 117
266 | 3 M188311 123.2
267 | 3 msbcir225 123.2
268 | 3 txp38 127.7
269 | 3 M188846 127.7
270 | 3 M342704 127.7
271 | 3 sPb-6013 127.7
272 | 3 txp34 130.5
273 | 3 bnl5.37 131.9
274 | 3 sPb-3228 131.9
275 | 3 sPb-6925 131.9
276 | 3 M340973 133.6
277 | 3 M342779 133.6
278 | 3 M342567 135
279 | 3 M188347 135
280 | 3 M188920 135
281 | 3 M342305 135
282 | 3 sPb-9894 137.2
283 | 3 sPb-6770 141.4
284 | 4 sPb-4074 0
285 | 4 sPb-7493 0
286 | 4 sPb-8446 1
287 | 4 sPb-2739 1
288 | 4 msbcir340 2.3
289 | 4 sPb-4718 2.9
290 | 4 sPb-4233 6
291 | 4 sPb-7042 6
292 | 4 gpsb050 9.2
293 | 4 sPb-1853 15.8
294 | 4 msbcir323 15.8
295 | 4 M187763 15.8
296 | 4 sPb-1932 18.7
297 | 4 M187985 18.7
298 | 4 M188323 21.9
299 | 4 M200413 21.9
300 | 4 RZ599 26.7
301 | 4 M188005 27.7
302 | 4 M188903 27.7
303 | 4 sPb-2944 30.5
304 | 4 sPb-6547 30.5
305 | 4 sPb-2842 34.7
306 | 4 M340930 36.2
307 | 4 M187716 43.6
308 | 4 M187502 45
309 | 4 sPb-8488 46.8
310 | 4 M343007 49.2
311 | 4 sPb-7534 49.2
312 | 4 txp12 50.5
313 | 4 M187661 52.5
314 | 4 sbAGGO2 64.3
315 | 4 RZ166 64.7
316 | 4 M340886 64.7
317 | 4 M341851 64.7
318 | 4 M340482 64.7
319 | 4 M340990 64.7
320 | 4 sPb-2084 64.7
321 | 4 sPb-0854 64.7
322 | 4 sPb-9041 64.7
323 | 4 M200347 68.9
324 | 4 umc68 84
325 | 4 sPb-4649 84
326 | 4 M340664 85.3
327 | 4 M342464 85.3
328 | 4 M342470 85.6
329 | 4 M187539 85.6
330 | 4 gpsb073 85.6
331 | 4 txp24 87.3
332 | 4 M340375 89.7
333 | 4 M341949 89.7
334 | 4 csu26 89.7
335 | 4 M342928 92.2
336 | 4 M342010 92.2
337 | 4 M342065 93.4
338 | 4 txp327 93.4
339 | 4 txp60 93.4
340 | 4 msbcir232 95.6
341 | 4 sPb-8100 96.8
342 | 4 M187223 96.8
343 | 4 M340952 96.8
344 | 4 M187170 96.8
345 | 4 M187207 96.8
346 | 4 M188305 96.8
347 | 4 M342916 96.8
348 | 4 M188710 99.7
349 | 4 gpsb045 105.7
350 | 4 M342320 113.6
351 | 4 M342191 113.6
352 | 4 M341902 113.6
353 | 4 M342643 113.6
354 | 4 M187461 113.6
355 | 4 M187118 113.6
356 | 4 sPb-4692 114.9
357 | 4 M340433 114.9
358 | 4 gpsb028 117.9
359 | 4 txp21 119.4
360 | 4 sPb-0110 119.8
361 | 4 M341593 119.8
362 | 4 M341500 120.5
363 | 5 msbcir329 0
364 | 5 M188451 0
365 | 5 gpsb159 1.3
366 | 5 M341693 2
367 | 5 sPb-4041 2
368 | 5 sPb-0906 2.9
369 | 5 txp65 8.3
370 | 5 sPb-0381 8.3
371 | 5 sPb-7047 11
372 | 5 sPb-5256 11
373 | 5 gpsb84 15.5
374 | 5 M188102 15.5
375 | 5 M340916 15.5
376 | 5 sPb-5692 15.5
377 | 5 gpsb005 16.3
378 | 5 M342865 16.3
379 | 5 sPb-4131 16.3
380 | 5 sPb-3977 18.1
381 | 5 sPb-5317 18.1
382 | 5 sPb-1282 18.1
383 | 5 M188898 18.1
384 | 5 msbcir248 18.1
385 | 5 sPb-5390 18.1
386 | 5 sPb-8247 20.1
387 | 5 sPb-0510 20.1
388 | 5 umc8 20.1
389 | 5 gpsb017 20.1
390 | 5 gpsb165 20.1
391 | 5 sPb-5408 20.1
392 | 5 sPb-9080 20.1
393 | 5 sPb-3995 25.2
394 | 5 sPb-0932 40.1
395 | 5 sPb-1989 52
396 | 5 M187365 54.3
397 | 5 M340444 60.3
398 | 5 M340397 60.3
399 | 5 sPb-6787 60.3
400 | 5 M340953 60.3
401 | 5 sPb-5399 60.3
402 | 5 M189058 60.3
403 | 5 sPb-6861 60.3
404 | 5 txp15 61.2
405 | 5 M340502 61.2
406 | 5 M340464 61.2
407 | 5 M341521 61.2
408 | 5 sPb-6341 62.6
409 | 5 M188512 63.3
410 | 5 M341155 64.4
411 | 5 sPb-7893 64.4
412 | 5 sPb-9312 64.4
413 | 5 sPb-2187 64.4
414 | 5 M341517 64.4
415 | 5 sPb-8470 64.4
416 | 5 M188205 64.7
417 | 5 sPb-9054 64.7
418 | 5 M343065 68.8
419 | 5 M188878 69.4
420 | 5 sPb-4086 69.4
421 | 5 M342398 69.4
422 | 5 csu166 70.8
423 | 5 sPb-6855 72.8
424 | 5 sPb-7106 73.8
425 | 5 gpsb003 77.9
426 | 5 txp23 80.2
427 | 5 M188834 85.5
428 | 5 gpsb176 88.3
429 | 5 SbRPG608 94.9
430 | 5 sPb-9490 98.8
431 | 5 sbKAFGK1 102.5
432 | 5 sPb-2570 102.5
433 | 5 sPb-9858 102.5
434 | 5 sPb-1181 105.6
435 | 5 sPb-2161 109.3
436 | 5 M342033 109.3
437 | 5 M343312 109.3
438 | 5 M341274 109.3
439 | 5 M342046 109.3
440 | 5 M340547 109.3
441 | 5 sPb-3418 111.2
442 | 5 sPb-5562 111.2
443 | 5 sPb-7892 111.2
444 | 5 msbcir222 111.9
445 | 5 SSmsbcir120 114
446 | 5 gpsb032 118.3
447 | 6 sPb-1677 0
448 | 6 sPb-9772 0
449 | 6 sPb-1491 0
450 | 6 msbcir211 5.4
451 | 6 M342640 5.4
452 | 6 sPb-8793 9
453 | 6 sPb-3644 9
454 | 6 cdo456 9.7
455 | 6 sPb-9511 22.5
456 | 6 sPb-8963 25
457 | 6 txp6 26.5
458 | 6 M340448 31.5
459 | 6 M187805 34.8
460 | 6 sPb-8362 34.8
461 | 6 sPb-5564 34.8
462 | 6 sPb-6017 34.8
463 | 6 M342664 34.8
464 | 6 gap7 40.3
465 | 6 gap72 40.3
466 | 6 sPb-5506 40.3
467 | 6 sPb-7660 40.3
468 | 6 M187589 40.3
469 | 6 M342089 43.1
470 | 6 M340758 43.1
471 | 6 SSmsbcir92 43.1
472 | 6 M341530 43.1
473 | 6 sPb-4947 45.5
474 | 6 sPb-4503 47.1
475 | 6 sPb-3019 47.1
476 | 6 M341635 53.6
477 | 6 sPb-5030 61
478 | 6 txp145 67.1
479 | 6 sPb-4324 67.1
480 | 6 txp265 67.1
481 | 6 txp274 67.1
482 | 6 sPb-1755 67.1
483 | 6 sPb-7777 67.1
484 | 6 gpsb127 71.2
485 | 6 M188023 71.2
486 | 6 sPb-7290 71.2
487 | 6 M341712 76.5
488 | 6 M340945 76.5
489 | 6 M341047 76.5
490 | 6 M342581 76.5
491 | 6 M342391 76.8
492 | 6 M342764 76.8
493 | 6 gpsb069 77.5
494 | 6 M341192 77.5
495 | 6 sPb-5802 80.5
496 | 6 sPb-7581 80.5
497 | 6 umc44 84.9
498 | 6 sPb-0255 84.9
499 | 6 bnl10.13 88.4
500 | 6 sPb-1721 92.2
501 | 6 M187824 92.2
502 | 6 M189179 94
503 | 6 M343162 94
504 | 6 sPb-3962 94
505 | 6 txp95 95.5
506 | 6 sPb-6526 95.5
507 | 6 M342082 96.1
508 | 6 sPb-5086 98.1
509 | 6 M340415 98.1
510 | 6 sPb-9830 98.1
511 | 6 sPb-5212 98.8
512 | 6 sPb-8954 98.8
513 | 6 sPb-9422 98.8
514 | 6 sPb-0581 99.1
515 | 6 sPb-7627 99.1
516 | 6 sPb-1657 99.1
517 | 6 sPb-8410 99.1
518 | 6 sPb-9667 102.4
519 | 6 M187362 104.5
520 | 6 gpsb169 107.5
521 | 6 SbRPG225 107.8
522 | 6 M340483 107.8
523 | 6 M188251 107.8
524 | 6 M341110 108.9
525 | 6 gpsb019 108.9
526 | 6 M188096 108.9
527 | 6 M341392 109.2
528 | 6 M342492 109.2
529 | 6 M343304 109.2
530 | 6 M342678 109.8
531 | 7 gpsb148 0
532 | 7 msbcir348 0.6
533 | 7 umc85 9.8
534 | 7 M341299 10.5
535 | 7 sPb-1311 13.7
536 | 7 sPb-4878 24.9
537 | 7 sPb-2566 25.2
538 | 7 M342381 27.3
539 | 7 gpsb114 27.3
540 | 7 sPb-5277 29.7
541 | 7 M341472 30.3
542 | 7 sPb-8296 32.1
543 | 7 SbRPG22 34.1
544 | 7 sPb-1244 39
545 | 7 sPb-0508 39.4
546 | 7 sPb-3708 39.4
547 | 7 sPb-7531 39.4
548 | 7 sPb-0571 39.7
549 | 7 sPb-6252 40.5
550 | 7 sPb-2757 40.5
551 | 7 sPb-1414 40.5
552 | 7 sPb-7992 42.4
553 | 7 gap342 45.1
554 | 7 gpsb010 45.8
555 | 7 M343313 51.7
556 | 7 sPb-6863 52.3
557 | 7 sPb-7687 52.3
558 | 7 sPb-3541 52.6
559 | 7 sPb-9206 52.9
560 | 7 sPb-8340 52.9
561 | 7 gpsb031 58.5
562 | 7 msbcir246 62.1
563 | 7 sPb-8251 66.2
564 | 7 sPb-4179 66.2
565 | 7 sPb-9007 66.5
566 | 7 msbcir300 72.5
567 | 7 M340509 72.5
568 | 7 sPb-9351 86.1
569 | 7 txp295 86.4
570 | 7 sPb-6927 92.2
571 | 7 sPb-3258 95.2
572 | 7 sbAGAB02 95.6
573 | 7 sPb-5688 95.9
574 | 7 sPb-9750 96.5
575 | 7 M341979 96.5
576 | 7 bnl5.59 97.1
577 | 7 sPb-6798 98.9
578 | 7 sPb-8608 99.9
579 | 8 sPb-9299 0
580 | 8 txp273 2.1
581 | 8 gpsb041 5.4
582 | 8 gpsb104 11.9
583 | 8 gpsb023 11.9
584 | 8 M188849 14.2
585 | 8 SbRPG931 21.4
586 | 8 sPb-1130 24.3
587 | 8 sPb-5054 24.3
588 | 8 M341589 25.4
589 | 8 sPb-7630 25.4
590 | 8 sPb-5825 28.4
591 | 8 sPb-3247 32.6
592 | 8 sPb-8260 32.6
593 | 8 M341597 34.6
594 | 8 M343025 39.2
595 | 8 M343001 39.2
596 | 8 sPb-9279 39.2
597 | 8 M341867 42.6
598 | 8 sPb-7856 42.6
599 | 8 msbcir240 42.6
600 | 8 sPb-4768 44.7
601 | 8 M340629 50.9
602 | 8 M340408 50.9
603 | 8 M341359 50.9
604 | 8 sPb-2140 50.9
605 | 8 sPb-4200 50.9
606 | 8 sPb-2474 50.9
607 | 8 sPb-8057 50.9
608 | 8 sPb-3195 50.9
609 | 8 SbRPG125 52.9
610 | 8 sPb-9242 56.2
611 | 8 M342657 56.2
612 | 8 gpsb067 58.1
613 | 8 sPb-4934 58.1
614 | 8 sPb-5980 58.8
615 | 8 sPb-2271 58.8
616 | 8 sPb-4432 58.8
617 | 8 sPb-8059 58.8
618 | 8 M187350 58.8
619 | 8 sPb-0435 59.5
620 | 8 sPb-3014 61.5
621 | 8 sPb-9762 65.1
622 | 8 sPb-3236 65.1
623 | 8 sPb-5886 65.1
624 | 8 sPb-0325 65.1
625 | 8 sPb-0441 65.9
626 | 8 sPb-6807 65.9
627 | 8 sPb-3312 66.2
628 | 8 sPb-1265 66.2
629 | 8 sPb-3189 69.2
630 | 8 txp354 69.2
631 | 8 sPb-0258 72.7
632 | 8 gpsb103 80.9
633 | 8 msbcir337a 80.9
634 | 8 sPb-0856 80.9
635 | 8 sPb-7375 85.7
636 | 8 txp18 87.6
637 | 8 txp321 87.6
638 | 8 msbcir304a 87.6
639 | 8 sPb-6935 87.9
640 | 8 sPb-3715 88.9
641 | 8 gpsb002 91
642 | 8 txp105 96.5
643 | 8 gpsb123 96.5
644 | 8 M343181 101
645 | 8 M188408 106.8
646 | 8 M188523 106.8
647 | 8 M342880 107.9
648 | 8 M188830 107.9
649 | 8 M340454 107.9
650 | 8 sPb-8363 107.9
651 | 8 sPb-7220 108.6
652 | 8 sPb-0289 108.6
653 | 8 sPb-2487 108.6
654 | 8 sPb-6960 108.6
655 | 8 sPb-8384 108.6
656 | 8 sPb-6918 108.6
657 | 8 M187818 110
658 | 8 sPb-5401 110
659 | 8 sPb-1051 111.8
660 | 8 sPb-1291 114.3
661 | 9 sPb-4614 0
662 | 9 SbRPG950 2.5
663 | 9 sPb-0445 8.7
664 | 9 sbAGEO3 11.1
665 | 9 umc62 11.1
666 | 9 M187494 11.5
667 | 9 M343363 12.3
668 | 9 M188061 14.6
669 | 9 sPb-7460 15.2
670 | 9 sPb-7686 15.5
671 | 9 gpsb020 15.5
672 | 9 M343231 15.5
673 | 9 sPb-2968 15.5
674 | 9 sPb-1732 15.5
675 | 9 sPb-0852 15.5
676 | 9 sPb-4006 15.5
677 | 9 M189112 19.4
678 | 9 M188652 19.4
679 | 9 M342540 19.4
680 | 9 M342839 22.8
681 | 9 sPb-6089 22.8
682 | 9 gpsb079 22.8
683 | 9 M340730 22.8
684 | 9 M340810 22.8
685 | 9 sPb-1991 24.3
686 | 9 umc38 27.9
687 | 9 sPb-4933 37.9
688 | 9 M341480 42.5
689 | 9 SbRPG743 42.5
690 | 9 M188412 42.5
691 | 9 sPb-0975 42.5
692 | 9 sPb-4416 42.5
693 | 9 M340974 43.5
694 | 9 sPb-8542 47.3
695 | 9 sPb-8777 49
696 | 9 M340536 49.7
697 | 9 sPb-3298 51.5
698 | 9 sPb-6748 51.5
699 | 9 M188560 52.2
700 | 9 sPb-9306 53.5
701 | 9 sPb-8764 56.2
702 | 9 sPb-1324 57.7
703 | 9 sPb-8873 57.7
704 | 9 sPb-4786 57.7
705 | 9 sPb-6852 57.7
706 | 9 sPb-6280 57.7
707 | 9 sPb-6043 57.7
708 | 9 sPb-5055 57.7
709 | 9 M188501 57.7
710 | 9 M342028 57.7
711 | 9 M341817 57.7
712 | 9 sPb-5312 57.7
713 | 9 sPb-3158 57.7
714 | 9 sPb-9272 57.7
715 | 9 SbRPG821 61.8
716 | 9 M342543 67
717 | 9 M341251 67
718 | 9 M342741 67.3
719 | 9 M341021 67.3
720 | 9 M342494 67.3
721 | 9 M187902 67.3
722 | 9 msbcir337b 67.9
723 | 9 msbcir317 67.9
724 | 9 M188207 67.9
725 | 9 sPb-7193 79.9
726 | 9 sPb-0005 79.9
727 | 9 gap42 84.1
728 | 9 M340587 91.3
729 | 9 M342280 91.6
730 | 9 M341115 91.6
731 | 9 umc64 91.6
732 | 9 sPb-6515 92.3
733 | 9 sPb-0303 98.3
734 | 9 sPb-7367 98.3
735 | 9 sPb-7955 98.3
736 | 9 sPb-8368 98.3
737 | 9 sPb-9091 98.3
738 | 9 M340964 98.3
739 | 9 sPb-9410 98.3
740 | 9 sPb-4787 98.3
741 | 9 sPb-9962 98.3
742 | 9 sPb-6506 100.8
743 | 9 M188934 104.1
744 | 9 M341036 104.1
745 | 9 gap85 104.1
746 | 9 sPb-8366 105.3
747 | 10 SbRPG917 0
748 | 10 sPb-5281 0
749 | 10 sPb-8306 0
750 | 10 M340704 1.1
751 | 10 sPb-1945 6.1
752 | 10 WAXY6 10.3
753 | 10 msbcir331 10.9
754 | 10 msbcir324 10.9
755 | 10 M189136 10.9
756 | 10 M342557 22.4
757 | 10 M187940 22.4
758 | 10 sPb-6720 22.4
759 | 10 gpsb027 25
760 | 10 SbRPG921 25
761 | 10 sPb-9517 28.6
762 | 10 sPb-8357 29.4
763 | 10 umc113 30.7
764 | 10 sPb-3828 35.8
765 | 10 M341294 35.8
766 | 10 sPb-1104 35.8
767 | 10 sPb-5917 38.7
768 | 10 sPb-2149 50.3
769 | 10 sPb-0494 52.7
770 | 10 sPb-1962 69.3
771 | 10 M340774 69.3
772 | 10 M342244 69.3
773 | 10 M340871 69.3
774 | 10 M188983 69.3
775 | 10 sPb-9999 71.1
776 | 10 sPb-6331 72.1
777 | 10 M341606 80.7
778 | 10 M341123 81.3
779 | 10 M187142 83.1
780 | 10 txp217 84.7
781 | 10 sPb-4121 84.7
782 | 10 bnl7.24 84.7
783 | 10 msbcir283 85
784 | 10 sPb-6271 85
785 | 10 M340333 90.3
786 | 10 sPb-3696 92.6
787 | 10 sPb-9682 95
788 | 10 sPb-8019 98.2
789 | 10 sPb-2935 98.2
790 | 10 sPb-8232 98.2
791 | 10 SbRPG742 105.8
792 | 10 M342842 114.9
793 | 10 M342954 117.2
794 | 10 M340856 117.2
795 | 10 M340712 117.5
796 | 10 M340495 117.5
797 | 10 gap1 117.5
798 | 10 sPb-0859 124.4
799 | 10 msbcir262 126.2
800 | 10 msbcir227 126.2
801 | 10 sPb-0162 126.2
802 | 10 M343252 138.7
803 | 10 M342053 138.7
804 | 10 M342566 138.7
805 | 10 RZ143 143.8
806 | 10 sPb-4588 147.5
807 | 10 sPb-5814 147.5
808 | 10 gpsb145 148.4
809 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/S2:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 sPb-6201 0
3 | 1 sPb-5015 0
4 | 1 txp78 0
5 | 1 sPb-8773 0
6 | 1 ST1380 0
7 | 1 rz630 3.1
8 | 1 sPb-7481 3.1
9 | 1 sPb-3774 3.1
10 | 1 sPb-7096 3.1
11 | 1 sPb-1882 9.7
12 | 1 sPb-1343 18.5
13 | 1 sPb-5605 18.5
14 | 1 Str51 35.3
15 | 1 GE52 63.4
16 | 1 sPb-7398 77.7
17 | 1 ST1700 86.9
18 | 1 sPb-8947 107.7
19 | 1 ST55 107.7
20 | 1 txS361 107.7
21 | 1 SSCIR217 107.7
22 | 1 sPb-1170 107.7
23 | 1 sPb-0090 107.7
24 | 1 RG2931a 107.7
25 | 1 sPb-3386 107.7
26 | 1 sPb-5808 107.7
27 | 1 sPb-6883 107.7
28 | 1 sPb-9514 107.7
29 | 1 ST525 107.7
30 | 1 sPb-6007 107.7
31 | 1 SSCIR107 107.7
32 | 1 SSCIR74 107.7
33 | 1 sPb-0813 107.7
34 | 1 SSCIR74I 107.7
35 | 1 sPb-2058 107.7
36 | 1 sPb-4420 107.7
37 | 1 ST344 109
38 | 1 sPb-0232 116.9
39 | 1 PSB33 116.9
40 | 1 txS1537 122
41 | 1 txS1573 122
42 | 1 sPb-0274 122
43 | 1 sPb-8585 122
44 | 1 EST14 126.8
45 | 1 txp32 126.8
46 | 1 sPb-7567 126.8
47 | 1 cdo454 137.6
48 | 1 ST1847 137.6
49 | 1 ST1277 137.6
50 | 1 EST2 155.3
51 | 1 ST1595 174.5
52 | 1 Str95 174.5
53 | 1 Str80 174.5
54 | 1 Str48 177.2
55 | 1 sPb-5905 177.2
56 | 1 ST1048-2 183.4
57 | 1 ST166 183.4
58 | 1 MT17 186.3
59 | 1 txS1765 189.4
60 | 1 EST40 200.8
61 | 1 EST15 200.8
62 | 1 sPb-0383 200.8
63 | 1 sPb-7154 200.8
64 | 1 sPb-0277 200.8
65 | 1 ST1836-1 201.8
66 | 1 sPb-7611 219.1
67 | 1 txS1153 219.1
68 | 1 sPb-8275 219.1
69 | 1 sPb-8066 219.1
70 | 1 sPb-5527 219.1
71 | 1 sPb-5832 219.1
72 | 1 sPb-5975 219.1
73 | 1 sPb-9314 219.1
74 | 1 sPb-6066 219.1
75 | 1 sPb-1020 219.1
76 | 1 sPb-3577 220.5
77 | 1 Str37 220.5
78 | 1 sPb-1060 220.5
79 | 1 ST1421 223.6
80 | 1 sPb-4435 240.9
81 | 1 FC-6 242.3
82 | 1 ST1200-2 242.3
83 | 1 SSCIR87 242.3
84 | 1 SSCIR73 242.3
85 | 1 GE32 242.3
86 | 2 SSCIR214 0
87 | 2 sPb-0909 3.8
88 | 2 txp80 17.1
89 | 2 sPb-5224 40.5
90 | 2 ST1309 44.6
91 | 2 sPb-1046 45.3
92 | 2 sPb-5880 45.3
93 | 2 txS917b 45.3
94 | 2 sPb-8992 51.4
95 | 2 ST902 52.1
96 | 2 ST1664 52.1
97 | 2 sPb-4970 52.9
98 | 2 txS645c 52.9
99 | 2 FC40b 56.7
100 | 2 PT6 70.1
101 | 2 sPb-1017 75.3
102 | 2 sPb-2639 76.7
103 | 2 sPb-4311 76.7
104 | 2 sPb-2075 76.7
105 | 2 sPb-6700 76.7
106 | 2 sPb-4164 81.6
107 | 2 sPb-5088 81.6
108 | 2 Str29 86.9
109 | 2 PSB416 86.9
110 | 2 SG-3 91.1
111 | 2 Str66 95.3
112 | 2 ST1902 97.9
113 | 2 ST623 101.5
114 | 2 FC28 102.4
115 | 2 sPb-4862 102.4
116 | 2 sPb-3361 102.4
117 | 2 sPb-1925 102.4
118 | 2 ST1300 102.4
119 | 2 sPb-7311 106.2
120 | 2 sPb-0310 106.2
121 | 2 txS1855 106.2
122 | 2 txS443 106.2
123 | 2 txS1925 106.2
124 | 2 ST336 106.2
125 | 2 sPb-0863 106.8
126 | 2 sPb-2360 106.8
127 | 2 sPb-1154 106.8
128 | 2 sPb-0971 106.8
129 | 2 sPb-2080 106.8
130 | 2 txS2042b 106.8
131 | 2 sPb-2424 106.8
132 | 2 sPb-0887 106.8
133 | 2 sPb-5225 106.8
134 | 2 ST109 106.8
135 | 2 sPb-8677 108
136 | 2 sPb-3637 108
137 | 2 MT49 108
138 | 2 sPb-3834 108
139 | 2 sPb-5737 108
140 | 2 SG38 109.3
141 | 2 cdo59 109.3
142 | 2 txS1143 109.8
143 | 2 FC10 116.4
144 | 2 ST359 116.4
145 | 2 sPb-1533 120.1
146 | 2 sPb-0774 120.1
147 | 2 ST1671 123.8
148 | 2 sPb-4005 128.5
149 | 2 sPb-7647 130.7
150 | 2 ST1539 130.7
151 | 2 ST1539b 130.7
152 | 2 txS283 135.5
153 | 2 Str30 135.5
154 | 2 JH-2 173.2
155 | 2 sPb-3086 173.2
156 | 2 MT42 198.7
157 | 2 sPb-1784 211.4
158 | 2 txS1694c 248.1
159 | 2 txS2042 257.8
160 | 2 PSB75 259.3
161 | 2 sPb-3547 259.3
162 | 2 cdo59b 267
163 | 3 SSCIR78 0
164 | 3 sPb-2309 15.1
165 | 3 sPb-3940 23.9
166 | 3 RZ543 34.2
167 | 3 sPb-4226 41.1
168 | 3 ST698 41.1
169 | 3 SSCIR165 41.1
170 | 3 sPb-2562 45.5
171 | 3 ST1537 54.4
172 | 3 PSB517 57.7
173 | 3 txS503 57.7
174 | 3 ST1031 58.2
175 | 3 RZ244 58.2
176 | 3 txS1438 58.2
177 | 3 SG28 58.2
178 | 3 sPb-7675 58.9
179 | 3 SG-51 58.9
180 | 3 sPb-1294 58.9
181 | 3 PSB609 63.5
182 | 3 MT36 64.5
183 | 3 txS1439 64.5
184 | 3 txS536 64.5
185 | 3 ST1176 79.8
186 | 3 txS307 80.8
187 | 3 txS545 81.8
188 | 3 txS545ls 81.8
189 | 3 ST458 85.5
190 | 3 sPb-8349 90.5
191 | 3 S1329 95
192 | 3 RZ444 98.3
193 | 3 ST2032-2 99.9
194 | 3 RZ538 101.5
195 | 3 sPb-7186 101.5
196 | 3 txS301 105.5
197 | 3 sPb-6925 109.1
198 | 3 sPb-3228 109.1
199 | 3 sPb-6649 109.1
200 | 3 txS1075 122.3
201 | 3 txS1075ls 122.8
202 | 3 Str58 135.4
203 | 3 ST329r 174
204 | 3 ST1740 179.7
205 | 3 ST171a 186.5
206 | 4 ST1163-1 0
207 | 4 sPb-4233 1.6
208 | 4 SG30 5.8
209 | 4 GE8 8.5
210 | 4 FC29a 14.9
211 | 4 FC29c 14.9
212 | 4 FC29b 14.9
213 | 4 NEW-7 16.1
214 | 4 sPb-3343 16.1
215 | 4 sPb-6559 16.1
216 | 4 sPb-2009 16.9
217 | 4 sPb-9468 16.9
218 | 4 JH14 22.9
219 | 4 sPb-9580 22.9
220 | 4 sPb-6958 22.9
221 | 4 GE2 24
222 | 4 sPb-7534 35
223 | 4 sPb-4343 35
224 | 4 sPb-8488 35
225 | 4 FC26 35
226 | 4 ST977 38.2
227 | 4 txS1113ls 38.8
228 | 4 txS1113 38.8
229 | 4 sPb-6945 38.8
230 | 4 EST33 44.9
231 | 4 ST517 44.9
232 | 4 sPb-9303 47.2
233 | 4 sPb-8280 47.2
234 | 4 sPb-7794 48.4
235 | 4 sPb-0142 48.4
236 | 4 sPb-6599 48.4
237 | 4 sPb-3981 48.4
238 | 4 cdo1380 60.1
239 | 4 sPb-2689 61.6
240 | 4 txp25 66.1
241 | 6 MT2 0
242 | 6 sPb-2551 0
243 | 6 sPb-9441 0
244 | 6 cdo456 1.5
245 | 6 ST1807 7.2
246 | 6 sPb-8425 30
247 | 6 sPb-3837 30
248 | 6 sPb-2457 30
249 | 6 Str1 33.7
250 | 6 MT8 35.3
251 | 6 SG2 40.1
252 | 6 txS1206 40.1
253 | 6 sPb-9066 42.8
254 | 6 txS1439b 42.8
255 | 6 txS1161 42.8
256 | 6 ST72 42.8
257 | 6 ST1381 42.8
258 | 6 PSB140 54.2
259 | 6 ST982 74.2
260 | 6 sPb-6526 77.8
261 | 6 sPb-5212 85.3
262 | 6 sPb-7428 88.2
263 | 6 EST1 92.5
264 | 6 txS1085 92.5
265 | 6 SG36 95.1
266 | 6 Str65 0
267 | 6 MT22 6.7
268 | 6 MT19 6.7
269 | 6 sPb-3962 16.5
270 | 6 sPb-8954 28.3
271 | 5 sPb-8599 0
272 | 5 txS917 12.1
273 | 5 PSB517b 12.1
274 | 5 sPb-5148 12.1
275 | 5 sPb-5890 16.1
276 | 5 FC4a 21.4
277 | 5 sPb-0381 22.2
278 | 5 sPb-2941 30.6
279 | 5 txp30 30.6
280 | 5 txS722 31.4
281 | 5 sPb-9009 31.4
282 | 5 ST453 31.4
283 | 5 PSB600 31.4
284 | 5 txS2072 31.4
285 | 5 RG5804 31.9
286 | 5 txS387c 49.9
287 | 5 CDSC146 53.6
288 | 5 sPb-6787 54.3
289 | 5 sPb-3766 54.3
290 | 5 sPb-5892 55
291 | 5 sPb-3031 55
292 | 5 sPb-4323 55
293 | 5 sPb-6347 55
294 | 5 txS387 55
295 | 5 FC4b 55
296 | 5 sPb-0205 55
297 | 5 sPb-5209 55.8
298 | 5 sPb-1047 55.8
299 | 5 sPb-4806 55.8
300 | 5 txp15 55.8
301 | 5 sPb-8973 59
302 | 5 txS645b 65
303 | 5 sPb-7203 65
304 | 5 sPb-6323 71.3
305 | 5 sPb-7030 76.9
306 | 5 sPb-1766 76.9
307 | 5 sPb-3817 79.9
308 | 5 sPb-1454 86.6
309 | 5 PSB262 96
310 | 5 cdo520 103.7
311 | 5 RG.S1 117.8
312 | 5 PSB302 118.9
313 | 7 HHU20 0
314 | 7 txp418 2.2
315 | 7 sPb-9931 2.2
316 | 7 txS644 5.2
317 | 7 SG-37 6.7
318 | 7 txS1931 8.2
319 | 7 ST329 10.3
320 | 7 txp159 16.4
321 | 7 FC20 22
322 | 7 txp312 22
323 | 7 sPb-6942 32.6
324 | 7 cdo147 45.8
325 | 7 ST1109 55.9
326 | 7 sPb-9508 58.2
327 | 7 sPb-7944 58.2
328 | 7 sPb-7280 58.2
329 | 7 sPb-6863 58.2
330 | 7 sPb-2774 59.6
331 | 7 sPb-7687 59.6
332 | 7 sPb-3541 59.6
333 | 7 sPb-9206 59.6
334 | 7 Str15 59.6
335 | 7 sPb-8340 59.6
336 | 7 Str44 59.6
337 | 7 RG2331 67.9
338 | 7 sPb-8251 77.9
339 | 7 SSCIR57 77.9
340 | 7 ST1369 93.6
341 | 7 sPb-5397 100.6
342 | 7 sPb-9365 105.6
343 | 7 txp99 105.6
344 | 7 txS1554 106.1
345 | 8 sPb-9299 0
346 | 8 EST27 6
347 | 8 sPb-3341 6
348 | 8 SSCIR55 6
349 | 8 sPb-7126 6
350 | 8 sPb-9818 8
351 | 8 sPb-5390 8
352 | 8 sPb-3536 8
353 | 8 RG8167 8
354 | 8 sPb-8260 14
355 | 8 sPb-3247 14
356 | 8 ST689 14
357 | 8 GE36 16.1
358 | 8 GE59 30.1
359 | 8 sPb-2140 37.9
360 | 8 sPb-3195 42.8
361 | 8 sPb-8057 42.8
362 | 8 sPb-2474 42.8
363 | 8 Str-35 46.3
364 | 8 sPb-9242 46.3
365 | 8 sPb-9841 46.3
366 | 8 ST159 46.3
367 | 8 sPb-4432 46.3
368 | 8 sPb-2271 46.3
369 | 8 sPb-0599 46.3
370 | 8 txS1440 47.3
371 | 8 sPb-3014 47.3
372 | 8 sPb-9602 47.3
373 | 8 Str46 47.3
374 | 8 sPb-0633 47.3
375 | 8 ST1219 47.3
376 | 8 sPb-3312 53.1
377 | 8 sPb-9743 80
378 | 8 sPb-4546 82.3
379 | 8 sPb-0833 82.3
380 | 8 sPb-3954 82.3
381 | 8 sPb-0144 82.3
382 | 8 PS0B527 87.9
383 | 8 PSB0048 87.9
384 | 8 RG1274 96.8
385 | 8 sPb-7823 101.6
386 | 8 sPb-3724 101.6
387 | 8 sPb-0159 101.6
388 | 8 SSCIR211 103.1
389 | 8 RG.T2 105.3
390 | 8 sPb-0289 105.3
391 | 8 sPb-1272 106
392 | 8 sPb-6918 106
393 | 8 sPb-4385 106.6
394 | 8 sPb-7648 106.6
395 | 8 sPb-5401 107.3
396 | 8 sPb-3434 107.3
397 | 8 sPb-7082 107.3
398 | 8 sPb-6960 107.3
399 | 8 sPb-1051 107.3
400 | 8 sPb-1291 108
401 | 9 sPb-6678 0
402 | 9 sPb-4522 0.7
403 | 9 cdo202 3
404 | 9 ST1017 6.7
405 | 9 ST715 6.7
406 | 9 txS1015 11.5
407 | 9 txS307b 11.5
408 | 9 sPb-7460 11.5
409 | 9 sPb-8716 13.7
410 | 9 ST1054 17.4
411 | 9 EST22 17.4
412 | 9 cdo89 22.3
413 | 9 ST329c 27
414 | 9 FC7 32.9
415 | 9 ST1374 38.9
416 | 9 ST171b 38.9
417 | 9 txS1628 38.9
418 | 9 ST1296 38.9
419 | 9 GE5 50.3
420 | 9 SG34 50.3
421 | 9 sPb-6515 68.7
422 | 9 CDS094 69.4
423 | 9 FC34 79.3
424 | 9 NEW-2d 82.4
425 | 9 JH7 82.4
426 | 9 sPb-7367 83.8
427 | 9 sPb-9091 83.8
428 | 9 sPb-8368 83.8
429 | 9 sPb-7955 83.8
430 | 9 sPb-0031 87.2
431 | 9 ST1159 89.4
432 | 10 cdo590c 0
433 | 10 SG33 20.2
434 | 10 cdo590a 20.2
435 | 10 sPb-2041 25
436 | 10 sPb-8306 25
437 | 10 PSB305 25
438 | 10 sPb-6833 25.8
439 | 10 SG19 39.8
440 | 10 ST2072 45.8
441 | 10 sPb-6013 48.2
442 | 10 Str30b 55.4
443 | 10 Str14 55.4
444 | 10 sPb-3432 59.6
445 | 10 sPb-0248 59.6
446 | 10 sPb-5005 60.2
447 | 10 sPb-2193 60.2
448 | 10 txS310 60.9
449 | 10 txS558 62.4
450 | 10 sPb-2222 62.4
451 | 10 sPb-3655 62.4
452 | 10 sPb-2836 62.4
453 | 10 rz144 62.9
454 | 10 sPb-7473 62.9
455 | 10 GE37 66.2
456 | 10 sPb-9999 66.2
457 | 10 sPb-1962 66.2
458 | 10 sPb-4944 66.2
459 | 10 ST403 66.2
460 | 10 GE30 66.2
461 | 10 sPb-6875 66.2
462 | 10 sPb-3958 66.2
463 | 10 sPb-8432 66.2
464 | 10 sPb-4480 66.2
465 | 10 sPb-7643 69
466 | 10 sPb-1722 69
467 | 10 sPb-9215 69
468 | 10 sPb-7284 69
469 | 10 sPb-7948 72.6
470 | 10 sPb-9140 72.6
471 | 10 sPb-9555 74.7
472 | 10 sPb-8019 75.4
473 | 10 ST486-1 76.1
474 | 10 cdo590b 76.1
475 | 10 JH23 76.7
476 | 10 cdo78 82.4
477 | 10 SSCIR63 82.4
478 | 10 sPb-9767 89.7
479 | 10 txS1684 95.1
480 | 10 txS1694 96.1
481 | 10 sPb-0939 97.5
482 | 10 ST1750-2 104.6
483 | 10 FC40 104.6
484 | 10 txS309 108.3
485 | 10 FC48 111.3
486 | 10 ST1845 111.3
487 | 10 PSB619 117.5
488 | 10 ST745 122.3
489 | 10 txS664 125
490 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/S4:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 sPb-5611 9.1
3 | 1 sPb-0939 9.1
4 | 1 sPb-4492 9.1
5 | 1 sPb-6160 9.1
6 | 1 sPb-5668 9.1
7 | 1 sPb-8237 9.1
8 | 1 sPb-0602 12
9 | 1 txp350 13.9
10 | 1 txp325 13.9
11 | 1 sPb-5015 15.3
12 | 1 sPb-8773 15.3
13 | 1 sPb-7096 16.6
14 | 1 sPb-7481 17.3
15 | 1 sPb-2704 64
16 | 1 sPb-1694 64
17 | 1 sPb-1119 65.5
18 | 1 sPb-8261 71.8
19 | 1 sPb-6780 83.3
20 | 1 sPb-0422 87.7
21 | 1 sPb-0333 87.7
22 | 1 txp88 87.7
23 | 1 sPb-5808 89.3
24 | 1 sPb-2070 89.3
25 | 1 sPb-9514 89.3
26 | 1 sPb-8794 89.3
27 | 1 sPb-2823 89.3
28 | 1 sPb-6061 89.3
29 | 1 sPb-0090 90.2
30 | 1 sPb-3386 90.2
31 | 1 sPb-6883 90.2
32 | 1 sPb-9050 90.2
33 | 1 sPb-0813 90.2
34 | 1 sPb-2058 90.2
35 | 1 sPb-8947 90.2
36 | 1 sPb-0232 90.2
37 | 1 sPb-2544 90.2
38 | 1 sPb-7229 94.5
39 | 1 sPb-9930 94.5
40 | 1 sPb-0274 94.5
41 | 1 txp37 112.2
42 | 1 sPb-3930 112.2
43 | 1 sPb-0509 112.2
44 | 1 sPb-3801 130.7
45 | 1 sPb-9203 130.7
46 | 1 sPb-3103 130.7
47 | 1 sPb-4638 130.7
48 | 1 sPb-7833 130.7
49 | 1 sPb-7958 137.1
50 | 1 sPb-4029 150.1
51 | 1 sPb-8132 150.1
52 | 1 txp61 160.2
53 | 1 sPb-0277 160.2
54 | 1 sPb-7154 160.2
55 | 1 sPb-0383 160.2
56 | 1 sPb-4593 160.2
57 | 1 sPb-0233 165.2
58 | 1 txp319 171.6
59 | 1 sPb-0725 171.6
60 | 1 sPb-1984 176.5
61 | 1 sPb-8066 177.8
62 | 1 sPb-8275 177.8
63 | 1 sPb-5527 177.8
64 | 1 sPb-5832 177.8
65 | 1 sPb-5975 177.8
66 | 1 sPb-0494 179.5
67 | 1 sPb-7331 179.5
68 | 1 sPb-6066 179.5
69 | 1 sPb-3861 182.4
70 | 1 sPb-4420 182.4
71 | 1 sPb-7850 182.4
72 | 1 txp248 184.6
73 | 1 sPb-2729 184.6
74 | 1 txp316 185.5
75 | 2 sPb-2187 7.6
76 | 2 txp297 18.1
77 | 2 sPb-4195 21.2
78 | 2 txp211 34.2
79 | 2 sPb-4864 38.1
80 | 2 txp50 41.5
81 | 2 txp304 47.5
82 | 2 sPb-1127 48.2
83 | 2 sPb-9687 48.2
84 | 2 sPb-8647 61
85 | 2 sPb-4453 66.2
86 | 2 sPb-6693 72.6
87 | 2 txp13 77.6
88 | 2 sPb-1784 87.5
89 | 2 sPb-1017 88.8
90 | 2 sPb-6700 88.8
91 | 2 sPb-4311 88.8
92 | 2 sPb-2639 88.8
93 | 2 sPb-2075 88.8
94 | 2 sPb-5087 94.3
95 | 2 sPb-1684 95
96 | 2 txp56 99.4
97 | 2 sPb-0073 106.8
98 | 2 sPb-7702 109
99 | 2 Sb6-84 112.5
100 | 2 sPb-4444 116.9
101 | 2 sPb-1925 122.3
102 | 2 sPb-0549 127.5
103 | 2 sPb-0971 132.2
104 | 2 sPb-9511 132.2
105 | 2 sPb-6663 133.4
106 | 2 txp315 133.4
107 | 2 sPb-4054 140
108 | 2 txp207 143.4
109 | 2 sPb-1413 143.4
110 | 2 sPb-7153 145
111 | 2 sPb-5077 161.5
112 | 2 sPb-7647 164.5
113 | 2 sPb-8896 164.5
114 | 2 sPb-7015 171.5
115 | 3 sPb-6690 0
116 | 3 sPb-6982 2
117 | 3 sPb-2461 2
118 | 3 sPb-0892 2.6
119 | 3 sPb-5491 5.7
120 | 3 sPb-4226 8.5
121 | 3 sPb-6122 22.5
122 | 3 sPb-5108 22.5
123 | 3 sPb-1294 25.8
124 | 3 sPb-1901 25.8
125 | 3 sPb-1137 25.8
126 | 3 Sb5-236 25.8
127 | 3 sPb-0357 26.5
128 | 3 sPb-2246 47
129 | 3 sPb-6882 67
130 | 3 sPb-4921 67
131 | 3 sPb-5267 67.7
132 | 3 txp285 68.5
133 | 3 sPb-7186 69.5
134 | 3 sPb-9977 71.8
135 | 3 sPb-4629 71.8
136 | 4 sPb-6640 0
137 | 4 sPb-1932 20.9
138 | 4 sPb-6958 23.5
139 | 4 sPb-9580 23.5
140 | 4 txP22 42.2
141 | 4 sPb-5618 46.3
142 | 4 sPb-2138 46.3
143 | 4 sPb-9635 46.3
144 | 4 sPb-4928 46.3
145 | 4 sPb-2009 46.3
146 | 4 sPb-4039 46.3
147 | 4 sPb-6559 46.3
148 | 4 sPb-8296 46.3
149 | 4 sPb-2699 46.3
150 | 4 sPb-3343 46.3
151 | 4 sPb-7210 46.3
152 | 4 sPb-6231 46.3
153 | 4 sPb-8521 46.3
154 | 4 sPb-9393 46.3
155 | 4 sPb-1811 46.3
156 | 4 sPb-0258 46.3
157 | 4 sPb-0543 46.3
158 | 4 sPb-8138 46.3
159 | 4 sPb-8378 46.3
160 | 4 sPb-1841 46.3
161 | 4 sPb-5276 46.3
162 | 4 sPb-0703 46.8
163 | 4 sPb-1574 46.8
164 | 4 sPb-0279 46.8
165 | 4 sPb-5530 46.8
166 | 4 sPb-5742 46.8
167 | 4 txP343 72.7
168 | 4 sPb-7534 72.7
169 | 4 sPb-1147 73.4
170 | 4 sPb-4825 77.7
171 | 4 sPb-9303 79
172 | 4 sPb-8013 80.2
173 | 4 sPb-6115 80.2
174 | 4 Sb1-10 81.8
175 | 4 sPb-7324 82.6
176 | 4 sPb-9995 83.9
177 | 4 sPb-9713 87.7
178 | 4 sPb-3838 90.4
179 | 4 sPb-4734 90.4
180 | 4 sPb-4473 93.6
181 | 4 sPb-4198 93.6
182 | 4 sPb-9304 93.6
183 | 4 sPb-8337 93.6
184 | 4 sPb-4070 99.5
185 | 4 txP177 105.2
186 | 4 txP41 105.2
187 | 4 txP51 105.2
188 | 4 txP60 108
189 | 4 tXP265 126
190 | 4 sPb-7434 127.3
191 | 4 sPb-5550 133.9
192 | 5 sPb-0906 0
193 | 5 txp65 11.7
194 | 5 sPb-7047 11.7
195 | 5 sPb-5256 13.3
196 | 5 sPb-7308 19.9
197 | 5 sPb-2941 31.9
198 | 5 sPb-6627 39.7
199 | 5 sPb-9815 39.7
200 | 5 sPb-2539 39.7
201 | 5 sPb-4131 39.7
202 | 5 sPb-7638 39.7
203 | 5 sPb-3290 39.7
204 | 5 sPb-1227 39.7
205 | 5 sPb-3977 39.7
206 | 5 sPb-8881 45.3
207 | 5 sPb-9544 47.2
208 | 5 sPb-5805 50
209 | 5 sPb-8316 50
210 | 5 sPb-9009 50.7
211 | 5 sPb-0932 57.1
212 | 5 txp15 69.4
213 | 5 sPb-0738 70.2
214 | 5 sPb-3031 71.5
215 | 5 sPb-6508 71.5
216 | 5 sPb-5194 71.5
217 | 5 sPb-3766 72.2
218 | 5 sPb-0368 73.3
219 | 5 sPb-1501 77.6
220 | 5 sPb-9347 77.6
221 | 5 sPb-8677 79.7
222 | 5 sPb-6636 79.7
223 | 5 sPb-6347 80.3
224 | 5 sPb-0205 80.3
225 | 5 sPb-1104 80.3
226 | 5 sPb-4806 81
227 | 5 sPb-5209 81
228 | 5 sPb-6604 82.9
229 | 5 sPb-8973 82.9
230 | 5 sPb-7203 86.6
231 | 5 sPb-6323 86.6
232 | 5 sPb-6855 86.6
233 | 5 sPb-3817 93.1
234 | 5 sPb-1152 98.5
235 | 5 sPb-1454 99.2
236 | 5 SbKAFGK1_I 108.8
237 | 5 SBKAFGK1 113.2
238 | 5 sPb-2874 119.4
239 | 6 sPb-4183 0
240 | 6 sPb-4937 2.9
241 | 6 sPb-5182 2.9
242 | 6 sPb-2551 9
243 | 6 sPb-3539 11.8
244 | 6 txp6 16.9
245 | 6 sPb-8422 23.5
246 | 6 sPb-5564 27.5
247 | 6 sPb-1395 27.5
248 | 6 sPb-7169 27.5
249 | 6 sPb-8198 27.5
250 | 6 sPb-8362 28.1
251 | 6 sPb-9146 38.5
252 | 6 sPb-1543 57.7
253 | 6 txp145 60.2
254 | 6 txp265-1 64.4
255 | 6 txp274 67.4
256 | 6 CC 91.5
257 | 6 sPb-5374 115.3
258 | 6 sPb-3962 125.6
259 | 6 sPb-0017 131.9
260 | 6 sPb-5603 131.9
261 | 6 sPb-1486 131.9
262 | 6 sPb-4732 131.9
263 | 6 txp17 131.9
264 | 6 txp95 131.9
265 | 6 txp57 136.4
266 | 6 sPb-5212 136.4
267 | 6 sPb-6076 136.4
268 | 6 sPb-9667 141.4
269 | 6 sPb-7428 144.3
270 | 7 sPb-9595 2.7
271 | 7 sPb-7064 2.7
272 | 7 sPb-4740 2.7
273 | 7 sPb-3995 2.7
274 | 7 sPb-2034 2.7
275 | 7 sPb-9223 4.7
276 | 7 sPb-9931 6
277 | 7 sPb-9513 18.6
278 | 7 sPb-3361 18.6
279 | 7 sPb-6518 20.6
280 | 7 txp159 28
281 | 7 sPb-8216 31.3
282 | 7 sPb-2566 43.5
283 | 7 sPb-6942 47
284 | 7 sPb-2774 47
285 | 7 txp227 49.5
286 | 7 sPb-2757 49.5
287 | 7 sPb-1414 53.4
288 | 7 sPb-8019 53.4
289 | 7 sPb-8258 53.4
290 | 7 sPb-5594 73.9
291 | 7 sPb-7086 91.9
292 | 7 sPb-3691 95.3
293 | 7 txp295 95.3
294 | 7 sPb-4306 107.8
295 | 7 sPb-1014 118.4
296 | 7 txp168 119.1
297 | 7 sPb-7549 120.5
298 | 8 txp273 0
299 | 8 sPb-6589 0
300 | 8 sPb-2736 6.3
301 | 8 sPb-3464 6.3
302 | 8 sPb-5390 23.9
303 | 8 sPb-7126 23.9
304 | 8 sPb-9818 23.9
305 | 8 sPb-5825 23.9
306 | 8 sPb-3396 28.4
307 | 8 sPb-9372 59.6
308 | 8 sPb-5005 59.6
309 | 8 sPb-2140 63
310 | 8 sPb-4934 63
311 | 8 sPb-2641 65
312 | 8 sPb-1058 73.2
313 | 8 sPb-2474 73.2
314 | 8 sPb-3195 73.2
315 | 8 sPb-2568 74.4
316 | 8 txp210 74.4
317 | 8 sPb-0599 79.8
318 | 8 sPb-9841 79.8
319 | 8 sPb-9762 82.5
320 | 8 sPb-9700 86.4
321 | 8 sPb-9468 87
322 | 8 sPb-7889 88.9
323 | 8 sPb-1881 99.2
324 | 8 sPb-1595 99.2
325 | 8 txp18 99.2
326 | 8 sPb-1850 99.2
327 | 8 sPb-7375 101.3
328 | 8 sPb-0031 111.3
329 | 8 sPb-2228 111.3
330 | 8 sPb-9743 111.3
331 | 8 sPb-3014 111.3
332 | 8 sPb-3954 111.3
333 | 8 sPb-0833 111.3
334 | 8 txp105 115.1
335 | 8 sPb-6918 126.2
336 | 8 sPb-5401 129
337 | 8 sPb-1272 133.1
338 | 8 sPb-8993 133.1
339 | 8 sPb-9584 133.1
340 | 8 sPb-6960 133.9
341 | 8 sPb-5250 133.9
342 | 8 sPb-2846 133.9
343 | 8 sPb-7648 134.5
344 | 8 sPb-4385 134.5
345 | 8 sPb-3434 135.9
346 | 8 sPb-0087 140.2
347 | 8 sPb-0144 178.2
348 | 9.1 sPb-5473 0
349 | 9.1 sPb-3274 1.4
350 | 9.1 sPb-1997 2.1
351 | 9.1 sPb-9449 3.5
352 | 9.1 sPb-2770 4.2
353 | 9.2 sPb-0005 0
354 | 9.2 txp258 4.9
355 | 9.2 sPb-9989 50.8
356 | 9.2 sPb-9688 56.6
357 | 9.2 sPb-8873 59.3
358 | 9.2 sPb-4786 59.3
359 | 9.2 sPb-1324 59.9
360 | 9.2 sPb-6852 59.9
361 | 9.2 sPb-9272 61.3
362 | 9.2 sPb-3158 61.3
363 | 9.2 sPb-5312 61.3
364 | 9.2 sPb-5142 76
365 | 9.2 sPb-3971 100
366 | 9.2 sPb-9107 100
367 | 9.2 Sb4-32 101.9
368 | 9.2 sPb-4853 105.5
369 | 9.2 sPb-9227 105.5
370 | 9.2 sPb-7955 153.6
371 | 9.2 sPb-9091 154.3
372 | 9.2 sPb-8368 154.3
373 | 9.2 sPb-7367 154.3
374 | 10 sPb-3912 0
375 | 10 sPb-8306 6.8
376 | 10 sPb-2041 6.8
377 | 10 sPb-5079 6.8
378 | 10 RL 6.8
379 | 10 sPb-4129 8.7
380 | 10 sPb-8858 58.1
381 | 10 sPb-3432 63.4
382 | 10 sPb-0248 63.4
383 | 10 sPb-3287 69.9
384 | 10 sPb-8150 69.9
385 | 10 sPb-0817 69.9
386 | 10 sPb-2149 69.9
387 | 10 sPb-5391 69.9
388 | 10 sPb-8497 69.9
389 | 10 sPb-0562 69.9
390 | 10 sPb-2836 71.1
391 | 10 sPb-3549 71.1
392 | 10 sPb-9999 71.1
393 | 10 sPb-7643 80.7
394 | 10 sPb-3958 80.7
395 | 10 sPb-9215 80.7
396 | 10 sPb-5512 80.7
397 | 10 sPb-6875 80.7
398 | 10 sPb-4944 81.4
399 | 10 sPb-1244 82.6
400 | 10 SvPEPCAA 87
401 | 10 sPb-6889 87
402 | 10 sPb-5841 90.3
403 | 10 sPb-6288 93.7
404 | 10 sPb-4480 93.7
405 | 10 sPb-2318 93.7
406 | 10 sPb-3003 126.5
407 | 10 sPb-1701 126.5
408 | 10 sPb-1660 126.5
409 | 10 txp141 140.7
410 | 10 Sb6-325 140.7
411 | 10 sPb-5678 149.2
412 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/S5:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 sPb-7015 0
3 | 1 sPb-2465 1.9
4 | 1 sPb-8208 2.6
5 | 1 sPb-2058 32.6
6 | 1 sPb-0232 47.6
7 | 1 sPb-0274 53.6
8 | 1 sPb-5358 67.6
9 | 1 txp58 100
10 | 1 sPb-9203 120
11 | 1 sPb-2683 120
12 | 1 sPb-4638 126
13 | 1 txp279 130
14 | 1 txp284 141.2
15 | 1 sPb-0277 156.2
16 | 1 sPb-4593 156.2
17 | 1 sPb-0746 156.2
18 | 1 sPb-1984 175
19 | 1 sPb-7611 190.4
20 | 1 sPb-3577 207.7
21 | 1 sPb-1060 207.7
22 | 2 sPb-7984 0
23 | 2 sPb-8897 2.4
24 | 2 sPb-1631 5.3
25 | 2 txp4 22.6
26 | 2 txp3 25.7
27 | 2 sPb-3361 50
28 | 2 sPb-5737 51.3
29 | 2 sPb-3834 51.3
30 | 2 sPb-4054 66
31 | 3 sPb-1669 0
32 | 3 sPb-2055 0
33 | 3 sPb-6690 30
34 | 3 sPb-6857 30
35 | 3 sPb-1137 46.2
36 | 3 sPb-1362 46.2
37 | 3 sPb-5108 46.2
38 | 3 sPb-6122 47.5
39 | 3 sPb-8787 66.4
40 | 3 sPb-8349 115
41 | 3 txp285 128
42 | 4 sPb-6465 0
43 | 4 sPb-2521 2
44 | 4 sPb-4074 5
45 | 4 sPb-8446 5
46 | 4 sPb-2739 5
47 | 4 sPb-7493 5
48 | 4 sPb-4718 5
49 | 4 sPb-1584 8.8
50 | 4 sPb-6741 40
51 | 4 sPb-4506 40
52 | 4 sPb-2138 40
53 | 4 sPb-8296 40
54 | 4 sPb-6559 40
55 | 4 sPb-1811 40
56 | 4 sPb-1798 40
57 | 4 sPb-9359 40
58 | 4 sPb-7310 40
59 | 4 sPb-7274 40
60 | 4 sPb-5742 40
61 | 4 sPb-1841 40
62 | 4 sPb-9987 40
63 | 4 sPb-0867 40
64 | 4 sPb-7210 40
65 | 4 sPb-9033 40
66 | 4 sPb-3903 40
67 | 4 sPb-1295 40
68 | 4 sPb-8470 40
69 | 4 sPb-2187 47.3
70 | 4 sPb-2842 67.4
71 | 4 sPb-5220 79.7
72 | 4 txp343 86.5
73 | 4 SB1-10 98.1
74 | 4 sPb-9303 106.9
75 | 4 sPb-6115 106.9
76 | 5 sPb-5119 0
77 | 5 sPb-9544 0
78 | 5 sPb-5408 0.6
79 | 5 sPb-9009 2.7
80 | 5 txp303 9.7
81 | 5 sPb-5892 31.9
82 | 5 sPb-9642 35.7
83 | 5 sPb-8149 38.2
84 | 5 sPb-6323 38.2
85 | 5 sPb-7203 45.6
86 | 5 sPb-1454 65
87 | 5 sPb-6287 69.4
88 | 5 sPb-1396 94.4
89 | 5 sPb-2874 95.1
90 | 5 sPb-0873 95.1
91 | 5 sPb-7892 118.2
92 | 6 sPb-5603 0
93 | 6 sPb-0017 0
94 | 6 sPb-4732 0
95 | 6 sPb-1486 0
96 | 6 sPb-5101 5.6
97 | 7 sPb-8316 0
98 | 7 sPb-7064 0
99 | 7 sPb-4740 0
100 | 7 sPb-9309 0
101 | 7 sPb-2034 1.4
102 | 7 sPb-1414 30
103 | 7 sPb-2757 30
104 | 7 sPb-1244 30
105 | 7 sPb-0571 30
106 | 7 sPb-2774 34
107 | 7 sPb-8673 39.5
108 | 7 txp312 59.4
109 | 7 sPb-6577 79.5
110 | 7 sPb-9007 104.5
111 | 7 sPb-8251 104.5
112 | 7 sPb-4179 104.5
113 | 7 sPb-2491 127.5
114 | 8 sPb-6248 0
115 | 8 sPb-0703 13.2
116 | 8 sPb-7126 13.2
117 | 8 sPb-9818 22
118 | 8 sPb-7843 22
119 | 8 sPb-3396 23.2
120 | 8 sPb-9242 55
121 | 8 sPb-4432 57
122 | 8 sPb-0258 76.3
123 | 8 sPb-9700 83.4
124 | 8 sPb-1661 88.9
125 | 8 sPb-7889 89.5
126 | 8 sPb-7312 103
127 | 8 sPb-1881 110.2
128 | 8 sPb-2228 122.4
129 | 8 sPb-9743 122.4
130 | 8 sPb-0144 122.4
131 | 8 sPb-4546 122.4
132 | 8 sPb-0833 122.4
133 | 8 sPb-3954 123
134 | 8 sPb-7823 141.1
135 | 8 sPb-6918 156.9
136 | 8 sPb-1825 156.9
137 | 8 sPb-5401 161.9
138 | 8 sPb-1291 161.9
139 | 8 sPb-1051 161.9
140 | 8 sPb-1272 164
141 | 8 sPb-7082 164
142 | 8 sPb-5250 164.8
143 | 8 sPb-7648 165.5
144 | 8 sPb-2290 167.5
145 | 8 sPb-5420 168
146 | 8 sPb-4385 169
147 | 8 sPb-3434 173.9
148 | 9 sPb-7855 0
149 | 9 sPb-1991 7.6
150 | 9 sPb-8812 12
151 | 9 sPb-9227 12
152 | 9 sPb-3253 40
153 | 9 sPb-9538 40
154 | 9 sPb-7105 50.3
155 | 9 sPb-7905 69.7
156 | 9 sPb-1239 69.7
157 | 9 sPb-0771 69.7
158 | 9 sPb-8338 69.7
159 | 9 sPb-6667 84
160 | 9 txp230 84
161 | 9 txp67 90.2
162 | 9 txp258 97.1
163 | 9 sPb-4156 97.1
164 | 9 sPb-6515 117.3
165 | 10 sPb-8306 0
166 | 10 sPb-2735 0.7
167 | 10 sPb-2193 40.3
168 | 10 sPb-3432 40.3
169 | 10 sPb-0248 40.3
170 | 10 sPb-5005 41
171 | 10 sPb-8357 45
172 | 10 sPb-9592 47.75
173 | 10 sPb-0817 50.8
174 | 10 sPb-8150 50.8
175 | 10 sPb-6292 50.8
176 | 10 sPb-5917 58.2
177 | 10 sPb-7473 61.85
178 | 10 sPb-1962 69.75
179 | 10 sPb-5841 77.75
180 | 10 sPb-9064 77.75
181 | 10 sPb-8201 77.75
182 | 10 sPb-6889 84.75
183 | 10 sPb-9215 84.75
184 | 10 sPb-1722 84.75
185 | 10 sPb-3958 84.75
186 | 10 sPb-8432 84.75
187 | 10 sPb-7643 84.75
188 | 10 sPb-4944 84.75
189 | 10 sPb-6875 84.75
190 | 10 sPb-4480 86.75
191 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/S6:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 sPb-0145 0
3 | 1 sPb-2823 8.8
4 | 1 sPb-6061 10.1
5 | 1 sPb-0090 14.1
6 | 1 sPb-3386 14.1
7 | 1 sPb-0232 20.9
8 | 2 sPb-3798 0
9 | 2 sPb-8616 19.7
10 | 2 sPb-7695 23
11 | 2 sPb-4970 26
12 | 2 sPb-6434 29
13 | 2 sPb-1784 42.7
14 | 2 sPb-1017 46
15 | 2 sPb-2075 47
16 | 2 sPb-2639 47
17 | 2 sPb-4311 47
18 | 2 sPb-6700 47.5
19 | 2 sPb-3361 68.6
20 | 2 sPb-3834 73.3
21 | 2 sPb-5737 76
22 | 2 sPb-8677 88.1
23 | 3 sPb-3853 0
24 | 3 sPb-9388 2.4
25 | 3 sPb-6857 9.7
26 | 3 sPb-3940 13.8
27 | 3 sPb-2562 36.2
28 | 3 sPb-8536 75
29 | 3 sPb-6882 75
30 | 3 sPb-4921 87.3
31 | 3 sPb-7186 97.7
32 | 3 sPb-4629 103.5
33 | 3 sPb-9894 113.1
34 | 3 sPb-8802 145
35 | 4 sPb-8138 0
36 | 4 sPb-4661 4.6
37 | 4 sPb-4734 36.9
38 | 4 sPb-9304 42
39 | 5 sPb-0906 0
40 | 5 sPb-5890 1.4
41 | 5 sPb-9312 30
42 | 5 sPb-7893 30
43 | 5 sPb-7030 36.6
44 | 5 sPb-9490 58.4
45 | 6 sPb-2551 0
46 | 6 sPb-3837 21.3
47 | 6 sPb-2457 21.3
48 | 6 sPb-8425 21.3
49 | 6 sPb-5030 27.8
50 | 6 sPb-9066 40.7
51 | 6 sPb-8436 43.7
52 | 6 sPb-1543 53.8
53 | 6 sPb-5230 83.8
54 | 6 sPb-0255 90.8
55 | 6 sPb-5403 90.8
56 | 6 sPb-7960 90.8
57 | 6 sPb-5765 97.5
58 | 7 sPb-7105 0
59 | 7 sPb-9931 19.1
60 | 7 sPb-8980 19.1
61 | 7 sPb-6825 50
62 | 7 sPb-1982 54.9
63 | 7 sPb-7381 62.2
64 | 7 sPb-8673 87.2
65 | 7 sPb-2630 102.9
66 | 7 sPb-9508 105.5
67 | 7 sPb-7944 107.4
68 | 7 sPb-7280 116.9
69 | 7 sPb-7086 141.9
70 | 7 sPb-5397 146.8
71 | 7 sPb-9365 146.8
72 | 8 sPb-6589 0
73 | 8 sPb-1503 2.5
74 | 8 sPb-9818 29
75 | 8 sPb-7126 30.3
76 | 8 sPb-5054 32.9
77 | 8 sPb-9372 65
78 | 8 sPb-0235 65
79 | 8 sPb-0645 65.6
80 | 8 sPb-0380 85
81 | 8 sPb-1888 105.3
82 | 8 sPb-1272 130
83 | 8 sPb-5250 130
84 | 8 sPb-2846 133.2
85 | 8 sPb-9584 134.5
86 | 8 sPb-4385 141
87 | 8 sPb-2487 147
88 | 8 sPb-1323 159.5
89 | 9.1 sPb-3274 0
90 | 9.1 sPb-1997 0.7
91 | 9.1 sPb-9449 0.7
92 | 9.1 sPb-8090 8.5
93 | 9.1 sPb-8590 9
94 | 9.1 sPb-4011 17
95 | 9.1 sPb-1895 17.5
96 | 9.2 sPb-7460 0
97 | 9.2 sPb-8716 3.3
98 | 9.2 sPb-8812 11.8
99 | 9.2 sPb-9227 11.8
100 | 9.2 sPb-4156 40
101 | 9.2 sPb-0005 46.85
102 | 10 sPb-2222 0
103 | 10 sPb-7473 14.35
104 | 10 sPb-9381 16.2
105 | 10 sPb-9999 19.9
106 | 10 sPb-9215 27.7
107 | 10 sPb-3958 27.7
108 | 10 sPb-1722 27.7
109 | 10 sPb-4480 27.7
110 | 10 sPb-8432 27.7
111 | 10 sPb-6875 27.7
112 | 10 sPb-7643 27.7
113 | 10 sPb-9826 29.95
114 | 10 sPb-5834 44.3
115 | 10 sPb-6288 59.6
116 | 10 sPb-5841 61.5
117 | 10 sPb-6889 62.8
118 | 10 sPb-8201 62.8
119 |
--------------------------------------------------------------------------------
/DATA/SORGHUM/TAMU:
--------------------------------------------------------------------------------
1 | LG Marker cM
2 | 1 isu62 0
3 | 1 cdo457 6.5
4 | 1 umc84 6.5
5 | 1 bnl6.25 6.5
6 | 1 isu70 9.6
7 | 1 sPb-1524 9.6
8 | 1 sPb-6144 9.6
9 | 1 sPb-8773 9.6
10 | 1 sPb-5015 9.6
11 | 1 umc161 13
12 | 1 sPb-7161 13.8
13 | 1 gap42 13.8
14 | 1 gap256 13.8
15 | 1 umc147 14.5
16 | 1 sPb-2583 14.5
17 | 1 phyC 14.5
18 | 1 txp208 14.5
19 | 1 txs1082 15.3
20 | 1 txp325 17.4
21 | 1 txp350 17.4
22 | 1 sPb-6201 17.4
23 | 1 cup06 19.6
24 | 1 isu111 20.1
25 | 1 txs547 21.1
26 | 1 umc90 22.4
27 | 1 phyA 22.4
28 | 1 bcd808 23.6
29 | 1 txp482 23.6
30 | 1 cdo121 23.6
31 | 1 txp302 25.2
32 | 1 umc128 39.9
33 | 1 umc166 45.8
34 | 1 sPb-2070 45.8
35 | 1 umc83 46.7
36 | 1 sPb-2823 55.1
37 | 1 sPb-8794 55.1
38 | 1 umc115 55.1
39 | 1 sPb-8612 55.8
40 | 1 sPb-4227 57.2
41 | 1 umc167 59.5
42 | 1 CSU653 59.5
43 | 1 txp357 59.5
44 | 1 txp43 65.8
45 | 1 txp88 65.8
46 | 1 isu73 69.5
47 | 1 txp149 69.5
48 | 1 txs1060 73.6
49 | 1 sPb-0274 73.6
50 | 1 txs490 74.4
51 | 1 sPb-5358 76.4
52 | 1 txp32 76.4
53 | 1 cdo20 77.8
54 | 1 isu165 84.9
55 | 1 sPb-9560 88.8
56 | 1 txp37 92.4
57 | 1 isu164 97.9
58 | 1 sPb-8883 97.9
59 | 1 sPb-1935 97.9
60 | 1 txp335 97.9
61 | 1 isu44 98.3
62 | 1 rz251 98.3
63 | 1 sPb-7031 98.3
64 | 1 txs1129 100.5
65 | 1 txs1225 105.5
66 | 1 sPb-3844 108.9
67 | 1 sPb-5223 108.9
68 | 1 umc95 108.9
69 | 1 gap57 108.9
70 | 1 txp58 109.7
71 | 1 sPb-5905 112.3
72 | 1 cdo938 112.3
73 | 1 isu51 115.1
74 | 1 sPb-2147 115.1
75 | 1 txp75 115.1
76 | 1 txp279 115.1
77 | 1 phyB 116
78 | 1 OP-K20C 116
79 | 1 txp229 116
80 | 1 cup60 123.4
81 | 1 txs1765 127.7
82 | 1 gap36 127.7
83 | 1 isu133 127.7
84 | 1 OP-K20A 130
85 | 1 sPb-9156 132.6
86 | 1 sPb-7422 132.6
87 | 1 cup30 135.3
88 | 1 cdo1387 137.3
89 | 1 txp522 137.3
90 | 1 txp433 137.7
91 | 1 txp284 137.7
92 | 1 txp432 138.5
93 | 1 txp61 138.5
94 | 1 isu49 138.5
95 | 1 sPb-0383 139.7
96 | 1 txs300 139.7
97 | 1 bnl5.09 141
98 | 1 bnl14.28 143.2
99 | 1 txs1625 156.8
100 | 1 txp319 158
101 | 1 txp515 158.8
102 | 1 txp519 158.8
103 | 1 rz329 159.6
104 | 1 txp340 159.6
105 | 1 umc157 163.2
106 | 1 sPb-4582 166.8
107 | 1 sPb-5832 166.8
108 | 1 sPb-8066 166.8
109 | 1 sPb-8275 166.8
110 | 1 sPb-5527 166.8
111 | 1 txs1153 166.8
112 | 1 sPb-1020 168.1
113 | 1 sPb-1060 172.2
114 | 1 sPb-7611 172.2
115 | 1 sPb-3577 173.6
116 | 1 rz273 175.7
117 | 1 txp248 179.6
118 | 1 sPb-9065 179.6
119 | 1 sPb-4435 181.7
120 | 1 txp316 181-7
121 | 1 sPb-1050 181-7
122 | 1 sPb-8743 181-7
123 | 1 AW747649 181-7
124 | 1 txp46 183.2
125 | 1 umc164 191.8
126 | 2 txp197 0
127 | 2 txp96 0
128 | 2 txs1267 0
129 | 2 txp63 4.3
130 | 2 sPb-1209 18
131 | 2 txp25 20.5
132 | 2 txp84 20.5
133 | 2 txp211 20.5
134 | 2 txp50 20.5
135 | 2 isu67 20.5
136 | 2 sPb-6689 20.5
137 | 2 txp297 24.1
138 | 2 txp304 36.8
139 | 2 txs1891 50.2
140 | 2 isu71 58.3
141 | 2 sPb-0090 58.3
142 | 2 sPb-3386 58.3
143 | 2 txs1164 58.3
144 | 2 sPb-5643 58.3
145 | 2 sPb-1940 58.3
146 | 2 txs1381 59.2
147 | 2 sPb-9708 59.2
148 | 2 sPb-5224 63.3
149 | 2 sPb-6360 63.3
150 | 2 sPb-7142 63.3
151 | 2 sPb-0364 63.3
152 | 2 txp4 64.8
153 | 2 sPb-8616 67
154 | 2 isu151 69.2
155 | 2 txp201 73.9
156 | 2 cup74 73.9
157 | 2 txp55 73.9
158 | 2 txp3 73.9
159 | 2 txp72 73.9
160 | 2 sPb-4970 73.9
161 | 2 sPb-6434 73.9
162 | 2 rz413 75.6
163 | 2 sPb-6724 77.8
164 | 2 txs1639 77.8
165 | 2 txp19 80
166 | 2 txp283 80
167 | 2 txp13 82
168 | 2 isu94 85.1
169 | 2 txp298 92.9
170 | 2 SbAGAB03 97.7
171 | 2 umc139 102.2
172 | 2 sPb-5087 108.7
173 | 2 sPb-2484 118.6
174 | 2 txp445 121.7
175 | 2 cup29 121.7
176 | 2 CB926473 123.7
177 | 2 txp430 123.7
178 | 2 sPb-2129 123.7
179 | 2 txs1111 123.7
180 | 2 isu86 123.7
181 | 2 umc136 123.7
182 | 2 umc5 124.2
183 | 2 txp1 126
184 | 2 txp56 129.8
185 | 2 sPb-3917 133.1
186 | 2 umc116 133.1
187 | 2 sPb-2568 137.4
188 | 2 txp286 137.4
189 | 2 gap84 140.7
190 | 2 sPb-4862 140.7
191 | 2 sPb-3361 140.7
192 | 2 isu117 143.7
193 | 2 isu43 145.4
194 | 2 sPb-1925 145.4
195 | 2 txp179 145.4
196 | 2 sPb-4685 145.4
197 | 2 txs284 146.7
198 | 2 isu66 151.7
199 | 2 txs1527 151.7
200 | 2 sPb-0971 151.7
201 | 2 sPb-0863 151.7
202 | 2 cdo1508 151.7
203 | 2 txp428 153.2
204 | 2 sPb-6009 155.1
205 | 2 txp315 155.1
206 | 2 txs2042 155.1
207 | 2 cdo385 155.1
208 | 2 txs360 155.8
209 | 2 sPb-5478 155.8
210 | 2 txp431 156.6
211 | 2 txp429 158.7
212 | 2 txs1925 160.5
213 | 2 umc4 162.4
214 | 2 cdo59 165.3
215 | 2 txp100 165.3
216 | 2 sPb-3547 166.8
217 | 2 umc149 166.8
218 | 2 txp7 166.8
219 | 2 txp207 166.8
220 | 2 cup26 166.8
221 | 2 sPb-1413 168.2
222 | 2 txs1845 168.2
223 | 2 txp296 168.2
224 | 2 umc125 175.3
225 | 2 sPb-0774 175.3
226 | 2 sPb-8602 175.3
227 | 2 sPb-2350 175.9
228 | 2 umc122 175.9
229 | 2 sPb-5286 176.6
230 | 2 sPb-3683 176.6
231 | 2 bnl8.37 176.6
232 | 2 rz395 179.3
233 | 2 sPb-1533 182.3
234 | 2 txs290 182.3
235 | 2 isu113 182.3
236 | 2 txs283 183
237 | 2 cup40 190
238 | 2 txp8 193.8
239 | 2 cup69 198.5
240 | 2 txs1610 200.6
241 | 2 umc168 202.5
242 | 2 sPb-4005 208.1
243 | 2 bnl16.06 208.1
244 | 2 sPb-8896 209.6
245 | 2 sPb-9190 215.4
246 | 2 sPb-2833 219.6
247 | 2 sPb-3109 229.6
248 | 3 txs333 0
249 | 3 txp496 0
250 | 3 txp456 0
251 | 3 txp494 4
252 | 3 sPb-2249 4
253 | 3 sPb-7795 4
254 | 3 umc121 4
255 | 3 txp457 4.4
256 | 3 txp266 6.1
257 | 3 txs31 6.1
258 | 3 txs1178 6.1
259 | 3 txp228 6.1
260 | 3 txp518 6.5
261 | 3 txp454 9.3
262 | 3 txp492 11.1
263 | 3 txp491 17.3
264 | 3 txs1092 24.6
265 | 3 sPb-0319 28.9
266 | 3 txp489 28.9
267 | 3 txp451 28.9
268 | 3 txp215 28.9
269 | 3 txp452 30.2
270 | 3 txp423 36.5
271 | 3 txp488 36.5
272 | 3 txs1053 38.4
273 | 3 BH245389 40.1
274 | 3 txp485 40.1
275 | 3 sPb-6690 42
276 | 3 sPb-4639 45.4
277 | 3 txs578 45.4
278 | 3 txp500 45.4
279 | 3 isu148 48.9
280 | 3 txs503 51.5
281 | 3 BH246082 51.5
282 | 3 txs1438 55.9
283 | 3 txp461 55.9
284 | 3 txs1162 55.9
285 | 3 sPb-1137 55.9
286 | 3 sPb-6122 55.9
287 | 3 sPb-5108 55.9
288 | 3 sPb-1362 55.9
289 | 3 umc10 56.6
290 | 3 sPb-5946 56.6
291 | 3 rz244 57.5
292 | 3 cdo920 59.8
293 | 3 txp33 59.8
294 | 3 gap236 62.8
295 | 3 isu114 65.1
296 | 3 txp205 65.1
297 | 3 txp31 71.1
298 | 3 sPb-1700 71.1
299 | 3 txp336 71.1
300 | 3 txp183 75.2
301 | 3 txp444 80.2
302 | 3 txs584 85.4
303 | 3 txp503 87.5
304 | 3 umc93 87.5
305 | 3 umc63 87.5
306 | 3 txp120 87.5
307 | 3 txp435 89.2
308 | 3 txp2 91.7
309 | 3 cdo1160 98.9
310 | 3 txp436 98.9
311 | 3 txp231 98.9
312 | 3 txp59 103.2
313 | 3 bcd828 110.2
314 | 3 sPb-9524 110.2
315 | 3 txs1175 110.2
316 | 3 cdo470 110.2
317 | 3 txp218 110.2
318 | 3 umc16 110.2
319 | 3 umc17 110.2
320 | 3 isu121 111.5
321 | 3 txp114 111.5
322 | 3 txp437 115.8
323 | 3 sPb-6437 121.6
324 | 3 sPb-6121 121.6
325 | 3 sPb-6466 123.5
326 | 3 sPb-5655 123.5
327 | 3 sPb-5194 123.5
328 | 3 txs1927 126
329 | 3 txs422 126
330 | 3 BH245191 126.9
331 | 3 txp438 126.9
332 | 3 sPb-1480 126.9
333 | 3 txp440 126.9
334 | 3 txp439 127.3
335 | 3 sPb-8349 127.3
336 | 3 bnl15.20 127.3
337 | 3 txp441 127.3
338 | 3 bcd738 129
339 | 3 txp446 131.5
340 | 3 txp442 131.9
341 | 3 isu166 134.5
342 | 3 txp447 134.5
343 | 3 txs1226 135.4
344 | 3 txp421 137.4
345 | 3 txp38 137.4
346 | 3 txp448 138.7
347 | 3 txp449 140.1
348 | 3 sPb-9977 140.1
349 | 3 sPb-7186 140.1
350 | 3 txp422 140.1
351 | 3 txp420 141.4
352 | 3 sPb-4629 144.9
353 | 3 txp34 147.8
354 | 3 txp424 147.8
355 | 3 sPb-3228 149.9
356 | 3 sPb-6925 149.9
357 | 3 sPb-6649 150.6
358 | 3 isu68 150.6
359 | 3 txp427 158.2
360 | 3 txp69 158.2
361 | 3 txp425 162.1
362 | 3 CUa1 162.1
363 | 3 txp426 164.2
364 | 3 sPb-8802 172.3
365 | 4 txp506 0
366 | 4 txp504 6.1
367 | 4 sPb-9432 6.1
368 | 4 cdo962 6.1
369 | 4 isu47 6.1
370 | 4 sPb-2521 6.1
371 | 4 txs754 10.5
372 | 4 sPb-2739 10.5
373 | 4 umc111 16.8
374 | 4 sPb-4718 16.8
375 | 4 sPb-5826 16.8
376 | 4 sPb-4233 16.8
377 | 4 cup05 25.8
378 | 4 isu56 40.9
379 | 4 sPb-7256 48.7
380 | 4 sPb-1932 48.7
381 | 4 sPb-9580 53.3
382 | 4 sPb-6958 53.3
383 | 4 sPb-4851 71.4
384 | 4 sPb-1147 71.4
385 | 4 txp343 71.4
386 | 4 txp12 71.4
387 | 4 sPb-7534 75.8
388 | 4 sPb-6945 83.2
389 | 4 sPb-2313 83.2
390 | 4 txs1090 83.2
391 | 4 sPb-7216 95.7
392 | 4 sPb-9684 95.7
393 | 4 Sb5-214 97.1
394 | 4 isu42 97.1
395 | 4 cdo1380 97.1
396 | 4 sPb-0854 97.1
397 | 4 sPb-9713 97.1
398 | 4 sPb-2689 97.8
399 | 4 txs1072 97.8
400 | 4 sPb-3858 97.8
401 | 4 umc54 103.6
402 | 4 isu132 106.2
403 | 4 txp41 106.2
404 | 4 txp24 106.2
405 | 4 txp177 106.2
406 | 4 isu35 108
407 | 4 txp327 108
408 | 4 txs604 110.6
409 | 4 sPb-9568 110.6
410 | 4 txp60 120.7
411 | 4 txp51 128.5
412 | 4 txp212 128.5
413 | 4 txs1901 134.7
414 | 4 bcd1427 141.7
415 | 4 sPb-2832 141.7
416 | 4 txs1103 145
417 | 4 txp27 151.1
418 | 4 txp21 153
419 | 4 sPb-8255 155.5
420 | 4 sPb-1711 155.5
421 | 4 sPb-8218 156.1
422 | 4 sPb-4692 156.1
423 | 4 sPb-6098 156.1
424 | 4 sPb-7434 156.8
425 | 4 umc104 164.3
426 | 5 txs2031 0
427 | 5 sPb-0906 7
428 | 5 sPb-8186 8.9
429 | 5 txp65 14.4
430 | 5 sPb-0381 17.3
431 | 5 txp94 24.5
432 | 5 sPb-4313 24.5
433 | 5 sPb-8164 24.5
434 | 5 txs722 26.9
435 | 5 txp115 26.9
436 | 5 txs2072 26.9
437 | 5 txp30 28.9
438 | 5 sPb-9544 32.6
439 | 5 txp303 35.3
440 | 5 umc52 39.3
441 | 5 sPb-2752 44.1
442 | 5 sPb-1253 53.5
443 | 5 sPb-8306 53.5
444 | 5 sPb-1236 55.8
445 | 5 txp225 59.4
446 | 5 isu120 59.4
447 | 5 txp14 62.2
448 | 5 isu65 62.2
449 | 5 isu59 63.5
450 | 5 sPb-5892 63.5
451 | 5 sPb-1047 63.5
452 | 5 sPb-4806 63.5
453 | 5 sPb-5209 63.5
454 | 5 txs387 63.5
455 | 5 txp15 63.5
456 | 5 txp299 63.5
457 | 5 sPb-3845 63.5
458 | 5 txs713 63.5
459 | 5 sPb-0738 64.8
460 | 5 sPb-3766 64.8
461 | 5 sPb-3031 64.8
462 | 5 sPb-7030 73.2
463 | 5 sPb-3817 73.2
464 | 5 sPb-6323 73.2
465 | 5 sPb-7203 73.2
466 | 5 sPb-1454 74.6
467 | 5 txp23 75.9
468 | 5 sPb-1740 91.8
469 | 5 txp123 93.1
470 | 5 sPb-2570 93.1
471 | 5 sPb-9858 93.1
472 | 5 txp262 94.1
473 | 5 txp136 96.1
474 | 5 sPb-1396 104.4
475 | 5 sPb-0873 104.4
476 | 5 sPb-2874 104.4
477 | 5 sPb-1631 117.8
478 | 5 sPb-1794 118.5
479 | 6 sPb-1602 0
480 | 6 txp521 0
481 | 6 sPb-4902 0
482 | 6 sPb-1491 5.6
483 | 6 sPb-2551 17.9
484 | 6 txp6 31.6
485 | 6 cdo718 41.2
486 | 6 BG050402 46
487 | 6 isu142 52.4
488 | 6 sPb-8425 57.9
489 | 6 sPb-2457 57.9
490 | 6 sPb-3837 57.9
491 | 6 umc119 61.2
492 | 6 cup36 70.2
493 | 6 sPb-5030 73.5
494 | 6 isu138 76.8
495 | 6 sPb-2463 80
496 | 6 sPb-1543 85.2
497 | 6 txp145 86.7
498 | 6 umc53 88.4
499 | 6 txs1030 88.4
500 | 6 sPb-1572 89.1
501 | 6 isu58 90.5
502 | 6 txp265 90.5
503 | 6 txp317 90.5
504 | 6 txp274 90.9
505 | 6 txp219 90.9
506 | 6 txp104 90.9
507 | 6 txp97 92.9
508 | 6 sPb-7544 92.9
509 | 6 sPb-9752 92.9
510 | 6 umc34 93.8
511 | 6 txs1546 95.7
512 | 6 sPb-0188 97.9
513 | 6 sPb-8851 100.5
514 | 6 sPb-0255 109.3
515 | 6 txs1173 115.4
516 | 6 sPb-7753 115.4
517 | 6 txp484 115.4
518 | 6 txs1906 115.4
519 | 6 sPb-5230 115.4
520 | 6 bnl10.13.2 117
521 | 6 umc44 117
522 | 6 txp95 125.7
523 | 6 KS1 129.3
524 | 6 sPb-3962 132.8
525 | 6 txs1139 133.4
526 | 6 sPb-5403 134.1
527 | 6 txs1868 134.1
528 | 6 txp176 134.1
529 | 6 sPb-5765 135.5
530 | 6 sPb-7960 135.5
531 | 6 txp57 141
532 | 6 sPb-6526 144
533 | 6 sPb-9736 144
534 | 6 txs2063 144
535 | 6 isu147 145.6
536 | 6 txp17 145.6
537 | 6 sPb-5101 145.6
538 | 6 txs1533 146.4
539 | 6 txs1085 146.4
540 | 6 isu53 146.4
541 | 6 sPb-0477 146.4
542 | 6 sPb-3773 146.4
543 | 6 txs1124 146.4
544 | 6 cup37 146.4
545 | 6 sPb-1623 157.8
546 | 6 isu144 157.8
547 | 7 txp40 0
548 | 7 txp36 7.7
549 | 7 txp418 11.9
550 | 7 txs1674 11.9
551 | 7 sPb-2434 11.9
552 | 7 sPb-8980 14.5
553 | 7 isu139 16.4
554 | 7 txp417 17.7
555 | 7 txp413 18.5
556 | 7 txs1931 26.5
557 | 7 umc85 26.5
558 | 7 txp481 31.8
559 | 7 txp159 38.3
560 | 7 txs1096 44.1
561 | 7 txp312 46.6
562 | 7 sPb-6825 47.9
563 | 7 sPb-2566 54
564 | 7 isu38 54.7
565 | 7 txs1107 64.3
566 | 7 txp227 65.7
567 | 7 sPb-8296 65.7
568 | 7 bcd147 65.7
569 | 7 sPb-0460 67.2
570 | 7 sPb-0571 71.6
571 | 7 sPb-1244 71.6
572 | 7 gap342 71.6
573 | 7 sPb-1414 72.2
574 | 7 sPb-2757 72.2
575 | 7 sPb-7280 72.2
576 | 7 sPb-4874 72.8
577 | 7 sPb-6411 72.8
578 | 7 sPb-7678 72.8
579 | 7 sPb-7944 73.5
580 | 7 sPb-9508 73.5
581 | 7 txs1185.3 73.5
582 | 7 txp278 74.1
583 | 7 sPb-5796 75.6
584 | 7 sPb-6863 75.6
585 | 7 sPb-3541 75.6
586 | 7 sPb-7687 75.6
587 | 7 sPb-9206 75.6
588 | 7 sPb-7135 76.4
589 | 7 txs1563 76.4
590 | 7 umc23 80.5
591 | 7 txp92 87.8
592 | 7 sPb-9007 87.8
593 | 7 sPb-8251 95.9
594 | 7 sPb-6578 105
595 | 7 isu116 105
596 | 7 txs1579 113.6
597 | 7 txs1186 113.6
598 | 7 sPb-7086 118.6
599 | 7 sPb-3691 118.6
600 | 7 sPb-1012 118.6
601 | 7 sPb-5397 123.5
602 | 7 sPb-9365 123.5
603 | 7 txp295 123.5
604 | 7 cup52 126.2
605 | 7 sPb-7549 130.3
606 | 7 txs1554 130.3
607 | 7 txs1185.1 130.3
608 | 7 txs579 131.5
609 | 7 txp168 131.5
610 | 7 sPb-8608 132.8
611 | 8 txp273 0
612 | 8 sPb-9299 7.1
613 | 8 sPb-6589 15.5
614 | 8 sPb-1503 17
615 | 8 bnl3.04 22.4
616 | 8 sPb-7126 28.7
617 | 8 sPb-9818 28.7
618 | 8 sPb-7843 29.4
619 | 8 sPb-3536 29.4
620 | 8 sPb-3396 29.4
621 | 8 txp47 32.1
622 | 8 sPb-3247 40.3
623 | 8 sPb-8260 40.3
624 | 8 txs1185.2 46.2
625 | 8 txp520 46.2
626 | 8 cup47 53.4
627 | 8 isu54 57.6
628 | 8 sPb-8081 57.6
629 | 8 sPb-7027 57.6
630 | 8 sPb-0235 58.2
631 | 8 sPb-0239 58.2
632 | 8 sPb-0645 58.2
633 | 8 txs1440 66.6
634 | 8 sPb-4934 66.6
635 | 8 sPb-4432 66.6
636 | 8 sPb-5746 66.6
637 | 8 umc130 66.6
638 | 8 umc18 66.6
639 | 8 sPb-0380 66.6
640 | 8 sPb-6537 66.6
641 | 8 txs2068 66.6
642 | 8 sPb-0599 66.6
643 | 8 txs1379 66.6
644 | 8 txp210 66.6
645 | 8 rz261 67.6
646 | 8 sPb-0105 67.6
647 | 8 txp292 67.6
648 | 8 txp294 69.3
649 | 8 sPb-9700 72.7
650 | 8 sPb-0258 73.4
651 | 8 txp354 73.4
652 | 8 sPb-7889 74
653 | 8 cdo459 76.1
654 | 8 txs2065 79.6
655 | 8 sPb-1433 79.6
656 | 8 cdo344.1 79.6
657 | 8 sPb-4144 79.6
658 | 8 sPb-0856 80.2
659 | 8 sPb-7312 82.1
660 | 8 txp18 86.8
661 | 8 sPb-7375 86.8
662 | 8 txp516 86.8
663 | 8 sPb-1881 86.8
664 | 8 txp321 86.8
665 | 8 txs560 88.5
666 | 8 txp250 88.5
667 | 8 txs1220 89.7
668 | 8 txp105 97.7
669 | 8 sPb-7823 104.3
670 | 8 sPb-0159 104.3
671 | 8 txs1294 104.3
672 | 8 isu146 109.2
673 | 8 sPb-2846 109.2
674 | 8 sPb-4073 109.2
675 | 8 sPb-8931 109.2
676 | 8 sPb-7369 109.2
677 | 8 sPb-9584 109.2
678 | 8 BH245773 110.9
679 | 8 cup31 110.9
680 | 8 gap34 110.9
681 | 8 txs1353 110.9
682 | 8 sPb-0289 111.6
683 | 8 sPb-8993 116.5
684 | 9 isu140 0
685 | 9 umc134 0
686 | 9 cdo393 0
687 | 9 cdo542 0
688 | 9 sPb-6678 8
689 | 9 sPb-4522 8
690 | 9 txs1102 8
691 | 9 rz206 8
692 | 9 umc132 22.4
693 | 9 sPb-8716 22.4
694 | 9 cdo89 35.9
695 | 9 umc38 35.9
696 | 9 txp339 35.9
697 | 9 sPb-2670 43
698 | 9 sPb-6403 43
699 | 9 sPb-8319 43
700 | 9 sPb-9989 56.3
701 | 9 bcd454 63.9
702 | 9 sPb-1324 63.9
703 | 9 dhn2 63.9
704 | 9 sPb-8873 63.9
705 | 9 sPb-6852 63.9
706 | 9 sPb-4786 63.9
707 | 9 txs1383 63.9
708 | 9 sPb-9306 67.2
709 | 9 txp10 67.2
710 | 9 txs943 67.2
711 | 9 AW679255 67.2
712 | 9 cup02 67.2
713 | 9 sPb-9158 67.2
714 | 9 sPb-0326 75.8
715 | 9 sPb-5887 75.8
716 | 9 sBAC120 75.8
717 | 9 txp67 87.9
718 | 9 txp230 90.1
719 | 9 txp287 90.1
720 | 9 txp258 90.1
721 | 9 txp411 95.1
722 | 9 umc64 104.6
723 | 9 txp412 105.5
724 | 9 txs1150 105.5
725 | 9 cdo580 110.4
726 | 9 txp410 110.4
727 | 9 txp459 120.4
728 | 9 sPb-8368 123.1
729 | 9 sPb-7955 123.1
730 | 9 sPb-9091 123.1
731 | 9 sPb-7367 123.1
732 | 9 txp358 123.1
733 | 9 txs1703 123.1
734 | 9 rz390 128.9
735 | 9 umc12 128.9
736 | 9 txp289 132.3
737 | 10 sPb-2041 0
738 | 10 sPb-4129 4.4
739 | 10 sPb-0600 4.4
740 | 10 cdo590 6.5
741 | 10 AP2 9.4
742 | 10 sPb-4427 10.65
743 | 10 txs1078 11.9
744 | 10 AD12 13.1
745 | 10 cdo475 14.3
746 | 10 txs1163 22.2
747 | 10 isu136 32.9
748 | 10 sPb-0088 34.35
749 | 10 umc113 35.8
750 | 10 sPb-5005 62.6
751 | 10 sPb-3432 36.4
752 | 10 sPb-2193 36.4
753 | 10 sPb-0248 36.4
754 | 10 txs558 43.9
755 | 10 umc110 47.9
756 | 10 sPb-7473 51.2
757 | 10 cdo17 55.5
758 | 10 sPb-0668 57.85
759 | 10 umc21 55.75
760 | 10 txp20 53.7
761 | 10 txp309 55.75
762 | 10 txp331 56
763 | 10 txp270 55.75
764 | 10 bnl7.24 57.4
765 | 10 txp217 57.85
766 | 10 sPb-7173 58.7
767 | 10 txs1923 57.85
768 | 10 txp130 57.85
769 | 10 txs1929 57.85
770 | 10 sPb-4521 52
771 | 10 sPb-1938 59.65
772 | 10 txs1106 59.65
773 | 10 sPb-3696 61
774 | 10 sPb-5834 61.7
775 | 10 rz476 62.4
776 | 10 txs443 150.9
777 | 10 bnl5.04 68.7
778 | 10 gap1 78.3
779 | 10 cdo400 79.7
780 | 10 umc150 86.7
781 | 10 sPb-0859 87.55
782 | 10 txs236 87.55
783 | 10 txs1684 88.4
784 | 10 umc218 89.3
785 | 10 sPb-4539 91.3
786 | 10 txs758 102.6
787 | 10 txp141 105.6
788 | 10 isu162 108.6
789 | 10 cup43 103.1
790 | 10 isu45 109.2
791 | 10 txs664 109.8
792 | 10 cup07 115.2
793 |
--------------------------------------------------------------------------------
/DATA/WHEAT_MACAF/CLEAN/Kofa_svevo:
--------------------------------------------------------------------------------
1 | real wmc95.1A X0
2 | 1A wmc24-1A 5.6
3 | 1A gwm772-1A 8.2
4 | 1A wmc469-1A 20.9
5 | 1A barc145-1A 21.2
6 | 1A gwm164-1A 21.7
7 | 1A barc158-1A 21.7
8 | 1A gwm1139-1A 22.5
9 | 1A barc287-1A 23.3
10 | 1B gwm550-1B 0
11 | 1B gwm33-1B 4.9
12 | 1B gwm374-1B 7.9
13 | 1B wmc85a-1B 8.2
14 | 1B barc128a-1B 12.8
15 | 1B gwm1100-1B 23.6
16 | 1B wmc500a-1B 28.1
17 | 1B wmc230-1B 31.3
18 | 1B barc8-1B 31.8
19 | 1B barc119-1B 33.3
20 | 1B gwm413-1B 36.5
21 | 1B cfd65-1B 42.1
22 | 1B gwm903-1B 42.9
23 | 1B gwm759-1B 47.3
24 | 1B gwm762-1B 47.6
25 | 1B gwm947-1B 47.8
26 | 1B ksum28-1B 50.3
27 | 1B gwm131-1B 55.6
28 | 1B barc181-1B 55.8
29 | 1B gpw93013-1B 90.7
30 | 1B barc61-1B 91
31 | 1B cfd48-1B 94.3
32 | 1B gwm806-1B 104.8
33 | 1B gwm153-1B 114
34 | 1B barc81-1B 114
35 | 1B gwm268-1B 115.5
36 | 1B gwm124-1B 117.5
37 | 1B barc188-1B 117.5
38 | 1B wmc59-1B 167.5
39 | 1B gwm1355-1B 168.4
40 | 1B barc80-1B 168.6
41 | 1B wmc728-1B 168.6
42 | 2A Ppd-A1-2A 0
43 | 2A cfa2201-2A 2.5
44 | 2A wmc522-2A 18
45 | 2A gwm1115-2A 21.6
46 | 2A gwm122-2A 24.3
47 | 2A gwm275-2A 28.6
48 | 2A gwm1045-2A 36.9
49 | 2B gwm429a-2B 0
50 | 2B gwm410-2B 0.6
51 | 2B gwm148-2B 1.9
52 | 2B gwm128-2B 2.1
53 | 2B barc55-2B 7
54 | 2B barc40-2B 7
55 | 2B barc101-2B 42
56 | 2B gwm1249-2B 44.4
57 | 2B wmc175-2B 46
58 | 2B gwm47-2B 49.7
59 | 2B gwm877-2B 51.3
60 | 2B gwm4947-2B 56.6
61 | 2B gwm1300-2B 57.2
62 | 2B wmc332-2B 62
63 | 2B gpw4043-2B 63.2
64 | 2B gwm1070-2B 65.6
65 | 2B gwm1354-2B 90.3
66 | 2B gwm4020-2B 93.8
67 | 2B gwm4888-2B 94
68 | 2B gwm1399-2B 96.3
69 | 2B CK162551-2B 102.1
70 | 2B gwm4110-2B 102.8
71 | 2B gwm1027-2B 102.8
72 | 2B gpw4474-2B 102.8
73 | 2B gwm1325-2B 102.8
74 | 2B CJ577969-2B 103.1
75 | 2B gwm846-2B 103.8
76 | 2B BG313362-2B 104.1
77 | 2B gwm4828-2B 105.6
78 | 2B BF474250-2B 112.4
79 | 2B wmc361-2B 112.9
80 | 3A barc86-3A 0
81 | 3A gwm779a-3A 1.5
82 | 3A gwm1620-3A 17.3
83 | 3A gwm133-3A 21.4
84 | 3A gwm1159a-3A 38.9
85 | 3A gwm10-3A 39.4
86 | 3B cfp3236-3B 0
87 | 3B gwm389-3B 0
88 | 3B cfp132-3B 2.1
89 | 3B gwm1034-3B 2.8
90 | 3B cft5057-3B 3.9
91 | 3B cft5014-3B 3.9
92 | 3B cft5005-3B 5.7
93 | 3B cft5036-3B 5.7
94 | 3B cft5000-3B 5.7
95 | 3B cft5006-3B 5.7
96 | 3B cft5021-3B 6.2
97 | 3B cft5034a-3B 6.2
98 | 3B cft5055-3B 6.2
99 | 3B cft5008-3B 6.2
100 | 3B barc133-3B 7.8
101 | 3B cfb6008-3B 9.8
102 | 3B umn10-3B 9.8
103 | 3B cfb6011-3B 9.8
104 | 3B cfb6060-3B 10.6
105 | 3B cfb6018-3B 10.8
106 | 3B cfp5075-3B 10.8
107 | 3B cfb6057-3B 11.9
108 | 3B cfb6116-3B 11.9
109 | 3B cfb6127-3B 11.9
110 | 3B cfb6058-3B 11.9
111 | 3B cfp5080-3B 11.9
112 | 3B cfb6059-3B 12.1
113 | 3B cfb6045-3B 12.1
114 | 3B cfb6043-3B 12.3
115 | 3B cfb6128-3B 12.3
116 | 3B cfp5078-3B 12.3
117 | 3B cfb6021-3B 13.1
118 | 3B cfp78-3B 15
119 | 3B cfp60-3B 15
120 | 3B cs-ssr7-3B 15.3
121 | 3B gwm493-3B 15.6
122 | 3B gpw7774-3B 19.5
123 | 3B barc102b-3B 38.6
124 | 3B barc218-3B 39.4
125 | 3B gwm779-3B 39.4
126 | 3B wmc505-3B 40.9
127 | 3B gwm420-3B 48.9
128 | 3B cfd4-3B 50
129 | 3B gwm685b-3B 50.8
130 | 3B barc203-3B 66.2
131 | 3B barc164-3B 79.5
132 | 3B gwm131-3B 88
133 | 3B gwm802-3B 92.5
134 | 3B barc115a-3B 100.4
135 | 3B ksum157-3B 113.6
136 | 3B barc84a-3B 127.5
137 | 3B wmc326-3B 129.3
138 | 4A gwm894-4A 0
139 | 4A gwm265-4A 8.7
140 | 4A wmc468-4A 9.5
141 | 4A wmc336-4A 9.5
142 | 4A wmc283-4A 11.1
143 | 4A wmc262-4A 37.6
144 | 4A cfd31a-4A 39.6
145 | 4A gwm1694-4A 63
146 | 4A barc78a-4A 65.4
147 | 4A wmc219-4A 67.9
148 | 4A wmc313-4A 69
149 | 4B wmc710-4B 0
150 | 4B barc193-4B 0.2
151 | 4B gwm1278-4B 11
152 | 4B gwm368-4B 18.4
153 | 4B wmc48-4B 22.6
154 | 4B gwm1084-4B 22.6
155 | 5A barc165a-5A 0
156 | 5A barc360a-5A 7.8
157 | 5A barc141-5A 9.8
158 | 5A gwm1236-5A 25.4
159 | 5A barc197-5A 25.8
160 | 5A ksum024-5A 25.8
161 | 5A gwm1570a-5A 29.6
162 | 5A cfa2141a-5A 48
163 | 5B barc128a-5B 0
164 | 5B gwm843-5B 0.3
165 | 5B barc74-5B 4
166 | 5B gwm213-5B 5.1
167 | 5B gwm335-5B 5.9
168 | 5B dupw205b-5B 14.4
169 | 5B gwm371-5B 16.9
170 | 5B wmc537-5B 18.1
171 | 5B cfd7-5B 85.2
172 | 5B gwm408a-5B 91.3
173 | 5B barc232-5B 93
174 | 5B barc142-5B 93
175 | 6A gwm1009-6A 0
176 | 6A gwm1296-6A 9.9
177 | 6A barc37-6A 21.3
178 | 6A gwm786a-6A 27.6
179 | 6A gwm356-6A 32.8
180 | 6A barc1077-6A 35.7
181 | 6A gwm1150-6A 57.2
182 | 6A gwm1017-6A 75.2
183 | 6A gwm1089-6A 91.8
184 | 6B dupw217-6B 0
185 | 6B gwm613-6B 2.6
186 | 6B wmc494-6B 52.6
187 | 6B barc14-6B 54.1
188 | 6B gwm518-6B 54.1
189 | 6B barc1169-6B 58.3
190 | 6B barc198-6B 67.4
191 | 6B gwm88-6B 67.4
192 | 6B gwm816-6B 67.7
193 | 6B gwm193-6B 70
194 | 6B cnl64-6B 70.6
195 | 6B gwm107-6B 72.8
196 | 6B gwm1682-6B 117.8
197 | 6B barc24-6B 118.5
198 | 6B gwm889-6B 127.6
199 | 6B gwm219-6B 129.9
200 | 6B barc134-6B 153.9
201 | 6B gwm1486-6B 156.6
202 | 6B wmc621-6B 160.5
203 | 7A wmc479a-7A 0
204 | 7A gwm1187-7A 0
205 | 7A wmc179-7A 0.5
206 | 7A cfa2028-7A 3.5
207 | 7A barc174-7A 24.6
208 | 7A gwm1065-7A 25.3
209 | 7A wmc65-7A 51.3
210 | 7A gwm4-7A 61
211 | 7A barc29-7A 65.3
212 | 7A gwm276-7A 79.8
213 | 7A cfa2123a-7A 81.8
214 | 7B gwm569-7B 0
215 | 7B barc1005b-7B 7.8
216 | 7B gwm400-7B 19.6
217 | 7B gwm573-7B 33.2
218 | 7B wmc182-7B 33.2
219 | 7B gwm1184-7B 41.5
220 | 7B gwm3019-7B 45
221 | 7B wmc546-7B 46
222 | 7B gwm46-7B 52.1
223 | 7B barc72a-7B 56.6
224 | 7B gwm297-7B 58.3
225 | 7B gwm871-7B 59.2
226 | 7B gwm1173-7B 59.9
227 | 7B gwm333-7B 67.6
228 | 7B gwm897-7B 68.1
229 | 7B wmc396-7B 77.5
230 | 7B barc176-7B 77.7
231 | 7B gwm767-7B 112.7
232 | 7B wmc517-7B 114
233 | 7B gwm611-7B 159
234 | 7B gwm783-7B 159.5
235 | 7B wmc273-7B 165.4
236 | 7B cfa2040a-7B 165.4
237 | 7B barc32a-7B 167
238 | 7B barc50-7B 169.3
239 | 7B barc182-7B 171.1
240 | 7B Psyb-B1-7B 174.3
241 | 7B gwm146-7B 175.5
242 | 7B ubw18b-7B 177.9
243 | 7B cfa2257-7B 179
244 |
--------------------------------------------------------------------------------
/DATA/WHEAT_MACAF/CLEAN/Langdon_G1816:
--------------------------------------------------------------------------------
1 | real MARKER CM_.Haldane.
2 | 1A wPt-9757-1A 0
3 | 1A gwm357-1A 6.8
4 | 1A wmc333-1A 17.9
5 | 1A gwm1111-1A 21.1
6 | 1A gwm752b-1A 29.8
7 | 1A gwm691-1A 32.7
8 | 1A cfa2158A-1A 38.8
9 | 1A gwm3083-1A 42.3
10 | 1A wPt-4666-1A 47.8
11 | 1A wPt-0512-1A 54.9
12 | 1A gwm905-1A 60.6
13 | 1A gwm750-1A 60.6
14 | 1A wPt-11572-1A 64
15 | 1A wPt-4399-1A 74.4
16 | 1A wmc254-1A 76.5
17 | 1A 306333-1A 94.7
18 | 1A wPt-11558-1A 107.7
19 | 1B wPt-0983-1B 0
20 | 1B wPt-0308-1B 1.1
21 | 1B barc128b-1B 5
22 | 1B wPt-0655-1B 10.8
23 | 1B wPt-1139-1B 15
24 | 1B cfa2158b-1B 22.9
25 | 1B gwm752-1B 36.3
26 | 1B gwm413-1B 40.2
27 | 1B wPt-2694-1B 42.7
28 | 1B wPt-11532-1B 44.8
29 | 1B wPt-9283-1B 45.9
30 | 1B gwm18-1B 49.7
31 | 1B gwm926-1B 51.7
32 | 1B gwm1120-1B 54.6
33 | 1B gwm947-1B 56.9
34 | 1B wPt-3451-1B 66.6
35 | 1B wPt-11513-1B 73.6
36 | 1B wPt-6042-1B 75.6
37 | 1B wPt-6690-1B 77.3
38 | 1B wPt-0506-1B 79.6
39 | 1B gwm806-1B 85.8
40 | 1B wPt-11517-1B 135.8
41 | 1B wPt-1973-1B 136.4
42 | 1B gwm818-1B 137.9
43 | 2A gwm1176-2A 0
44 | 2A wPt-3611-2A 0.4
45 | 2A wPt-6245-2A 1.5
46 | 2A gwm339-2A 1.5
47 | 2A gwm275-2A 2.3
48 | 2A gwm95a-2A 4.9
49 | 2A gwm372-2A 5.9
50 | 2A gwm473-2A 9
51 | 2A wPt-8216-2A 10.2
52 | 2A gwm1054-2A 37
53 | 2A gwm445-2A 52.4
54 | 2A wPt-8427-2A 57.8
55 | 2A tPt-3136-2A 71.9
56 | 2A wPt-4855-2A 83
57 | 2A gwm1256-2A 101
58 | 2A gwm526-2A 106.5
59 | 2A ksum193-2A 115.9
60 | 2A wPt-6064-2A 122.5
61 | 2B gwm614-2B 0
62 | 2B wPt-3592-2B 0.8
63 | 2B wPt-11501-2B 11.3
64 | 2B wPt-8404-2B 19.4
65 | 2B wPt-4664-2B 23.8
66 | 2B wPt-11518-2B 25.4
67 | 2B wPt-7932-2B 29.1
68 | 2B wPt-8097-2B 30.5
69 | 2B wPt-6199-2B 44.7
70 | 2B wPt-7757-2B 46
71 | 2B wPt-1064-2B 49.6
72 | 2B gwm410-2B 51.1
73 | 2B gwm374-2B 66
74 | 2B gwm1177-2B 70
75 | 2B gwm1249-2B 88.4
76 | 2B wPt-11586-2B 95.9
77 | 2B wPt-11561-2B 97.6
78 | 2B wPt-1294-2B 99.2
79 | 2B wPt-0489-2B 100.6
80 | 2B wPt-0694-2B 107.4
81 | 2B wPt-6894-2B 130.2
82 | 2B wPt-2929a-2B 139.4
83 | 2B wPt-6643-2B 146.7
84 | 2B wPt-2135-2B 150.4
85 | 2B wPt-6522-2B 154.1
86 | 2B gwm4828-2B 155.1
87 | 3A gwm32a-3A 0
88 | 3A gwm133-3A 0.8
89 | 3A gwm720-3A 2.8
90 | 3A gwm1159b-3A 11.1
91 | 3A gwm1121-3A 13.5
92 | 3A wPt-8104-3A 13.9
93 | 3A wPt-1092-3A 65.3
94 | 3A gwm155a-3A 73
95 | 3A gwm1217-3A 74.3
96 | 3A wPt-5173-3A 80.8
97 | 3A wPt-1339-3A 99.4
98 | 3A wPt-1888-3A 103
99 | 3A wPt-4545-3A 103.9
100 | 3A wPt-9160-3A 110.5
101 | 3A gwm1229-3A 111.6
102 | 3B gwm389-3B 0
103 | 3B gwm493-3B 1.9
104 | 3B wPt-0267-3B 10.4
105 | 3B wPt-8828-3B 16.6
106 | 3B wPt-0250-3B 18.7
107 | 3B wPt-2830-3B 21
108 | 3B wPt-2766-3B 22.3
109 | 3B wPt-1612-3B 27.6
110 | 3B wPt-6945-3B 38.2
111 | 3B wPt-11570-3B 44.3
112 | 3B gwm685a-3B 47.4
113 | 3B gwm77-3B 48.3
114 | 3B gwm376-3B 50.4
115 | 3B gwm1015-3B 51.7
116 | 3B gwm1029-3B 63.2
117 | 3B gwm1005-3B 64.4
118 | 3B gwm853-3B 109.4
119 | 3B wPt-0384-3B 110.2
120 | 3B wPt-9577-3B 112.6
121 | 3B wPt-9049-3B 120.8
122 | 3B gwm705-3B 122.5
123 | 3B wPt-2491-3B 134
124 | 3B wPt-8363-3B 138.7
125 | 3B wPt-8752-3B 140.1
126 | 3B wPt-4194-3B 144.7
127 | 3B wPt-5943-3B 149.6
128 | 3B gwm1266-3B 153.8
129 | 3B wPt-4991-3B 159
130 | 3B wPt-0665-3B 161.8
131 | 3B wPt-1151-3B 166.3
132 | 3B gwm181-3B 167.2
133 | 4A gwm1093a-4A 0
134 | 4A gwm695-4A 10.6
135 | 4A gwm610-4A 13.5
136 | 4A dupw4-4A 30.4
137 | 4A gwm265-4A 39.6
138 | 4A gwm637-4A 40.8
139 | 4A wPt-6515-4A 51.1
140 | 4A wPt-7558-4A 62.1
141 | 4A wPt-11573-4A 65.5
142 | 4A wmc262-4A 77.5
143 | 4A gwm1251-4A 81.2
144 | 4A wPt-2129-4A 86.6
145 | 4A wPt-4596-4A 92.1
146 | 4A wPt-0538-4A 95.4
147 | 4A wPt-7821-4A 98.1
148 | 4A wPt-3449-4A 101.9
149 | 4A wPt-7354-4A 102.7
150 | 4A wPt-8657-4A 104.8
151 | 4B wPt-11509-4B 0
152 | 4B wPt-8555-4B 0
153 | 4B wPt-8892-4B 0
154 | 4B gwm3072-4B 1.6
155 | 4B gwm857-4B 4.9
156 | 4B gwm513a-4B 8.1
157 | 4B gwm781-4B 11.6
158 | 4B gwm251-4B 16.8
159 | 4B wPt6209-4B 20.5
160 | 4B wPt-3255-4B 29.6
161 | 4B gwm930-4B 33.3
162 | 4B gwm538-4B 35.2
163 | 5A gwm293-5A 0
164 | 5A gwm156-5A 13
165 | 5A gwm186-5A 20.6
166 | 5A gwm1236-5A 24.3
167 | 5A wmc415a-5A 39.3
168 | 5A wPt-11526-5A 42.2
169 | 5B gwm234a-5B 0
170 | 5B gwm443-5B 0.8
171 | 5B rPt-6127-5B 7.3
172 | 5B gwm1180-5B 20.2
173 | 5B wPt-1951-5B 24.2
174 | 5B wPt-4677-5B 26.1
175 | 5B barc128a-5B 28.4
176 | 5B gwm1108-5B 33.7
177 | 5B gwm371-5B 39.4
178 | 5B gwm831-5B 44.9
179 | 5B gwm499a-5B 48.3
180 | 5B wmc415-5B 58.1
181 | 5B tPt-3719-5B 67.4
182 | 5B wPt-6022-5B 68.3
183 | 5B wPt-3661-5B 74.8
184 | 5B gwm1043-5B 77.3
185 | 5B gwm777-5B 82.2
186 | 5B wPt-0498-5B 87
187 | 5B wPt-1733-5B 95.8
188 | 5B gwm408b-5B 100.2
189 | 5B wPt-5896a-5B 102.6
190 | 5B wPt-11579-5B 126.6
191 | 5B wPt-6880-5B 131.6
192 | 5B wPt-3213-5B 138.9
193 | 5B gwm1016-5B 144.4
194 | 5B wPt-7400-5B 160.9
195 | 5B wPt-11578-5B 165.6
196 | 5B wPt-0837-5B 166
197 | 6A gwm719-6A 0
198 | 6A gwm1573-6A 12.5
199 | 6A gwm786b-6A 43.1
200 | 6A gwm4675-6A 45.1
201 | 6A wPt-7572-6A 92.8
202 | 6A gwm1089-6A 110.8
203 | 6A wPt-3650-6A 117.5
204 | 6A wPt-9000-6A 120.2
205 | 6B wPt-6293-6B 0
206 | 6B wPt-8641-6B 0.8
207 | 6B wPt-1437-6B 12.5
208 | 6B wPt-4900-6B 12.5
209 | 6B wPt-5256-6B 22.7
210 | 6B wPt-8153-6B 27.1
211 | 6B wPt-11542-6B 30.5
212 | 6B wPt-0554a-6B 31.9
213 | 6B wPt-11554-6B 33.4
214 | 6B gwm390-6B 38.9
215 | 6B gwm768-6B 44.1
216 | 6B wPt5333-6B 47.4
217 | 6B wPt-9971-6B 49.7
218 | 6B wPt-11560-6B 52.6
219 | 6B wPt-7846-6B 54.7
220 | 6B gwm518-6B 60.5
221 | 6B barc136-6B 67.3
222 | 6B gwm361-6B 72.3
223 | 6B gwm193-6B 72.3
224 | 6B gwm771-6B 73.4
225 | 6B wPt-7935b-6B 75.9
226 | 6B wPt-11556-6B 79.5
227 | 6B gwm907-6B 90.5
228 | 6B gwm1016-6B 95.3
229 | 6B wPt-8554-6B 100.1
230 | 6B gwm1076-6B 108.3
231 | 6B gwm219-6B 112.1
232 | 6B wPt-1890-6B 135.2
233 | 6B wPt-2162-6B 140.3
234 | 6B wPt-0696-6B 142
235 | 6B wPt-4560-6B 142.9
236 | 6B tPt-9048-6B 142.9
237 | 7A wPt-1163-7A 0
238 | 7A wPt-7214-7A 2.6
239 | 7A wPt-9926-7A 5
240 | 7A wPt-11547-7A 5
241 | 7A gwm871a-7A 8.1
242 | 7A gwm1083-7A 10
243 | 7A wPt-9555-7A 26.5
244 | 7A wPt-11507-7A 30.1
245 | 7A gwm332-7A 49.3
246 | 7A gwm942-7A 67.5
247 | 7A wPt-11553-7A 70.2
248 | 7A gwm1061a-7A 75
249 | 7A gwm698-7A 75
250 | 7B gwm537-7B 0
251 | 7B gwm400-7B 2.8
252 | 7B gwm951-7B 8.9
253 | 7B gwm46-7B 19.8
254 | 7B wPt-2737-7B 25.2
255 | 7B wPt-11565-7B 27.1
256 | 7B gwm983-7B 37.8
257 | 7B wPt-2305-7B 52.2
258 | 7B wPt-3730-7B 55
259 | 7B wPt-11511-7B 56.9
260 | 7B wPt-8417a-7B 56.9
261 | 7B wPt-8233-7B 61.6
262 | 7B wPt-6104a-7B 67.7
263 | 7B wPt-7295a-7B 67.7
264 | 7B cfa2040a-7B 76.1
265 | 7B wPt-5228b-7B 84.4
266 | 7B wPt-11540-7B 85.2
267 | 7B wPt-0465a-7B 89
268 | 7B wPt-8920-7B 89
269 | 7B gwm263-7B 89
270 |
--------------------------------------------------------------------------------
/LEGEND/legend_sheet1.txt:
--------------------------------------------------------------------------------
1 | 1@Select Dataset
2 | 2@The Genetic Map Comparator
3 | 3@The Genetic Map Comparator is a user friendly tool to compare and characterize genetic maps. To use is simply:
4 | 4@upload your maps:
5 | 5@... or select a demo dataset:
6 | 6@then explore your data using the top buttons to navigate through the proposed views
7 | 7@using the top buttons to navigate through the proposed views
8 | 8@project members:
9 | 9@other project members:
10 |
--------------------------------------------------------------------------------
/LEGEND/legend_sheet2.txt:
--------------------------------------------------------------------------------
1 | 1@Summary Statistics
2 | 2@ - Key Statistics (several maps) -
3 | 3@Here you can compare various maps through five key statistics:
4 | 4@ 1. Number of genetic markers, 2. Overall size (in cM), 3. Average gap size between 2 of their markers (cM), 4. Size of their biggest gap (cM) and the number of unique positions.
5 | 5@ - Key Statistics (1 map) -
6 | 6@This table provides five key statistics for the chromosomes of the selected map: 1. their number of genetic markers, 2. their overall size (in cM), 3. the average gap size between 2 of their markers (cM), 4. the size of their biggest gap (cM) and the number of unique positions. This is the usual table you provide when doing a publication involving genetic maps.
7 | 7@ - Marker Density -
8 | 8@Here is a description of marker density along chromosomes. This figure allows to visualize chromosome length variation among maps, and to identify regions with unusually high/low genetic marker density.
9 | 9@Select some maps:
10 | 10@Select some chromosomes:
11 | 11@Select one map:
12 | 12@The donut plot (on the left) summarizes the selected statistic comparison, whereas the bar-plot provides details for every chromosome separately.
13 | 13@Select one feature
--------------------------------------------------------------------------------
/LEGEND/legend_sheet3.txt:
--------------------------------------------------------------------------------
1 | 1@Compare Positions
2 | 2@ - Comparison of Marker Positions -
3 | 3@The main goal of this application is to compare genetic positions of markers from several genetic maps.
4 | 4@Select some maps:
5 | 5@Select one chromosome:
6 | 6@Select maps in the order you want to see them (each new selected map is added on the right).
7 | 7@Common markers between two adjacent maps are linked with lines. Hover markers to get their names. You can also zoom on a specific area, and slide along the Y axis (position in cM). Double-click to come back to the initial view. You can personalize the rendering by choosing line thickness and
8 | 8@The minimal subset of markers that would need to be removed to avoid crossing edges between 2 adjacent maps is detected and represented by grey lines. It is also possible to download the list of these markers.
9 | 9@
10 | 10@
--------------------------------------------------------------------------------
/LEGEND/legend_sheet4.txt:
--------------------------------------------------------------------------------
1 | 1@Interchromosome Analysis
2 | 2@ - Interchromosome Analysis -
3 | 3@The comparison of marker positions can be observed for two maps. Selecting a single chromosome allows to visualize recombination rates between maps. Selecting all chromosomes allows to visualize interchromosome recombinations (i.e. markers not attributed to the same chromosome in the two maps)
4 | 4@Select the first map:
5 | 5@Select the second map:
6 | 6@Select chromosome(s):
7 | 7@
8 | 8@
9 | 9@
10 | 10@
--------------------------------------------------------------------------------
/LEGEND/legend_sheet5.txt:
--------------------------------------------------------------------------------
1 | 1@Raw Data
2 | 2@This table shows the raw marker data (as read from your input file) for the selected map. You can sort rows (i.e. markers) according to i) chromosome/group location, ii) name or iii) position.
3 | 3@Select the reference map:
4 | 4@Select chromosome(s):
5 | 5@You can also search for a specific marker based on its name.
6 | 6@Marker Information and Filtering
7 | 7@It is also possible to remove markers from the analysis. If you want to do so, please type the name of a marker to remove (e.g: ’sPb-601’) or a pattern to remove using regular expressions (e.g. typing ’sPb.*’ will remove all markers starting by sPb). If you want to remove several markers/patterns, separate them with a comma (e.g: ’sPb-601,xbarc-213’). You can also decide to keep only some markers, selecting the ‘keep’ option.
8 | 8@
9 | 9@
10 | 10@
--------------------------------------------------------------------------------
/LEGEND/legend_sheet6.txt:
--------------------------------------------------------------------------------
1 | 1@Help
2 | 2@ - About -
3 | 3@The Genetic Map Comparator allows to easily compare several linear maps (genetic, physical, radiated hybrids). The first step is to upload your maps through the Select Dataset sheet. Three example datasets (from sorghum and wheat) are provided to easily explore the Genetic map comparator features. For a more in depth analysis of your genotyping data (He, FIS, MAF, ..), you may find
4 | 4@Once a dataset is uploaded you can explore it using the various sheets accessible via links at the top of the window. Each sheet helps you to study some specific features of your maps, they allow you to compare your maps via standard statistics (number of markers, average gap size between markers etc.) as well as to obtain a visual representation of your map congruences by plotting marker positions along chromosomes.
5 | 5@ - Input Files -
6 | 6@The Genetic map comparator is able to import map files produced by most commonly used software for linkage analysis (e.g. Carthagene and JoinMap). Each map must be stored in its own file and all data files stored together in one specific folder. Use the upload facility of the home page to browse your local folders and select desired maps using multiple file selection. The column name has no impact but must be ordered correctly (see details and example below) and be separated by either semi-colon (;) or tabulation (\t). Three formats are accepted:
7 | 7@
8 | 8@
9 | 9@
10 | 10@ - Contact -
11 | 11@ - Run the Application Locally -
12 | 12@The Genetic Map Comparator is an R shiny application available online. Uploaded data are NOT kept on the Webserver. However, for confidentiality or better reactivity, it is also easy to run it locally following these steps:
13 | 13@ - 1/
14 | 14@ - 2/ Install the R Shiny library. In the R console type the following commands:
15 | 15@ - 3/ Call the application from its Github repository typing this command in the R console:
16 | 16@ on your computer and open it.
17 | 17@Sharing published maps
18 | 18@Uploaded data are NOT kept on the Webserver, but if you want to share your published data with the community via this Genetic Map Comparator website, please do not hesitate to contact us. We will be glad to add your maps on the list of proposed maps displayed on the home page.
19 | 19@
20 | 20@
21 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | The Genetic Map Comparator
2 | ===================
3 |
4 |
5 | [**Tool working online here**](http://www.agap-sunshine.inra.fr/genmapcomp/)
6 |
7 |
8 | Overview
9 | --------
10 | The Genetic Map Comparator is an R Shiny application made to compare genetic maps.
11 | You can use it trough the [**online version**](http://www.agap-sunshine.inra.fr/genmapcomp/) and read the related publication in [**bioinformatics**](https://academic.oup.com/bioinformatics/article-abstract/33/9/1387/2908431/The-genetic-map-comparator-a-user-friendly?redirectedFrom=fulltext).
12 |
13 | Once your dataset is uploaded you can explore it using the various sheets accessible via links at the top of the window. Each sheet helps you to study some specific features of your maps, they allow you to compare your maps via standard statistics (number of markers, average gap size between markers etc.) as well as to obtain a visual representation of your map congruences by plotting marker positions along chromosomes.
14 |
15 | Here is a screenshot of the main sheets of the app:
16 | 
17 |
18 |
19 | Input Format
20 | --------
21 | The Genetic map comparator is able to import map files produced by most commonly used software for linkage analysis (e.g. [Carthagene](https://www.ncbi.nlm.nih.gov/pubmed/9322047) and [JoinMap](https://www.kyazma.nl/index.php/mc.JoinMap)). Each map must be stored in its own file and all data files stored together in one specific folder. Use the upload facility of the home page to browse your local folders and select desired maps using multiple file selection. The column name has no impact but must be ordered correctly (see details and example below) and be separated by either ‘;’ or tabulation (‘\t’). See an extensive description of the accepted inputs in the [help page](www.agap-sunshine.inra.fr/genmapcomp/) of the online application.
22 |
23 | Local use
24 | --------
25 | For large datasets or privacy concerns, you can use the tool locally.
26 | You need R to be installed on your computer.
27 | Open R and use the code below:
28 | ```
29 | install.packages("shiny")
30 | library(shiny)
31 | runGitHub("GenMap-Comparator","holtzy")
32 | ```
33 |
34 | Local installation
35 | --------
36 | Since local use shows problems for microsoft users, you can install the Genetic Map Comparator on your machine.
37 |
38 | **1.** Download the whole repository
39 |
40 | **2.** Open R and make sure these library are installed:
41 | ```
42 | library(shiny)
43 | library(plotly)
44 | library(ggplot2)
45 | library(DT)
46 | library(shinythemes)
47 | library(shinyAce)
48 | library(RColorBrewer)
49 | library(qualV)
50 | library(colourpicker)
51 | ```
52 | If you miss a library, remember you can install it with:
53 | ```
54 | ìnstall.packages("shiny")
55 | ```
56 |
57 | **3.**
58 | Then, set the working directory and run the App:
59 | ```
60 | setwd("my/path/to/the/github/folder/you/downloaded")
61 | runApp()
62 | ```
63 |
64 | Citing
65 | --------
66 | If you find The Genetic Map Comparator useful, please cite:
67 | The Genetic Map Comparator: a user-friendly application to display and compare genetic maps.
68 | *Yan Holtz, Jacques David, Vincent Ranwez*, **[Bioinformatics (2017) 33(9): 1387–1388](https://www.ncbi.nlm.nih.gov/pubmed/28453680)**
69 |
70 | Members
71 | --------
72 | The genetic map comparator has been developped by 3 researchers from [Montpellier Supagro](www.supagro.fr/):
73 | Yan Holtz: [homepage](https://holtzyan.wordpress.com/)
74 | Jacques David: [homepage](https://www.researchgate.net/profile/Jacques_David4)
75 | Vincent Ranwez: [homepage](https://sites.google.com/site/ranwez/)
76 |
77 | We would like to thank **Cédric Goby** for his help during the shiny server deployment and **François Lechevallier** for developing and maintaining the [website](http://bioweb.supagro.inra.fr/geneticMapComparator/) hosting this tool.
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
--------------------------------------------------------------------------------
/RESSOURCES/Figure1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/Figure1.jpg
--------------------------------------------------------------------------------
/RESSOURCES/INRA_logo - copie.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/INRA_logo - copie.jpg
--------------------------------------------------------------------------------
/RESSOURCES/INRA_logo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/INRA_logo.jpg
--------------------------------------------------------------------------------
/RESSOURCES/LOGO_genmapcomp.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/LOGO_genmapcomp.png
--------------------------------------------------------------------------------
/RESSOURCES/Logo_GenMap_Small.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/Logo_GenMap_Small.png
--------------------------------------------------------------------------------
/RESSOURCES/Logo_supagro.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/Logo_supagro.jpg
--------------------------------------------------------------------------------
/RESSOURCES/donut_function.R:
--------------------------------------------------------------------------------
1 | # The doughnut function permits to draw a donut plot
2 | doughnut <-
3 | function (x, labels = names(x), edges = 200, outer.radius = 0.8,
4 | inner.radius=0.6, clockwise = FALSE,
5 | init.angle = if (clockwise) 90 else 0, density = NULL,
6 | angle = 45, col = NULL, border = FALSE, lty = NULL,
7 | main = NULL, ...)
8 | {
9 | if (!is.numeric(x) || any(is.na(x) | x < 0))
10 | stop("'x' values must be positive.")
11 | if (is.null(labels))
12 | labels <- as.character(seq_along(x))
13 | else labels <- as.graphicsAnnot(labels)
14 | x <- c(0, cumsum(x)/sum(x))
15 | dx <- diff(x)
16 | nx <- length(dx)
17 | plot.new()
18 | pin <- par("pin")
19 | xlim <- ylim <- c(-1, 1)
20 | if (pin[1L] > pin[2L])
21 | xlim <- (pin[1L]/pin[2L]) * xlim
22 | else ylim <- (pin[2L]/pin[1L]) * ylim
23 | plot.window(xlim, ylim, "", asp = 1)
24 | if (is.null(col))
25 | col <- if (is.null(density))
26 | palette()
27 | else par("fg")
28 | col <- rep(col, length.out = nx)
29 | border <- rep(border, length.out = nx)
30 | lty <- rep(lty, length.out = nx)
31 | angle <- rep(angle, length.out = nx)
32 | density <- rep(density, length.out = nx)
33 | twopi <- if (clockwise)
34 | -2 * pi
35 | else 2 * pi
36 | t2xy <- function(t, radius) {
37 | t2p <- twopi * t + init.angle * pi/180
38 | list(x = radius * cos(t2p),
39 | y = radius * sin(t2p))
40 | }
41 | for (i in 1L:nx) {
42 | n <- max(2, floor(edges * dx[i]))
43 | P <- t2xy(seq.int(x[i], x[i + 1], length.out = n),
44 | outer.radius)
45 | polygon(c(P$x, 0), c(P$y, 0), density = density[i],
46 | angle = angle[i], border = border[i],
47 | col = col[i], lty = lty[i])
48 | Pout <- t2xy(mean(x[i + 0:1]), outer.radius)
49 | lab <- as.character(labels[i])
50 | if (!is.na(lab) && nzchar(lab)) {
51 | lines(c(1, 1.05) * Pout$x, c(1, 1.05) * Pout$y)
52 | text(1.1 * Pout$x, 1.1 * Pout$y, labels[i],
53 | xpd = TRUE, adj = ifelse(Pout$x < 0, 1, 0),
54 | ...)
55 | }
56 | ## Add white disc
57 | Pin <- t2xy(seq.int(0, 1, length.out = n*nx),
58 | inner.radius)
59 | polygon(Pin$x, Pin$y, density = density[i],
60 | angle = angle[i], border = border[i],
61 | col = "white", lty = lty[i])
62 | }
63 |
64 | title(main = main, ...)
65 | invisible(NULL)
66 | }
67 |
--------------------------------------------------------------------------------
/RESSOURCES/tmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/RESSOURCES/tmp
--------------------------------------------------------------------------------
/global.R:
--------------------------------------------------------------------------------
1 |
2 | ################################################
3 | #
4 | # THE GENETIC MAP COMPARATOR
5 | #
6 | ###############################################
7 |
8 |
9 |
10 | # ---- PART1 : Check that the currently-installed version of R is at least the minimum required version.
11 | R_min_version = "3.1"
12 | R_version = paste0(R.Version()$major, ".", R.Version()$minor)
13 | if(compareVersion(R_version, R_min_version) < 0){
14 | stop("You do not have the latest required version of R installed.\n",
15 | "Launch should fail.\n",
16 | "Go to http://cran.r-project.org/ and update your version of R.")
17 | }
18 |
19 |
20 |
21 | # ----- PART2: Install basic required packages if not available/installed.
22 | install_missing_packages = function(pkg, version = NULL, verbose = TRUE){
23 | availpacks = .packages(all.available = TRUE)
24 | #source("http://bioconductor.org/biocLite.R")
25 | missingPackage = FALSE
26 | if(!any(pkg %in% availpacks)){
27 | if(verbose){
28 | message("The following package is missing.\n",
29 | pkg, "\n",
30 | "Installation will be attempted...")
31 | }
32 | missingPackage <- TRUE
33 | }
34 | if(!is.null(version) & !missingPackage){
35 | # version provided and package not missing, so compare.
36 | if( compareVersion(a = as.character(packageVersion(pkg)),
37 | b = version) < 0 ){
38 | if(verbose){
39 | message("Current version of package\n",
40 | pkg, "\t",
41 | packageVersion(pkg), "\n",
42 | "is less than required.
43 | Update will be attempted.")
44 | }
45 | missingPackage <- TRUE
46 | }
47 | }
48 | if(missingPackage){
49 | #biocLite(i, suppressUpdates = TRUE)
50 | print(pkg)
51 | print(paste("---- installing a more recent version of",pkg,sep=""))
52 | install.packages(pkg, repos = "http://cran.r-project.org") }
53 | }
54 |
55 |
56 | # PART3: --- Define list of package names and required versions.
57 | deppkgs = c(shiny="0.14.2", plotly = "4.5.6", ggplot2 = "2.2.0", DT="0.2", shinythemes="1.1", shinyAce="0.2.1", RColorBrewer="1.1.2", qualV="0.3.2", colourpicker="0.2", gtools="3.5.0")
58 |
59 | # Loop on package check, install, update
60 | pkg1 = mapply(install_missing_packages,
61 | pkg = names(deppkgs),
62 | version = deppkgs,
63 | MoreArgs = list(verbose = TRUE),
64 | SIMPLIFY = FALSE,
65 | USE.NAMES = TRUE)
66 |
67 |
68 |
69 | ################################################################################
70 | # Load packages that must be fully-loaded
71 | ################################################################################
72 | for(i in names(deppkgs)){
73 | library(i, character.only = TRUE)
74 | message(i, " package version:\n", packageVersion(i))
75 | }
76 | ################################################################################
77 |
78 | # In this file, I add all functions / file / parameters that are NOT reactive and that are common to ui.R and server.R
79 | # It is my global environment !
80 |
81 |
82 | # == Check if libraries are available. install it if not.
83 | #getPckg <- function(pckg) install.packages(pckg, repos = "http://cran.r-project.org")
84 | #for(i in c("shiny","plotly","DT","RColorBrewer","shinyAce","shinythemes","qualV")){
85 | # pckg = try(require(i, character.only = TRUE))
86 | # if(!pckg) {
87 | # getPckg(i)
88 | #}}
89 |
90 |
91 | # == load Libraries
92 | #library(shiny)
93 | #library(plotly)
94 | #library(DT)
95 | #library(RColorBrewer)
96 | #library(shinyAce)
97 | #library(shinythemes)
98 | #library(qualV)
99 |
100 | # == Colors for the App :
101 | my_colors=brewer.pal( 12 , "Set3")[-2]
102 |
103 | # == Get the legends
104 | legend1=read.table("LEGEND/legend_sheet1.txt",sep="@")[,2]
105 | legend2=read.table("LEGEND/legend_sheet2.txt",sep="@")[,2]
106 | legend3=read.table("LEGEND/legend_sheet3.txt",sep="@")[,2]
107 | legend4=read.table("LEGEND/legend_sheet4.txt",sep="@")[,2]
108 | legend5=read.table("LEGEND/legend_sheet5.txt",sep="@")[,2]
109 | legend6=read.table("LEGEND/legend_sheet6.txt",sep="@")[,2]
110 |
111 | # == Functions
112 | # Donut plot
113 | source("RESSOURCES/donut_function.R")
114 |
115 | # == Set the size of the logo of partners
116 | grand=1.5
117 |
118 |
--------------------------------------------------------------------------------
/server.R:
--------------------------------------------------------------------------------
1 |
2 |
3 | ################################################
4 | #
5 | # THE GENETIC MAP COMPARATOR
6 | #
7 | ###############################################
8 |
9 |
10 |
11 |
12 | shinyServer(function(input, output, session) {
13 |
14 |
15 |
16 |
17 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
18 |
19 | #-----------------------------------------------------------------------------
20 | # --- ALLOWS USER TO DOWNLOAD EXAMPLE DATASET
21 | #-----------------------------------------------------------------------------
22 |
23 |
24 | # format OneMap
25 | output$load_ex_format1 <- downloadHandler(
26 | filename = "GenMapComp_Example1.csv",
27 | content <- function(file) {
28 | file.copy("DATA/EX_HELP_PAGE/Example_Data_Set1.csv", file)
29 | }
30 | )
31 |
32 |
33 | #format Mapchart
34 | output$load_ex_format2 <- downloadHandler(
35 | filename = "GenMapComp_Example2.csv",
36 | content <- function(file) {
37 | file.copy("DATA/EX_HELP_PAGE/Example_Data_Set2.csv", file)
38 | }
39 | )
40 |
41 | #format Carthagène
42 | output$load_ex_format3 <- downloadHandler(
43 | filename = "GenMapComp_Example3.csv",
44 | content <- function(file) {
45 | file.copy("DATA/EX_HELP_PAGE/Example_Data_Set3.csv", file)
46 | }
47 | )
48 |
49 |
50 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
61 |
62 | #-----------------------------------------------------------------------------
63 | # --- UPLOAD MAPS AND FILE FORMATING
64 | #-----------------------------------------------------------------------------
65 |
66 |
67 |
68 |
69 | # 0/ --- Selection of the data set: default dataset / Example dataset / Chosen dataset
70 | inFile=reactive({
71 |
72 | # Cleaning
73 | rm(list=ls())
74 | my_global_old_choice <- c(3)
75 |
76 |
77 | # If nothing is choosen I take the chosen exemple dataset
78 | if ( is.null(input$file1)) {
79 |
80 | # So no error message needed
81 | output$error_message<- renderUI({ helpText("") })
82 |
83 | if( input$file2=="sorghum (Mace et al. 2009)" | is.null(input$file2)){ inFile=data.frame(name=as.character(c("CIRAD","S2","S4","S5","S6","TAMU")) , datapath=as.character(c("DATA/SORGHUM/CIRAD", "DATA/SORGHUM/S2" , "DATA/SORGHUM/S4" , "DATA/SORGHUM/S5" , "DATA/SORGHUM/S6" , "DATA/SORGHUM/TAMU" )) ) }
84 | else if( input$file2=="wheat (Maccaferri et al. 2015)"){ inFile=data.frame(name=as.character(c("Ben_Pi41025","Colosseo_Lloyd","Kofa_svevo","Langdon_G1816","Latino_MG5323","Mohawk_Cocorrit69","Simeto_Levante")) , datapath=as.character(c("DATA/WHEAT_MACAF/CLEAN/Ben_Pi41025", "DATA/WHEAT_MACAF/CLEAN/Colosseo_Lloyd" , "DATA/WHEAT_MACAF/CLEAN/Kofa_svevo", "DATA/WHEAT_MACAF/CLEAN/Langdon_G1816", "DATA/WHEAT_MACAF/CLEAN/Latino_MG5323", "DATA/WHEAT_MACAF/CLEAN/Mohawk_Cocorrit69", "DATA/WHEAT_MACAF/CLEAN/Simeto_Levante" )) ) }
85 | else if( input$file2=="wheat (Holtz et al. 2016)"){ inFile=data.frame(name=as.character(c("map_DS","map_DL","map_consensus","physical_position")) , datapath=as.character(c("DATA/WHEAT_TRAM/map_DS","DATA/WHEAT_TRAM/map_DL","DATA/WHEAT_TRAM/map_consensus","DATA/WHEAT_TRAM/physical_position" )) ) }
86 |
87 |
88 | # If the user proposes a dataset:
89 | }else{
90 |
91 | # I have to check if the proposed fileS ARE readable and in the good format!
92 | mistake_presence=FALSE
93 | output$error_message<- renderUI({ helpText("") })
94 |
95 | # I need at least 2 files
96 | if( length(input$file1$datapath)<2 ){
97 | mistake_presence=TRUE
98 | output$error_message<- renderUI({ helpText("Please select at least 2 maps" , style="color:red ; font-family: 'times'; font-size:13pt") })
99 |
100 | # If I have at least 2 maps, I check them one by one:
101 | }else{
102 | for(i in c(input$file1$datapath)) {
103 |
104 | # I try to read the file
105 | a=try(read.table(i, header=T , dec="." ,na.strings="NA"))
106 |
107 | # if the file is NOT readable by R
108 | if(class(a)=="try-error"){
109 | mistake_presence=TRUE
110 | output$error_message<- renderUI({ helpText("File input is not readable by R. Is it a genetic map?" , style="color:red ; font-family: 'times'; font-size:13pt") })
111 | break
112 |
113 | # if the file does not have 2 or 3 columns
114 | }else{
115 | if( !ncol(a)%in%c(1,2,3) & nrow(a)!=0 ){
116 | mistake_presence=TRUE
117 | output$error_message<- renderUI({ helpText("One of your file does not have 2 nor 3 columns" , style="color:red ; font-family: 'times'; font-size:13pt") })
118 | break
119 | }}}
120 |
121 |
122 | }
123 |
124 | # So if there is a mistake in the proposed files, I keep sorghum as an example. Else I take the proposed files
125 | if( mistake_presence==TRUE){
126 | inFile=data.frame(name=as.character(c("CIRAD","S2","S4","S5","S6","TAMU")) , datapath=as.character(c("DATA/SORGHUM/CIRAD", "DATA/SORGHUM/S2" , "DATA/SORGHUM/S4" , "DATA/SORGHUM/S5" , "DATA/SORGHUM/S6" , "DATA/SORGHUM/TAMU" )) )
127 | }else{
128 | inFile <- input$file1
129 | }
130 |
131 | }
132 |
133 | })
134 |
135 | # Check if it worked properly
136 | #observe({ print("Mon inFile") ; print ( inFile() ) ; print("--") })
137 |
138 |
139 |
140 |
141 |
142 |
143 | # 1/ --- Catch the map names we have to compare :
144 | MY_map_files=reactive({
145 |
146 | # List of map files:
147 | map_files=as.list(inFile()$name)
148 | # return this list, but do not forget to format it:
149 | return(as.character(unlist(map_files)))
150 | })
151 |
152 | # Check if it worked properly
153 | #observe({ print("mes maps selectionnées") ; print ( MY_map_files()) ; print("test widget selection") ; selected=c(MY_map_files()[1],MY_map_files()[2]) ; print(selected) })
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 | # 2/ --- Load every maps and add their content in a list.
162 | MY_maps=reactive({
163 |
164 |
165 | # I am reactive to the selection of input files !
166 | inFile=inFile()
167 |
168 | # Read and format maps one by one, and add them to a list:
169 | my_maps=list()
170 | for(i in inFile$datapath){
171 |
172 | # Load the map
173 | map_tmp=read.table(i , header=T , dec="." ,na.strings="NA")
174 |
175 | # If I have only 1 column, the separator was wrong, I try with ";":
176 | if(ncol(map_tmp)==1){
177 | map_tmp=read.table(i , header=T , dec="." ,na.strings="NA" , sep=";")
178 | }
179 |
180 | # If I have 2 columns, It is the MAPCHART format --> I need to reformat it!
181 | if(ncol(map_tmp)==2){
182 | junctions=c(1, as.numeric(row.names(map_tmp[map_tmp[,1]=="group" , ])), nrow(map_tmp)+1 )
183 | nb_rep=junctions[-1] - junctions[-length(junctions)]
184 | LG_names=c(colnames(map_tmp)[2] , as.character(map_tmp[map_tmp[,1]=="group" , 2]) )
185 | map_tmp$new=rep(LG_names , times=nb_rep)
186 | map_tmp=map_tmp[map_tmp[,1]!="group" , ]
187 | map_tmp=map_tmp[ , c(3,1,2)]
188 | }
189 |
190 |
191 | # If I have only 0 line, it is the CARTHAGENE Format --> I need to reformat it!
192 | if(nrow(map_tmp)==0){
193 | tmp_data=read.table(i , header=F , sep=" ")
194 | tmp_data=apply(tmp_data, 2 , as.character)
195 | tmp_data=gsub("\\}" , "" , tmp_data )
196 | tmp_data=tmp_data[-c(1,2)]
197 | map_tmp=data.frame(matrix(0, length(tmp_data), 3))
198 | num=0
199 | for(k in tmp_data){
200 | # If the LG changes, I change my "LG" variable, and num1 back to -2
201 | if( substr(k,1,1) == "{" ){
202 | LG=gsub("\\{","",k)
203 | num1=-2
204 | }
205 | # For each step of the loop, num1 increases
206 | num1=num1+1
207 | # When I am not reading a LG name (num1=-2) or a likelihood (num1=0), I add stuff in my map_tmp table
208 | # The line number (num) increase only once every 2 iterations
209 | if( num1>0){
210 | num=num+num1%%2
211 | map_tmp[num,1]=LG
212 | map_tmp[num,num1%%2+2]=k
213 | }}
214 | # Clean this map_tmp
215 | map_tmp=map_tmp[ c(1:num) , c(1,3,2)]
216 | }
217 |
218 |
219 | # Columns must be in the good format:
220 | map_tmp[,1]=as.factor(map_tmp[,1])
221 | map_tmp[,2]=as.factor(map_tmp[,2])
222 | map_tmp[,3]=as.numeric(as.character(map_tmp[,3]))
223 |
224 | # With the good names:
225 | colnames(map_tmp)=c("group","marker","position")
226 |
227 | # I keep only the first 3 columns (if they are more..)
228 | map_tmp=map_tmp[,c(1:3)]
229 |
230 | # I remove positions where an information is missing:
231 | map_tmp=na.omit(map_tmp)
232 |
233 | # And ordered
234 | map_tmp=map_tmp[order(map_tmp$group , map_tmp$position ) , ]
235 |
236 | # I remove markers if the user choosed to remove markers in the raw data sheet!
237 | if(input$keep_or_remove=="remove"){
238 | list_mark_remove=unlist(strsplit(input$text_mark_remove, ","))
239 | list_mark_remove=paste("^",list_mark_remove,"$",sep="")
240 | for(i in list_mark_remove){
241 | map_tmp=map_tmp[!grepl(i,map_tmp$marker) , ]
242 | }
243 | }
244 |
245 | # I keep only some markers if the user choosed to keep markers in the raw data sheet!
246 | if(input$keep_or_remove=="keep"){
247 | list_mark_keep=unlist(strsplit(input$text_mark_remove, ","))
248 | list_mark_keep=paste("^",list_mark_keep,"$",sep="")
249 | for(i in list_mark_keep){
250 | map_tmp=map_tmp[grepl(i,map_tmp$marker) , ]
251 | }
252 | }
253 |
254 | # Add it to the list
255 | my_maps[[length(my_maps)+1]]=map_tmp
256 |
257 | }
258 |
259 | return(my_maps)
260 |
261 | })
262 |
263 | # Check everything worked properly
264 | #observe({ print("summary de la carte 1:") ; print ( head(MY_maps()[[1]]) ) })
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 | # 3/ --- Merge the maps together
274 | MY_data=reactive({
275 |
276 | # Get back the reactive objects needed:
277 | my_maps=MY_maps()
278 | nb_de_carte=length(my_maps)
279 | map_files=MY_map_files()
280 |
281 | # Merge the n maps together:
282 | data=merge(my_maps[[1]] , my_maps[[2]], by.x=2 , by.y=2 , all=T)
283 | colnames(data)=c("marker",paste("chromo",map_files[1],sep="_") , paste("pos",map_files[1],sep="_") , paste("chromo",map_files[2],sep="_") , paste("pos",map_files[2],sep="_"))
284 | if(nb_de_carte>2){
285 | for(i in c(3:nb_de_carte)){
286 | data=merge(data , my_maps[[i]] , by.x=1 , by.y=2 , all=T)
287 | colnames(data)[c( ncol(data)-1 , ncol(data) )]= c( paste("chromo",map_files[i],sep="_") , paste("pos",map_files[i],sep="_") )
288 | }}
289 |
290 |
291 | # I have now a file summarizing the information for every markers present at least one time ! Return it!
292 | return(data)
293 | })
294 |
295 | # Check everything worked properly
296 | #observe({ print("summary du fichier mergé data:") ; print ( head( MY_data() ) ) })
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 | # 4/ --- List of chromosomes ?
305 | MY_chromosome_list=reactive({
306 |
307 | # Get back the reactive objects needed:
308 | data=MY_data()
309 |
310 | # --- Get a list with the existing chromosomes:
311 | chromosome_list=unlist(data[ , seq(2,ncol(data),2) ])
312 | chromosome_list=as.character(unique(sort( chromosome_list[!is.na(chromosome_list)] )))
313 |
314 | # Return the chromosome liste
315 | return(chromosome_list)
316 | })
317 |
318 | # Did it work ?
319 | #observe({ print("Liste des chromosomes:") ; print ( head( MY_chromosome_list() ) ) })
320 |
321 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
331 |
332 | #-----------------------------------------------------------------------------
333 | # --- COMPUTE SUMMARY STATISTICS FOR EVERY MAPS
334 | #-----------------------------------------------------------------------------
335 |
336 | MY_summary_stat=reactive({
337 |
338 | # Get the needed reactive objects:
339 | my_maps=MY_maps()
340 | nb_de_carte=length(my_maps)
341 |
342 | # Function 1 : give it a piece of map, it calculates some statistics and add it to a bilan data frame.
343 | my_fun=function(my_map, bilan, i){
344 | num=nrow(bilan)
345 | num=num+1
346 | bilan[num,1]=i
347 | bilan[num,2]=nrow(my_map)
348 | bilan[num,3]=max(my_map[,3])
349 | # Calcul des gaps: je vais prendre les gaps entre position unique, pas les gaps entre chaque marqueurs !
350 | gaps = sort(my_map[,3])[-1] - sort(my_map[,3])[-length(my_map[,3])]
351 | gaps=gaps[gaps!=0]
352 | bilan[num,4]=round(mean(gaps),2)
353 | bilan[num,5]=max(gaps)
354 | bilan[num,6]=nrow(unique(my_map[,c(1,3)]))
355 | return(bilan)
356 | }
357 |
358 | # Compute summary statistics for every maps applying this function !
359 | summary_stat=list()
360 | for(j in 1:nb_de_carte){
361 | # Make an emty matrix
362 | map=my_maps[[j]]
363 | bilan=data.frame(matrix(0,0,6)) ; num=0
364 | colnames(bilan)=c("Chr.","#markers","map_size","average gap_size","biggest gap_size","#unique positions")
365 | # Apply the my_fun function to each chromosome one by one
366 | for(i in levels(map[,1])){
367 | map_K=map[map[,1]==i,]
368 | bilan=my_fun(map_K , bilan , i)
369 | }
370 | # And then to the whole map
371 | i="tot"
372 | bilan=my_fun(map , bilan , "all")
373 | #Correct map size
374 | bilan[nrow(bilan) , 3] = sum(bilan[ -nrow(bilan) ,3])
375 | #Correctaverage gap size
376 | bilan[nrow(bilan) , 4] = round(mean(bilan[ -nrow(bilan) ,4], na.rm=T),2)
377 | #Correct biggest gap
378 | bilan[nrow(bilan) , 5] = max(bilan[ -nrow(bilan) ,5], na.rm=T)
379 | #Add the result to the list containing all the map summaries
380 | summary_stat[[length(summary_stat)+1]]=bilan
381 | }
382 |
383 | # If I want the summary of the first map : summary_stat[[1]]
384 | return(summary_stat)
385 |
386 | })
387 |
388 | # Check if everything is all right
389 | #observe({ print("fichier de summary statistique:") ; for(u in MY_summary_stat()) {print ( u )} })
390 |
391 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
402 |
403 | # --------------------------------------------------------------------------------
404 | # CREATION OF THE DYNAMICS BUTTONS FOR THE UI SCRIPT
405 | #--------------------------------------------------------------------------------
406 |
407 |
408 | # ======== sheet2: Summary Statistics =========
409 | # MAP to study
410 | output$choose_maps_sheet2<- renderUI({ checkboxGroupInput("selected_maps_sheet2", legend2[9], choices=MY_map_files(), selected=c(MY_map_files()[1],MY_map_files()[2]) , inline=T) })
411 | # Chromosomes to study for markers density
412 | output$choose_chromo_sheet2<- renderUI({checkboxGroupInput( "chromo_sheet2", legend2[10], choices=MY_chromosome_list() , selected =c(MY_chromosome_list()[1],MY_chromosome_list()[2]) , inline = TRUE ) })
413 | # Map to study for summary table
414 | output$choose_maps_sheet2_bis<- renderUI({ radioButtons("selected_maps_sheet2_bis", legend2[11], choices=MY_map_files(), selected=c(MY_map_files()[1]) , inline=T) })
415 |
416 |
417 | # ======== sheet3: Compare Positions =========
418 | # Map to study
419 | output$choose_maps3<- renderUI({ checkboxGroupInput("selected_maps", legend3[4], choices=MY_map_files(), selected=c(MY_map_files()[1],MY_map_files()[2]) , inline=T) })
420 | # Chromosomes to study
421 | output$choose_chromo_sheet3<- renderUI({ radioButtons( "chromo", legend3[5], choices=MY_chromosome_list() , selected =MY_chromosome_list()[1] , inline=T ) })
422 |
423 |
424 | # ======== sheet4: Interchromosomal Analyse =========
425 | # First map to study :
426 | output$map1<- renderUI({ radioButtons("map1", legend4[4], choices=MY_map_files(), selected=MY_map_files()[1] ) })
427 | # Second map to study :
428 | output$map2<- renderUI({ radioButtons("map2", legend4[5], choices=MY_map_files(), selected=MY_map_files()[2] ) })
429 | # Chromosomes to study
430 | output$choose_chromo_sheet4<- renderUI({ selectInput( "chromo_sheet4", legend4[6], choices=c("all", MY_chromosome_list()) , selected =c("all") ) })
431 |
432 |
433 | # ======== sheet5: Rough Map vizualisation =========
434 | # MAP to study
435 | output$choose_maps5<- renderUI({ radioButtons("selected_maps_sheet5", legend5[3], choices=MY_map_files(), selected=MY_map_files()[1] ) })
436 | # Chromosomes to study
437 | output$choose_chromo_sheet5<- renderUI({ checkboxGroupInput( "chromo_sheet5", legend5[4], choices=c("all", MY_chromosome_list()) , selected =c(MY_chromosome_list()[1],MY_chromosome_list()[2]) , inline = TRUE ) })
438 |
439 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
450 |
451 | #-----------------------------------------------------------------------------
452 | # --- SHEET 2 : SUMMARY STATISTICS PAGE - BARPLOT !
453 | #-----------------------------------------------------------------------------
454 |
455 |
456 | output$my_barplot=renderPlot({
457 |
458 | # Get the needed reactive objects:
459 | summary_stat=MY_summary_stat()
460 | my_map_files=unlist(MY_map_files())
461 |
462 | # Selected variable ?
463 | selected_var=which(c("# markers","map size","average gap size","biggest gap size","# unique positions")%in%input$var_for_barplot)
464 |
465 | # Selected Maps ?
466 | selected_maps=which(my_map_files%in%input$selected_maps_sheet2)
467 | nb_selected_maps=length(selected_maps)
468 |
469 | # Create a table which gives this selected_variable for every selected maps and every chromosomes.
470 | barplot_table=summary_stat[[selected_maps[1]]] [,c(1,selected_var+1)]
471 | for(i in selected_maps[-1]){
472 | barplot_table=merge(barplot_table , summary_stat[[i]] [,c(1,selected_var+1)] , by.x=1 , by.y=1 , all=T)
473 | }
474 | rownames(barplot_table)=barplot_table[,1]
475 | barplot_table=barplot_table[-nrow(barplot_table) , ]
476 | barplot_table=t(as.matrix(barplot_table[,-1]))
477 |
478 | # Make the barplot !
479 | par(mar=c(3,3,3,8))
480 | barplot(barplot_table , beside=T , col=my_colors[1:length(selected_maps)])
481 | #mtext(legend[23] , col="#3C3C3C" , line=-3 , at=ncol(barplot_table)*nb_selected_maps+8)
482 |
483 |
484 | #Close the render-barplot
485 | })
486 |
487 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
488 |
489 |
490 |
491 |
492 |
493 |
494 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
495 |
496 | #-----------------------------------------------------------------------------
497 | # --- SHEET 2 : SUMMARY STATISTICS PAGE - DONUT-PLOT !
498 | #-----------------------------------------------------------------------------
499 |
500 | output$my_pieplot=renderPlot({
501 |
502 | # Get the needed reactive objects:
503 | summary_stat=MY_summary_stat()
504 | map_files=MY_map_files()
505 |
506 | # Avoid bug when loading
507 | if (is.null(input$var_for_barplot) | is.null(input$selected_maps_sheet2) ) {return(NULL)}
508 |
509 | # Selected variable ?
510 | all_var=c("# markers","map size","average gap size","biggest gap size","# unique positions")
511 | selected_var=which(all_var%in%input$var_for_barplot)
512 |
513 | # Selected Maps ?
514 | selected_maps=which(map_files%in%input$selected_maps_sheet2)
515 | nb_selected_maps=length(selected_maps)
516 |
517 | # Create a table which gives this selected_variable for every selected maps and every chromosomes.
518 | barplot_table=summary_stat[[selected_maps[1]]] [,c(1,selected_var+1)]
519 | for(i in selected_maps[-1]){
520 | barplot_table=merge(barplot_table , summary_stat[[i]] [,c(1,selected_var+1)] , by.x=1 , by.y=1 , all=T)
521 | }
522 | rownames(barplot_table)=barplot_table[,1]
523 | barplot_table=barplot_table[nrow(barplot_table) , ]
524 | barplot_table=t(as.matrix(barplot_table[,-1]))
525 |
526 | # Make the donut-plot !
527 | par(mar=c(3,3,3,10))
528 | my_labels=paste(map_files[selected_maps],"\n",all_var[selected_var]," : ",barplot_table,sep="")
529 | doughnut(barplot_table, col=my_colors , border="white" , inner.radius=0.5, labels=my_labels )
530 |
531 |
532 | #Close the render-barplot
533 | })
534 |
535 |
536 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
546 |
547 | #-----------------------------------------------------------------------------
548 | # --- SHEET 2 : SUMMARY STATISTICS PAGE - SUMMARY TABLE OF SELECTED MAP
549 | #-----------------------------------------------------------------------------
550 |
551 |
552 | observe({
553 |
554 | # Selected Map ?
555 | selected_map=which(MY_map_files()%in%input$selected_maps_sheet2_bis)
556 |
557 | # bug if no map (loading)
558 | if ( length(selected_map)==0 ) {return(NULL)}
559 |
560 | # Avoid bug when loading
561 | if (is.null(input$selected_maps_sheet2_bis) ) {return(NULL)}
562 |
563 |
564 | # Get the desired summary stat
565 | toprint=MY_summary_stat()[[selected_map]]
566 |
567 | output$sum_table <- DT::renderDataTable(
568 | DT::datatable( toprint , rownames = FALSE , options = list(pageLength = 40, dom = 't' ))
569 | )
570 |
571 |
572 | # Close observer
573 | })
574 |
575 |
576 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
589 |
590 | #-----------------------------------------------------------------------------
591 | # --- SHEET 2 : SUMMARY STATISTICS PAGE - PLOT FOR DENSITY !
592 | #-----------------------------------------------------------------------------
593 |
594 | # Make the circular plot. See https://cran.r-project.org/web/packages/circlize/vignettes/circlize.pdf to understand how circular plot works.
595 | output$circular_plot <- renderPlot({
596 |
597 | # Get the needed reactive objects:
598 | summary_stat=MY_summary_stat()
599 | map_files=MY_map_files()
600 | my_maps=MY_maps()
601 | nb_de_carte=length(map_files)
602 |
603 | # Avoid bug when loading
604 | if (is.null(input$var_for_barplot) | is.null(input$selected_maps_sheet2) ) {return(NULL)}
605 |
606 | # Which maps have been selected ?
607 | selected_maps=which(map_files%in%input$selected_maps_sheet2)
608 | nb_selected_maps=length(selected_maps)
609 |
610 | # Fichier nécessaire
611 | data_circ=data.frame()
612 | for(i in selected_maps){
613 | current_map=my_maps[[i]]
614 | current_map$map_name=map_files[i]
615 | current_map$group_and_name=paste(map_files[i] , current_map[,1] , sep="_")
616 | data_circ=rbind(data_circ , current_map)
617 | }
618 |
619 |
620 | # If the "all" option is not selected, then I keep only the chosen chromosomes
621 | if(!("all"%in%input$chromo_sheet2)){
622 | take=which(data_circ[,1]%in%input$chromo_sheet2)
623 | data_circ=data_circ[take , ]
624 | data_circ[,1]=droplevels(data_circ[,1])
625 | }
626 |
627 |
628 | # Réalisation du graph
629 | par(mfrow=c(nb_de_carte ,1) , mar=c(0.3,4,0,0) )
630 | for( map in levels(as.factor(data_circ$map_name))){
631 |
632 | # Reset x positions
633 | vecX=c()
634 | vecY=c()
635 | vecSep=c(0)
636 | my_data=data_circ[which(data_circ$map_name==map) , ]
637 |
638 | for( chromo in levels(as.factor(my_data$group)) ){
639 |
640 | don=my_data[which(my_data$group==chromo) , ]
641 | a=density(don$position)
642 | a$x=a$x + abs(min(a$x))
643 | if(length(vecX)>0){a$x=a$x+max(vecX) }
644 | vecX=c(vecX , a$x)
645 | vecY=c(vecY , a$y)
646 | vecSep=c(vecSep, max(vecX))
647 | }
648 |
649 | # print the plot
650 | plot(1,1,col="transparent" , xlim=c(0,max(vecX)) , ylim=c(0,max(vecY)) , xlab="" , xaxt="n" , ylab="" , yaxt="n" , bty="n" )
651 | rect( vecSep[-length( vecSep)], rep(-2,length( vecSep)) , vecSep[-1] , rep(1 , length( vecSep)) , col=my_colors , border=F )
652 | lines( vecX , vecY , col="black" , lwd=3 )
653 | mtext( map , at=max(vecY)/2 , col="orange" , cex=2 , line=0, side=2 )
654 |
655 | #fin du plot
656 | }
657 |
658 | #Ajout des labels de l'axe des x?
659 | mtext( levels(as.factor(my_data$group)) , at=(vecSep[-1]+vecSep[-length(vecSep)]) /2 , col="orange" , cex=2 , line=5, side=1 )
660 |
661 | })
662 |
663 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
664 |
665 |
666 |
667 |
668 |
669 |
670 |
671 |
672 |
673 |
674 |
675 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
676 |
677 | #-----------------------------------------------------------------------------
678 | # --- SHEET 3 : MAP COMPARISON FOR A CHOSEN CHROMOSOME
679 | #-----------------------------------------------------------------------------
680 |
681 |
682 |
683 | # define session specific variable
684 | # visible from all functions but session/user specific
685 | my_global_old_choice<-c();
686 | liste_of_map_to_compare<-c();
687 |
688 |
689 | # liste_of_map_to_compare is an object with the genetic maps to compare, in the good order. I initialize it with the 2 first maps, like in the radiobutton.
690 | MY_liste_of_map_to_compare=reactive({
691 | map_files=MY_map_files()
692 | liste_of_map_to_compare=c(map_files[1],map_files[2])
693 | return(liste_of_map_to_compare)
694 | })
695 |
696 |
697 |
698 | output$plot1 <- renderPlotly({
699 |
700 | # ========== PART 0 : INITIALISE OBJECTS
701 | #Get the needed reactive objects:
702 | summary_stat=MY_summary_stat()
703 | map_files=MY_map_files()
704 | my_maps=MY_maps()
705 | nb_de_carte=length(map_files)
706 | data=MY_data()
707 |
708 | # We need to remember the old choice
709 | old_choice <- my_global_old_choice;
710 |
711 | # I get the current choice of maps to show (this is not ordered, we have to order it):
712 | current_choice=input$selected_maps
713 |
714 |
715 |
716 | # ========== PART 1 : DETERMIN WHICH MAP HAS BEEN ADDED / REMOVED + CREATE THE ORDERED SELECTED MAP LIST
717 | # If the user has added a map, I determine which, and add it to the map to compare:
718 | if(is.null(old_choice) | is.null(current_choice) ){
719 | liste_of_map_to_compare=current_choice
720 | }else{
721 | intersection=which(old_choice%in%current_choice)
722 | if( length(intersection)==0 ){
723 | to_del=old_choice
724 | }else{
725 | to_del=old_choice[-intersection]
726 | }
727 |
728 | if(length(to_del)>0)
729 | {liste_of_map_to_compare=old_choice[ - which(old_choice%in%to_del) ]}
730 |
731 | intersection=which(current_choice%in%old_choice)
732 | if( length(intersection)==0 ){
733 | to_add= current_choice
734 | }else{
735 | to_add= current_choice[-intersection]
736 | }
737 |
738 | if(length(to_add)>0)
739 | liste_of_map_to_compare=c(liste_of_map_to_compare,to_add)
740 | }
741 | # I save the current choice as old_choice for next change:
742 | my_global_old_choice<<-liste_of_map_to_compare
743 | liste_of_map_to_compare<<-liste_of_map_to_compare
744 |
745 |
746 |
747 |
748 |
749 |
750 | # ========== PART 2 : IF NO SELECTED MAP, I RETURN A MESSAGE!
751 | validate(
752 | need(length(liste_of_map_to_compare)!=0, "Please select at least one map!")
753 | )
754 |
755 |
756 |
757 |
758 |
759 |
760 | # ========== PART 3 : CREATE A TABLE WITH MAPS FEATURES, IN THE GOOD ORDER. ex:for mapB and mapA i keep column: 1,4,5, 2,3:
761 | # --- Make an input table with columns in the corresponding order:
762 | selected_maps=match(liste_of_map_to_compare , map_files)
763 | selected_col=rep(selected_maps , each=2)*2
764 | selected_col=c(1,selected_col+rep(c(0,1) , length(selected_col)/2))
765 | dat=data[ , selected_col ]
766 | nb_selected_maps=length(selected_maps)
767 |
768 | # --- Subset of the dataset with only the good chromosome
769 | my_fun=function(x){ a=length(which(x==input$chromo)) ; return( a ) }
770 | nb_good_chromo=apply(dat , 1 , my_fun)
771 | don=dat[ which(nb_good_chromo>0 ) , ]
772 | # Put NA when a marker is attributed to another chromosome
773 | if(length(selected_maps)>1){for(i in seq(2,100,2)[1:nb_selected_maps] ){
774 | tmp=don[,i]
775 | tmp=which( tmp!=input$chromo )
776 | don[tmp, c(i,i+1)]=NA
777 | }}
778 |
779 | # --- If the "normalize box" is choosen, I normalize length
780 | if(input$ask_for_normalize==TRUE){
781 | for(i in seq(3,ncol(don),2)){
782 | don[,i]=don[,i]*100/max(don[,i],na.rm=T)
783 | }}
784 |
785 |
786 | # ========== PART 4 : IF ONE MAP IS SELECTED ONLY, I GIVE A CERTAIN TYPE OF PLOT
787 | if(nb_selected_maps<2){
788 | return(
789 | plot_ly(x=rep(1,nrow(don)),y=don[,3], type="scatter", mode="marker", hoverinfo="text", text=paste(don[,1], "
", "position: ",don[,3],sep="") , marker=list(size=10) )%>%
790 | layout(hovermode="closest",
791 | xaxis=list(title = "", zeroline = FALSE, showline = FALSE, showticklabels = FALSE, showgrid = FALSE , range=c(0.5,1.5) ),
792 | yaxis=list( autorange = "reversed", title = "Position (cM)", zeroline = F, showline = T, showticklabels = T, showgrid = FALSE , tickfont=list(color="grey", size=15) , titlefont=list(color="grey", size=15) , tickcolor="grey" , linecolor="grey")
793 | ))
794 | }
795 |
796 |
797 |
798 |
799 |
800 | # ========== PART 5 : COMPARISON PLOT IF I HAVE AT LEAST 2 MAPS SELECTED
801 |
802 | # --- PART 5.1: CREATE THE Y AXIS OF LINK BETWEEN MAPS
803 | # Je fais une fonction qui me fait 2 vecteurs de positions pour 2 cartes données : AXE des Y
804 | # There is one vector for the problematic vectors, and one for the not problematic markers.
805 | function_pos=function(x,y){
806 |
807 | #Récupération de 2 carte seulement:
808 | pos=na.omit(don[,c(1,x,y)])
809 |
810 | # Find the non-problematic markers and count them
811 | M1=pos$marker[order(pos[,2], pos[,3])]
812 | M2=pos$marker[order(pos[,3], pos[,2])]
813 | my_notprobmarkers=LCS(as.character(M1),as.character(M2))$LCS
814 | pos_not_prob=pos[which(pos$marker%in%my_notprobmarkers) , ]
815 | pos_prob=pos[-which(pos$marker%in%my_notprobmarkers) , ]
816 | nb_not_prob=nrow(pos_not_prob)
817 | nb_prob=nrow(pos_prob)
818 |
819 | #Il faut que je fasse 2 vecteurs avec les valeur en cM dans l'ordre
820 |
821 | # --> NOT PROBLEMATIC MARKERS
822 | my_vect=as.vector(t(as.matrix(pos_not_prob[,c(2,3)])))
823 | correctif=seq(1:length(my_vect)) + rep(c(0,0,1,-1) , length.out=length(my_vect) )
824 | my_vect=my_vect[correctif]
825 | #Mais attention probleme! si je fini sur la carte de gauche, il faut que je revienne a la carte de droite avant de passer a la paire de carte suivante!
826 | if(length(my_vect)%%4 == 0){ my_vect=c(my_vect , my_vect[length(my_vect)] , my_vect[length(my_vect)-1]) }
827 | my_vect_not_prob=my_vect
828 |
829 | # --> PROBLEMATIC MARKERS
830 | my_vect=as.vector(t(as.matrix(pos_prob[,c(2,3)])))
831 | correctif=seq(1:length(my_vect)) + rep(c(0,0,1,-1) , length.out=length(my_vect) )
832 | my_vect=my_vect[correctif]
833 | #Mais attention probleme! si je fini sur la carte de gauche, il faut que je revienne a la carte de droite avant de passer a la paire de carte suivante!
834 | if(length(my_vect)%%4 == 0){ my_vect=c(my_vect , my_vect[length(my_vect)] , my_vect[length(my_vect)-1]) }
835 | my_vect_prob=my_vect
836 |
837 | # Return the non problematic and problematic marker vectors
838 | return( list(my_vect_not_prob, my_vect_prob, nb_not_prob, nb_prob) )
839 | }
840 |
841 | # Apply the function to the selected maps.
842 | pos_final_not_prob=c()
843 | pos_final_prob=c()
844 | nb_of_not_prob=c()
845 | nb_of_prob=c()
846 | for(v in c(1:(nb_selected_maps-1))){
847 | col_x=v*2+1
848 | col_y=v*2+3
849 | a=function_pos( col_x , col_y)
850 | pos_final_not_prob=c(pos_final_not_prob,a[[1]])
851 | pos_final_prob=c(pos_final_prob,a[[2]])
852 | nb_of_not_prob=c(nb_of_not_prob,a[[3]])
853 | nb_of_prob=c(nb_of_prob,a[[4]])
854 | }
855 |
856 |
857 | # --- PART 5.2: CREATE THE X AXIS OF LINK BETWEEN MAPS
858 | # Once more I do 2 vectors: one for the good markers, one for the problematic ones
859 | xaxis_not_prob=c()
860 | xaxis_prob=c()
861 | num=0
862 | for(i in c(1:(nb_selected_maps-1))){
863 | num=num+1
864 |
865 | # not problematic markers
866 | my_nb=nb_of_not_prob[num]
867 | if(my_nb==1){ to_add=c(num,num+1) }else{ to_add=rep(c(num,num+1,num+1,num),my_nb/2) }
868 | if(length(to_add)%%4 == 0){ to_add=c(to_add , to_add[length(to_add)] , to_add[length(to_add)-1]) }
869 | xaxis_not_prob=c(xaxis_not_prob,to_add)
870 |
871 | # problematic markers
872 | my_nb=nb_of_prob[num]
873 | if(my_nb==1){ to_add=c(num,num+1) }else{ to_add=rep(c(num,num+1,num+1,num),my_nb/2) }
874 | if(length(to_add)%%4 == 0){ to_add=c(to_add , to_add[length(to_add)] , to_add[length(to_add)-1]) }
875 | xaxis_prob=c(xaxis_prob,to_add)
876 |
877 | }
878 |
879 |
880 | # --- PART 5.3: MAKE THE GRAPH WITH PLOTLY
881 | p=plot_ly()%>%
882 | add_trace(x=xaxis_not_prob , y=pos_final_not_prob, hoverinfo="none" , type="scatter", mode="lines", line=list(width=input$thickness, color=input$my_color , opacity=0.1), showlegend=FALSE )%>%
883 |
884 | # Add problematic markers
885 | add_trace(x=xaxis_prob , y=pos_final_prob , hoverinfo="none" , type="scatter", mode="lines", line=list(width=input$thickness, color=input$my_color_bad , opacity=0.1) , showlegend=F)%>%
886 |
887 | # Custom the layout
888 | layout(
889 | #Gestion du hovermode
890 | hovermode="closest" ,
891 | # Gestion des axes
892 | xaxis=list(title = "", zeroline = FALSE, showline = FALSE, showticklabels = FALSE, showgrid = FALSE , range=c(0.5,nb_selected_maps+0.5) ),
893 | yaxis=list(range=c(0,500), autorange = "reversed", title = "Position (cM)", zeroline = F, showline = T, showticklabels = T, showgrid = FALSE , tickfont=list(color="grey", size=15) , titlefont=list(color="grey", size=15) , tickcolor="grey" , linecolor="grey")
894 | )
895 |
896 | # Add vertical lines to represent chromosomes.
897 | for(m in c(1:nb_selected_maps)){
898 | p=add_trace(p, x=c(m,m), y=c(0, max(don[,m*2+1],na.rm=T)) , type="scatter", mode="lines" , line=list(width=7, color="black", opacity=1),showlegend=F )%>%
899 | layout( yaxis=list(range=c(0,max(don[,m*2+1],na.rm=T))) )
900 | }
901 |
902 | # Add markers
903 | for(m in c(1:nb_selected_maps)){
904 | obj2=don[,c(1,m*2+1)]
905 | obj2$text=paste(obj2[,1],"\npos: ",obj2[,2],sep="")
906 | p=add_trace(p, x=rep(m,nrow(obj2) ) , y=obj2[,2] , type="scatter", mode="markers+lines", line=list(color="black", width=8), marker=list(color="black" , size=12 , opacity=0.5,symbol=24) , text=obj2$text , hoverinfo="text", showlegend=F)%>%
907 | layout( yaxis=list(range=c(0,max(pos_final_not_prob))) )
908 | }
909 |
910 | # Add maps names
911 | p=add_trace(p, x=seq(1:nb_selected_maps) , y=rep(-10,nb_selected_maps) , text=unlist(liste_of_map_to_compare) , type="scatter" , mode="lines+text" , textfont=list(size=20 , color=input$my_color_name), line=list(color="transparent"), showlegend=F )
912 |
913 |
914 |
915 | # --- PART 5.4: IF THE USER NEED THE PROBLEMATIC MARKERS
916 | list_prob_print=c()
917 | for(i in seq(3,(ncol(don)-2),2 ) ){
918 | for(v in seq(5,ncol(don),2)){
919 | if(v>i){
920 | pos=na.omit(don[,c(1,i,v)])
921 | M1=pos$marker[order(pos[,2], pos[,3])]
922 | M2=pos$marker[order(pos[,3], pos[,2])]
923 | my_notprobmarkers=LCS(as.character(M1),as.character(M2))$LCS
924 | my_probmarkers=pos$marker[-which(pos$marker%in%my_notprobmarkers)]
925 | list_prob_print=c(list_prob_print, as.character(my_probmarkers))
926 | }}}
927 | list_prob_print=data.frame(problematic_markers=unique(list_prob_print))
928 | output$downloadID <- downloadHandler(
929 | filename = function() { paste('Prob_markers_GenMapComp', Sys.Date(), '.csv', sep='') },
930 | content = function(file) { write.table(list_prob_print, file, row.names=FALSE)}
931 | )
932 |
933 | #print plotly graph
934 | p
935 | })
936 |
937 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
938 |
939 |
940 |
941 |
942 |
943 |
944 |
945 |
946 |
947 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
948 |
949 | #-----------------------------------------------------------------------------
950 | # --- SHEET 4 : INTER CHROMOSOME ANALYSIS
951 | #-----------------------------------------------------------------------------
952 |
953 |
954 | output$plot2 <- renderPlotly({
955 |
956 | # Get the needed reactive objects:
957 | summary_stat=MY_summary_stat()
958 | map_files=MY_map_files()
959 | my_maps=MY_maps()
960 | nb_de_carte=length(map_files)
961 |
962 | # Avoid bug when loading
963 | if (is.null(input$map1) | is.null(input$map2) | is.null(input$chromo_sheet4) ) {return(NULL)}
964 |
965 | # Get the first selected map
966 | selected=which(map_files%in%input$map1)
967 | map1=my_maps[[selected]]
968 | name1=map_files[selected]
969 |
970 | # Get the second selected map
971 | selected=which(map_files%in%input$map2)
972 | map2=my_maps[[selected]]
973 | name2=map_files[selected]
974 |
975 | # Select the choosen chromosome, the user can choose "all" !
976 | if(input$chromo_sheet4=="all"){map1=map1}else{map1=map1[map1[,1]==input$chromo_sheet4 , ] ; map2=map2[map2[,1]==input$chromo_sheet4 , ]}
977 |
978 |
979 |
980 | # a little function: I remake the x axis to add chromosomes beside each others.
981 | my_fun=function(a){
982 | last=0
983 | to_add=0
984 | out=c()
985 | for (i in a){
986 | if(i>=last) { sortie=i+to_add }
987 | if(i10000, -100 , -0.05*max(map1max[,2]) )
1023 |
1024 | # Prepare rectangles
1025 | my_list_rect=list()
1026 | if(input$chromo_sheet4=="all"){
1027 | for(i in c(1:nrow(map1max))){
1028 | L1=list(type = "rect", fillcolor=input$col_s4_1 , line = list(color=input$col_s4_1), opacity = 0.2, x0 = map1min[i,2], x1 = map1max[i,2], xref = "x", y0 = map2min[i,2], y1 = map2max[i,2], yref = "y" )
1029 | my_list_rect[[ length(my_list_rect)+1]] = L1
1030 | }}
1031 |
1032 | # Prepare lines to make a grid
1033 | my_list_lines=list()
1034 | if(input$chromo_sheet4=="all"){
1035 | for (i in map1max[,2]) {
1036 | L1 <- list( type="line", line=list(color = "grey", width=0.4), xref="x", yref="y", x0=i, x1=i, y0=0, y1=max(map2max[,2],na.rm=T) )
1037 | my_list_lines[[ length(my_list_lines)+1]] = L1
1038 | }
1039 | for (i in map2max[,2]) {
1040 | L1 <- list( type="line", line=list(color = "grey", width=0.4), xref="x", yref="y", x0=0, x1=max(map1max[,2],na.rm=T), y0=i, y1=i )
1041 | my_list_lines[[ length(my_list_lines)+1]] = L1
1042 | }}
1043 |
1044 |
1045 | # --- Make the plot !
1046 | p <- plot_ly() %>%
1047 |
1048 | # markers
1049 | add_trace( x=don[,4] , y=don[,7] , type="scatter", mode="markers" , text=don$text , hoverinfo="text" , marker=list( size=15 , opacity=0.5, color=ifelse( as.character(don$group.x)==as.character(don$group.y) , input$col_s4_2 , input$col_s4_3)), showlegend=F ) %>%
1050 |
1051 | # Layout
1052 | layout(
1053 | hovermode="closest" ,
1054 | xaxis=lay_x ,
1055 | yaxis=lay_y
1056 | ) %>%
1057 |
1058 | # Add rectangles and lines
1059 | layout( title = "",
1060 | shapes = c(my_list_rect, my_list_lines)
1061 | )
1062 |
1063 | #plot it!
1064 | p
1065 |
1066 |
1067 | #Je ferme le outputPlot2
1068 | })
1069 |
1070 |
1071 | output$key_numbers_sheet_3 <- renderPlot({
1072 |
1073 | # Get the needed reactive objects:
1074 | summary_stat=MY_summary_stat()
1075 | map_files=MY_map_files()
1076 | my_maps=MY_maps()
1077 | nb_de_carte=length(map_files)
1078 |
1079 | # Avoid bug when loading
1080 | if (is.null(input$map1) | is.null(input$map2) | is.null(input$chromo_sheet4) ) {return(NULL)}
1081 |
1082 | # Get the first selected map
1083 | selected=which(map_files%in%input$map1)
1084 | map1=my_maps[[selected]]
1085 | name1=map_files[selected]
1086 |
1087 | # Get the second selected map
1088 | selected=which(map_files%in%input$map2)
1089 | map2=my_maps[[selected]]
1090 | name2=map_files[selected]
1091 |
1092 | # Select the choosen chromosome, the user can choose "all" !
1093 | if(input$chromo_sheet4=="all"){map1=map1}else{map1=map1[map1[,1]==input$chromo_sheet4 , ] ; map2=map2[map2[,1]==input$chromo_sheet4 , ]}
1094 |
1095 | # Compute basic statistics:
1096 | nb_mark_map1=nrow(map1)
1097 | nb_mark_map2=nrow(map2)
1098 | nb_common_mark=length(which(map1$marker%in%map2$marker))
1099 | tmp=merge(map1,map2,by.x=2,by.y=2)[c(3,5)]
1100 | coeff_cor=round(cor(tmp[,1] , tmp[,2] , method="spearman"),2)
1101 |
1102 | # Then I make the "plot"
1103 | par(bg="transparent" , mar=c(0,0,0,0) )
1104 | plot(1,1,xaxt="n", yaxt="n",bty="n",xlab="",ylab="", col="transparent", xlim=c(0,4) , ylim=c(0.5,4.5) )
1105 | text(rep(1 ,4) , c(4,3,2,1) , c(nb_mark_map1, nb_mark_map2, nb_common_mark, coeff_cor), col="orange" , cex=3 , adj=1 , font=2 )
1106 | text(rep(1.2,4) , c(4,3,2,1) , c(paste("markers in\n",name1, " map",sep=""), paste("markers in\n",name2," map",sep=""), "common\nmarkers","Spearman\ncorrelation") , col="grey" , cex=1.3 , font=2 , adj=0 )
1107 |
1108 | #Je ferme le output avec un fond transparent
1109 | }, bg="transparent")
1110 |
1111 |
1112 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1113 |
1114 |
1115 |
1116 |
1117 |
1118 |
1119 |
1120 |
1121 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1122 |
1123 | #-----------------------------------------------------------------------------
1124 | # --- SHEET 5 : RAW MAP VIZUALIZATION
1125 | #-----------------------------------------------------------------------------
1126 |
1127 |
1128 | #Faire une réactive pour pouvoir faire le tableau désiré
1129 | observe({
1130 |
1131 | # Get the needed reactive objects:
1132 | map_files=MY_map_files()
1133 | my_maps=MY_maps()
1134 |
1135 | # Avoid bug when loading
1136 | if (is.null(input$selected_maps_sheet5) ) {return(NULL)}
1137 |
1138 | #Get the selected map
1139 | selected=which(map_files%in%input$selected_maps_sheet5)
1140 | if(length(selected==1)){
1141 |
1142 | #Get the selected map
1143 | data_for_map_table=my_maps[[selected]]
1144 |
1145 | #Get the selected chromosomes
1146 | if(!("all"%in%input$chromo_sheet5)){
1147 | selected_chromosomes=input$chromo_sheet5
1148 | data_for_map_table=data_for_map_table[which(data_for_map_table[,1]%in%selected_chromosomes),]
1149 | }
1150 |
1151 | #Close the if statement
1152 | }
1153 |
1154 | #Make the graph
1155 | output$my_rough_map_viz <- renderDataTable(
1156 |
1157 | #See https://rstudio.github.io/DT/options.html for options in printing table
1158 | data_for_map_table , escape = F , rownames = FALSE , options = list(pageLength = 40, bFilter=F)
1159 |
1160 | #Close the output
1161 | )
1162 |
1163 | #Close the observe
1164 | })
1165 |
1166 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1167 |
1168 |
1169 |
1170 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1171 |
1172 | # Just 3 small tables for the documentation page
1173 | a=c("marker_52", "marker_23", "marker_18", "marker_8", "marker_12", "marker_3", "marker_98", "marker_72")
1174 | b=c(0.0,29.4,31.2,40.5,0.0,3.3,4.6,10.8)
1175 | c=c(rep("LG1",4),rep("LG2",4))
1176 | ex1=data.frame(LG=c , marker=a, position=b)
1177 | output$doc_ex1 <- DT::renderDataTable(
1178 | DT::datatable(ex1 , rownames = FALSE , options = list(dom = 't' ))
1179 | )
1180 |
1181 | # Just 3 small tables for the documentation page
1182 | a=c("group", "marker_52", "marker_23", "marker_18", "marker_8", "group", "marker_12", "marker_3", "marker_98", "marker_72")
1183 | b=c("LG1",0.0,29.4,31.2,40.5,"LG2",0.0,3.3,4.6,10.8)
1184 | ex2=data.frame(a , b)
1185 | output$doc_ex2 <- DT::renderDataTable(
1186 | DT::datatable(ex2 , rownames = FALSE , colnames="", options = list(dom = 't' ))
1187 | )
1188 |
1189 | # Just 3 small tables for the documentation page
1190 | ex3=data.frame("0 -801.56 {1 -485.24 MS4 0.0 MS5 3.3 MS13 38.8 MS6 64.2 MS11 86.4 MS17 137.9 MS16 159.5 MS8 186.5 MS7 192.4 MS2 207.4 MS3 208.0 MS9 231.5 MS15 249.3 MS12 252.8 MS20 291.1 MS19 293.8 MS1 483.9} {2 -316.32 MS4 0.0 MS5 84.4 MS6 138.5 MS8 229.0 MS7 307.2 MS3 493.5 MS9 706.1 MS15 862.8 MS1 1622.9 G36 1726.5 G39 1786.2 G37 1845.9 G40 1871.3}")
1191 | output$doc_ex3 <- DT::renderDataTable(
1192 | DT::datatable(ex3 , rownames = FALSE , colnames="", options = list(dom = 't' ))
1193 | )
1194 |
1195 |
1196 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1197 |
1198 |
1199 |
1200 |
1201 | #Je ferme le shinyServer
1202 | })
1203 |
1204 |
1205 |
1206 |
1207 |
1208 |
1209 |
1210 |
1211 |
1212 | #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------#
1213 |
1214 |
--------------------------------------------------------------------------------
/ui.R:
--------------------------------------------------------------------------------
1 |
2 |
3 | ################################################
4 | #
5 | # THE GENETIC MAP COMPARATOR
6 | #
7 | ###############################################
8 |
9 |
10 | shinyUI(navbarPage(
11 |
12 | "The Genetic Map Comparator",
13 |
14 | # Choose a theme !
15 | theme = shinytheme("united"),
16 |
17 | # And I custom it with additionnal CSS
18 | header=includeCSS("www/genComp.css") ,
19 |
20 |
21 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
22 |
23 |
24 |
25 |
26 |
27 |
28 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
29 |
30 | # ----------------------
31 | # SHEET 1 : HOME PAGE
32 | # ----------------------
33 |
34 | tabPanel(
35 |
36 | # Name
37 | h4(legend1[1]) ,
38 |
39 | # Only one zone for the home page
40 | column(12, offset=0, align="center" ,
41 |
42 | # Set the style of this page
43 | style="
44 | background-image: url(my_image.png);
45 | opacity: 1;
46 | background-color: black;
47 | margin-top: -20px;
48 | width: 100%;
49 | color: white;
50 | font-size:14pt;
51 |
52 | ",
53 |
54 | # And write the welcome message
55 | br(""),
56 | #helpText(strong(legend1[2] , style="color:white ; font-family: 'times'; font-size:50pt ; font-type:bold" ) ) ,
57 | #br(""),
58 | helpText(strong(p(legend1[3] , style="color:white ; font-family: 'times'; font-size:18pt"))) ,
59 | #br(""),
60 |
61 | # widget to choose several files:
62 | fileInput("file1", strong(p(legend1[4] , style="color:orange ; font-family: 'times'; font-size:18pt")) , multiple = TRUE, accept=NULL),
63 | uiOutput("error_message"),
64 |
65 | # widget to propose 3 exemples
66 | radioButtons("file2", strong(p(legend1[5] , style="color:orange ; font-family: 'times'; font-size:18pt")), choices = c("sorghum (Mace et al. 2009)","wheat (Maccaferri et al. 2015)", "wheat (Holtz et al. 2016)"), selected =c("sorghum (Mace et al. 2009)") , inline = FALSE ),
67 |
68 | #br(),
69 | helpText(strong(p(legend1[6] , style="color:orange ; font-family: 'times'; font-size:18pt"))) ,
70 | #legend1[7],
71 |
72 | # Last part with our names. Not in the legend file..
73 | br(""),br(""),br(""),
74 | p(
75 | legend1[8],
76 | a(em("Yan Holtz") , style="color:white ; font-family:'times'; font-size:15pt", href = "https://holtzyan.wordpress.com/" , target="_blank"),
77 | " & ",
78 | a(em("Vincent Ranwez") , style="color:white ; font-family:'times'; font-size:15pt", href = "https://sites.google.com/site/ranwez/" , target="_blank"),
79 | " & ",
80 | a(em("Jacques David") , style="color:white ; font-family:'times'; font-size:15pt", href = "https://www.researchgate.net/profile/Jacques_David4" , target="_blank"),
81 | style="color:white ; font-family: 'times'; font-size:15pt"
82 | ),
83 |
84 | br(""),br(""),br(""),br(""),br(""),br(""),br(""),br(""),br(""),br("")
85 |
86 |
87 | #Close column
88 | )
89 |
90 | #Close the tabPanel
91 | ),
92 |
93 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
106 |
107 | # ----------------------
108 | # SHEET 2 : SUMMARY STATISTICS
109 | # ----------------------
110 | tabPanel(
111 |
112 | #Name
113 | h4(legend2[1]),
114 |
115 | # ==== Title 2 in Orange
116 | fluidRow(align="center",
117 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
118 | column(6,offset=3,
119 | br(),
120 | helpText( strong(legend2[5] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
121 | hr()
122 | )),
123 |
124 | # === Some text to explain the Figure:
125 | fluidRow(align="justify",
126 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
127 | column(6,offset=3,
128 | br(),legend2[6],br()
129 | )
130 | ),br(),br(),
131 |
132 | # === One widget to select maps and variables for pie and barplot:
133 | fluidRow( align="center",
134 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
135 | column(6,offset=3,
136 | wellPanel(uiOutput("choose_maps_sheet2_bis"))
137 | )
138 | ),
139 |
140 | # === Fluid row for the summary table
141 | br(""),
142 | fluidRow(align="center",
143 | column(12, offset=0,
144 | dataTableOutput('sum_table' , width="700px")
145 | )
146 | ),br(),br(),
147 |
148 |
149 | # ==== Title in Orange
150 | fluidRow(align="center",
151 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
152 | column(6,offset=3,
153 | br(),
154 | helpText( strong(legend2[2] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
155 | hr()
156 | )),
157 |
158 |
159 | # === Some text to explain the Figure:
160 | fluidRow(align="justify",
161 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
162 | column(6,offset=3,
163 | br(),legend2[3],br(),br(),legend2[4],br(),br(),legend2[12]
164 | )
165 | ),br(),br(),
166 |
167 | # === Two widgets to select maps and variables for pie and barplot:
168 | fluidRow(
169 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
170 | column(3,offset=3,
171 | wellPanel(uiOutput("choose_maps_sheet2"))
172 | ),
173 | column(3,offset=0,
174 | #wellPanel(radioButtons( "var_for_barplot", legend2[41], choices = c("nb. marker","size","average gap","biggest gap","Nb. uniq pos."), selected =c("nb. marker") , inline = FALSE ))
175 | wellPanel(radioButtons( "var_for_barplot", legend2[13], choices = c("# markers","map size","average gap size","biggest gap size","# unique positions"), selected =c("# markers") , inline = FALSE ))
176 |
177 | )
178 | ),
179 |
180 |
181 | # === Bar and pieplot whit corresponding widget
182 | fluidRow(
183 |
184 | # PiePlot
185 | column(3, offset=1, plotOutput("my_pieplot", height = "500px" , width = "500px" ) ),
186 |
187 | #Barplot
188 | column(7 , plotOutput("my_barplot" , height = "500px" , width = "1000px") )
189 |
190 | ),br(),
191 |
192 | # === Separation
193 | #fluidRow( column( 6,offset=3, hr())),
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 | # ==== Title 3 in Orange
204 | fluidRow(align="center",
205 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
206 | column(6,offset=3,
207 | br(),
208 | helpText( strong(legend2[7] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
209 | hr()
210 | )),
211 |
212 |
213 | # === Some text to explain the Figure:
214 | fluidRow(align="justify",
215 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
216 | column(6,offset=3,
217 | br(),legend2[8],br()
218 | )
219 | ),br(),br(),
220 |
221 | # === One widget to select maps and variables for pie and barplot:
222 | fluidRow( align="center",
223 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
224 | column(6,offset=3,
225 | wellPanel(uiOutput("choose_chromo_sheet2"))
226 | )
227 | ),
228 |
229 | # === Fluid row for the density plot !
230 | br(""),
231 | fluidRow(align="center",
232 | column(12, offset=0,
233 | plotOutput("circular_plot" , height = "1200px" , width = "900px" )
234 | )
235 | ),br(),br()
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 | #Close the tabPanel
246 | ),
247 |
248 |
249 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
259 |
260 | # ----------------------
261 | # SHEET 3 : COMPARISON OF MAPS
262 | # ----------------------
263 |
264 | tabPanel( class = "two",
265 |
266 | #Name
267 | h4(legend3[1]) ,
268 |
269 | # ==== Title in Orange
270 | fluidRow(align="center",
271 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
272 | column(6,offset=3,
273 | br(),
274 | helpText( strong(legend3[2] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
275 | hr()
276 | )),
277 |
278 |
279 | # === Some text to explain the Figure:
280 | fluidRow(align="justify",
281 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
282 | column(6,offset=3,
283 | br(),legend3[3],legend3[6],br(),br(),legend3[7],a(em("colour.") , style="color:blue", href = "http://www.color-hex.com/" , target="_blank"),
284 | br(),br(),legend3[8],br()
285 | )),br(),br(),
286 |
287 |
288 | # === 2 first widgets
289 | fluidRow( align="center",
290 | column(6,offset=3,
291 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
292 | column(3,offset=0, wellPanel(uiOutput("choose_chromo_sheet3"))),
293 | column(3,offset=0, wellPanel(uiOutput("choose_maps3")))
294 | )),
295 |
296 | # === 2 Next widgets
297 | fluidRow( align="center",
298 | column(6,offset=3,
299 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
300 | column(3,offset=0, wellPanel(checkboxInput("ask_for_normalize", "normalize map lenghts?", value = FALSE, width = NULL))),
301 | br(),column(3,offset=0, downloadButton("downloadID", label = "Download problematic markers"))
302 | )),
303 |
304 | # === Separation
305 | fluidRow( column( 6,offset=3, hr())),
306 |
307 | # === Comparison graph
308 | column(11, offset=1,
309 | br(""), plotlyOutput("plot1" , height = "800px")
310 | ),
311 |
312 |
313 | # === 3 next widgets
314 | fluidRow(column(4,offset=2, style="opacity:0.9; color:grey","Custom colors / font" )),
315 | fluidRow(column(4,offset=2, style="opacity:0.9; color:grey", hr() )),
316 | fluidRow(column( 12, offset=0,
317 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
318 | column(3,offset=0, wellPanel( colourInput("my_color", "Line colour", "#BDA3CC", allowTransparent = TRUE))),
319 | column(3,offset=0, wellPanel( colourInput("my_color_bad", "Line colour (suspect marker)", "#9B9AA6", allowTransparent = TRUE))),
320 | column(3,offset=0, wellPanel( colourInput("my_color_name", "Map names colour", "#ED880C", allowTransparent = TRUE))),
321 | column(3,offset=0, wellPanel( sliderInput("thickness", "Line thickness:", min=0.1, max=12, value=2.0)))
322 | )),
323 | br(),br(),br(),br(),br(),br()
324 |
325 | #Close the tabPanel
326 | ),
327 |
328 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
329 |
330 |
331 |
332 |
333 |
334 |
335 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
336 |
337 | # ----------------------
338 | # SHEET 4 : INTERCHROMOSOME ANALYSIS
339 | # ----------------------
340 | tabPanel(
341 |
342 | #Name
343 | h4(legend4[1]),
344 |
345 | # ==== Title in Orange
346 | fluidRow(align="center",
347 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
348 | column(6,offset=3,
349 | br(),
350 | helpText( strong(legend4[2] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
351 | hr()
352 | )),
353 |
354 |
355 | # === Some text to explain the Figure:
356 | fluidRow(align="justify",
357 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
358 | column(6,offset=3,
359 | br(),legend4[3],br()
360 | )
361 | ),br(),br(),
362 |
363 |
364 | # === Left column to choose input
365 | fluidRow(column(2,
366 |
367 | # Make som space
368 | br(""), br(""),
369 |
370 | # Choose the chromosome
371 | wellPanel(uiOutput("choose_chromo_sheet4")),
372 | br(),
373 |
374 | # Choix de la map1
375 | wellPanel(uiOutput("map1")),
376 |
377 | # Choix de la map2
378 | wellPanel(uiOutput("map2")),
379 | br(),br(),br(),br(),br()
380 |
381 | #Close column
382 | ),
383 |
384 | # === On the space left, I add the plot and color widget:
385 | column(8,
386 |
387 | br(),
388 | plotlyOutput("plot2" , height = "700px" , width = "900px"),
389 |
390 | br(),br()
391 |
392 | #Close column
393 | ),
394 |
395 | # === Key numbers
396 | column(2,
397 | br(), plotOutput("key_numbers_sheet_3", height = "500px" , width = "350px"), br(),br()
398 | )),
399 |
400 |
401 | # === Last line to choose colors
402 | fluidRow(column(4,offset=2, style="opacity:0.9; color:grey","Custom colors" )),
403 | fluidRow(column(4,offset=2, style="opacity:0.9; color:grey", hr() )),
404 | fluidRow(column( 9, offset=2,
405 | column(3, colourInput("col_s4_1", "Background Squares", "#BDA3CC", allowTransparent = TRUE)),
406 | column(3, colourInput("col_s4_2", "Markers", "#48444A", allowTransparent = TRUE)),
407 | column(3, colourInput("col_s4_3", "Markers (Interchromosome)", "#DB0913", allowTransparent = TRUE)),
408 | column(3, colourInput("col_s4_4", "Chromosome name", "#FFA500", allowTransparent = TRUE))
409 | )),
410 | br(),br(),br(),br(),"",br(),br(),br(),"",br(),br(),br()
411 |
412 |
413 |
414 |
415 |
416 | #Close the tabPanel
417 | ),
418 |
419 |
420 |
421 |
422 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
423 |
424 |
425 |
426 |
427 | # ----------------------
428 | # SHEET 5 : RAW MAP
429 | # ----------------------
430 | tabPanel(
431 |
432 | #Name
433 | h4(legend5[1]),
434 |
435 | # ==== Title in Orange
436 | fluidRow(align="center",
437 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
438 | column(6,offset=3,
439 | br(),
440 | helpText( strong(legend5[6] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
441 | hr()
442 | )),
443 |
444 | # === Some text to explain the Figure:
445 | fluidRow(align="justify",
446 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
447 | column(6,offset=3,
448 | br(),legend5[2],legend5[5],br(),br(),legend5[7],br(),
449 | column(5,textInput("text_mark_remove", label = "", value = "Type marker name or pattern...")),
450 | column(5,radioButtons("keep_or_remove", "", choices = c("keep","remove"), selected =c("remove") , inline = T ))
451 | ),
452 | column(6,offset=3,helpText("e.g. '.*25.*' ", style="color:Grey") )
453 | ),br(),
454 |
455 |
456 | # Left column to choose input
457 | column(2,
458 |
459 | # Make som space
460 | br(""),
461 |
462 | # Choix de la map
463 | wellPanel(uiOutput("choose_maps5")),
464 |
465 | # Choose chromosome
466 | br(""),
467 | wellPanel(uiOutput("choose_chromo_sheet5"))
468 |
469 | #Close column
470 | ),
471 |
472 | # On the space left, I add the plot
473 | column(6, offset=2,
474 |
475 | br(""),
476 | dataTableOutput('my_rough_map_viz' , width="500px")
477 |
478 | #Close column
479 | ),br(),br(),br(),
480 |
481 | # Legend of the plot
482 | column(2,
483 | br(),br(),br(),br(),br(),br()
484 | #,helpText(strong(p(legend5[2] , style="color:grey ; font-family: 'times'; font-size:12pt"))),br(),br(),
485 | #helpText(strong(p(legend5[5] , style="color:grey ; font-family: 'times'; font-size:12pt")))
486 | #Close column
487 | )
488 |
489 |
490 |
491 | #Close the tabPanel
492 | ),
493 |
494 |
495 |
496 |
497 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
509 |
510 |
511 | # ----------------------
512 | # SHEET 6: DOCUMENTATION
513 | # ----------------------
514 | tabPanel(
515 |
516 | #Name
517 | h4(legend6[1]),
518 |
519 |
520 | # ==== About section
521 | fluidRow(align="center",
522 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
523 | column(6,offset=3,
524 | br(),
525 | helpText( strong(legend6[2] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
526 | hr()
527 | )),
528 | fluidRow(
529 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
530 | column(3,offset=3, align="justify",
531 | br(),
532 | legend6[3],a("SNiPlay",href="http://sniplay.southgreen.fr/", target="_blank"),"[1] useful.",
533 | br()
534 | ),
535 | column(3,offset=0, align="justify",
536 | br(),
537 | legend6[4],
538 | br()
539 | )), br(),br(),
540 |
541 |
542 |
543 |
544 |
545 | # ==== Input files description
546 | fluidRow(align="center",
547 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
548 | column(6,offset=3,
549 | br(),
550 | helpText( strong(legend6[5] , style="color:Orange ; font-family: 'times'; font-size:30pt ; font-type:bold" )) ,
551 | hr()
552 | )),
553 | fluidRow(align="justify",
554 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
555 | column(6,offset=3,
556 | br(),
557 | legend6[6],
558 | br()
559 | )),
560 | br(),
561 | fluidRow(
562 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
563 | column(3,offset=1,align="center",
564 | br(),br(),
565 | a("OneMap",href="https://cran.r-project.org/web/packages/onemap/onemap.pdf", target="_blank")," [2] format: 3 columns: linkage group, marker name and position in the map.",
566 | downloadLink("load_ex_format1", label = "Download"),br(),
567 | dataTableOutput('doc_ex1' , width="100px"),
568 | br()
569 | ),
570 | column(3,offset=1,align="center",
571 | br(),
572 | a("MapChart",href="http://jhered.oxfordjournals.org/content/93/1/77.full", target="_blank")," [3] format: composed of a sequence of linkage groups, each with a header specifying the linkage group title, followed by a sequence of lines with locus names and map positions.",
573 | downloadLink("load_ex_format2", label = "Download"),
574 | dataTableOutput('doc_ex2' , width="100px"),
575 | br()
576 | ),
577 | column(3,offset=1,align="center",
578 | br(),
579 | a("Carthagène",href="http://www7.inra.fr/mia/T/CarthaGene/", target="_blank"), " [4] format: 1 line only. Linkage groups are separated with {}. Then marker names and positions are provided successively. Output created with the \'mapget\' command.",
580 | downloadLink("load_ex_format3", label = "Download"),br(),
581 | dataTableOutput('doc_ex3' , width="300px"),
582 | br()
583 | )
584 |
585 | ), br(),
586 |
587 |
588 |
589 | # ==== Use the app locally
590 | fluidRow(align="center",
591 | style="opacity: 1;background-color:white; margin-top: 0px;width: 100%;",
592 | column(6,offset=3,
593 | # Set the style of this page
594 | br(),
595 | helpText(strong(legend6[11] , style="color:orange ; font-family: 'times'; font-size:30pt ; font-type:bold" ) ) ,
596 | hr()
597 | )),
598 | fluidRow(align="justify",
599 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
600 | column(6,offset=3,
601 | br(),
602 | legend6[12],br(),br(),
603 | legend6[13],a("Install R",href="https://www.r-project.org/", target="_blank"),legend6[16],br(),br(),
604 | legend6[14],br(),
605 | code("install.packages(shiny)"),br(),
606 | code("library(shiny)"),br(),br(),
607 | legend6[15],br(),
608 | code("runGitHub(\"GenMap-Comparator\",\"holtzy\")"),br(),
609 | br(),
610 | "see also the ", a("geneticMapComparator github repository", href="https://github.com/holtzy/GenMap-Comparator", target="_blank"),br()
611 | )
612 | ),
613 |
614 |
615 |
616 | # ==== Sharing maps
617 | fluidRow(align="center",
618 | style="opacity: 1;background-color:white; margin-top: 0px;width: 100%;",
619 | column(6,offset=3,
620 | # Set the style of this page
621 | br(),
622 | helpText(strong(legend6[17] , style="color:orange ; font-family: 'times'; font-size:30pt ; font-type:bold" ) ) ,
623 | hr()
624 | )),
625 | fluidRow(align="justify",
626 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
627 | column(6,offset=3,
628 | br(),
629 | legend6[18],br(),br(),
630 | br(),br()
631 | )
632 | ),
633 |
634 |
635 |
636 | # ==== Contact
637 | fluidRow(align="center",
638 | style="opacity: 1;background-color:white; margin-top: 0px;width: 100%;",
639 | column(6,offset=3,
640 | # Set the style of this page
641 | br(),
642 | helpText(strong(legend6[10] , style="color:orange ; font-family: 'times'; font-size:30pt ; font-type:bold" ) ) ,
643 | hr()
644 | )),
645 | fluidRow( align="center",
646 | style="opacity: 1;background-color:white; margin-top: 0px;width: 100%;",
647 | column(6,offset=3,
648 | img(src="map_montpellier.png" , width = 400),
649 | br()
650 | ),
651 | column(6,offset=3,
652 | br(),
653 | "Vincent Ranwez: ranwez@supagro.fr",br(),
654 | "Ge2pop Team, Bâtiment Arcad",br(),
655 | "10 rue Arthur Young",br(),
656 | "34090 MONTPELLIER, FRANCE",br()
657 | )
658 | ),
659 | # fluidRow(column(6,offset=3,hr())) , br() ,
660 |
661 | #Black line?
662 | #fluidRow( style=" opacity: 0.8 ; background-color: white ; margin-top: 0px ; width: 100%; " ), br(),
663 |
664 |
665 | # ==== References
666 | fluidRow(align="center",
667 | style="opacity: 1;background-color:white; margin-top: 0px;width: 100%;",
668 | column(6,offset=3,
669 | # Set the style of this page
670 | br(),
671 | helpText(strong("- References -" , style="color:orange ; font-family: 'times'; font-size:30pt ; font-type:bold" ) ) ,
672 | hr()
673 | )),
674 | fluidRow(align="left",
675 | style="opacity:0.9; background-color: white ;margin-top: 0px; width: 100%;",
676 | column(6,offset=3,
677 | br(),
678 | "1. Dereeper A., Nicolas S., Lecunff L., Bacilieri R., Doligez A., Peros JP., Ruiz M., This P. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.. BMC Bioinformatics. 2011. May 5;12(1):134. ", br(),
679 | "2. Margarido GRA, Souza AP, Garcia AAF. OneMap: software for genetic mapping in outcrossing species. Hereditas. Wiley Online Library; 2007;144: 78–79.", br(),
680 | "3. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. Elsevier; 1987;1: 174–181.", br(),
681 | "4. de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T. CARTHAGENE: Multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics. 2005;21: 1703–1704.", br(),
682 | br(), br()
683 | )),
684 |
685 |
686 |
687 | # === Last bandeau for the logos
688 | fluidRow(
689 |
690 | # Set the style of this page
691 | style=" opacity: 0.8 ; background-color: black ; margin-top: 0px ; width: 100%; ",
692 |
693 | # put the logos
694 | br(),
695 | column(2, offset=2, img(src="logo_INRAE.png", height = 40 ) , br(),br() ),
696 | column(2, offset=1, img(src="logo-institut-agro-montpellier.png", height = 40 ) ),
697 | column(2, offset=1, img(src="logo_arvalis.png", height = 40) )
698 | #column(2, offset=1, img(src="logo_arvalis.png" , height = 70*grand, width = 110*grand) )
699 |
700 | )
701 |
702 | #Close the tabPanel
703 | )
704 |
705 | # --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
706 |
707 |
708 |
709 |
710 |
711 | #Close the shinyUI
712 | ))
713 |
--------------------------------------------------------------------------------
/www/Rscript_for_background_image_sheet1:
--------------------------------------------------------------------------------
1 | #Make the background Image of the homepage
2 | #grand=60
3 | #png("www/my_image.png" , width = 40*grand, height = 22*grand)
4 | #par(bg="black" )
5 | #my_colors=c(rgb(0.2,0.2,0.4,0.5), rgb(0.8,0.2,0.4,0.5), rgb(0.2,0.9,0.4,0.2) )
6 | #library(MASS)
7 | #par(mar=c(0,0,0,0))
8 | #my_iris=iris[,c(1,2,3,4,1,3,2,4,5)]
9 | #ze_colors=my_colors[as.numeric(my_iris$Species)]
10 | #par(cex.axis=2 , col.lab="white" , col.axis="grey")
11 | #parcoord(my_iris[,c(1:8)] , col= ze_colors , ylim=c(0.1,0.8) , xlim=c(3,7.5) )
12 | #dev.off()
13 |
14 |
--------------------------------------------------------------------------------
/www/genComp.css:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | /* Couleur du bandeau #463F32 */
6 | .navbar-static-top {
7 | background-color: #000000;
8 | border-color: #000000;
9 | }
10 |
11 |
12 | /* Taille du bandeau */
13 | .navbar {
14 | min-height: 62px;
15 | }
16 |
17 | /* mettre le titre de la page au dessus du menu de navigation */
18 | .navbar-header { width:100%; background-color: #000000}.navbar-brand { width: 100%; text-align: center; font-family:times; font-size:28pt ; font-type:bold }
19 | /* Couleur message d'erreur*/
20 | .shiny-output-error-validation {
21 | color: green;
22 | size: 225px ;
23 | padding-left: 25;
24 | }
25 |
26 |
27 | /* Couleur du fond
28 | body {
29 | background-image: url( http://papillondamour.p.a.pic.centerblog.net/fb850229.jpg );
30 | background-color : white;
31 | background-attachment:fixed;
32 | background-repeat:repeat;
33 | }
34 | */
35 |
36 |
37 |
38 | /* Couleur du fond */
39 | body {
40 | background-color : white;
41 | }
42 |
43 |
44 | /* Juste pour le padding de la home-page */
45 | .container-fluid { padding-left: 0; padding-right: 0; }
46 |
47 |
48 | /* Petite boxe pour sélectionner les data
49 | .shiny-input-container:not(.shiny-input-container-inline) {
50 | max-width: 13%;
51 | }
52 | */
53 |
54 |
55 |
56 | /* CSS des lignes hr() (page de doc) */
57 | hr {
58 | display: block;
59 | height: 3px;
60 | border: 0;
61 | border-top: 1px solid black;
62 | margin: 1em 0;
63 | padding: 0;
64 | }
65 |
--------------------------------------------------------------------------------
/www/logo-institut-agro-montpellier.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/logo-institut-agro-montpellier.png
--------------------------------------------------------------------------------
/www/logo_INRAE.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/logo_INRAE.png
--------------------------------------------------------------------------------
/www/logo_INRA_old.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/logo_INRA_old.png
--------------------------------------------------------------------------------
/www/logo_SUPAGRO.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/logo_SUPAGRO.jpg
--------------------------------------------------------------------------------
/www/logo_arvalis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/logo_arvalis.png
--------------------------------------------------------------------------------
/www/map_montpellier.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/map_montpellier.png
--------------------------------------------------------------------------------
/www/my_image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/holtzy/GenMap-Comparator/efd2ac90d683595e73de8cf977b9da75fec5fac5/www/my_image.png
--------------------------------------------------------------------------------